
Oracle9 i

Supplied PL/SQL Packages and Types Reference

Release 2 (9.2)

March 2002

Part No. A96612-01

Oracle9i Supplied PL/SQL Packages and Types Reference, Release 2 (9.2)

Part No. A96612-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: D.K. Bradshaw

Contributing Authors: Ted Burroughs, Shelley Higgins, Paul Lane, Roza Leyderman, Kevin Macdowell,
Jack Melnick, Chuck Murray, Kathy Rich, Vivian Schupmann, Randy Urbano

Contributors: D. Alpern, G. Arora, L. Barton, N. Bhatt, S. Chandrasekar, T. Chang, G. Claborn, R.
Decker, A. Downing, J. Draaijer, S. Ehrsam, A. Ganesh, R. Govindarajan, B. Goyal, C. Iyer, H. Jakobsson,
A. Kalra, B. Lee, J. Liu, P. Locke, A. Logan, V. Maganty, N. Mallavarupu, J. Mallory, R. Mani, S. Mavris,
A. Mozes, J. Muller, K. Muthukkaruppan, R. Pang, D. Raphaely, S. Ray, A. Rhee, J. Sharma, R. Sujithan,
A. Swaminathan, K. Tarkhanov, A. Tsukerman A. To, S. Urman, S. Vivian, D. Voss, W. Wang, D. Wong

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Procedural Gateway, Oracle Store, Oracle7,
Oracle8, Oracle8i, Oracle9i, PL/SQL, Pro*C, Pro*COBOL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xix

Preface .. xxi

Audience .. xxii
Organization.. xxii
Related Documentation ... xxii
Conventions... xxiii
Documentation Accessibility .. xxv

What’s New in Supplied PL/SQL Packages and Types? .. xxvii

Oracle9i Release 2 (9.2) Beta New Features in Supplied PL/SQL Packages and Types xxviii
Oracle9i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages and Types................ xxx
Oracle8i Release 2 (8.1.6) New Features in Supplied PL/SQL Packages xxxi
Oracle8i Release 1 (8.1.5) New Features in Supplied PL/SQL Packages xxxi

1 Introduction

Package Overview .. 1-2
Abbreviations for Datetime and Interval Datatypes ... 1-6
Summary of Oracle Supplied PL/SQL Packages ... 1-7
Summary of Subprograms in Supplemental Packages ... 1-16

2 DBMS_ALERT

Security, Constants, and Errors for DBMS_ALERT ... 2-2
iii

Using Alerts ... 2-3
Summary of DBMS_ALERT Subprograms ... 2-4

3 DBMS_APPLICATION_INFO

Privileges .. 3-2
Summary of DBMS_APPLICATION_INFO Subprograms .. 3-2

4 DBMS_APPLY_ADM

Summary of DBMS_APPLY_ADM Subprograms ... 4-2

5 DBMS_AQ

Java Classes .. 5-2
Enumerated Constants ... 5-2
Data Structures for DBMS_AQ .. 5-2
Summary of DBMS_AQ Subprograms .. 5-5

6 DBMS_AQADM

Enumerated Constants ... 6-2
Summary of DBMS_AQADM Subprograms .. 6-2

7 DBMS_AQELM

Summary of DBMS_AQELM Subprograms ... 7-2

8 DBMS_CAPTURE_ADM

Summary of DBMS_CAPTURE_ADM Subprograms ... 8-2

9 DBMS_DDL

Summary of DBMS_DDL Subprograms.. 9-2

10 DBMS_DEBUG

Using DBMS_DEBUG ... 10-2
Usage Notes.. 10-5
iv

Types and Constants .. 10-6
Error Codes, Exceptions, and Variables .. 10-11
Common and Debug Session Sections... 10-13
OER Breakpoints .. 10-14
Summary of DBMS_DEBUG Subprograms.. 10-15

11 DBMS_DEFER

Summary of DBMS_DEFER Subprograms ... 11-2

12 DBMS_DEFER_QUERY

Summary of DBMS_DEFER_QUERY Subprograms ... 12-2

13 DBMS_DEFER_SYS

Summary of DBMS_DEFER_SYS Subprograms.. 13-2

14 DBMS_DESCRIBE

Security, Types, and Errors for DBMS_DESCRIBE ... 14-2
Summary of DBMS_DESCRIBE Subprograms .. 14-2

15 DBMS_DISTRIBUTED_TRUST_ADMIN

Requirements... 15-2
Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms 15-2

16 DBMS_FGA

Summary of DBMS_FGA Subprograms .. 16-2

17 DBMS_FLASHBACK

DBMS_FLASHBACK Error Messages.. 17-3
Using DBMS_FLASHBACK: Example ... 17-3
Summary of DBMS_FLASHBACK Subprograms ... 17-6
v

18 DBMS_HS_PASSTHROUGH

Security ... 18-2
Summary of DBMS_HS_PASSTHROUGH Subprograms ... 18-2

19 DBMS_IOT

Summary of DBMS_IOT Subprograms ... 19-2

20 DBMS_JOB

Requirements... 20-2
Using the DBMS_JOB Package with Oracle Real Application Clusters 20-2
Summary of DBMS_JOB Subprograms ... 20-3

21 DBMS_LDAP

Exception Summary.. 21-2
Summary of Data Types... 21-3
Summary of DBMS_LDAP Subprograms ... 21-4

22 DBMS_LIBCACHE

Requirements... 22-2
Summary of DBMS_LIBCACHE Subprograms ... 22-2

23 DBMS_LOB

LOB Locators for DBMS_LOB ... 23-2
Datatypes, Constants, and Exceptions for DBMS_LOB .. 23-3
Security for DBMS_LOB ... 23-4
Rules and Limitations for DBMS_LOB .. 23-5
Temporary LOBs ... 23-9
Summary of DBMS_LOB Subprograms .. 23-13

24 DBMS_LOCK

Requirements, Security, and Constants for DBMS_LOCK .. 24-2
Summary of DBMS_LOCK Subprograms ... 24-3
vi

Printing a Check: Example .. 24-10

25 DBMS_LOGMNR

DBMS_LOGMNR Constants ... 25-2
Summary of DBMS_LOGMNR Subprograms ... 25-4

26 DBMS_LOGMNR_CDC_PUBLISH

Publishing Change Data ... 26-2
Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms .. 26-2

27 DBMS_LOGMNR_CDC_SUBSCRIBE

Subscribing to Change Data ... 27-2
Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms 27-2

28 DBMS_LOGMNR_D

Summary of DBMS_LOGMNR_D Subprograms .. 28-2

29 DBMS_LOGSTDBY

Configuring and Managing the Logical Standby Environment.. 29-2
Summary of DBMS_LOGSTDBY Subprograms.. 29-2

30 DBMS_METADATA

Summary of DBMS_METADATA Subprograms ... 30-2

31 DBMS_MGWADM

Summary of DBMS_MGWADM Object Types and Methods ... 31-2
DBMS_MGWADM Constants ... 31-7
MQSeries System Properties .. 31-9
Summary of DBMS_MGWADM Subprograms ... 31-12
Summary of Database Views.. 31-34
vii

32 DBMS_MGWMSG

Summary of DBMS_MGWMSG Object Types and Methods ... 32-2
DBMS_MGWMSG Constants.. 32-8
Summary of DBMS_MGWMSG Subprograms.. 32-9

33 DBMS_MVIEW

Summary of DBMS_MVIEW Subprograms.. 33-2

34 DBMS_OBFUSCATION_TOOLKIT

Overview of Key Management .. 34-2
Summary of DBMS_OBFUSCATION Subprograms... 34-4

35 DBMS_ODCI

Summary of DBMS_ODCI Subprograms.. 35-2

36 DBMS_OFFLINE_OG

Summary of DBMS_OFFLINE_OG Subprograms... 36-2

37 DBMS_OFFLINE_SNAPSHOT

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms .. 37-2

38 DBMS_OLAP

Requirements... 38-2
Error Messages... 38-2
Summary of DBMS_OLAP Subprograms ... 38-6

39 DBMS_ORACLE_TRACE_AGENT

Security ... 39-2
Summary of DBMS_ORACLE_TRACE_AGENT Subprograms ... 39-2

40 DBMS_ORACLE_TRACE_USER

Summary of DBMS_ORACLE_TRACE_USER Subprograms ... 40-2
viii

41 DBMS_OUTLN

Requirements and Security for DBMS_OUTLN .. 41-2
Summary of DBMS_OUTLN Subprograms.. 41-2

42 DBMS_OUTLN_EDIT

Summary of DBMS_OUTLN_EDIT Subprograms.. 42-2

43 DBMS_OUTPUT

Security, Errors, and Types for DBMS_OUTPUT... 43-2
Using DBMS_OUTPUT... 43-2
Summary of DBMS_OUTPUT Subprograms ... 43-3

44 DBMS_PCLXUTIL

Using DBMS_PCLXUTIL.. 44-2
Limitations ... 44-3
Summary of DBMS_PCLUTTL Subprograms .. 44-3

45 DBMS_PIPE

Public Pipes, Private Pipes, and Pipe Uses .. 45-2
Security, Constants, and Errors .. 45-4
Summary of DBMS_PIPE Subprograms.. 45-4

46 DBMS_PROFILER

Using DBMS_PROFILER.. 46-2
Requirements... 46-3
Security ... 46-5
Exceptions... 46-6
Error Codes... 46-6
Summary of DBMS_PROFILER Subprograms .. 46-7

47 DBMS_PROPAGATION_ADM

Summary of DBMS_PROPAGATION_ADM Subprograms ... 47-2
ix

48 DBMS_RANDOM

Requirements... 48-2
Summary of DBMS_RANDOM Subprograms ... 48-2

49 DBMS_RECTIFIER_DIFF

Summary of DBMS_RECTIFIER_DIFF Subprograms .. 49-2

50 DBMS_REDEFINITION

Constants for DBMS_REDEFINITION .. 50-2
Summary of DBMS_REDEFINITION Subprograms .. 50-2

51 DBMS_REFRESH

Summary of DBMS_REFRESH Subprograms .. 51-2

52 DBMS_REPAIR

Security, Enumeration Types, and Exceptions... 52-2
Summary of DBMS_REPAIR Subprograms .. 52-4

53 DBMS_REPCAT

Summary of DBMS_REPCAT Subprograms... 53-2

54 DBMS_REPCAT_ADMIN

Summary of DBMS_REPCAT_ADMIN Subprograms ... 54-2

55 DBMS_REPCAT_INSTANTIATE

Summary of DBMS_REPCAT_INSTANTIATE Subprograms... 55-2

56 DBMS_REPCAT_RGT

Summary of DBMS_REPCAT_RGT Subprograms .. 56-2
x

57 DBMS_REPUTIL

Summary of DBMS_REPUTIL Subprograms ... 57-2

58 DBMS_RESOURCE_MANAGER

Requirements... 58-2
Summary of DBMS_RESOURE_MANAGER Subprograms ... 58-2

59 DBMS_RESOURCE_MANAGER_PRIVS

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms.................................. 59-2

60 DBMS_RESUMABLE

Summary of DBMS_RESUMABLE Subprograms ... 60-2

61 DBMS_RLS

Dynamic Predicates .. 61-2
Security ... 61-3
Usage Notes.. 61-3
Summary of DBMS_RLS Subprograms ... 61-3

62 DBMS_ROWID

Usage Notes.. 62-2
Requirements... 62-3
ROWID Types ... 62-3
Exceptions... 62-4
Summary of DBMS_ROWID Subprograms.. 62-4

63 DBMS_RULE

Summary of DBMS_RULE Subprograms.. 63-2

64 DBMS_RULE_ADM

Summary of DBMS_RULE_ADM Subprograms ... 64-2
xi

65 DBMS_SESSION

Requirements... 65-2
Summary of DBMS_SESSION Subprograms ... 65-2

66 DBMS_SHARED_POOL

Installation Notes.. 66-2
Usage Notes.. 66-2
Summary of DBMS_SHARED_POOL Subprograms.. 66-2

67 DBMS_SPACE

Security ... 67-2
Requirements... 67-2
Summary of DBMS_SPACE Subprograms.. 67-2

68 DBMS_SPACE_ADMIN

Security ... 68-2
SYSTEM Tablespace Migration: Conditions ... 68-2
Constants for DBMS_SPACE_ADMIN Constants ... 68-2
Summary of DBMS_SPACE_ADMIN Subprograms .. 68-3

69 DBMS_SQL

Using DBMS_SQL ... 69-3
Constants, Types, and Exceptions for DBMS_SQL .. 69-4
Execution Flow ... 69-5
Security ... 69-8
Processing Queries ... 69-9
Examples ... 69-10
Processing Updates, Inserts, and Deletes... 69-22
Locating Errors... .. 69-22
Summary of DBMS_SQL Subprograms... 69-23

70 DBMS_STATS

Using DBMS_STATS.. 70-2
xii

Setting or Getting Statistics .. 70-4
Transferring Statistics .. 70-5
Gathering Optimizer Statistics .. 70-5
Summary of DBMS_STATS Subprograms .. 70-6

71 DBMS_STORAGE_MAP

Mapping Terminology ... 71-2
Summary of DBMS_STORAGE_MAP Subprograms ... 71-3
Usage Notes for DBMS_STORAGE_MAP Subprograms .. 71-8

72 DBMS_STREAMS

Summary of DBMS_STREAMS Subprograms... 72-2

73 DBMS_STREAMS_ADM

Summary of DBMS_STREAMS_ADM Subprograms .. 73-2

74 DBMS_TRACE

Requirements, Restrictions, and Constants for DBMS_TRACE ... 74-2
Using DBMS_TRACE .. 74-2
Summary of DBMS_TRACE Subprograms... 74-5

75 DBMS_TRANSACTION

Requirements... 75-2
Summary of DBMS_TRANSACTION Subprograms ... 75-2

76 DBMS_TRANSFORM

Summary of DBMS_TRANSFORM Subprograms.. 76-2

77 DBMS_TTS

Exceptions... 77-2
Summary of DBMS_TTS Subprograms ... 77-2
xiii

78 DBMS_TYPES

Constants for DBMS_TYPES .. 78-2

79 DBMS_UTILITY

Requirements and Types for DBMS_UTILITY... 79-2
Summary of DBMS_UTILITY Subprograms .. 79-2

80 DBMS_WM

Summary of DBMS_WM Subprograms ... 80-2

81 DBMS_XDB

Description of DBMS_XDB .. 81-2
Functions and Procedures of DBMS_XDB .. 81-2

82 DBMS_XDBT

Description of BMS_XDBT... 82-2
Functions and Procedures of BMS_XDBT ... 82-2
Customizing the DBMS_XDBT package ... 82-7

83 DBMS_XDB_VERSION

Description of DBMS_XDB_VERSION ... 83-2
Functions and Procedures of DBMS_XDB_VERSION ... 83-2

84 DBMS_XMLDOM

Description of DBMS_XMLDOM ... 84-2
Types of DBMS_XMLDOM.. 84-3
Defined Constants of DBMS_XMLDOM .. 84-4
Exceptions of DBMS_XMLDOM... 84-5
Functions and Procedures of DBMS_XMLDOM ... 84-5

85 DBMS_XMLGEN

Description of DMS_XMLGEN ... 85-2
xiv

Functions and Procedures of DBMS_XMLGEN... 85-2

86 DBMS_XMLPARSER

Description of DBMS_XMLPARSER ... 86-2
Functions and Procedures of DBMS_XMLPARSER .. 86-2

87 DBMS_XMLQUERY

Description of DBMS_XMLQuery .. 87-2
Types of DBMS_XMLQuery... 87-2
Constants of DBMS_XMLQuery ... 87-2
Functions and Procedures of DBMS_XMLQuery .. 87-3

88 DBMS_XMLSAVE

Description of DBMS_XMLSave... 88-2
Types of DBMS_XMLSave.. 88-2
Constants of DBMS_XMLSave .. 88-2
Functions and Procedures of DBMS_XMLSave ... 88-2

89 DBMS_XMLSchema

Description of DBMS_XMLSCHEMA ... 89-2
Constants of DBMS_XMLSCHEMA... 89-2
Procedures and Functions of DBMS_XMLSCHEMA.. 89-2
Catalog Views .. 89-9

90 DBMS_XPLAN

Using DBMS_XPLAN .. 90-2
Summary of DBMS_XPLAN Subprograms... 90-2
Usage Notes.. 90-4

91 DBMS_XSLPROCESSOR

Description of DBMS_XSLPROCESSOR .. 91-2
Subprograms of DBMS_XSLPROCESSOR... 91-2
xv

92 DEBUG_EXTPROC

Requirements and Installation Notes for DEBUG_EXTPROC.. 92-2
Using DEBUG_EXTPROC .. 92-2
Summary of DBMS_EXTPROC Subprograms ... 92-3

93 UTL_COLL

Summary of UTL_COLL Subprograms .. 93-2

94 UTL_ENCODE

Summary of UTL_ENCODE Subprograms ... 94-2

95 UTL_FILE

Security ... 95-2
File Ownership and Protections... 95-2
Exceptions... 95-3
Types.. 95-4
Summary of UTL_FILE Subprograms .. 95-4

96 UTL_HTTP

UTL_HTTP Constants, Types and Flow ... 96-2
UTL_HTTP Exceptions .. 96-10
UTL_HTTP Examples... 96-12
Summary of UTL_HTTP Subprograms .. 96-16

97 UTL_INADDR

Exceptions... 97-2
Summary of UTL_INADDR Subprograms ... 97-2

98 UTL_RAW

Usage Notes.. 98-2
Summary of UTL_RAW Subprograms ... 98-2
xvi

99 UTL_REF

Requirements... 99-2
Datatypes, Exceptions, and Security for UTL_REF .. 99-2
Summary of UTL_REF Subprograms ... 99-4

100 UTL_SMTP

Exceptions, Limitations, and Reply Codes .. 100-2
Summary of UTL_SMTP Subprograms ... 100-5
Example... 100-18

101 UTL_TCP

Exceptions... 101-2
Example... 101-2
Summary of UTL_TCP Subprograms ... 101-4

102 UTL_URL

Introduction to the UTL_URL Package .. 102-2
UTL_URL Exceptions ... 102-3
Summary of UTL_URL Subprograms .. 102-3

103 ANYDATA TYPE

Construction... 103-2
Summary of ANYDATA Subprograms .. 103-2

104 ANYDATASET TYPE

Construction... 104-2
Summary of ANYDATASET Subprograms ... 104-2

105 ANYTYPE TYPE

Summary of ANYTYPE Subprograms.. 105-2
xvii

106 Advanced Queuing Types

Advanced Queuing Types ... 106-1

107 JMS Types

Constants to Support the aq$_jms_message Type.. 107-2
Summary of JMS Types ... 107-2
Summary of JMS Type Member and Static Subprograms.. 107-9
Enqueuing Through the Oracle JMS Administrative Interface: Example 107-31

108 Logical Change Record Types

LCR$_DDL_RECORD Type ... 108-3
LCR$_ROW_RECORD Type .. 108-15
Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD 108-33
LCR$_ROW_LIST Type ... 108-40
LCR$_ROW_UNIT Type ... 108-41

109 Rule Types

Rule Types 109-2

Index
xviii

Send Us Your Comments

Oracle9 i Supplied PL/SQL Packages and Types Reference, Release 2 (9.2)

Part No. A96612-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: infodev_us@oracle.com
� FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
� Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xix

xx

Preface

This reference manual describes the Oracle PL/SQL packages shipped with the
Oracle database server. This information applies to versions of the Oracle database
server that run on all platforms unless otherwise specified.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions

� Documentation Accessibility
xxi

Audience
Oracle9i Supplied PL/SQL Packages and Types Reference is intended for
programmers, systems analysts, project managers, and others interested in
developing database applications. This manual assumes a working knowledge of
application programming and familiarity with SQL to access information in
relational database systems. Some sections also assume a knowledge of basic
object-oriented programming.

Organization
See Table 1–1, " Summary of Oracle Supplied PL/SQL Packages" on page 1-7 for
information about the organization of this reference.

Related Documentation
For more information, see these Oracle resources:

� Oracle9i Application Developer’s Guide - Fundamentals

� PL/SQL User’s Guide and Reference

� Oracle9i Supplied Java Packages Reference.

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html
xxii

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxiii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

The JRepUtil class implements these
methods.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

Convention Meaning Example
xxiv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other

.

.

.

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxv

market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.
xxvi

What’s New in Supplied PL/SQL Packages
and Types?

The following sections describe the new features in Oracle Supplied PL/SQL
Packages and Types:

� Oracle9i Release 2 (9.2) Beta New Features in Supplied PL/SQL Packages and
Types

� Oracle9i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages and
Types

� Oracle8i Release 2 (8.1.6) New Features in Supplied PL/SQL Packages

� Oracle8i Release 1 (8.1.5) New Features in Supplied PL/SQL Packages
xxvii

Oracle9 i Release 2 (9.2) Beta New Features in Supplied PL/SQL
Packages and Types

This release includes the following new chapters:

� Advanced Queuing Types

� DBMS_APPLY_ADM

� DBMS_CAPTURE_ADM

� DBMS_LOGSTDBY

� DBMS_MGWADM

� DBMS_MGWMSG

� DBMS_PROPAGATION_ADM

� DBMS_RULE

� DBMS_RULE_ADM

� DBMS_STORAGE_MAP

� DBMS_STREAMS

� DBMS_STREAMS_ADM

� DBMS_XDB

� DBMS_XDBT

� DBMS_XDB_VERSION

� DBMS_XMLDOM

� DBMS_XMLPARSER

� DBMS_XPLAN

� DBMS_XSLPROCESSOR

� JMS Types

� Logical Change Record Types

� Rule Types

This release includes changes to the following chapters:
xxviii

� DBMS_DDL

� DBMS_FLASHBACK

� DBMS_LOB

� DBMS_LOGMNR

� DBMS_LOGMNR_CDC_PUBLISH

� DBMS_LOGMNR_CDC_SUBSCRIBE

� DBMS_LOGMNR_D

� DBMS_METADATA

� DBMS_REDEFINITION

� DBMS_RLS

� DBMS_SPACE_ADMIN

� DBMS_STATS

� DBMS_TRANSFORM

� DBMS_WM

� DBMS_XMLGEN

� DBMS_XMLQUERY

� DBMS_XMLSAVE

� DBMS_XMLSchema

� UTL_FILE

� UTL_HTTP
xxix

Oracle9 i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages
and Types

This release includes the following new packages:

� DBMS_AQELM

� DBMS_ENCODE

� DBMS_FGA

� DBMS_FLASHBACK

� DBMS_LDAP

� DBMS_LibCache

� DBMS_LOGMNR_CDC_PUBLISH

� DBMS_LOGMNR_CDC_SUBSCRIBE

� DBMS_METADATA

� DBMS_ODCI

� DBMS_OUTLN_EDIT

� DBMS_REDEFINITION

� DBMS_TRANSFORM

� DBMS_URL

� DBMS_WM

� DBMS_XMLGEN

� DBMS_XMLQuery

� DMBS_XMLSave

� UTL_ENCODE

This release includes new information about types:

� DBMS_TYPES

� ANYDATA_TYPE

� ANYDATASET_TYPE

� ANYTYPE_TYPE

This release includes enhancements to the following packages:
xxx

� UTL_FILE

� UTL_HTTP

� UTL_RAW

Oracle8 i Release 2 (8.1.6) New Features in Supplied PL/SQL Packages
This release included the following new packages

� DBMS_BACKUP_RESTORE

� DBMS_OBFUSCATION_TOOLKIT

� UTL_INADDR

� UTL_SMTP

� UTL_TCP

This release included enhancements to the following packages:

� DBMS_DEBUG

� DBMS_DISTRIBUTED_TRUST_ADMIN

� DBMS_LOGMINER

� DBMS_LOGMINER_D

� DBMS_PCLXUTIL

� DMBS_PROFILER

� DBMS_REPAIR

� DBMS_RESOURCE_MANAGER

� DBMS_ROWID

� DBMS_SQL

� DBMS_UTILITY

� UTL_HTTP

Oracle8 i Release 1 (8.1.5) New Features in Supplied PL/SQL Packages
This book was new for release 8.1.5.
xxxi

xxxii

Introd
1

Introduction

Oracle supplies many PL/SQL packages with the Oracle server to extend database
functionality and provide PL/SQL access to SQL features. You can use the supplied
packages when creating your applications or for ideas in creating your own stored
procedures.

This chapter contains the following topics:

� Package Overview

� Summary of Oracle Supplied PL/SQL Packages

� Summary of Subprograms in Supplemental Packages

Note: This manual covers the packages provided with the Oracle
database server. Packages supplied with other products, such as
Oracle Developer or the Oracle Application Server, are not covered.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information on how to create your own packages
uction 1-1

Package Overview
Package Overview
A package is an encapsulated collection of related program objects stored together in
the database. Program objects are procedures, functions, variables, constants,
cursors, and exceptions.

Packages have many advantages over standalone procedures and functions. For
example, they:

� Let you organize your application development more efficiently.

� Let you grant privileges more efficiently.

� Let you modify package objects without recompiling dependent schema objects.

� Enable Oracle to read multiple package objects into memory at once.

� Let you overload procedures or functions. Overloading means creating multiple
procedures with the same name in the same package, each taking arguments of
different number or datatype.

� Can contain global variables and cursors that are available to all procedures and
functions in the package.

Package Components
PL/SQL packages have two parts: the specification and the body, although
sometimes the body is unnecessary. The specification is the interface to your
application; it declares the types, variables, constants, exceptions, cursors, and
subprograms available for use. The body fully defines cursors and subprograms,
and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested.
However, the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS -- specification (visible part)
-- public type and item declarations
-- subprogram specifications

END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)
-- private type and item declarations
-- subprogram bodies

[BEGIN
-- initialization statements]

END [name];
1-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Package Overview
The specification holds public declarations that are visible to your application. The
body holds implementation details and private declarations that are hidden from
your application. You can debug, enhance, or replace a package body without
changing the specification. You can change a package body without recompiling
calling programs because the implementation details in the body are hidden from
your application.

Using Oracle Supplied Packages
Most Oracle supplied packages are automatically installed when the database is
created and the CATPROC.SQL script is run. For example, to create the DBMS_ALERT
package, the DBMSALRT.SQL and PRVTALRT.PLB scripts must be run when
connected as the user SYS. These scripts are run automatically by the CATPROC.SQL
script.

Certain packages are not installed automatically. Special installation instructions for
these packages are documented in the individual chapters.

To call a PL/SQL function from SQL, you must either own the function or have
EXECUTE privileges on the function. To select from a view defined with a PL/SQL
function, you must have SELECT privileges on the view. No separate EXECUTE
privileges are needed to select from the view. Instructions on special requirements
for packages are documented in the individual chapters.

Creating New Packages
To create packages and store them permanently in an Oracle database, use the
CREATE PACKAGE and CREATE PACKAGE BODY statements. You can execute these
statements interactively from SQL*Plus or Enterprise Manager.

To create a new package, do the following:

1. Create the package specification with the CREATE PACKAGE statement.

You can declare program objects in the package specification. Such objects are
called public objects. Public objects can be referenced outside the package, as
well as by other objects in the package.

2. Create the package body with the CREATE PACKAGE BODY statement.

Note: It is often more convenient to add the OR REPLACE clause in
the CREATE PACKAGE statement.
Introduction 1-3

Package Overview
You can declare and define program objects in the package body.

� You must define public objects declared in the package specification.

� You can declare and define additional package objects, called private objects.
Private objects are declared in the package body rather than in the package
specification, so they can be referenced only by other objects in the package.
They cannot be referenced outside the package.

Separating the Specification and Body
The specification of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body
of a package defines the objects declared in the specification, as well as private
objects that are not visible to applications outside the package.

Oracle stores the specification and body of a package separately in the database.
Other schema objects that call or reference public program objects depend only on
the package specification, not on the package body. Using this distinction, you can
change the definition of a program object in the package body without causing
Oracle to invalidate other schema objects that call or reference the program object.
Oracle invalidates dependent schema objects only if you change the declaration of
the program object in the package specification.

Example The following example shows a package specification for a package named
EMPLOYEE_MANAGEMENT. The package contains one stored function and two stored
procedures.

CREATE PACKAGE employee_management AS
FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,

mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
deptno NUMBER) RETURN NUMBER;

PROCEDURE fire_emp (emp_id NUMBER);
PROCEDURE sal_raise (emp_id NUMBER, sal_incr NUMBER);

END employee_management;

See Also:

� PL/SQL User’s Guide and Reference

� Oracle9i Application Developer’s Guide - Fundamentals

for more information on creating new packages

� Oracle9i Database Concepts

for more information on storing and executing packages
1-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Package Overview
The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee_management AS
FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,

mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
deptno NUMBER) RETURN NUMBER IS

The function accepts all arguments for the fields in the employee table except for
the employee number. A value for this field is supplied by a sequence. The function
returns the sequence number generated by the call to this function.

new_empno NUMBER(10);

BEGIN
SELECT emp_sequence.NEXTVAL INTO new_empno FROM dual;
INSERT INTO emp VALUES (new_empno, name, job, mgr,

hiredate, sal, comm, deptno);
RETURN (new_empno);

END hire_emp;

PROCEDURE fire_emp(emp_id IN NUMBER) AS

The procedure deletes the employee with an employee number that corresponds to
the argument emp_id . If no employee is found, then an exception is raised.

BEGIN
DELETE FROM emp WHERE empno = emp_id;
IF SQL%NOTFOUND THEN
raise_application_error(-20011, ’Invalid Employee

Number: ’ || TO_CHAR(emp_id));
END IF;

END fire_emp;

PROCEDURE sal_raise (emp_id IN NUMBER, sal_incr IN NUMBER) AS

The procedure accepts two arguments. Emp_id is a number that corresponds to an
employee number. Sal_incr is the amount by which to increase the employee’s
salary.

BEGIN

-- If employee exists, then update salary with increase.

UPDATE emp
SET sal = sal + sal_incr
WHERE empno = emp_id;
Introduction 1-5

Abbreviations for Datetime and Interval Datatypes
IF SQL%NOTFOUND THEN
raise_application_error(-20011, ’Invalid Employee

Number: ’ || TO_CHAR(emp_id));
END IF;

END sal_raise;
END employee_management;

Referencing Package Contents
To reference the types, items, and subprograms declared in a package specification,
use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

Abbreviations for Datetime and Interval Datatypes
Many of the datetime and interval datatypes have names that are too long to be
used with the procedures and functions in the replication management API.
Therefore, you must use abbreviations for these datatypes instead of the full names.
The following table lists each datatype and its abbreviation. No abbreviation is
necessary for the DATE and TIMESTAMP datatypes.

For example, if you want to use the DBMS_DEFER_QUERY.GET_datatype _ARG
function to determine the value of a TIMESTAMP LOCAL TIME ZONE argument in a

Note: If you want to try this example, then first create the
sequence number emp_sequence . You can do this using the
following SQL*Plus statement:

SQL> CREATE SEQUENCE emp_sequence
> START WITH 8000 INCREMENT BY 10;

Datatype Abbreviation

TIMESTAMP WITH TIME ZONE TSTZ

TIMESTAMP LOCAL TIME ZONE TSLTZ

INTERVAL YEAR TO MONTH IYM

INTERVAL DAY TO SECOND IDS
1-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages
deferred call, then you substitute TSLTZ for datatype . Therefore, you run the
DBMS_DEFER_QUERY.GET_TSLTZ_ARG function.

Summary of Oracle Supplied PL/SQL Packages
Table 1–1 lists the supplied PL/SQL server packages. These packages run as the
invoking user, rather than the package owner. Unless otherwise noted, the packages
are callable through public synonyms of the same name.

Caution:

� The procedures and functions provided in these packages and
their external interfaces are reserved by Oracle and are subject
to change.

� Modifying Oracle supplied packages can cause internal errors
and database security violations. Do not modify supplied
packages.

Table 1–1 Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

CWM2_OLAP_AW_ACCESS Generates scripts that create relational views of
analytic workspace objects.

Oracle9i OLAP User’s
Guide

DBMS_ALERT Provides support for the asynchronous
notification of database events.

Chapter 2

DBMS_APPLICATION_INFO Lets you register an application name with the
database for auditing or performance tracking
purposes.

Chapter 3

DBMS_APPLY_ADM Provides administrative procedures to start, stop,
and configure an apply process.

Chapter 4

DBMS_AQ Lets you add a message (of a predefined object
type) onto a queue or to dequeue a message.

Chapter 5

DBMS_AQADM Lets you perform administrative functions on a
queue or queue table for messages of a
predefined object type.

Chapter 6

DBMS_AQELM Provides procedures to manage the configuration
of Advanced Queuing asynchronous notification
by e-mail and HTTP.

Chapter 7
Introduction 1-7

Summary of Oracle Supplied PL/SQL Packages
DBMS_AW Issues OLAP DML statements against analytic
workspace objects. Also, lets you retrieve and
print the session logs created by the execution of
the procedures and functions in this package and
the OLAP_TABLE function.

Oracle9i OLAP User’s
Guide

DBMS_CAPTURE_ADM Describes administrative procedures to start,
stop, and configure a capture process; used in
Streams.

Chapter 8

DBMS_DDL Provides access to some SQL DDL statements
from stored procedures, and provides special
administration operations not available as DDLs.

Chapter 9

DBMS_DEBUG Implements server-side debuggers and provides
a way to debug server-side PL/SQL program
units.

Chapter 10

DBMS_DEFER Provides the user interface to a replicated
transactional deferred remote procedure call
facility. Requires the Distributed Option.

Chapter 11

DBMS_DEFER_QUERY Permits querying the deferred remote procedure
calls (RPC) queue data that is not exposed
through views. Requires the Distributed Option.

Chapter 12

DMBS_DEFER_SYS Provides the system administrator interface to a
replicated transactional deferred remote
procedure call facility. Requires the Distributed
Option.

Chapter 13

DBMS_DESCRIBE Describes the arguments of a stored procedure
with full name translation and security checking.

Chapter 14

DBMS_DISTRIBUTED_TRUST_
ADMIN

Maintains the Trusted Database List, which is
used to determine if a privileged database link
from a particular server can be accepted.

Chapter 15

DBMS_FGA Provides fine-grained security functions. Chapter 16

DMBS_FLASHBACK Lets you flash back to a version of the database at
a specified wall-clock time or a specified system
change number (SCN).

Chapter 17

DBMS_HS_PASSTHROUGH Lets you use Heterogeneous Services to send
pass-through SQL statements to non-Oracle
systems.

Chapter 18

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
1-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages
DBMS_IOT Creates a table into which references to the
chained rows for an Index Organized Table can
be placed using the ANALYZE command.

Chapter 19

DBMS_JOB Lets you schedule administrative procedures that
you want performed at periodic intervals; it is
also the interface for the job queue.

Chapter 20

DBMS_LDAP Provides functions and procedures to access
data from LDAP servers.

Chapter 21

DBMS_LIBCACHE Prepares the library cache on an Oracle instance
by extracting SQL and PL/SQL from a remote
instance and compiling this SQL locally without
execution.

Chapter 22

DBMS_LOB Provides general purpose routines for operations
on Oracle Large Object (LOBs) datatypes - BLOB,
CLOB (read/write), and BFILE s (read-only).

Chapter 23

DBMS_LOCK Lets you request, convert and release locks
through Oracle Lock Management services.

Chapter 24

DBMS_LOGMNR Provides functions to initialize and run the log
reader.

Chapter 25

DBMS_LOGMNR_CDC_PUBLISHIdentifies new data that has been added to,
modified, or removed from, relational tables and
publishes the changed data in a form that is
usable by an application.

Chapter 26

DBMS_LOGMNR_CDC_
SUBSCRIBE

Lets you view and query the change data that
was captured and published with the DBMS_
LOGMNR_CDC_PUBLISH package.

Chapter 27

DBMS_LOGMNR_D Queries the dictionary tables of the current
database, and creates a text based file containing
their contents.

Chapter 28

DBMS_LOGSTDBY Describes procedures for configuring and
managing the logical standby database
environment.

Chapter 29

DBMS_METADATA Lets callers easily retrieve complete database
object definitions (metadata) from the dictionary.

Chapter 30

DBMS_MGWADM Describes the Messaging Gateway administrative
interface; used in Advanced Queuing.

Chapter 31

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
Introduction 1-9

Summary of Oracle Supplied PL/SQL Packages
DBMS_MGWMSG Describes object types—used by the canonical
message types to convert message bodies—and
helper methods, constants, and subprograms for
working with the Messaging Gateway message
types; used in Advanced Queuing.

Chapter 32

DBMS_MVIEW Lets you refresh snapshots that are not part of the
same refresh group and purge logs. DBMS_
SNAPSHOT is a synonym.

Chapter 33

DBMS_OBFUSCATION_TOOLKITProvides procedures for Data Encryption
Standards.

Chapter 34

DBMS_ODCI Returns the CPU cost of a user function based on
the elapsed time of the function.

Chapter 35

DBMS_OFFLINE_OG Provides public APIs for offline instantiation of
master groups.

Chapter 36

DBMS_OFFLINE_SNAPSHOT Provides public APIs for offline instantiation of
snapshots.

Chapter 37

DBMS_OLAP Provides procedures for summaries, dimensions,
and query rewrites.

Chapter 38

DBMS_ORACLE_TRACE_AGENTProvides client callable interfaces to the Oracle
TRACE instrumentation within the Oracle7
Server.

Chapter 39

DBMS_ORACLE_TRACE_USER Provides public access to the Oracle release 7
Server Oracle TRACE instrumentation for the
calling user.

Chapter 40

DBMS_OUTLN Provides the interface for procedures and
functions associated with management of stored
outlines. Synonymous with OUTLN_PKG

Chapter 41

DBMS_OUTLN_EDIT Lets you edit an invoker’s rights package. Chapter 42

DBMS_OUTPUT Accumulates information in a buffer so that it can
be retrieved out later.

Chapter 43

DBMS_PCLXUTIL Provides intra-partition parallelism for creating
partition-wise local indexes.

Chapter 44

DBMS_PIPE Provides a DBMS pipe service which enables
messages to be sent between sessions.

Chapter 45

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
1-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages
DBMS_PROFILER Provides a Probe Profiler API to profile existing
PL/SQL applications and identify performance
bottlenecks.

Chapter 46

DBMS_PROPAGATION_ADM Provides administrative procedures for
configuring propagation from a source queue to a
destination queue.

Chapter 47

DBMS_RANDOM Provides a built-in random number generator. Chapter 48

DBMS_RECTIFIER_DIFF Provides APIs used to detect and resolve data
inconsistencies between two replicated sites.

Chapter 49

DBMS_REDEFINITION Lets you perform an online reorganization of
tables.

Chapter 50

DBMS_REFRESH Lets you create groups of snapshots that can be
refreshed together to a transactionally consistent
point in time. Requires the Distributed Option.

Chapter 51

DBMS_REPAIR Provides data corruption repair procedures. Chapter 52

DBMS_REPCAT Provides routines to administer and update the
replication catalog and environment. Requires
the Replication Option.

Chapter 53

DBMS_REPCAT_ADMIN Lets you create users with the privileges needed
by the symmetric replication facility. Requires the
Replication Option.

Chapter 54

DBMS_REPCAT_INSTATIATE Instantiates deployment templates. Requires the
Replication Option.

Chapter 55

DBMS_REPCAT_RGT Controls the maintenance and definition of
refresh group templates. Requires the Replication
Option.

Chapter 56

DBMS_REPUTIL Provides routines to generate shadow tables,
triggers, and packages for table replication.

Chapter 57

DBMS_RESOURCE_MANAGER Maintains plans, consumer groups, and plan
directives; it also provides semantics so that you
may group together changes to the plan schema.

Chapter 58

DBMS_RESOURCE_MANAGER_
PRIVS

Maintains privileges associated with resource
consumer groups.

Chapter 59

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
Introduction 1-11

Summary of Oracle Supplied PL/SQL Packages
DBMS_RESUMABLE Lets you suspend large operations that run out of
space or reach space limits after executing for a
long time, fix the problem, and make the
statement resume execution.

Chapter 60

DBMS_RLS Provides row level security administrative
interface.

Chapter 61

DBMS_ROWID Provides procedures to create rowids and to
interpret their contents.

Chapter 62

DBMS_RULE Describes the EVALUATE procedure used in
Streams.

Chapter 63

DBMS_RULE_ADM Describes the administrative interface for creating
and managing rules, rule sets, and rule
evaluation contexts; used in Streams.

Chapter 64

DBMS_SESSION Provides access to SQL ALTER SESSION
statements, and other session information, from
stored procedures.

Chapter 65

DBMS_SHARED_POOL Lets you keep objects in shared memory, so that
they will not be aged out with the normal LRU
mechanism.

Chapter 66

DBMS_SPACE Provides segment space information not available
through standard SQL.

Chapter 67

DBMS_SPACE_ADMIN Provides tablespace and segment space
administration not available through the
standard SQL.

Chapter 68

DBMS_SQL Lets you use dynamic SQL to access the database. Chapter 69

DBMS_STATS Provides a mechanism for users to view and
modify optimizer statistics gathered for database
objects.

Chapter 70

DBMS_STORAGE_MAP Communicates with FMON to invoke mapping
operations.

Chapter 71

DBMS_STRM Describes the interface to convert SYS.AnyData
objects into LCR objects and an interface to
annotate redo entries generated by a session with
a binary tag.

Chapter 72

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
1-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages
DBMS_STRM_A Describes administrative procedures for adding
and removing simple rules, without
transformations, for capture, propagation, and
apply at the table, schema, and database level.

Chapter 73

DBMS_TRACE Provides routines to start and stop PL/SQL
tracing.

Chapter 74

DBMS_TRANSACTION Provides access to SQL transaction statements
from stored procedures and monitors transaction
activities.

Chapter 75

DBMS_TRANSFORM Provides an interface to the message format
transformation features of Oracle Advanced
Queuing.

Chapter 76

DBMS_TTS Checks if the transportable set is self-contained. Chapter 77

DBMS_TYPES Consists of constants, which represent the built-in
and user-defined types.

Chapter 78

DBMS_UTILITY Provides various utility routines. Chapter 79

DBMS_WM Describes how to use the programming interface
to Oracle Database Workspace Manager to work
with long transactions.

Chapter 80

DBMS_XDB Describes Resource Management and Access
Control APIs for PL/SQL

Chapter 81

DBMS_XDBT Describes how an administrator can create a
ConText index on the XML DB hierarchy and
configure it for automatic maintenance

Chapter 82

DBMS_XDB_VERSION Describes versioning APIs Chapter 83

DBMS_XMLDOM Explains access to XMLType objects Chapter 84

DBMS_XMLGEN Converts the results of a SQL query to a
canonical XML format.

Chapter 85

DBMS_XMLPARSER Explains access to the contents and structure of
XML documents.

Chapter 86

DMBS_XMLQUERY Provides database-to-XMLType functionality. Chapter 87

DBMS_XMLSAVE Provides XML-to-database-type functionality. Chapter 88

DBMS_XMLSCHEMA Explains procedures to register and delete XML
schemas.

Chapter 89

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
Introduction 1-13

Summary of Oracle Supplied PL/SQL Packages
DBMS_XPLAN Describes how to format the output of the
EXPLAIN PLAN command.

Chapter 90

DBMS_XSLPROCESSOR Explains access to the contents and structure of
XML documents.

Chapter 91

DEBUG_EXTPROC Lets you debug external procedures on platforms
with debuggers that attach to a running process.

Chapter 92

SDO_CS

(refer to Note #1)

Provides functions for coordinate system
transformation.

Oracle Spatial User’s Guide
and Reference

SDO_GEOM

(refer to Note #1)

Provides functions implementing geometric
operations on spatial objects.

Oracle Spatial User’s Guide
and Reference

SDO_LRS

(refer to Note #1)

Provides functions for linear referencing system
support.

Oracle Spatial User’s Guide
and Reference

SDO_MIGRATE

(refer to Note #1)

Provides functions for migrating spatial data
from previous releases.

Oracle Spatial User’s Guide
and Reference

SDO_TUNE

(refer to Note #1)

Provides functions for selecting parameters that
determine the behavior of the spatial indexing
scheme used in Oracle Spatial.

Oracle Spatial User’s Guide
and Reference

SDO_UTIL

(refer to Note #1)

Provides utility functions and procedures for
Oracle Spatial.

Oracle Spatial User’s Guide
and Reference

UTL_COLL Enables PL/SQL programs to use collection
locators to query and update.

Chapter 93

UTL_ENCODE Provides functions that encode RAW data into a
standard encoded format so that the data can be
transported between hosts.

Chapter 94

UTL_FILE Enables your PL/SQL programs to read and
write operating system text files and provides a
restricted version of standard operating system
stream file I/O.

Chapter 95

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet or to call Oracle Web
Server Cartridges.

Chapter 96

UTL_INADDR Provides a procedure to support internet
addressing.

Chapter 97

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
1-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages
UTL_PG Provides functions for converting COBOL
numeric data into Oracle numbers and Oracle
numbers into COBOL numeric data.

Oracle Procedural Gateway
for APPC User’s Guide

UTL_RAW Provides SQL functions for RAWdatatypes that
concat, substr to and from RAWS.

Chapter 98

UTL_REF Enables a PL/SQL program to access an object by
providing a reference to the object.

Chapter 99

UTL_SMTP Provides PL/SQL functionality to send emails. Chapter 100

UTL_TCP Provides PL/SQL functionality to support simple
TCP/IP-based communications between servers
and the outside world.

Chapter 101

UTL_URL Provides escape and unescape mechanisms for
URL characters.

Chapter 102

ANYDATA TYPE A self-describing data instance type containing
an instance of the type plus a description

Chapter 103

ANYDATASET TYPE Contains a description of a given type plus a set
of data instances of that type

Chapter 104

ANYTYPE TYPE Contains a type description of any persistent SQL
type, named or unnamed, including object types
and collection types; or, it can be used to
construct new transient type descriptions

Chapter 105

JMS TYPES Describes JMS types so that a PL/SQL
application can use JMS queues of JMS types

Chapter 107

ADVANCED QUEUING TYPES Describes the types used in Advanced Queuing Chapter 106

LOGICAL CHANGE RECORD
TYPES

Describes LCR types, which are message
payloads that contain information about changes
to a database, used in Streams

Chapter 108

RULES TYPES Describes the types used with rules, rule sets, and
evaluation contexts

Chapter 109

Note #1

Spatial packages are installed in user MDSYS with public synonyms.

Table 1–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
Introduction 1-15

Summary of Subprograms in Supplemental Packages
Summary of Subprograms in Supplemental Packages
The packages listed in this section are documented in other Oracle books. See
Table 1–1 for the documentation reference for each package. See Table 1–2 through
Table 1–8 for the subprograms provided with these packages.

SDO_CS Package

SDO_GEOM Package

Table 1–2 SDO_CS Package Subprograms

Subprogram Description

SDO_CS.TRANSFORM Transforms a geometry representation using a coordinate
system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is, all
geometries in a specified column in a table).

VIEWPORT_TRANSFORM Transforms an optimized rectangle into a valid geodetic
polygon for use with Spatial operators and functions.

Table 1–3 SDO_GEOM Package Subprograms

Subprogram Description

RELATE Determines how two objects interact.

SDO_ARC_DENSIFY Changes each circular arc into an approximation consisting of
straight lines, and each circle into a polygon consisting of a
series of straight lines that approximate the circle.

SDO_AREA Computes the area of a two-dimensional polygon.

SDO_BUFFER Generates a buffer polygon around a geometry.

SDO_CENTROID Returns the centroid of a polygon.

SDO_CONVEXHULL Returns a polygon-type object that represents the convex hull
of a geometry object.

SDO_DIFFERENCE Returns a geometry object that is the topological difference
(MINUS operation) of two geometry objects.

SDO_DISTANCE Computes the distance between two geometry objects.

SDO_INTERSECTION Returns a geometry object that is the topological intersection
(AND operation) of two geometry objects.
1-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages
SDO_LRS Package

SDO_LENGTH Computes the length or perimeter of a geometry.

SDO_MAX_MBR_ORDINATEReturns the maximum value for the specified ordinate of the
minimum bounding rectangle of a geometry object.

SDO_MBR Returns the minimum bounding rectangle of a geometry.

SDO_MIN_MBR_ORDINATEReturns the minimum value for the specified ordinate of the
minimum bounding rectangle of a geometry object.

SDO_POINTONSURFACE Returns a point that is guaranteed to be on the surface of a
polygon.

SDO_UNION Returns a geometry object that is the topological union (OR
operation) of two geometry objects.

SDO_XOR Returns a geometry object that is the topological symmetric
difference (XOR operation) of two geometry objects.

VALIDATE_GEOMETRY Determines if a geometry is valid.

VALIDATE_GEOMETRY_
WITH_CONTEXT

Performs a consistency check for valid geometry types and
returns context information if the geometry is invalid. The
function checks the representation of the geometry from the
tables against the element definitions.

VALIDATE_LAYER Determines if all the geometries stored in a column are valid.

VALIDATE_LAYER_WITH_
CONTEXT

Examines a geometry column to determine if the stored
geometries follow the defined rules for geometry objects, and
returns context information about any invalid geometries.

WITHIN_DISTANCE Determines if two geometries are within a specified Euclidean
distance from one another.

Table 1–4 SDO_LRS Package Subprograms

Subprogram Description

CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of
DYNAMIC_SEGMENT).

CONCATENATE_GEOM_SEGMENTS Concatenates two geometric segments into one
segment.

Table 1–3 (Cont.) SDO_GEOM Package Subprograms

Subprogram Description
Introduction 1-17

SDO_LRS Package
CONNECTED_GEOM_SEGMENTS Checks if two geometric segments are
connected.

CONVERT_TO_LRS_DIM_ARRAY Converts a standard dimensional array to a
Linear Referencing System dimensional array
by creating a measure dimension.

CONVERT_TO_LRS_GEOM Converts a standard SDO_GEOMETRY line
string to a Linear Referencing System geometric
segment by adding measure information.

CONVERT_TO_LRS_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to Linear Referencing System geometric
segments with measure information, and
updates the metadata.

CONVERT_TO_STD_DIM_ARRAY Converts a Linear Referencing System
dimensional array to a standard dimensional
array by removing the measure dimension.

CONVERT_TO_STD_GEOM Converts a Linear Referencing System
geometric segment to a standard SDO_
GEOMETRY line string by removing measure
information.

CONVERT_TO_STD_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from Linear
Referencing System geometric segments with
measure information to standard line string
geometries without measure information, and
updates the metadata.

DEFINE_GEOM_SEGMENT Defines a geometric segment.

DYNAMIC_SEGMENT Clips a geometric segment (synonym of CLIP_
GEOM_SEGMENT).

FIND_LRS_DIM_POS Returns the position of the measure dimension
within the SDO_DIM_ARRAY structure for a
specified SDO_GEOMETRY column.

FIND_MEASURE Returns the measure of the closest point on a
segment to a specified projection point.

GEOM_SEGMENT_END_MEASURE Returns the end measure of a geometric
segment.

Table 1–4 (Cont.) SDO_LRS Package Subprograms

Subprogram Description
1-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages
GEOM_SEGMENT_END_PT Returns the end point of a geometric segment.

GEOM_SEGMENT_LENGTH Returns the length of a geometric segment.

GEOM_SEGMENT_START_MEASURE Returns the start measure of a geometric
segment.

GEOM_SEGMENT_START_PT Returns the start point of a geometric segment.

GET_MEASURE Returns the measure of an LRS point.

IS_GEOM_SEGMENT_DEFINED Checks if an LRS segment is defined correctly.

IS_MEASURE_DECREASING Checks if the measure values along an LRS
segment are decreasing (that is, descending in
numerical value).

IS_MEASURE_INCREASING Checks if the measure values along an LRS
segment are increasing (that is, ascending in
numerical value).

LOCATE_PT Returns the point located at a specified distance
from the start of a geometric segment.

MEASURE_RANGE Returns the measure range of a geometric
segment, that is, the difference between the start
measure and end measure.

MEASURE_TO_PERCENTAGE Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

OFFSET_GEOM_SEGMENT Returns the geometric segment at a specified
offset from a geometric segment.

PERCENTAGE_TO_MEASURE Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

PROJECT_PT Returns the projection point of a point on a
geometric segment.

REDEFINE_GEOM_SEGMENT Populates the measures of all shape points of a
geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

Table 1–4 (Cont.) SDO_LRS Package Subprograms

Subprogram Description
Introduction 1-19

SDO_MIGRATE Package
SDO_MIGRATE Package

RESET_MEASURE Sets all measures of a geometric segment,
including the start and end measures, to null
values, overriding any previously assigned
measures.

REVERSE_GEOMETRY Returns a new geometric segment by reversing
the measure values and the direction of the
original geometric segment.

REVERSE_MEASURE Returns a new geometric segment by reversing
the original geometric segment.

SCALE_GEOM_SEGMENT Scales a geometric segment.

SET_PT_MEASURE Sets the measure value of a specified point.

SPLIT_GEOM_SEGMENT Splits a geometric segment into two segments.

TRANSLATE_MEASURE Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

VALID_GEOM_SEGMENT Checks if a geometric segment is valid.

VALID_LRS_PT Checks if an LRS point is valid.

VALID_MEASURE Checks if a measure falls within the measure
range of a geometric segment.

VALIDATE_LRS_GEOMETRY Checks if an LRS geometry is valid.

Table 1–5 SDO_MIGRATE Package Subprograms

Procedure Description

FROM_815_TO_81X Migrates data from Spatial release 8.1.5 to the current release.

OGIS_METADATA_FROM Generates a temporary table used when migrating OGIS
(OpenGIS) metadata tables.

OGIS_METADATA_TO Reads a temporary table used when migrating OGIS
metadata tables.

TO_734 Migrates data from a previous release of Spatial Data Option
to release 7.3.4.

Table 1–4 (Cont.) SDO_LRS Package Subprograms

Subprogram Description
1-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages
 SDO_TUNE Package

TO_81X Migrates tables from Spatial Data Option 7.3.4 or Spatial
Cartridge 8.0.4 to Oracle Spatial.

TO_CURRENT Migrates data from a previous Spatial release to the current
release.

Table 1–6 SDO_TUNE Package Subprograms

Subprogram Description

ANALYZE_RTREE Analyzes an R-tree index; generates statistics about the
index use, and recommends a rebuild of the index if a
rebuild would improve query performance
significantly.

AVERAGE_MBR Calculates the average minimum bounding rectangle
for geometries in a layer.

ESTIMATE_INDEX_
PERFORMANCE

Estimates the spatial index selectivity.

ESTIMATE_TILING_LEVEL Determines an appropriate tiling level for creating
fixed-size index tiles.

ESTIMATE_TILING_TIME Estimates the tiling time for a layer, in seconds.

ESTIMATE_TOTAL_NUMTILES Estimates the total number of spatial tiles for a layer.

EXTENT_OF Determines the minimum bounding rectangle of the
data in a layer.

HISTOGRAM_ANALYSIS Calculates statistical histograms for a spatial layer.

MIX_INFO Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.

QUALITY_DEGRADATION Returns the quality degradation for an R-tree index or
the average quality degradation for all index tables for
an R-tree index.

RTREE_QUALITY Returns the quality score for an R-tree index or the
average quality score for all index tables for an R-tree
index.

Table 1–5 (Cont.) SDO_MIGRATE Package Subprograms

Procedure Description
Introduction 1-21

SDO_UTIL Package
SDO_UTIL Package

UTL_PG Package

Table 1–7 SDO_UTIL Package Subprograms

Subprogram Description

EXTRACT Returns the geometry that represents a specified
element (and optionally a ring) of the input geometry.

GETVERTICES Returns a table containing the coordinates of the
vertices of the input geometry.

Table 1–8 UTL_PG Package Subprograms

Subprogram Description

MAKE_NUMBER_TO_
RAW_FORMAT

Makes a number_to_raw format conversion specification used to
convert an Oracle number of declared precision and scale to a RAW
byte-string in the remote host internal format.

MAKE_RAW_TO_
NUMBER_FORMAT

Makes a raw_to_number format conversion specification used to
convert a RAW byte-string from the remote host internal format into
an Oracle number of comparable precision and scale.

NUMBER_TO_RAW Converts an Oracle number of declared precision and scale to a RAW
byte-string in the remote host internal format.

NUMBER_TO_RAW_
FORMAT

Converts, according to the number_to_raw conversion format
n2rfmt, an Oracle number numval of declared precision and scale
to a RAW byte-string in the remote host internal format.

RAW_TO_NUMBER Converts a RAW byte-string from the remote host internal format
into an Oracle number.

RAW_TO_NUMBER_
FORMAT

Converts, according to the raw_to_number conversion format
r2nfmt , a RAW byte-string rawval in the remote host internal
format to an Oracle number.

WMSG Extracts a warning message specified by wmsgitem from wmsgblk .

WMSGCNT Tests a wmsgblk to determine how many warnings, if any, are
present.
1-22 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_A
2

DBMS_ALERT

DBMS_ALERT supports asynchronous notification of database events (alerts). By
appropriate use of this package and database triggers, an application can notify
itself whenever values of interest in the database are changed.

For example, suppose a graphics tool is displaying a graph of some data from a
database table. The graphics tool can, after reading and graphing the data, wait on a
database alert (WAITONE) covering the data just read. The tool automatically wakes
up when the data is changed by any other user. All that is required is that a trigger
be placed on the database table, which performs a signal (SIGNAL) whenever the
trigger is fired.

Alerts are transaction-based. This means that the waiting session is not alerted until
the transaction signalling the alert commits. There can be any number of concurrent
signalers of a given alert, and there can be any number of concurrent waiters on a
given alert.

A waiting application is blocked in the database and cannot do any other work.

This chapter discusses the following topics:

� Security, Constants, and Errors for DBMS_ALERT

� Using Alerts

� Summary of DBMS_ALERT Subprograms

Note: Because database alerters issue commits, they cannot be
used with Oracle Forms. For more information on restrictions on
calling stored procedures while Oracle Forms is active, refer to your
Oracle Forms documentation.
LERT 2-1

Security, Constants, and Errors for DBMS_ALERT
Security, Constants, and Errors for DBMS_ALERT

Security
Security on this package can be controlled by granting EXECUTE on this package to
selected users or roles. You might want to write a cover package on top of this one
that restricts the alert names used. EXECUTE privilege on this cover package can
then be granted rather than on this package.

Constants
maxwait constant integer := 86400000; -- 1000 days

The maximum time to wait for an alert (this is essentially forever).

Errors
DBMS_ALERT raises the application error -20000 on error conditions. Table 2–1
shows the messages and the procedures that can raise them.

Table 2–1 DBMS_ALERT Error Messages

Error Message Procedure

ORU-10001 lock request error, status: N SIGNAL

ORU-10015 error: N waiting for pipe status WAITANY

ORU-10016 error: N sending on pipe ’X’ SIGNAL

ORU-10017 error: N receiving on pipe ’X’ SIGNAL

ORU-10019 error: N on lock request WAIT

ORU-10020 error: N on lock request WAITANY

ORU-10021 lock request error; status: N REGISTER

ORU-10022 lock request error, status: N SIGNAL

ORU-10023 lock request error; status N WAITONE

ORU-10024 there are no alerts registered WAITANY

ORU-10025 lock request error; status N REGISTER

ORU-10037 attempting to wait on uncommitted
signal from same session

WAITONE
2-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using Alerts
Using Alerts
The application can register for multiple events and can then wait for any of them
to occur using the WAITANY procedure.

An application can also supply an optional timeout parameter to the WAITONE or
WAITANY procedures. A timeout of 0 returns immediately if there is no pending
alert.

The signalling session can optionally pass a message that is received by the waiting
session.

Alerts can be signalled more often than the corresponding application wait calls. In
such cases, the older alerts are discarded. The application always gets the latest alert
(based on transaction commit times).

If the application does not require transaction-based alerts, the DBMS_PIPE package
may provide a useful alternative.

If the transaction is rolled back after the call to SIGNAL, no alert occurs.

It is possible to receive an alert, read the data, and find that no data has changed.
This is because the data changed after the prior alert, but before the data was read
for that prior alert.

Checking for Alerts
Usually, Oracle is event-driven; this means that there are no polling loops. There are
two cases where polling loops can occur:

� Shared mode. If your database is running in shared mode, a polling loop is
required to check for alerts from another instance. The polling loop defaults to
one second and can be set by the SET_DEFAULTS procedure.

� WAITANY procedure. If you use the WAITANY procedure, and if a signalling
session does a signal but does not commit within one second of the signal, a
polling loop is required so that this uncommitted alert does not camouflage
other alerts. The polling loop begins at a one second interval and exponentially
backs off to 30-second intervals.

See Also: Chapter 45, "DBMS_PIPE"
DBMS_ALERT 2-3

Summary of DBMS_ALERT Subprograms
Summary of DBMS_ALERT Subprograms

REGISTER Procedure
This procedure lets a session register interest in an alert. The name of the alert is the
IN parameter. A session can register interest in an unlimited number of alerts.
Alerts should be deregistered when the session no longer has any interest, by
calling REMOVE.

Syntax
DBMS_ALERT.REGISTER (

name IN VARCHAR2);

Parameters

Table 2–2 DBMS_ALERT Package Subprograms

Subprogram Description

REGISTER Procedure on
page 2-4

Receives messages from an alert.

REMOVE Procedure on
page 2-5

Disables notification from an alert.

REMOVEALL Procedure
on page 2-5

Removes all alerts for this session from the registration list.

SET_DEFAULTS
Procedure on page 2-6

Sets the polling interval.

SIGNAL Procedure on
page 2-6

Signals an alert (send message to registered sessions).

WAITANY Procedure on
page 2-7

Waits timeout seconds to receive alert message from an alert
registered for session.

WAITONE Procedure on
page 2-8

Waits timeout seconds to receive message from named alert.

Table 2–3 REGISTER Procedure Parameters

Parameter Description

name Name of the alert in which this session is interested.
2-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms
REMOVE Procedure
This procedure enables a session that is no longer interested in an alert to remove
that alert from its registration list. Removing an alert reduces the amount of work
done by signalers of the alert.

Removing alerts is important because it reduces the amount of work done by
signalers of the alert. If a session dies without removing the alert, that alert is
eventually (but not immediately) cleaned up.

Syntax
DBMS_ALERT.REMOVE (

name IN VARCHAR2);

Parameters

REMOVEALL Procedure
This procedure removes all alerts for this session from the registration list. You
should do this when the session is no longer interested in any alerts.

This procedure is called automatically upon first reference to this package during a
session. Therefore, no alerts from prior sessions which may have terminated
abnormally can affect this session.

This procedure always performs a commit.

Syntax
DBMS_ALERT.REMOVEALL;

Caution: Alert names beginning with ’ORA$’ are reserved for
use for products provided by Oracle Corporation. Names must be
30 bytes or less. The name is case insensitive.

Table 2–4 REMOVE Procedure Parameters

Parameter Description

name Name of the alert (case-insensitive) to be removed from
registration list.
DBMS_ALERT 2-5

SET_DEFAULTS Procedure
SET_DEFAULTS Procedure
In case a polling loop is required, use the SET_DEFAULTS procedure to set the
polling interval.

Syntax
DBMS_ALERT.SET_DEFAULTS (

sensitivity IN NUMBER);

Parameters

SIGNAL Procedure
This procedure signals an alert. The effect of the SIGNAL call only occurs when the
transaction in which it is made commits. If the transaction rolls back, SIGNAL has
no effect.

All sessions that have registered interest in this alert are notified. If the interested
sessions are currently waiting, they are awakened. If the interested sessions are not
currently waiting, they are notified the next time they do a wait call.

Multiple sessions can concurrently perform signals on the same alert. Each session,
as it signals the alert, blocks all other concurrent sessions until it commits. This has
the effect of serializing the transactions.

Syntax
DBMS_ALERT.SIGNAL (

name IN VARCHAR2,
message IN VARCHAR2);

Table 2–5 SET_DEFAULTS Procedure Parameters

Parameter Description

sensitivity Polling interval, in seconds, to sleep between polls. The default
interval is five seconds.
2-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms
Parameters

WAITANY Procedure
Call WAITANY to wait for an alert to occur for any of the alerts for which the current
session is registered. An implicit COMMIT is issued before this procedure is
executed. The same session that waits for the alert may also first signal the alert. In
this case remember to commit after the signal and before the wait; otherwise,
DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Syntax
DBMS_ALERT.WAITANY (

name OUT VARCHAR2,
message OUT VARCHAR2,
status OUT INTEGER,
timeout IN NUMBER DEFAULT MAXWAIT);

Table 2–6 SIGNAL Procedure Parameters

Parameter Description

name Name of the alert to signal.

message Message, of 1800 bytes or less, to associate with this alert.

This message is passed to the waiting session. The waiting session
might be able to avoid reading the database after the alert occurs by
using the information in the message.
DBMS_ALERT 2-7

WAITONE Procedure
Parameters

Errors
-20000, ORU-10024: there are no alerts registered.

Cause: You must register an alert before waiting.

WAITONE Procedure
This procedure waits for a specific alert to occur. An implicit COMMIT is issued
before this procedure is executed. A session that is the first to signal an alert can
also wait for the alert in a subsequent transaction. In this case, remember to commit
after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is
called by DBMS_ALERT) returns status 4.

Syntax
DBMS_ALERT.WAITONE (

name IN VARCHAR2,
message OUT VARCHAR2,
status OUT INTEGER,
timeout IN NUMBER DEFAULT MAXWAIT);

Table 2–7 WAITANY Procedure Parameters

Parameter Description

name Returns the name of the alert that occurred.

message Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals
on this alert occurred before WAITANY, the message corresponds to
the most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

status Values returned:

0 - alert occurred

1 - time-out occurred

timeout Maximum time to wait for an alert.

If no alert occurs before timeout seconds, this returns a status of 1.
2-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms
Parameters

Example
Suppose you want to graph average salaries by department, for all employees. Your
application needs to know whenever EMP is changed. Your application would look
similar to this code:

DBMS_ALERT.REGISTER(’emp_table_alert’);
<<readagain>>:

/* ... read the emp table and graph it */
DBMS_ALERT.WAITONE(’emp_table_alert’, :message, :status);
if status = 0 then goto <<readagain>>; else
/* ... error condition */

The EMP table would have a trigger similar to this:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
BEGIN

DBMS_ALERT.SIGNAL(’emp_table_alert’, ’message_text’);
END;

When the application is no longer interested in the alert, it makes this request:

DBMS_ALERT.REMOVE(’emp_table_alert’);

Table 2–8 WAITONE Procedure Parameters

Parameter Description

name Name of the alert to wait for.

message Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on
this alert occurred before WAITONE, the message corresponds to the
most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

status Values returned:

0 - alert occurred

1 - time-out occurred

timeout Maximum time to wait for an alert.

If the named alert does not occurs before timeout seconds, this returns
a status of 1.
DBMS_ALERT 2-9

WAITONE Procedure
This reduces the amount of work required by the alert signaller. If a session exits (or
dies) while registered alerts exist, the alerts are eventually cleaned up by future
users of this package.

The preceding example guarantees that the application always sees the latest data,
although it may not see every intermediate value.
2-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_APPLICATION_
3

DBMS_APPLICATION_INFO

Application developers can use the DBMS_APPLICATION_INFO package with
Oracle Trace and the SQL trace facility to record names of executing modules or
transactions in the database for later use when tracking the performance of various
modules and debugging.

Registering the application allows system administrators and performance tuning
specialists to track performance by module. System administrators can also use this
information to track resource use by module. When an application registers with
the database, its name and actions are recorded in the V$SESSION and V$SQLAREA
views.

Your applications should set the name of the module and name of the action
automatically each time a user enters that module. The module name could be the
name of a form in an Oracle Forms application, or the name of the code segment in
an Oracle Precompilers application. The action name should usually be the name or
description of the current transaction within a module.

If you want to gather your own statistics based on module, you can implement a
wrapper around this package by writing a version of this package in another
schema that first gathers statistics and then calls the SYS version of the package.
The public synonym for DBMS_APPLICATION_INFO can then be changed to point
to the DBA’s version of the package.

This chapter discusses the following topics:

� Privileges

� Summary of DBMS_APPLICATION_INFO Subprograms
INFO 3-1

Privileges
Privileges
No further privileges are required. The DBMSUTIL.SQL script is already run by
catproc.

Summary of DBMS_APPLICATION_INFO Subprograms

SET_MODULE Procedure
This procedure sets the name of the current application or module. The module
name should be the name of the procedure (if using stored procedures), or the name
of the application. The action name should describe the action performed.

Syntax
DBMS_APPLICATION_INFO.SET_MODULE (

module_name IN VARCHAR2,
action_name IN VARCHAR2);

Note: The public synonym for DBMS_APPLICATION_INFO is not
dropped before creation so that you can redirect the public
synonym to point to your own package.

Table 3–1 DBMS_APPLICATION_INFO Package Subprograms

Subprogram Description

SET_MODULE Procedure
on page 3-2

Sets the name of the module that is currently running to a new
module.

SET_ACTION Procedure
on page 3-3

Sets the name of the current action within the current module.

READ_MODULE
Procedure on page 3-4

Reads the values of the module and action fields of the current
session.

SET_CLIENT_INFO
Procedure on page 3-5

Sets the client info field of the session.

READ_CLIENT_INFO
Procedure on page 3-6

Reads the value of the client_info field of the current
session.

SET_SESSION_LONGOPS
Procedure on page 3-6

Sets a row in the V$SESSION_LONGOP table.
3-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms
Parameters

Example
CREATE or replace PROCEDURE add_employee(

name VARCHAR2,
salary NUMBER,
manager NUMBER,
title VARCHAR2,
commission NUMBER,
department NUMBER) AS

BEGIN
DBMS_APPLICATION_INFO.SET_MODULE(

module_name => ’add_employee’,
action_name => ’insert into emp’);

INSERT INTO emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES (name, emp_seq.nextval, salary, manager, title, SYSDATE,

commission, department);
DBMS_APPLICATION_INFO.SET_MODULE(null,null);

END;

SET_ACTION Procedure
This procedure sets the name of the current action within the current module. The
action name should be descriptive text about the current action being performed.
You should probably set the action name before the start of every transaction.

Syntax
DBMS_APPLICATION_INFO.SET_ACTION (

action_name IN VARCHAR2);

Table 3–2 SET_MODULE Procedure Parameters

Parameter Description

module_name Name of module that is currently running. When the current
module terminates, call this procedure with the name of the
new module if there is one, or NULL if there is not. Names
longer than 48 bytes are truncated.

action_name Name of current action within the current module. If you do
not want to specify an action, this value should be NULL.
Names longer than 32 bytes are truncated.
DBMS_APPLICATION_INFO 3-3

READ_MODULE Procedure
Parameters

Usage Notes
Set the transaction name to NULL after the transaction completes, so that subsequent
transactions are logged correctly. If you do not set the transaction name to NULL,
subsequent transactions may be logged with the previous transaction’s name.

Example
The following is an example of a transaction that uses the registration procedure:

CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
BEGIN

-- balance transfer transaction

DBMS_APPLICATION_INFO.SET_ACTION(
action_name => ’transfer from chk to sav’);

UPDATE chk SET bal = bal + :amt
WHERE acct# = :acct;

UPDATE sav SET bal = bal - :amt
WHERE acct# = :acct;

COMMIT;
DBMS_APPLICATION_INFO.SET_ACTION(null);

END;

READ_MODULE Procedure
This procedure reads the values of the module and action fields of the current
session.

Syntax
DBMS_APPLICATION_INFO.READ_MODULE (

module_name OUT VARCHAR2,

Table 3–3 SET_ACTION Procedure Parameters

Parameter Description

action_name The name of the current action within the current module.
When the current action terminates, call this procedure with
the name of the next action if there is one, or NULL if there is
not. Names longer than 32 bytes are truncated.
3-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms
action_name OUT VARCHAR2);

Parameters

Usage Notes
Module and action names for a registered application can be retrieved by querying
V$SQLAREA or by calling the READ_MODULE procedure. Client information can be
retrieved by querying the V$SESSION view, or by calling the READ_CLIENT_INFO
procedure.

Example

The following sample query illustrates the use of the MODULE and ACTION column
of the V$SQLAREA.

SELECT sql_text, disk_reads, module, action
FROM v$sqlarea
WHERE module = ’add_employee’;

SQL_TEXT DISK_READS MODULE ACTION
------------------- ---------- ------------------ ----------------
INSERT INTO emp 1 add_employee insert into emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES
(name, next.emp_seq, manager, title, SYSDATE, commission, department)

1 row selected.

SET_CLIENT_INFO Procedure
This procedure supplies additional information about the client application.

Syntax
DBMS_APPLICATION_INFO.SET_CLIENT_INFO (

Table 3–4 READ_MODULE Procedure Parameters

Parameter Description

module_name Last value that the module name was set to by calling SET_
MODULE.

action_name Last value that the action name was set to by calling SET_
ACTION or SET_MODULE.
DBMS_APPLICATION_INFO 3-5

READ_CLIENT_INFO Procedure
client_info IN VARCHAR2);

Parameters

READ_CLIENT_INFO Procedure
This procedure reads the value of the client_info field of the current session.

Syntax
DBMS_APPLICATION_INFO.READ_CLIENT_INFO (

client_info OUT VARCHAR2);

Parameters

SET_SESSION_LONGOPS Procedure
This procedure sets a row in the V$SESSION_LONGOPSview. This is a view that is
used to indicate the on-going progress of a long running operation. Some Oracle
functions, such as parallel execution and Server Managed Recovery, use rows in this
view to indicate the status of, for example, a database backup.

Table 3–5 SET_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Supplies any additional information about the client
application. This information is stored in the V$SESSIONS
view. Information exceeding 64 bytes is truncated.

Note: CLIENT_INFO is readable and writable by any user. For
storing secured application attributes, you can use the application
context feature.

Table 3–6 READ_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Last client information value supplied to the SET_CLIENT_
INFO procedure.
3-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms
Applications may use the set_session_longops procedure to advertise
information on the progress of application specific long running tasks so that the
progress can be monitored by way of the V$SESSION_LONGOPS view.

Syntax
DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS (

rindex IN OUT BINARY_INTEGER,
slno IN OUT BINARY_INTEGER,
op_name IN VARCHAR2 DEFAULT NULL,
target IN BINARY_INTEGER DEFAULT 0,
context IN BINARY_INTEGER DEFAULT 0,
sofar IN NUMBER DEFAULT 0,
totalwork IN NUMBER DEFAULT 0,
target_desc IN VARCHAR2 DEFAULT ’unknown target’,
units IN VARCHAR2 DEFAULT NULL)

set_session_longops_nohint constant BINARY_INTEGER := -1;

Pragmas
pragma TIMESTAMP(’1998-03-12:12:00:00’);

Parameters

Table 3–7 SET_SESSION_LONGOPS Procedure Parameters

Parameter Description

rindex A token which represents the v$session_longops row to
update. Set this to set_session_longops_nohint to start a
new row. Use the returned value from the prior call to reuse a
row.

slno Saves information across calls to set_session_longops : It
is for internal use and should not be modified by the caller.

op_name Specifies the name of the long running task. It appears as the
OPNAME column of v$session_longops . The maximum
length is 64 bytes.

target Specifies the object that is being worked on during the long
running operation. For example, it could be a table ID that is
being sorted. It appears as the TARGET column of
v$session_longops .

context Any number the client wants to store. It appears in the
CONTEXT column of v$session_longops .
DBMS_APPLICATION_INFO 3-7

SET_SESSION_LONGOPS Procedure
Example
This example performs a task on 10 objects in a loop. As the example completes
each object, Oracle updates V$SESSION_LONGOPSon the procedure’s progress.

DECLARE
rindex BINARY_INTEGER;
slno BINARY_INTEGER;
totalwork number;
sofar number;
obj BINARY_INTEGER;

BEGIN
rindex := dbms_application_info.set_session_longops_nohint;
sofar := 0;
totalwork := 10;

WHILE sofar < 10 LOOP
-- update obj based on sofar
-- perform task on object target

sofar := sofar + 1;
dbms_application_info.set_session_longops(rindex, slno,

"Operation X", obj, 0, sofar, totalwork, "table", "tables");
END LOOP;

END;

sofar Any number the client wants to store. It appears in the SOFAR
column of v$session_longops . This is typically the amount
of work which has been done so far.

totalwork Any number the client wants to store. It appears in the
TOTALWORK column of v$session_longops . This is
typically an estimate of the total amount of work needed to be
done in this long running operation.

target_desc Specifies the description of the object being manipulated in this
long operation. This provides a caption for the target
parameter. This value appears in the TARGET_DESC field of
v$session_longops . The maximum length is 32 bytes.

units Specifies the units in which sofar and totalwork are being
represented. It appears as the UNITS field of v$session_
longops . The maximum length is 32 bytes.

Table 3–7 SET_SESSION_LONGOPS Procedure Parameters

Parameter Description
3-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_APPL
4

DBMS_APPLY_ADM

The DBMS_APPLY_ADMpackage provides administrative procedures to start, stop,
and configure an apply process.

This chapter contains the following topic:

� Summary of DBMS_APPLY_ADM Subprograms

See Also: Oracle9i Streams for more information about the apply
process
Y_ADM 4-1

Summary of DBMS_APPLY_ADM Subprograms
Summary of DBMS_APPLY_ADM Subprograms

Table 4–1 DBMS_APPLY_ADM Subprograms (Page 1 of 2)

Subprogram Description

"ALTER_APPLY Procedure" on page 4-4 Alters an apply process

"CREATE_APPLY Procedure" on page 4-9 Creates an apply process

"DELETE_ALL_ERRORS Procedure" on
page 4-13

Deletes all the error transactions for the
specified apply process from the error queue

"DELETE_ERROR Procedure" on page 4-14 Deletes the specified error transaction from
the error queue

"DROP_APPLY Procedure" on page 4-14 Drops an apply process

"EXECUTE_ALL_ERRORS Procedure" on
page 4-15

Reexecutes the error queue transactions for
the specified apply process.

"EXECUTE_ERROR Procedure" on
page 4-16

Reexecutes the specified error queue
transaction

"GET_ERROR_MESSAGE Function" on
page 4-17

Returns the message payload from the error
queue for the specified message number and
transaction identifier

"SET_DML_HANDLER Procedure" on
page 4-18

Alters operation options for a specified object
with a specified apply process

"SET_GLOBAL_INSTANTIATION_SCN
Procedure" on page 4-23

Records the specified instantiation SCN for
the specified source database

"SET_KEY_COLUMNS Procedure" on
page 4-26

Records the set of columns to be used as the
substitute primary key for local apply
purposes and removes existing substitute
primary key columns for the specified object if
they exist

"SET_PARAMETER Procedure" on
page 4-28

Sets an apply parameter to the specified value

"SET_SCHEMA_INSTANTIATION_SCN
Procedure" on page 4-32

Records the specified instantiation SCN for
the specified schema in the specified source
database

"SET_TABLE_INSTANTIATION_SCN
Procedure" on page 4-35

Records the specified instantiation SCN for
the specified table in the specified source
database
4-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
"SET_UPDATE_CONFLICT_HANDLER
Procedure" on page 4-37

Adds, updates, or drops an update conflict
handler for the specified object

"START_APPLY Procedure" on page 4-41 Directs the apply process to start applying
events

"STOP_APPLY Procedure" on page 4-42 Stops the apply process from applying any
events and rolls back any unfinished
transactions being applied

Note: All procedures and functions commit unless specified
otherwise.

Table 4–1 DBMS_APPLY_ADM Subprograms (Page 2 of 2)

Subprogram Description
DBMS_APPLY_ADM 4-3

ALTER_APPLY Procedure
ALTER_APPLY Procedure

Alters an apply process.

Syntax
DBMS_APPLY_ADM.ALTER_APPLY(

apply_name IN VARCHAR2,
rule_set_name IN VARCHAR2 DEFAULT NULL,
remove_rule_set IN BOOLEAN DEFAULT false,
message_handler IN VARCHAR2 DEFAULT NULL
remove_message_handler IN BOOLEAN DEFAULT false,
ddl_handler IN VARCHAR2 DEFAULT NULL,
remove_ddl_handler IN BOOLEAN DEFAULT false,
apply_user IN VARCHAR2 DEFAULT NULL,
apply_tag IN RAW DEFAULT NULL,
remove_apply_tag IN BOOLEAN DEFAULT false);

Parameters

Table 4–2 ALTER_APPLY Procedure Parameters (Page 1 of 5)

Parameter Description

apply_name The name of the apply process being altered. You must
specify an existing apply process name.

rule_set_name The name of the rule set that contains the apply rules for
this apply process. If you want to use a rule set for the apply
process, then you must specify an existing rule set in the
form [schema_name.] rule_set_name . For example, to
specify a rule set in the hr schema named
job_apply_rules , enter hr.job_apply_rules . If the
schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

If you specify NULL, then the apply process applies all LCRs
and user messages in its queue.
4-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
remove_rule_set If true , then removes the rule set for the specified apply
process.

If false , then retains any rule set for the specified apply
process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false .

message_handler A user-defined procedure that processes non-LCR messages
in the queue for the apply process. You must specify an
existing procedure in one of the following forms:

� [schema_name.] procedure_name

� [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package_name
must be specified. For example, to specify a procedure in
the apply_pkg package in the hr schema named
process_msgs , enter hr.apply_pkg.process_msgs .
An error is returned if the specified procedure does not
exist.

If the schema is not specified, then the user who invokes the
ALTER_APPLY procedure is the default. This user must
have EXECUTE privilege on a specified message handler.

remove_message_handler If true , then removes the message handler for the specified
apply process.

If false , then retains any message handler for the specified
apply process.

If the message_handler parameter is non-NULL, then this
parameter should be set to false .

Table 4–2 ALTER_APPLY Procedure Parameters (Page 2 of 5)

Parameter Description
DBMS_APPLY_ADM 4-5

ALTER_APPLY Procedure
ddl_handler A user-defined procedure that processes DDL LCRs in the
queue for the apply process. You must specify an existing
procedure in the form
[schema_name.] procedure_name . For example, to
specify a procedure in the hr schema named
process_ddls , enter hr.process_ddls . An error is
returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
ALTER_APPLY procedure is the default. This user must
have EXECUTE privilege on a specified DDL handler.

All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTE member procedure of a
DDL LCR, then a commit is performed automatically.

remove_ddl_handler If true , then removes the DDL handler for the specified
apply process.

If false , then retains any DDL handler for the specified
apply process.

If the ddl_handler parameter is non-NULL, then this
parameter should be set to false .

Table 4–2 ALTER_APPLY Procedure Parameters (Page 3 of 5)

Parameter Description
4-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
apply_user The user who applies all DML and DDL changes and who
runs user-defined apply handlers. If NULL, then the apply
user is not changed.

The specified user must have the necessary privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. The specified user must also have
dequeue privileges on the queue used by the apply process
and privileges to execute the rule set and transformation
functions used by the apply process. These privileges must
be granted directly to the apply user; they cannot be
granted through roles.

By default, this parameter is set to the user who created the
apply process by running either the CREATE_APPLY
procedure in this package or one of the following
procedures in the DBMS_STREAMS_ADM package with the
streams_type parameter set to apply :

� ADD_GLOBAL_RULES

� ADD_SCHEMA_RULES

� ADD_TABLE_RULES

� ADD_SUBSET_RULES

Note: If the specified user is dropped using DROP USER
... CASCADE, then the apply_user for the apply process
is set to NULL automatically. You must specify an apply
user before the apply process can run.

apply_tag A binary tag that is added to redo entries generated by the
specified apply process. The tag is a binary value that can be
used to track LCRs.

The tag is relevant only if a capture process at the database
where the apply process is running will capture changes
made by the apply process. If so, then the captured changes
will include the tag specified by this parameter.

If NULL, the default, then the apply tag for the apply process
is not changed.

The following is an example of a tag with a hexadecimal
value of 17 :

HEXTORAW('17')

See Also: Oracle9i Streams for more information about tags

Table 4–2 ALTER_APPLY Procedure Parameters (Page 4 of 5)

Parameter Description
DBMS_APPLY_ADM 4-7

ALTER_APPLY Procedure
Usage Notes
An apply process is stopped and restarted automatically when you change the
value of one or more of the following ALTER_APPLY procedure parameters:

� message_handler

� ddl_handler

� apply_user

� apply_tag

remove_apply_tag If true , then sets the apply tag for the specified apply
process to NULL, and the apply process generated redo
entries with NULL tags.

If false , then retains any apply tag for the specified apply
process.

If the apply_tag parameter is non-NULL, then this
parameter should be set to false .

Table 4–2 ALTER_APPLY Procedure Parameters (Page 5 of 5)

Parameter Description
4-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
CREATE_APPLY Procedure

Creates an apply process.

Syntax
DBMS_APPLY_ADM.CREATE_APPLY(

queue_name IN VARCHAR2,
apply_name IN VARCHAR2,
rule_set_name IN VARCHAR2 DEFAULT NULL,
message_handler IN VARCHAR2 DEFAULT NULL,
ddl_handler IN VARCHAR2 DEFAULT NULL,
apply_user IN VARCHAR2 DEFAULT NULL,
apply_database_link IN VARCHAR2 DEFAULT NULL,
apply_tag IN RAW DEFAULT '00',
apply_captured IN BOOLEAN DEFAULT false);

Parameters

Table 4–3 CREATE_APPLY Procedure Parameters (Page 1 of 4)

Parameter Description

queue_name The name of the queue from which the apply process dequeues
LCRs and user messages. You must specify an existing queue
in the form [schema_name.] queue_name . For example, to
specify a queue in the hr schema named streams_queue ,
enter hr.streams_queue . If the schema is not specified, then
the current user is the default.

Note: The queue_name setting cannot be altered after the
apply process is created.

apply_name The name of the apply process being created. A NULL
specification is not allowed.

Note: The apply_name setting cannot be altered after the
apply process is created.
DBMS_APPLY_ADM 4-9

CREATE_APPLY Procedure
rule_set_name The name of the rule set that contains the apply rules for this
apply process. If you want to use a rule set for the apply
process, then you must specify an existing rule set in the form
[schema_name.] rule_set_name . For example, to specify a
rule set in the hr schema named job_apply_rules , enter
hr.job_apply_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

If you specify NULL, then the apply process applies all LCRs
and user messages in its queue.

message_handler A user-defined procedure that processes non-LCR messages in
the queue for the apply process. You must specify an existing
procedure in one of the following forms:

� [schema_name.] procedure_name

� [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package_name must
be specified. For example, to specify a procedure in the
apply_pkg package in the hr schema named
process_msgs , enter hr.apply_pkg.process_msgs . An
error is returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
CREATE_APPLY procedure is the default. This user must have
EXECUTE privilege on a specified message handler.

See "Usage Notes" on page 4-13 for more information about a
message handler procedure.

Table 4–3 CREATE_APPLY Procedure Parameters (Page 2 of 4)

Parameter Description
4-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
ddl_handler A user-defined procedure that processes DDL LCRs in the
queue for the apply process. You must specify an existing
procedure in one of the following forms:

� [schema_name.] procedure_name

� [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package_name must
be specified. For example, to specify a procedure in the
apply_pkg package in the hr schema named
process_ddls , enter hr.apply_pkg.process_ddls . An
error is returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
CREATE_APPLY procedure is the default. This user must have
EXECUTE privilege on a specified DDL handler.

All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTE member procedure of a DDL
LCR, then a commit is performed automatically.

See "Usage Notes" on page 4-13 for more information about a
DDL handler procedure.

apply_user The user who applies all DML and DDL changes and who runs
user-defined apply handlers. If NULL, then the user who runs
the CREATE_APPLY procedure is used.

The user must have the necessary privileges to perform DML
and DDL changes on the apply objects and to run any apply
handlers. The specified user must also have dequeue privileges
on the queue used by the apply process and privileges to
execute the rule set and transformation functions used by the
apply process. These privileges must be granted directly to the
apply user; they cannot be granted through roles.

Note: If the specified user is dropped using DROP USER ...
CASCADE, then the apply_user setting for the apply process
is set to NULL automatically. You must specify an apply user
before the apply process can run.

See Also: Oracle9i Streams for more information about the
privileges required to apply changes

Table 4–3 CREATE_APPLY Procedure Parameters (Page 3 of 4)

Parameter Description
DBMS_APPLY_ADM 4-11

CREATE_APPLY Procedure
apply_database_link The database at which the apply process applies messages.
This parameter is used by an apply process when applying
changes from Oracle to non-Oracle systems, such as Sybase. Set
this parameter to NULL to specify that the apply process
applies messages at the local database.

Note: The apply_database_link setting cannot be altered
after the apply process is created.

apply_tag A binary tag that is added to redo entries generated by the
specified apply process. The tag is a binary value that can be
used to track LCRs.

The tag is relevant only if a capture process at the database
where the apply process is running will capture changes made
by the apply process. If so, then the captured changes will
include the tag specified by this parameter.

By default, the tag for an apply process is the hexadecimal
equivalent of '00' (double zero).

The following is an example of a tag with a hexadecimal value
of 17:

HEXTORAW('17')

If NULL, then the apply process generates redo entries with
NULL tags.

See Also: Oracle9i Streams for more information about tags

apply_captured Either true or false .

If true , then the apply process applies only the events in a
queue that were captured by a Streams capture process.

If false , then the apply process applies only the
user-enqueued events in a queue. These events are user
messages that were not captured by a Streams capture process.
These messages may or may not contain a user-created LCR.

To apply both captured and user-enqueued events in a queue,
you must create at least two apply processes.

Note: The apply_captured setting cannot be altered after
the apply process is created.

See Also: Oracle9i Streams for more information about
captured and user-enqueued events

Table 4–3 CREATE_APPLY Procedure Parameters (Page 4 of 4)

Parameter Description
4-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Usage Notes
The procedure specified in both the message_handler parameter and the
ddl_handler parameter must have the following signature:

PROCEDUREhandler_procedure (
parameter_name IN SYS.AnyData);

Here, handler_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
For the message handler, the parameter passed to the procedure is a SYS.AnyData
encapsulation of a user message. For the DDL handler procedure, the parameter
passed to the procedure is a SYS.AnyData encapsulation of a DDL LCR.

DELETE_ALL_ERRORS Procedure

Deletes all the error transactions for the specified apply process from the error
queue.

Syntax
DBMS_APPLY_ADM.DELETE_ALL_ERRORS(

apply_name IN VARCHAR2 DEFAULT NULL);

Parameter

See Also: Chapter 108, "Logical Change Record Types" for
information DDL LCRs

Table 4–4 DELETE_ALL_ERRORS Procedure Parameter

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions.

If NULL, then all error transactions for all apply processes are
deleted.
DBMS_APPLY_ADM 4-13

DELETE_ERROR Procedure
DELETE_ERROR Procedure

Deletes the specified error transaction from the error queue.

Syntax
DBMS_APPLY_ADM.DELETE_ERROR(

local_transaction_id IN VARCHAR2);

Parameter

DROP_APPLY Procedure

Drops an apply process.

Syntax
DBMS_APPLY_ADM.DROP_APPLY(

apply_name IN VARCHAR2);

Parameter

Table 4–5 DELETE_ERROR Procedure Parameter

Parameter Description

local_transaction_id The identification number of the error transaction to delete. If
the specified transaction does not exist in the error queue, then
an error is raised.

Table 4–6 DROP_APPLY Procedure Parameter

Parameter Description

apply_name The name of the apply process being dropped. You must
specify an existing apply process name.
4-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
EXECUTE_ALL_ERRORS Procedure

Reexecutes the error queue transactions for the specified apply process.

The transactions are reexecuted in commit SCN order. Error reexecution stops if an
error is raised.

Syntax
DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(

apply_name IN VARCHAR2 DEFAULT NULL
execute_as_user IN BOOLEAN DEFAULT false);

Parameters

Table 4–7 EXECUTE_ALL_ERRORS Procedure Parameters

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions.

If NULL, then all error transactions for all apply processes are
reexecuted.

execute_as_user If TRUE, then reexecutes the transactions in the security context
of the current user.

If FALSE, then reexecutes each transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERROR data dictionary
view lists the original receiver for each transaction in the error
queue.

The user who executes the transactions must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.
DBMS_APPLY_ADM 4-15

EXECUTE_ERROR Procedure
EXECUTE_ERROR Procedure

Reexecutes the specified error queue transaction.

Syntax
DBMS_APPLY_ADM.EXECUTE_ERROR(

local_transaction_id IN VARCHAR2,
execute_as_user IN BOOLEAN DEFAULT FALSE);

Parameters

Table 4–8 EXECUTE_ERROR Procedure Parameters

Parameter Description

local_transaction_id The identification number of the error transaction to execute. If
the specified transaction does not exist in the error queue, then
an error is raised.

execute_as_user If TRUE, then reexecutes the transaction in the security context
of the current user.

If FALSE, then reexecutes the transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERROR data dictionary
view lists the original receiver for each transaction in the error
queue.

The user who executes the transaction must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.
4-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
GET_ERROR_MESSAGE Function

Returns the message payload from the error queue for the specified message
number and transaction identifier.

Syntax
DBMS_APPLY_ADM.GET_ERROR_MESSAGE(

message_number IN NUMBER,
local_transaction_id IN VARCHAR2)

RETURN Sys.Anydata;

Parameters

Table 4–9 GET_ERROR_MESSAGE Function Parameters

Parameter Description

message_number The identification number of the message. Query the
DBA_APPLY_ERROR data dictionary view to view the message
number of each apply error.

local_transaction_id Identifier of the error transaction for which to return a message
DBMS_APPLY_ADM 4-17

SET_DML_HANDLER Procedure
SET_DML_HANDLER Procedure

Sets a user procedure as a DML handler for a specified operation on a specified
object. The user procedure alters the apply behavior for the specified operation on
the specified object. Run this procedure at the destination database. The
SET_DML_HANDLER procedure provides a way for users to apply logical change
records containing DML changes (row LCRs) using a customized apply.

If the error_handler parameter is set to true , then it specifies that the user
procedure is an error handler. An error handler is invoked only when a row LCR
raises an apply process error. Such an error may result from a data conflict if no
conflict handler is specified or if the update conflict handler cannot resolve the
conflict. If the error_handler parameter is set to false , then the user procedure
is a DML handler, not an error handler, and a DML handler is always run instead of
performing the specified operation on the specified object.

This procedure either sets a DML handler or an error handler for a particular
operation on an object. It cannot set both a DML handler and an error handler for
the same object and operation.

At the source database, you must specify an unconditional supplemental log group
for the columns needed by a DML or error handler.

Syntax
DBMS_APPLY_ADM.SET_DML_HANDLER(

object_name IN VARCHAR2,
object_type IN VARCHAR2,
operation_name IN VARCHAR2,
error_handler IN BOOLEAN DEFAULT false,
user_procedure IN VARCHAR2,
apply_database_link IN VARCHAR2 DEFAULT NULL);

Note: Currently, setting an error handler for an apply process that
is applying changes to a non-Oracle database is not supported.
4-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Parameters

Table 4–10 SET_DML_HANDLER Procedure Parameters (Page 1 of 2)

Parameter Description

object_name The name of the source object specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default.

object_type The type of the source object. Currently, TABLE is the only
possible source object type.

operation_name The name of the operation, which can be specified as:

� INSERT

� UPDATE

� DELETE

� LOB_UPDATE

For example, suppose you run this procedure twice for the
hr.employees table. In one call, you set operation_name
to UPDATE and user_procedure to employees_update . In
another call, you set operation_name to INSERT and
user_procedure to employees_insert . Both times, you
set error_handler to false .

In this case, the employees_update procedure is run for
UPDATE operations on the hr.employees table, and the
employees_insert procedure is run for INSERT operations
on the hr.employees table.

error_handler If true , then the specified user procedure is run when a row
LCR involving the specified operation on the specified object
raises an apply process error. The user procedure may try to
resolve possible error conditions, or it may simply notify
administrators of the error or log the error.

If false , then the handler being set is run for all row LCRs
involving the specified operation on the specified object.

Note: Currently, error handlers are not supported when
applying changes to a non-Oracle database.
DBMS_APPLY_ADM 4-19

SET_DML_HANDLER Procedure
Usage Notes
The SET_DML_HANDLER procedure can be used to set either a general DML handler
or an error handler for row LCRs that perform a specified operation on a specified
object. The following sections describe the signature of a general DML handler
procedure and the signature of an error handler procedure.

In either case, you must specify the full procedure name for the user_procedure
parameter in one of the following forms:

� [schema_name.]p ackage_name.procedure_name

� [schema_name.] procedure_name

If the procedure is in a package, then the package_name must be specified. If the
schema is not specified, then the user who invokes the SET_DML_HANDLER
procedure is the default. This user must have EXECUTE privilege on the specified
procedure.

For example, suppose the procedure_name has the following properties:

� hr is the schema_name.

� apply_pkg is the package_name .

� employees_default is the procedure_name .

In this case, specify the following:

hr.apply_pkg.employees_default

user_procedure A user-defined procedure that is invoked during apply for the
specified operation on the specified object. If the procedure is a
DML handler, then it is invoked instead of the default apply
performed by Oracle. If the procedure is an error handler, then
it is invoked when the apply process encounters an error.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Table 4–10 SET_DML_HANDLER Procedure Parameters (Page 2 of 2)

Parameter Description
4-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
The following restrictions apply to the user procedure:

� Do not execute COMMIT or ROLLBACK statements. Doing so may endanger the
consistency of the transaction that contains the LCR.

� If you are manipulating a row using the EXECUTE member procedure for the
row LCR, then do not attempt to manipulate more than one row in a row
operation. You must construct and execute manually any DML statements that
manipulate more than one row.

� If the command type is UPDATE or DELETE, then row operations resubmitted
using the EXECUTE member procedure for the LCR must include the entire key
in the list of old values. The key is the primary key, unless a substitute key has
been specified by the SET_KEY_COLUMNS procedure.

� If the command type is INSERT, then row operations resubmitted using the
EXECUTE member procedure for the LCR should include the entire key in the
list of new values. Otherwise, duplicate rows are possible. The key is the
primary key, unless a substitute key has been specified by the
SET_KEY_COLUMNS procedure.

Signature of a General DML Handler Procedure
The procedure specified in the user_procedure parameter must have the
following signature:

PROCEDUREuser_procedure (
parameter_name IN SYS.AnyData);

Here, user_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
The parameter passed to the procedure is a SYS.AnyData encapsulation of a row
LCR.

See Also: Chapter 108, "Logical Change Record Types" for more
information about LCRs
DBMS_APPLY_ADM 4-21

SET_DML_HANDLER Procedure
Signature of an Error Handler Procedure
The procedure you create for error handling must have the following signature:

PROCEDUREuser_procedure (
message IN SYS.AnyData,
error_stack_depth IN NUMBER,
error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
error_messages IN emsg_array);

Running an error handler results in one of the following outcomes:

� The error handler successfully resolves the error and returns control to the
apply process.

� The error handler fails to resolve the error, and the error is raised. The raised
error causes the transaction to be rolled back and placed in the error queue.

If you want to retry the DML operation, then have the error handler procedure run
the EXECUTE member procedure for the LCR.

Note:

� Each parameter is required and must have the specified
datatype. However, you can change the names of the
parameters.

� The emsg_array parameter must be a user-defined array that
is a table of type VARCHAR2 with at least 76 characters.
4-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
SET_GLOBAL_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified source database. This
procedure overwrites any existing instantiation SCN for the database.

This procedure gives you precise control over which DDL LCRs for a database are
ignored and which DDL LCRs are applied by an apply process. If the commit SCN
of a DDL LCR for a database object from a source database is less than or equal to
the instantiation SCN for that database at some destination database, then the apply
process at the destination database disregards the DDL LCR. Otherwise, the apply
process applies the DDL LCR.

The instantiation SCN specified by this procedure is used for a DDL LCR only if the
DDL LCR does not have object_owner , base_table_owner , and
base_table_name specified. For example, the instantiation SCN set by this
procedure is used for DDL LCRs with a command_type of CREATE USER.

Attention: If you run the SET_GLOBAL_INSTANTIATION_SCN
for a database, then you should run
SET_SCHEMA_INSTANTIATION_SCN for all of the existing
schemas in the database and SET_TABLE_INSTANTIATION_SCN
for all of the existing tables in the database. If you add new
schemas and tables to the database in the future, then you need not
run these procedures for the new schemas and tables.
DBMS_APPLY_ADM 4-23

SET_GLOBAL_INSTANTIATION_SCN Procedure
Note:

� This procedure sets the instantiation SCN only for DDL LCRs.
To set the instantiation SCN for row LCRs, which record the
results of DML changes, use
SET_TABLE_INSTANTIATION_SCN.

� The instantiation SCN set by the
SET_SCHEMA_INSTANTIATION_SCN procedure is used for
DDL LCRs that have object_owner specified.

� The instantiation SCN set by the
SET_TABLE_INSTANTIATION_SCN procedure is used for
DDL LCRs that have both base_table_owner and
base_table_name specified, except for DDL LCRs with a
command_type of CREATE TABLE.

� The instantiation SCN specified by this procedure is used only
for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

� "SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 4-32

� "SET_TABLE_INSTANTIATION_SCN Procedure" on page 4-35

� "LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

� Oracle9i Streams
4-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Syntax
DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(

source_database_name IN VARCHAR2,
instantiation_scn IN NUMBER,
apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 4–11 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local
domain is appended to the database name automatically. For
example, if you specify DBS1 and the local domain is .NET,
then DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN number. Specify NULL to remove the
instantiation SCN metadata for the source database from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.
DBMS_APPLY_ADM 4-25

SET_KEY_COLUMNS Procedure
SET_KEY_COLUMNS Procedure

Records the set of columns to be used as the substitute primary key for apply
purposes and removes existing substitute primary key columns for the specified
object if they exist. Unlike true primary keys, these columns may contain NULLs.

When not empty, this set of columns takes precedence over any primary key for the
specified object. Do not specify substitute key columns if the object already has
primary key columns and you want to use those primary key columns as the key.

Run this procedure at the destination database. At the source database, you must
specify an unconditional supplemental log group for the substitute key columns.

Note:

� Oracle Corporation recommends that each column you specify
as a substitute key column be a NOT NULL column. You should
also create a single index that includes all of the columns in a
substitute key. Following these guidelines improves
performance for updates, deletes, and piecewise updates to
LOBs because Oracle can locate the relevant row more
efficiently.

� You should not permit applications to update the primary key
or substitute key columns of a table. This ensures that Oracle
can identify rows and preserve the integrity of the data.

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.
4-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Syntax
DBMS_APPLY_ADM.SET_KEY_COLUMNS(

object_name IN VARCHAR2,
{ column_list IN VARCHAR2, |

column_table IN DBMS_UTILITY.NAME_ARRAY, }
apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 4–12 SET_KEY_COLUMNS Procedure Parameters

Parameter Description

object_name The name of the table specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default. If the apply process is applying changes to a
non-Oracle database in a heterogeneous environment, then the
object name is not verified.

column_list A comma-delimited list of the columns in the table that you
want to use as the substitute primary key, with no spaces
between the column names.

If the column_list parameter is empty or NULL, then the
current set of key columns is removed.

column_table A PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAY of the columns in the table that
you want to use as the substitute primary key. The index for
column_table must be 1-based, increasing, dense, and
terminated by a NULL.

If the column_table parameter is empty or NULL, then the
current set of key columns is removed.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.
DBMS_APPLY_ADM 4-27

SET_PARAMETER Procedure
SET_PARAMETER Procedure

Sets an apply parameter to the specified value.

When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

Syntax
DBMS_APPLY_ADM.SET_PARAMETER (

apply_name IN VARCHAR2,
parameter IN VARCHAR2,
value IN VARCHAR2);

Parameters

Table 4–13 SET_PARAMETER Procedure Parameters

Parameter Description

apply_name The apply process name

parameter The name of the parameter you are setting. See "Apply Process
Parameters" on page 4-29 for a list of these parameters.

value The value to which the parameter is set
4-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Apply Process Parameters
The following table lists the parameters for the apply process.

Table 4–14 Apply Process Parameters (Page 1 of 3)

Parameter Name
Possible
Values Default Description

commit_serialization full or
none

full The order in which applied transactions are
committed.

If full , then the apply process commits applied
transactions in the order in which they were
committed at the source database.

If none , then the apply process may commit
transactions may commit in any order. Performance is
best if you specify none .

Regardless of the specification, applied transactions
may execute in parallel subject to data dependencies
and constraint dependencies.

Logical standby environments typically specify full .

disable_on_error Y or N Y If Y, then the apply process is disabled on the first
unresolved error, even if the error is not fatal.

If N, then the apply process continues regardless of
unresolved errors.

disable_on_limit Y or N N If Y, then the apply process is disabled if the apply
process terminates because it reached a value
specified by the time_limit parameter or
transaction_limit parameter.

If N, then the apply process is restarted immediately
after stopping because it reached a limit.

maximum_scn A valid SCN
or infinite

infinite The apply process is disabled before applying a
transaction with a commit SCN greater than or equal
to the value specified.

If infinite , then the apply process runs regardless
of the SCN value.
DBMS_APPLY_ADM 4-29

SET_PARAMETER Procedure
parallelism A positive
integer

1 The number of transactions that may be concurrently
applied

Note:

� When you change the value of this parameter, the
apply process is stopped and restarted
automatically. This may take some time
depending on the size of the transactions
currently being applied.

� Setting the parallelism parameter to a number
higher than the number of available parallel
execution servers may disable the apply process.
Make sure the PROCESSES and
PARALLEL_MAX_SERVERS initialization
parameters are set appropriately when you set
the parallelism apply process parameter.

startup_seconds 0, a positive
integer, or
infinite

0 The maximum number of seconds to wait for another
instantiation of the same apply process to finish. If the
other instantiation of the same apply process does not
finish within this time, then the apply process does
not start.

If infinite , then an apply process does not start
until another instantiation of the same apply process
finishes.

time_limit A positive
integer or
infinite

infinite The apply process stops as soon as possible after the
specified number of seconds since it started.

If infinite , then the apply process continues to run
until it is stopped explicitly.

trace_level 0 or a
positive
integer

0 Set this parameter only under the guidance of Oracle
Support Services.

Table 4–14 Apply Process Parameters (Page 2 of 3)

Parameter Name
Possible
Values Default Description
4-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
transaction_limit A positive
integer or
infinite

infinite The apply process stops after applying the specified
number of transactions.

If infinite , then the apply process continues to run
regardless of the number of transactions applied.

write_alert_log Y or N Y If Y, then the apply process writes a message to the
alert log on exit.

If N, then the apply process does not write a message
to the alert log on exit.

The message specifies the reason why the apply
process stopped.

Note:

� For all parameters that are interpreted as positive integers, the
maximum possible value is 4,294,967,295 . Where
applicable, specify infinite for larger values.

� For parameters that require an SCN setting, any valid SCN
value can be specified.

Table 4–14 Apply Process Parameters (Page 3 of 3)

Parameter Name
Possible
Values Default Description
DBMS_APPLY_ADM 4-31

SET_SCHEMA_INSTANTIATION_SCN Procedure
SET_SCHEMA_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified schema in the specified
source database. This procedure overwrites any existing instantiation SCN for the
particular schema.

This procedure gives you precise control over which DDL LCRs for a schema are
ignored and which DDL LCRs are applied by an apply process. If the commit SCN
of a DDL LCR for a database object in a schema from a source database is less than
or equal to the instantiation SCN for that database object at some destination
database, then the apply process at the destination database disregards the DDL
LCR. Otherwise, the apply process applies the DDL LCR.

The instantiation SCN specified by this procedure is used on the following types of
DDL LCRs:

� DDL LCRs with a command_type of CREATE TABLE

� DDL LCRs with a non-NULL object_owner specified and no
base_table_owner nor base_table_name specified.

For example, the instantiation SCN set by this procedure is used for a DDL LCR
with a command_type of CREATE TABLE and ALTER USER.

The instantiation SCN specified by this procedure is not used for DDL LCRs with a
command_type of CREATE USER.

Attention: If you run the SET_SCHEMA_INSTANTIATION_SCN
for a schema, then you should run
SET_TABLE_INSTANTIATION_SCN for all of the existing tables in
the schema. If you add new tables to the schema in the future, then
you need not run SET_TABLE_INSTANTIATION_SCN for these
tables.
4-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
Note:

� This procedure sets the instantiation SCN only for DDL LCRs.
To set the instantiation SCN for row LCRs, which record the
results of DML changes, use
SET_TABLE_INSTANTIATION_SCN.

� The instantiation SCN set by the
SET_TABLE_INSTANTIATION_SCN procedure is used for
DDL LCRs that have both base_table_owner and
base_table_name specified, except for DDL LCRs with a
command_type of CREATE TABLE.

� The instantiation SCN specified by this procedure is used only
for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

� "SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 4-23

� "SET_TABLE_INSTANTIATION_SCN Procedure" on page 4-35

� "LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

� Oracle9i Streams
DBMS_APPLY_ADM 4-33

SET_SCHEMA_INSTANTIATION_SCN Procedure
Syntax
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(

source_schema_name IN VARCHAR2,
source_database_name IN VARCHAR2,
instantiation_scn IN NUMBER,
apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 4–15 SET_SCHEMA_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_schema_name The name of the source schema. For example, hr .

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local is
appended to the database name automatically. For example,
if you specify DBS1 and the local domain is .NET, then
DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN number. Specify NULL to remove the
instantiation SCN metadata for the source schema from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.
4-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
SET_TABLE_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified table in the specified
source database. This procedure overwrites any existing instantiation SCN for the
particular table.

This procedure gives you precise control over which LCRs for a table are ignored
and which LCRs are applied by an apply process. If the commit SCN of an LCR for
a table from a source database is less than or equal to the instantiation SCN for that
table at some destination database, then the apply process at the destination
database disregards the LCR. Otherwise, the apply process applies the LCR.

The instantiation SCN specified by this procedure is used on the following types of
LCRs:

� Row LCRs for the table

� DDL LCRs that have a non-NULL base_table_owner and
base_table_name specified, except for DDL LCRs with a command_type of
CREATE TABLE

For example, the instantiation SCN set by this procedure is used for DDL LCRs
with a command_type of ALTER TABLE or CREATE TRIGGER.

Note: The instantiation SCN specified by this procedure is used
only for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

� "SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 4-23

� "SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 4-32

� "LCR$_ROW_RECORD Type" on page 108-15 for more
information about row LCRs

� "LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

� Oracle9i Streams
DBMS_APPLY_ADM 4-35

SET_TABLE_INSTANTIATION_SCN Procedure
Syntax
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(

source_object_name IN VARCHAR2,
source_database_name IN VARCHAR2,
instantiation_scn IN NUMBER,
apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 4–16 SET_TABLE_INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_object_name The name of the source object specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the
current user is the default.

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local
domain name is appended to the database name
automatically. For example, if you specify DBS1 and the
global domain is .NET, then DBS1.NET is specified
automatically.

instantiation_scn The instantiation SCN number. Specify NULL to remove the
instantiation SCN metadata for the source table from the data
dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.
4-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
SET_UPDATE_CONFLICT_HANDLER Procedure

Adds, modifies, or removes an update conflict handler for the specified object.

If you want to modify an existing update conflict handler, then you specify the table
and resolution column of an the existing update conflict handler. You can modify
the prebuilt method or the column list.

If you want to remove an existing update conflict handler, then specify NULL for the
prebuilt method and specify the table, column list, and resolution column of the
existing update conflict handler.

If an update conflict occurs, then Oracle completes the following series of actions:

1. Calls the appropriate update conflict handler to resolve the conflict

2. If no update conflict handler is specified or if the update conflict handler cannot
resolve the conflict, then calls the appropriate error handler for the apply
process, table, and operation to handle the error

3. If no error handler is specified or if the error handler cannot resolve the error,
then raises an error and moves the transaction containing the row LCR that
caused the error to the error queue

Syntax
DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(

object_name IN VARCHAR2,
method_name IN VARCHAR2,
resolution_column IN VARCHAR2,
column_list IN DBMS_UTILITY.NAME_ARRAY,
apply_database_link IN VARCHAR2 DEFAULT NULL);

Note: Currently, setting an update conflict handler for an apply
process that is applying to a non-Oracle database is not supported.

See Also: "Signature of an Error Handler Procedure" on page 4-22
for information about setting an error handler
DBMS_APPLY_ADM 4-37

SET_UPDATE_CONFLICT_HANDLER Procedure
Parameters

Table 4–17 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

Parameter Description

object_name The schema and name of the table, specified as
[schema_name.] object_name , for which an update conflict
handler is being added, modified, or removed.

For example, if an update conflict handler is being added for
table employees owned by user hr , then specify
hr.employees . If the schema is not specified, then the current
user is the default.

method_name Type of update conflict handler to create.

You can specify one of the built-in handlers, which determine
whether the column list from the source database is applied for
the row or whether the values in the row at the destination
database are retained:

� MAXIMUM: Applies the column list from the source
database if it has the greater value for the resolution
column. Otherwise, retains the values at the destination
database.

� MINIMUM: Applies the column list from the source
database if it has the lesser value for the resolution
column. Otherwise, retains the values at the destination
database.

� OVERWRITE: Applies the column list from the source
database, overwriting the column values at the destination
database

� DISCARD: Retains the column list from the destination
database, discarding the column list from the source
database

If NULL, then removes any existing update conflict handler
with the same object_name , resolution_column , and
column_list . If non-NULL, then replaces any existing update
conflict handler with the same object_name and
resolution_column .
4-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
resolution_column Name of the column used to uniquely identify an update
conflict handler. For the MAXIMUM and MINIMUM prebuilt
methods, the resolution column is also used to resolve the
conflict. The resolution column must be one of the columns
listed in the column_list parameter.

NULL is not allowed for this parameter. For the OVERWRITE
and DISCARD prebuilt methods, you can any column in the
column list.

column_list List of columns for which the conflict handler is called.

If a conflict occurs for one or more of the columns in the list
when an apply process tries to apply a row LCR, then the
conflict handler is called to resolve the conflict. The conflict
handler is not called if a conflict occurs only for columns that
are not in the list.

Note: Conflict resolution does not support LOB columns.
Therefore, you should not include LOB columns in the
column_list parameter.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Note: Currently, conflict handlers are not supported when
applying changes to a non-Oracle database.

Table 4–17 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

Parameter Description
DBMS_APPLY_ADM 4-39

SET_UPDATE_CONFLICT_HANDLER Procedure
Usage Notes
The following is an example for setting an update conflict handler for the
employees table in the hr schema:

DECLARE
cols DBMS_UTILITY.NAME_ARRAY;

BEGIN
cols(1) := 'salary';
cols(2) := 'commission_pct';
DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(

object_name => 'hr.employees',
method_name => 'MAXIMUM',
resolution_column => 'salary',
column_list => cols);

END;
/

This example sets a conflict handler that is called if a conflict occurs for the salary
or commission_pct column in the hr.employees table. If such a conflict occurs,
then the salary column is evaluated to resolve the conflict. If a conflict occurs only
for a column that is not in the column list, such as the job_id column, then this
conflict handler is not called.
4-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
START_APPLY Procedure

Directs the apply process to start applying events.

The start status is persistently recorded. Hence, if the status is START, then the
apply process is started upon database instance startup. Each apply process is an
Oracle background process and is prefixed by AP.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and
DBMS_AQADM.STOP_QUEUE have no effect on the start status of an apply process.

You can create the apply process using the following procedures:

� DBMS_APPLY_ADM.CREATE_APPLY

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

� DBMS_STREAMS_ADM.ADD_SUBSET_RULES

Syntax
DBMS_APPLY_ADM.START_APPLY(

apply_name IN VARCHAR2);

Parameter

See Also: Chapter 73, "DBMS_STREAMS_ADM"

Table 4–18 START_APPLY Procedure Parameter

Parameter Description

apply_name The apply process name. A NULL setting is not allowed.
DBMS_APPLY_ADM 4-41

STOP_APPLY Procedure
STOP_APPLY Procedure

Stops the apply process from applying events and rolls back any unfinished
transactions being applied.

The stop status is persistently recorded. Hence, if the status is STOP, then the apply
process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and
DBMS_AQADM.STOP_QUEUE have no effect on the STOP status of an apply process.

Syntax
DBMS_APPLY_ADM.STOP_APPLY(

apply_name IN VARCHAR2
force IN BOOLEAN DEFAULT false);

Parameters

Usage Notes
The following table describes apply process behavior for each setting of the force
parameter in the STOP_APPLY procedure and the commit_serialization apply
process parameter. In all cases, the apply process rolls back any unfinished
transactions when it stops.

Table 4–19 STOP_APPLY Procedure Parameters

Parameter Description

apply_name The apply process name. A NULL setting is not allowed.

force If true , then stops the apply process as soon as possible.

If false , then stops the apply process after ensuring that there
are no gaps in the set of applied transactions.

The behavior of the apply process depends on the setting
specified for the force parameter and the setting specified for the
commit_serialization apply process parameter. See "Usage
Notes" for more information.
4-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms
For example, assume that the commit_serialization apply process parameter
is set to none and there are three transactions: transaction 1 has the earliest commit
time, transaction 2 is committed after transaction 1, and transaction 3 has the latest
commit time. Also assume that an apply process has applied transaction 1 and
transaction 3 and is in the process of applying transaction 2 when the STOP_APPLY
procedure is run. Given this scenario, if the force parameter is set to true , then
transaction 2 is not applied, and the apply process stops (transaction 2 is rolled
back). If, however, the force parameter is set to false , then transaction 2 is
applied before the apply process stops.

A different scenario would result if the commit_serialization apply process
parameter is set to full . For example, assume that the commit_serialization
apply process parameter is set to full and there are three transactions:
transaction A has the earliest commit time, transaction B is committed after
transaction A, and transaction C has the latest commit time. In this case, the apply
process has applied transaction A and is in the process of applying transactions B
and C when the STOP_APPLY procedure is run. Given this scenario, if the force
parameter is set to true , then transactions B and C are not applied, and the apply
process stops (transactions B and C are rolled back). If, however, the force
parameter is set to false , then transaction B is applied before the apply process
stops, and transaction C is rolled back.

force commit_serialization Apply Process Behavior

true full The apply process stops immediately and does not
apply any unfinished transactions.

true none When the apply process stops, some transactions that
have been applied locally may have committed at the
source database at a later point in time than some
transactions that have not been applied locally.

false full The apply process stops after applying the next
uncommitted transaction in the commit order, if any
such transaction is in progress.

false none Before stopping, the apply process applies all of the
transactions that have a commit time that is earlier than
the applied transaction with the most recent commit
time.

See Also: "SET_PARAMETER Procedure" on page 4-28 for more
information about the commit_serialization apply process
parameter
DBMS_APPLY_ADM 4-43

STOP_APPLY Procedure
4-44 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
5

DBMS_AQ

The DBMS_AQ package provides an interface to Oracle’s Advanced Queuing.

This chapter discusses the following topics:

� Java Classes

� Enumerated Constants

� Data Structures for DBMS_AQ

� Summary of DBMS_AQ Subprograms

See Also:

� Oracle9i Application Developer’s Guide - Advanced Queuing

� Chapter 106, "Advanced Queuing Types" for information about
the TYPEs to use with DBMS_AQ
S_AQ 5-1

Java Classes
Java Classes
Java interfaces are available for DBMS_AQ and DBMS_AQADM. The Java interfaces are
provided in the $ORACLE_HOME/rdbms/jlib/aqapi .jar . Users are required to
have EXECUTE privileges on the DBMS_AQIN package to use these interfaces.

Enumerated Constants
When using enumerated constants such as BROWSE, LOCKED, or REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining it. All
types associated with the operational interfaces have to be prepended with DBMS_
AQ. For example: DBMS_AQ.BROWSE.

Data Structures for DBMS_AQ

Table 5–1 Enumerated Constants

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING, READY, PROCESSED, EXPIRED

sequence_deviation BEFORE, TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

Table 5–2 Data Structures for DBMS_AQ

Data Structures

Object Name on page 5-3

Type Name on page 5-3

AQ PL/SQL Callback on page 5-4
5-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Data Structures for DBMS_AQ
Object Name
The object_name data structure names database objects. It applies to queues,
queue tables, agent names, and object types.

Syntax
object_name := VARCHAR2;
object_name := [<schema_name>.]<name>;

Usage Notes
Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, the current schema is assumed. The name must
follow object name guidelines in the Oracle9i SQL Reference with regard to reserved
characters. Schema names, agent names, and object type names can be up to 30
bytes long. Queue names and queue table names can be up to 24 bytes long.

Type Name
The type_name data structure defines queue types.

Syntax
type_name := VARCHAR2;
type_name := <object_type> | "RAW";

Attributes

Table 5–3 Type Name Attributes

Attribute Description

<object_types> Maximum number of attributes in the object type is limited to
900.
DBMS_AQ 5-3

AQ PL/SQL Callback
AQ PL/SQL Callback
The plsqlcallback data structure specifies the user-defined PL/SQL procedure,
defined in the database to be invoked on message notification.

Syntax
If a notification message is expected for a RAW payload enqueue, then the PL/SQL
callback must have the following signature:

procedure plsqlcallback(
context IN RAW,
reginfo IN SYS.AQ$_REG_INFO,
descr IN SYS.AQ$_DESCRIPTOR,
payload IN RAW,
payloadl IN NUMBER);

“RAW” To store payload of type RAW, AQ creates a queue table with a
LOB column as the payload repository. The theoretical
maximum size of the message payload is the maximum
amount of data that can be stored in a LOB column. However,
the maximum size of the payload is determined by which
programmatic environment you use to access AQ. For
PL/SQL, Java and precompilers the limit is 32K; for the OCI
the limit is 4G. Because the PL/SQL enqueue and dequeue
interfaces accept RAW buffers as the payload parameters you
will be limited to 32K bytes. In OCI, the maximum size of your
RAW data will be limited to the maximum amount of
contiguous memory (as an OCIRaw is simply an array of bytes)
that the OCI Object Cache can allocate. Typically, this will be at
least 32K bytes and much larger in many cases.

Because LOB columns are used for storing RAW payload, the
AQ administrator can choose the LOB tablespace and configure
the LOB storage by constructing a LOB storage string in the
storage_clause parameter during queue table creation
time.

Table 5–3 (Cont.) Type Name Attributes

Attribute Description
5-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
Attributes

If the notification message is expected for an ADT payload enqueue, the PL/SQL
callback must have the following signature:

procedure plsqlcallback(
context IN RAW,
reginfo IN SYS.AQ$_REG_INFO,
descr IN SYS.AQ$_DESCRIPTOR,
payload IN VARCHAR2,
payloadl IN NUMBER);

Summary of DBMS_AQ Subprograms

Table 5–4 AQ PL/SQL Callback Attributes

Attribute Description

context Specifies the context for the callback function that was passed
by dbms_aq.register . See "AQ$_REG_INFO Type" on
page 106-5.

reginfo See "AQ$_REG_INFO Type" on page 106-5.

descr See "AQ$_DESCRIPTOR Type" on page 106-3.

payload If a notification message is expected for a raw payload enqueue
then this contains the raw payload that was enqueued into a
non persistent queue.

In case of a persistent queue with raw payload this parameter
will be null.

payloadl Specifies the length of payload . If payload is null,
payload1 = 0.

Table 5–5 DBMS_AQ Package Subprograms

Subprograms Description

ENQUEUE Procedure on
page 5-6

Adds a message to the specified queue.

DEQUEUE Procedure on
page 5-8

Dequeues a message from the specified queue.

LISTEN Procedure on
page 5-11

Listen to one or more queues on behalf of a list of agents.
DBMS_AQ 5-5

ENQUEUE Procedure
ENQUEUE Procedure
This procedure adds a message to the specified queue.

Syntax
DBMS_AQ.ENQUEUE (

queue_name IN VARCHAR2,
enqueue_options IN enqueue_options_t,
message_properties IN message_properties_t,
payload IN "<type_name>",
msgid OUT RAW);

Parameters

REGISTER Procedure on
page 5-12

Registers for message notifications

UNREGISTER Procedure on
page 5-13

Unregisters a subscription which turns off notification

POST Procedure on page 5-13 Posts to a anonymous subscription which allows all clients
who are registered for the subscription to get notifications.

BIND_AGENT Procedure on
page 5-14

Creates an entry for an AQ agent in the LDAP directory

UNBIND_AGENT Procedure
on page 5-15

Removes an entry for an AQ agent from the LDAP directory

Note: The DBMS_AQ package does not have a purity level defined;
therefore, you cannot call any procedure in this package from other
procedures that have RNDS, WNDS, RNPS or WNPS constraints
defined.

Table 5–6 ENQUEUE Procedure Parameters

Parameter Description

queue_name Specifies the name of the queue to which this message
should be enqueued. The queue cannot be an exception
queue.

Table 5–5 (Cont.) DBMS_AQ Package Subprograms

Subprograms Description
5-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
Usage Notes
The sequence_deviation parameter in enqueue_options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue_options parameter relative_
msgid . The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than or
equal to the priority of the message before which this message is to be enqueued.

If a message is enqueued to a multiconsumer queue with no recipient, and if the
queue has no subscribers (or rule-based subscribers that match this message), then
the Oracle error ORA_24033 is raised. This is a warning that the message will be
discarded because there are no recipients or subscribers to whom it can be
delivered.

Using Secure Queues
For secure queues, you must specify the sender_id in the messages_
properties parameter. See "MESSAGE_PROPERTIES_T Type" on page 106-11 for
more information about sender_id .

 When you use secure queues, the following are required:

enqueue_options See "ENQUEUE_OPTIONS_T Type" on page 106-10.

message_properties See "MESSAGE_PROPERTIES_T Type" on page 106-11. See
"Using Secure Queues" on page 5-7.

payload Not interpreted by Oracle AQ.

The payload must be specified according to the specification
in the associated queue table. NULL is an acceptable
parameter.

For the definition of <type_name > please refer to "Type
Name" on page 5-3.

msgid System generated identification of the message.

This is a globally unique identifier that can be used to
identify the message at dequeue time.

Table 5–6 (Cont.) ENQUEUE Procedure Parameters

Parameter Description
DBMS_AQ 5-7

DEQUEUE Procedure
� You must have created a valid AQ Agent using DBMS_AQADM.CREATE_AQ_
AGENT. See "CREATE_AQ_AGENT Procedure" on page 6-28.

� You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See
"ENABLE_DB_ACCESS Procedure" on page 6-31.

DEQUEUE Procedure
This procedure dequeues a message from the specified queue.

Syntax
DBMS_AQ.DEQUEUE (

queue_name IN VARCHAR2,
dequeue_options IN dequeue_options_t,
message_properties OUT message_properties_t,
payload OUT "<type_name>",
msgid OUT RAW);

Parameters

See Also: Oracle9i Streams for information about secure queues

Table 5–7 DEQUEUE Procedure Parameters

Parameter Description

queue_name Specifies the name of the queue.

dequeue_options See "DEQUEUE_OPTIONS_T Type" on page 106-8. See
"Using Secure Queues" on page 5-10.

message_properties See "MESSAGE_PROPERTIES_T Type" on page 106-11.

payload Not interpreted by Oracle AQ. The payload must be
specified according to the specification in the associated
queue table.

For the definition of <type_name > please refer to "Type
Name" on page 5-3.

msgid System generated identification of the message.
5-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
Usage Notes
The search criteria for messages to be dequeued is determined by the consumer_
name, msgid , correlation and deq_condition parameters in dequeue_
options .

� Msgid uniquely identifies the message to be dequeued.

� Correlation identifiers are application-defined identifiers that are not
interpreted by AQ.

� Dequeue condition is an expression based on the message properties, the
message data properties and PL/SQL functions. A deq_condition is
specified as a Boolean expression using syntax similar to the WHERE clause of a
SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions (as specified in the where clause of a SQL query). Message properties
include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue
table that stores the payload.

Example: tab.user_data.orderstatus=’EXPRESS’’

Only messages in the READY state are dequeued unless msgid is specified.

The dequeue order is determined by the values specified at the time the queue table
is created unless overridden by the msgid and correlation ID in dequeue_
options .

The database-consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning
of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT_MESSAGE. This
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the FIRST_
MESSAGE navigation option when the first message in the queue needs to be
processed by every dequeue command. This usually becomes necessary when a
DBMS_AQ 5-9

DEQUEUE Procedure
higher priority message arrives in the queue while messages already-enqueued are
being processed.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping will form a group. If only one message is enqueued in the
transaction, then this will effectively form a group of one message. There is no
upper limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED
or REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group will lock the entire group. This is
useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The application
can then use the NEXT_TRANSACTION to start dequeuing messages from the next
available group. In the event that no groups are available, the dequeue will time-out
after the specified WAIT period.

Using Secure Queues
For secure queues, you must specify consumer_name in the dequeue_options
parameter. See "DEQUEUE_OPTIONS_T Type" on page 106-8 for more information
about consumer_name .

 When you use secure queues, the following are required:

� You must have created a valid AQ Agent using DBMS_AQADM.CREATE_AQ_
AGENT. See "CREATE_AQ_AGENT Procedure" on page 6-28.

� You must map the AQ Agent to a database user with dequeue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See
"ENABLE_DB_ACCESS Procedure" on page 6-31.

Note: It may be more efficient to use the FIRST_MESSAGE
navigation option when messages are concurrently enqueued. If the
FIRST_MESSAGE option is not specified, AQ continually generates
the snapshot as of the first dequeue command, leading to poor
performance. If the FIRST_MESSAGE option is specified, then AQ
uses a new snapshot for every dequeue command.

See Also: Oracle9i Streams for information about secure queues
5-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
LISTEN Procedure
This procedure listens on one or more queues on behalf of a list of agents. The
address field of the agent indicates the queue the agent wants to monitor. Only local
queues are supported as addresses. Protocol is reserved for future use.

If agent-address is a multiconsumer queue, then agent-name is mandatory. For
single-consumer queues, agent-name must not be specified.

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If no messages are found when the wait time expires, an
error is raised.

Syntax
DBMS_AQ.LISTEN (

agent_list IN aq$_agent_list_t,
wait IN BINARY_INTEGER DEFAULT DBMS_AQ.FOREVER,
agent OUT sys.aq$_agent);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

Parameters

Usage Notes
This procedure takes a list of agents as an argument. You specify the queue to be
monitored in the address field of each agent listed. You also must specify the name
of the agent when monitoring multiconsumer queues. For single-consumer queues,
an agent name must not be specified. Only local queues are supported as addresses.
Protocol is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are messages for more than one agent, only the first

Table 5–8 LISTEN Procedure Parameters

Parameter Description

agent_list List of agents to listen for.

wait Time-out for the listen call (in seconds). By default, the call
will block forever.

agent Agent with a message available for consumption.
DBMS_AQ 5-11

REGISTER Procedure
agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

A successful return from the listen call is only an indication that there is a message
for one of the listed agents in one the specified queues. The interested agent must
still dequeue the relevant message.

Note that you cannot call listen on nonpersistent queues.

REGISTER Procedure
This procedure registers an email address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

Syntax
DBMS_AQ.REGISTER (

reg_list IN SYS.AQ$_REG_INFO_LIST,
count IN NUMBER);

Parameters

Usage Notes
This procedure is used to register for notifications. You can specify an email address
to which message notifications are sent, register a procedure to be invoked on a
notification, or register an HTTP URL to which the notification is posted. Interest in
several subscriptions can be registered at one time.

If you register for email notifications, you should set the host name and port name
for the SMTP server that will be used by the database to send email notifications. If
required, you should set the send-from email address, which is set by the database
as the sent from field. See Chapter 7, "DBMS_AQELM" for more information on
email notifications. You need a Java-enabled database to use this feature.

Table 5–9 REGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to
register for message notifications. It is a list of AQ$_REG_
INFO Type.

count Specifies the number of entries in the reg_list.
5-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
If you register for HTTP notifications, you may want to set the host name and port
number for the proxy server and a list of no-proxy domains that will be used by the
database to post HTTP notifications. See Chapter 7, "DBMS_AQELM" for more
information on HTTP notifications.

UNREGISTER Procedure
This procedure unregisters a subscription which turns off notifications.

Syntax
DBMS_AQ.UNREGISTER (

reg_list IN SYS.AQ$_REG_INFO_LIST,
count IN NUMBER);

Parameters

Usage Notes
This procedure is used to unregister a subscription which turns off notifications.
Several subscriptions can be unregistered from at one time.

POST Procedure
This procedure posts to a list of anonymous subscriptions that allows all clients who
are registered for the subscriptions to get notifications.

Syntax
DBMS_AQ.POST (

post_list IN SYS.AQ$_POST_INFO_LIST,
count IN NUMBER);

Table 5–10 UNREGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to
register for message notifications. It is a list of AQ$_REG_
INFO Type.

count Specifies the number of entries in the reg_list.
DBMS_AQ 5-13

BIND_AGENT Procedure
Parameters

Usage Notes
This procedure is used to post to anonymous subscriptions which allows all clients
who are registered for the subscriptions to get notifications. Several subscriptions
can be posted to at one time.

BIND_AGENT Procedure
This procedure creates an entry for an AQ agent in the LDAP server.

Syntax
DBMS_AQ.BIND_AGENT(

agent IN SYS.AQ$_AGENT,
certificate IN VARCHAR2 default NULL);

Parameters

Table 5–11 POST Procedure Parameters

Parameter Description

post_list Specifies the list of anonymous subscriptions to which you
want to post. It is a list of AQ$_POST_INFO Type.

count Specifies the number of entries in the post_list.

Table 5–12 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be registered in LDAP server

certificate Location (LDAP distinguished name) of the
"organizationalperson" entry in LDAP whose digital
certificate (attribute usercertificate) is to be used for
this agent

Example: "cn=OE, cn=ACME, cn=com" is a DN for a
OrganizationalPerson OE whose certificate will be used
with the specified agent.
5-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms
Usage Notes
In the LDAP server, digital certificates are stored as an attribute
(usercertificate) of the OrganizationalPerson entity. The distinguished
name for this OrganizationalPerson must be specified when binding the agent.

UNBIND_AGENT Procedure
This procedure removes the entry for an AQ agent from the LDAP server.

Syntax
DBMS_AQ.UNBIND_AGENT(

agent IN SYS.AQ$_AGENT);

Parameters

Table 5–13 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be removed from the LDAP server
DBMS_AQ 5-15

UNBIND_AGENT Procedure
5-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_AQ
6

DBMS_AQADM

The DBMS_AQADM package provides procedures to manage Advanced Queuing
configuration and administration information.

This chapter discusses the following topics:

� Enumerated Constants

� Summary of DBMS_AQADM Subprograms

See Also:

� Oracle9i Application Developer’s Guide - Advanced Queuing

� Chapter 106, "Advanced Queuing Types" for information about
the TYPEs to use with DBMS_AQADM
ADM 6-1

Enumerated Constants
Enumerated Constants
When using enumerated constants, such as INFINITE , TRANSACTIONAL, or
NORMAL_QUEUE, the symbol must be specified with the scope of the packages
defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADM. For example: DBMS_AQADM.NORMAL_QUEUE.

Summary of DBMS_AQADM Subprograms

Table 6–1 Enumerated Types in the Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_
QUEUE

See Also: For more information on the Java classes and data
structures used in both DBMS_AQ and DBMS_AQADM, see Chapter 5,
"DBMS_AQ"

Table 6–2 DBMS_AQADM Package Subprograms

Subprogram Description

CREATE_QUEUE_TABLE
Procedure on page 6-4

Creates a queue table for messages of a predefined type.

ALTER_QUEUE_TABLE
Procedure on page 6-8

Alters an existing queue table.

DROP_QUEUE_TABLE
Procedure on page 6-9

Drops an existing queue table.

CREATE_QUEUE Procedure on
page 6-9

Creates a queue in the specified queue table.

CREATE_NP_QUEUE Procedure
on page 6-11

Creates a nonpersistent RAW queue.

ALTER_QUEUE Procedure on
page 6-12

Alters existing properties of a queue.

DROP_QUEUE Procedure on
page 6-14

Drops an existing queue.
6-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
START_QUEUE Procedure on
page 6-14

Enables the specified queue for enqueuing or
dequeueing.

STOP_QUEUE Procedure on
page 6-15

Disables enqueuing or dequeuing on the specified queue.

GRANT_SYSTEM_PRIVILEGE
Procedure on page 6-16

Grants AQ system privileges to users and roles.

REVOKE_SYSTEM_PRIVILEGE
Procedure on page 6-17

Revokes AQ system privileges from users and roles.

GRANT_QUEUE_PRIVILEGE
Procedure on page 6-18

Grants privileges on a queue to users and roles.

REVOKE_QUEUE_PRIVILEGE
Procedure on page 6-19

Revokes privileges on a queue from users and roles.

ADD_SUBSCRIBER Procedure
on page 6-19

Adds a default subscriber to a queue.

ALTER_SUBSCRIBER Procedure
on page 6-21

Alters existing properties of a subscriber to a specified
queue.

REMOVE_SUBSCRIBER
Procedure on page 6-21

Removes a default subscriber from a queue.

SCHEDULE_PROPAGATION
Procedure on page 6-22

Schedules propagation of messages from a queue to a
destination identified by a specific dblink.

UNSCHEDULE_
PROPAGATION Procedure on
page 6-24

Unschedules previously scheduled propagation of
messages from a queue to a destination identified by a
specific dblink.

VERIFY_QUEUE_TYPES
Procedure on page 6-24

Verifies that the source and destination queues have
identical types.

ALTER_PROPAGATION_
SCHEDULE Procedure on
page 6-25

Alters parameters for a propagation schedule.

ENABLE_PROPAGATION_
SCHEDULE Procedure on
page 6-27

Enables a previously disabled propagation schedule.

DISABLE_PROPAGATION_
SCHEDULE Procedure on
page 6-27

Disables a propagation schedule.

Table 6–2 (Cont.) DBMS_AQADM Package Subprograms

Subprogram Description
DBMS_AQADM 6-3

CREATE_QUEUE_TABLE Procedure
CREATE_QUEUE_TABLE Procedure
This procedure creates a queue table for messages of a predefined type. The sort
keys for dequeue ordering, if any, must be defined at table creation time. The
following objects are created at this time:

� A default exception queue associated with the queue table, called aq$_
<queue_table_name>_e .

� A read-only view, which is used by AQ applications for querying queue data,
called aq$<queue_table_name> .

� An index or an index organized table (IOT) in the case of multiple consumer
queues for the queue monitor operations, called aq$_<queue_table_name>_
t .

� An index or an index organized table in the case of multiple consumer queues
for dequeue operations, called aq$_<queue_table_name>_i .

For Oracle8i-compatible queue tables, the following index-organized tables are
created:

MIGRATE_QUEUE_TABLE
Procedure on page 6-28

Upgrades an 8.0-compatible queue table to an
8.1-compatible queue table, or downgrades an
8.1-compatible queue table to an 8.0-compatible queue
table.

CREATE_AQ_AGENT
Procedure on page 6-28

Registers an agent for AQ Internet access

ALTER_AQ_AGENT Procedure
on page 6-29

Alters an agent registered for AQ Internet access

DROP_AQ_AGENT Procedure
on page 6-30

Drops an agent registered for AQ Internet access

ENABLE_DB_ACCESS
Procedure on page 6-31

Grants an AQ Internet agent the privileges of a specific
database user

DISABLE_DB_ACCESS
Procedure on page 6-32

Revokes the privileges of a database user from an AQ
Internet agent

ADD_ALIAS_TO_LDAP
Procedure on page 6-32

Creates an alias for a queue, agent, or a JMS
ConnectionFactory in LDAP.

DEL_ALIAS_FROM_LDAP
Procedure on page 6-33

Drops an alias for a queue, agent, or JMS
ConnectionFactory in LDAP.

Table 6–2 (Cont.) DBMS_AQADM Package Subprograms

Subprogram Description
6-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
� A table called aq$_<queue_table_name>_s . This table stores information
about the subscribers.

� A table called aq$_<queue_table_name>_r . This table stores information
about rules on subscriptions.

� An index-organized table called aq$_<queue_table_name>_h . This table
stores the dequeue history data.

Syntax
DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table IN VARCHAR2,
queue_payload_type IN VARCHAR2,
storage_clause IN VARCHAR2 DEFAULT NULL,
sort_list IN VARCHAR2 DEFAULT NULL,
multiple_consumers IN BOOLEAN DEFAULT FALSE,
message_grouping IN BINARY_INTEGER DEFAULT NONE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
primary_instance IN BINARY_INTEGER DEFAULT 0,
secondary_instance IN BINARY_INTEGER DEFAULT 0,
compatible IN VARCHAR2 DEFAULT NULL);

Parameters

Table 6–3 CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be created.

queue_payload_type Type of the user data stored. See "Type Name" Chapter 5,
"DBMS_AQ" for valid values for this parameter.
DBMS_AQADM 6-5

CREATE_QUEUE_TABLE Procedure
storage_clause Storage parameter.

The storage parameter is included in the CREATE TABLE
statement when the queue table is created. The storage
parameter can be made up of any combinations of the following
parameters: PCTFREE, PCTUSED, INITRANS , MAXTRANS,
TABLEPSACE, LOB, and a table storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace. If a
tablespace is specified here, then the queue table and all its
related objects are created in the tablespace specified in the
storage clause. See Oracle9i SQL Reference for the usage of these
parameters.

sort_list The columns to be used as the sort key in ascending order.

Sort_list has the following format:

’<sort_column_1>,<sort_column_2>’

The allowed column names are priority and enq_time . If
both columns are specified, then <sort_column_1 > defines the
most significant order.

After a queue table is created with a specific ordering
mechanism, all queues in the queue table inherit the same
defaults. The order of a queue table cannot be altered after the
queue table has been created.

If no sort list is specified, then all the queues in this queue table
are sorted by the enqueue time in ascending order. This order is
equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to
choose a message to dequeue by specifying its msgid or
correlation . msgid , correlation , and sequence_
deviation take precedence over the default dequeueing order,
if they are specified.

multiple_consumers FALSE : Queues created in the table can only have one consumer
for each message. This is the default.

TRUE: Queues created in the table can have multiple consumers
for each message.

Table 6–3 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description
6-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Usage Notes
CLOB, BLOB, and BFILE are valid attributes for AQ object type payloads. However,
only CLOB and BLOB can be propagated using AQ propagation in Oracle8i release
8.1.5 or later. See the Oracle9i Application Developer’s Guide - Advanced Queuing for
more information.

message_grouping Message grouping behavior for queues created in the table.

NONE: Each message is treated individually.

TRANSACTIONAL: Messages enqueued as part of one transaction
are considered part of the same group and can be dequeued as a
group of related messages.

comment User-specified description of the queue table. This user comment
is added to the queue catalog.

auto_commit TRUE : causes the current transaction, if any, to commit before the
CREATE_QUEUE_TABLE operation is carried out. The CREATE_
QUEUE_TABLE operation becomes persistent when the call
returns. This is the default.

FALSE: The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Note: This parameter has been deprecated.

primary_instance The primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
are done in this instance.

The default value for primary instance is 0, which means queue
monitor scheduling and propagation will be done in any
available instance.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available. The default value is 0, which
means that the queue table will fail over to any available
instance.

compatible The lowest database version with which the queue is
compatible. Currently the possible values are either ’8.0’ or ’8.1’.

� If the database is in 8.1 or higher compatible mode, the
default value is ’8.1’

� If the database is in 8.0 compatible mode, the default value
is ’8.0’

Table 6–3 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description
DBMS_AQADM 6-7

ALTER_QUEUE_TABLE Procedure
The default value of the compatible parameter depends on the database
compatibility mode in the init.ora.

� If the database is in 8.1 or higher compatible mode, the default value is 8.1

� If the database is in 8.0 compatible mode, the default value is 8.0

You can specify and modify the primary_instance and secondary_instance
only in 8.1-compatible mode.

You cannot specify a secondary instance unless there is a primary instance.

ALTER_QUEUE_TABLE Procedure
This procedure alters the existing properties of a queue table.

Syntax
DBMS_AQADM.ALTER_QUEUE_TABLE (

queue_table IN VARCHAR2,
comment IN VARCHAR2 DEFAULT NULL,
primary_instance IN BINARY_INTEGER DEFAULT NULL,
secondary_instance IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 6–4 ALTER_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be created.

comment Modifies the user-specified description of the queue table. This
user comment is added to the queue catalog. The default value is
NULL which means that the value will not be changed.

primary_instance This is the primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
will be done in this instance.

The default value is NULL, which means that the current value
will not be changed.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available.

The default value is NULL, which means that the current value
will not be changed.
6-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
DROP_QUEUE_TABLE Procedure
This procedure drops an existing queue table. All the queues in a queue table must
be stopped and dropped before the queue table can be dropped. You must do this
explicitly unless the force option is used, in which case this is done automatically.

Syntax
DBMS_AQADM.DROP_QUEUE_TABLE (

queue_table IN VARCHAR2,
force IN BOOLEAN DEFAULT FALSE,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

CREATE_QUEUE Procedure
This procedure creates a queue in the specified queue table.

Syntax
DBMS_AQADM.CREATE_QUEUE (

queue_name IN VARCHAR2,
queue_table IN VARCHAR2,
queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
max_retries IN NUMBER DEFAULT NULL,
retry_delay IN NUMBER DEFAULT 0,

Table 6–5 DROP_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Name of a queue table to be dropped.

force FALSE : The operation does not succeed if there are any
queues in the table. This is the default.

TRUE: All queues in the table are stopped and dropped
automatically.

auto_commit TRUE : Causes the current transaction, if any, to commit
before the DROP_QUEUE_TABLE operation is carried out.
The DROP_QUEUE_TABLE operation becomes persistent
when the call returns. This is the default.

FALSE: The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.
DBMS_AQADM 6-9

CREATE_QUEUE Procedure
retention_time IN NUMBER DEFAULT 0,
dependency_tracking IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 6–6 CREATE_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be created. The name must be
unique within a schema and must follow object name guidelines
in Oracle9i SQL Reference with regard to reserved characters.

queue_table Name of the queue table that will contain the queue.

queue_type Specifies whether the queue being created is an exception queue
or a normal queue.

NORMAL_QUEUE: The queue is a normal queue. This is the
default.

EXCEPTION_QUEUE: It is an exception queue. Only the dequeue
operation is allowed on the exception queue.

max_retries Limits the number of times a dequeue with the REMOVE mode
can be attempted on a message. The maximum value of max_
retries is 2**31 -1.

The count is incremented when the application issues a rollback
after executing the dequeue. The message is moved to the
exception queue when it is reaches its max_retries .

Note that max_retries is supported for all single consumer
queues and 8.1-compatible multiconsumer queues but not for
8.0-compatible multiconsumer queues.

retry_delay Delay time, in seconds, before this message is scheduled for
processing again after an application rollback.

The default is 0, which means the message can be retried as soon
as possible. This parameter has no effect if max_retries is set
to 0. Note that rety_delay is supported for single consumer
queues and 8.1-compatible multiconsumer queues but not for
8.0-compatible multiconsumer queues.
6-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Usage Notes
All queue names must be unique within a schema. After a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue
is created with both enqueue and dequeue disabled.

CREATE_NP_QUEUE Procedure
Create a nonpersistent RAW queue.

Syntax
DBMS_AQADM.CREATE_NP_QUEUE (

queue_name IN VARCHAR2,
multiple_consumers IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULL);

retention_time Number of seconds for which a message is retained in the queue
table after being dequeued from the queue.

INFINITE : Message is retained forever.

NUMBER: Number of seconds for which to retain the messages.
The default is 0, no retention.

dependency_
tracking

Reserved for future use.

FALSE: This is the default.

TRUE: Not permitted in this release.

comment User-specified description of the queue. This user comment is
added to the queue catalog.

auto_commit TRUE : Causes the current transaction, if any, to commit before
the CREATE_QUEUE operation is carried out. The CREATE_
QUEUE operation becomes persistent when the call returns. This
is the default.

FALSE: The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Table 6–6 (Cont.) CREATE_QUEUE Procedure Parameters

Parameter Description
DBMS_AQADM 6-11

ALTER_QUEUE Procedure
Parameters

Usage Notes
The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a 8.1-compatible
system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in the same schema as
that specified by the queue name.

If the queue name does not specify a schema name, the queue is created in the login
user’s schema. After a queue is created with CREATE_NP_QUEUE, it can be enabled
by calling START_QUEUE. By default, the queue is created with both enqueue and
dequeue disabled.

You cannot dequeue from a nonpersistent queue. The only way to retrieve a
message from a nonpersistent queue is by using the OCI notification mechanism.
You cannot invoke the listen call on a nonpersistent queue.

ALTER_QUEUE Procedure
This procedure alters existing properties of a queue. The parameters max_retries ,
retention_time , and retry_delay are not supported for nonpersistent queues.

Syntax
DBMS_AQADM.ALTER_QUEUE (

queue_name IN VARCHAR2,

Table 6–7 CREATE_NP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the nonpersistent queue that is to be created. The
name must be unique within a schema and must follow
object name guidelines in Oracle9i SQL Reference.

multiple_consumers FALSE : Queues created in the table can only have one
consumer for each message. This is the default.

TRUE: Queues created in the table can have multiple
consumers for each message.

Note that this parameter is distinguished at the queue level,
because a nonpersistent queue does not inherit this
characteristic from any user-created queue table.

comment User-specified description of the queue. This user comment
is added to the queue catalog.
6-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
max_retries IN NUMBER DEFAULT NULL,
retry_delay IN NUMBER DEFAULT NULL,
retention_time IN NUMBER DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 6–8 ALTER_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be altered.

max_retries Limits the number of times a dequeue with REMOVE mode
can be attempted on a message. The maximum value of
max_retries is 2**31 -1.

The count is incremented when the application issues a
rollback after executing the dequeue. If the time at which
one of the retries has passed the expiration time, then no
further retries are attempted. Default is NULL, which means
that the value will not be altered.

Note that max_retries is supported for all single
consumer queues and 8.1-compatible multiconsumer
queues but not for 8.0-compatible multiconsumer queues.

retry_delay Delay time in seconds before this message is scheduled for
processing again after an application rollback. The default is
NULL, which means that the value will not be altered.

Note that retry_delay is supported for single consumer
queues and 8.1-compatible multiconsumer queues but not
for 8.0-compatible multiconsumer queues.

retention_time Retention time in seconds for which a message is retained in
the queue table after being dequeued. The default is NULL,
which means that the value will not be altered.

auto_commit TRUE : Causes the current transaction, if any, to commit
before the ALTER_QUEUEoperation is carried out. The
ALTER_QUEUEoperation become persistent when the call
returns. This is the default.

FALSE: The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.
DBMS_AQADM 6-13

DROP_QUEUE Procedure
DROP_QUEUE Procedure
This procedure drops an existing queue. DROP_QUEUE is not allowed unless STOP_
QUEUE has been called to disable the queue for both enqueuing and dequeuing. All
the queue data is deleted as part of the drop operation.

Syntax
DBMS_AQADM.DROP_QUEUE (

queue_name IN VARCHAR2,
auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

START_QUEUE Procedure
This procedure enables the specified queue for enqueuing or dequeueing.

After creating a queue, the administrator must use START_QUEUE to enable the
queue. The default is to enable it for both ENQUEUE and DEQUEUE. Only dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

comment User-specified description of the queue. This user comment
is added to the queue catalog. The default value is NULL,
which means that the value will not be changed.

Table 6–9 DROP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue that is to be dropped.

auto_commit TRUE : Causes the current transaction, if any, to commit before
the DROP_QUEUE operation is carried out. The DROP_QUEUE
operation becomes persistent when the call returns. This is the
default.

FALSE: The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Table 6–8 (Cont.) ALTER_QUEUE Procedure Parameters

Parameter Description
6-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Syntax
DBMS_AQADM.START_QUEUE (

queue_name IN VARCHAR2,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE);

Parameters

STOP_QUEUE Procedure
This procedure disables enqueuing or dequeuing on the specified queue.

By default, this call disables both ENQUEUEs or DEQUEUEs. A queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

Syntax
DBMS_AQADM.STOP_QUEUE (

queue_name IN VARCHAR2,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE,
wait IN BOOLEAN DEFAULT TRUE);

Table 6–10 START_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue to be enabled.

enqueue Specifies whether ENQUEUE should be enabled on this queue.

TRUE: Enable ENQUEUE. This is the default.

FALSE: Do not alter the current setting.

dequeue Specifies whether DEQUEUE should be enabled on this queue.

TRUE: Enable DEQUEUE. This is the default.

FALSE: Do not alter the current setting.
DBMS_AQADM 6-15

GRANT_SYSTEM_PRIVILEGE Procedure
Parameters

GRANT_SYSTEM_PRIVILEGE Procedure
This procedure grants AQ system privileges to users and roles. The privileges are
ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. Initially, only SYS and SYSTEM
can use this procedure successfully.

Syntax
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (

privilege IN VARCHAR2,
grantee IN VARCHAR2,
admin_option IN BOOLEAN := FALSE);

Table 6–11 STOP_QUEUE Procedure Parameters

Parameter Description

queue_name Name of the queue to be disabled.

enqueue Specifies whether ENQUEUE should be disabled on this queue.

TRUE: Disable ENQUEUE. This is the default.

FALSE: Do not alter the current setting.

dequeue Specifies whether DEQUEUE should be disabled on this queue.

TRUE: Disable DEQUEUE. This is the default.

FALSE: Do not alter the current setting.

wait Specifies whether to wait for the completion of outstanding
transactions.

TRUE: Wait if there are any outstanding transactions. In this
state no new transactions are allowed to enqueue to or
dequeue from this queue.

FALSE: Return immediately either with a success or an error.
6-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Parameters

REVOKE_SYSTEM_PRIVILEGE Procedure
This procedure revokes AQ system privileges from users and roles. The privileges
are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN option for a
system privilege cannot be selectively revoked.

Syntax
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (

privilege IN VARCHAR2,
grantee IN VARCHAR2);

Table 6–12 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ system privilege to grant. The options are ENQUEUE_ANY,
DEQUEUE_ANY, and MANAGE_ANY.

The operations allowed for each system privilege are specified as
follows:

ENQUEUE_ANY: users granted with this privilege are allowed to
enqueue messages to any queues in the database.

DEQUEUE_ANY: users granted with this privilege are allowed to
dequeue messages from any queues in the database.

MANAGE_ANY: users granted with this privilege are allowed to run
DBMS_AQADM calls on any schemas in the database.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

admin_option Specifies if the system privilege is granted with the ADMIN option
or not.

If the privilege is granted with the ADMIN option, then the grantee
is allowed to use this procedure to grant the system privilege to
other users or roles. The default is FALSE.
DBMS_AQADM 6-17

GRANT_QUEUE_PRIVILEGE Procedure
Parameters

GRANT_QUEUE_PRIVILEGE Procedure
This procedure grants privileges on a queue to users and roles. The privileges are
ENQUEUE or DEQUEUE. Initially, only the queue table owner can use this procedure
to grant privileges on the queues.

Syntax
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (

privilege IN VARCHAR2,
queue_name IN VARCHAR2,
grantee IN VARCHAR2,
grant_option IN BOOLEAN := FALSE);

Parameters

Table 6–13 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ system privilege to revoke. The options are ENQUEUE_
ANY, DEQUEUE_ANY, and MANAGE_ANY.

The ADMIN option for a system privilege cannot be selectively
revoked.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

Table 6–14 GRANT_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ queue privilege to grant. The options are ENQUEUE,
DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

queue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

grant_option Specifies if the access privilege is granted with the GRANT option or
not.

If the privilege is granted with the GRANT option, then the grantee
is allowed to use this procedure to grant the access privilege to
other users or roles, regardless of the ownership of the queue table.
The default is FALSE.
6-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
REVOKE_QUEUE_PRIVILEGE Procedure
This procedure revokes privileges on a queue from users and roles. The privileges
are ENQUEUE or DEQUEUE. To revoke a privilege, the revoker must be the original
grantor of the privilege. The privileges propagated through the GRANT option are
revoked if the grantor’s privileges are revoked.

Syntax
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (

privilege IN VARCHAR2,
queue_name IN VARCHAR2,
grantee IN VARCHAR2);

Parameters

ADD_SUBSCRIBER Procedure
This procedure adds a default subscriber to a queue.

Syntax
DBMS_AQADM.ADD_SUBSCRIBER (

queue_name IN VARCHAR2,
subscriber IN sys.aq$_agent,
rule IN VARCHAR2 DEFAULT NULL,
transformation IN VARCHAR2 DEFAULT NULL);

Table 6–15 REVOKE_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ queue privilege to revoke. The options are ENQUEUE,
DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

queue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.
If the privilege has been propagated by the grantee through the
GRANT option, then the propagated privilege is also revoked.
DBMS_AQADM 6-19

ADD_SUBSCRIBER Procedure
Parameters

Usage Notes
A program can enqueue messages to a specific list of recipients or to the default list
of subscribers. This operation only succeeds on queues that allow multiple
consumers. This operation takes effect immediately, and the containing transaction
is committed. Enqueue requests that are executed after the completion of this call
will reflect the new behavior.

Any string within the rule must be quoted:

rule => ’PRIORITY <= 3 AND CORRID = ’’FROM JAPAN’’’

Note that these are all single quotation marks.

Table 6–16 ADD_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent on whose behalf the subscription is being defined.

rule A conditional expression based on the message properties, the
message data properties and PL/SQL functions.

 A rule is specified as a Boolean expression using syntax similar
to the WHERE clause of a SQL query. This Boolean expression can
include conditions on message properties, user data properties
(object payloads only), and PL/SQL or SQL functions (as
specified in the where clause of a SQL query). Currently
supported message properties are priority and corrid .

To specify rules on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each
attribute with tab .user_data as a qualifier to indicate the
specific column of the queue table that stores the payload. The
rule parameter cannot exceed 4000 characters.

transformation Specifies a transformation that will be applied when this
subscriber dequeues the message. The source type of the
transformation must match the type of the queue.

If the subscriber is remote, then the transformation is applied
before propagation to the remote queue
6-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
ALTER_SUBSCRIBER Procedure
This procedure alters existing properties of a subscriber to a specified queue. Only
the rule can be altered.

Syntax
DBMS_AQADM.ALTER_SUBSCRIBER (

queue_name IN VARCHAR2,
subscriber IN sys.aq$_agent,
rule IN VARCHAR2
transformation IN VARCHAR2);

Parameters

Usage Notes
This procedure alters both the rule and the transformation for the subscriber. If you
want to retain the existing value for either of them, you must specify its old value.
The current values for rule and transformation for a subscriber can be obtained
from the <schema>.AQ$<queue_table>_R and <schema>.AQ$<queue_
table>_S views.

Table 6–17 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent on whose behalf the subscription is being altered. See
"AQ$_AGENT Type" on page 106-2.

rule A conditional expression based on the message properties, the
message data properties and PL/SQL functions.

Note: The rule parameter cannot exceed 4000 characters. To
eliminate the rule, set the rule parameter to NULL.

transformation Specifies a transformation that will be applied when this
subscriber dequeues the message. The source type of the
transformation must match the type of the queue.

If the subscriber is remote, then the transformation is applied
before propagation to the remote queue
DBMS_AQADM 6-21

REMOVE_SUBSCRIBER Procedure
REMOVE_SUBSCRIBER Procedure
This procedure removes a default subscriber from a queue. This operation takes
effect immediately, and the containing transaction is committed. All references to
the subscriber in existing messages are removed as part of the operation.

Syntax
DBMS_AQADM.REMOVE_SUBSCRIBER (

queue_name IN VARCHAR2,
subscriber IN sys.aq$_agent);

Parameters

SCHEDULE_PROPAGATION Procedure
This procedure schedules propagation of messages from a queue to a destination
identified by a specific dblink.

Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated
to all of them at the same time.

Syntax
DBMS_AQADM.SCHEDULE_PROPAGATION (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

Table 6–18 REMOVE_SUBSCRIBER Procedure Parameters

Parameter Description

queue_name Name of the queue.

subscriber Agent who is being removed. See "AQ$_AGENT Type" on
page 106-2.
6-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Parameters

Table 6–19 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be
propagated, including the schema name.

If the schema name is not specified, then it defaults to the
schema name of the administrative user.

destination Destination dblink.

Messages in the source queue for recipients at this
destination are propagated. If it is NULL, then the
destination is the local database and messages are
propagated to other queues in the local database. The length
of this field is currently limited to 128 bytes, and if the name
is not fully qualified, then the default domain name is used.

start_time Initial start time for the propagation window for messages
from the source queue to the destination.

duration Duration of the propagation window in seconds.

A NULL value means the propagation window is forever or
until the propagation is unscheduled.

next_time Date function to compute the start of the next propagation
window from the end of the current window.

If this value is NULL, then propagation is stopped at the end
of the current window. For example, to start the window at
the same time every day, next_time should be specified as
’SYSDATE + 1 - duration/86400 ’.

latency Maximum wait, in seconds, in the propagation window for
a message to be propagated after it is enqueued.

For example: If the latency is 60 seconds, then during the
propagation window; if there are no messages to be
propagated, then messages from that queue for the
destination are not propagated for at least 60 more seconds.

It is at least 60 seconds before the queue is checked again for
messages to be propagated for the specified destination. If
the latency is 600, then the queue is not checked for 10
minutes, and if the latency is 0, then a job queue process
will be waiting for messages to be enqueued for the
destination. As soon as a message is enqueued, it is
propagated.
DBMS_AQADM 6-23

UNSCHEDULE_PROPAGATION Procedure
UNSCHEDULE_PROPAGATION Procedure
This procedure unschedules previously scheduled propagation of messages from a
queue to a destination identified by a specific dblink .

Syntax
DBMS_AQADM.UNSCHEDULE_PROPAGATION (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL);

Parameters

VERIFY_QUEUE_TYPES Procedure
This procedure verifies that the source and destination queues have identical types.
The result of the verification is stored in the table sys .aq$_message_types ,
overwriting all previous output of this command.

Syntax
DBMS_AQADM.VERIFY_QUEUE_TYPES (

src_queue_name IN VARCHAR2,
dest_queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
rc OUT BINARY_INTEGER);

Table 6–20 UNSCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be
propagated, including the schema name.

If the schema name is not specified, then it defaults to the
schema name of the administrative user.

destination Destination dblink.

Messages in the source queue for recipients at this
destination are propagated. If it is NULL, then the
destination is the local database and messages are
propagated to other queues in the local database. The
length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain
name is used.
6-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Parameters

ALTER_PROPAGATION_SCHEDULE Procedure
This procedure alters parameters for a propagation schedule.

Syntax
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

Table 6–21 VERIFY_QUEUE_TYPES Procedure Parameters

Parameter Description

src_queue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

dest_queue_name Name of the destination queue where messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

rc Return code for the result of the procedure.

If there is no error, and if the source and destination queue types
match, then the result is 1. If they do not match, then the result is 0. If
an Oracle error is encountered, then it is returned in rc .
DBMS_AQADM 6-25

ALTER_PROPAGATION_SCHEDULE Procedure
Parameters

Table 6–22 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

duration Duration of the propagation window in seconds.

A NULL value means the propagation window is forever or until the
propagation is unscheduled.

next_time Date function to compute the start of the next propagation window
from the end of the current window.

If this value is NULL, then propagation is stopped at the end of the
current window. For example, to start the window at the same time
every day, next_time should be specified as ’SYSDATE + 1 -
duration/86400 ’.

latency Maximum wait, in seconds, in the propagation window for a
message to be propagated after it is enqueued.

The default value is 60. Caution: if latency is not specified for this
call, then latency will over-write any existing value with the default
value.

For example, if the latency is 60 seconds, then during the
propagation window, if there are no messages to be propagated, then
messages from that queue for the destination will not be propagated
for at least 60 more seconds. It will be at least 60 seconds before the
queue will be checked again for messages to be propagated for the
specified destination. If the latency is 600, then the queue will not be
checked for 10 minutes and if the latency is 0, then a job queue
process will be waiting for messages to be enqueued for the
destination and as soon as a message is enqueued it will be
propagated.
6-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
ENABLE_PROPAGATION_SCHEDULE Procedure
This procedure enables a previously disabled propagation schedule.

Syntax
DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL);

Parameters

DISABLE_PROPAGATION_SCHEDULE Procedure
This procedure disables a propagation schedule.

Syntax
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL);

Table 6–23 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.
DBMS_AQADM 6-27

MIGRATE_QUEUE_TABLE Procedure
Parameters

MIGRATE_QUEUE_TABLE Procedure
This procedure upgrades an 8.0-compatible queue table to an 8.1-compatible queue
table, or downgrades an 8.1-compatible queue table to an 8.0-compatible queue
table.

Syntax
DBMS_AQADM.MIGRATE_QUEUE_TABLE (

queue_table IN VARCHAR2,
compatible IN VARCHAR2);

Parameters

CREATE_AQ_AGENT Procedure
This procedure registers an agent for AQ Internet access using HTTP/SMTP
protocols. It is also used to create an AQ agent to access secure queues.

Table 6–24 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

queue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

Table 6–25 MIGRATE_QUEUE_TABLE Procedure Parameters

Parameter Description

queue_table Specifies name of the queue table to be migrated.

compatible Set this to ’8.1’ to upgrade an 8.0-compatible queue table, or set
this to ’8.0’ to downgrade an 8.1-compatible queue table.
6-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Syntax
DBMS_AQADM.CREATE_AQ_AGENT (

agent_name IN VARCHAR2,
certificate_location IN VARCHAR2 DEFAULT NULL,
enable_http IN BOOLEAN DEFAULT FALSE,
enable_smtp IN BOOLEAN DEFAULT FALSE,
enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

Usage Notes
The SYS.AQ$INTERNET_USERS view has a list of all AQ Internet agents.

ALTER_AQ_AGENT Procedure
This procedure alters an agent registered for AQ Internet access. It is also used to
alter an AQ agent that accesses secure queues.

See Also: Oracle9i Streams for information about secure queues

Table 6–26 CREATE_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

certification_
location

Agent’s certificate location in LDAP (default= NULL).

If the agent is allowed to access AQ through SMTP, then its
certificate must be registered in LDAP.

For access through HTTP, the certificate location is not required

enable_http TRUE: the agent can access AQ through HTTP

FALSE: the agent cannot access AQ through HTTP

enable_smtp TRUE: the agent can access AQ through SMTP (e-mail)

FALSE: the agent cannot access AQ through SMTP

enable_anyp TRUE: the agent can access AQ through any protocol (HTTP or
SMTP)

See Also: Oracle9i Streams for information about secure queues
DBMS_AQADM 6-29

DROP_AQ_AGENT Procedure
Syntax
DBMS_AQADM.ALTER_AQ_AGENT (

agent_name IN VARCHAR2,
certificate_location IN VARCHAR2 DEFAULT NULL,
enable_http IN BOOLEAN DEFAULT FALSE,
enable_smtp IN BOOLEAN DEFAULT FALSE,
enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

DROP_AQ_AGENT Procedure
This procedure drops an agent that was previously registered for AQ Internet
access.

Syntax
DBMS_AQADM.DROP_AQ_AGENT (

agent_name IN VARCHAR2)

Table 6–27 ALTER_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

certification_
location

Agent’s certificate location in LDAP (default= NULL).

If the agent is allowed to access AQ through SMTP, then its
certificate must be registered in LDAP.

For access through HTTP, the certificate location is not required

enable_http TRUE: the agent can access AQ through HTTP

FALSE: the agent cannot access AQ through HTTP

enable_smtp TRUE: the agent can access AQ through SMTP (e-mail)

FALSE: the agent cannot access AQ through SMTP

enable_anyp TRUE: the agent can access AQ through any protocol (HTTP or
SMTP)
6-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Parameters

ENABLE_DB_ACCESS Procedure
This procedure grants an AQ Internet agent the privileges of a specific database
user. The AQ Internet agent should have been previously created using the
CREATE_AQ_AGENT procedure.

For secure queues, the sender and receiver agent of the message must be mapped to
the database user performing the enqueue or dequeue operation.

Syntax
DBMS_AQADM.ENABLE_DB_ACCESS (

agent_name IN VARCHAR2,
db_username IN VARCHAR2)

Parameters

Usage Notes
The SYS.AQ$INTERNET_USERS view has a list of all AQ Internet agents and the
names of the database users whose privileges are granted to them.

Table 6–28 DROP_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

See Also: Oracle9i Streams for information about secure queues

Table 6–29 ENABLE_DB_ACCESS Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

db_username Specified the database user whose privileges are to be granted
to the AQ Internet agent
DBMS_AQADM 6-31

DISABLE_DB_ACCESS Procedure
DISABLE_DB_ACCESS Procedure
This procedure revokes the privileges of a specific database user from an AQ
Internet agent. The AQ Internet agent should have been previously granted those
privileges using the ENABLE_DB_ACCESS procedure.

Syntax
DBMS_AQADM.DISABLE_DB_ACCESS (

agent_name IN VARCHAR2,
db_username IN VARCHAR2)

Parameters

ADD_ALIAS_TO_LDAP Procedure
This procedure creates an alias for a queue, agent, or a JMS ConnectionFactory in
LDAP. The alias will be placed directly under the database server’s distinguished
name in LDAP hierarchy.

Syntax
DBMS_AQADM.ADD_ALIAS_TO_LDAP(

alias IN VARCHAR2,
obj_location IN VARCHAR2);

Parameters

Table 6–30 DISABLE_DB_ACCESS Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

db_username Specified the database user whose privileges are to be revoked
from the AQ Internet agent

Table 6–31 ADD_ALIAS_TO_LDAP Procedure Parameters

Parameter Description

alias the name of the alias

Example:’west_shipping’

obj_location The distinguished name of the object (queue, agent or
connection factory) to which alias refers
6-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms
Usage Notes
This method can be used to create aliases for Queues, Agents and JMS
ConnectionFactory objects. These object must exist before the alias is created. These
aliases can be used for JNDI lookup in JMS and AQ Internet access.

DEL_ALIAS_FROM_LDAP Procedure
This procedure drops an alias for a queue, agent, or JMS ConnectionFactory in
LDAP.

Syntax
DBMS_AQ.DEL_ALIAS_FROM_LDAP(

alias IN VARCHAR2);

Parameters

Table 6–32 DEL_ALIAS_FROM_LDAP Procedure Parameters

Parameter Description

alias The alias to be removed
DBMS_AQADM 6-33

DEL_ALIAS_FROM_LDAP Procedure
6-34 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_
7

DBMS_AQELM

The DBMS_AQELM package provides procedures to manage the configuration of
Advanced Queuing asynchronous notification by e-mail and HTTP.

This chapter discusses the following topics:

� Summary of DBMS_AQELM Subprograms

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for detailed information about DBMS_AQELM.
AQELM 7-1

Summary of DBMS_AQELM Subprograms
Summary of DBMS_AQELM Subprograms

SET_MAILHOST Procedure
This procedure sets the host name for the SMTP server. As part of the configuration
for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE
permissions on the DBMS_AQELM package needs to set the host name before
registering for e-mail notifications. The database will use this SMTP server host
name to send out e-mail notifications.

Syntax
DBMS_AQELM.SET_MAILHOST (

mailhost IN VARCHAR2);

Table 7–1 DBMS_AQELM Subprograms

Subprogram Description

SET_MAILHOST
Procedure on page 7-2

Sets the host name for SMTP server.

GET_MAILHOST
Procedure on page 7-3

Gets the host name for SMTP server.

SET_MAILPORT
Procedure on page 7-3

Sets the port number for SMTP server.

GET_MAILPORT
Procedure on page 7-4

Gets the port number for SMTP server.

SET_SENDFROM
Procedure on page 7-4

Sets the sent-from e-mail address.

GET_SENDFROM
Procedure on page 7-5

Gets the sent-from e-mail address.

SET_PROXY Procedure on
page 7-5

Sets the proxy server name to be used for requests of HTTP
protocol, excluding requests for hosts that belong to the
domain specified in no_proxy_domains .

GET_PROXY Procedure
on page 7-6

Gets the proxy server name and no_proxy_domains set by
DBMS_AQELM.SET_PROXY for HTTP notifications.
7-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQELM Subprograms
Parameters

GET_MAILHOST Procedure
This procedure gets the host name set by DBMS_AQELM.SET_MAILHOSTfor the
SMTP server.

Syntax
DBMS_AQELM.GET_MAILHOST (

mailhost OUT VARCHAR2);

Parameters

SET_MAILPORT Procedure
This procedure sets the port number for the SMTP server. As part of the
configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or
with EXECUTE permissions on DBMS_AQELM package needs to set the port number
before registering for e-mail notifications. The database will use this SMTP server
port number to send out e-mail notifications. If not set, the SMTP mailport defaults
to 25.

Syntax
DBMS_AQELM.SET_MAILPORT (

mailport IN NUMBER);

Parameters
Table 7–4 shows the parameters for the SET_MAILPORT procedure.

Table 7–2 SET_MAILHOST Procedure Parameters

Parameter Description

mailhost The SMTP server host name.

Table 7–3 GET_MAILHOST Procedure Parameters

Parameter Description

mailhost The SMTP server host name.
DBMS_AQELM 7-3

GET_MAILPORT Procedure
GET_MAILPORT Procedure
This procedure gets the port number for the SMTP server set by the DBMS_AQELM.
SET_MAILPORT procedure or the default value, which is 25.

Syntax
DBMS_AQELM.GET_MAILPORT (

mailport OUT NUMBER);

Parameters

SET_SENDFROM Procedure
This procedure sets the sent-from e-mail address. As part of the configuration for
e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE
permissions on the DBMS_AQELM package should set the sent-from address before
registering for e-mail notifications This e-mail address is used in the sent-from field
in all the e-mail notifications sent out by the database to the registered e-mail
addresses.

Syntax
DBMS_AQELM.SET_SENDFROM (

sendfrom IN VARCHAR2);

Parameters

Table 7–4 SET_MAILPORT Procedure Parameters

Parameter Description

mailport The SMTP server port number.

Table 7–5 GET_MAILPORT Procedure Parameters

Parameter Description

mailport The SMTP server port number.

Table 7–6 SET_SENDFROM Procedure Parameters

Parameter Description

sendfrom The sent-from e-mail address.
7-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQELM Subprograms
GET_SENDFROM Procedure
This procedure gets the sent-from e-mail address set by DBMS_AQELM.SET_
SENDFROM procedure.

Syntax
DBMS_AQELM.GET_SENDFROM (

sendfrom OUT VARCHAR2);

Parameters

SET_PROXY Procedure
This procedure sets the proxy server name to be used for requests of HTTP protocol,
excluding requests for hosts that belong to the domain specified in no_proxy_
domains . The proxy server name can include an optional TCP/IP port number at
which the proxy server listens. If the port is not specified for the proxy server, port
80 is assumed. no_proxy_domains is a list of domains or hosts for which HTTP
requests should be sent directly to the destination HTTP server instead of going
through a proxy server. Optionally, a port number can be specified for each domain
or host. If the port number is specified, the no-proxy restriction is only applied to
the request at that port of the particular domain or host. When no_proxy_
domains is NULL and the proxy server is set, all requests go through the proxy
server. When the proxy server is not set, http_send sends the requests to the
target Web servers directly.

As part of the configuration for HTTP notifications, a user with AQ_
ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM
package can choose to set the proxy server name and a list of no_proxy_domains ,
if required, before registering for HTTP notifications. The database will use this
information to post HTTP notifications.

Syntax
DBMS_AQELM.SET_PROXY (

proxy IN VARCHAR2,
no_proxy_domains IN VARCHAR2 DEFAULT NULL);

Table 7–7 GET_SENDFROM Procedure Parameters

Parameter Procedure

sendfrom The sent-from e-mail address.
DBMS_AQELM 7-5

GET_PROXY Procedure
Parameters

GET_PROXY Procedure
This procedure gets the proxy server name and no_proxy_domains set by DBMS_
AQELM.SET_PROXY for HTTP notifications.

Syntax
DBMS_AQELM.GET_PROXY (

proxy OUT VARCHAR2,
no_proxy_domains OUT VARCHAR2);

Parameters

Table 7–8 SET_PROXY Procedure Parameters

Parameter Procedure

proxy The proxy server host and port number. The syntax is
"[http://]host[:port][/]" . For example,
"www-proxy.my-company.com:80" .

no_proxy_domains The list of no-proxy domains or hosts. The syntax is
a list of host or domains, with optional port numbers separated
by a comma, a semi-colon, or a space. For example,
"corp.my-company.com, eng.my-company.com:80"

Table 7–9 GET_PROXY Procedure Parameters

Parameter Procedure

proxy The proxy server host and port number.

no_proxy_domains The list of no-proxy domains or hosts.
7-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_CAPTUR
8

DBMS_CAPTURE_ADM

The DBMS_CAPTURE_ADM package provides administrative procedures for starting,
stopping, and configuring a capture process. The source of the captured changes is
the redo logs, and the repository for the captured changes is a queue (created using
the DBMS_AQADM package or the DBMS_STEAMS_ADM.SET_UP_QUEUE procedure).

This chapter contains the following topic:

� Summary of DBMS_CAPTURE_ADM Subprograms

See Also: Oracle9i Streams for more information about the capture
process
E_ADM 8-1

Summary of DBMS_CAPTURE_ADM Subprograms
Summary of DBMS_CAPTURE_ADM Subprograms

Table 8–1 DBMS_CAPTURE_ADM Subprograms

Subprogram Description

"ABORT_GLOBAL_INSTANTIATION
Procedure" on page 8-3

Reverses the effects of running the
PREPARE_GLOBAL_INSTANTIATION
procedure

"ABORT_SCHEMA_INSTANTIATION
Procedure" on page 8-3

Reverses the effects of running the
PREPARE_SCHEMA_INSTANTIATION
procedure

"ABORT_TABLE_INSTANTIATION
Procedure" on page 8-4

Reverses the effects of running the
PREPARE_TABLE_INSTANTIATION procedure

"ALTER_CAPTURE Procedure" on
page 8-4

Alters a capture process

"CREATE_CAPTURE Procedure" on
page 8-6

Creates a capture process

"DROP_CAPTURE Procedure" on
page 8-8

Drops a capture process

"PREPARE_GLOBAL_INSTANTIATION
Procedure" on page 8-8

Performs the synchronization necessary for
instantiating all the tables in the database at
another database

"PREPARE_SCHEMA_INSTANTIATION
Procedure" on page 8-9

Performs the synchronization necessary for
instantiating all tables in the schema at another
database

"PREPARE_TABLE_INSTANTIATION
Procedure" on page 8-10

Performs the synchronization necessary for
instantiating the table at another database

"SET_PARAMETER Procedure" on
page 8-11

Sets a capture process parameter to the
specified value

"START_CAPTURE Procedure" on
page 8-14

Starts the capture process, which mines redo
logs and enqueues the mined redo information
into the associated queue

"STOP_CAPTURE Procedure" on
page 8-15

Stops the capture process from mining redo
logs

Note: All procedures commit unless specified otherwise.
8-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
ABORT_GLOBAL_INSTANTIATION Procedure

Reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION
procedure.

Specifically, running this procedure removes data dictionary information related to
the database instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_GLOBAL_INSTANTIATION();

ABORT_SCHEMA_INSTANTIATION Procedure

Reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION
procedure.

Specifically, running this procedure removes data dictionary information related to
the schema instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_SCHEMA_INSTANTIATION(

schema_name IN VARCHAR2);

Parameter

Table 8–2 ABORT_SCHEMA_INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema for which to abort the effects of
preparing instantiation.
DBMS_CAPTURE_ADM 8-3

ABORT_TABLE_INSTANTIATION Procedure
ABORT_TABLE_INSTANTIATION Procedure

Reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure.

Specifically, running this procedure removes data dictionary information related to
the table instantiation.

Syntax
DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(

table_name IN VARCHAR2);

Parameter

ALTER_CAPTURE Procedure

Alters a capture process.

Syntax
DBMS_CAPTURE_ADM.ALTER_CAPTURE(

capture_name IN VARCHAR2,
rule_set_name IN VARCHAR2 DEFAULT NULL,
remove_rule_set IN BOOLEAN DEFAULT false,
start_scn IN NUMBER DEFAULT NULL);

Table 8–3 ABORT_TABLE_INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table for which to abort the effects of
preparing instantiation, specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default.
8-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
Parameters

Table 8–4 ALTER_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process being altered. You must
specify an existing capture process name.

rule_set_name The name of the rule set that contains the capture rules for this
capture process. If you want to use a rule set for the capture
process, then you must specify an existing rule set in the form
[schema_name.] rule_set_name . For example, to specify a
rule set in the hr schema named job_capture_rules , enter
hr.job_capture_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

See Also: Oracle9i Streams for more information about the
changes that can be captured by a capture process

remove_rule_set If true , then removes the rule set for the specified capture
process. If you remove a rule set for a capture process, then the
capture process captures all supported changes to all objects in
the database, excluding database objects in the SYS and
SYSTEM schemas.

If false , then retains any rule set for the specified capture
process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false .

start_scn A valid past SCN for the database where the capture process is
capturing changes. The capture process will capture changes
starting at the SCN specified.

The SCN value specified must be from a point-in-time after the
first capture process was created for the database. The first
capture process for the database may or may not be the capture
process being altered. An error is returned if an invalid SCN is
specified.

Note: When you change the start SCN for a capture process,
the capture process is stopped and restarted automatically.
DBMS_CAPTURE_ADM 8-5

CREATE_CAPTURE Procedure
CREATE_CAPTURE Procedure

Creates a capture process.

The user who runs the CREATE_CAPTURE procedure is the user who captures
changes. This user must have the necessary privileges to capture changes. These
privileges include the following:

� Execute privilege on the rule set used by the capture process

� Execute privilege on all transformation functions used in the rule set

� Enqueue privilege on the queue used by the capture process

Syntax
DBMS_CAPTURE_ADM.CREATE_CAPTURE(

queue_name IN VARCHAR2,
capture_name IN VARCHAR2,
rule_set_name IN VARCHAR2 DEFAULT NULL,
start_scn IN NUMBER DEFAULT NULL);

Note: Creation of the first capture process in a database may take
some time because the data dictionary is duplicated during this
creation.

See Also: Oracle9i Streams and Chapter 64, "DBMS_RULE_ADM"
for more information about rules and rule sets
8-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
Parameters

Table 8–5 CREATE_CAPTURE Procedure Parameters

Parameter Description

queue_name The name of the queue into which the capture process
enqueues changes. You must specify an existing queue in the
form [schema_name.] queue_name . For example, to specify
a queue in the hr schema named streams_queue , enter
hr.streams_queue . If the schema is not specified, then the
current user is the default.

Note: The queue_name setting cannot be altered after the
capture process is created.

capture_name The name of the capture process being created. A NULL
specification is not allowed.

Note: The capture_name setting cannot be altered after the
capture process is created.

rule_set_name The name of the rule set that contains the capture rules for this
capture process. If you want to use a rule set for the capture
process, then you must specify an existing rule set in the form
[schema_name.] rule_set_name . For example, to specify a
rule set in the hr schema named job_capture_rules , enter
hr.job_capture_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

If you specify NULL, then the capture process captures all
supported changes to all objects in the database, excluding
database objects in the SYS and SYSTEM schemas.

See Also: Oracle9i Streams for more information about the
changes that can be captured by a capture process

start_scn A valid past SCN for the database where the capture process is
capturing changes. The capture process will capture changes
starting at the SCN specified.

The SCN value specified must be from a point in time after the
first capture process was created for the database. If the
capture process being created is the first capture process ever
created for the current database, then you must specify NULL
for the start_scn . An error is returned if an invalid SCN is
specified.
DBMS_CAPTURE_ADM 8-7

DROP_CAPTURE Procedure
DROP_CAPTURE Procedure

Drops a capture process.

Syntax
DBMS_CAPTURE_ADM.DROP_CAPTURE(

capture_name IN VARCHAR2);

Parameter

PREPARE_GLOBAL_INSTANTIATION Procedure

Performs the synchronization necessary for instantiating all the tables in the
database at another database. Run this procedure at the source database.

This procedure records the lowest SCN of each object in the database for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the database for instantiation.

Syntax
DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION;

Table 8–6 DROP_CAPTURE Procedure Parameter

Parameter Description

capture_name The name of the capture process being dropped. Specify an
existing capture process name.
8-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
PREPARE_SCHEMA_INSTANTIATION Procedure

Performs the synchronization necessary for instantiating all tables in the schema at
another database. Run this procedure at the source database.

This procedure records the lowest SCN of each object in the schema for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the schema for instantiation.

Syntax
DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(

schema_name IN VARCHAR2);

Parameter

Table 8–7 PREPARE_SCHEMA_INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema. For example, hr .
DBMS_CAPTURE_ADM 8-9

PREPARE_TABLE_INSTANTIATION Procedure
PREPARE_TABLE_INSTANTIATION Procedure

Performs the synchronization necessary for instantiating the table at another
database. Run this procedure at the source database.

This procedure records the lowest SCN of the table for instantiation. SCNs
subsequent to the lowest SCN for an object can be used for instantiating the object.

 Syntax
DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(

table_name IN VARCHAR2);

Parameters

Table 8–8 PREPARE_TABLE_INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default.
8-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
SET_PARAMETER Procedure

Sets a capture process parameter to the specified value.

When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

Syntax
DBMS_CAPTURE_ADM.SET_PARAMETER(

capture_name IN VARCHAR2,
parameter IN VARCHAR2,
value IN VARCHAR2);

Parameters

Table 8–9 SET_PARAMETER Procedure Parameters

Parameter Description

capture_name The name of the capture process. The capture process uses
LogMiner to capture changes from the redo logs.

parameter The name of the parameter you are setting. See "Capture
Process Parameters" on page 8-12 for a list of these parameters.

value The value to which the parameter is set
DBMS_CAPTURE_ADM 8-11

SET_PARAMETER Procedure
Capture Process Parameters
The following table lists the parameters for the capture process.

Table 8–10 Capture Process Parameters (Page 1 of 2)

Parameter Name
Possible
Values Default Description

disable_on_limit Y or N N If Y, then the capture process is disabled if the
capture process terminates because it reached a
value specified by the time_limit parameter or
message_limit parameter.

If N, then the capture process is restarted
immediately after stopping because it reached a
limit.

maximum_scn A valid SCN
or infinite

infinite The capture process is disabled before capturing
a change record with an SCN greater than or
equal to the value specified.

If infinite , then the capture process runs
regardless of the SCN value.

message_limit A positive
integer or
infinite

infinite The capture process stops after capturing the
specified number of messages.

If infinite , then the capture process continues
to run regardless of the number of messages
captured.

parallelism A positive
integer

1 The number of parallel execution servers that
may concurrently mine the redo log

Note:

� When you change the value of this
parameter, the capture process is stopped
and restarted automatically.

� Setting the parallelism parameter to a
number higher than the number of available
parallel execution servers may disable the
capture process. Make sure the PROCESSES
and PARALLEL_MAX_SERVERS initialization
parameters are set appropriately when you
set the parallelism capture process
parameter.
8-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
startup_seconds 0 , a positive
integer, or
infinite

0 The maximum number of seconds to wait for
another instantiation of the same capture process
to finish. If the other instantiation of the same
capture process does not finish within this time,
then the capture process does not start.

If infinite , then a capture process does not
start until another instantiation of the same
capture process finishes.

time_limit A positive
integer or
infinite

infinite The capture process stops as soon as possible
after the specified number of seconds since it
started.

If infinite , then the capture process continues
to run until it is stopped explicitly.

trace_level 0 or a
positive
integer

0 Set this parameter only under the guidance of
Oracle Support Services.

write_alert_log Y or N Y If Y, then the capture process writes a message to
the alert log on exit.

If N, then the capture process does not write a
message to the alert log on exit.

The message specifies the reason the capture
process stopped.

Note:

� For all parameters that are interpreted as positive integers, the
maximum possible value is 4,294,967,295 . Where
applicable, specify infinite for larger values.

� For parameters that require an SCN setting, any valid SCN
value can be specified.

Table 8–10 Capture Process Parameters (Page 2 of 2)

Parameter Name
Possible
Values Default Description
DBMS_CAPTURE_ADM 8-13

START_CAPTURE Procedure
START_CAPTURE Procedure

Starts the capture process, which mines redo logs and enqueues the mined redo
information into the associated queue.

The start status is persistently recorded. Hence, if the status is ENABLED, then the
capture process is started upon database instance startup.

The capture process is a background Oracle process and is prefixed by CP.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and
DBMS_AQADM.STOP_QUEUE have no effect on the start status of a capture process.

You can create the capture process using the following procedures:

� DBMS_CAPTURE_ADM.CREATE_CAPTURE

� DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

� DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

� DBMS_STREAMS_ADM.ADD_TABLE_RULES

Syntax
DBMS_CAPTURE_ADM.START_CAPTURE(

capture_name IN VARCHAR2);

Parameter

See Also: Chapter 73, "DBMS_STREAMS_ADM"

Table 8–11 START_CAPTURE Procedure Parameter

Parameter Description

capture_name The name of the capture process. The capture process uses
LogMiner to capture changes in the redo information. A NULL
setting is not allowed.
8-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms
STOP_CAPTURE Procedure

Stops the capture process from mining redo logs.

The stop status is persistently recorded. Hence, if the status is DISABLED, then the
capture process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and
DBMS_AQADM.STOP_QUEUE have no effect on the stop status of a capture process.

Syntax
DBMS_CAPTURE_ADM.STOP_CAPTURE(

capture_name IN VARCHAR2,
force IN BOOLEAN DEFAULT false);

Parameters

Table 8–12 STOP_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process. A NULL setting is not
allowed.

force If TRUE, then stops the capture process instantly.

If FALSE, then stops the capture process after the capture
process captures its current transaction.
DBMS_CAPTURE_ADM 8-15

STOP_CAPTURE Procedure
8-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
9

DBMS_DDL

This package provides access to some SQL data definition language (DDL)
statements from stored procedures. It also provides special administration
operations that are not available as DDLs.

The ALTER_COMPILE and ANALYZE_OBJECT procedures commit the current
transaction, perform the operation, and then commit again.

This package runs with the privileges of the calling user, rather than the package
owner SYS.

This chapter discusses the following topics:

� Summary of DBMS_DDL Subprograms
S_DDL 9-1

Summary of DBMS_DDL Subprograms
Summary of DBMS_DDL Subprograms

ALTER_COMPILE Procedure
This procedure is equivalent to the following SQL statement:

ALTER PROCEDURE|FUNCTION|PACKAGE [<schema>.] <name> COMPILE [BODY]

Syntax
DBMS_DDL.ALTER_COMPILE (

type VARCHAR2,
schema VARCHAR2,
name VARCHAR2);

Parameters

Table 9–1 DBMS_DDL Package Subprograms

Subprogram Description

ALTER_COMPILE Procedure on
page 9-2

Compiles the PL/SQL object.

ANALYZE_OBJECT Procedure on
page 9-3

Provides statistics for the database object.

IS_TRIGGER_FIRE_ONCE Function
on page 9-4

Returns TRUE if the specified DML or DDL trigger is
set to fire once. Otherwise, returns FALSE.

SET_TRIGGER_FIRING_PROPERTY
Procedure on page 9-5

Sets the specified DML or DDL trigger’s firing
property.

ALTER_TABLE_REFERENCEABLE
Procedure on page 9-7

Reorganizes object tables and swizzles
references

ALTER_TABLE_NOT_REFERENCE
ABLE Procedure on page 9-7

Reorganizes object tables and swizzles
references

Table 9–2 ALTER_COMPILE Procedure Parameters

Parameter Description

type Must be either PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY
or TRIGGER.

schema Schema name.

If NULL, then use current schema (case-sensitive).
9-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms
Exceptions

ANALYZE_OBJECT Procedure
This procedure provides statistics for the given table, index, or cluster. It is
equivalent to the following SQL statement:

ANALYZE TABLE|CLUSTER|INDEX [<schema>.]<name> [<method>] STATISTICS [SAMPLE <n>
[ROWS|PERCENT]]

Syntax
DBMS_DDL.ANALYZE_OBJECT (

type VARCHAR2,
schema VARCHAR2,
name VARCHAR2,
method VARCHAR2,
estimate_rows NUMBER DEFAULT NULL,
estimate_percent NUMBER DEFAULT NULL,
method_opt VARCHAR2 DEFAULT NULL,
partname VARCHAR2 DEFAULT NULL);

name Name of the object (case-sensitive).

Table 9–3 ALTER_COMPILE Procedure Exceptions

Exception Description

ORA-20000: Insufficient privileges or object does not exist.

ORA-20001: Remote object, cannot compile.

ORA-20002: Bad value for object type

Should be either PACKAGE, PACKAGE BODY, PROCEDURE,
FUNCTION, or TRIGGER.

Table 9–2 ALTER_COMPILE Procedure Parameters

Parameter Description
DBMS_DDL 9-3

IS_TRIGGER_FIRE_ONCE Function
Parameters

Exceptions

IS_TRIGGER_FIRE_ONCE Function
This function returns TRUE if the specified DML or DDL trigger is set to fire once.
Otherwise, it returns FALSE.

Table 9–4 ANALYZE_OBJECT Procedure Parameters

Parameter Description

type One of TABLE, CLUSTER or INDEX. If none of these, an ORA-20001
error is raised.

schema Schema of object to analyze. NULL means current schema,
case-sensitive.

name Name of object to analyze, case-sensitive.

method One of ESTIMATE, COMPUTE or DELETE.

If ESTIMATE, then either estimate_rows or
estimate_percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.

If estimate_rows is specified, then ignore this parameter.

method_opt Method options of the following format.

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

partname Specific partition to be analyzed.

Table 9–5 ANALYZE_OBJECT Procedure Exceptions

Exception Description

ORA-20000: Insufficient privileges or object does not exist.

ORA-20001: Bad value for object type.

Should be either TABLE, INDEX or CLUSTER.

ORA-20002: METHOD must be one of COMPUTE, ESTIMATE or DELETE.
9-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms
A fire once trigger fires in a user session but does not fire in the following cases:

� For changes made by a Streams apply process

� For changes made by executing one or more Streams apply errors using the
EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the
DBMS_APPLY_ADM package

Syntax
DBMS_DDL.IS_TRIGGER_FIRE_ONCE

trig_owner IN VARCHAR2,
trig_name IN VARCHAR2)

RETURN BOOLEAN;

Parameters

SET_TRIGGER_FIRING_PROPERTY Procedure
This procedure sets the specified DML or DDL trigger’s firing property. Use this
procedure to control a DML or DDL trigger’s firing property for changes:

� Applied by a Streams apply process

� Made by executing one or more Streams apply errors using the
EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the
DBMS_APPLY_ADM package.

You can specify one of the following settings for a trigger’s firing property:

Note: Only DML and DDL triggers can be fire once. All other
types of triggers always fire.

See Also: "SET_TRIGGER_FIRING_PROPERTY Procedure" on
page 9-5

Table 9–6 IS_TRIGGER_FIRE_ONCE Function Parameters

Parameter Description

trig_owner Schema of trigger

trig_name Name of trigger
DBMS_DDL 9-5

SET_TRIGGER_FIRING_PROPERTY Procedure
� If the fire_once parameter is set to TRUE for a trigger, then the trigger does
not fire for these types of changes.

� If the fire_once parameter is set to FALSE for a trigger, then the trigger fires
for these types of changes.

Regardless of the firing property set by this procedure, a trigger continues to fire
when changes are made by means other than the apply process or apply error
execution. For example, if a user session or an application makes a change, then the
trigger continues to fire, regardless of the firing property.

Syntax
DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY

trig_owner IN VARCHAR2,
trig_name IN VARCHAR2,
fire_once IN BOOLEAN);

Parameters

Note:

� If you dequeue an error transaction from the error queue and
execute it without using the DBMS_APPLY_ADM package, then
relevant changes resulting from this execution cause a trigger to
fire, regardless of the trigger firing property.

� Only DML and DDL triggers can be fire once. All other types of
triggers always fire.

See Also: Oracle9i Streams for more information about the apply
process and controlling a trigger’s firing property

Table 9–7 SET_TRIGGER_FIRING_PROPERTY Procedure Parameters

Parameter Description

trig_owner Schema of the trigger to set

trig_name Name of the trigger to set

fire_once If TRUE, then the trigger is set to fire once. By default, the
fire_once parameter is set to TRUE for DML and DDL triggers.

If FALSE, then the trigger is set to always fire.
9-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms
ALTER_TABLE_REFERENCEABLE Procedure
This procedure reorganizes object tables and swizzles references. For example,
assume you have an object table FOO and that references in other tables point to
objects stored in FOO. If you want to change some of the table organization—for
example, you want to make it an IOT or a partitioned table, or you want to
reorganize the data more efficiently—you copy all data from FOO into FOO2. Then
you use the alter_table_referenceable and
alter_table_not_referenceable procedures to swizzle all existing references
to point to FOO2 instead of FOO.

Syntax
DBMS_DDL.ALTER_TABLE_REFERENCEABLE

TABLE_NAME IN VARCHAR2,
TABLE_SCHEMA IN DEFAULT VARCHAR2,
AFFECTED_SCHEMA IN DEFAULT VARCHAR2;

ALTER_TABLE_NOT_REFERENCEABLE Procedure
See ALTER_TABLE_NOT_REFERENCEABLE Procedure on page 9-7.

Syntax
DBMS_DDL.ALTER_TABLE_NOT_REFERENCEABLE

TABLE_NAME IN VARCHAR2,
TABLE_SCHEMA IN DEFAULT VARCHAR2,
AFFECTED_SCHEMA IN DEFAULT VARCHAR2;
DBMS_DDL 9-7

ALTER_TABLE_NOT_REFERENCEABLE Procedure
9-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_D
10

DBMS_DEBUG

DBMS_DEBUG is a PL/SQL API to the PL/SQL debugger layer, Probe, in the Oracle
server.

This API is primarily intended to implement server-side debuggers and it provides
a way to debug server-side PL/SQL program units.

This chapter discusses the following topics:

� Using DBMS_DEBUG

� Usage Notes

� Types and Constants

� Error Codes, Exceptions, and Variables

� Common and Debug Session Sections

� OER Breakpoints

� Summary of DBMS_DEBUG Subprograms

Note: The term program unit refers to a PL/SQL program of any
type (procedure, function, package, package body, trigger,
anonymous block, object type, or object type body).
EBUG 10-1

Using DBMS_DEBUG
Using DBMS_DEBUG
To debug server-side code, you must have two database sessions: one session to run
the code in debug mode (the target session), and a second session to supervise the
target session (the debug session).

The target session becomes available for debugging by making initializing calls
with DBMS_DEBUG. This marks the session so that the PL/SQL interpreter runs in
debug mode and generates debug events. As debug events are generated, they are
posted from the session. In most cases, debug events require return notification: the
interpreter pauses awaiting a reply.

Meanwhile, the debug session must also initialize itself using DBMS_DEBUG: This
tells it which target session to supervise. The debug session may then call entry
points in DBMS_DEBUG to read events that were posted from the target session and
to communicate with the target session.

DBMS_DEBUG does not provide an interface to the PL/SQL compiler; however, it
does depend on debug information optionally generated by the compiler. Without
debug information, it is not possible to examine or modify the values of parameters
or variables. There are two ways to ensure that debug information is generated:
through a session switch, or through individual recompilation.

To set the session switch, enter the following statement:

ALTER SESSION SET PLSQL_DEBUG = true;

This instructs the compiler to generate debug information for the remainder of the
session. It does not recompile any existing PL/SQL.

To generate debug information for existing PL/SQL code, use one of the following
statements (the second recompiles a package or type body):

ALTER [PROCEDURE | FUNCTION | PACKAGE | TRIGGER | TYPE] <name> COMPILE DEBUG;
ALTER [PACKAGE | TYPE] <name> COMPILE DEBUG BODY;

Figure 10–1 and Figure 10–2 illustrate the flow of operations in the session to be
debugged and in the debugging session.
10-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_DEBUG
Figure 10–1 Target Session

Initialize session for debugging,
and generate/specify unique debugID.
DBMS_DEBUB.initialize()

Stop debugging
DBMS_DEBUG.debug_off()

Execute PL/SQL programs

Start debugging
DBMS_DEBUG.debug_on()
DBMS_DEBUG 10-3

Using DBMS_DEBUG
Figure 10–2 Debug Session

Manipulate breakpoints
DBMS_DEBUG.set_breakpoint()
DBMS_DEBUG.delete_breakpoint()
DBMS_DEBUG.disable_breakpoint()
DBMS_DEBUG.enable_breakpoint()
DBMS_DEBUG.show_breakpoints()

Input:
debugID from
target session

1 2

Maniputlate breakpoints
DBMS_DEBUG.set_breakpoint()
DBMS_DEBUG.delete_breakpoint()
DBMS_DEBUG.disable_breakpoint()
DBMS_DEBUG.enable_breakpoint()
DBMS_DEBUG.show_breakpoints()

Read first event from target session
DBMS_DEBUG.synchronize()

Initialize
DBMS_DEBUG.attach_session()

Manipulate breakpoints

Show stack
DBMS_DEBUG.print_backtrace()

Show source
DBMS_DEBUG.show_source()

Get/set values
DBMS_DEBUG.get_value()
DBMS_DEBUG.set_value()
10-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Usage Notes
Figure 10–2 Debug Session (Cont.)

Control of the Interpreter
The interpreter pauses execution at the following times:

1. At startup of the interpreter so any deferred breakpoints may be installed prior
to execution.

2. At any line containing an enabled breakpoint.

3. At any line where an interesting event occurs. The set of interesting events is
specified by the flags passed to DBMS_DEBUG.CONTINUE in the breakflags
parameter.

Usage Notes

Session Termination
There is no event for session termination. Therefore, it is the responsibility of the
debug session to check and make sure that the target session has not ended. A call
to DBMS_DEBUG.SYNCHRONIZE after the target session has ended causes the debug
session to hang until it times out.

Deferred Operations
The diagram suggests that it is possible to set breakpoints prior to having a target
session. This is true. In this case, Probe caches the breakpoint request and transmits

Detach session
DBMS_DEBUG.detach_session()

No

Yes

next program to debug

1 2
Continue execution and wait for
next event DBMS_DEBUG.continue()

Program terminated?
(event is DBMS_DEBUG.reason_knl_exit)
DBMS_DEBUG 10-5

Types and Constants
it to the target session at first synchronization. However, if a breakpoint request is
deferred in this fashion, then:

� SET_BREAKPOINT does not set the breakpoint number (it can be obtained later
from SHOW_BREAKPOINTS if necessary).

� SET_BREAKPOINT does not validate the breakpoint request. If the requested
source line does not exist, then an error silently occurs at synchronization, and
no breakpoint is set.

Diagnostic Output
To debug Probe, there are diagnostics parameters to some of the calls in DBMS_
DEBUG. These parameters specify whether to place diagnostic output in the RDBMS
tracefile. If output to the RDBMS tracefile is disabled, these parameters have no
effect.

Types and Constants

PROGRAM_INFO Types
This type specifies a program location. It is a line number in a program unit. This is
used for stack backtraces and for setting and examining breakpoints. The read-only
fields are currently ignored by Probe for breakpoint operations. They are set by
Probe only for stack backtraces.

Type Description

EntrypointName Null, unless this is a nested procedure or function.

LibunitType Disambiguate among objects that share the same
namespace (for example, procedure and package
specifications).

See the Libunit Types on page 10-9 for more information.
10-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Types and Constants
TYPE program_info IS RECORD
(

-- The following fields are used when setting a breakpoint
Namespace BINARY_INTEGER, -- See ’NAMESPACES’ section below.
Name VARCHAR2(30), -- name of the program unit
Owner VARCHAR2(30), -- owner of the program unit
Dblink VARCHAR2(30), -- database link, if remote
Line# BINARY_INTEGER,
-- Read-only fields (set by Probe when doing a stack backtrace)
LibunitType BINARY_INTEGER,
EntrypointName VARCHAR2(30)

);

RUNTIME_INFO Type
This type gives context information about the running program.

TYPE runtime_info IS RECORD
(

Line# BINARY_INTEGER, -- (duplicate of program.line#)
Terminated BINARY_INTEGER, -- has the program terminated?
Breakpoint BINARY_INTEGER, -- breakpoint number
StackDepth BINARY_INTEGER, -- number of frames on the stack
InterpreterDepth BINARY_INTEGER, -- <reserved field>
Reason BINARY_INTEGER, -- reason for suspension
Program program_info -- source location

);

BREAKPOINT_INFO Type
This type gives information about a breakpoint, such as its current status and the
program unit in which it was placed.

TYPE breakpoint_info IS RECORD
(

-- These fields are duplicates of ’program_info’:
Name VARCHAR2(30),
Owner VARCHAR2(30),
DbLink VARCHAR2(30),
Line# BINARY_INTEGER,
LibunitType BINARY_INTEGER,
Status BINARY_INTEGER -- see breakpoint_status_* below

);
DBMS_DEBUG 10-7

Types and Constants
INDEX_TABLE Type
This type is used by GET_INDEXES to return the available indexes for an indexed
table.

TYPE index_table IS table of BINARY_INTEGER INDEX BY BINARY_INTEGER;

BACKTRACE_TABLE Type
This type is used by PRINT_BACKTRACE.

TYPE backtrace_table IS TABLE OF program_info INDEX BY BINARY_INTEGER;

BREAKPOINT_TABLE Type
This type is used by SHOW_BREAKPOINTS.

TYPE breakpoint_table IS TABLE OF breakpoint_info INDEX BY BINARY_INTEGER;

VC2_TABLE Type
This type is used by SHOW_SOURCE.

TYPE vc2_table IS TABLE OF VARCHAR2(90) INDEX BY BINARY_INTEGER;

Constants
A breakpoint status may have the following value:

� breakpoint_status_unused —breakpoint is not in use

Otherwise, the status is a mask of the following values:

� breakpoint_status_active —a line breakpoint

� breakpoint_status_disabled —breakpoint is currently disabled

� breakpoint_status_remote —a shadow breakpoint (a local representation
of a remote breakpoint)

NAMESPACES
Program units on the server reside in different namespaces. When setting a
breakpoint, specify the desired namespace.

1. Namespace_cursor contains cursors (anonymous blocks).

2. Namespace_pgkspec_or_toplevel contains:

� Package specifications.
10-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Types and Constants
� Procedures and functions that are not nested inside other packages,
procedures, or functions.

� Object types.

3. Namespace_pkg_body contains package bodies and type bodies.

4. Namespace_trigger contains triggers.

Libunit Types
These values are used to disambiguate among objects in a given namespace. These
constants are used in PROGRAM_INFO when Probe is giving a stack backtrace.

� LibunitType_cursor

� LibunitType_procedure

� LibunitType_function

� LibunitType_package

� LibunitType_package_body

� LibunitType_trigger

� LibunitType_Unknown

Breakflags
These are values to use for the breakflags parameter to CONTINUE, in order to
tell Probe what events are of interest to the client. These flags may be combined.

Value Description

break_next_line Break at next source line (step over calls).

break_any_call Break at next source line (step into calls).

break_any_return Break after returning from current entrypoint (skip over any
entrypoints called from the current routine).

break_return Break the next time an entrypoint gets ready to return. (This
includes entrypoints called from the current one. If interpreter is
running Proc1 , which calls Proc2 , then break_return stops
at the end of Proc2 .)

break_exception Break when an exception is raised.

break_handler Break when an exception handler is executed.
DBMS_DEBUG 10-9

Types and Constants
Information Flags
These are flags which may be passed as the info_requested parameter to
SYNCHRONIZE, CONTINUE, and GET_RUNTIME_INFO.

Reasons for Suspension
After CONTINUE is run, the program either runs to completion or breaks on some
line.

abort_execution Stop execution and force an ’exit’ event as soon as DBMS_
DEBUG.CONTINUE is called.

Flag Description

info_getStackDepth Get the current depth of the stack.

info_getBreakpoint Get the breakpoint number.

info_getLineinfo Get program unit information.

Reason Description

reason_none -

reason_
interpreter_
starting

Interpreter is starting.

reason_breakpoint Hit a breakpoint.

reason_enter Procedure entry.

reason_return Procedure is about to return.

reason_finish Procedure is finished.

reason_line Reached a new line.

reason_interrupt An interrupt occurred.

reason_exception An exception was raised.

reason_exit Interpreter is exiting (old form).

reason_knl_exit Kernel is exiting.

reason_handler Start exception-handler.

Value Description
10-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Error Codes, Exceptions, and Variables
Error Codes, Exceptions, and Variables

Error Codes
These values are returned by the various functions called in the debug session
(SYNCHRONIZE, CONTINUE, SET_BREAKPOINT, and so on). If PL/SQL exceptions
worked across client/server and server/server boundaries, then these would all be
exceptions rather than error codes.

Statuses returned by GET_VALUE and SET_VALUE:

Statuses returned by SET_VALUE:

reason_timeout A timeout occurred.

reason_instantiate Instantiation block.

reason_abort Interpreter is aborting.

Value Description

success Normal termination.

Status Description

error_bogus_frame No such entrypoint on the stack.

error_no_debug_
info

Program was compiled without debug symbols.

error_no_such_
object

No such variable or parameter.

error_unknown_type Debug information is unreadable.

error_indexed_
table

Returned by GET_VALUE if the object is a table, but no index was
provided.

error_illegal_
index

No such element exists in the collection.

error_
nullcollection

Table is atomically null.

error_nullvalue Value is null.

Reason Description
DBMS_DEBUG 10-11

Error Codes, Exceptions, and Variables
Statuses returned by the breakpoint functions:

General error codes (returned by many of the DBMS_DEBUG subprograms):

Status Description

error_illegal_
value

Constraint violation.

error_illegal_null Constraint violation.

error_value_
malformed

Unable to decipher the given value.

error_other Some other error.

error_name_
incomplete

Name did not resolve to a scalar.

Status Description

error_no_such_
breakpt

No such breakpoint.

error_idle_breakpt Cannot enable or disable an unused breakpoint.

error_bad_handle Unable to set breakpoint in given program (nonexistent or
security violation).

Status Description

error_
unimplemented

Functionality is not yet implemented.

error_deferred No program running; operation deferred.

error_exception An exception was raised in the DBMS_DEBUG or Probe packages
on the server.

error_
communication

Some error other than a timeout occurred.

error_timeout Timout occurred.
10-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Common and Debug Session Sections
Exceptions

The following exceptions are raised by procedure SELF_CHECK:

Variables

Common and Debug Session Sections

Common Section
The following subprograms may be called in either the target or the debug session:

� PROBE_VERSION Procedure

� SELF_CHECK Procedure

� SET_TIMEOUT Function

Debug Session Section
The following subprograms should be run in the debug session only:

Exception Description

illegal_init DEBUG_ON was called prior to INITIALIZE .

Exception Description

pipe_creation_
failure

Could not create a pipe.

pipe_send_failure Could not write data to the pipe.

pipe_receive_
failure

Could not read data from the pipe.

pipe_datatype_
mismatch

Datatype in the pipe was wrong.

pipe_data_error Data got garbled in the pipe.

Exception Description

default_timeout The timeout value (used by both sessions).The smallest possible
timeout is 1 second. If this value is set to 0, then a large value
(3600) is used.
DBMS_DEBUG 10-13

OER Breakpoints
� ATTACH_SESSION Procedure

� SYNCHRONIZE Function

� SHOW_SOURCE Procedure

� PRINT_BACKTRACE Procedure

� CONTINUE Function

� SET_BREAKPOINT Function

� DELETE_BREAKPOINT Function

� DISABLE_BREAKPOINT Function

� ENABLE_BREAKPOINT Function

� SHOW_BREAKPOINTS Procedure

� GET_VALUE Function

� SET_VALUE Function

� DETACH_SESSION Procedure

� GET_RUNTIME_INFO Function

� GET_INDEXES Function

� EXECUTE Procedure

OER Breakpoints
Exceptions that are declared in PL/SQL programs are known as user-defined
exceptions. In addition, there are Oracle Errors (OERs) that are returned from the
Oracle kernel. To tie the two mechanisms together, PL/SQL provides the
exception_init pragma that turns a user-defined exception into an OER, so that
a PL/SQL handler may be used for it, and so that the PL/SQL engine can return
OERs to the Oracle kernel. As of the current release, the only information available
about an OER is its number. If two user-defined exceptions are exception_init’d to
the same OER, they are indistinguishable.
10-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Summary of DBMS_DEBUG Subprograms

Table 10–1 DBMS_DEBUG Package Subprograms

Subprogram Description

PROBE_VERSION
Procedure on page 10-16

Returns the version number of DBMS_DEBUG on the server.

SELF_CHECK Procedure on
page 10-16

Performs an internal consistency check.

SET_TIMEOUT Function on
page 10-17

Sets the timeout value.

INITIALIZE Function on
page 10-18

Sets debugID in target session.

DEBUG_ON Procedure on
page 10-19

Turns debug-mode on.

DEBUG_OFF Procedure on
page 20

Turns debug-mode off.

ATTACH_SESSION
Procedure on page 10-20

Notifies the debug session about the target debugID.

SYNCHRONIZE Function
on page 10-21

Waits for program to start running.

SHOW_SOURCE Procedure
on page 10-22

Fetches program source.

PRINT_BACKTRACE
Procedure on page 10-24

Prints a stack backtrace.

CONTINUE Function on
page 10-24

Continues execution of the target program.

SET_BREAKPOINT
Function on page 10-25

Sets a breakpoint in a program unit.

DELETE_BREAKPOINT
Function on page 10-27

Deletes a breakpoint.

DISABLE_BREAKPOINT
Function on page 10-27

Disables a breakpoint.

ENABLE_BREAKPOINT
Function on page 10-28

Activates an existing breakpoint.

SHOW_BREAKPOINTS
Procedure on page 10-29

Returns a listing of the current breakpoints.
DBMS_DEBUG 10-15

PROBE_VERSION Procedure
PROBE_VERSION Procedure

This procedure returns the version number of DBMS_DEBUG on the server.

Syntax
DBMS_DEBUG.PROBE_VERSION (

major out BINARY_INTEGER,
minor out BINARY_INTEGER);

Parameters

SELF_CHECK Procedure

This procedure performs an internal consistency check. SELF_CHECK also runs a
communications test to ensure that the Probe processes are able to communicate.

GET_VALUE Function on
page 10-30

Gets a value from the currently-running program.

SET_VALUE Function on
page 10-32

Sets a value in the currently-running program.

DETACH_SESSION
Procedure on page 10-34

Stops debugging the target program.

GET_RUNTIME_INFO
Function on page 10-34

Returns information about the current program.

GET_INDEXES Function on
page 10-35

Returns the set of indexes for an indexed table.

EXECUTE Procedure on
page 10-36

Executes SQL or PL/SQL in the target session.

Table 10–2 PROBE_VERSION Procedure Parameters

Parameter Description

major Major version number.

minor Minor version number: increments as functionality is added.

Table 10–1 (Cont.) DBMS_DEBUG Package Subprograms

Subprogram Description
10-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
If SELF_CHECK does not return successfully, then an incorrect version of DBMS_
DEBUG was probably installed on this server. The solution is to install the correct
version (pbload .sql loads DBMS_DEBUG and the other relevant packages).

Syntax
DBMS_DEBUG.SELF_CHECK (

timeout IN binary_integer := 60);

Parameters

Exceptions

All of these exceptions are fatal. They indicate a serious problem with Probe that
prevents it from working correctly.

SET_TIMEOUT Function

This function sets the timeout value and returns the new timeout value.

Table 10–3 SELF_CHECK Procedure Parameters

Parameter Description

timeout The timeout to use for the communication test. Default is 60
seconds.

Table 10–4 SELF_CHECK Procedure Exceptions

Exception Description

OER-6516 Probe version is inconsistent.

pipe_creation_
failure

Could not create a pipe.

pipe_send_failure Could not write data to the pipe.

pipe_receive_failure Could not read data from the pipe.

pipe_datatype_
mismatch

Datatype in the pipe was wrong.

pipe_data_error Data got garbled in the pipe.
DBMS_DEBUG 10-17

INITIALIZE Function
Syntax
DBMS_DEBUG.SET_TIMEOUT (

timeout BINARY_INTEGER)
RETURN BINARY_INTEGER;

Parameters

TARGET SESSION Section
The following subprograms are run in the target session (the session that is to be
debugged):

� INITIALIZE Function

� DEBUG_ON Procedure

� DEBUG_OFF Procedure

INITIALIZE Function

This function initializes the target session for debugging.

Syntax
DBMS_DEBUG.INITIALIZE (

debug_session_id IN VARCHAR2 := NULL,
diagnostics IN BINARY_INTEGER := 0)

RETURN VARCHAR2;

Parameters

Table 10–5 SET_TIMEOUT Function Parameters

Parameter Description

timeout The timeout to use for communication between the target and
debug sessions.

Table 10–6 INITIALIZE Function Parameters

Parameter Description

debug_session_id Name of session ID. If NULL, then a unique ID is generated.
10-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Returns
The newly-registered debug session ID (debugID)

DEBUG_ON Procedure

This procedure marks the target session so that all PL/SQL is run in debug mode.
This must be done before any debugging can take place.

Syntax
DBMS_DEBUG.DEBUG_ON (

no_client_side_plsql_engine BOOLEAN := TRUE,
immediate BOOLEAN := FALSE);

Parameters

diagnostics Indicates whether to dump diagnostic output to the tracefile.

0 = (default) no diagnostics

1 = print diagnostics

Table 10–7 DEBUG_ON Procedure Parameters

Parameter Description

no_client_side_
plsql_engine

Should be left to its default value unless the debugging session
is taking place from a client-side PL/SQL engine.

immediate If this is TRUE, then the interpreter immediately switches itself
into debug-mode, instead of continuing in regular mode for
the duration of the call.

Table 10–6 INITIALIZE Function Parameters

Parameter Description
DBMS_DEBUG 10-19

DEBUG_OFF Procedure
DEBUG_OFF Procedure

This procedure notifies the target session that debugging should no longer take
place in that session. It is not necessary to call this function before ending the
session.

Syntax
DBMS_DEBUG.DEBUG_OFF;

Usage Notes
The server does not handle this entrypoint specially. Therefore, it attempts to debug
this entrypoint.

ATTACH_SESSION Procedure

This procedure notifies the debug session about the target program.

Syntax
DBMS_DEBUG.ATTACH_SESSION (

debug_session_id IN VARCHAR2,
diagnostics IN BINARY_INTEGER := 0);

Parameters

Caution: There must be a debug session waiting if immediate is TRUE.

Table 10–8 ATTACH_SESSION Procedure Parameters

Parameter Description

debug_session_id Debug ID from a call to INITIALIZE in target session.

diagnostics Generate diagnostic output if nonzero.
10-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
SYNCHRONIZE Function

This function waits until the target program signals an event. If info_requested
is not NULL, then it calls GET_RUNTIME_INFO.

Syntax
DBMS_DEBUG.SYNCHRONIZE (

run_info OUT runtime_info,
info_requested IN BINARY_INTEGER := NULL)

RETURN BINARY_INTEGER;

Parameters

Returns

Table 10–9 SYNCHRONIZE Function Parameters

Parameter Description

run_info Structure in which to write information about the program. By
default, this includes information about what program is
running and at which line execution has paused.

info_requested Optional bit-field in which to request information other than
the default (which is info_getStackDepth + info_
getLineInfo). 0 means that no information is requested at
all.

See "Information Flags" on page 10-10.

Table 10–10 SYNCHRONIZE Function Returns

Return Description

success

error_timeout Timed out before the program started execution.

error_communication Other communication error.
DBMS_DEBUG 10-21

SHOW_SOURCE Procedure
SHOW_SOURCE Procedure

The best way to get the source code (for a program that is being run) is to use SQL.
For example:

DECLARE
info DBMS_DEBUG.runtime_info;

BEGIN
-- call DBMS_DEBUG.SYNCHRONIZE, CONTINUE,
-- or GET_RUNTIME_INFO to fill in ’info’
SELECT text INTO <buffer> FROM all_source
WHERE owner = info.Program.Owner

AND name = info.Program.Name
AND line = info.Line#;

END;

However, this does not work for nonpersistent programs (for example, anonymous
blocks and trigger invocation blocks). For nonpersistent programs, call SHOW_
SOURCE. There are two flavors: one returns an indexed table of source lines, and the
other returns a packed (and formatted) buffer.

There are two overloaded SHOW_SOURCE procedures.

Syntax
DBMS_DEBUG.SHOW_SOURCE (

first_line IN BINARY_INTEGER,
last_line IN BINARY_INTEGER,
source OUT vc2_table);

Parameters

Table 10–11 SHOW_SOURCE Procedure Parameters

Parameter Description

first_line Line number of first line to fetch. (PL/SQL programs always
start at line 1 and have no holes.)

last_line Line number of last line to fetch. No lines are fetched past the
end of the program.

source The resulting table, which may be indexed by line#.
10-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Returns
An indexed table of source-lines. The source lines are stored starting at first_
line . If any error occurs, then the table is empty.

Usage Notes
This second overloading of SHOW_SOURCE returns the source in a formatted buffer,
complete with line-numbers. It is faster than the indexed table version, but it does
not guarantee to fetch all the source.

If the source does not fit in bufferlength (buflen), then additional pieces can be
retrieved using the GET_MORE_SOURCE procedure (pieces returns the number of
additional pieces that need to be retrieved).

Syntax
DBMS_DEBUG.SHOW_SOURCE (

first_line IN BINARY_INTEGER,
last_line IN BINARY_INTEGER,
window IN BINARY_INTEGER,
print_arrow IN BINARY_INTEGER,
buffer IN OUT VARCHAR2,
buflen IN BINARY_INTEGER,
pieces OUT BINARY_INTEGER);

Parameters

Table 10–12 SHOW_SOURCE Procedure Parameters

Parameter Description

first_line Smallest line-number to print.

last_line Largest line-number to print.

window ’Window’ of lines (the number of lines around the current
source line).

print_arrow Nonzero means to print an arrow before the current line.

buffer Buffer in which to place the source listing.

buflen Length of buffer.

pieces Set to nonzero if not all the source could be placed into the
given buffer.
DBMS_DEBUG 10-23

PRINT_BACKTRACE Procedure
PRINT_BACKTRACE Procedure

This procedure prints a backtrace listing of the current execution stack. This should
only be called if a program is currently running.

There are two overloaded PRINT_BACKTRACE procedures.

Syntax
DBMS_DEBUG.PRINT_BACKTRACE (

listing IN OUT VARCHAR2);

Parameters

Syntax
DBMS_DEBUG.PRINT_BACKTRACE (

backtrace OUT backtrace_table);

Parameters

CONTINUE Function

This function passes the given breakflags (a mask of the events that are of interest)
to Probe in the target process. It tells Probe to continue execution of the target
process, and it waits until the target process runs to completion or signals an event.

If info_requested is not NULL, then calls GET_RUNTIME_INFO.

Table 10–13 PRINT_BACKTRACE Procedure Parameters

Parameter Description

listing A formatted character buffer with embedded newlines.

Table 10–14 PRINT_BACKTRACE Procedure Parameters

Parameter Description

backtrace 1-based indexed table of backtrace entries. The
currently-running procedure is the last entry in the table (that
is, the frame numbering is the same as that used by GET_
VALUE). Entry 1 is the oldest procedure on the stack.
10-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Syntax
DBMS_DEBUG.CONTINUE (

run_info IN OUT runtime_info,
breakflags IN BINARY_INTEGER,
info_requested IN BINARY_INTEGER := NULL)

RETURN BINARY_INTEGER;

Parameters

Returns

SET_BREAKPOINT Function

This function sets a breakpoint in a program unit, which persists for the current
session. Execution pauses if the target program reaches the breakpoint.

Syntax
DBMS_DEBUG.SET_BREAKPOINT (

program IN program_info,
line# IN BINARY_INTEGER,
breakpoint# OUT BINARY_INTEGER,
fuzzy IN BINARY_INTEGER := 0,

Table 10–15 CONTINUE Function Parameters

Parameter Description

run_info Information about the state of the program.

breakflags Mask of events that are of interest. See "Breakflags" on
page 10-9.

info_requested Which information should be returned in run_info when the
program stops. See "Information Flags" on page 10-10.

Table 10–16 CONTINUE Function Returns

Return Description

success

error_timeout Timed out before the program started running.

error_communication Other communication error.
DBMS_DEBUG 10-25

SET_BREAKPOINT Function
iterations IN BINARY_INTEGER := 0)
RETURN BINARY_INTEGER;

Parameters

Returns

Table 10–17 SET_BREAKPOINT Function Parameters

Parameter Description

program Information about the program unit in which the breakpoint is
to be set. (In version 2.1 and later, the namespace, name, owner,
and dblink may be set to NULL, in which case the breakpoint is
placed in the currently-running program unit.)

line# Line at which the breakpoint is to be set.

breakpoint# On successful completion, contains the unique breakpoint
number by which to refer to the breakpoint.

fuzzy Only applicable if there is no executable code at the specified
line:

0 means return error_illegal_line .

1 means search forward for an adjacent line at which to place
the breakpoint.

-1 means search backward for an adjacent line at which to
place the breakpoint.

iterations Number of times to wait before signalling this breakpoint.

Note: The fuzzy and iterations parameters are not yet
implemented.

Table 10–18 SET_BREAKPOINT Function Returns

Return Description

success

error_illegal_line Cannot set a breakpoint at that line.

error_bad_handle No such program unit exists.
10-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
DELETE_BREAKPOINT Function

This function deletes a breakpoint.

Syntax
DBMS_DEBUG.DELETE_BREAKPOINT (

breakpoint IN BINARY_INTEGER)
RETURN BINARY_INTEGER;

Parameters

Returns

DISABLE_BREAKPOINT Function

This function makes an existing breakpoint inactive, but it leaves it in place.

Syntax
DBMS_DEBUG.DISABLE_BREAKPOINT (

breakpoint IN BINARY_INTEGER)
RETURN BINARY_INTEGER;

Table 10–19 DELETE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.

Table 10–20 DELETE_BREAKPOINT Function Returns

Return Description

success

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot delete an unused breakpoint.

error_stale_breakpt The program unit was redefined since the breakpoint was set.
DBMS_DEBUG 10-27

ENABLE_BREAKPOINT Function
Parameters

Returns

ENABLE_BREAKPOINT Function

This function is the reverse of disabling. This enables a previously disabled
breakpoint.

Syntax
DBMS_DEBUG.ENABLE_BREAKPOINT (

breakpoint IN BINARY_INTEGER)
RETURN BINARY_INTEGER;

Parameters

Table 10–21 DISABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.

Table 10–22 DISABLE_BREAKPOINT Function Returns

Returns Description

success

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot disable an unused breakpoint.

Table 10–23 ENABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT.
10-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Returns

SHOW_BREAKPOINTS Procedure

This procedure returns a listing of the current breakpoints. There are two
overloaded SHOW_BREAKPOINTS procedures.

Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (

listing IN OUT VARCHAR2);

Parameters

Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (

listing OUT breakpoint_table);

Parameters

Table 10–24 ENABLE_BREAKPOINT Function Returns

Return Description

success

error_no_such_
breakpt

No such breakpoint exists.

error_idle_breakpt Cannot enable an unused breakpoint.

Table 10–25 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

listing A formatted buffer (including newlines) of the breakpoints.

Table 10–26 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

listing Indexed table of breakpoint entries. The breakpoint number is
indicated by the index into the table. Breakpoint numbers start
at 1 and are reused when deleted.
DBMS_DEBUG 10-29

GET_VALUE Function
GET_VALUE Function

This function gets a value from the currently-running program. There are two
overloaded GET_VALUE functions.

Syntax
DBMS_DEBUG.GET_VALUE (

variable_name IN VARCHAR2,
frame# IN BINARY_INTEGER,
scalar_value OUT VARCHAR2,
format IN VARCHAR2 := NULL)

RETURN BINARY_INTEGER;

Parameters

Returns

Table 10–27 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

frame# Frame in which it lives; 0 means the current procedure.

scalar_value Value.

format Optional date format to use, if meaningful.

Table 10–28 GET_VALUE Function Returns

Return Description

success

error_bogus_frame Frame does not exist.

error_no_debug_info Entrypoint has no debug information.

error_no_such_object variable_name does not exist in frame# .

error_unknown_type The type information in the debug information is illegible.

error_nullvalue Value is NULL.

error_indexed_table The object is a table, but no index was provided.
10-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
This form of GET_VALUE is for fetching package variables. Instead of a frame#, it
takes a handle, which describes the package containing the variable.

Syntax
DBMS_DEBUG.GET_VALUE (

variable_name IN VARCHAR2,
handle IN program_info,
scalar_value OUT VARCHAR2,
format IN VARCHAR2 := NULL)

RETURN BINARY_INTEGER;

Parameters

Returns

Example
This example illustrates how to get the value with a given package PACK in schema
SCOTT, containing variable VAR:

DECLARE

Table 10–29 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

handle Description of the package containing the variable.

scalar_value Value.

format Optional date format to use, if meaningful.

Table 10–30 GET_VALUE Function Returns

Return Description

error_no_such_object Either:

- Package does not exist.

- Package is not instantiated.

- User does not have privileges to debug the package.

- Object does not exist in the package.

error_indexed_table The object is a table, but no index was provided.
DBMS_DEBUG 10-31

SET_VALUE Function
handle dbms_debug.program_info;
resultbuf VARCHAR2(500);
retval BINARY_INTEGER;

BEGIN
handle.Owner := ’SCOTT’;
handle.Name := ’PACK’;
handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
retval := dbms_debug.get_value(’VAR’, handle, resultbuf, NULL);

END;

SET_VALUE Function

This function sets a value in the currently-running program. There are two
overloaded SET_VALUE functions.

Syntax
DBMS_DEBUG.SET_VALUE (

frame# IN binary_integer,
assignment_statement IN varchar2)

RETURN BINARY_INTEGER;

Parameters

Returns

Table 10–31 SET_VALUE Function Parameters

Parameter Description

frame# Frame in which the value is to be set; 0 means the currently
executing frame.

assignment_statement An assignment statement (which must be legal PL/SQL) to run
in order to set the value. For example, ’x := 3;’.

Only scalar values are supported in this release. The right side
of the assignment statement must be a scalar.

Table 10–32 SET_VALUE Function Returns

Return Description

success -
10-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
This form of SET_VALUE sets the value of a package variable.

Syntax
DBMS_DEBUG.SET_VALUE (

handle IN program_info,
assignment_statement IN VARCHAR2)

RETURN BINARY_INTEGER;

Parameters

error_illegal_value Not possible to set it to that value.

error_illegal_null Cannot set to NULL because object type specifies it as ’not null’.

error_value_
malformed

Value is not a scalar.

error_name_
incomplete

The assignment statement does not resolve to a scalar. For
example, ’x := 3;’, if x is a record.

Table 10–33 SET_VALUE Function Parameters

Parameter Description

handle Description of the package containing the variable.

assignment_statement An assignment statement (which must be legal PL/SQL) to run
in order to set the value. For example, ’x := 3;’.

Only scalar values are supported in this release. The right side
of the assignment statement must be a scalar.

Table 10–34 SET_VALUE Function Returns

Return Description

error_no_such_object Either:

- Package does not exist.

- Package is not instantiated.

- User does not have privileges to debug the package.

- Object does not exist in the package.

Table 10–32 SET_VALUE Function Returns

Return Description
DBMS_DEBUG 10-33

DETACH_SESSION Procedure
In some cases, the PL/SQL compiler uses temporaries to access package variables,
and Probe does not guarantee to update such temporaries. It is possible, although
unlikely, that modification to a package variable using SET_VALUE might not take
effect for a line or two.

Example
To set the value of SCOTT.PACK.var to 6:

DECLARE
handle dbms_debug.program_info;
retval BINARY_INTEGER;

BEGIN
handle.Owner := ’SCOTT’;
handle.Name := ’PACK’;
handle.namespace := dbms_debug.namespace_pkgspec_or_toplevel;
retval := dbms_debug.set_value(handle, ’var := 6;’);

END;

DETACH_SESSION Procedure

This procedure stops debugging the target program. This procedure may be called
at any time, but it does not notify the target session that the debug session is
detaching itself, and it does not abort execution of the target session. Therefore, care
should be taken to ensure that the target session does not hang itself.

Syntax
DBMS_DEBUG.DETACH_SESSION;

GET_RUNTIME_INFO Function

This function returns information about the current program. It is only needed if the
info_requested parameter to SYNCHRONIZE or CONTINUE was set to 0.

Syntax
DBMS_DEBUG.GET_RUNTIME_INFO (

Note: This is currently only used by client-side PL/SQL.
10-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
info_requested IN BINARY_INTEGER,
run_info OUT runtime_info)

RETURN BINARY_INTEGER;

Parameters

GET_INDEXES Function

Given a name of a variable or parameter, this function returns the set of its indexes,
if it is an indexed table. An error is returned if it is not an indexed table.

Syntax
DBMS_DEBUG.GET_INDEXES (

varname IN VARCHAR2,
frame# IN BINARY_INTEGER,
handle IN program_info,
entries OUT index_table)

RETURN BINARY_INTEGER;

Parameters

Table 10–35 GET_RUNTIME_INFO Function Parameters

Parameter Description

info_requested Which information should be returned in run_info when the
program stops. See "Information Flags" on page 10-10.

run_info Information about the state of the program.

Table 10–36 GET_INDEXES Function Parameters

Parameter Description

varname Name of the variable to get index information about.

frame# Number of frame in which the variable or parameter resides;
NULL for a package variable.

handle Package description, if object is a package variable.

entries 1-based table of the indexes. If non-NULL, then entries (1)
contains the first index of the table, entries (2) contains the
second index, and so on.
DBMS_DEBUG 10-35

EXECUTE Procedure
Returns

EXECUTE Procedure

This procedure executes SQL or PL/SQL code in the target session. The target
session is assumed to be waiting at a breakpoint (or other event). The call to DBMS_
DEBUG.EXECUTE occurs in the debug session, which then asks the target session to
execute the code.

Syntax
DBMS_DEBUG.EXECUTE (

what IN VARCHAR2,
frame# IN BINARY_INTEGER,
bind_results IN BINARY_INTEGER,
results IN OUT NOCOPY dbms_debug_vc2coll,
errm IN OUT NOCOPY VARCHAR2);

Parameters

Table 10–37 GET_INDEXES Function Returns

Return Description

error_no_such_object Either:

- The package does not exist.

- The package is not instantiated.

- The user does not have privileges to debug the package.

- The object does not exist in the package.

Table 10–38 EXECUTE Procedure Parameters

Parameter Description

what SQL or PL/SQL source to execute.

frame# The context in which to execute the code. Only -1 (global
context) is supported at this time.
10-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
Example 1
This example executes a SQL statement. It returns no results.

DECLARE
coll sys.dbms_debug_vc2coll; -- results (unused)
errm VARCHAR2(100);

BEGIN
dbms_debug.execute(’insert into emp(ename,empno,deptno) ’ ||

’values(’’LJE’’, 1, 1)’,
-1, 0, coll, errm);

END;

Example 2
This example executes a PL/SQL block, and it returns no results. The block is an
autonomous transaction, which means that the value inserted into the table
becomes visible in the debug session.

DECLARE
coll sys.dbms_debug_vc2coll;
errm VARCHAR2(100);

BEGIN
dbms_debug.execute(

’DECLARE PRAGMA autonomous_transaction; ’ ||
’BEGIN ’ ||
’ insert into emp(ename, empno, deptno) ’ ||
’ values(’’LJE’’, 1, 1); ’ ||
’ COMMIT; ’ ||
’END;’,
-1, 0, coll, errm);

END;

bind_results Whether the source wants to bind to results in order to
return values from the target session.

0 = No

1 = Yes

results Collection in which to place results, if bind_results is not 0.

errm Error message, if an error occurred; otherwise, NULL.

Table 10–38 EXECUTE Procedure Parameters

Parameter Description
DBMS_DEBUG 10-37

PRINT_INSTANTIATIONS Procedure
Example 3
This example executes a PL/SQL block, and it returns some results.

DECLARE
coll sys.dbms_debug_vc2coll;
errm VARCHAR2(100);

BEGIN
dbms_debug.execute(

’DECLARE ’ ||
’ pp SYS.dbms_debug_vc2coll := SYS.dbms_debug_vc2coll(); ’ ||
’ x PLS_INTEGER; ’ ||
’ i PLS_INTEGER := 1; ’ ||
’BEGIN ’ ||
’ SELECT COUNT(*) INTO x FROM emp; ’ ||
’ pp.EXTEND(x * 6); ’ ||
’ FOR c IN (SELECT * FROM emp) LOOP ’ ||
’ pp(i) := ’’Ename: ’’ || c.ename; i := i+1; ’ ||
’ pp(i) := ’’Empno: ’’ || c.empno; i := i+1; ’ ||
’ pp(i) := ’’Job: ’’ || c.job; i := i+1; ’ ||
’ pp(i) := ’’Mgr: ’’ || c.mgr; i := i+1; ’ ||
’ pp(i) := ’’Sal: ’’ || c.sal; i := i+1; ’ ||
’ pp(i) := null; i := i+1; ’ ||
’ END LOOP; ’ ||
’ :1 := pp;’ ||
’END;’,

-1, 1, coll, errm);
each := coll.FIRST;
WHILE (each IS NOT NULL) LOOP

dosomething(coll(each));
each := coll.NEXT(each);

END LOOP;
END;

PRINT_INSTANTIATIONS Procedure

This procedure returns a list of the packages that have been instantiated in the
current session.

Syntax
DBMS_DEBUG.PRINT_INSTANTIATIONS (

pkgs IN OUT NOCOPY backtrace_table,
10-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
flags IN BINARY_INTEGER);

Parameters

Exceptions
 no_target_program - target session is not currently executing

Usage Notes
On return, pkgs contains a program_info for each instantiation. The valid fields
are: Namespace, Name, Owner, and LibunitType.

In addition, Line# contains a bitmask of:

� 1 - the libunit contains debug info

� 2 - the libunit is shrink-wrapped

TARGET_PROGRAM_RUNNING Procedure

This procedure returns TRUE if the target session is currently executing a stored
procedure, or FALSE if it is not.

Syntax
FUNCTION target_program_running RETURN BOOLEAN;

Table 10–39 PRINT_INSTANTIATIONS Procedure Parameters

Parameter Description

pkgs (OUT) The instantiated packages

flags Bitmask of options:

� 1 - show specs

� 2 - show bodies

� 4 - show local instantiations

� 8 - show remote instantiations (NYI)

� 16 - do a fast job. The routine does not test whether debug
information exists or whether the libunit is
shrink-wrapped.
DBMS_DEBUG 10-39

PING Procedure
PING Procedure

This procedure pings the target session, to prevent it from timing out. Use this
procedure when execution is suspended in the target session, for example at a
breakpoint.

If the timeout_behavior is set to retry_on_timeout then this procedure is not
necessary.

Syntax
DBMS_DEBUG.PING;

Exceptions
Oracle will display the no_target_program exception if there is no target
program or if the target session is not currently waiting for input from the debug
session.

Timeout Options
Timeout options for the target session are registered with the target session by
calling set_timeout_behavior.

� retry_on_timeout - Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

� continue_on_timeout - Continue execution, using same event flags.

� nodebug_on_timeout - Turn debug-mode OFF (in other words, call debug_
off) and then continue execution. No more events will be generated by this
target session unless it is re-initialized by calling debug_on.

� abort_on_timeout - Continue execution, using the abort_execution flag,
which should cause the program to abort immediately. The session remains in
debug-mode.

retry_on_timeout CONSTANT BINARY_INTEGER:= 0;

continue_on_timeout CONSTANT BINARY_INTEGER:= 1;

nodebug_on_timeout CONSTANT BINARY_INTEGER:= 2;

abort_on_timeout CONSTANT BINARY_INTEGER:= 3;
10-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
SET_TIMEOUT_BEHAVIOR Procedure

This procedure tells Probe what to do with the target session when a timeout
occurs. This call is made in the target session.

Syntax
DBMS_DEBUG.SET_TIMEOUT_BEHAVIOR (

behavior IN PLS_INTEGER);

Parameters

Exceptions
unimplemented - the requested behavior is not recognized

Usage Notes
The default behavior (if this procedure is not called) is continue_on_timeout,
since it allows a debugger client to reestablish control (at the next event) but does
not cause the target session to hang indefinitely.

Table 10–40 SET_TIMEOUT_BEHAVIOR Procedure Parameters

Parameter Description

behavior - One of the
following:

� retry_on_timeout Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

� continue_on_timeout Continue execution, using same event flags.

� nodebug_on_timeout Turn debug-mode OFF (in other words, call debug_off)
and continue execution. No more events will be generated
by this target session unless it is re-initialized by calling
debug_on.

� abort_on_timeout Continue execution, using the abort_execution flag,
which should cause the program to abort immediately.
The session remains in debug-mode.
DBMS_DEBUG 10-41

GET_TIMEOUT_BEHAVIOR Function
GET_TIMEOUT_BEHAVIOR Function

This procedure returns the current timeout behavior. This call is made in the target
session.

Syntax
DBMS_DEBUG.GET_TIMEOUT_BEHAVIOR (
RETURN BINARY_INTEGER;

Information Flags
info_getOerInfo CONSTANT PLS_INTEGER:= 32;

Reasons
reason_oer_breakpoint CONSTANT BINARY_INTEGER:= 26;

RUNTIME_INFO
Runtime_info gives context information about the running program.

Probe v2.4:

Added OER. It gets set if info_getOerInfo is set. The OER is a positive number.
It can be translated into SQLCODE by translating 1403 to 100, 6510 to 1, and
negating any other value.

TYPE runtime_info IS RECORD
(

Line# BINARY_INTEGER, (duplicate of program.line#)
Terminated BINARY_INTEGER, has the program terminated?
Breakpoint BINARY_INTEGER, breakpoint number
StackDepth BINARY_INTEGER, number of frames on the stack
InterpreterDepth BINARY_INTEGER, <reserved field>
Reason BINARY_INTEGER, reason for suspension
Program program_info, source location

Following fields were added in Probe v2.4 oer PLS_INTEGER OER
(exception), if any

);

oer_table

Used by show_breakpoints

TYPE oer_table IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;
10-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
- SET_OER_BREAKPOINT

Set a breakpoint on an OER. The breakpoint persists for the session (or until
deleted), as with code breakpoints.

Parameters

Returns
success

Usage Notes
Less functionality is supported on OER breakpoints than on code breakpoints. In
particular, note that:

� No "breakpoint number" is returned - the number of the OER is used instead.
Thus it is impossible to set duplicate breakpoints on a given OER (it is a no-op).

� It is not possible to disable an OER breakpoint (although clients are free to
simulate this by deleting it).

� OER breakpoints are deleted using delete_oer_breakpoint.

SET_OER_BREAKPOINT Function

This function sets an OER breakpoint.

Syntax
DBMS_DEBUG.SET_OER_BREAKPOINT (

oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

Table 10–41

Parameter Description

oer The OER (a 4-byte positive number).
DBMS_DEBUG 10-43

DELETE_OER_BREAKPOINT Function
Parameters

Returns
success

error_no_such_breakpt - no such OER breakpoint exists

DELETE_OER_BREAKPOINT Function

This function deletes an OER breakpoint.

Syntax
DBMS_DEBUG.DELETE_OER_BREAKPOINT (

oer IN PLS_INTEGER)
RETURN PLS_INTEGER;

SHOW_BREAKPOINTS Procedure

Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (

code_breakpoints OUT breakpoint_table,
oer_breakpoints OUT oer_table);

Parameters

Table 10–42 SET_OER_BREAKPOINT Function Parameters

Parameter Description

oer The OER (positive 4-byte number) to delete.

Table 10–43 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

code_breakpoints The indexed table of breakpoint entries, indexed by breakpoint
number.

oer_breakpoints The indexed table of OER breakpoints, indexed by OER.
10-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms
� code_breakpoints - indexed table of breakpoint entries, indexed by breakpoint
number.

� oer_breakpoints - indexed table of OER breakpoints, indexed by OER.

� PROCEDURE show_breakpoints (code_breakpoints OUT breakpoint_table,
oer_breakpoints OUT oer_table);
DBMS_DEBUG 10-45

SHOW_BREAKPOINTS Procedure
10-46 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
11

DBMS_DEFER

DBMS_DEFER is the user interface to a replicated transactional deferred remote
procedure call facility. Replicated applications use the calls in this interface to queue
procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application
specified update procedures.

This chapter discusses the following topics:

� Summary of DBMS_DEFER Subprograms
_DEFER 11-1

Summary of DBMS_DEFER Subprograms
Summary of DBMS_DEFER Subprograms

CALL Procedure
This procedure builds a deferred call to a remote procedure.

Syntax
DBMS_DEFER.CALL (

schema_name IN VARCHAR2,
package_name IN VARCHAR2,
proc_name IN VARCHAR2,
arg_count IN NATURAL,
{ nodes IN node_list_t
| group_name IN VARCHAR2 :=’’});

Table 11–1 DBMS_DEFER Package Subprograms

Subprogram Description

CALL Procedure on
page 11-2

Builds a deferred call to a remote procedure.

COMMIT_WORK
Procedure on page 11-3

Performs a transaction commit after checking for well-formed
deferred remote procedure calls.

datatype_ARG Procedure
on page 11-4

Provides the data that is to be passed to a deferred remote
procedure call.

TRANSACTION
Procedure on page 11-6

Indicates the start of a new deferred transaction.

Note: This procedure is overloaded. The nodes and group_name
parameters are mutually exclusive.
11-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms
Parameters

Exceptions

COMMIT_WORK Procedure
This procedure performs a transaction commit after checking for well-formed
deferred remote procedure calls.

Syntax
DBMS_DEFER.COMMIT_WORK (

Table 11–2 CALL Procedure Parameters

Parameter Description

schema_name Name of the schema in which the stored procedure is located.

package_name Name of the package containing the stored procedure. The stored
procedure must be part of a package. Deferred calls to standalone
procedures are not supported.

proc_name Name of the remote procedure to which you want to defer a call.

arg_count Number of parameters for the procedure. You must have one call to
DBMS_DEFER.datatype_ARG for each of these parameters.

Note: You must include all of the parameters for the procedure,
even if some of the parameters have defaults.

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred call. The table is indexed
starting at position 1 and continuing until a NULL entry is found, or
the no_data_found exception is raised. The data in the table is
case insensitive. This parameter is optional.

group_name Reserved for internal use.

Table 11–3 CALL Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous call was not correctly formed.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Destination list (specified by nodes or by a previous DBMS_
DEFER.TRANSACTION call) contains duplicates.
DBMS_DEFER 11-3

datatype_ARG Procedure
commit_work_comment IN VARCHAR2);

Parameters

Exceptions

datatype _ARG Procedure
This procedure provides the data that is to be passed to a deferred remote
procedure call. Depending upon the type of the data that you need to pass to a
procedure, you must call one of the following procedures for each argument to the
procedure.

You must specify each parameter in your procedure using the datatype_ARG
procedure after you execute DBMS_DEFER.CALL. That is, you cannot use the
default parameters for the deferred remote procedure call. For example, suppose
you have the following procedure:

CREATE OR REPLACE PACKAGE my_pack AS
PROCEDURE my_proc(a VARCHAR2, b VARCHAR2 DEFAULT ’SALES’);

END;
/

When you run the DBMS_DEFER.CALL procedure, you must include a separate
procedure call for each parameter in the my_proc procedure:

CREATE OR REPLACE PROCEDURE load_def_tx IS
node DBMS_DEFER.NODE_LIST_T;

BEGIN
node(1) := 'MYCOMPUTER.WORLD';
node(2) := NULL;
DBMS_DEFER.TRANSACTION(node);

Table 11–4 COMMIT_WORK Procedure Parameters

Parameter Description

commit_work_
comment

Equivalent to the COMMIT COMMENT statement in SQL.

Table 11–5 COMMIT_WORK Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Transaction was not correctly formed or terminated.
11-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms
DBMS_DEFER.CALL('PR', 'MY_PACK', 'MY_PROC', 2);
DBMS_DEFER.VARCHAR2_ARG('TEST');
DBMS_DEFER.VARCHAR2_ARG('SALES'); -- required, cannot omit to use default

END;
/

Syntax
DBMS_DEFER.AnyData_ARG (arg IN SYS.AnyData);
DBMS_DEFER.NUMBER_ARG (arg IN NUMBER);
DBMS_DEFER.DATE_ARG (arg IN DATE);
DBMS_DEFER.VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.CHAR_ARG (arg IN CHAR);
DBMS_DEFER.ROWID_ARG (arg IN ROWID);
DBMS_DEFER.RAW_ARG (arg IN RAW);
DBMS_DEFER.BLOB_ARG (arg IN BLOB);
DBMS_DEFER.CLOB_ARG (arg IN CLOB);
DBMS_DEFER.NCLOB_ARG (arg IN NCLOB);
DBMS_DEFER.NCHAR_ARG (arg IN NCHAR);
DBMS_DEFER.NVARCHAR2_ARG (arg IN NVARCHAR2);
DBMS_DEFER.ANY_CLOB_ARG (arg IN CLOB);
DBMS_DEFER.ANY_VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.ANY_CHAR_ARG (arg IN CHAR);
DBMS_DEFER.IDS_ARG (arg IN DSINTERVAL_UNCONSTRAINED);
DBMS_DEFER.IYM_ARG (arg IN YMINTERVAL_UNCONSTRAINED);
DBMS_DEFER.TIMESTAMP_ARG (arg IN TIMESTAMP_UNCONSTRAINED);
DBMS_DEFER.TSLTZ_ARG (arg IN TIMESTAMP_LTZ_UNCONSTRAINED);
DBMS_DEFER.TSTZ_ARG (arg IN TIMESTAMP_TZ_UNCONSTRAINED);

Note:

� The AnyData_ARG procedure supports the following
user-defined types: object types, collections, and REFs. See
Oracle9i SQL Reference for more information about the AnyData
datatype.

� This procedure uses abbreviations for some datetime and
interval datatypes. For example, TSTZ is used for the
TIMESTAMP WITH TIME ZONE datatype. For information about
these abbreviations, see "Abbreviations for Datetime and
Interval Datatypes" on page 1-6.
DBMS_DEFER 11-5

TRANSACTION Procedure
Parameters

Exceptions

TRANSACTION Procedure
This procedure indicates the start of a new deferred transaction. If you omit this
call, then Oracle considers your first call to DBMS_DEFER.CALL to be the start of a
new transaction.

Syntax
DBMS_DEFER.TRANSACTION (

nodes IN node_list_t);

Table 11–6 datatype_ARG Procedure Parameters

Parameter Description

arg Value of the parameter that you want to pass to the remote
procedure to which you previously deferred a call.

Table 11–7 datatype_ARG Procedure Exceptions

Exception Description

ORA-23323 Argument value is too long.

Note: This procedure is overloaded. The behavior of the version
without an input parameter is similar to that of the version with an
input parameter, except that the former uses the nodes in the
DEFDEFAULTDEST view instead of using the nodes in the nodes
parameter.
11-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms
Parameters

Exceptions

Table 11–8 TRANSACTION Procedure Parameters

Parameter Description

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred calls of the transaction.
The table is indexed starting at position 1 and continuing until a
NULL entry is found, or the no_data_found exception is raised.
The data in the table is case insensitive.

Table 11–9 TRANSACTION Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous transaction was not correctly formed or terminated.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Raised by DBMS_DEFER.CALL if the node list contains duplicates.
DBMS_DEFER 11-7

TRANSACTION Procedure
11-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_DEFER_Q
12

DBMS_DEFER_QUERY

DBMS_DEFER_QUERY enables you to query the deferred transactions queue data
that is not exposed through views.

This chapter discusses the following topics:

� Summary of DBMS_DEFER_QUERY Subprograms
UERY 12-1

Summary of DBMS_DEFER_QUERY Subprograms
Summary of DBMS_DEFER_QUERY Subprograms

GET_ARG_FORM Function
This function returns the character set form of a deferred call parameter.

Syntax
DBMS_DEFER_QUERY.GET_ARG_FORM (

callno IN NUMBER,
arg_no IN NUMBER,
deferred_tran_id IN VARCHAR2)

RETURN NUMBER;

Parameters

Table 12–1 DBMS_DEFER_QUERY Package Subprograms

Subprogram Description

GET_ARG_FORM Function on
page 12-2

Determines the form of an argument in a deferred call.

GET_ARG_TYPE Function on
page 12-3

Determines the type of an argument in a deferred call.

GET_CALL_ARGS Procedure
on page 12-6

Returns the text version of the various arguments for the
specified call.

GET_datatype_ARG Function
on page 12-7

Determines the value of an argument in a deferred call.

GET_OBJECT_NULL_
VECTOR_ARG Function on
page 12-9

Returns the type information for a column object.

See Also: The Replication Management tool’s online help for
information about displaying deferred transactions and error
transactions in the Replication Management tool

Table 12–2 GET_ARG_FORM Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.
12-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms
Exceptions

Returns

GET_ARG_TYPE Function
This function determines the type of an argument in a deferred call. The type of the
deferred remote procedure call (RPC) parameter is returned.

deferred_tran_id Deferred transaction identification.

Table 12–3 GET_ARG_FORM Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

Table 12–4 GET_ARG_FORM Function Returns

Constant Return Value Return Value Possible Datatype

DBMS_DEFER_QUERY.ARG_FORM_NONE 0 DATE

NUMBER

ROWID

RAW

BLOB

User-defined types

DBMS_DEFER_QUERY.ARG_FORM_
IMPLICIT

1 CHAR

VARCHAR2

CLOB

DBMS_DEFER_QUERY.ARG_FORM_NCHAR 2 NCHAR

NVARCHAR2

NCLOB

Table 12–2 GET_ARG_FORM Function Parameters

Parameter Description
DBMS_DEFER_QUERY 12-3

GET_ARG_TYPE Function
Syntax
DBMS_DEFER_QUERY.GET_ARG_TYPE (

callno IN NUMBER,
arg_no IN NUMBER,
deferred_tran_id IN VARCHAR2)

RETURN NUMBER;

Parameters

Exceptions

See Also: The Replication Management tool’s online help for
information about displaying deferred transactions and error
transactions in the Replication Management tool

Table 12–5 GET_ARG_TYPE Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose type you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction.

Table 12–6 GET_ARG_TYPE Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.
12-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms
Returns

Table 12–7 GET_ARG_TYPE Function Returns

Constant Return Value
Return
Value

Corresponding
Datatype

DBMS_DEFER_QUERY.ARG_TYPE_VARCHAR2 1 VARCHAR2

DBMS_DEFER_QUERY.ARG_TYPE_NUM 2 NUMBER

DBMS_DEFER_QUERY.ARG_TYPE_ROWID 11 ROWID

DBMS_DEFER_QUERY.ARG_TYPE_DATE 12 DATE

DBMS_DEFER_QUERY.ARG_TYPE_RAW 23 RAW

DBMS_DEFER_QUERY.ARG_TYPE_CHAR 96 CHAR

DBMS_DEFER_QUERY.ARG_TYPE_AnyData 109 AnyData

DBMS_DEFER_QUERY.ARG_TYPE_CLOB 112 CLOB

DBMS_DEFER_QUERY.ARG_TYPE_BLOB 113 BLOB

DBMS_DEFER_QUERY.ARG_TYPE_BFIL 114 BFILE

DBMS_DEFER_QUERY.ARG_TYPE_OBJECT_NULL_
VECTOR

121 OBJECT_NULL_
VECTOR

DBMS_DEFER_QUERY.ARG_TYPE_TIMESTAMP 180 TIMESTAMP

DBMS_DEFER_QUERY.ARG_TYPE_TSTZ 181 TSTZ

DBMS_DEFER_QUERY.ARG_TYPE_IYM 182 IYM

DBMS_DEFER_QUERY.ARG_TYPE_IDS 183 IDS

DBMS_DEFER_QUERY.ARG_TYPE_TSLTZ 231 TSLTZ
DBMS_DEFER_QUERY 12-5

GET_CALL_ARGS Procedure
GET_CALL_ARGS Procedure
This procedure returns the text version of the various arguments for the specified
call. The text version is limited to the first 2000 bytes.

Syntax
DBMS_DEFER_QUERY.GET_CALL_ARGS (

callno IN NUMBER,
startarg IN NUMBER := 1,
argcnt IN NUMBER,
argsize IN NUMBER,
tran_id IN VARCHAR2,
date_fmt IN VARCHAR2,
types OUT TYPE_ARY,
forms OUT TYPE_ARY,
vals OUT VAL_ARY);

Note:

� The AnyData datatype supports the following user-defined
types: object types, collections, and REFs. See Oracle9i SQL
Reference for more information about the AnyData datatype.

� This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ is used for the TIMESTAMP WITH
TIME ZONE datatype. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Datatypes" on page 1-6.

See Also:

� "GET_datatype_ARG Function" on page 12-7

� Oracle9i SQL Reference for more information about the AnyData
datatype
12-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms
Parameters

Exceptions

GET_datatype _ARG Function
This function determines the value of an argument in a deferred call.

The AnyData type supports the following user-defined types: object types,
collections and REFs. Not all types supported by this function can be enqueued by
the AnyData_ARG procedure in the DBMS_DEFER package.

The returned text for type arguments includes the following values: type owner,
type name, type version, length, precision, scale, character set identifier, character
set form, and number of elements for collections or number of attributes for object
types. These values are separated by a colon (:).

Table 12–8 GET_CALL_ARGS Procedure Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call (RPC).

startarg Numerical position of the first argument you want described.

argcnt Number of arguments in the call.

argsize Maximum size of returned argument.

tran_id Identifier of the deferred transaction.

date_fmt Format in which the date is returned.

types Array containing the types of arguments.

forms Array containing the character set forms of arguments.

vals Array containing the values of the arguments in a textual form.

Table 12–9 GET_CALL_ARGS Procedure Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred call.
DBMS_DEFER_QUERY 12-7

GET_datatype_ARG Function
Syntax
Depending upon the type of the argument value that you want to retrieve, the
syntax for the appropriate function is as follows. Each of these functions returns the
value of the specified argument.

DBMS_DEFER_QUERY.GET_datatype _ARG (
callno IN NUMBER,
arg_no IN NUMBER,
deferred_tran_id IN VARCHAR2 DEFAULT NULL)

RETURNdatatype;

where datatype is:

{ AnyData
| NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| ROWID
| BLOB
| CLOB
| NCLOB
| NCHAR
| NVARCHAR2
| IDS
| IYM
| TIMESTAMP

See Also:

� "datatype_ARG Procedure" on page 11-4

� The Replication Management tool’s online help for information
about displaying deferred transactions and error transactions in
the Replication Management tool

� Oracle9i SQL Reference for more information about the AnyData
datatype

� This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ is used for the TIMESTAMP WITH
TIME ZONE datatype. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Datatypes" on page 1-6.
12-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms
| TSLTZ
| TSTZ }

Parameters

Exceptions

GET_OBJECT_NULL_VECTOR_ARG Function
This function returns the type information for a column object, including the type
owner, name, and hashcode.

Syntax
DBMS_DEFER_QUERY.GET_OBJECT-NULL_VECTOR_ARG (

callno IN NUMBER,
arg_no IN NUMBER,
deferred_tran_id IN VARCHAR2)

RETURN SYSTEM.REPCAT$_OBJECT_NULL_VECTOR;

Table 12–10 GET_datatype_ARG Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose value you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction. Defaults to the last
transaction identifier passed to the GET_ARG_TYPE function. The
default is NULL.

Table 12–11 GET_datatype_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Argument in this position is not of the specified type or is not
one of the types supported by the AnyData type.
DBMS_DEFER_QUERY 12-9

GET_OBJECT_NULL_VECTOR_ARG Function
Parameters

Exceptions

Returns

Table 12–12 GET_OBJECT_NULL_VECTOR_ARG Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.

deferred_tran_id Deferred transaction identification.

Table 12–13 GET_OBJECT_NULL_VECTOR_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Parameter is not an object_null_vector type.

Table 12–14 GET_OBJECT_NULL_VECTOR_ARG Function Returns

Return Value Type Definition

SYSTEM.REPCAT$_OBJECT_NULL_VECTOR type CREATE TYPE

SYSTEM.REPCAT$_OBJECT_NULL_VECTOR

AS OBJECT (

type_owner VARCHAR2(30),

type_name VARCHAR2(30),

type_hashcode RAW(17),

null_vector RAW(2000));
12-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_DEFE
13

DBMS_DEFER_SYS

DBMS_DEFER_SYS procedures manage default replication node lists. This package
is the system administrator interface to a replicated transactional deferred remote
procedure call facility. Administrators and replication daemons can execute
transactions queued for remote nodes using this facility, and administrators can
control the nodes to which remote calls are destined.

This chapter discusses the following topics:

� Summary of DBMS_DEFER_SYS Subprograms
R_SYS 13-1

Summary of DBMS_DEFER_SYS Subprograms
Summary of DBMS_DEFER_SYS Subprograms

Table 13–1 DBMS_DEFER_SYS Package Subprograms

Subprogram Description

ADD_DEFAULT_DEST
Procedure on page 13-3

Adds a destination database to the DEFDEFAULTDEST view.

CLEAR_PROP_
STATISTICS Procedure on
page 13-4

Clears the propagation statistics in the DEFSCHEDULE data
dictionary view.

DELETE_DEFAULT_DEST
Procedure on page 13-5

Removes a destination database from the DEFDEFAULTDEST
view.

DELETE_DEF_
DESTINATION Procedure
on page 13-5

Removes a destination database from the DEFSCHEDULE view.

DELETE_ERROR
Procedure on page 13-6

Deletes a transaction from the DEFERROR view.

DELETE_TRAN Procedure
on page 13-6

Deletes a transaction from the DEFTRANDEST view.

DISABLED Function on
page 13-7

Determines whether propagation of the deferred transaction
queue from the current site to a specified site is enabled.

EXCLUDE_PUSH
Function on page 13-8

Acquires an exclusive lock that prevents deferred transaction
PUSH.

EXECUTE_ERROR
Procedure on page 13-9

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the original
receiver of the transaction.

EXECUTE_ERROR_AS_
USER Procedure on
page 13-10

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the user who
executes this procedure.

PURGE Function on
page 13-11

Purges pushed transactions from the deferred transaction
queue at your current master site or materialized view site.

PUSH Function on
page 13-13

Forces a deferred remote procedure call queue at your current
master site or materialized view site to be pushed to a remote
site.

REGISTER_
PROPAGATOR Procedure
on page 13-17

Registers the specified user as the propagator for the local
database.
13-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
ADD_DEFAULT_DEST Procedure
This procedure adds a destination database to the DEFDEFAULTDEST data
dictionary view.

Syntax
DBMS_DEFER_SYS.ADD_DEFAULT_DEST (

dblink IN VARCHAR2);

Parameters

SCHEDULE_PURGE
Procedure on page 13-17

Schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized
view site.

SCHEDULE_PUSH
Procedure on page 13-19

Schedules a job to push the deferred transaction queue to a
remote site.

SET_DISABLED
Procedure on page 13-21

Disables or enables propagation of the deferred transaction
queue from the current site to a specified destination site.

UNREGISTER_
PROPAGATOR Procedure
on page 13-23

Unregisters a user as the propagator from the local database.

UNSCHEDULE_PURGE
Procedure on page 13-24

Stops automatic purges of pushed transactions from the
deferred transaction queue at a master site or materialized
view site.

UNSCHEDULE_PUSH
Procedure on page 13-24

Stops automatic pushes of the deferred transaction queue from
a master site or materialized view site to a remote site.

Table 13–2 ADD_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
add to the DEFDEFAULTDEST view.

Table 13–1 DBMS_DEFER_SYS Package Subprograms

Subprogram Description
DBMS_DEFER_SYS 13-3

CLEAR_PROP_STATISTICS Procedure
Exceptions

CLEAR_PROP_STATISTICS Procedure
This procedure clears the propagation statistics in the DEFSCHEDULE data
dictionary view. When this procedure is executed successfully, all statistics in this
view are returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the
DEFSCHEDULE data dictionary view:

� TOTAL_TXN_COUNT

� AVG_THROUGHPUT

� AVG_LATENCY

� TOTAL_BYTES_SENT

� TOTAL_BYTES_RECEIVED

� TOTAL_ROUND_TRIPS

� TOTAL_ADMIN_COUNT

� TOTAL_ERROR_COUNT

� TOTAL_SLEEP_TIME

Syntax
DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (

dblink IN VARCHAR2);

Table 13–3 ADD_DEFAULT_DEST Procedure Exceptions

Exception Description

ORA-23352 The dblink that you specified is already in the default list.
13-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
Parameters

DELETE_DEFAULT_DEST Procedure
This procedure removes a destination database from the DEFDEFAULTDEST view.

Syntax
DBMS_DEFER_SYS.DELETE_DEFAULT_DEST (

dblink IN VARCHAR2);

Parameters

DELETE_DEF_DESTINATION Procedure
This procedure removes a destination database from the DEFSCHEDULE view.

Syntax
DBMS_DEFER_SYS.DELETE_DEF_DESTINATION (

destination IN VARCHAR2,
force IN BOOLEAN := false);

Table 13–4 CLEAR_PROP_STATISTICS Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node whose statistics you
want to clear. The statistics to be cleared are the statistics for
propagation of deferred transactions from the current node to the
node you specify for dblink .

Table 13–5 DELETE_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
delete from the DEFDEFAULTDEST view. If Oracle does not find
this dblink in the view, then no action is taken.
DBMS_DEFER_SYS 13-5

DELETE_ERROR Procedure
Parameters

DELETE_ERROR Procedure
This procedure deletes a transaction from the DEFERROR view.

Syntax
DBMS_DEFER_SYS.DELETE_ERROR(

deferred_tran_id IN VARCHAR2,
destination IN VARCHAR2);

Parameters

DELETE_TRAN Procedure
This procedure deletes a transaction from the DEFTRANDEST view. If there are no
other DEFTRANDEST or DEFERROR entries for the transaction, then the transaction is
deleted from the DEFTRAN and DEFCALL views as well.

Table 13–6 DELETE_DEF_DESTINATION Procedure Parameters

Parameter Description

destination The fully qualified database name of the destination that you want
to delete from the DEFSCHEDULE view. If Oracle does not find this
destination in the view, then no action is taken.

force When set to true , Oracle ignores all safety checks and deletes the
destination.

Table 13–7 DELETE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to remove from the DEFERROR view. If
this parameter is NULL, then all transactions meeting the
requirements of the other parameter are removed.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. If this
parameter is NULL, then all transactions meeting the requirements
of the other parameter are removed from the DEFERROR view.
13-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
Syntax
DBMS_DEFER_SYS.DELETE_TRAN (

deferred_tran_id IN VARCHAR2,
destination IN VARCHAR2);

Parameters

DISABLED Function
This function determines whether propagation of the deferred transaction queue
from the current site to a specified site is enabled. The DISABLED function returns
true if the deferred remote procedure call (RPC) queue is disabled for the specified
destination.

Syntax
DBMS_DEFER_SYS.DISABLED (

destination IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Table 13–8 DELETE_TRAN Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFTRAN view of the deferred
transaction that you want to delete. If this is NULL, then all
transactions meeting the requirements of the other parameter are
deleted.

destination The fully qualified database name from the DEFTRANDEST view of
the database to which the transaction was originally queued. If
this is NULL, then all transactions meeting the requirements of the
other parameter are deleted.

Table 13–9 DISABLED Function Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to check.
DBMS_DEFER_SYS 13-7

EXCLUDE_PUSH Function
Returns

Exceptions

EXCLUDE_PUSH Function
This function acquires an exclusive lock that prevents deferred transaction PUSH
(either serial or parallel). This function performs a commit when acquiring the lock.
The lock is acquired with RELEASE_ON_COMMIT => true , so that pushing of the
deferred transaction queue can resume after the next commit.

Syntax
DBMS_DEFER_SYS.EXCLUDE_PUSH (

timeout IN INTEGER)
RETURN INTEGER;

Parameters

Table 13–10 DISABLED Function Return Values

Value Description

true Propagation to this site from the current site is disabled.

false Propagation to this site from the current site is enabled.

Table 13–11 DISABLED Function Exceptions

Exception Description

NO_DATA_FOUND Specified destination does not appear in the DEFSCHEDULE
view.

Table 13–12 EXCLUDE_PUSH Function Parameters

Parameter Description

timeout Timeout in seconds. If the lock cannot be acquired within this time
period (either because of an error or because a PUSH is currently
under way), then the call returns a value of 1. A timeout value of
DBMS_LOCK.MAXWAIT waits indefinitely.
13-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
Returns

EXECUTE_ERROR Procedure
This procedure reexecutes a deferred transaction that did not initially complete
successfully in the security context of the original receiver of the transaction.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR (

deferred_tran_id IN VARCHAR2,
destination IN VARCHAR2);

Parameters

Exceptions

Table 13–13 EXCLUDE_PUSH Function Return Values

Value Description

0 Success, lock acquired.

1 Timeout, no lock acquired.

2 Deadlock, no lock acquired.

4 Already own lock.

Table 13–14 EXECUTE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. This
must not be NULL. If the provided database name is not fully
qualified or is invalid, no error will be raised.

Table 13–15 EXECUTE_ERROR Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters were
used.
DBMS_DEFER_SYS 13-9

EXECUTE_ERROR_AS_USER Procedure
EXECUTE_ERROR_AS_USER Procedure
This procedure reexecutes a deferred transaction that did not initially complete
successfully. Each transaction is executed in the security context of the connected
user.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (

deferred_tran_id IN VARCHAR2,
destination IN VARCHAR2);

Parameters

Exceptions

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

Table 13–16 EXECUTE_ERROR_AS_USER Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. This
must not be NULL.

Table 13–17 EXECUTE_ERROR_AS_USER Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters
were used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

Table 13–15 EXECUTE_ERROR Procedure Exceptions

Exception Description
13-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
PURGE Function
This function purges pushed transactions from the deferred transaction queue at
your current master site or materialized view site.

Syntax
DBMS_DEFER_SYS.PURGE (

purge_method IN BINARY_INTEGER := purge_method_quick,
rollback_segment IN VARCHAR2 := NULL,
startup_seconds IN BINARY_INTEGER := 0,
execution_seconds IN BINARY_INTEGER := seconds_infinity,
delay_seconds IN BINARY_INTEGER := 0,
transaction_count IN BINARY_INTEGER := transactions_infinity,
write_trace IN BOOLEAN := NULL);

RETURN BINARY_INTEGER;

Parameters

Table 13–18 PURGE Function Parameters

Parameter Description

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise :

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. See "Usage Notes" on
page 13-13 for more information.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If > 0, then stop purge cleanly after the specified number of
seconds of real time.
DBMS_DEFER_SYS 13-11

PURGE Function
Returns

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds .

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGE function in the server’s trace file. When set to false ,
Oracle does not record the result value.

Table 13–19 Purge Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds .

result_transaction_count Terminated by exceeding transaction_count .

result_errors Terminated after errors.

result_split_del_order_
limit

Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the purge. If the problem persists, then contact
Oracle Support Services.

result_purge_disabled Queue purging is disabled internally for synchronization
when adding new master sites without quiesce.

Table 13–18 PURGE Function Parameters

Parameter Description
13-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
Exceptions

Usage Notes
When you use the purge_method_quick for the purge_method parameter in the
DBMS_DEFER_SYS.PURGE function, deferred transactions and deferred procedure
calls may remain in the DEFCALL and DEFTRAN data dictionary views after they
have been successfully pushed. This behavior occurs in replication environments
that have more than one database link and the push is executed to only one
database link.

To purge the deferred transactions and deferred procedure calls, perform one of the
following actions:

� Use purge_method_precise for the purge_method parameter instead of
the purge_method_quick . Using purge_method_precise is more
expensive, but it ensures that the deferred transactions and procedure calls are
purged after they have been successfully pushed.

� Using purge_method_quick for the purge_method parameter, push the
deferred transactions to all database links. The deferred transactions and
deferred procedure calls are purged efficiently when the push to the last
database link is successful.

PUSH Function
This function forces a deferred remote procedure call (RPC) queue at your current
master site or materialized view site to be pushed (propagated) to a remote site
using either serial or parallel propagation.

Syntax
DBMS_DEFER_SYS.PUSH (

destination IN VARCHAR2,
parallelism IN BINARY_INTEGER := 0,
heap_size IN BINARY_INTEGER := 0,
stop_on_error IN BOOLEAN := false,

Table 13–20 PURGE Function Exceptions

Exception Description

argoutofrange Parameter value is out of a valid range.

executiondisabled Execution of purging is disabled.

defererror Internal error.
DBMS_DEFER_SYS 13-13

PUSH Function
write_trace IN BOOLEAN := false,
startup_seconds IN BINARY_INTEGER := 0,
execution_seconds IN BINARY_INTEGER := seconds_infinity,
delay_seconds IN BINARY_INTEGER := 0,
transaction_count IN BINARY_INTEGER := transactions_infinity,
delivery_order_limit IN NUMBER := delivery_order_infinity)

RETURN BINARY_INTEGER;

Parameters

Table 13–21 PUSH Function Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file. When set to false , Oracle does
not record the result value.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.
13-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
execution_seconds If > 0, then stop push cleanly after the specified number of seconds
of real time. If transaction_count and execution_seconds
are zero (the default), then transactions are executed until there are
no more in the queue.

The execution_seconds parameter only controls the duration
of time that operations can be started. It does not include the
amount of time that the transactions require at remote sites.
Therefore, the execution_seconds parameter is not intended to
be used as a precise control to stop the propagation of transactions
to a remote site. If a precise control is required, use the
transaction_count or delivery_order parameters.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

delivery_order_
limit

Stop execution cleanly before pushing a transaction where
delivery_order >= delivery_order_limit

Table 13–21 PUSH Function Parameters

Parameter Description
DBMS_DEFER_SYS 13-15

PUSH Function
Returns

Exceptions

Table 13–22 PUSH Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds .

result_transaction_count Terminated by exceeding transaction_count .

result_delivery_order_
limit

Terminated by exceeding delivery_order_limit .

result_errors Terminated after errors.

result_push_disabled Push was disabled internally. Typically, this return value
means that propagation to the destination was set to
disabled internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a later
time

result_split_del_order_
limit

Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the push. If the problem persists, then contact
Oracle Support Services.

Table 13–23 PUSH Function Exceptions

Exception Description

incompleteparallelpu
sh

Serial propagation requires that parallel propagation shuts
down cleanly.

executiondisabled Execution of deferred remote procedure calls (RPCs) is
disabled at the destination.

crt_err_err Error while creating entry in DEFERROR.

deferred_rpc_quiesce Replication activity for replication group is suspended.

commfailure Communication failure during deferred remote procedure call
(RPC).

missingpropagator A propagator does not exist.
13-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
REGISTER_PROPAGATOR Procedure
This procedure registers the specified user as the propagator for the local database.
It also grants the following privileges to the specified user (so that the user can
create wrappers):

� CREATE SESSION

� CREATE PROCEDURE

� CREATE DATABASE LINK

� EXECUTE ANY PROCEDURE

Syntax
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (

username IN VARCHAR2);

Parameters

Exceptions

SCHEDULE_PURGE Procedure
This procedure schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized view site. You should
schedule one purge job.

Table 13–24 REGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the user.

Table 13–25 REGISTER_PROPAGATOR Procedure Exceptions

Exception Description

missinguser Specified user does not exist.

alreadypropagator Specified user is already the propagator.

duplicatepropagat
or

There is already a different propagator.
DBMS_DEFER_SYS 13-17

SCHEDULE_PURGE Procedure
Syntax
DBMS_DEFER_SYS.SCHEDULE_PURGE (

interval IN VARCHAR2,
next_date IN DATE,
reset IN BOOLEAN := NULL,
purge_method IN BINARY_INTEGER := NULL,
rollback_segment IN VARCHAR2 := NULL,
startup_seconds IN BINARY_INTEGER := NULL,
execution_seconds IN BINARY_INTEGER := NULL,
delay_seconds IN BINARY_INTEGER := NULL,
transaction_count IN BINARY_INTEGER := NULL,
write_trace IN BOOLEAN := NULL);

Parameters

See Also: Oracle9i Replication for information about using this
procedure to schedule continuous or periodic purge of your
deferred transaction queue

Table 13–26 SCHEDULE_PURGE Procedure Parameters

Parameter Description

interval Allows you to provide a function to calculate the next time to
purge. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, you must supply a value for next_
date .

next_date Allows you to specify a time to purge pushed transactions from
the site’s queue. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, it is created with a value of
NULL. If you do not supply a value for this field, then you must
supply a value for interval .

reset Set to true to reset LAST_TXN_COUNT, LAST_ERROR, and LAST_
MSG to NULL.
13-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
SCHEDULE_PUSH Procedure
This procedure schedules a job to push the deferred transaction queue to a remote
site. This procedure performs a COMMIT.

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise :

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. For more
information, see "Usage Notes" on page 13-13. These usage notes
are for the DBMS_DEFER_SYS.PURGE function, but they also
apply to the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If >0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds .

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGE function in the server’s trace file.

Table 13–26 SCHEDULE_PURGE Procedure Parameters

Parameter Description
DBMS_DEFER_SYS 13-19

SCHEDULE_PUSH Procedure
Syntax
DBMS_DEFER_SYS.SCHEDULE_PUSH (

destination IN VARCHAR2,
interval IN VARCHAR2,
next_date IN DATE,
reset IN BOOLEAN := false,
parallelism IN BINARY_INTEGER := NULL,
heap_size IN BINARY_INTEGER := NULL,
stop_on_error IN BOOLEAN := NULL,
write_trace IN BOOLEAN := NULL,
startup_seconds IN BINARY_INTEGER := NULL,
execution_seconds IN BINARY_INTEGER := NULL,
delay_seconds IN BINARY_INTEGER := NULL,
transaction_count IN BINARY_INTEGER := NULL);

Parameters

See Also: Oracle9i Replication for information about using this
procedure to schedule continuous or periodic push of your
deferred transaction queue

Table 13–27 SCHEDULE_PUSH Procedure Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

interval Allows you to provide a function to calculate the next time to
push. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, then you must supply a value for
next_date .

next_date Allows you to specify a time to push deferred transactions to the
remote site. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, then it is created with a value
of NULL. If you do not supply a value for this field, then you must
supply a value for interval .
13-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
SET_DISABLED Procedure
This procedure disables or enables propagation of the deferred transaction queue
from the current site to a specified destination site. If the disabled parameter is
true , then the procedure disables propagation to the specified destination and
future invocations of PUSH do not push the deferred remote procedure call (RPC)
queue. SET_DISABLED eventually affects a session already pushing the queue to

reset Set to true to reset LAST_TXN_COUNT, LST_ERROR, and LAST_
MSG to NULL.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If >0, then stop execution cleanly after the specified number of
seconds of real time. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

Table 13–27 SCHEDULE_PUSH Procedure Parameters

Parameter Description
DBMS_DEFER_SYS 13-21

SET_DISABLED Procedure
the specified destination, but does not affect sessions appending to the queue with
DBMS_DEFER.

If the disabled parameter is false , then the procedure enables propagation to the
specified destination and, although this does not push the queue, it permits future
invocations of PUSH to push the queue to the specified destination. Whether the
disabled parameter is true or false , a COMMIT is required for the setting to take
effect in other sessions.

Syntax
DBMS_DEFER_SYS.SET_DISABLED (

destination IN VARCHAR2,
disabled IN BOOLEAN := true,
catchup IN RAW := '00',
override IN BOOLEAN := false);

Parameters

Table 13–28 SET_DISABLED Procedure Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to change.

disabled By default, this parameter disables propagation of the deferred
transaction queue from your current site to the specified
destination. Set this to false to enable propagation.

catchup The extension identifier for adding new master sites to a master
group without quiescing the master group. The new master site is
the destination. Query the DEFSCHEDULE data dictionary view for
the existing extension identifiers.

override A false setting, the default, specifies that Oracle raises the
cantsetdisabled exception if the disabled parameter is set to
false and propagation was disabled internally by Oracle.

A true setting specifies that Oracle ignores whether the disabled
state was set internally for synchronization and always tries to set
the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.
13-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms
Exceptions

UNREGISTER_PROPAGATOR Procedure
To unregister a user as the propagator from the local database. This procedure:

� Deletes the specified propagator from DEFPROPAGATOR.

� Revokes privileges granted by REGISTER_PROPAGATOR from the specified
user (including identical privileges granted independently).

� Drops any generated wrappers in the schema of the specified propagator, and
marks them as dropped in the replication catalog.

Syntax
DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR (

username IN VARCHAR2
timeout IN INTEGER DEFAULT DBMS_LOCK.MAXWAIT);

Parameters

Table 13–29 SET_DISABLED Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the
specified destination .

cantsetdisabled The disabled status for this site is set internally by Oracle for
synchronization during adding a new master site to a master
group without quiescing the master group. Ensure that adding a
new master site without quiescing finished before invoking this
procedure.

Table 13–30 UNREGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the propagator user.

timeout Timeout in seconds. If the propagator is in use, then the procedure
waits until timeout. The default is DBMS_LOCK.MAXWAIT.
DBMS_DEFER_SYS 13-23

UNSCHEDULE_PURGE Procedure
Exceptions

UNSCHEDULE_PURGE Procedure
This procedure stops automatic purges of pushed transactions from the deferred
transaction queue at a master site or materialized view site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PURGE();

UNSCHEDULE_PUSH Procedure
This procedure stops automatic pushes of the deferred transaction queue from a
master site or materialized view site to a remote site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PUSH (

dblink IN VARCHAR2);

Parameters

Table 13–31 UNREGISTER_PROPAGATOR Procedure Exceptions

Parameter Description

missingpropagator Specified user is not a propagator.

propagator_inuse Propagator is in use, and thus cannot be unregistered. Try later.

Table 13–32 UNSCHEDULE_PUSH Procedure Parameters

Parameter Description

dblink Fully qualified path name for the database at which you want to
unschedule periodic execution of deferred remote procedure calls.

Table 13–33 UNSCHEDULE_PUSH Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the specified
dblink .
13-24 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_DE
14

DBMS_DESCRIBE

You can use the DBMS_DESCRIBE package to get information about a PL/SQL
object. When you specify an object name, DBMS_DESCRIBE returns a set of indexed
tables with the results. Full name translation is performed and security checking is
also checked on the final object.

This package provides the same functionality as the Oracle Call Interface
OCIDescribeAny call.

This chapter discusses the following topics:

� Security, Types, and Errors for DBMS_DESCRIBE

� Summary of DBMS_DESCRIBE Subprograms

See Also: Oracle Call Interface Programmer’s Guide
SCRIBE 14-1

Security, Types, and Errors for DBMS_DESCRIBE
Security, Types, and Errors for DBMS_DESCRIBE

Security
This package is available to PUBLIC and performs its own security checking based
on the schema object being described.

Types
The DBMS_DESCRIBE package declares two PL/SQL table types, which are used to
hold data returned by DESCRIBE_PROCEDURE in its OUT parameters. The types are:

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)
INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

Errors
DBMS_DESCRIBE can raise application errors in the range -20000 to -20004.

Summary of DBMS_DESCRIBE Subprograms
DBMS_DESCRIBE contains only one procedure: DESCRIBE_PROCEDURE.

DESCRIBE_PROCEDURE Procedure
The procedure DESCRIBE_PROCEDURE accepts the name of a stored procedure, a
description of the procedure, and each of its parameters.

Table 14–1 DBMS_DESCRIBE Errors

Error Description

ORA-20000 ORU 10035: cannot describe a package (’X’) only a procedure within a
package.

ORA-20001 ORU-10032: procedure ’X’ within package ’Y’ does not exist.

ORA-20002 ORU-10033: object ’X’ is remote, cannot describe; expanded name ’Y’.

ORA-20003 ORU-10036: object ’X’ is invalid and cannot be described.

ORA-20004 Syntax error attempting to parse ’X’.
14-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms
Syntax
DBMS_DESCRIBE.DESCRIBE_PROCEDURE(

object_name IN VARCHAR2,
reserved1 IN VARCHAR2,
reserved2 IN VARCHAR2,
overload OUT NUMBER_TABLE,
position OUT NUMBER_TABLE,
level OUT NUMBER_TABLE,
argument_name OUT VARCHAR2_TABLE,
datatype OUT NUMBER_TABLE,
default_value OUT NUMBER_TABLE,
in_out OUT NUMBER_TABLE,
length OUT NUMBER_TABLE,
precision OUT NUMBER_TABLE,
scale OUT NUMBER_TABLE,
radix OUT NUMBER_TABLE,
spare OUT NUMBER_TABLE);

Parameters

Table 14–2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description

object_name Name of the procedure being described.

The syntax for this parameter follows the rules used for identifiers in
SQL. The name can be a synonym. This parameter is required and may
not be null. The total length of the name cannot exceed 197 bytes. An
incorrectly specified OBJECT_NAME can result in one of the following
exceptions:

ORA-20000 - A package was specified. You can only specify a stored
procedure, stored function, packaged procedure, or packaged function.

ORA-20001 - The procedure or function that you specified does not
exist within the given package.

ORA-20002 - The object that you specified is a remote object. This
procedure cannot currently describe remote objects.

ORA-20003 - The object that you specified is invalid and cannot be
described.

ORA-20004 - The object was specified with a syntax error.

reserved1
reserved2

Reserved for future use -- must be set to NULL or the empty string.
DBMS_DESCRIBE 14-3

DESCRIBE_PROCEDURE Procedure
overload A unique number assigned to the procedure’s signature.

If a procedure is overloaded, then this field holds a different value for
each version of the procedure.

position Position of the argument in the parameter list.

Position 0 returns the values for the return type of a function.

level If the argument is a composite type, such as record, then this parameter
returns the level of the datatype. See the Oracle Call Interface
Programmer’s Guide for a description of the ODESSP call for an example.

argument_name Name of the argument associated with the procedure that you are
describing.

datatype Oracle datatype of the argument being described.

The datatypes and their numeric type codes are:

0 placeholder for procedures with no arguments

1 VARCHAR, VARCHAR, STRING

2 NUMBER, INTEGER, SMALLINT, REAL, FLOAT, DECIMAL

3 BINARY_INTEGER, PLS_INTEGER, POSITIVE, NATURAL

8 LONG

11 ROWID

12 DATE

23 RAW

24 LONG RAW

96 CHAR (ANSI FIXED CHAR), CHARACTER

106 MLSLABEL

250 PL/SQL RECORD

251 PL/SQL TABLE

252 PL/SQL BOOLEAN

default_value 1 if the argument being described has a default value; otherwise, the
value is 0.

in_out Describes the mode of the parameter:

0 IN

1 OUT

2 IN OUT

Table 14–2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description
14-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms
Return Values
All values from DESCRIBE_PROCEDURE are returned in its OUT parameters. The
datatypes for these are PL/SQL tables, in order to accommodate a variable number
of parameters.

Using DBMS_DESCRIBE: Examples
One use of the DESCRIBE_PROCEDURE procedure is as an external service interface.

For example, consider a client that provides an OBJECT_NAME of SCOTT.ACCOUNT_
UPDATE, where ACCOUNT_UPDATE is an overloaded function with specification:

table account (account_no number, person_id number,
balance number(7,2))

table person (person_id number(4), person_nm varchar2(10))

function ACCOUNT_UPDATE (account_no number,
person person%rowtype,
amounts dbms_describe.number_table,
trans_date date)
return accounts.balance%type;

function ACCOUNT_UPDATE (account_no number,
person person%rowtype,
amounts dbms_describe.number_table,
trans_no number)
return accounts.balance%type;

This procedure might look similar to the following output:

length Data length, in bytes, of the argument being described.

precision If the argument being described is of datatype 2 (NUMBER), then this
parameter is the precision of that number.

scale If the argument being described is of datatype 2 (NUMBER), then this
parameter is the scale of that number.

radix If the argument being described is of datatype 2 (NUMBER), then this
parameter is the radix of that number.

spare Reserved for future functionality.

Table 14–2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description
DBMS_DESCRIBE 14-5

DESCRIBE_PROCEDURE Procedure
overload position argument level datatype length prec scale rad
-------- --------- -------- ------ -------- ------ ---- ----- ---

1 0 0 2 22 7 2 10
1 1 ACCOUNT 0 2 0 0 0 0
1 2 PERSON 0 250 0 0 0 0
1 1 PERSON_ID 1 2 22 4 0 10
1 2 PERSON_NM 1 1 10 0 0 0
1 3 AMOUNTS 0 251 0 0 0 0
1 1 1 2 22 0 0 0
1 4 TRANS_DATE 0 12 0 0 0 0
2 0 0 2 22 7 2 10
2 1 ACCOUNT_NO 0 2 22 0 0 0
2 2 PERSON 0 2 22 4 0 10
2 3 AMOUNTS 0 251 22 4 0 10
2 1 1 2 0 0 0 0
2 4 TRANS_NO 0 2 0 0 0 0

The following PL/SQL procedure has as its parameters all of the PL/SQL
datatypes:

CREATE OR REPLACE PROCEDURE p1 (
pvc2 IN VARCHAR2,
pvc OUT VARCHAR,
pstr IN OUT STRING,
plong IN LONG,
prowid IN ROWID,
pchara IN CHARACTER,
pchar IN CHAR,
praw IN RAW,
plraw IN LONG RAW,
pbinint IN BINARY_INTEGER,
pplsint IN PLS_INTEGER,
pbool IN BOOLEAN,
pnat IN NATURAL,
ppos IN POSITIVE,
pposn IN POSITIVEN,
pnatn IN NATURALN,
pnum IN NUMBER,
pintgr IN INTEGER,
pint IN INT,
psmall IN SMALLINT,
pdec IN DECIMAL,
preal IN REAL,
pfloat IN FLOAT,
pnumer IN NUMERIC,
14-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms
pdp IN DOUBLE PRECISION,
pdate IN DATE,
pmls IN MLSLABEL) AS

BEGIN
NULL;

END;

If you describe this procedure using the following:

CREATE OR REPLACE PACKAGE describe_it AS

PROCEDURE desc_proc (name VARCHAR2);

END describe_it;

CREATE OR REPLACE PACKAGE BODY describe_it AS

PROCEDURE prt_value(val VARCHAR2, isize INTEGER) IS
n INTEGER;

BEGIN
n := isize - LENGTHB(val);
IF n < 0 THEN

n := 0;
END IF;
DBMS_OUTPUT.PUT(val);
FOR i in 1..n LOOP

DBMS_OUTPUT.PUT(’ ’);
END LOOP;

END prt_value;

PROCEDURE desc_proc (name VARCHAR2) IS

overload DBMS_DESCRIBE.NUMBER_TABLE;
position DBMS_DESCRIBE.NUMBER_TABLE;
c_level DBMS_DESCRIBE.NUMBER_TABLE;
arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;
dty DBMS_DESCRIBE.NUMBER_TABLE;
def_val DBMS_DESCRIBE.NUMBER_TABLE;
p_mode DBMS_DESCRIBE.NUMBER_TABLE;
length DBMS_DESCRIBE.NUMBER_TABLE;
precision DBMS_DESCRIBE.NUMBER_TABLE;
scale DBMS_DESCRIBE.NUMBER_TABLE;
radix DBMS_DESCRIBE.NUMBER_TABLE;
spare DBMS_DESCRIBE.NUMBER_TABLE;
DBMS_DESCRIBE 14-7

DESCRIBE_PROCEDURE Procedure
idx INTEGER := 0;

BEGIN
DBMS_DESCRIBE.DESCRIBE_PROCEDURE(

name,
null,
null,
overload,
position,
c_level,
arg_name,
dty,
def_val,
p_mode,
length,
precision,
scale,
radix,
spare);

DBMS_OUTPUT.PUT_LINE(’Position Name DTY Mode’);
LOOP

idx := idx + 1;
prt_value(TO_CHAR(position(idx)), 12);
prt_value(arg_name(idx), 12);
prt_value(TO_CHAR(dty(idx)), 5);
prt_value(TO_CHAR(p_mode(idx)), 5);
DBMS_OUTPUT.NEW_LINE;

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.NEW_LINE;
DBMS_OUTPUT.NEW_LINE;

END desc_proc;
END describe_it;

Then the results list all the numeric codes for the PL/SQL datatypes:

Position Name Datatype_Code Mode
1 PVC2 1 0
2 PVC 1 1
3 PSTR 1 2
4 PLONG 8 0
5 PROWID 11 0
14-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms
6 PCHARA 96 0
7 PCHAR 96 0
8 PRAW 23 0
9 PLRAW 24 0
10 PBININT 3 0
11 PPLSINT 3 0
12 PBOOL 252 0
13 PNAT 3 0
14 PPOS 3 0
15 PPOSN 3 0
16 PNATN 3 0
17 PNUM 2 0
18 PINTGR 2 0
19 PINT 2 0
20 PSMALL 2 0
21 PDEC 2 0
22 PREAL 2 0
23 PFLOAT 2 0
24 PNUMER 2 0
25 PDP 2 0
26 PDATE 12 0
27 PMLS 106 0

Usage Notes
There is currently no way from a third generation language to directly bind to an
argument of type record or boolean . For Booleans, there are the following
work-arounds:

� Assume function F returns a Boolean. G is a procedure with one IN Boolean
argument, and H is a procedure which has one OUT Boolean argument. Then,
you can execute these functions, binding in DTYINTs (native integer) as
follows, where 0=>FALSE and 1=>TRUE:

begin :dtyint_bind_var := to_number(f); end;

begin g(to_boolean(:dtyint_bind_var)); end;

declare b boolean; begin h(b); if b then :dtyint_bind_var := 1;
else :dtyint_bind_var := 0; end if; end;

� Access to procedures with arguments of type record require writting a
wrapper similar to that in the preceding example (see funciton H).
DBMS_DESCRIBE 14-9

DESCRIBE_PROCEDURE Procedure
14-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_DISTRIBUTED_TRUST
15

DBMS_DISTRIBUTED_TRUST_ADMIN

DBMS_DISTRIBUTED_TRUST_ADMIN procedures maintain the Trusted Servers List.
Use these procedures to define whether a server is trusted. If a database is not
trusted, Oracle refuses current user database links from the database.

Oracle uses local Trusted Servers Lists, along with enterprise domain membership
lists stored in the enterprise LDAP directory service, to determine if another
database is trusted. The LDAP directory service entries are managed with the
Enterprise Security Manager Tool in Oracle Enterprise Manager.

Oracle considers another database to be "trusted" if it meets the following criteria:

1. It is in the same enterprise domain in the directory service as the local database.

2. The enterprise domain is marked as trusted in the directory service.

3. It is not listed as untrusted in the local Trusted Servers List. Current user
database links will only be accepted from another database if both databases
involved trust each other.

You can list a database server locally in the Trusted Servers List regardless of what
is listed in the directory service. However, if you list a database that is not in the
same domain as the local database, or if that domain is untrusted, the entry will
have no effect.

This functionality is part of the Enterprise User Security feature of the Oracle
Advanced Security Option.

This chapter discusses the following topics:

� Requirements

� Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
_ADMIN 15-1

Requirements
Requirements
To execute DBMS_DISTRIBUTED_TRUST_ADMIN, the EXECUTE_CATALOG_ROLE
role must be granted to the DBA. To select from the view TRUSTED_SERVERS, the
SELECT_CATALOG_ROLE role must be granted to the DBA.

It is important to know whether all servers are trusted or not trusted. Trusting a
particular server with the ALLOW_SERVER procedure does not have any effect if the
database already trusts all databases, or if that database is already trusted. Similarly,
denying a particular server with the DENY_SERVER procedure does not have any
effect if the database already does not trust any database or if that database is
already untrusted.

The procedures DENY_ALL and ALLOW_ALL delete all entries (in other words,
server names) that are explicitly allowed or denied using the ALLOW_SERVER
procedure or DENY_SERVER procedure respectively.

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

ALLOW_ALL Procedure
This procedure empties the Trusted Servers List and specifies that all servers that
are members of a trusted domain in an enterprise directory service and that are in
the same domain are allowed access.

The view TRUSTED_SERVERS will show "TRUSTED ALL" indicating that the
database trusts all servers that are currently trusted by the enterprise directory
service.

Table 15–1 DBMS_DISTRIBUTED_TRUST_ADMIN Package Subprograms

Subprogram Description

ALLOW_ALL Procedure
on page 15-2

Empties the list and inserts a row indicating that all servers
should be trusted.

ALLOW_SERVER
Procedure on page 15-3

Enables a specific server to be allowed access even though
deny all is indicated in the list.

DENY_ALL Procedure on
page 15-3

Empties the list and inserts a row indicating that all servers
should be untrusted.

DENY_SERVER Procedure
on page 15-4

Enables a specific server to be denied access even though allow
all is indicated in the list.
15-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_ALL;

Usage Notes
ALLOW_ALL only applies to servers listed as trusted in the enterprise directory
service and in the same enterprise domain.

ALLOW_SERVER Procedure
This procedure ensures that the specified server is considered trusted (even if you
have previously specified "deny all ").

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER (

server IN VARCHAR2);

Parameters

Usage Notes
If the Trusted Servers List contains the entry "deny all ", then this procedure adds a
specification indicating that a specific database (for example, DBx) is to be trusted.

If the Trusted Servers List contains the entry "allow all ", and if there is no "deny
DBx" entry in the list, then executing this procedure causes no change.

If the Trusted Servers List contains the entry "allow all ", and if there is a "deny
DBx" entry in the list, then that entry is deleted.

DENY_ALL Procedure
This procedure empties the Trusted Servers List and specifies that all servers are
denied access.

The view TRUSTED_SERVERS will show "UNTRUSTED ALL" indicating that no
servers are currently trusted.

Table 15–2 ALLOW_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be trusted.
DBMS_DISTRIBUTED_TRUST_ADMIN 15-3

DENY_SERVER Procedure
Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

DENY_SERVER Procedure
This procedure ensures that the specified server is considered untrusted (even if
you have previously specified allow all).

Syntax
DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER (

server IN VARCHAR2);

Parameters

Usage Notes
If the Trusted Servers List contains the entry allow all , then this procedure adds
an entry indicating that the specified database (for example, DBx) is not to be
trusted.

If the Trusted Servers List contains the entry "deny all ", and if there is no "allow
DBx" entry in the list, then this procedure causes no change.

If the Trusted Servers List contains the entry "deny all ", and if there is an "allow
DBx" entry, then this procedure causes that entry to be deleted.

Example
If you have not yet used the package DBMS_DISTRIBUTED_TRUST_ADMIN to
change the trust listing, by default you trust all databases in the same enterprise
domain if that domain it listed as trusted in the directory service:

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME
--------- ---------------------
Trusted All

1 row selected.

Table 15–3 DENY_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be untrusted.
15-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
Because all servers are currently trusted, you can execute the DENY_SERVER
procedure and specify that a particular server is not trusted:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_SERVER
(’SALES.US.AMERICAS.ACME_AUTO.COM’);

Statement processed.

SELECT * FROM TRUSTED_SERVERS;

TRUST NAME
--------- ---
Untrusted SALES.US.AMERICAS.ACME_AUTO.COM

1 row selected

By executing the DENY_ALL procedure, you can choose to not trust any database
server:

EXECUTE DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

Statement processed.

SELECT * FROM TRUSTED_SERVERS;

TRUST NAME
--------- ---
Untrusted All

1 row selected.

The ALLOW_SERVER procedure can be used to specify that one particular database
is to be trusted:

EXECUTE
DBMS_DISTRIBUTED_TRUST_ADMIN.ALLOW_SERVER

(’SALES.US.AMERICAS.ACME_AUTO.COM’);

Statement processed.

SELECT * FROM TRUSTED_SERVERS;

TRUST NAME
DBMS_DISTRIBUTED_TRUST_ADMIN 15-5

DENY_SERVER Procedure
--------- --
Trusted SALES.US.AMERICAS.ACME_AUTO.COM

1 row selected.
15-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DB
16

DBMS_FGA

The DBMS_FGApackage provides fine-grained security functions. Execute privilege
on DBMS_FGA is needed for administering audit policies. Because the audit function
can potentially capture all user environment and application context values, policy
administration should be executable by privileged users only.

This feature is available for only cost-based optimization. The rule-based optimizer
may generate unnecessary audit records since audit monitoring can occur before
row filtering. For both the rule-based optimizer and the cost-based optimizer, you
can refer to DBA_FGA_AUDIT_TRAIL to analyze the SQL text and corresponding
bind variables that are issued.

This chapter discusses the following topics:

� Summary of DBMS_FGA Subprograms

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
a fuller discussion and more usage information on DBMS_FGA.
MS_FGA 16-1

Summary of DBMS_FGA Subprograms
Summary of DBMS_FGA Subprograms

ADD_POLICY Procedure
This procedure creates an audit policy using the supplied predicate as the audit
condition.

Syntax
DBMS_FGA.ADD_POLICY(

object_schema VARCHAR2,
object_name VARCHAR2,
policy_name VARCHAR2,
audit_condition VARCHAR2,
audit_column VARCHAR2,
handler_schema VARCHAR2,
handler_module VARCHAR2,
enable BOOLEAN);

Parameters

Table 16–1 Summary of DBMS_FGA Subprograms

Subprogram Description

ADD_POLICY Procedure
on page 16-2

Creates an audit policy using the supplied predicate as the
audit condition

DROP_POLICY Procedure
on page 16-3

Drops an audit policy

ENABLE_POLICY
Procedure on page 16-4

Enables an audit policy

DISABLE_POLICY
Procedure on page 16-5

Disables an audit policy

Table 16–2 ADD_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited

object_name The name of the object to be audited

policy_name The unique name of the policy

audit_condition A condition in a row that indicates a monitoring condition
16-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FGA Subprograms
Usage Notes
� An event record will always be inserted into fga_log$ when the monitored

condition becomes TRUE.

� The audit function must have the following interface:
PROCEDURE <fname> (object_schema VARCHAR2, object_name
VARCHAR2, policy_name VARCHAR2) AS ...
where fname is the name of the procedure, schema is the schema of the table
audited, table is the table audited, and policy is the policy being enforced.

� The audit function is executed as an autonomous transaction.

� Each audit policy is applied to the query individually. That is, as long as the
rows being returned fit into any of the audit condition defined on the table, an
audit record will be generated, and there will be at most one record generated
for each policy.

DROP_POLICY Procedure
This procedure drops an audit policy.

Syntax
DBMS_FGA.DROP_POLICY(

object_schema VARCHAR2,
object_name VARCHAR2,
policy_name VARCHAR2);

audit_column The column to be checked for access. The default is all
columns.

handler_schema The schema that contains the event handler. The default is the
current schema.

handler_module The function name of the event handler; includes the package
name if necessary. This is fired only after the first row that
matches the audit condition is processed in the query. If the
procedure fails with exception, the user SQL statement will fail
as well. The default is NULL.

enable Enables the policy if TRUE, which is the default.

Table 16–2 ADD_POLICY Procedure Parameters

Parameter Description
DBMS_FGA 16-3

ENABLE_POLICY Procedure
Parameters

Usage Notes
The DBMS_FGA procedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_FGA procedures are
part of the DDL transaction.

ENABLE_POLICY Procedure
This procedure enables an audit policy.

Syntax
DBMS_FGA.ENABLE_POLICY(

object_schema VARCHAR2 := NULL,
object_name VARCHAR2,
policy_name VARCHAR2,
enable BOOLEAN := TRUE);

Parameters

Table 16–3 DROP_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited

object_name The name of the object to be audited

policy_name The unique name of the policy

Table 16–4 ENABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited

object_name The name of the object to be audited

policy_name The unique name of the policy

enable Defaults to TRUE to enable the policy
16-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FGA Subprograms
DISABLE_POLICY Procedure
This procedure disables an audit policy.

Syntax
DBMS_FGA.DISABLE_POLICY(

object_schema VARCHAR2,
object_name VARCHAR2,
policy_name VARCHAR2);

Parameters

Table 16–5 DISABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited

object_name The name of the object to be audited

policy_name The unique name of the policy
DBMS_FGA 16-5

DISABLE_POLICY Procedure
16-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_FLASH
17

DBMS_FLASHBACK

Using DBMS_FLASHBACK, you can flash back to a version of the database at a
specified wall-clock time or a specified system change number (SCN). When DBMS_
FLASHBACK is enabled, the user session uses the Flashback version of the database,
and applications can execute against the Flashback version of the database. DBMS_
FLASHBACK is automatically turned off when the session ends, either by
disconnection or by starting another connection.

PL/SQL cursors opened in Flashback mode return rows as of the flashback time or
SCN. Different concurrent sessions (connections) in the database can perform
Flashback to different wall-clock times or SCNs. DML and DDL operations and
distributed operations are not allowed while a session is running in Flashback
mode. You can use PL/SQL cursors opened before disabling Flashback to perform
DML.

Under Automatic Undo Management (AUM) mode, you can use retention control
to control how far back in time to go for the version of the database you need. If you
need to perform a Flashback over a 24-hour period, the DBA should set the undo_
retention parameter to 24 hours. This way, the system retains enough undo
information to regenerate the older versions of the data.

When enabling Flashback using a wall-clock time, the database chooses an SCN that
was generated within five minutes of the time specified. For finer grain control of
Flashback, you can enable an SCN. An SCN identifies the exact version of the
database. In a Flashback-enabled session, SYSDATE will not be affected; it will
continue to provide the current time.

DBMS_FLASHBACK can be used within logon triggers to enable Flashback without
changing the application code.

You may want to use DBMS_FLASHBACK for the following reasons:
BACK 17-1

� Self-service repair. If you accidentally delete rows from a table, you can recover
the deleted rows.

� Packaged applications such as e-mail and voicemail. You can use Flashback to
restore deleted e-mail by re-inserting the deleted message into the current
message box.

� Decision support system (DSS) and online analytical processing (OLAP)
applications. You can perform data analysis or data modeling to track seasonal
demand, for example.

To use this package, a database administrator must grant EXECUTE privileges for
DBMS_FLASHBACK.

This chapter discusses the following topics:

� DBMS_FLASHBACK Error Messages

� Using DBMS_FLASHBACK: Example

� Summary of DBMS_FLASHBACK Subprograms

See Also: Oracle9i Application Developer’s Guide - Fundamentals and
Oracle9i SQL Reference for detailed information about DBMS_
FLASHBACK.
17-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_FLASHBACK: Example
DBMS_FLASHBACK Error Messages

Using DBMS_FLASHBACK: Example
The following example illustrates how Flashback can be used when the deletion of a
senior employee triggers the deletion of all the personnel reporting to him. Using
the Flashback feature, you can recover and re-insert the missing employees.

drop table employee;
drop table keep_scn;

REM keep_scn is a temporary table to store scns that we are interested in

create table keep_scn (scn number);
set echo on
create table employee (

employee_no number(5) primary key,
employee_name varchar2(20),
employee_mgr number(5)

constraint mgr_fkey references employee on delete cascade,
salary number,
hiredate date

);

REM Populate the company with employees
insert into employee values (1, 'John Doe', null, 1000000, '5-jul-81');

Table 17–1 DBMS_FLASHBACK Error Messages

Error Description

8182 In Flashback mode, user cannot perform DML or DDL
operations.

8184 User cannot enable Flashback within another Flashback
session.

8183 User cannot enable Flashback within an uncommitted
transaction.

8185 SYS cannot enable Flashback mode.

User cannot begin read-only or serializable transactions in
Flashback mode.

8180 Time specified is too old.

8181 Invalid system change number specified.
DBMS_FLASHBACK 17-3

Using DBMS_FLASHBACK: Example
insert into employee values (10, 'Joe Johnson', 1, 500000, '12-aug-84');
insert into employee values (20, 'Susie Tiger', 10, 250000, '13-dec-90');
insert into employee values (100, 'Scott Tiger', 20, 200000, '3-feb-86');
insert into employee values (200, 'Charles Smith', 100, 150000, '22-mar-88');
insert into employee values (210, 'Jane Johnson', 100, 100000, '11-apr-87');
insert into employee values (220, 'Nancy Doe', 100, 100000, '18-sep-93');
insert into employee values (300, 'Gary Smith', 210, 75000, '4-nov-96');
insert into employee values (310, 'Bob Smith', 210, 65000, '3-may-95');
commit;

REM Show the entire org
select lpad(' ', 2*(level-1)) || employee_name Name
from employee
connect by prior employee_no = employee_mgr
start with employee_no = 1
order by level;

REM Sleep for 5 minutes to avoid querying close to the table creation
REM (the mapping of scn->time has 5 minutes granularity)
execute dbms_lock.sleep(300);

REM Store this snapshot for later access through Flashback
declare
I number;
begin
I := dbms_flashback.get_system_change_number;
insert into keep_scn values (I);
commit;
end;
/

REM Scott decides to retire but the transaction is done incorrectly
delete from employee where employee_name = 'Scott Tiger';
commit;

REM notice that all of scott's employees are gone
select lpad(' ', 2*(level-1)) || employee_name Name
from employee
connect by prior employee_no = employee_mgr
start with employee_no = 1
order by level;

REM Flashback to see Scott's organization
declare

restore_scn number;
17-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_FLASHBACK: Example
begin
select scn into restore_scn from keep_scn;
dbms_flashback.enable_at_system_change_number (restore_scn);

end;
/

REM Show Scott's org.
select lpad(' ', 2*(level-1)) || employee_name Name
from employee
connect by prior employee_no = employee_mgr
start with employee_no =

(select employee_no from employee where employee_name = 'Scott Tiger')
order by level;

REM Restore scott's organization.

declare
scotts_emp number;
scotts_mgr number;
cursor c1 is

select employee_no, employee_name, employee_mgr, salary, hiredate
from employee
connect by prior employee_no = employee_mgr
start with employee_no =

(select employee_no from employee where employee_name = 'Scott Tiger');
c1_rec c1 % ROWTYPE;

begin
select employee_no, employee_mgr into scotts_emp, scotts_mgr from employee
where employee_name = 'Scott Tiger';
/* Open c1 in flashback mode */
open c1;
/* Disable Flashback */
dbms_flashback.disable;

loop
fetch c1 into c1_rec;
exit when c1%NOTFOUND;
/*

Note that all the DML operations inside the loop are performed
with Flashback disabled

*/
if (c1_rec.employee_mgr = scotts_emp) then

insert into employee values (c1_rec.employee_no,
c1_rec.employee_name,
scotts_mgr,
c1_rec.salary,
DBMS_FLASHBACK 17-5

Summary of DBMS_FLASHBACK Subprograms
c1_rec.hiredate);
else
if (c1_rec.employee_no != scotts_emp) then
insert into employee values (c1_rec.employee_no,

c1_rec.employee_name,
c1_rec.employee_mgr,
c1_rec.salary,
c1_rec.hiredate);

end if;
end if;

end loop;
end;
/

REM Show the restored organization.
select lpad(' ', 2*(level-1)) || employee_name Name
from employee
connect by prior employee_no = employee_mgr
start with employee_no = 1
order by level;

Summary of DBMS_FLASHBACK Subprograms

Table 17–2 DBMS_FLASHBACK Subprograms

Subprogram Description

ENABLE_AT_TIME
Procedure on page 17-7

Enables Flashback for the entire session. The snapshot time is
set to the SCN that most closely matches the time specified in
query_time.

ENABLE_AT_SYSTEM_
CHANGE_NUMBER
Procedure on page 17-7

Takes an SCN as an Oracle number and sets the session
snapshot to the specified number.

Inside the Flashback mode, all queries will return data
consistent as of the specified wall-clock time or SCN.

GET_SYSTEM_CHANGE_
NUMBER Function on
page 17-8

Returns the current SCN as an Oracle number. You can use the
SCN to store specific snapshots.

DISABLE Procedure on
page 17-8

Disables the Flashback mode for the entire session.
17-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FLASHBACK Subprograms
ENABLE_AT_TIME Procedure
This procedure enables Flashback for the entire session. The snapshot time is set to
the SCN that most closely matches the time specified in query_time.

Syntax
DBMS_FLASHBACK.ENABLE_AT_TIME (

query_time IN TIMESTAMP);

Parameters

ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure
This procedure takes an SCN as an input parameter and sets the session snapshot to
the specified number.

In the Flashback mode, all queries return data consistent as of the specified
wall-clock time or SCN.

Syntax
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER (

Table 17–3 ENABLE_AT_TIME Procedure Parameters

Parameter Description

query_time This is an input parameter of type TIMESTAMP. A time stamp
can be specified in the following ways:

Using the TIMESTAMP constructor: Example: execute
dbms_flashback.enable_at_time(TIMESTAMP
’2001-01-09 12:31:00’). Use the Globalization Support
(NLS) format and supply a string. The format depends on the
Globalization Support settings.

Using the TO_TIMESTAMP function: Example: execute
dbms_flashback.enable_at_time(TO_
TIMESTAMP(’12-02-2001 14:35:00’, ’DD-MM-YYYY
HH24:MI:SS’)). Y ou provide the format you want to use.
This example shows the TO_TIMESTAMP function for February
12, 2001, 2:35 PM.

If the time is omitted from query time, it defaults to the
beginning of the day, that is, 12:00 A.M.

Note that if the query time contains a time zone, the time zone
information is truncated.
DBMS_FLASHBACK 17-7

GET_SYSTEM_CHANGE_NUMBER Function
query_scn IN NUMBER);

Parameters

GET_SYSTEM_CHANGE_NUMBER Function
This function returns the current SCN as an Oracle number datatype. You can
obtain the current change number and stash it away for later use. This helps you
store specific snapshots.

Syntax
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER (
RETURN NUMBER);

DISABLE Procedure
This procedure disables the Flashback mode for the entire session.

Syntax
DBMS_FLASHBACK.DISABLE;

Example
The following example queries the salary of an employee, Joe, on August 30, 2000:

EXECUTE dbms_flashback.enable_at_time(’30-AUG-2000’);
SELECT salary from emp where name = ’Joe’
EXECUTE dbms_flashback.disable;

Table 17–4 ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure Parameters

Parameter Description

query_scn The system change number (SCN), a version number for the
database that is incremented on every transaction commit.
17-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_HS_PASST
18

DBMS_HS_PASSTHROUGH

The pass-through SQL feature allows an application developer to send a statement
directly to a non-Oracle system without being interpreted by the Oracle server. This
can be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

You can run these statements directly at the non-Oracle system using the PL/SQL
package DBMS_HS_PASSTHROUGH. Any statement executed with this package is
run in the same transaction as regular "transparent" SQL statements.

This chapter discusses the following topics:

� Security

� Summary of DBMS_HS_PASSTHROUGH Subprograms
HROUGH 18-1

Security
Security
The DBMS_HS_PASSTHROUGH package conceptually resides at the non-Oracle
system. Procedures and functions in the package must be called by using the
appropriate database link to the non-Oracle system.

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 18–1 DBMS_HS_PASSTHROUGH Package Subprograms

Subprogram Description

BIND_VARIABLE Procedure
on page 18-3

Binds an IN variable positionally with a PL/SQL program
variable.

BIND_VARIABLE_RAW
Procedure on page 18-4

Binds IN variables of type RAW.

BIND_OUT_VARIABLE
Procedure on page 18-5

Binds an OUT variable with a PL/SQL program variable.

BIND_OUT_VARIABLE_RAW
Procedure on page 18-7

Binds an OUT variable of datatype RAW with a PL/SQL
program variable.

BIND_INOUT_VARIABLE
Procedure on page 18-8

Binds IN OUT bind variables.

BIND_INOUT_VARIABLE_
RAW Procedure on page 18-9

Binds IN OUT bind variables of datatype RAW.

CLOSE_CURSOR Procedure
on page 18-10

Closes the cursor and releases associated memory after the
SQL statement has been run at the non-Oracle system.

EXECUTE_IMMEDIATE
Procedure on page 18-11

Runs a (non-SELECT) SQL statement immediately,
without bind variables.

EXECUTE_NON_QUERY
Function on page 18-12

Runs a (non-SELECT) SQL statement.

FETCH_ROW Function on
page 18-13

Fetches rows from a query.

GET_VALUE Procedure on
page 18-14

Retrieves column value from SELECT statement, or
retrieves OUT bind parameters.

GET_VALUE_RAW Procedure
on page 18-15

Similar to GET_VALUE, but for datatype RAW.

OPEN_CURSOR Function on
page 18-16

Opens a cursor for running a passthrough SQL statement
at the non-Oracle system.
18-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
BIND_VARIABLE Procedure
This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN <dty>,
name IN VARCHAR2);

Where <dty> is either DATE, NUMBER, or VARCHAR2

Parameters

PARSE Procedure on
page 18-17

Parses SQL statement at non-Oracle system.

See Also: To bind RAW variables use BIND_VARIABLE_RAW
Procedure on page 18-4.

Table 18–2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val Value that must be passed to the bind variable name.

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–1 DBMS_HS_PASSTHROUGH Package Subprograms (Cont.)

Subprogram Description
DBMS_HS_PASSTHROUGH 18-3

BIND_VARIABLE_RAW Procedure
Exceptions

Pragmas
Purity level defined: WNDS, RNDS

BIND_VARIABLE_RAW Procedure
This procedure binds IN variables of type RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_VARIABLE_RAW (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN RAW,
name IN VARCHAR2);

Parameters

Table 18–3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 18–4 BIND_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val Value that must be passed to the bind variable.
18-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Exceptions

Pragmas
Purity level defined : WNDS, RNDS

BIND_OUT_VARIABLE Procedure
This procedure binds an OUT variable with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT <dty>,
name IN VARCHAR2);

Where <dty> is either DATE, NUMBER, or VARCHAR2

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–5 BIND_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also: For binding OUT variables of datatype RAW, see BIND_
OUT_VARIABLE_RAW Procedure on page 18-7.

Table 18–4 BIND_VARIABLE_RAW Procedure Parameters

Parameter Description
DBMS_HS_PASSTHROUGH 18-5

BIND_OUT_VARIABLE Procedure
Parameters

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 18–6 BIND_OUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val Variable in which the OUT bind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALUE to retrieve the
value of the OUT parameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE.

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–7 BIND_OUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
18-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
BIND_OUT_VARIABLE_RAW Procedure
This procedure binds an OUT variable of datatype RAW with a PL/SQL program
variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE_RAW (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT RAW,
name IN VARCHAR2);

Parameters

Exceptions

Table 18–8 BIND_OUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val Variable in which the OUT bind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALUE to retrieve the
value of the OUT parameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE_RAW.

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.
DBMS_HS_PASSTHROUGH 18-7

BIND_INOUT_VARIABLE Procedure
Pragmas
Purity level defined : WNDS, RNDS

BIND_INOUT_VARIABLE Procedure
This procedure binds IN OUT bind variables.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN OUT <dty>,
name IN VARCHAR2);

Where <dty> is either DATE, NUMBER, or VARCHAR2

Parameters

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also: For binding IN OUT variables of datatype RAW see
BIND_INOUT_VARIABLE_RAW Procedure on page 18-9.

Table 18–10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

Table 18–9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

Exception Description
18-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Exceptions

Pragmas
Purity level defined : WNDS, RNDS

BIND_INOUT_VARIABLE_RAW Procedure
This procedure binds IN OUT bind variables of datatype RAW.

Syntax
DBMS_HS_PASSTHROUGH.BIND_INOUT_VARIABLE (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN OUT RAW,
name IN VARCHAR2);

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–11 BIND_INOUT_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 18–10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description
DBMS_HS_PASSTHROUGH 18-9

CLOSE_CURSOR Procedure
Parameters

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

CLOSE_CURSOR Procedure
This function closes the cursor and releases associated memory after the SQL
statement has been run at the non-Oracle system. If the cursor was not open, then
the operation is a "no operation".

Table 18–12 BIND_INOUT_VARIABLE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed’ using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val This value is used for two purposes:

- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

name (Optional) Name the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :ename is 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18–13 BIND_INOUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
18-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Syntax
DBMS_HS_PASSTHROUGH.CLOSE_CURSOR (

c IN BINARY_INTEGER NOT NULL);

Parameters

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

EXECUTE_IMMEDIATE Procedure
This function runs a SQL statement immediately. Any valid SQL command except
SELECT can be run immediately. The statement must not contain any bind
variables. The statement is passed in as a VARCHAR2 in the argument. Internally the
SQL statement is run using the PASSTHROUGH SQL protocol sequence of OPEN_
CURSOR, PARSE, EXECUTE_NON_QUERY, CLOSE_CURSOR.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE (

S IN VARCHAR2 NOT NULL)
RETURN BINARY_INTEGER;

Table 18–14 CLOSE_CURSOR Procedure Parameters

Parameter Description

c Cursor to be released.

Table 18–15 CLOSE_CURSOR Procedure Exceptions

Exception Description

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH 18-11

EXECUTE_NON_QUERY Function
Parameters

Returns
The number of rows affected by the execution of the SQL statement.

Exceptions

EXECUTE_NON_QUERY Function
This function runs a SQL statement. The SQL statement cannot be a SELECT
statement. A cursor has to be open and the SQL statement has to be parsed before
the SQL statement can be run.

Syntax
DBMS_HS_PASSTHROUGH.EXECUTE_NON_QUERY (

c IN BINARY_INTEGER NOT NULL)
RETURN BINARY_INTEGER;

Parameters

Table 18–16 EXECUTE_IMMEDIATE Procedure Parameters

Parameter Description

s VARCHAR2 variable with the statement to be executed
immediately.

Table 18–17 EXECUTE_IMMEDIATE Procedure Exceptions

Exception Description

ORA-28551 SQL statement is invalid.

ORA-28544 Max open cursors.

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 18–18 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.
18-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Returns
The number of rows affected by the SQL statement in the non-Oracle system

Exceptions

FETCH_ROW Function
This function fetches rows from a result set. The result set is defined with a SQL
SELECT statement. When there are no more rows to be fetched, the exception NO_
DATA_FOUND is raised. Before the rows can be fetched, a cursor has to be opened,
and the SQL statement has to be parsed.

Syntax
DBMS_HS_PASSTHROUGH.FETCH_ROW (

c IN BINARY_INTEGER NOT NULL,
first IN BOOLEAN)

RETURN BINARY_INTEGER;

Parameters

Table 18–19 EXECUTE_NON_QUERY Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 BIND_VARIABLE procedure is not run in right order. (Did you
first open the cursor and parse the SQL statement?)

ORA-28555 A NULL value was passed for a NOT NULL parameter.

Table 18–20 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

first (Optional) Reexecutes SELECT statement. Possible values:

- TRUE: reexecute SELECT statement.

- FALSE : fetch the next row, or if run for the first time, then
execute and fetch rows (default).
DBMS_HS_PASSTHROUGH 18-13

GET_VALUE Procedure
Returns
The returns the number of rows fetched. The function returns "0" if the last row was
already fetched.

Exceptions

Pragmas
Purity level defined : WNDS

GET_VALUE Procedure
This procedure has two purposes:

� It retrieves the select list items of SELECT statements, after a row has been
fetched.

� It retrieves the OUT bind values, after the SQL statement has been run.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT <dty>);

Where <dty> is either DATE, NUMBER, or VARCHAR2

Table 18–21 FETCH_ROW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28555 A NULL value was passed for a NOT NULL parameter.

See Also: For retrieving values of datatype RAW, see GET_
VALUE_RAW Procedure on page 18-15.
18-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Parameters

Exceptions

Pragmas
Purity level defined : WNDS

GET_VALUE_RAW Procedure
This procedure is similar to GET_VALUE, but for datatype RAW.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (

c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT RAW);

Table 18–22 GET_VALUE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement: Starts at 1.

val Variable in which the OUT bind variable or select list item
stores its value.

Table 18–23 GET_VALUE Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when running the GET_
VALUE after the last row was fetched (that is, FETCH_ROW
returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
DBMS_HS_PASSTHROUGH 18-15

OPEN_CURSOR Function
Parameters

Exceptions

Pragmas
Purity level defined : WNDS

OPEN_CURSOR Function
This function opens a cursor for running a pass-through SQL statement at the
non-Oracle system. This function must be called for any type of SQL statement

The function returns a cursor, which must be used in subsequent calls. This call
allocates memory. To deallocate the associated memory, call the procedure CLOSE_
CURSOR.

Table 18–24 GET_VALUE_RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSOR and PARSE respectively.

pos Position of the bind variable or select list item in the SQL
statement: Starts at 1.

val Variable in which the OUT bind variable or select list item
stores its value.

Table 18–25 GET_VALUE_RAW Procedure Exceptions

Exception Description

ORA-1403 Returns NO_DATA_FOUND exception when running the GET_
VALUE after the last row was fetched (that is, FETCH_ROW
returned "0").

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
18-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms
Syntax
DBMS_HS_PASSTHROUGH.OPEN_CURSOR

RETURN BINARY_INTEGER;

Returns
The cursor to be used on subsequent procedure and function calls.

Exceptions

Pragmas
Purity level defined : WNDS, RNDS

PARSE Procedure
This procedure parses SQL statement at non-Oracle system.

Syntax
DBMS_HS_PASSTHROUGH.GET_VALUE_RAW (

c IN BINARY_INTEGER NOT NULL,
stmt IN VARCHAR2 NOT NULL);

Parameters

Table 18–26 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase
Heterogeneous Services’ OPEN_CURSORS initialization
parameter.

Table 18–27 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR.

stmt Statement to be parsed.
DBMS_HS_PASSTHROUGH 18-17

PARSE Procedure
Exceptions

Pragmas
Purity level defined : WNDS, RNDS

Table 18–28 GET_VALUE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULL value was passed for a NOT NULL parameter.
18-18 Oracle9i Supplied PL/SQL Packages and Types Reference

D

19

DBMS_IOT

The DBMS_IOT package creates a table into which references to the chained rows for
an index-organized table can be placed using the ANALYZE command. DBMS_IOT
can also create an exception table into which rows of an index-organized table that
violate a constraint can be placed during the enable_constraint operation.

DBMS_IOT is not loaded during database installation. To install DBMS_IOT, run
dbmsiotc.sql and prvtiotc.sql , available in the admin directory.

This chapter discusses the following topics:

� Summary of DBMS_IOT Subprograms
BMS_IOT 19-1

Summary of DBMS_IOT Subprograms
Summary of DBMS_IOT Subprograms

BUILD_CHAIN_ROWS_TABLE Procedure
The BUILD_CHAIN_ROWS_TABLE procedure creates a table into which references to
the chained rows for an index-organized table can be placed using the ANALYZE
command.

Syntax
DBMS_IOT.BUILD_CHAIN_ROWS_TABLE (

owner IN VARCHAR2,
iot_name IN VARCHAR2,
chainrow_table_name IN VARCHAR2 default ’IOT_CHAINED_ROWS’);

Parameters

Example
CREATE TABLE l(a char(16),b char(16), c char(16), d char(240),
PRIMARY KEY(a,b,c)) ORGANIZATION INDEX pctthreshold 10 overflow;
EXECUTE DBMS_IOT.BUILD_CHAIN_ROWS_TABLE(’SYS’,’L’,’LC’);

A chained-row table is created with the following columns:

Table 19–1 DBMS_IOT Package Subprograms

Subprogram Description

BUILD_CHAIN_ROWS_
TABLE Procedure on
page 19-2

Creates a table into which references to the chained rows for
an index-organized table can be placed using the ANALYZE
command.

BUILD_EXCEPTIONS_
TABLE Procedure on
page 19-3

Creates an exception table into which rows of an
index-organized table that violate a constraint can be placed
during the enable_constraint operation.

Table 19–2 BUILD_CHAIN_ROWS_TABLE Procedure Parameters

Parameter Description

owner Owner of the index-organized table.

iot_name Index-organized table name.

chainrow_table_name Intended name for the chained-rows table.
19-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_IOT Subprograms
Column Name Null? Type
------------------------------ -------- ----
OWNER_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
HEAD_ROWID ROWID
TIMESTAMP DATE
A CHAR(16)
B CHAR(16)
C CHAR(16)

BUILD_EXCEPTIONS_TABLE Procedure
The BUILD_EXCEPTIONS_TABLE procedure creates an exception table into which
rows of an index-organized table that violate a constraint can be placed during the
enable_constraint operation.

A separate chained-rows table and an exception table should be created for each
index-organized table to accommodate its primary key.

Syntax
DBMS_IOT.BUILD_EXCEPTIONS_TABLE (

owner IN VARCHAR2,
iot_name IN VARCHAR2,
exceptions_table_name IN VARCHAR2 default ’IOT_EXCEPTIONS’);

Parameters

Note: This form of chained-rows table and exception table are
required only for servers running with Oracle8, Release 8.0
compatibility.

Table 19–3 BUILD_EXCEPTIONS_TABLE Procedure Parameters

Parameter Description

owner Owner of the index-organized table.

iot_name Index-organized table name.
DBMS_IOT 19-3

BUILD_EXCEPTIONS_TABLE Procedure
Example
EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE(’SYS’,’L’,’LE’);

An exception table for the preceding index-organized table with the following
columns:

Column Name Null? Type
------------------------------ -------- ----
ROW_ID VARCHAR2(30)
OWNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CONSTRAINT VARCHAR2(30)
A CHAR(16)
B CHAR(16)
C CHAR(16)

exceptions_table_
name

Intended name for exception-table.

Table 19–3 BUILD_EXCEPTIONS_TABLE Procedure Parameters

Parameter Description
19-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DB
20

DBMS_JOB

DBMS_JOB subprograms schedule and manage jobs in the job queue.

This chapter discusses the following topics:

� Requirements

� Using the DBMS_JOB Package with Oracle Real Application Clusters

� Summary of DBMS_JOB Subprograms

See Also: For more information on the DBMS_JOB package and
the job queue, see Oracle9i Database Administrator’s Guide
MS_JOB 20-1

Requirements
Requirements
There are no database privileges associated with jobs. DBMS_JOB does not allow a
user to touch any jobs except their own.

Using the DBMS_JOB Package with Oracle Real Application Clusters
For this example, a constant in DBMS_JOB indicates no mapping among jobs and
instances; that is, jobs can be executed by any instance.

DBMS_JOB.SUBMIT
To submit a job to the job queue, use the following syntax:

DBMS_JOB.SUBMIT(JOB OUT BINARY_INTEGER,
WHAT IN VARCHAR2, NEXT_DATE IN DATE DEFAULTSYSDATE,
INTERVAL IN VARCHAR2 DEFAULT ’NULL’,
NO_PARSE IN BOOLEAN DEFAULT FALSE,
INSTANCE IN BINARY_INTEGER DEFAULT ANY_INSTANCE,
FORCE IN BOOLEAN DEFAULT FALSE);

Use the parameters INSTANCE and FORCE to control job and instance affinity. The
default value of INSTANCE is 0 (zero) to indicate that any instance can execute the
job. To run the job on a certain instance, specify the INSTANCE value. Oracle
displays error ORA-23319 if the INSTANCE value is a negative number or NULL.

The FORCE parameter defaults to FALSE. If force is TRUE, any positive integer is
acceptable as the job instance. If FORCE is FALSE, the specified instance must be
running, or Oracle displays error number ORA-23428.

DBMS_JOB.INSTANCE
To assign a particular instance to execute a job, use the following syntax:

DBMS_JOB.INSTANCE(JOB IN BINARY_INTEGER,
INSTANCE IN BINARY_INTEGER,
FORCE IN BOOLEAN DEFAULT FALSE);

The FORCE parameter in this example defaults to FALSE. If the instance value is 0
(zero), job affinity is altered and any available instance can execute the job despite
the value of force. If the INSTANCE value is positive and the FORCE parameter is
FALSE, job affinity is altered only if the specified instance is running, or Oracle
displays error ORA-23428.
20-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms
If the FORCE parameter is TRUE, any positive integer is acceptable as the job
instance and the job affinity is altered. Oracle displays error ORA-23319 if the
INSTANCE value is negative or NULL.

DBMS_JOB.CHANGE
To alter user-definable parameters associated with a job, use the following syntax:

DBMS_JOB.CHANGE(JOB IN BINARY_INTEGER,
WHAT IN VARCHAR2 DEFAULT NULL,
NEXT_DATE IN DATE DEFAULT NULL,
INTERVAL IN VARCHAR2 DEFAULT NULL,
INSTANCE IN BINARY_INTEGER DEFAULT NULL,
FORCE IN BOOLEAN DEFAULT FALSE);

Two parameters, INSTANCE and FORCE, appear in this example. The default value
of INSTANCE is NULL indicating that job affinity will not change.

The default value of FORCE is FALSE. Oracle displays error ORA-23428 if the
specified instance is not running and error ORA-23319 if the INSTANCE number is
negative.

DBMS_JOB.RUN
The FORCE parameter for DBMS_JOB.RUN defaults to FALSE. If force is TRUE,
instance affinity is irrelevant for running jobs in the foreground process. If force is
FALSE, the job can run in the foreground only in the specified instance. Oracle
displays error ORA-23428 if force is FALSE and the connected instance is the
incorrect instance.

DBMS_JOB.RUN(
JOB IN BINARY_INTEGER,
FORCE IN BOOLEAN DEFAULT FALSE);

Summary of DBMS_JOB Subprograms

See Also: Oracle9i Real Application Clusters Concepts for more
information

Table 20–1 DBMS_JOB Package Subprograms

Subprogram Description

SUBMIT Procedure on
page 20-4

Submits a new job to the job queue.
DBMS_JOB 20-3

SUBMIT Procedure
SUBMIT Procedure
This procedure submits a new job. It chooses the job from the sequence
sys .jobseq .

Syntax
DBMS_JOB.SUBMIT (

job OUT BINARY_INTEGER,
what IN VARCHAR2,
next_date IN DATE DEFAULT sysdate,
interval IN VARCHAR2 DEFAULT ’null’,
no_parse IN BOOLEAN DEFAULT FALSE,
instance IN BINARY_INTEGER DEFAULT any_instance,
force IN BOOLEAN DEFAULT FALSE);

REMOVE Procedure on
page 20-6

Removes specified job from the job queue.

CHANGE Procedure on
page 20-6

Alters any of the user-definable parameters associated with
a job.

WHAT Procedure on
page 20-7

Alters the job description for a specified job.

NEXT_DATE Procedure on
page 20-8

Alters the next execution time for a specified job.

INSTANCE Procedure on
page 20-8

Assigns a job to be run by a instance.

INTERVAL Procedure on
page 20-9

Alters the interval between executions for a specified job.

BROKEN Procedure on
page 20-10

Disables job execution.

RUN Procedure on page 20-11 Forces a specified job to run.

USER_EXPORT Procedure on
page 20-11

Re-creates a given job for export.

USER_EXPORT Procedure on
page 20-12

Re-creates a given job for export with instance affinity.

Table 20–1 DBMS_JOB Package Subprograms (Cont.)

Subprogram Description
20-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms
Parameters

Usage Notes
The parameters instance and force are added for job queue affinity. Job queue
affinity gives users the ability to indicate whether a particular instance or any
instance can run a submitted job.

Example
This submits a new job to the job queue. The job calls the procedure DBMS_
DDL.ANALYZE_OBJECT to generate optimizer statistics for the table
DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the
ACCOUNTS table. The job is run every 24 hours:

VARIABLE jobno number;
BEGIN

DBMS_JOB.SUBMIT(:jobno,
’dbms_ddl.analyze_object(’’TABLE’’,
’’DQUON’’, ’’ACCOUNTS’’,

Table 20–2 SUBMIT Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Next date when the job will be run.

interval Date function that calculates the next time to run the job. The
default is NULL. This must evaluate to a either a future point in
time or NULL.

no_parse A flag. The default is FALSE. If this is set to FALSE, then Oracle
parses the procedure associated with the job. If this is set to
TRUE, then Oracle parses the procedure associated with the job
the first time that the job is run.

For example, if you want to submit a job before you have
created the tables associated with the job, then set this to TRUE.

instance When a job is submitted, specifies which instance can run the
job.

force If this is TRUE, then any positive integer is acceptable as the job
instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.
DBMS_JOB 20-5

REMOVE Procedure
’’ESTIMATE’’, NULL, 50);’
SYSDATE, ’SYSDATE + 1’);

commit;
END;
/
Statement processed.
print jobno
JOBNO

14144

REMOVE Procedure
This procedure removes an existing job from the job queue. This currently does not
stop a running job.

Syntax
DBMS_JOB.REMOVE (

job IN BINARY_INTEGER);

Parameters

Example
EXECUTE DBMS_JOB.REMOVE(14144);

CHANGE Procedure
This procedure changes any of the user-settable fields in a job.

Syntax
DBMS_JOB.CHANGE (

job IN BINARY_INTEGER,
what IN VARCHAR2,
next_date IN DATE,
interval IN VARCHAR2,
instance IN BINARY_INTEGER DEFAULT NULL,

Table 20–3 REMOVE Procedure Parameters

Parameter Description

job Number of the job being run.
20-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms
force IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The parameters instance and force are added for job queue affinity. Job queue
affinity gives users the ability to indicate whether a particular instance or any
instance can run a submitted job.

If the parameters what , next_date , or interval are NULL, then leave that value
as it is.

Example
EXECUTE DBMS_JOB.CHANGE(14144, null, null, ’sysdate+3’);

WHAT Procedure
This procedure changes what an existing job does, and replaces its environment.

Syntax
DBMS_JOB.WHAT (

job IN BINARY_INTEGER,

Table 20–4 CHANGE Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Date of the next refresh.

interval Date function; evaluated immediately before the job starts
running.

instance When a job is submitted, specifies which instance can run the
job. This defaults to NULL, which indicates that instance
affinity is not changed.

force If this is FALSE, then the specified instance (to which the
instance number change) must be running. Otherwise, the
routine raises an exception.

If this is TRUE, then any positive integer is acceptable as the job
instance.
DBMS_JOB 20-7

NEXT_DATE Procedure
what IN VARCHAR2);

Parameters

Some legal values of what (assuming the routines exist) are:

� ’myproc(’’10-JAN-82’’, next_date, broken);’

� ’scott.emppackage.give_raise(’’JENKINS’’, 30000.00);’

� ’dbms_job.remove(job);’

NEXT_DATE Procedure
This procedure changes when an existing job next runs.

Syntax
DBMS_JOB.NEXT_DATE (

job IN BINARY_INTEGER,
next_date IN DATE);

Parameters

INSTANCE Procedure
This procedure changes job instance affinity.

Table 20–5 WHAT Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

Table 20–6 NEXT_DATE Procedure Parameters

Parameter Description

job Number of the job being run.

next_date Date of the next refresh: it is when the job will be automatically
run, assuming there are background processes attempting to
run it.
20-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms
Syntax
DBMS_JOB.INSTANCE (

job IN BINARY_INTEGER,
instance IN BINARY_INTEGER,
force IN BOOLEAN DEFAULT FALSE);

Parameters

INTERVAL Procedure
This procedure changes how often a job runs.

Syntax
DBMS_JOB.INTERVAL (

job IN BINARY_INTEGER,
interval IN VARCHAR2);

Parameters

Table 20–7 INSTANCE Procedure Parameters

Parameter Description

job Number of the job being run.

instance When a job is submitted, a user can specify which instance can
run the job.

force If this is TRUE, then any positive integer is acceptable as the job
instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.

Table 20–8 INTERVAL Procedure Parameters

Parameter Description

job Number of the job being run.

interval Date function, evaluated immediately before the job starts
running.
DBMS_JOB 20-9

BROKEN Procedure
Usage Notes
If the job completes successfully, then this new date is placed in next_date .
interval is evaluated by plugging it into the statement select interval into
next_date from dual;

The interval parameter must evaluate to a time in the future. Legal intervals
include:

If interval evaluates to NULL and if a job completes successfully, then the job is
automatically deleted from the queue.

BROKEN Procedure
This procedure sets the broken flag. Broken jobs are never run.

Syntax
DBMS_JOB.BROKEN (

job IN BINARY_INTEGER,
broken IN BOOLEAN,
next_date IN DATE DEFAULT SYSDATE);

Parameters

Interval Description

’sysdate + 7’ Run once a week.

’next_day(sysdate,’’TUESDAY’’)’ Run once every Tuesday.

’null’ Run only once.

Table 20–9 Broken Procedure Parameters

Parameter Description

job Number of the job being run.

broken Job broken: IN value is FALSE.

next_data Date of the next refresh.
20-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms
RUN Procedure
This procedure runs job JOB now. It runs it even if it is broken.

Running the job recomputes next_date . See view user_jobs .

Syntax
DBMS_JOB.RUN (

job IN BINARY_INTEGER,
force IN BOOLEAN DEFAULT FALSE);

Parameters

Example
EXECUTE DBMS_JOB.RUN(14144);

Exceptions
An exception is raised if force is FALSE, and if the connected instance is the wrong
one.

USER_EXPORT Procedure
This procedure produces the text of a call to re-create the given job.

Note: If you set job as broken while it is running, Oracle resets the
job’s status to normal after the job completes. Therefore, only
execute this procedure for jobs that are not running.

Table 20–10 Run Procedure Parameters

Parameter Description

job Number of the job being run.

force If this is TRUE, then instance affinity is irrelevant for running
jobs in the foreground process. If this is FALSE, then the job
can be run in the foreground only in the specified instance.

Caution: This reinitializes the current session’s packages.
DBMS_JOB 20-11

USER_EXPORT Procedure
Syntax
DBMS_JOB.USER_EXPORT (

job IN BINARY_INTEGER,
mycall IN OUT VARCHAR2);

Parameters

USER_EXPORT Procedure
This procedure alters instance affinity (8i and after) and preserves the compatibility.

Syntax
DBMS_JOB.USER_EXPORT (

job IN BINARY_INTEGER,
mycall IN OUT VARCHAR2,
myinst IN OUT VARCHAR2);

Parameters

Table 20–11 USER_EXPORT Procedure Parameter

Parameter Description

job Number of the job being run.

mycall Text of a call to recreate the given job.

Table 20–12 USER_EXPORT Procedure Parameters

Parameter Description

job Number of the job being run.

mycall Text of a call to re-create a given job.

myinst Text of a call to alter instance affinity.
20-12 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
21

DBMS_LDAP

DBMS_LDAP provides functions and procedures to access data from LDAP servers.
To use DBMS_LDAP, you must first load it into the database. Use the catldap.sql
script located in the $ORACLE_HOME/rdbms/admin directory.

This chapter discusses the following topics:

� Exception Summary

� Summary of Data Types

� Summary of DBMS_LDAP Subprograms

See Also: Oracle Internet Directory Application Developer’s Guide for
more information on using DBMS_LDAP.
S_LDAP 21-1

Exception Summary
Exception Summary
Table 21–1 lists the exceptions generated by DBMS_LDAP.

Table 21–1 DBMS_LDAP Exception Summary

Exception Name
Oracle
Error Cause of Exception

general_error 31202 Raised anytime an error is encountered that does not have a specific PL/SQL
exception associated with it. The error string contains the description of the
problem in the local language of the user.

init_failed 31203 Raised by DBMS_LDAP.init if there are some problems.

invalid_
session

31204 Raised by all functions and procedures in the DBMS_LDAP package if they are
passed an invalid session handle.

invalid_auth_
method

31205 Raised by DBMS_LDAP.bind_s if the authentication method requested is not
supported.

invalid_
search_scope

31206 Raised by all of the search functions if the scope of the search is invalid.

invalid_
search_time_
val

31207 Raised by time based search function: DBMS_LDAP.search_st if it is given an
invalid value for the time limit.

invalid_
message

31208 Raised by all functions that iterate through a result-set for getting entries from a
search operation if the message handle given to them is invalid.

count_entry_
error

31209 Raised by DBMS_LDAP.count_entries if it cannot count the entries in a given
result set.

get_dn_error 31210 Raised by DBMS_LDAP.get_dn if the DN of the entry it is retrieving is NULL.

invalid_
entry_dn

31211 Raised by all the functions that modify/add/rename an entry if they are
presented with an invalid entry DN.

invalid_mod_
array

31212 Raised by all functions that take a modification array as an argument if they are
given an invalid modification array.

invalid_mod_
option

31213 Raised by DBMS_LDAP.populate_mod_array if the modification option given
is anything other than MOD_ADD, MOD_DELETE or MOD_REPLACE.

invalid_mod_
type

31214 Raised by DBMS_LDAP.populate_mod_array if the attribute type that is being
modified is NULL.

invalid_mod_
value

31215 Raised by DBMS_LDAP.populate_mod_array if the modification value
parameter for a given attribute is NULL.

invalid_rdn 31216 Raised by all functions and procedures that expect a valid RDN if the value of the
RDN is NULL.
21-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Data Types
Summary of Data Types
The DBMS_LDAP package uses the data types shown in Table 21–2.

invalid_
newparent

31217 Raised by DBMS_LDAP.rename_s if the new parent of an entry being renamed
is NULL.

invalid_
deleteoldrdn

31218 Raised by DBMS_LDAP.rename_s if the deleteoldrdn parameter is invalid.

invalid_
notypes

31219 Raised by DBMS_LDAP.explode_dn if the notypes parameter is invalid.

invalid_ssl_
wallet_loc

31220 Raised by DBMS_LDAP.open_ssl if the wallet location is NULL but the SSL
authentication mode requires a valid wallet.

invalid_ssl_
wallet_
password

31221 Raised by DBMS_LDAP.open_ssl if the wallet password given is NULL.

invalid_ssl_
auth_mode

31222 Raised by DBMS_LDAP.open_ssl if the SSL authentication mode is not one of 1,
2, or 3.

mts_mode_not_
supported

31398 Raised by the functions init, bind_s or simple_bind_s if they are ever
invoked in MTS mode.

Table 21–2 DBMS_LDAP Summary of Data Types

Data-Type Purpose

SESSION Holds the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Holds a handle to the message retrieved from the result set. This
is used by all functions that work with entries, attributes, and
values.

MOD_ARRAY Holds a handle into the array of modifications being passed into
either modify_s or add_s.

TIMEVAL Passes time limit information to the LDAP API functions that
require a time limit.

BER_ELEMENT Holds a handle to a BER structure used for decoding incoming
messages.

Table 21–1 DBMS_LDAP Exception Summary

Exception Name
Oracle
Error Cause of Exception
DBMS_LDAP 21-3

Summary of DBMS_LDAP Subprograms
Summary of DBMS_LDAP Subprograms

STRING_COLLECTION Holds a list of VARCHAR2 strings which can be passed on to the
LDAP server.

BINVAL_COLLECTION Holds a list of RAW data which represent binary data.

BERVAL_COLLECTION Holds a list of BERVAL values that are used for populating a
modification array.

Table 21–3 DBMS_LDAP Subprograms

Function or Procedure Description

init Function on page 21-6 Initializes a session with an LDAP server. This actually
establishes a connection with the LDAP server.

simple_bind_s Function on
page 21-7

Performs simple username/password based authentication to
the directory server.

bind_s Function on
page 21-9

Performs complex authentication to the directory server.

unbind_s Function on
page 21-10

Closes an active LDAP session.

compare_s Function on
page 21-11

Tests if a particular attribute in a particular entry has a
particular value.

search_s Function on
page 21-13

Performs a synchronous search in the LDAP server. It returns
control to the PL/SQL environment only after all of the search
results have been sent by the server or if the search request is
timed out by the server.

search_st Function on
page 21-15

Performs a synchonous search in the LDAP server with a client
side timeout. It returns control to the PL/SQL environment
only after all of the search results have been sent by the server
or if the search request is timed out by the client or the server.

first_entry Function on
page 21-17

Retrieves the first entry in the result set returned by either
search_s or search_st.

next_entry Function on
page 21-18

Iterates to the next entry in the result set of a search operation.

Table 21–2 DBMS_LDAP Summary of Data Types

Data-Type Purpose
21-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
count_entries Function on
page 21-20

Counts the number of entries in the result set. It can also be
used to count the number of entries remaining during a
traversal of the result set using a combination of the functions
first_entry and next_entry.

first_attribute Function on
page 21-21

Fetches the first attribute of a given entry in the result set.

next_attribute Function on
page 21-22

Fetches the next attribute of a given entry in the result set.

get_dn Function on
page 21-24

Retrieves the X.500 distinguished name of given entry in the
result set.

get_values Function on
page 21-25

Retrieves all of the values associated for a given attribute in a
given entry.

get_values_len Function
on page 21-26

Retrieves values of attributes that have a Binary syntax.

delete_s Function on
page 21-28

Removes a leaf entry in the LDAP Directory Information Tree.

modrdn2_s Function on
page 21-29

Renames the relative distinguished name of an entry.

err2string Function on
page 21-30

Converts an LDAP error code to string in the local language in
which the API is operating.

create_mod_array
Function on page 21-31

Allocates memory for array modification entries that are
applied to an entry using the modify_s functions.

populate_mod_array
(String Version) Procedure
on page 21-32

Populates one set of attribute information for add or modify
operations.

populate_mod_array
(Binary Version) Procedure
on page 21-34

Populates one set of attribute information for add or modify
operations. This procedure call has to happen after DBMS_
LDAP.create_mod_array is called.

modify_s Function on
page 21-35

Performs a sychronous modification of an existing LDAP
directory entry.

add_s Function on
page 21-37

Adds a new entry to the LDAP directory synchronously. Before
calling add_s , we have to call DBMS_LDAP.creat_mod_
array and DBMS_LDAP.populate_mod_array first.

free_mod_array Procedure
on page 21-38

Frees the memory allocated by DBMS_LDAP.create_mod_
array .

Table 21–3 DBMS_LDAP Subprograms (Cont.)

Function or Procedure Description
DBMS_LDAP 21-5

init Function
init Function
This function initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

Syntax
DBMS_LDAP.init (

hostname IN VARCHAR2,
portnum IN PLS_INTEGER)

RETURN SESSION;

Parameters

count_values Function on
page 21-39

Counts the number of values returned by DBMS_LDAP.get_
values .

count_values_len Function
on page 21-40

Counts the number of values returned by DBMS_LDAP.get_
values_len.

rename_s Function on
page 21-41

Renames an LDAP entry synchronously.

explode_dn Function on
page 21-43

Breaks a DN up into its components.

open_ssl Function on
page 21-44

Establishes an SSL (Secure Sockets Layer) connection over an
existing LDAP connection.

Table 21–4 init Function Parameters

Parameter Description

hostname (IN) Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server.
Each host name in the list may include a port number, which is
separated from the host with a colon (:). The hosts are tried in
the order listed, stopping with the first one to which a
successful connection is made.

portnum (IN) Contains the TCP port number to connect to. If a host includes
a port number, this parameter is ignored. If this parameter is
not specified and the host name does not contain the port
number, the default port number 389 is assumed.

Table 21–3 DBMS_LDAP Subprograms (Cont.)

Function or Procedure Description
21-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Return Values

Exceptions

Usage Notes
DBMS_LDAP.init is the first function that should be called in order to establish a
session to the LDAP server. DBMS_LDAP.init returns a session handle, a pointer to
an opaque structure that must be passed to subsequent calls pertaining to the
session. This routine returns NULL and raises the INIT_FAILED exception if the
session cannot be initialized. Subsequent to the call to init, the connection must
be authenticated using DBMS_LDAP.bind_s or DBMS_LDAP.simple_bind_s.

simple_bind_s Function
This function can be used to perform simple username/password based
authentication to the directory server.

Table 21–5 init Function Return Values

Value Description

SESSION A handle to an LDAP session that can be used for further calls
into the API.

Table 21–6 init Function Exceptions

Exception Description

init_failed Raised when there is a problem contacting the LDAP server.

ts_mode_not_
supported

Raised if DBMS_LDAP.init is invoked from a user session
that is logged onto the database using an MTS service.

general_error For all other errors. The error string associated with the
exception describes the error in detail.

See Also:

� "simple_bind_s Function" on page 21-7

� "bind_s Function" on page 21-9
DBMS_LDAP 21-7

simple_bind_s Function
Syntax
DBMS_LDAP.simple_bind_s (

ld IN SESSION,
dn IN VARCHAR2,
passwd IN VARCHAR2)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Table 21–7 simple_bind_s Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

dn (IN) The distinguished name of the user under which you are
trying to login.

passwd (IN) A text string containing the password.

Table 21–8 simple_bind_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP SUCCESS on a successful completion. If there was
a problem, one of the exceptions in Table 21–9 is raised.

Table 21–9 simple_bind_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

mts_mode_not_
supported

Raised if DBMS_LDAP.init is invoked from a user session
that is logged onto as an MTS service.

general_error For all other errors. The error string associated with this
exception explains the error in detail.
21-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Usage Notes
DBMS_LDAP.simple_bind_s can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init.

bind_s Function
This function performs complex authentication to the directory server.

Syntax
DBMS_LDAP.bind_s (

ld IN SESSION,
dn IN VARCHAR2,
cred IN VARCHAR2,
meth IN PLS_INTEGER)

RETURN PLS_INTEGER;

Parameters

Return Values

Table 21–10 bind_s Function Parameters

Parameter Description

ld A valid LDAP session handle.

dn The distinguished name of the user under which you are
trying to login.

cred A text string containing the credentials used for authentication.

meth The authentication method.

Table 21–11 bind_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS on a successful completion. One of the
exceptions in Table 21–12 is raised if there is a problem.
DBMS_LDAP 21-9

unbind_s Function
Exceptions

Usage Notes
DBMS_LDAP.bind_s can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init.

unbind_s Function
This function closes an active LDAP session.

Syntax
DBMS_LDAP.unbind_s (

ld IN SESSION)
RETURN PLS_INTEGER;

Parameters

Table 21–12 bind_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

mts_mode_not_
supported

Raised if invoked from a user session that is logged onto an
MTS service.

general_error For all other errors. The error string associated with this
exception explains the error in detail.

See Also:

� "init Function" on page 21-6

� "simple_bind_s Function" on page 21-7

Table 21–13 unbind_s Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.
21-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Return Values

Exceptions

Usage Notes
The unbind_s function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources
associated with the session handle before returning. After a call to this function, the
session handle ld is invalid and it is illegal to make any further LDAP API calls
using ld.

compare_s Function
This function tests whether a particular attribute in a particular entry has a
particular value.

Syntax
DBMS_LDAP.compare_s (

ld IN SESSION,
dn IN VARCHAR2,
attr IN VARCHAR2,
value IN VARCHAR2)

Table 21–14 unbind_s Function Return Values

Value Description

PLS_INTEGER SUCCESS on proper completion. One of the exceptions listed
in Table 21–15 is raised otherwise.

Table 21–15 unbind_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general error For all other errors. The error string associated with this
exception explains the error in detail.

See Also:

� "simple_bind_s Function" on page 21-7

� "bind_s Function" on page 21-9
DBMS_LDAP 21-11

compare_s Function
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
The function compare_s can be used to assert if the value of a given attribute
stored in the directory server matches a certain value.This operation can only be
performed on attributes whose syntax definition allows them to be compared. The
compare_s function can only be called after a valid LDAP session handle has been
obtained from the init function and authenticated using the bind_s or simple_
bind_s functions.

Table 21–16 compare_s Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle

dn (IN) The name of the entry to compare against

attr (IN) The attribute to compare against.

value (IN) A string attribute value to compare against

Table 21–17 compare_s Function Return Values

Value Description

PLS_INTEGER COMPARE_TRUE is the given attribute that has a matching
value.

COMPARE_FALSE if the value of the attribute does not match
the value given.

Table 21–18 compare_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

general_error For all other errors. The error string associated with this
exception explains the error in detail.
21-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
search_s Function
This function performs a synchronous search in the LDAP server. It returns control
to the PL/SQL environment only after all of the search results have been sent by the
server or if the search request is timed out by the server.

Syntax
FUNCTION search_s (

ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE)

RETURN PLS_INTEGER;

Parameters

See Also: "bind_s Function" on page 21-9.

Table 21–19 search_s Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

base (IN) The dn of the entry at which to start the search.

scope (IN) One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01),
or SCOPE_SUBTREE (0x02), indicating the scope of the
search.

filter (IN) A character string representing the search filter. The value
NULL can be passed to indicate that the filter (objectclass=*)
which matches all entries is to be used.

attrs (IN) A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS (1.1) can be used as the only
string in the array to indicate that no attribute types are
returned by the server. The special constant string ALL_USER_
ATTRS (*) can be used in the attrs array along with the names
of some operational attributes to indicate that all user
attributes plus the listed operational attributes are returned.
DBMS_LDAP 21-13

search_s Function
Return Values

Exceptions

Usage Notes
This function issues a search operation, and does not return control to the user
environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the res parameter. This parameter
is opaque to the caller. Entries, attributes, values, and so on can be extracted by
calling the parsing routines described in the following sections.

attrsonly (IN) A boolean value that must be zero if both attribute types and
values are returned, and nonzero if only types are wanted.

res (OUT) This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Table 21–20 search_s Function Return Value

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a nonnull value that can be used to iterate through the
result set.

Table 21–21 search_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception explains the error in detail.

Table 21–19 search_s Function Parameters

Parameter Description
21-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
search_st Function
This function performs a synchronous search in the LDAP server with a client-side
timeout. It returns control to the PL/SQL environment only after all of the search
results have been sent by the server or if the search request is timed out by the client
or the server.

Syntax
DBMS_LDAP.search_st (

ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
tv IN TIMEVAL,
res OUT MESSAGE)

RETURN PLS_INTEGER;

Parameters

See Also:

� "search_st Function" on page 21-15

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

Table 21–22 search_st Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

base (IN) The dn of the entry at which to start the search.

scope (IN) One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01),
or SCOPE_SUBTREE (0x02), indicating the scope of the
search.

filter (IN) A character string representing the search filter. The value
NULL can be passed to indicate that the filter (objectclass=*)
which matches all entries is to be used.
DBMS_LDAP 21-15

search_st Function
Return Values

Exceptions

attrs (IN) A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS (1.1) can be used as the only
string in the array to indicate that no attribute types are
returned by the server. The special constant string ALL_USER_
ATTRS (*) can be used in the attrs array along with the
names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are returned.

attrsonly (IN) A boolean value that must be zero if both attribute types and
values are returned, and nonzero if only types are wanted.

tv (IN) The timeout value expressed in seconds and microseconds that
should be used for this search.

res (OUT) This is a result parameter that will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Table 21–23 search_st Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a NON_NULL value that can be used to iterate through the
result set.

Table 21–24 search_st Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE.

invalid_search_time_
value

Raised if the time value specified for the timeout is invalid.

Table 21–22 search_st Function Parameters

Parameter Description
21-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Usage Notes
This function is very similar to DBMS_LDAP.search_s, except that it requires a
timeout value.

first_entry Function
This function retrieves the first entry in the result set returned by either search_s
or search_st

Syntax
DBMS_LDAP.first_entry (

ld IN SESSION,
msg IN MESSAGE)

RETURN MESSAGE;

Parameters

general_error For all other errors. The error string associated with this
exception explains the error in detail.

See Also:

� "search_s Function" on page 21-13

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

Table 21–25 first_entry Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

msg (IN) The search result obtained by a call to one of the synchronous
search routines.

Table 21–24 search_st Function Exceptions

Exception Description
DBMS_LDAP 21-17

next_entry Function
Return Values

Exceptions

Usage Notes
The function first_entry should always be the first function used to retrieve the
results from a search operation.

next_entry Function
This function iterates to the next entry in the result set of a search operation.

Syntax
DBMS_LDAP.next_entry (

ld IN SESSION,
msg IN MESSAGE)

RETURN MESSAGE;

Table 21–26 first_entry Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Table 21–27 first_entry Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

See Also:

� "next_entry Function" on page 21-18

� "search_s Function" on page 21-13

� "search_st Function" on page 21-15
21-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Parameters

Return Values

Exceptions

Usage Notes
The function next_entry should always be called after a call to first_entry.
Also, the return value of a successful call to next_entry should be used as msg
argument used in a subsequent call to next_entry to fetch the next entry in the
list.

Table 21–28 next_entry Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

msg (IN) The search result, as obtained by a call to one of the
synchronous search routines.

Table 21–29 next_entry Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Table 21–30 next_entry Function Exceptions

Exception Description

invalid_session Raised if the session handle, ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

See Also:

� "search_s Function" on page 21-13

� "search_st Function" on page 21-15

� "first_entry Function" on page 21-17
DBMS_LDAP 21-19

count_entries Function
count_entries Function
This function counts the number of entries in the result set. It can also count the
number of entries remaining during a traversal of the result set using a combination
of the functions first_entry and next_entry.

Syntax
DBMS_LDAP.count_entries (

ld IN SESSION,
msg IN MESSAGE)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Table 21–31 count_entry Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle

msg (IN) The search result, as obtained by a call to one of the
synchronous search routines

Table 21–32 count_entry Function Return Values

Value Description

PLS INTEGER Nonzero if there are entries in the result set

-1 if there was a problem.

Table 21–33 count_entry Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

count_entry_error Raised if there was a problem in counting the entries.
21-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Usage Notes
The count_entries function returns the number of entries contained in a chain
of entries. If an error occurs, such as the res parameter being invalid, -1 is
returned. The count_entries call can also be used to count the number of entries
that remain in a chain if called with a message, entry, or reference returned by
first_message, next_message, first_entry, next_entry, first_
reference, and next_reference.

first_attribute Function
This function fetches the first attribute of a given entry in the result set.

Syntax
DBMS_LDAP.first_attribute (

ld IN SESSION,
msg IN MESSAGE,
ber_elem OUT BER_ELEMENT)

RETURN VARCHAR2;

Parameters

See Also:

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

Table 21–34 first_attribute Function Parameter

Parameter Description

ld (IN) A valid LDAP session handle

msg (IN) The entry whose attributes are to be stepped through, as
returned by first_entry or next_entry

ber_elem (OUT) A handle to a BER ELEMENT that is used to keep track of
which attribute in the entry has been read
DBMS_LDAP 21-21

next_attribute Function
Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute should be used in the next call to next_attribute to iterate through
the various attributes of an entry. The name of the attribute returned from a call to
first_attribute can in turn be used in calls to the functions get_values or
get_values_len to get the values of that particular attribute.

next_attribute Function
This function fetches the next attribute of a given entry in the result set.

Syntax
DBMS_LDAP.next_attribute (

Table 21–35 first_attribute Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute to iterate
over all of the attributes

Table 21–36 first_attribute Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

See Also: �"first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

� "next_attribute Function" on page 21-22

� "get_values Function" on page 21-25

� "get_values_len Function" on page 21-26
21-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
ld IN SESSION,
msg IN MESSAGE,
ber_elem IN BER_ELEMENT)

RETURN VARCHAR2;

Parameters

Return Values

Exceptions

Usage Notes
The handle to the BER_ELEMENT returned as a function parameter to first_
attribute should be used in the next call to next_attribute to iterate through
the various attributes of an entry. The name of the attribute returned from a call to
next_attribute can in turn be used in calls to get_values or get_values_
len to get the values of that particular attribute.

Table 21–37 next_attribute Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

msg (IN) The entry whose attributes are to be stepped through, as
returned by first_entry or next_entry .

ber_elem (IN) A handle to a BER ELEMENT that is used to keep track of
which attribute in the entry has been read.

Table 21–38 next_attribute Function Return Values

Value Description

VARCHAR2 The name of the attribute, if it exists.

Table 21–39 next_attribute Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.
DBMS_LDAP 21-23

get_dn Function
get_dn Function
This function retrieves the X.500 distinguished name of a given entry in the result
set.

The function first_attribute fetches the first attribute of a given entry in the
result set

Syntax
DBMS_LDAP.get_dn (

ld IN SESSION,
msg IN MESSAGE)

RETURN VARCHAR2;

Parameters

Return Values

See Also:

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

� "first_attribute Function" on page 21-21

� "get_values Function" on page 21-25

� "get_values_len Function" on page 21-26

Table 21–40 get_dn Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

msg (IN) The entry whose DN is to be returned.

Table 21–41 get_dn Function Return Values

Value Description

VARCHAR2 The X.500 distinguished name of the entry as a PL/SQL string.

NULL if there was a problem.
21-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Exceptions

Usage Notes
The function get_dn can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This be used as an input to explode_dn to
retrieve the individual components of the DN.

get_values Function
This function retrieves all of the values associated for a given attribute in a given
entry.

Syntax
DBMS_LDAP.get_values (

ld IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2)

RETURN STRING_COLLECTION;

Parameters

Table 21–42 get_dn Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming msg handle is invalid.

get_dn_error Raised if there was a problem in determining the DN.

See Also: "explode_dn Function" on page 21-43.

Table 21–43 get_values Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

ldapentry (IN) A valid handle to an entry returned from a search result.

attr (IN) The name of the attribute for which values are being sought.
DBMS_LDAP 21-25

get_values_len Function
Return Values

Exceptions

Usage Notes
The function get_values can only be called after the handle to entry has been first
retrieved by a call to either first_entry or next_entry. The name of the
attribute can be known beforehand, and it can also be determined by a call to
first_attribute or next_attribute. The function get_values always
assumes that the datatype of the attribute it is retrieving is String. For retrieving
binary datatypes, use get_values_len.

.

get_values_len Function
This function retrieves values of attributes that have a Binary syntax.

Syntax
DBMS_LDAP.get_values_len (

ld IN SESSION,

Table 21–44 get_values Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 21–45 get_values Function Exceptions

Exception Description

invalid session Raised if the session handle ld is invalid.

invalid message Raised if the incoming entry handle is invalid.

See Also:

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

� "get_values_len Function" on page 21-26

� "count_values Function" on page 21-39
21-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
ldapentry IN MESSAGE,
attr IN VARCHAR2)

RETURN BINVAL_COLLECTION;

Parameters

Return Values

Exceptions

Usage Notes
The function get_values_len can only be called after the handle to entry has
been retrieved by a call to either first_entry or next_entry. The name of the
attribute can be known beforehand, and it can also be determined by a call to
first_attribute or next_attribute. This function can be used to retrieve
both binary and nonbinary attribute values.

Table 21–46 get_values_len Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

ldapentrymsg (IN) A valid handle to an entry returned from a search result.

attr (IN) The string name of the attribute for which values are being
sought.

Table 21–47 get_values_len Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL Raw collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Table 21–48 get_values_len Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_message Raised if the incoming entry handle is invalid
DBMS_LDAP 21-27

delete_s Function
delete_s Function
This function removes a leaf entry in the LDAP Directory Information Tree.

Syntax
DBMS_LDAP.delete_s (

ld IN SESSION,
entrydn IN VARCHAR2)

RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

See Also:

� "first_entry Function" on page 21-17

� "next_entry Function" on page 21-18

� "get_values Function" on page 21-25

� "count_values_len Function" on page 21-40

Table 21–49 delete_s Function Parameters

Parameter Name Description

ld (IN) A valid LDAP session

entrydn (IN) The X.500 distinguished name of the entry to delete.

Table 21–50 delete_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the delete operation wa successful.
An exception is raised otherwise.

Table 21–51 delete_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.
21-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Usage Notes
The function delete_s can be used to remove only leaf level entries in the LDAP
DIT. A leaf level entry is an entry that does not have any children/LDAP entries
under it. It cannot be used to delete nonleaf entries.

modrdn2_s Function
This function modrdn2_s can be used to rename the relative distinguished name of
an entry.

Syntax
DBMS_LDAP.modrdn2_s (

ld IN SESSION,
entrydn IN VARCHAR2
newrdn IN VARCHAR2
deleteoldrdn IN PLS_INTEGER)

RETURN PLS_INTEGER;

Parameters

invalid_entry_dn Raised if the distinguished name of the entry is invalid

general_error For all other errors. The error string associated with this
exception explains the error in detail.

See Also: "modrdn2_s Function" on page 21-29.

Table 21–52 modrdn2_s Function Parameters

Parameter Description

ld (IN) A valid LDAP session handle.

entrydn (IN) The distinguished name of the entry. (This entry must be a leaf
node in the DIT.).

newrdn (IN) The new relative distinguished name of the entry.

deleteoldrdn (IN) A boolean value that if nonzero, indicates that the attribute
values from the old name should be removed from the entry.

Table 21–51 delete_s Function Exceptions

Exception Description
DBMS_LDAP 21-29

err2string Function
Return Values

Exceptions

Usage Notes
This function can be used to rename the leaf nodes of a DIT. It simply changes the
relative distinguished name by which they are known. The use of this function is
being deprecated in the LDAP v3 standard. Please use rename_s, which can
achieve the same foundation.

err2string Function
This function converts an LDAP error code to string in the local language in which
the API is operating

Syntax
DBMS_LDAP.err2string (

ldap_err IN PLS_INTEGER)
RETURN VARCHAR2;

Table 21–53 modrdn2_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESS if the operation was successful. An
exception is raised otherwise.

Table 21–54 modrdn2_s Function Exceptions

Exception Description

invalid_session Raised if the session handle ld is invalid.

invalid_entry_dn Raised if the distinguished name of the entry is invalid.

invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general error For all other errors. The error string associated with this
exception explains the error in detail.

See Also: "rename_s Function" on page 21-41.
21-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Parameters

Return Values

Exceptions

Usage Notes
In this release, the exception handling mechanism automatically invokes this if any
of the API calls encounter an error.

create_mod_array Function
This function allocates memory for array modification entries that are applied to an
entry using the modify_s or add_s functions.

Syntax
DBMS_LDAP.create_mod_array (

num IN PLS_INTEGER)
RETURN MOD_ARRAY;

Table 21–55 err2string Function Parameters

Parameter Description

ldap_err (IN) An error number returned from one the API calls.

Table 21–56 err2string Function Return Values

Value Description

VARCHAR2 A character string appropriately translated to the local
language which describes the error in detail.

Table 21–57 err2string Function Exceptions

Exception Description

N/A None.
DBMS_LDAP 21-31

populate_mod_array (String Version) Procedure
Parameters

Return Values

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It is required to call DBMS_LDAP.free_mod_array to free
memory after the calls to add_s or modify_s have completed.

populate_mod_array (String Version) Procedure
This procedure populates one set of attribute information for add or modify
operations.

Table 21–58 create_mod_array Function Parameters

Parameter Description

num (IN) The number of the attributes that you want to add or modify.

Table 21–59 create_mod_array Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.

NULL if there was a problem.

Table 21–60 create_mod_array Function Exceptions

Exception Description

N/A No LDAP specific exception is raised

See Also:

� "populate_mod_array (String Version) Procedure" on
page 21-32

� "modify_s Function" on page 21-35

� "add_s Function" on page 21-37

� "free_mod_array Procedure" on page 21-38
21-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Syntax
DBMS_LDAP.populate_mod_array (

modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.STRING_COLLECTION);

Parameters

Return Values

Exceptions

Table 21–61 populate_mod_array (String Version) Procedure Parameters

Parameter Description

modptr (IN) The data structure holds a pointer to an LDAP mod array.

Mod_op (IN) This field specifies the type of modification to perform.

Mod_type (IN) This field indicates the name of the attribute type to which the
modification applies.

Modval (IN) This field specifies the attribute values to add, delete, or
replace. It is for the string values only.

Table 21–62 populate_mod_array (String Version) Procedure Return Values

Value Description

N/A -

Table 21–63 populate_mod_array (String Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.
DBMS_LDAP 21-33

populate_mod_array (Binary Version) Procedure
Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s . It has to happen after DBMS_LDAP.create_mod_array is
called.

 populate_mod_array (Binary Version) Procedure
This procedure populates one set of attribute information for add or modify
operations. This procedure call has to happen after DBMS_LDAP.create_mod_
array is called.

Syntax
PROCEDURE populate_mod_array

(modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,
mod_type IN VARCHAR2,
modval IN DBMS_LDAP.BERVAL_COLLECTION);

Parameters

See Also:

� "create_mod_array Function" on page 21-31

� "modify_s Function" on page 21-35

� "add_s Function" on page 21-37

� "free_mod_array Procedure" on page 21-38

Table 21–64 populate_mod_array (Binary Version) Procedure Parameters

Parameter Description

modptr (IN) The data structure holds a pointer to an LDAP mod array.

Mod_op (IN) This field specifies the type of modification to perform.

Mod_typ (IN) This field indicates the name of the attribute type to which the
modification applies.

Modval (IN) This field specifies the attribute values to add, delete, or
replace. It is for the binary values.
21-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Return Values

Exceptions

Usage Notes
This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It has to happen after DBMS_LDAP.create_mod_array is
called.

modify_s Function
This function performs a synchronous modification of an existing LDAP directory
entry.

Syntax
DBMS_LDAP.modify_s (

ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,

Table 21–65 populate_mod_array (Binary Version) Procedure Return Values

Value Description

N/A -

Table 21–66 populate_mod_array (Binary Version) Procedure Exceptions

Exception Description

invalid_mod_array Invalid LDAP mod array.

invalid_mod_option Invalid LDAP mod option.

invalid_mod_type Invalid LDAP mod type.

invalid_mod_value Invalid LDAP mod value.

See Also:

� "create_mod_array Function" on page 21-31

� "modify_s Function" on page 21-35

� "add_s Function" on page 21-37

� "free_mod_array Procedure" on page 21-38
DBMS_LDAP 21-35

modify_s Function
modptr IN DBMS_LDAP.MOD_ARRAY)
RETURN PLS_INTEGER;

Parameters

Return Values

Exceptions

Usage Notes
This function call has to follow successful calls of DBMS_LDAP.create_mod_
array and DBMS_LDAP.populate_mod_array .

Table 21–67 modify_s Function Parameters

Parameter Description

ld (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

entrydn (IN) Specifies the name of the directory entry whose contents are to
be modified.

modptr (IN) The handle to an LDAP mod structure, as returned by a
successful call to DBMS_LDAP.create_mod_array.

Table 21–68 modify_s Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation

Table 21–69 modify_s Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.
21-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
add_s Function
This function adds a new entry to the LDAP directory sychronously. Before calling
add_s, you must call DBMS_LDAP.create_mod_array and DBMS_
LDAP.populate_mod_array .

Syntax
DBMS_LDAP.add_s (

ld IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,
modptr IN DBMS_LDAP.MOD_ARRAY)

RETURN PLS_INTEGER;

Parameters

Return Values

See Also:

� "create_mod_array Function" on page 21-31

� "populate_mod_array (String Version) Procedure" on
page 21-32

� "add_s Function" on page 21-37

� "free_mod_array Procedure" on page 21-38

Table 21–70 add_s Function Parameters

Parameter Description

ld (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

Entrydn (IN) Specifies the name of the directory entry to be created.

Modptr (IN) The handle to an LDAP mod structure, as returned by
successful call to DBMS_LDAP.create_mod_array.

Table 21–71 add_s Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the modification
operation.
DBMS_LDAP 21-37

free_mod_array Procedure
Exceptions

Usage Notes
The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls of DBMS_LDAP.create_mod_array
and DBMS_LDAP.populate_mod_array.

free_mod_array Procedure
This procedure frees the memory allocated by DBMS_LDAP.create_mod_array.

Syntax
DBMS_LDAP.free_mod_array (

modptr IN DBMS_LDAP.MOD_ARRAY);

Parameters

Table 21–72 add_s Function Exceptions

Exception Description

invalid_session Invalid LDAP session.

invalid_entry_dn Invalid LDAP entry dn.

invalid_mod_array Invalid LDAP mod array.

See Also:

� "create_mod_array Function" on page 21-31

� "populate_mod_array (String Version) Procedure" on
page 21-32

� "modify_s Function" on page 21-35

� "free_mod_array Procedure" on page 21-38

Table 21–73 free_mod_array Procedure Parameters

Parameter Description

modptr (in) The handle to an LDAP mod structure, as returned by
successful call to DBMS_LDAP.create_mod_array.
21-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Return Values

Exceptions

count_values Function
This function counts the number of values returned by DBMS_LDAP.get_values.

Syntax
DBMS_LDAP.count_values (

values IN DBMS_LDAP.STRING_COLLECTION)
RETURN PLS_INTEGER;

Parameters

Table 21–74 free_mod_array Procedure Return Value

Value Description

N/A -

Table 21–75 free_mod_array Procedure Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:

� "create_mod_array Function" on page 21-31

� "populate_mod_array (String Version) Procedure" on
page 21-32

� "modify_s Function" on page 21-35

� "add_s Function" on page 21-37

Table 21–76 count_values Function Parameters

Parameter Description

values (IN) The collection of string values.
DBMS_LDAP 21-39

count_values_len Function
Return Values

Exceptions

count_values_len Function
This function counts the number of values returned by DBMS_LDAP.get_values_
len.

Syntax
DBMS_LDAP.count_values_len (

values IN DBMS_LDAP.BINVAL_COLLECTION)
RETURN PLS_INTEGER;

Parameters

Table 21–77 count_values Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 21–78 count_values Function Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:

� "get_values Function" on page 21-25

� "count_values_len Function" on page 21-40

Table 21–79 count_values_len Function Parameters

Parameter Description

values (IN) The collection of binary values.
21-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Return Values

Exceptions

.

rename_s Function
This function renames an LDAP entry synchronously.

Syntax
DBMS_LDAP.rename_s (

ld IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,
newparent IN VARCHAR2,
deleteoldrdn IN PLS_INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL)

RETURN PLS_INTEGER;

Table 21–80 count_values_len Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 21–81 count_values_len Function Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:

� "get_values_len Function" on page 21-26

� "count_values Function" on page 21-39
DBMS_LDAP 21-41

rename_s Function
Parameters

Return Values

Exceptions

Table 21–82 rename_s Function Parameters

Parameter Description

ld (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

Dn (IN) Specifies the name of the directory entry to be renamed or
moved.

newrdn (IN) Specifies the new RDN.

Newparent (IN) Specifies the DN of the new parent.

Deleteoldrdn (IN) Specifies if the old RDN should be retained. If this value is 1,
then the old RDN is removed.

Serverctrls (IN) Currently not supported.

Clientctrls (IN) Currently not supported.

Table 21–83 rename_s Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Table 21–84 rename_s Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_entry_dn Invalid LDAP DN.

invalid_rdn Invalid LDAP RDN.

invalid_newparent Invalid LDAP newparent.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

See Also: "modrdn2_s Function" on page 21-29.
21-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
explode_dn Function
This function breaks a DN up into its components.

Syntax
DBMS_LDAP.explode_dn (

dn IN VARCHAR2,
notypes IN PLS_INTEGER)

RETURN STRING_COLLECTION;

Parameters

Return Values

Exceptions

Table 21–85 explode_dn Function Parameters

Parameter Description

dn (IN) Specifies the name of the directory entry to be broken up.

Notypes (IN) Specifies if the attribute tags will be returned. If this value is
not 0, no attribute tags are returned.

Table 21–86 explode_dn Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN cannot be broken up, NULL is
returned.

Table 21–87 explode_dn Function Exceptions

Exception Description

invalid_entry_dn Invalid LDAP DN.

invalid_notypes Invalid LDAP notypes value.

See Also: "get_dn Function" on page 21-24.
DBMS_LDAP 21-43

open_ssl Function
open_ssl Function
This function establishes an SSL (Secure Sockets Layer) connection over an existing
LDAP connection.

Syntax
DBMS_LDAP.open_ssl (

ld IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2,
sslauth IN PLS_INTEGER)

RETURN PLS_INTEGER;

Parameters

Return Values

Table 21–88 open_ssl Function Parameters

Parameter Description

ld (IN) A handle to an LDAP session, as returned by a successful call to
DBMS_LDAP.init.

Sslwrl (IN) Specifies the wallet location (Required for one-way or two-way
SSL connection.)

sslwalletpasswd
(IN)

Specifies the wallet password (Required for one-way or two-way
SSL connection.)

sslauth (IN) Specifies the SSL Authentication Mode (1 for no authentication
required, 2 for one way authentication required, 3 for two way
authentication required.

Table 21–89 open_ssl Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.
21-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms
Exceptions

Usage Notes
Call DBMS_LDAP.init first to acquire a valid LDAP session.

Table 21–90 open_ssl Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_ssl_
wallet_loc

Invalid LDAP SSL wallet location.

invalid_ssl_
wallet_passwd

Invalid LDAP SSL wallet passwd.

invalid_ssl_auth_
mode

Invalid LDAP SSL authentication mode.

See Also: "init Function" on page 21-6.
DBMS_LDAP 21-45

open_ssl Function
21-46 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LIB
22

DBMS_LIBCACHE

DBMS_LIBCACHE prepares the library cache on an Oracle instance by extracting
SQL and PL/SQL from a remote instance and compiling this SQL locally without
execution. The value of compiling the cache of an instance is to prepare the
information the application requires to execute in advance of failover or switchover.

Compiling a shared cursor consists of open, parse, and bind operations, plus the
type-checking and execution plan functions performed at the first execution. All of
these steps are executed in advance by the package DBMS_LIBCACHE for SELECT
statements. The open and parse functions are executed in advance for PL/SQL and
DML. For PL/SQL, executing the parse phase has the effect of loading all library
cache heaps other than the MCODE.

This chapter discusses the following topics:

� Requirements

� Summary of DBMS_LIBCACHE Subprograms
CACHE 22-1

Requirements

t the
Requirements
To execute DBMS_LIBCACHE you must directly access the same objects as do SQL
statements. You can best accomplish this by utilizing the same user id as the
original system on the remote system. When there are multiple schema users,
DBMS_LIBCACHE should be called for each. Alternately, DBMS_LIBCACHE may be
called with the generic user PARSER. However, this user cannot parse the SQL that
uses objects with access granted though roles. This is a standard PL/SQL security
limitation.

Summary of DBMS_LIBCACHE Subprograms

COMPILE_CURSORS_FROM_REMOTE Procedure
This procedure extracts SQL in batch from the source instance and compiles the SQL a
target instance.

Syntax
DBMS_LIBCACHE.COMPILE_CURSORS_FROM_REMOTE('LIBC_LINK', {MY_USER}, 1,
1024000);

Parameters

Table 22–1 DBMS_SESSION Subprograms

Subprogram Description

COMPILE_CURSORS_FROM_
REMOTE Procedure on page 22-2

Extracts SQL in batch from the source instance and
compiles the SQL at the target instance.

Table 22–2 COMPILE_CURSORS_FROM_REMOTE Procedure Parameters

Parameter Description

Database Link
Name

The database link pointing to the instance used for extracting the
SQL statements.

Source username Parsing username for the SQL statements extracted.

Execution
threshold

Lower bound on the number of executions. Below this value
cursors will not be selected for compiling.
22-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LIBCACHE Subprograms

P

d to

r

, will

tes.
Usage Notes
Note the following:

� You must provide a Database link name and a Source user name as these
are mandatory parameters. The syntax demonstrates the addition of the two
optional parameters for preparsing all SQL larger than 1MB.

� Database link name - The connection may use either a password file or an LDA
authorization. A default database link,libc_link , is created when the catalog
program,catlibc.sql , is executed. There is no actual default value as this
parameter is mandatory for releases withdbms_libcache$def.ACCESS_METHOD
= DB_LINK_METHOD.

� Source user name - This parameter allows the package to be executed in the
matching local parsing user id. When using this parameter it is usual to be connecte
the same username locally. If the username is supplied it must be a valid value. The
name is not case sensitive.

� Execution threshold - The execution count on a cursor value is reset wheneve
the cursor is reloaded. This parameter allows the application to extract and compile
statements with executions for example, greater than 3. The default value is 1. This
means SQL statements that have never executed, including invalid SQL statements
not be extracted.

� Sharable memory threshold - This parameter allows the application to extract
and compile statements with shared memory for example, greater than 1024000 by
With the default value (1000), you can skip cursors that are invalid and so are never
executed.

Sharable memory
threshold

The lower bound for the size of the shared memory consumed by
the context area on the source instance. Below this value cursors
will not be selected for compiling.

Table 22–2 COMPILE_CURSORS_FROM_REMOTE Procedure Parameters

Parameter Description
DBMS_LIBCACHE 22-3

COMPILE_CURSORS_FROM_REMOTE Procedure
22-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DB
23

DBMS_LOB

The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs , and temporary LOBs. You can use DBMS_LOB to access and
manipulation specific parts of a LOB or complete LOBs.

This package must be created under SYS (connect internal). Operations provided by
this package are performed under the current calling user, not under the package
owner SYS.

DBMS_LOB can read and modify BLOBs, CLOBs, and NCLOBs; it provides read-only
operations for BFILEs . The bulk of the LOB operations are provided by this
package.

This chapter discusses the following topics:

� LOB Locators for DBMS_LOB

� Datatypes, Constants, and Exceptions for DBMS_LOB

� Security for DBMS_LOB

� Rules and Limitations for DBMS_LOB

� Temporary LOBs

� Summary of DBMS_LOB Subprograms

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)
MS_LOB 23-1

LOB Locators for DBMS_LOB
LOB Locators for DBMS_LOB
All DBMS_LOB subprograms work based on LOB locators. For the successful
completion of DBMS_LOB subprograms, you must provide an input locator that
represents a LOB that already exists in the database tablespaces or external file
system. See also Chapter 1 of Oracle9i Application Developer’s Guide - Large Objects
(LOBs).

To use LOBs in your database, you must first use SQL data definition language
(DDL) to define the tables that contain LOB columns.

Internal LOBs
To populate your table with internal LOBs after LOB columns are defined in a table,
you use the SQL data manipulation language (DML) to initialize or populate the
locators in the LOB columns.

External LOBs
For an external LOB to be represented by a LOB locator, you must:

� Ensure that a DIRECTORY object representing a valid, existing physical
directory has been defined, and that physical files (the LOBs you plan to add)
exist with read permission for Oracle. If your operating system uses
case-sensitive path names, then be sure you specify the directory in the correct
format.

� Pass the DIRECTORY object and the filename of the external LOB you are
adding to the BFILENAME() function to create a LOB locator for your external
LOB.

Once you have completed these tasks, you can insert or update a row containing a
LOB column using the given LOB locator.

After the LOBs are defined and created, you can then SELECT from a LOB locator
into a local PL/SQL LOB variable and use this variable as an input parameter to
DBMS_LOB for access to the LOB value.

For details on the different ways to do this, you must refer to the section of the
Oracle9i Application Developer’s Guide - Large Objects (LOBs) that describes Accessing
External LOBs (BFILEs).
23-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Datatypes, Constants, and Exceptions for DBMS_LOB
Temporary LOBs
For temporary LOBs, you must use the OCI, PL/SQL, or another programmatic
interface to create or manipulate them. Temporary LOBs can be either BLOBs,
CLOBs, or NCLOBs.

Datatypes, Constants, and Exceptions for DBMS_LOB

Datatypes
Parameters for the DBMS_LOB subprograms use these datatypes:

The DBMS_LOB package defines no special types. NCLOB is a special case of CLOBs
for fixed-width and varying-width, multibyte national character sets. The clause
ANY_CS in the specification of DBMS_LOB subprograms for CLOBs enables them to
accept a CLOB or NCLOB locator variable as input.

Constants
DBMS_LOB defines the following constants:

file_readonly CONSTANT BINARY_INTEGER := 0;
lob_readonly CONSTANT BINARY_INTEGER := 0;
lob_readwrite CONSTANT BINARY_INTEGER := 1;
lobmaxsize CONSTANT INTEGER := 4294967295;
call CONSTANT PLS_INTEGER := 12;
session CONSTANT PLS_INTEGER := 10;

Table 23–1 DBMS_LOB Datatypes

Type Description

BLOB A source or destination binary LOB.

RAW A source or destination RAW buffer (used with BLOB).

CLOB A source or destination character LOB (including NCLOB).

VARCHAR2 A source or destination character buffer (used with CLOB and
NCLOB).

INTEGER Specifies the size of a buffer or LOB, the offset into a LOB, or the
amount to access.

BFILE A large, binary object stored outside the database.
DBMS_LOB 23-3

Security for DBMS_LOB
Oracle supports a maximum LOB size of 4 gigabytes (232). However, the amount
and offset parameters of the package can have values between 1 and 4294967295
(232-1).

The PL/SQL 3.0 language specifies that the maximum size of a RAW or VARCHAR2
variable is 32767 bytes.

Exceptions

Security for DBMS_LOB
Any DBMS_LOB subprogram called from an anonymous PL/SQL block is executed
using the privileges of the current user. Any DBMS_LOB subprogram called from a
stored procedure is executed using the privileges of the owner of the stored
procedure.

With Oracle8i, when creating the procedure, users can set the AUTHID to indicate
whether they want definer’s rights or invoker’s rights. For example:

Note: The value 32767 bytes is represented by maxbufsize in the
following sections.

Table 23–2 DBMS_LOB Exceptions

Exception Code Description

invalid_argval 21560 The argument is expecting a nonNULL, valid value but the
argument value passed in is NULL, invalid, or out of range.

access_error 22925 You are trying to write too much data to the LOB: LOB size is
limited to 4 gigabytes.

noexist_directory 22285 The directory leading to the file does not exist.

nopriv_directory 22286 The user does not have the necessary access privileges on
the directory alias or the file for the operation.

invalid_directory 22287 The directory alias used for the current operation is not
valid if being accessed for the first time, or if it has been
modified by the DBA since the last access.

operation_failed 22288 The operation attempted on the file failed.

unopened_file 22289 The file is not open for the required operation to be
performed.

open_toomany 22290 The number of open files has reached the maximum limit.
23-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Rules and Limitations for DBMS_LOB
CREATE PROCEDURE proc1 authid definer ...

or

CREATE PROCEDURE proc1 authid current_user

You can provide secure access to BFILEs using the DIRECTORY feature discussed
in BFILENAME function in the Oracle9i Application Developer’s Guide - Large Objects
(LOBs) and the Oracle9i SQL Reference.

Rules and Limitations for DBMS_LOB
� The following rules apply in the specification of subprograms in this package:

– length and offset parameters for subprograms operating on BLOBs and
BFILEs must be specified in terms of bytes.

– length and offset parameters for subprograms operating on CLOBs
must be specified in terms of characters.

– offset and amount parameters are always in characters for
CLOBs/NCLOBs and in bytes for BLOBs/BFILEs .

� A subprogram raises an INVALID_ARGVAL exception if the following
restrictions are not followed in specifying values for parameters (unless
otherwise specified):

1. Only positive, absolute offsets from the beginning of LOB data are
permitted: Negative offsets from the tail of the LOB are not permitted.

2. Only positive, nonzero values are permitted for the parameters that
represent size and positional quantities, such as amount , offset , newlen ,
nth , and so on. Negative offsets and ranges observed in Oracle SQL string
functions and operators are not permitted.

3. The value of offset , amount , newlen , nth must not exceed the value
lobmaxsize (4GB-1) in any DBMS_LOB subprogram.

4. For CLOBs consisting of fixed-width multibyte characters, the maximum
value for these parameters must not exceed (lobmaxsize /character_
width_in_bytes) characters.

For example, if the CLOB consists of 2-byte characters, such as:

See Also: For more information on AUTHID and privileges, see
PL/SQL User’s Guide and Reference
DBMS_LOB 23-5

Rules and Limitations for DBMS_LOB
JA16SJISFIXED

Then, the maximum amount value should not exceed:

4294967295/2 = 2147483647 characters.

� PL/SQL language specifications stipulate an upper limit of 32767 bytes (not
characters) for RAW and VARCHAR2 parameters used in DBMS_LOB
subprograms. For example, if you declare a variable to be:

charbuf VARCHAR2(3000)

Then, charbuf can hold 3000 single byte characters or 1500 2-byte fixed width
characters. This has an important consequence for DBMS_LOB subprograms for
CLOBs and NCLOBs.

� The %CHARSET clause indicates that the form of the parameter with %CHARSET
must match the form of the ANY_CS parameter to which it refers.

For example, in DBMS_LOB subprograms that take a VARCHAR2 buffer
parameter, the form of the VARCHAR2 buffer must match the form of the CLOB
parameter. If the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB,
then the buffer must contain CHAR data.

For DBMS_LOB subprograms that take two CLOB parameters, both CLOB
parameters must have the same form; that is, they must both be NCLOBs, or
they must both be CLOBs.

� If the value of amount plus the offset exceeds 4 GB (that is, lobmaxsize +1)
for BLOBs and BFILEs , and (lobmaxsize/character_width_in_bytes)+1
for CLOBs in calls to update subprograms (that is, APPEND, COPY, TRIM, WRITE
and WRITEAPPEND subprograms), then access exceptions are raised.

Under these input conditions, read subprograms, such as READ, COMPARE,
INSTR, and SUBSTR, read until End of Lob/File is reached. For example, for
a READ operation on a BLOB or BFILE , if the user specifies offset value of 3
GB and an amount value of 2 GB, then READ reads only ((4GB-1)-3GB) bytes.

� Functions with NULL or invalid input values for parameters return a NULL.
Procedures with NULL values for destination LOB parameters raise exceptions.

� Operations involving patterns as parameters, such as COMPARE, INSTR, and
SUBSTR do not support regular expressions or special matching characters
(such as % in the LIKE operator in SQL) in the pattern parameter or
substrings.
23-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Rules and Limitations for DBMS_LOB
� The End Of LOB condition is indicated by the READ procedure using a NO_
DATA_FOUND exception. This exception is raised only upon an attempt by the
user to read beyond the end of the LOB/FILE . The READ buffer for the last read
contains 0 bytes.

� For consistent LOB updates, you must lock the row containing the destination
LOB before making a call to any of the procedures (mutators) that modify LOB
data.

� Unless otherwise stated, the default value for an offset parameter is 1, which
indicates the first byte in the BLOB or BFILE data, and the first character in the
CLOB or NCLOB value. No default values are specified for the amount
parameter — you must input the values explicitly.

� You must lock the row containing the destination internal LOB before calling
any subprograms that modify the LOB, such as APPEND, COPY, ERASE, TRIM, or
WRITE. These subprograms do not implicitly lock the row containing the LOB.

BFILE-Specific Rules and Limitations
� The subprograms COMPARE, INSTR, READ, SUBSTR, FILECLOSE,

FILECLOSEALL and LOADFROMFILE operate only on an opened BFILE locator;
that is, a successful FILEOPEN call must precede a call to any of these
subprograms.

� For the functions FILEEXISTS , FILEGETNAME and GETLENGTH, a file’s
open/close status is unimportant; however, the file must exist physically, and
you must have adequate privileges on the DIRECTORY object and the file.

� DBMS_LOB does not support any concurrency control mechanism for BFILE
operations.

� In the event of several open files in the session whose closure has not been
handled properly, you can use the FILECLOSEALL subprogram to close all files
opened in the session and resume file operations from the beginning.

� If you are the creator of a DIRECTORY, or if you have system privileges, then
use the CREATE OR REPLACE, DROP, and REVOKE statements in SQL with
extreme caution.

If you, or other grantees of a particular directory object, have several open files
in a session, then any of the preceding commands can adversely affect file
operations. In the event of such abnormal termination, your only choice is to
invoke a program or anonymous block that calls FILECLOSEALL, reopen your
files, and restart your file operations.
DBMS_LOB 23-7

Rules and Limitations for DBMS_LOB
� All files opened during a user session are implicitly closed at the end of the
session. However, Oracle strongly recommends that you close the files after both
normal and abnormal termination of operations on the BFILE.

In the event of normal program termination, proper file closure ensures that the
number of files that are open simultaneously in the session remains less than
SESSION_MAX_OPEN_FILES.

In the event of abnormal program termination from a PL/SQL program, it is
imperative that you provide an exception handler that ensures closure of all
files opened in that PL/SQL program. This is necessary because after an
exception occurs, only the exception handler has access to the BFILE variable in
its most current state.

After the exception transfers program control outside the PL/SQL program
block, all references to the open BFILEs are lost. The result is a larger open file
count which may or may not exceed the SESSION_MAX_OPEN_FILES value.

For example, consider a READ operation past the end of the BFILE value, which
generates a NO_DATA_FOUND exception:

DECLARE
fil BFILE;
pos INTEGER;
amt BINARY_INTEGER;
buf RAW(40);

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
dbms_lob.open(fil, dbms_lob.lob_readonly);
amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
dbms_lob.read(fil, amt, pos, buf);
dbms_output.put_line('Read F1 past EOF: '||

utl_raw.cast_to_varchar2(buf));
dbms_lob.close(fil);

END;

ORA-01403: no data found
ORA-06512: at "SYS.DBMS_LOB", line 373
ORA-06512: at line 10

After the exception has occurred, the BFILE locator variable file goes out of
scope, and no further operations on the file can be done using that variable.
Therefore, the solution is to use an exception handler:

DECLARE
fil BFILE;
23-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Temporary LOBs
pos INTEGER;
amt BINARY_INTEGER;
buf RAW(40);

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
dbms_lob.open(fil, dbms_lob.lob_readonly);
amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
dbms_lob.read(fil, amt, pos, buf);
dbms_output.put_line('Read F1 past EOF: '||

utl_raw.cast_to_varchar2(buf));
dbms_lob.close(fil);
exception
WHEN no_data_found
THEN

BEGIN
dbms_output.put_line('End of File reached. Closing file');
dbms_lob.fileclose(fil);
-- or dbms_lob.filecloseall if appropriate

END;
END;

/

Statement processed.
End of File reached. Closing file

In general, you should ensure that files opened in a PL/SQL block using DBMS_
LOB are closed before normal or abnormal termination of the block.

Temporary LOBs
Oracle8i supports the definition, creation, deletion, access, and update of temporary
LOBs. Your temporary tablespace stores the temporary LOB data. Temporary LOBs
are not permanently stored in the database. Their purpose is mainly to perform
transformations on LOB data.

A temporary LOB is empty when it is created. By default, all temporary LOBs are
deleted at the end of the session in which they were created. If a process dies
unexpectedly or if the database crashes, then temporary LOBs are deleted, and the
space for temporary LOBs is freed.

In Oracle8i, there is also an interface to let you group temporary LOBs together into
a logical bucket. The duration represents this logical store for temporary LOBs. Each
temporary LOB can have separate storage characteristics, such as CACHE/ NOCACHE.
There is a default store for every session into which temporary LOBs are placed if
DBMS_LOB 23-9

Temporary LOBs
you don’t specify a specific duration. Additionally, you are able to perform a free
operation on durations, which causes all contents in a duration to be freed.

There is no support for consistent read (CR), undo, backup, parallel processing, or
transaction management for temporary LOBs. Because CR and rollbacks are not
supported for temporary LOBs, you must free the temporary LOB and start over
again if you encounter an error.

Because CR, undo, and versions are not generated for temporary LOBs, there is
potentially a performance impact if you assign multiple locators to the same
temporary LOB. Semantically, each locator should have its own copy of the
temporary LOB.

A copy of a temporary LOB is created if the user modifies the temporary LOB while
another locator is also pointing to it. The locator on which a modification was
performed now points to a new copy of the temporary LOB. Other locators no
longer see the same data as the locator through which the modification was made.
A deep copy was not incurred by permanent LOBs in these types of situations,
because CR snapshots and version pages enable users to see their own versions of
the LOB cheaply.

You can gain pseudo-REF semantics by using pointers to locators in OCI and by
having multiple pointers to locators point to the same temporary LOB locator, if
necessary. In PL/SQL, you must avoid using more than one locator for each
temporary LOB. The temporary LOB locator can be passed by reference to other
procedures.

Because temporary LOBs are not associated with any table schema, there are no
meanings to the terms in-row and out-of-row temporary LOBs. Creation of a
temporary LOB instance by a user causes the engine to create and return a locator to
the LOB data. The PL/SQL DBMS_LOB package, PRO*C, OCI, and other
programmatic interfaces operate on temporary LOBs through these locators just as
they do for permanent LOBs.

There is no support for client side temporary LOBs. All temporary LOBs reside in
the server.

Temporary LOBs do not support the EMPTY_BLOB or EMPTY_CLOB functions that
are supported for permanent LOBs. The EMPTY_BLOB function specifies the fact
that the LOB is initialized, but not populated with any data.

A temporary LOB instance can only be destroyed by using OCI or the DBMS_LOB
package by using the appropriate FREETEMPORARY or OCIDurationEnd
statement.
23-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Temporary LOBs
A temporary LOB instance can be accessed and modified using appropriate OCI and
DBMS_LOB statements, just as for regular permanent internal LOBs. To make a
temporary LOB permanent, you must explicitly use the OCI or DBMS_LOB COPY
command, and copy the temporary LOB into a permanent one.

Security is provided through the LOB locator. Only the user who created the
temporary LOB is able to see it. Locators are not expected to be able to pass from
one user’s session to another. Even if someone did pass a locator from one session
to another, they would not access the temporary LOBs from the original session.
Temporary LOB lookup is localized to each user’s own session. Someone using a
locator from somewhere else is only able to access LOBs within his own session that
have the same LOB ID. Users should not try to do this, but if they do, they are not
able to affect anyone else’s data.

Oracle keeps track of temporary LOBs for each session in a v$ view called
V$TEMPORARY_LOBS, which contains information about how many temporary
LOBs exist for each session. V$ views are for DBA use. From the session, Oracle can
determine which user owns the temporary LOBs. By using V$TEMPORARY_LOBS in
conjunction with DBA_SEGMENTS, a DBA can see how much space is being used by
a session for temporary LOBs. These tables can be used by DBAs to monitor and
guide any emergency cleanup of temporary space used by temporary LOBs.

Temporary LOBs Usage Notes
1. All functions in DBMS_LOB return NULL if any of the input parameters are

NULL. All procedures in DBMS_LOB raise an exception if the LOB locator is input
as NULL.

2. Operations based on CLOBs do not verify if the character set IDs of the
parameters (CLOB parameters, VARCHAR2 buffers and patterns, and so on)
match. It is the user’s responsibility to ensure this.

3. Data storage resources are controlled by the DBA by creating different
temporary tablespaces. DBAs can define separate temporary tablespaces for
different users, if necessary.

4. Temporary LOBs still adhere to value semantics in order to be consistent with
permanent LOBs and to try to conform to the ANSI standard for LOBs. As a
result, each time a user does an OCILobLocatatorAssign , or the equivalent
assignment in PL/SQL, the database makes a copy of the temporary LOB.

Each locator points to its own LOB value. If one locator is used to create a
temporary LOB, and then is assigned to another LOB locator using
OCILobLOcatorAssign in OCI or through an assignment operation in
DBMS_LOB 23-11

Temporary LOBs
PL/SQL, then the database copies the original temporary LOB and causes the
second locator to point to the copy.

In order for users to modify the same LOB, they must go through the same
locator. In OCI, this can be accomplished fairly easily by using pointers to
locators and assigning the pointers to point to the same locator. In PL/SQL, the
same LOB variable must be used to update the LOB to get this effect.

The following example shows a place where a user incurs a copy, or at least an
extra roundtrip to the server.

DECLARE
a blob;
b blob;

BEGIN
dbms_lob.createtemporary(b, TRUE);
-- the following assignment results in a deep copy
a := b;

END;

The PL/SQL compiler makes temporary copies of actual arguments bound to
OUT or IN OUT parameters. If the actual parameter is a temporary LOB, then the
temporary copy is a deep (value) copy.

The following PL/SQL block illustrates the case where the user incurs a deep
copy by passing a temporary LOB as an IN OUT parameter.

DECLARE
a blob;
procedure foo(parm IN OUT blob) is
BEGIN

...
END;

BEGIN
dbms_lob.createtemporary(a, TRUE);
-- the following call results in a deep copy of the blob a
foo(a);

END;

To minimize deep copies on PL/SQL parameter passing, use the NOCOPY
compiler hint where possible.

The duration parameter passed to dbms_lob.createtemporary() is a hint.
The duration of the new temp LOB is the same as the duration of the locator
variable in PL/SQL. For example, in the preceding program block, the program
23-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
variable a has the duration of the residing frame. Therefore at the end of the
block, memory of a will be freed at the end of the function.

If a PL/SQL package variable is used to create a temp LOB, it will have the
duration of the package variable, which has a duration of SESSION.

BEGIN
y clob;

END;
/
BEGIN

dbms_lob.createtemporary(package.y, TRUE);
END;

Exceptions

Summary of DBMS_LOB Subprograms

See Also: . PL/SQL User’s Guide and Reference for more
information on NOCOPY syntax

Table 23–3 DBMS_LOB Exceptions

Exception Code Description

INVALID_ARGVAL 21560 Value for argument %s is not valid.

ACCESS_ERROR 22925 Attempt to read or write beyond maximum LOB size on %s.

NO_DATA_FOUND EndofLob indicator for looping read operations. This is not a
hard error.

VALUE_ERROR 6502 PL/SQL error for invalid values to subprogram’s parameters.

Table 23–4 DBMS_LOB Subprograms

Subprogram Description

APPEND Procedure on
page 23-15

Appends the contents of the source LOB to the destination
LOB.

CLOSE Procedure on
page 23-17

Closes a previously opened internal or external LOB.

COMPARE Function on
page 23-18

Compares two entire LOBs or parts of two LOBs.
DBMS_LOB 23-13

Summary of DBMS_LOB Subprograms
COPY Procedure on
page 23-21

Copies all, or part, of the source LOB to the destination LOB.

CREATETEMPORARY
Procedure on page 23-23

Creates a temporary BLOB or CLOB and its corresponding
index in the user’s default temporary tablespace.

ERASE Procedure on
page 23-24

Erases all or part of a LOB.

FILECLOSE Procedure on
page 23-26

Closes the file.

FILECLOSEALL Procedure
on page 23-28

Closes all previously opened files.

FILEEXISTS Function on
page 23-28

Checks if the file exists on the server.

FILEGETNAME Procedure
on page 23-30

Gets the directory alias and file name.

FILEISOPEN Function on
page 23-31

Checks if the file was opened using the input BFILE
locators.

FILEOPEN Procedure on
page 23-32

Opens a file.

FREETEMPORARY
Procedure on page 23-34

Frees the temporary BLOB or CLOB in the user’s default
temporary tablespace.

GETCHUNKSIZE Function
on page 23-35

Returns the amount of space used in the LOB chunk to store
the LOB value.

GETLENGTH Function on
page 23-36

Gets the length of the LOB value.

INSTR Function on
page 23-37

Returns the matching position of the nth occurrence of the
pattern in the LOB.

ISOPEN Function on
page 23-40

Checks to see if the LOB was already opened using the input
locator.

ISTEMPORARY Function on
page 23-41

Checks if the locator is pointing to a temporary LOB.

LOADFROMFILE Procedure
on page 23-42

Loads BFILE data into an internal LOB.

LOADBLOBFROMFILE
Procedure on page 23-44

Loads BFILE data into an internal BLOB.

Table 23–4 DBMS_LOB Subprograms (Cont.)

Subprogram Description
23-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
APPEND Procedure
This procedure appends the contents of a source internal LOB to a destination LOB.
It appends the complete source LOB.

There are two overloaded APPEND procedures.

Syntax
DBMS_LOB.APPEND (

dest_lob IN OUT NOCOPY BLOB,
src_lob IN BLOB);

DBMS_LOB.APPEND (
dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);

Parameters

LOADCLOBFROMFILE
Procedure on page 23-47

Loads BFILE data into an internal CLOB.

OPEN Procedure on
page 23-50

Opens a LOB (internal, external, or temporary) in the
indicated mode.

READ Procedure on
page 23-51

Reads data from the LOB starting at the specified offset.

SUBSTR Function on
page 23-55

Returns part of the LOB value starting at the specified offset.

TRIM Procedure on
page 23-58

Trims the LOB value to the specified shorter length.

WRITE Procedure on
page 23-60

Writes data to the LOB from a specified offset.

WRITEAPPEND Procedure
on page 23-62

Writes a buffer to the end of a LOB.

Table 23–5 APPEND Procedure Parameters

Parameter Description

dest_lob Locator for the internal LOB to which the data is to be appended.

Table 23–4 DBMS_LOB Subprograms (Cont.)

Subprogram Description
DBMS_LOB 23-15

APPEND Procedure
Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Examples
CREATE OR REPLACE PROCEDURE Example_1a IS

dest_lob BLOB;
src_lob BLOB;

BEGIN
-- get the LOB locators
-- note that the FOR UPDATE clause locks the row
SELECT b_lob INTO dest_lob

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

SELECT b_lob INTO src_lob
FROM lob_table
WHERE key_value = 21;

DBMS_LOB.APPEND(dest_lob, src_lob);
COMMIT;

EXCEPTION

src_lob Locator for the internal LOB from which the data is to be read.

Table 23–6 APPEND Procedure Exceptions

Exception Description

VALUE_ERROR Either the source or the destination LOB is NULL.

Table 23–5 APPEND Procedure Parameters

Parameter Description
23-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
WHEN some_exception
THEN handle_exception;

END;

CREATE OR REPLACE PROCEDURE Example_1b IS
dest_lob, src_lob BLOB;

BEGIN
-- get the LOB locators
-- note that the FOR UPDATE clause locks the row
SELECT b_lob INTO dest_lob

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

SELECT b_lob INTO src_lob
FROM lob_table
WHERE key_value = 12;

DBMS_LOB.APPEND(dest_lob, src_lob);
COMMIT;

EXCEPTION
WHEN some_exception
THEN handle_exception;

END;

CLOSE Procedure
This procedure closes a previously opened internal or external LOB.

Syntax
DBMS_LOB.CLOSE (

lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.CLOSE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

DBMS_LOB.CLOSE (
file_loc IN OUT NOCOPY BFILE);

Errors
No error is returned if the BFILE exists but is not opened. An error is returned if the
LOB is not open.
DBMS_LOB 23-17

COMPARE Function
Usage Notes
CLOSE requires a round-trip to the server for both internal and external LOBs. For
internal LOBs, CLOSE triggers other code that relies on the close call, and for
external LOBs (BFILEs), CLOSE actually closes the server-side operating system
file.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and non-LOB data in the transaction are committed, but
the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

COMPARE Function
This function compares two entire LOBs or parts of two LOBs. You can only
compare LOBs of the same datatype (LOBs of BLOB type with other BLOBs, and
CLOBs with CLOBs, and BFILEs with BFILEs). For BFILEs , the file must be
already opened using a successful FILEOPEN operation for this operation to
succeed.

COMPARE returns zero if the data exactly matches over the range specified by the
offset and amount parameters. Otherwise, a nonzero INTEGER is returned.

For fixed-width n-byte CLOBs, if the input amount for COMPARE is specified to be
greater than (4294967295/n), then COMPARE matches characters in a range of size
(4294967295/n), or Max(length(clob1), length(clob2)), whichever is lesser.

Syntax
DBMS_LOB.COMPARE (

lob_1 IN BLOB,
lob_2 IN BLOB,
amount IN INTEGER := 4294967295,
offset_1 IN INTEGER := 1,
offset_2 IN INTEGER := 1)

RETURN INTEGER;

DBMS_LOB.COMPARE (
23-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
lob_1 IN CLOB CHARACTER SET ANY_CS,
lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
amount IN INTEGER := 4294967295,
offset_1 IN INTEGER := 1,
offset_2 IN INTEGER := 1)

RETURN INTEGER;

DBMS_LOB.COMPARE (
lob_1 IN BFILE,
lob_2 IN BFILE,
amount IN INTEGER,
offset_1 IN INTEGER := 1,
offset_2 IN INTEGER := 1)

RETURN INTEGER;

Pragmas
pragma restrict_references(COMPARE, WNDS, WNPS, RNDS, RNPS);

Parameters

Returns
� INTEGER: Zero if the comparison succeeds, nonzero if not.

� NULL, if

– amount < 1

– amount > LOBMAXSIZE

– offset_1 or offset_2 < 1

Table 23–7 COMPARE Function Parameters

Parameter Description

lob_1 LOB locator of first target for comparison.

lob_2 LOB locator of second target for comparison.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to compare.

offset_1 Offset in bytes or characters on the first LOB (origin: 1) for the
comparison.

offset_2 Offset in bytes or characters on the first LOB (origin: 1) for the
comparison.
DBMS_LOB 23-19

COMPARE Function
* offset_1 or offset_2 > LOBMAXSIZE

Exceptions

Examples
CREATE OR REPLACE PROCEDURE Example2a IS

lob_1, lob_2 BLOB;
retval INTEGER;

BEGIN
SELECT b_col INTO lob_1 FROM lob_table

WHERE key_value = 45;
SELECT b_col INTO lob_2 FROM lob_table

WHERE key_value = 54;
retval := dbms_lob.compare(lob_1, lob_2, 5600, 33482,

128);
IF retval = 0 THEN

; -- process compared code
ELSE

; -- process not compared code
END IF;

END;

CREATE OR REPLACE PROCEDURE Example_2b IS
fil_1, fil_2 BFILE;
retval INTEGER;

BEGIN

SELECT f_lob INTO fil_1 FROM lob_table WHERE key_value = 45;
SELECT f_lob INTO fil_2 FROM lob_table WHERE key_value = 54;
dbms_lob.fileopen(fil_1, dbms_lob.file_readonly);
dbms_lob.fileopen(fil_2, dbms_lob.file_readonly);
retval := dbms_lob.compare(fil_1, fil_2, 5600,

Table 23–8 COMPARE Function Exceptions for BFILE operations

Exception Description

UNOPENED_FILE File was not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.
23-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
3348276, 2765612);
IF (retval = 0)
THEN

; -- process compared code
ELSE

; -- process not compared code
END IF;
dbms_lob.fileclose(fil_1);
dbms_lob.fileclose(fil_2);

END;

COPY Procedure
This procedure copies all, or a part of, a source internal LOB to a destination internal
LOB. You can specify the offsets for both the source and destination LOBs, and the
number of bytes or characters to copy.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
BLOB or CLOB respectively. If the offset is less than the current length of the
destination LOB, then existing data is overwritten.

It is not an error to specify an amount that exceeds the length of the data in the
source LOB. Thus, you can specify a large amount to copy from the source LOB,
which copies data from the src_offset to the end of the source LOB.

Syntax
DBMS_LOB.COPY (

dest_lob IN OUT NOCOPY BLOB,
src_lob IN BLOB,
amount IN INTEGER,
dest_offset IN INTEGER := 1,
src_offset IN INTEGER := 1);

DBMS_LOB.COPY (
dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
amount IN INTEGER,
dest_offset IN INTEGER := 1,
src_offset IN INTEGER := 1);
DBMS_LOB 23-21

COPY Procedure
Parameters

Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Table 23–9 COPY Procedure Parameters

Parameter Description

dest_lob LOB locator of the copy target.

src_lob LOB locator of source for the copy.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to copy.

dest_offset Offset in bytes or characters in the destination LOB (origin: 1) for the
start of the copy.

src_offset Offset in bytes or characters in the source LOB (origin: 1) for the start
of the copy.

Table 23–10 COPY Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or invalid.

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1

- src_offset or dest_offset > LOBMAXSIZE

- amount < 1

- amount > LOBMAXSIZE
23-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Examples
CREATE OR REPLACE PROCEDURE Example_3a IS

lobd, lobs BLOB;
dest_offset INTEGER := 1
src_offset INTEGER := 1
amt INTEGER := 3000;

BEGIN
SELECT b_col INTO lobd

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

SELECT b_col INTO lobs
FROM lob_table
WHERE key_value = 21;

DBMS_LOB.COPY(lobd, lobs, amt, dest_offset, src_offset);
COMMIT;

EXCEPTION
WHEN some_exception
THEN handle_exception;

END;

CREATE OR REPLACE PROCEDURE Example_3b IS
lobd, lobs BLOB;
dest_offset INTEGER := 1
src_offset INTEGER := 1
amt INTEGER := 3000;

BEGIN
SELECT b_col INTO lobd

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

SELECT b_col INTO lobs
FROM lob_table
WHERE key_value = 12;

DBMS_LOB.COPY(lobd, lobs, amt, dest_offset, src_offset);
COMMIT;

EXCEPTION
WHEN some_exception
THEN handle_exception;

END;

CREATETEMPORARY Procedure
This procedure creates a temporary BLOB or CLOB and its corresponding index in
your default temporary tablespace.
DBMS_LOB 23-23

ERASE Procedure
Syntax
DBMS_LOB.CREATETEMPORARY (

lob_loc IN OUT NOCOPY BLOB,
cache IN BOOLEAN,
dur IN PLS_INTEGER := 10);

DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
cache IN BOOLEAN,
dur IN PLS_INTEGER := 10);

Parameters

Example
DBMS_LOB.CREATETEMPORARY(Dest_Loc, TRUE)

ERASE Procedure
This procedure erases an entire internal LOB or part of an internal LOB.

When data is erased from the middle of a LOB, zero-byte fillers or spaces are written
for BLOBs or CLOBs respectively.

Table 23–11 CREATETEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.

cache Specifies if LOB should be read into buffer cache or not.

dur 1 of 2 predefined duration values (SESSION or CALL) which
specifies a hint as to whether the temporary LOB is cleaned up at
the end of the session or call.

If dur is omitted, then the session duration is used.

See Also: PL/SQL User’s Guide and Reference for more information
about NOCOPY and passing temporary lobs as parameters.

Note: The length of the LOB is not decreased when a section of the
LOB is erased. To decrease the length of the LOB value, see the
"TRIM Procedure" on page 23-58.
23-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
The actual number of bytes or characters erased can differ from the number you
specified in the amount parameter if the end of the LOB value is reached before
erasing the specified number. The actual number of characters or bytes erased is
returned in the amount parameter.

Syntax
DBMS_LOB.ERASE (

lob_loc IN OUT NOCOPY BLOB,
amount IN OUT NOCOPY INTEGER,
offset IN INTEGER := 1);

DBMS_LOB.ERASE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN OUT NOCOPY INTEGER,
offset IN INTEGER := 1);

Parameters

Exceptions

Table 23–12 ERASE Procedure Parameters

Parameter Description

lob_loc Locator for the LOB to be erased.

amount Number of bytes (for BLOBs or BFILES) or characters (for CLOBs or
NCLOBs) to be erased.

offset Absolute offset (origin: 1) from the beginning of the LOB in bytes (for
BLOBs) or characters (CLOBs).

Table 23–13 ERASE Procedure Exceptions

Exception Description

VALUE_ERROR Any input parameter is NULL.

INVALID_ARGVAL Either:

- amount < 1 or amount > LOBMAXSIZE

- offset < 1 or offset > LOBMAXSIZE
DBMS_LOB 23-25

FILECLOSE Procedure
Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Example
CREATE OR REPLACE PROCEDURE Example_4 IS

lobd BLOB;
amt INTEGER := 3000;

BEGIN
SELECT b_col INTO lobd

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

dbms_lob.erase(dest_lob, amt, 2000);
COMMIT;

END;

FILECLOSE Procedure
This procedure closes a BFILE that has already been opened through the input
locator.

Syntax
DBMS_LOB.FILECLOSE (

file_loc IN OUT NOCOPY BFILE);

See Also: "TRIM Procedure" on page 23-58

Note: Oracle has only read-only access to BFILEs . This means
that BFILEs cannot be written through Oracle.
23-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Parameters

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_5 IS

fil BFILE;
BEGIN

SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
dbms_lob.fileopen(fil);
-- file operations
dbms_lob.fileclose(fil);
EXCEPTION

WHEN some_exception
THEN handle_exception;

END;

Table 23–14 FILECLOSE Procedure Parameter

Parameter Description

file_loc Locator for the BFILE to be closed.

Table 23–15 FILECLOSE Procedure Exceptions

Exception Description

VALUE_ERROR NULL input value for file_loc .

UNOPENED_FILE File was not opened with the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

See Also:

� "FILEOPEN Procedure" on page 23-32

� "FILECLOSEALL Procedure" on page 23-28
DBMS_LOB 23-27

FILECLOSEALL Procedure
FILECLOSEALL Procedure
This procedure closes all BFILEs opened in the session.

Syntax
DBMS_LOB.FILECLOSEALL;

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_6 IS

fil BFILE;
BEGIN

SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
dbms_lob.fileopen(fil);
-- file operations
dbms_lob.filecloseall;
EXCEPTION

WHEN some_exception
THEN handle_exception;

END;

FILEEXISTS Function
This function finds out if a given BFILE locator points to a file that actually exists
on the server’s file system.

Syntax
DBMS_LOB.FILEEXISTS (

file_loc IN BFILE)
RETURN INTEGER;

Table 23–16 FILECLOSEALL Procedure Exception

Exception Description

UNOPENED_FILE No file has been opened in the session.

See Also:

� "FILEOPEN Procedure" on page 23-32

� "FILECLOSE Procedure" on page 23-26
23-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Pragmas
pragma restrict_references(FILEEXISTS, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_7 IS

fil BFILE;
BEGIN

SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
IF (dbms_lob.fileexists(fil))
THEN

; -- file exists code
ELSE

; -- file does not exist code
END IF;
EXCEPTION

Table 23–17 FILEEXISTS Function Parameter

Parameter Description

file_loc Locator for the BFILE .

Table 23–18 FILEEXISTS Function Returns

Return Description

0 Physical file does not exist.

1 Physical file exists.

Table 23–19 FILEEXISTS Function Exceptions

Exception Description

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.
DBMS_LOB 23-29

FILEGETNAME Procedure
WHEN some_exception
THEN handle_exception;

END;

FILEGETNAME Procedure
This procedure determines the directory alias and filename, given a BFILE locator.
This function only indicates the directory alias name and filename assigned to the
locator, not if the physical file or directory actually exists.

The maximum constraint values for the dir_alias buffer is 30, and for the entire
path name, it is 2000.

Syntax
DBMS_LOB.FILEGETNAME (

file_loc IN BFILE,
dir_alias OUT VARCHAR2,
filename OUT VARCHAR2);

Parameters

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_8 IS

See Also: "FILEISOPEN Function" on page 23-31.

Table 23–20 FILEGETNAME Procedure Parameters

Parameter Description

file_loc Locator for the BFILE .

dir_alias Directory alias.

filename Name of the BFILE .

Table 23–21 FILEGETNAME Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID .

INVALID_ARGVAL dir_alias or filename are NULL.
23-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
fil BFILE;
dir_alias VARCHAR2(30);
name VARCHAR2(2000);

BEGIN
IF (dbms_lob.fileexists(fil))
THEN

dbms_lob.filegetname(fil, dir_alias, name);
dbms_output.put_line("Opening " || dir_alias || name);
dbms_lob.fileopen(fil, dbms_lob.file_readonly);
-- file operations
dbms_output.fileclose(fil);

END IF;
END;

FILEISOPEN Function
This function finds out whether a BFILE was opened with the given FILE locator.

If the input FILE locator was never passed to the FILEOPEN procedure, then the
file is considered not to be opened by this locator. However, a different locator may
have this file open. In other words, openness is associated with a specific locator.

Syntax
DBMS_LOB.FILEISOPEN (

file_loc IN BFILE)
RETURN INTEGER;

Pragmas
pragma restrict_references(FILEISOPEN, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
INTEGER: 0 = file is not open, 1 = file is open

Table 23–22 FILEISOPEN Function Parameter

Parameter Description

file_loc Locator for the BFILE .
DBMS_LOB 23-31

FILEOPEN Procedure
Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_9 IS
DECLARE

fil BFILE;
pos INTEGER;
pattern VARCHAR2(20);

BEGIN
SELECT f_lob INTO fil FROM lob_table

WHERE key_value = 12;
-- open the file
IF (dbms_lob.fileisopen(fil))
THEN

pos := dbms_lob.instr(fil, pattern, 1025, 6);
-- more file operations
dbms_lob.fileclose(fil);

ELSE
; -- return error

END IF;
END;

FILEOPEN Procedure
This procedure opens a BFILE for read-only access. BFILEs may not be written
through Oracle.

Syntax
DBMS_LOB.FILEOPEN (

file_loc IN OUT NOCOPY BFILE,
open_mode IN BINARY_INTEGER := file_readonly);

Table 23–23 FILEISOPEN Function Exceptions

Exception Description

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

See Also: "FILEEXISTS Function" on page 23-28
23-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Parameters

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_10 IS

fil BFILE;
BEGIN

-- open BFILE
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
IF (dbms_lob.fileexists(fil))
THEN

dbms_lob.fileopen(fil, dbms_lob.file_readonly);
-- file operation
dbms_lob.fileclose(fil);

END IF;
EXCEPTION

WHEN some_exception
THEN handle_exception;

END;

Table 23–24 FILEOPEN Procedure Parameters

Parameter Description

file_loc Locator for the BFILE .

open_mode File access is read-only.

Table 23–25 FILEOPEN Procedure Exceptions

Exception Description

VALUE_ERROR file_loc or open_mode is NULL.

INVALID_ARGVAL open_mode is not equal to FILE_READONLY.

OPEN_TOOMANY Number of open files in the session exceeds session_max_open_
files .

NOEXIST_DIRECTORY Directory associated with file_loc does not exist.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.
DBMS_LOB 23-33

FREETEMPORARY Procedure

FREETEMPORARY Procedure
This procedure frees the temporary BLOB or CLOB in your default temporary
tablespace. After the call to FREETEMPORARY, the LOB locator that was freed is
marked as invalid.

If an invalid LOB locator is assigned to another LOB locator using
OCILobLocatorAssign in OCI or through an assignment operation in PL/SQL,
then the target of the assignment is also freed and marked as invalid.

Syntax
DBMS_LOB.FREETEMPORARY (

lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.FREETEMPORARY (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

Parameters

Example
DECLARE

a blob;
b blob;

BEGIN
dbms_lob.createtemporary(a, TRUE);
dbms_lob.createtemporary(b, TRUE);
...
-- the following call frees lob a
dbms_lob.freetemporary(a);
-- at this point lob locator a is marked as invalid
-- the following assignment frees the lob b and marks it as invalid

also

See Also:

� "FILECLOSE Procedure" on page 23-26

� "FILECLOSEALL Procedure" on page 23-28

Table 23–26 FREETEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.
23-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
b := a;
END;

GETCHUNKSIZE Function
When creating the table, you can specify the chunking factor, which can be a
multiple of Oracle blocks. This corresponds to the chunk size used by the LOB data
layer when accessing or modifying the LOB value. Part of the chunk is used to store
system-related information, and the rest stores the LOB value.

This function returns the amount of space used in the LOB chunk to store the LOB
value.

Syntax
DBMS_LOB.GETCHUNKSIZE (

lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.GETCHUNKSIZE (
lob_loc IN CLOB CHARACTER SET ANY_CS)

RETURN INTEGER;

Pragmas
pragma restrict_references(GETCHUNKSIZE, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
The value returned for BLOBs is in terms of bytes. The value returned for CLOBs is
in terms of characters.

Usage Notes
Performance is improved if you enter read/write requests using a multiple of this
chunk size. For writes, there is an added benefit, because LOB chunks are versioned,
and if all writes are done on a chunk basis, then no extra or excess versioning is

Table 23–27 GETCHUNKSIZE Function Parameters

Parameter Description

lob_loc LOB locator.
DBMS_LOB 23-35

GETLENGTH Function
done or duplicated. You could batch up the WRITE until you have enough for a
chunk, instead of issuing several WRITE calls for the same chunk.

GETLENGTH Function
This function gets the length of the specified LOB. The length in bytes or characters
is returned.

The length returned for a BFILE includes the EOF, if it exists. Any 0-byte or space
filler in the LOB caused by previous ERASE or WRITE operations is also included in
the length count. The length of an empty internal LOB is 0.

Syntax
DBMS_LOB.GETLENGTH (

lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (
lob_loc IN CLOB CHARACTER SET ANY_CS)

RETURN INTEGER;

DBMS_LOB.GETLENGTH (
file_loc IN BFILE)

RETURN INTEGER;

Pragmas
pragma restrict_references(GETLENGTH, WNDS, WNPS, RNDS, RNPS);

Parameters

Returns
The length of the LOB in bytes or characters as an INTEGER. NULL is returned if the
input LOB is NULL or if the input lob_loc is NULL. An error is returned in the
following cases for BFILEs :

Table 23–28 GETLENGTH Function Parameter

Parameter Description

file_loc The file locator for the LOB whose length is to be returned.
23-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
� lob_loc does not have the necessary directory and operating system
privileges

� lob_loc cannot be read because of an operating system read error

Examples
CREATE OR REPLACE PROCEDURE Example_11a IS

lobd BLOB;
length INTEGER;

BEGIN
-- get the LOB locator
SELECT b_lob INTO lobd FROM lob_table

WHERE key_value = 42;
length := dbms_lob.getlength(lobd);
IF length IS NULL THEN

dbms_output.put_line(’LOB is null.’);
ELSE

dbms_output.put_line(’The length is ’
|| length);

END IF;
END;

CREATE OR REPLACE PROCEDURE Example_11b IS
DECLARE

len INTEGER;
fil BFILE;

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
len := dbms_lob.length(fil);

END;

INSTR Function
This function returns the matching position of the nth occurrence of the pattern in
the LOB, starting from the offset you specify.

The form of the VARCHAR2 buffer (the pattern parameter) must match the form of
the CLOB parameter. In other words, if the input LOB parameter is of type NCLOB,
then the buffer must contain NCHAR data. Conversely, if the input LOB parameter is
of type CLOB, then the buffer must contain CHAR data.

For BFILEs , the file must be already opened using a successful FILEOPEN
operation for this operation to succeed.
DBMS_LOB 23-37

INSTR Function
Operations that accept RAW or VARCHAR2 parameters for pattern matching, such as
INSTR, do not support regular expressions or special matching characters (as in the
case of SQL LIKE) in the pattern parameter or substrings.

Syntax
DBMS_LOB.INSTR (

lob_loc IN BLOB,
pattern IN RAW,
offset IN INTEGER := 1,
nth IN INTEGER := 1)

RETURN INTEGER;

DBMS_LOB.INSTR (
lob_loc IN CLOB CHARACTER SET ANY_CS,
pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
offset IN INTEGER := 1,
nth IN INTEGER := 1)

RETURN INTEGER;

DBMS_LOB.INSTR (
file_loc IN BFILE,
pattern IN RAW,
offset IN INTEGER := 1,
nth IN INTEGER := 1)

RETURN INTEGER;

Pragmas
pragma restrict_references(INSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Table 23–29 INSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB to be examined.

file_loc The file locator for the LOB to be examined.

pattern Pattern to be tested for. The pattern is a group of RAW bytes for BLOBs,
and a character string (VARCHAR2) for CLOBs.The maximum size of
the pattern is 16383 bytes.

offset Absolute offset in bytes (BLOBs) or characters (CLOBs) at which the
pattern matching is to start. (origin: 1)
23-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Returns

Exceptions

Examples
CREATE OR REPLACE PROCEDURE Example_12a IS

lobd CLOB;
pattern VARCHAR2 := ’abcde’;
position INTEGER := 10000;

BEGIN
-- get the LOB locator

SELECT b_col INTO lobd

nth Occurrence number, starting at 1.

Table 23–30 INSTR Function Returns

Return Description

INTEGER Offset of the start of the matched pattern, in bytes or characters.

It returns 0 if the pattern is not found.

NULL Either:

-any one or more of the IN parameters was NULL or INVALID .

-offset < 1 or offset > LOBMAXSIZE.

-nth < 1.

-nth > LOBMAXSIZE.

Table 23–31 INSTR Function Exceptions for BFILES

Exception Description

UNOPENED_FILE File was not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

Table 23–29 INSTR Function Parameters

Parameter Description
DBMS_LOB 23-39

ISOPEN Function
FROM lob_table
WHERE key_value = 21;

position := DBMS_LOB.INSTR(lobd,
pattern, 1025, 6);

IF position = 0 THEN
dbms_output.put_line(’Pattern not found’);

ELSE
dbms_output.put_line(’The pattern occurs at ’

|| position);
END IF;

END;

CREATE OR REPLACE PROCEDURE Example_12b IS
DECLARE

fil BFILE;
pattern VARCHAR2;
pos INTEGER;

BEGIN
-- initialize pattern
-- check for the 6th occurrence starting from 1025th byte
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
dbms_lob.fileopen(fil, dbms_lob.file_readonly);
pos := dbms_lob.instr(fil, pattern, 1025, 6);
dbms_lob.fileclose(fil);

END;

ISOPEN Function
This function checks to see if the LOB was already opened using the input locator.
This subprogram is for internal and external LOBs.

Syntax
DBMS_LOB.ISOPEN (

lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.ISOPEN (
lob_loc IN CLOB CHARACTER SET ANY_CS)

RETURN INTEGER;

DBMS_LOB.ISOPEN (
file_loc IN BFILE)

See Also: "SUBSTR Function" on page 23-55
23-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
RETURN INTEGER;

Pragmas
pragma restrict_references(ISOPEN, WNDS, RNDS, WNPS, RNPS);

Parameters

Usage Notes
For BFILES , openness is associated with the locator. If the input locator was never
passed to OPEN, the BFILE is not considered to be opened by this locator.
However, a different locator may have opened the BFILE . More than one OPEN can
be performed on the same BFILE using different locators.

For internal LOBs, openness is associated with the LOB, not with the locator. If
locator1 opened the LOB, then locator2 also sees the LOB as open. For internal LOBs,
ISOPEN requires a round-trip, because it checks the state on the server to see if the
LOB is indeed open.

For external LOBs (BFILEs), ISOPEN also requires a round-trip, because that’s
where the state is kept.

ISTEMPORARY Function

Syntax
DBMS_LOB.ISTEMPORARY (

lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (
lob_loc IN CLOB CHARACTER SET ANY_CS)

RETURN INTEGER;

Table 23–32 ISOPEN Function Parameters

Parameter Description

lob_loc LOB locator.

file_loc File locator.
DBMS_LOB 23-41

LOADFROMFILE Procedure
Pragmas
PRAGMA RESTRICT_REFERENCES(istemporary, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
This function returns TRUE in temporary if the locator is pointing to a temporary
LOB. It returns FALSE otherwise.

LOADFROMFILE Procedure
This procedure copies all, or a part of, a source external LOB (BFILE) to a
destination internal LOB.

You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE . The amount and src_offset ,
because they refer to the BFILE , are in terms of bytes, and the dest_offset is
either in bytes or characters for BLOBs and CLOBs respectively.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
BLOB or CLOB respectively. If the offset is less than the current length of the
destination LOB, then existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE .

Table 23–33 ISTEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.

temporary Boolean, which indicates whether the LOB is temporary or not.

Note: The input BFILE must have been opened prior to using this
procedure. No character set conversions are performed implicitly
when binary BFILE data is loaded into a CLOB. The BFILE data
must already be in the same character set as the CLOB in the
database. No error checking is performed to verify this.
23-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Syntax
DBMS_LOB.LOADFROMFILE (

dest_lob IN OUT NOCOPY BLOB,
src_file IN BFILE,
amount IN INTEGER,
dest_offset IN INTEGER := 1,
src_offset IN INTEGER := 1);

Parameters

Usage Requirements
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

Note: If the character set is varying width, UTF-8 for example, the
LOB value is stored in the fixed-width UCS2 format. Therefore, if
you are using DBMS_LOB.LOADFROMFILE, the data in the BFILE
should be in the UCS2 character set instead of the UTF-8 character
set. However, you should use sql*loader instead of
LOADFROMFILE to load data into a CLOB or NCLOB because
sql*loader will provide the necessary character set conversions.

Table 23–34 LOADFROMFILE Procedure Parameters

Parameter Description

dest_lob LOB locator of the target for the load.

src_file BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE .

dest_offset Offset in bytes or characters in the destination LOB (origin: 1) for the
start of the load.

src_offset Offset in bytes in the source BFILE (origin: 1) for the start of the load.
DBMS_LOB 23-43

LOADBLOBFROMFILE Procedure
If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Exceptions

Example
CREATE OR REPLACE PROCEDURE Example_l2f IS

lobd BLOB;
fils BFILE := BFILENAME('SOME_DIR_OBJ','some_file');
amt INTEGER := 4000;

BEGIN
SELECT b_lob INTO lobd FROM lob_table WHERE key_value = 42 FOR UPDATE;
dbms_lob.fileopen(fils, dbms_lob.file_readonly);
dbms_lob.loadfromfile(lobd, fils, amt);
COMMIT;
dbms_lob.fileclose(fils);

LOADBLOBFROMFILE Procedure
This procedure loads data from BFILE to internal BLOB. This achieves the same
outcome as LOADFROMFILE, and returns the new offsets.

You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE . The amount and src_offset ,
because they refer to the BFILE , are in terms of bytes, and the dest_offset is in
bytes for BLOBs.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination

Table 23–35 LOADFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID .

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.
23-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
BLOB. If the offset is less than the current length of the destination LOB, then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZE which you can specify to
continue loading until the end of the BFILE is reached).

Syntax
DBMS_LOB.LOADBLOBFROMFILE (

dest_lob IN OUT NOCOPY BLOB,
src_bfile IN BFILE,
amount IN INTEGER,
dest_offset IN OUT INTEGER,
src_offset IN OUT INTEGER);

Parameters

Usage Requirements
It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must close it
before you commit or rollback the transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

Table 23–36 LOADBLOBFROMFILE Procedure Parameters

Parameter Description

dest_lob BLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE . You can also use DBMS_
LOB.LOBMAXSIZE to load until the end of the BFILE .

dest_offset (IN) Offset in bytes in the destination BLOB (origin: 1) for the start of
the write. (OUT) New offset in bytes in the destination BLOB
right after the end of this write, which is also where the next
write should begin.

src_offset (IN) Offset in bytes in the source BFILE (origin: 1) for the start of
the read.(OUT) Offset in bytes in the source BFILE right after the
end of this read, which is also where the next read should begin.
DBMS_LOB 23-45

LOADBLOBFROMFILE Procedure
If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional and
domain indexes are updated each time you write to the LOB. This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOB within the OPEN or CLOSE statement.

Constants and Defaults
There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or provide a default value for the IN parameter. Here is a
summary of the constants and the defaults that can be used.
.

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := 4294967295;

Exceptions

Example
TBD
;

Table 23–37 Suggested Values of the Parameter

Parameter Default Value Description

amount DBMSLOB.LOBMAXSIZE
(IN)

Load the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

Table 23–38 LOADBLOBFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID .

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.
23-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
LOADCLOBFROMFILE Procedure
This procedure loads data from a BFILE to an internal CLOB/NCLOB with necessary
character set conversion and returns the new offsets.

You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE . The amount and src_offset ,
because they refer to the BFILE , are in terms of bytes, and the dest_offset is in
characters for CLOBs.

If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers or spaces are inserted in the destination
CLOB. If the offset is less than the current length of the destination LOB, then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZE which you can specify to
continue loading until the end of the BFILE is reached).

Syntax
DBMS_LOB.LOADCLOBFROMFILE (

dest_lob IN OUT NOCOPY BLOB,
src_bfile IN BFILE,
amount IN INTEGER,
dest_offset IN OUT INTEGER,
src_offset IN OUT INTEGER,
src_csid IN NUMBER,
lang_context IN OUT INTEGER,
warning OUT INTEGER);

Parameters

Table 23–39 LOADCLOBFROMFILE Procedure Parameters

Parameter Description

dest_lob CLOB/NCLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE . Use DBMS_
LOB.LOBMAXSIZE to load until the end of the BFILE .
DBMS_LOB 23-47

LOADCLOBFROMFILE Procedure
Usage Requirements
� The destination character set is always the same as the database character set in

the case of CLOB and national character set in the case of NCLOB.

� csid=0 indicates the default behavior that uses database csid for CLOB and
national csid for NCLOB in the place of source csid . Conversion is still
necessary if it is of varying width

dest_offset (IN) Offset in characters in the destination CLOB (origin: 1)
for the start of the write. (OUT) The new offset in characters
right after the end of this load, which is also where the next
load should start. It always points to the beginning of the first
complete character after the end of load. If the last character is
not complete, offset goes back to the beginning of the partial
character.

src_offset (IN) Offset in bytes in the source BFILE (origin: 1) for the start of
the read.(OUT) Offset in bytes in the source BFILE right after the end
of this read, which is also where the next read should begin.

src_csid Character set id of the source (BFILE) file.

lang_context (IN) Language context, such as shift status, for the current
load. (OUT) The language context at the time when the
current load stopped, and what the next load should be using if
continuing loading from the same source. This information is
returned to the user so that they can use it for the continuous
load without losing or misinterpreting any source data. For the
very first load or if do not care, simply use the default 0. The
details of this language context is hidden from the user. One
does not need to know what it is or what’s in it in order to
make the call

warning (OUT) Warning message. This indicates something abnormal
happened during the loading. It may or may not be caused by the
user’s mistake. The loading is completed as required, and it’s up to the
user to check the warning message. Currently, the only possible
warning is the inconvertible character. This happens when the
character in the source cannot be properly converted to a character in
destination, and the default replacement character (e.g., ’?’) is used in
place. The message is defined as warn_inconvertable_char in
DBMSLOB.

Table 23–39 LOADCLOBFROMFILE Procedure Parameters

Parameter Description
23-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
� It is not mandatory that you wrap the LOB operation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must
close it before you commit or rollback the transaction. When an internal LOB is
closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the OPEN/CLOSE, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose
write operations to the LOB within the OPEN or CLOSE statement.

Constants and Defaults
There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or give a default value for the IN parameter. Here is a summary
of the constants and the defaults that can be used.
.

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER := 4294967295;
warn_inconvertible_char CONSTANT INTEGER := 1;
default_csid CONSTANT INTEGER := 0;
default_lang_ctx CONSTANT INTEGER := 0;
no_warning CONSTANT INTEGER := 0;

Table 23–40 Suggested Values of the Parameter

Parameter Default Value Description

amount DBMSLOB.LOBMAX
SIZE (IN)

Load the entire file

dest_offset 1 (IN) start from the beginning

src_offset 1 (IN) start from the beginning

csid 0 (IN) default csid, use destination csid

lang_context 0 (IN) default language context

warning 0 (OUT) no warning message, everything is ok
DBMS_LOB 23-49

OPEN Procedure
Exceptions

Example
TBD
;

OPEN Procedure
This procedure opens a LOB, internal or external, in the indicated mode. Valid
modes include read-only, and read/write. It is an error to open the same LOB twice.

In Oracle8.0, the constant file_readonly was the only valid mode in which to
open a BFILE . For Oracle 8i, two new constants have been added to the DBMS_LOB
package: lob_readonly and lob_readwrite .

Syntax
DBMS_LOB.OPEN (

lob_loc IN OUT NOCOPY BLOB,
open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
open_mode IN BINARY_INTEGER);

Table 23–41 LOADCLOBFROMFILE Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters are NULL or INVALID .

INVALID_ARGVAL Either:

- src_offset or dest_offset < 1.

- src_offset or dest_offset > LOBMAXSIZE.

- amount < 1.

- amount > LOBMAXSIZE.

Note: If the LOB was opened in read-only mode, and if you try to
write to the LOB, then an error is returned. BFILE can only be
opened with read-only mode.
23-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
DBMS_LOB.OPEN (
file_loc IN OUT NOCOPY BFILE,
open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Usage Notes
OPEN requires a roundtrip to the server for both internal and external LOBs. For
internal LOBs, OPEN triggers other code that relies on the OPEN call. For external
LOBs (BFILEs), OPEN requires a round-trip because the actual operating system file
on the server side is being opened.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and nonLOB data in the transaction are committed, but
the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

READ Procedure
This procedure reads a piece of a LOB, and returns the specified amount into the
buffer parameter, starting from an absolute offset from the beginning of the LOB.

The number of bytes or characters actually read is returned in the amount
parameter. If the input offset points past the End of LOB, then amount is set to 0,
and a NO_DATA_FOUND exception is raised.

Syntax
DBMS_LOB.READ (

Table 23–42 OPEN Procedure Parameters

Parameter Description

lob_loc LOB locator.

open_mode Mode in which to open.
DBMS_LOB 23-51

READ Procedure
lob_loc IN BLOB,
amount IN OUT NOCOPY BINARY_INTEGER,
offset IN INTEGER,
buffer OUT RAW);

DBMS_LOB.READ (
lob_loc IN CLOB CHARACTER SET ANY_CS,
amount IN OUT NOCOPY BINARY_INTEGER,
offset IN INTEGER,
buffer OUT VARCHAR2 CHARACTER SET lob_loc%CHARSET);

DBMS_LOB.READ (
file_loc IN BFILE,
amount IN OUT NOCOPY BINARY_INTEGER,
offset IN INTEGER,
buffer OUT RAW);

Parameters

Exceptions

Table 23–43 READ Procedure Parameters

Parameter Description

lob_loc Locator for the LOB to be read.

file_loc The file locator for the LOB to be examined.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to read, or
number that were read.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1).

buffer Output buffer for the read operation.

Table 23–44 READ Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount , or offset parameters are NULL.
23-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Exceptions

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.READ from the client (for example, in a BEGIN/END block
from within SQL*Plus), the returned buffer contains data in the client’s character
set. Oracle converts the LOB value from the server’s character set to the client’s
character set before it returns the buffer to the user.

Examples
CREATE OR REPLACE PROCEDURE Example_13a IS

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE

- amount is greater, in bytes or characters, than the capacity of
buffer .

NO_DATA_FOUND End of the LOB is reached, and there are no more bytes or characters
to read from the LOB: amount has a value of 0.

Table 23–45 READ Procedure Exceptions for BFILEs

Exception Description

UNOPENED_FILE File is not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

Table 23–44 READ Procedure Exceptions

Exception Description
DBMS_LOB 23-53

READ Procedure
src_lob BLOB;
buffer RAW(32767);
amt BINARY_INTEGER := 32767;
pos INTEGER := 2147483647;

BEGIN
SELECT b_col INTO src_lob

FROM lob_table
WHERE key_value = 21;

LOOP
dbms_lob.read (src_lob, amt, pos, buffer);
-- process the buffer
pos := pos + amt;

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND THEN
dbms_output.put_line(’End of data’);

END;

CREATE OR REPLACE PROCEDURE Example_13b IS
fil BFILE;
buf RAW(32767);
amt BINARY_INTEGER := 32767;
pos INTEGER := 2147483647;

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
dbms_lob.fileopen(fil, dbms_lob.file_readonly);
LOOP

dbms_lob.read(fil, amt, pos, buf);
-- process contents of buf
pos := pos + amt;

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND
THEN
BEGIN

dbms_output.putline (’End of LOB value reached’);
dbms_lob.fileclose(fil);

END;
END;

Example for efficient operating system I/O that performs better with block I/O
rather than stream I/O:

CREATE OR REPLACE PROCEDURE Example_13c IS
fil BFILE;
23-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
amt BINARY_INTEGER := 1024; -- or n x 1024 for reading n
buf RAW(1024); -- blocks at a time
tmpamt BINARY_INTEGER;

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
dbms_lob.fileopen(fil, dbms_lob.file_readonly);
LOOP

dbms_lob.read(fil, amt, pos, buf);
-- process contents of buf
pos := pos + amt;

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND
THEN

BEGIN
dbms_output.putline (’End of data reached’);
dbms_lob.fileclose(fil);

END;
END;

SUBSTR Function
This function returns amount bytes or characters of a LOB, starting from an absolute
offset from the beginning of the LOB.

For fixed-width n-byte CLOBs, if the input amount for SUBSTR is specified to be
greater than (32767/n), then SUBSTR returns a character buffer of length (32767/n),
or the length of the CLOB, whichever is lesser. For CLOBs in a varying-width
character set, n is 2.

Syntax
DBMS_LOB.SUBSTR (

lob_loc IN BLOB,
amount IN INTEGER := 32767,
offset IN INTEGER := 1)

RETURN RAW;

DBMS_LOB.SUBSTR (
lob_loc IN CLOB CHARACTER SET ANY_CS,
amount IN INTEGER := 32767,
offset IN INTEGER := 1)

RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

DBMS_LOB.SUBSTR (
DBMS_LOB 23-55

SUBSTR Function
file_loc IN BFILE,
amount IN INTEGER := 32767,
offset IN INTEGER := 1)

RETURN RAW;

Pragmas
pragma restrict_references(SUBSTR, WNDS, WNPS, RNDS, RNPS);

Parameters

Returns

Table 23–46 SUBSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB to be read.

file_loc The file locator for the LOB to be examined.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to be read.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1).

Table 23–47 SUBSTR Function Returns

Return Description

RAW Function overloading that has a BLOB or BFILE in parameter.

VARCHAR2 CLOB version.

NULL Either:

- any input parameter is NULL

- amount < 1

- amount > 32767

- offset < 1

- offset > LOBMAXSIZE
23-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Exceptions

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.SUBSTR from the client (for example, in a BEGIN/END
block from within SQL*Plus), the returned buffer contains data in the client’s
character set. Oracle converts the LOB value from the server’s character set to the
client’s character set before it returns the buffer to the user.

Examples
CREATE OR REPLACE PROCEDURE Example_14a IS

src_lob CLOB;
pos INTEGER := 2147483647;
buf VARCHAR2(32000);

BEGIN
SELECT c_lob INTO src_lob FROM lob_table

WHERE key_value = 21;
buf := DBMS_LOB.SUBSTR(src_lob, 32767, pos);
-- process the data

END;

CREATE OR REPLACE PROCEDURE Example_14b IS
fil BFILE;
pos INTEGER := 2147483647;
pattern RAW;

BEGIN
SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;

Table 23–48 SUBSTR Function Exceptions for BFILE operations

Exception Description

UNOPENED_FILE File is not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID_DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.
DBMS_LOB 23-57

TRIM Procedure
dbms_lob.fileopen(fil, dbms_lob.file_readonly);
pattern := dbms_lob.substr(fil, 255, pos);
dbms_lob.fileclose(fil);

END;

TRIM Procedure
This procedure trims the value of the internal LOB to the length you specify in the
newlen parameter. Specify the length in bytes for BLOBs, and specify the length in
characters for CLOBs.

If you attempt to TRIM an empty LOB, then nothing occurs, and TRIM returns no
error. If the new length that you specify in newlen is greater than the size of the
LOB, then an exception is raised.

Syntax
DBMS_LOB.TRIM (

lob_loc IN OUT NOCOPY BLOB,
newlen IN INTEGER);

DBMS_LOB.TRIM (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
newlen IN INTEGER);

 Parameters

See Also:

� "INSTR Function" on page 23-37

� "READ Procedure" on page 23-51

Note: The TRIM procedure decreases the length of the LOB to the
value specified in the newlen parameter.

Table 23–49 TRIM Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB whose length is to be trimmed.

newlen New, trimmed length of the LOB value in bytes for BLOBs or
characters for CLOBs.
23-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Exceptions

Usage Notes
It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Example
CREATE OR REPLACE PROCEDURE Example_15 IS

lob_loc BLOB;
BEGIN
-- get the LOB locator

SELECT b_col INTO lob_loc
FROM lob_table
WHERE key_value = 42 FOR UPDATE;

dbms_lob.trim(lob_loc, 4000);
COMMIT;

END;

Table 23–50 TRIM Procedure Exceptions

Exception Description

VALUE_ERROR lob_loc is NULL.

INVALID_ARGVAL Either:

- new_len < 0

- new_len > LOBMAXSIZE

See Also:

� "ERASE Procedure" on page 23-24

� "WRITEAPPEND Procedure" on page 23-62
DBMS_LOB 23-59

WRITE Procedure
WRITE Procedure
This procedure writes a specified amount of data into an internal LOB, starting from
an absolute offset from the beginning of the LOB. The data is written from the
buffer parameter.

WRITE replaces (overwrites) any data that already exists in the LOB at the offset, for
the length you specify.

There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer is written to the LOB. If the offset you specify is beyond the end of
the data currently in the LOB, then zero-byte fillers or spaces are inserted in the
BLOB or CLOB respectively.

Syntax
DBMS_LOB.WRITE (

lob_loc IN OUT NOCOPY BLOB,
amount IN BINARY_INTEGER,
offset IN INTEGER,
buffer IN RAW);

DBMS_LOB.WRITE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN BINARY_INTEGER,
offset IN INTEGER,
buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 23–51 WRITE Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB to be written to.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to write, or
number that were written.

offset Offset in bytes (for BLOBs) or characters (for CLOBs) from the start of
the LOB (origin: 1) for the write operation.

buffer Input buffer for the write.
23-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Exceptions

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.WRITE from the client (for example, in a BEGIN/END block
from within SQL*Plus), the buffer must contain data in the client’s character set.
Oracle converts the client-side buffer to the server’s character set before it writes the
buffer data to the LOB.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Example
CREATE OR REPLACE PROCEDURE Example_16 IS

lob_loc BLOB;
buffer RAW;

Table 23–52 WRITE Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount , or offset parameters are NULL, out of
range, or INVALID .

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE

- offset < 1

- offset > LOBMAXSIZE
DBMS_LOB 23-61

WRITEAPPEND Procedure
amt BINARY_INTEGER := 32767;
pos INTEGER := 2147483647;
i INTEGER;

BEGIN
SELECT b_col INTO lob_loc

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

FOR i IN 1..3 LOOP
dbms_lob.write (lob_loc, amt, pos, buffer);
-- fill in more data
pos := pos + amt;

END LOOP;
EXCEPTION

WHEN some_exception
THEN handle_exception;

END;

WRITEAPPEND Procedure
This procedure writes a specified amount of data to the end of an internal LOB. The
data is written from the buffer parameter.

There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer are written to the end of the LOB.

Syntax
DBMS_LOB.WRITEAPPEND (

lob_loc IN OUT NOCOPY BLOB,
amount IN BINARY_INTEGER,
buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN BINARY_INTEGER,
buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

See Also:

� "APPEND Procedure" on page 23-15

� "COPY Procedure" on page 23-21
23-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms
Parameters

Exceptions

Usage Notes
The form of the VARCHAR2 buffer must match the form of the CLOB parameter. In
other words, if the input LOB parameter is of type NCLOB, then the buffer must
contain NCHAR data. Conversely, if the input LOB parameter is of type CLOB, then
the buffer must contain CHAR data.

When calling DBMS_LOB.WRITEAPPEND from the client (for example, in a
BEGIN/END block from within SQL*Plus), the buffer must contain data in the
client’s character set. Oracle converts the client-side buffer to the server’s character
set before it writes the buffer data to the LOB.

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

Table 23–53 WRITEAPPEND Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOB to be written to.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to write, or
number that were written.

buffer Input buffer for the write.

Table 23–54 WRITEAPPEND Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount , or offset parameters are NULL, out of
range, or INVALID .

INVALID_ARGVAL Either:

- amount < 1

- amount > MAXBUFSIZE
DBMS_LOB 23-63

WRITEAPPEND Procedure
If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPEN or CLOSE statement.

Example
CREATE OR REPLACE PROCEDURE Example_17 IS

lob_loc BLOB;
buffer RAW;
amt BINARY_INTEGER := 32767;
i INTEGER;

BEGIN
SELECT b_col INTO lob_loc

FROM lob_table
WHERE key_value = 12 FOR UPDATE;

FOR i IN 1..3 LOOP
-- fill the buffer with data to be written to the lob
dbms_lob.writeappend (lob_loc, amt, buffer);

END LOOP;
END;

See Also:

� "APPEND Procedure" on page 23-15

� "COPY Procedure" on page 23-21

� "WRITE Procedure" on page 23-60
23-64 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
24

DBMS_LOCK

Oracle Lock Management services for your applications are available through
procedures in the DBMS_LOCK package. You can request a lock of a specific mode,
give it a unique name recognizable in another procedure in the same or another
instance, change the lock mode, and release it.

Because a reserved user lock is the same as an Oracle lock, it has all the
functionality of an Oracle lock, such as deadlock detection. Be certain that any user
locks used in distributed transactions are released upon COMMIT, or an undetected
deadlock may occur.

User locks never conflict with Oracle locks because they are identified with the
prefix "UL". You can view these locks using the Enterprise Manager lock monitor
screen or the appropriate fixed views. User locks are automatically released when a
session terminates.

The lock identifier is a number in the range of 0 to 1073741823.

Some uses of user locks:

� Providing exclusive access to a device, such as a terminal

� Providing application-level enforcement of read locks

� Detecting when a lock is released and cleanup after the application

� Synchronizing applications and enforcing sequential processing

This chapter discusses the following topics:

� Requirements, Security, and Constants for DBMS_LOCK

� Summary of DBMS_LOCK Subprograms
S_LOCK 24-1

Requirements, Security, and Constants for DBMS_LOCK
Requirements, Security, and Constants for DBMS_LOCK

Requirements
DBMS_LOCK is most efficient with a limit of a few hundred locks for each session.
Oracle strongly recommends that you develop a standard convention for using
these locks in order to avoid conflicts among procedures trying to use the same
locks. For example, include your company name as part of your lock names.

Security
There might be operating system-specific limits on the maximum number of total
locks available. This must be considered when using locks or making this package
available to other users. Consider granting the EXECUTE privilege only to specific
users or roles.

A better alternative would be to create a cover package limiting the number of locks
used and grant EXECUTE privilege to specific users. An example of a cover package
is documented in the DBMSLOCK.SQL package specification file.

Constants
nl_mode constant integer := 1;
ss_mode constant integer := 2; -- Also called ’Intended Share’
sx_mode constant integer := 3; -- Also called ’Intended Exclusive’
s_mode constant integer := 4;
ssx_mode constant integer := 5;
x_mode constant integer := 6;

These are the various lock modes (nl -> "NuLl", ss -> "Sub Shared", sx -> "Sub
eXclusive", s -> "Shared", ssx -> "Shared Sub eXclusive", x -> "eXclusive").

A sub-share lock can be used on an aggregate object to indicate that share locks are
being aquired on sub-parts of the object. Similarly, a sub-exclusive lock can be used
on an aggregate object to indicate that exclusive locks are being aquired on
sub-parts of the object. A share-sub-exclusive lock indicates that the entire
aggregate object has a share lock, but some of the sub-parts may additionally have
exclusive locks.

Lock Compatibility Rules
When another process holds "held", an attempt to get "get" does the following:
24-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms
maxwait constant integer := 32767;

The constant maxwait waits forever.

Summary of DBMS_LOCK Subprograms

ALLOCATE_UNIQUE Procedure
This procedure allocates a unique lock identifier (in the range of 1073741824 to
1999999999) given a lock name. Lock identifiers are used to enable applications to
coordinate their use of locks. This is provided because it may be easier for
applications to coordinate their use of locks based on lock names rather than lock
numbers.

Table 24–1 Lock Compatibility

HELD
MODE GET NL GET SS GET SX GET S GET SSX GET X

NL Success Success Success Success Success Success

SS Success Success Success Success Success Fail

SX Success Success Success Fail Fail Fail

S Success Success Fail Success Fail Fail

SSX Success Success Fail Fail Fail Fail

X Success Fail Fail Fail Fail Fail

Table 24–2 DBMS_LOCK Package Subprograms

Subprogram Description

ALLOCATE_UNIQUE
Procedure on page 24-3

Allocates a unique lock ID to a named lock.

REQUEST Function on page 24-5 Requests a lock of a specific mode.

CONVERT Function on
page 24-7

Converts a lock from one mode to another.

RELEASE Function on page 24-8 Releases a lock.

SLEEP Procedure on page 24-9 Puts a procedure to sleep for a specific time.
DBMS_LOCK 24-3

ALLOCATE_UNIQUE Procedure
If you choose to identify locks by name, you can use ALLOCATE_UNIQUE to
generate a unique lock identification number for these named locks.

The first session to call ALLOCATE_UNIQUE with a new lock name causes a unique
lock ID to be generated and stored in the dbms_lock_allocated table.
Subsequent calls (usually by other sessions) return the lock ID previously
generated.

A lock name is associated with the returned lock ID for at least expiration_secs
(defaults to 10 days) past the last call to ALLOCATE_UNIQUE with the given lock
name. After this time, the row in the dbms_lock_allocated table for this lock
name may be deleted in order to recover space. ALLOCATE_UNIQUE performs a
commit.

Syntax
DBMS_LOCK.ALLOCATE_UNIQUE (

lockname IN VARCHAR2,
lockhandle OUT VARCHAR2,
expiration_secs IN INTEGER DEFAULT 864000);

Parameters

Caution: Named user locks may be less efficient, because Oracle
uses SQL to determine the lock associated with a given name.

Table 24–3 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description

lockname Name of the lock for which you want to generate a unique ID.

Do not use lock names beginning with ORA$; these are
reserved for products supplied by Oracle Corporation.
24-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms
Errors
ORA-20000 , ORU-10003: Unable to find or insert lock <lockname > into catalog
dbms_lock_allocated .

REQUEST Function
This function requests a lock with a given mode. REQUEST is an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUE procedure.

Syntax
DBMS_LOCK.REQUEST(

id IN INTEGER ||
lockhandle IN VARCHAR2,
lockmode IN INTEGER DEFAULT X_MODE,
timeout IN INTEGER DEFAULT MAXWAIT,
release_on_commit IN BOOLEAN DEFAULT FALSE,

RETURN INTEGER;

lockhandle Returns the handle to the lock ID generated by ALLOCATE_
UNIQUE.

You can use this handle in subsequent calls to REQUEST,
CONVERT, and RELEASE.

A handle is returned instead of the actual lock ID to reduce the
chance that a programming error accidentally creates an
incorrect, but valid, lock ID. This provides better isolation
between different applications that are using this package.

LOCKHANDLE can be up to VARCHAR2 (128).

All sessions using a lock handle returned by ALLOCATE_
UNIQUE with the same lock name are referring to the same
lock. Therefore, do not pass lock handles from one session to
another.

expiration_specs Number of seconds to wait after the last ALLOCATE_UNIQUE
has been performed on a given lock, before permitting that
lock to be deleted from the DBMS_LOCK_ALLOCATED table.

The default waiting period is 10 days. You should not delete
locks from this table. Subsequent calls to ALLOCATE_UNIQUE
may delete expired locks to recover space.

Table 24–3 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description
DBMS_LOCK 24-5

REQUEST Function
The current default values, such as X_MODE and MAXWAIT, are defined in the DBMS_
LOCK package specification.

Parameters

Return Values

Table 24–4 REQUEST Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

lockmode Mode that you are requesting for the lock.

The available modes and their associated integer identifiers
follow. The abbreviations for these locks, as they appear in the
V$ views and Enterprise Manager monitors are in parentheses.

 1 - null mode

 2 - row share mode (ULRS)

 3 - row exclusive mode (ULRX)

 4 - share mode (ULS)

 5 - share row exclusive mode (ULRSX)

 6 - exclusive mode (ULX)

timeout Number of seconds to continue trying to grant the lock.

If the lock cannot be granted within this time period, then the
call returns a value of 1 (timeout).

release_on_commit Set this parameter to TRUE to release the lock on commit or
roll-back.

Otherwise, the lock is held until it is explicitly released or until
the end of the session.

Table 24–5 REQUEST Function Return Values

Return Value Description

0 Success

1 Timeout
24-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms
CONVERT Function
This function converts a lock from one mode to another. CONVERT is an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUE procedure.

Syntax
DBMS_LOCK.CONVERT(

id IN INTEGER ||
lockhandle IN VARCHAR2,
lockmode IN INTEGER,
timeout IN NUMBER DEFAULT MAXWAIT)

RETURN INTEGER;

Parameters

2 Deadlock

3 Parameter error

4 Already own lock specified by id or lockhandle

5 Illegal lock handle

Table 24–6 CONVERT Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

Table 24–5 REQUEST Function Return Values

Return Value Description
DBMS_LOCK 24-7

RELEASE Function
Return Values

RELEASE Function
This function explicitly releases a lock previously acquired using the REQUEST
function. Locks are automatically released at the end of a session. RELEASE is an
overloaded function that accepts either a user-defined lock identifier, or the lock
handle returned by the ALLOCATE_UNIQUE procedure.

lockmode New mode that you want to assign to the given lock.

The available modes and their associated integer identifiers
follow. The abbreviations for these locks, as they appear in the
V$ views and Enterprise Manager monitors are in parentheses.

 1 - null mode

 2 - row share mode (ULRS)

 3 - row exclusive mode (ULRX)

 4 - share mode (ULS)

 5 - share row exclusive mode (ULRSX)

 6 - exclusive mode (ULX)

timeout Number of seconds to continue trying to change the lock
mode.

If the lock cannot be converted within this time period, then
the call returns a value of 1 (timeout).

Table 24–7 CONVERT Function Return Values

Return Value Description

0 Success

1 Timeout

2 Deadlock

3 Parameter error

4 Don’t own lock specified by id or lockhandle

5 Illegal lock handle

Table 24–6 CONVERT Function Parameters

Parameter Description
24-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms
Syntax
DBMS_LOCK.RELEASE (

id IN INTEGER)
RETURN INTEGER;

DBMS_LOCK.RELEASE (
lockhandle IN VARCHAR2)

RETURN INTEGER;

Parameters

Return Values

SLEEP Procedure
This procedure suspends the session for a given period of time.

Syntax
DBMS_LOCK.SLEEP (

seconds IN NUMBER);

Table 24–8 RELEASE Function Parameter

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUE, of the lock mode you
want to change.

Table 24–9 RELEASE Function Return Values

Return Value Description

0 Success

3 Parameter error

4 Do not own lock specified by id or lockhandle

5 Illegal lock handle
DBMS_LOCK 24-9

Printing a Check: Example
Parameters

Printing a Check: Example
The following Pro*COBOL precompiler example shows how locks are used to
ensure that there are no conflicts when multiple people need to access a single
device. The DBMS_LOCK package is used to ensure exclusive access.

Any cashier can issue a refund to a customer returning goods. Refunds under $50
are given in cash; anything above that is given by check. This code prints the check.
One printer is opened by all the cashiers to avoid the overhead of opening and
closing it for every check. Therefore, lines of output from multiple cashiers can
become interleaved without exclusive access to the printer.

CHECK-PRINT

Get the lock "handle" for the printer lock:

MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE

BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
END; END-EXEC.

Lock the printer in exclusive mode (default mode):

EXEC SQL EXECUTE
BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
END; END-EXEC.

We now have exclusive use of the printer, print the check:

...

Unlock the printer so other people can use it:

EXEC SQL EXECUTE
BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);

END; END-EXEC.

Table 24–10 SLEEP Procedure Parameters

Parameter Description

seconds Amount of time, in seconds, to suspend the session.

The smallest increment can be entered in hundredths of a
second; for example, 1.95 is a legal time value.
24-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LO
25

DBMS_LOGMNR

Using LogMiner, you can make queries based on actual data values. For instance,
you could issue a query to select all updates to the table scott.emp or all
deletions performed by user scott . You could also perform a query to show all
updates to scott.emp that increased sal more than a certain amount. Such data
can be used to analyze system behavior and to perform auditing tasks.

The DBMS_LOGMNR package contains procedures used to initialize the LogMiner
tool. You use these procedures to list the redo logs to be analyzed and to specify the
SCN or time range of interest. After these procedures complete, the server is ready
to process SQL SELECT statements against the V$LOGMNR_CONTENTS view.

This chapter discusses the following topics:

� DBMS_LOGMNR Constants

� Extracting Data Values from Redo Logs

� Example of Using DBMS_LOGMNR

� Summary of DBMS_LOGMNR Subprograms

See Also: Oracle9i Database Administrator’s Guide for information
about using LogMiner
GMNR 25-1

DBMS_LOGMNR Constants
DBMS_LOGMNR Constants
Table 25–1 describes the constants for the ADD_LOGFILE options flag in the DBMS_
LOGMNR package.

Table 25–2 describes the constants for the START_LOGMNR options flag in the DBMS_
LOGMNR package.

Table 25–1 Constants for ADD_LOGFILE Options Flag

Constant Description

NEW DBMS_LOGMNR.NEW purges the existing list of redo logs, if any. Places the specified
redo log in the list of redo logs to be analyzed.

ADDFILE DBMS_LOGMNR.ADDFILE adds the specified redo log to the list of redo logs to be
analyzed. Any attempts to add a duplicate file raise an exception (ORA-1289).

REMOVEFILE DBMS_LOGMNR.REMOVEFILE removes the redo log from the list of redo logs to be
analyzed. Any attempts to remove a file that has not been previously added, raise
an exception (ORA-1290).

Table 25–2 Constants for START_LOGMNR Options Flag

Constant Description

COMMITTED_DATA_ONLY If set, only DMLs corresponding to committed transactions are returned. DMLs
corresponding to a committed transaction are grouped together. Transactions are
returned in their commit order. If this option is not set, all rows for all transactions
(committed, rolled back, and in-progress) are returned

SKIP_CORRUPTION Directs a SELECT operation from V$LOGMNR_CONTENTS to skip any corruptions
in the redo log being analyzed and continue processing. This option works only
when a block in the redo log (and not the header of the redo log) has been
corrupted. Caller should check the INFO column in the V$LOGMNR_CONTENTS
view to determine the corrupt blocks skipped by LogMiner.

DDL_DICT_TRACKING If the dictionary in use is a flat file or in the redo logs, LogMiner ensures that its
internal dictionary is updated if a DDL event occurs. This ensures that correct
SQL_REDO and SQL_UNDO information is maintained for objects that are modified
after the LogMiner dictionary is built.

This option cannot be used in conjunction with the DICT_FROM_ONLINE_
CATALOG option.

DICT_FROM_ONLINE_
CATALOG

Directs LogMiner to use the current "live" database dictionary rather than a
dictionary snapshot contained in a flat file or in a redo log.

This option cannot be used in conjunction with the DDL_DICT_TRACKING option.
25-2 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LOGMNR Constants
Extracting Data Values from Redo Logs
LogMiner data extraction from redo logs is performed using two mine functions:
DBMS_LOGMNR.MINE_VALUE and DBMS_LOGMNR.COLUMN_PRESENT, described
later in this chapter.

Example of Using DBMS_LOGMNR
The following example shows how to use the DBMS_LOGMNR procedures to add
redo logs to a LogMiner session, how to start LogMiner (with a flat file dictionary),
how to perform a select operation from V$LOGMNR_CONTENTS, and how to end a
LogMiner session. For complete descriptions of the DBMS_LOGMNR procedures, see
Summary of DBMS_LOGMNR Subprograms on page 25-4.

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
2 LogFileName => ’/oracle/logs/log1.f’, -
3 Options => dbms_logmnr.NEW);

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
2 LogFileName => ’/oracle/logs/log2.f’, -
3 Options => dbms_logmnr.ADDFILE);

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
2 DictFileName =>’/oracle/dictionary.ora’);

SQL> SELECT sql_redo
2 FROM V$LOGMNR_CONTENTS

SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR();

DICT_FROM_REDO_LOGSIf set, LogMiner expects to find a dictionary in the redo logs that were specified
with the DBMS_LOGMNR.ADD_LOGFILE procedure.

NO_SQL_DELIMITER if set, the SQL delimiter (a semicolon) is not placed at the end of reconstructed SQL
statements.

PRINT_PRETTY_SQL If set, LogMiner formats the reconstructed SQL statements for ease of reading.

CONTINUOUS_MINE If set, you only need to register one archived redo log. LogMiner automatically
adds and mines any subsequent archived redo logs and also the online catalog.
This is useful when you are mining in the same instance that is generating the redo
logs.

Table 25–2 (Cont.) Constants for START_LOGMNR Options Flag

Constant Description
DBMS_LOGMNR 25-3

Summary of DBMS_LOGMNR Subprograms
Summary of DBMS_LOGMNR Subprograms
Table 25–3 describes the procedures in the DBMS_LOGMNR supplied package.

ADD_LOGFILE Procedure
This procedure adds a file to the existing or newly created list of archive files to
process.

In order to select information from the V$LOGMNR_CONTENTS view, the LogMiner
session must be set up with information about the redo logs to be analyzed. Use the
ADD_LOGFILE procedure to specify the list of redo logs to analyze.

Syntax
DBMS_LOGMNR.ADD_LOGFILE(

LogFileName IN VARCHAR2,
Options IN BINARY_INTEGER default ADDFILE);

Table 25–3 DBMS_LOGMNR Package Subprograms

Subprogram Description

ADD_LOGFILE Procedure
on page 25-4

Adds a file to the existing or newly created list of archive files
to process.

START_LOGMNR
Procedure on page 25-5

Initializes the LogMiner utility.

END_LOGMNR
Procedure on page 25-8

Finishes a LogMiner session.

MINE_VALUE Function
on page 25-8

This function may be called for any row returned from
V$LOGMNR_CONTENTS to retrieve the undo or redo column
value of the column specified by the column_name input
parameter to this function.

COLUMN_PRESENT
Function on page 25-10

This function may be called for any row returned from
V$LOGMNR_CONTENTS to determine if undo or redo column
values exist for the column specified by the column_name
input parameter to this function.

Note: If you want to analyze more than one redo log, you must
call the ADD_LOGFILE procedure separately for each redo log.
25-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms
Parameters
Table 25–4 describes the parameters for the ADD_LOGFILE procedure.

Exceptions
� ORA-1284: Redo log file specified cannot be opened. Log file or the directory

may be non-existent or inaccessible.

� ORA-1285: Error reading the header of the redo log file.

� ORA-1286: Redo log file specified is not from the database that produced other
logfiles added for analysis.

� ORA-1287: Redo log file specified is from a different database incarnation.

� ORA-1289: Redo log file specified is a duplicate of a previously specified log
file.

� ORA-1290: Redo log file specified for removal is not a registered log file.

� ORA-1337: Redo log file specified has a different compatibility version than the
rest of the logfiles added.

START_LOGMNR Procedure
This procedure starts a LogMiner session.

Table 25–4 ADD_LOGFILE Procedure Parameters

Parameter Description

LogFileName Name of the redo log that must be added to the list of redo logs to
be analyzed by this session.

Options Either:

- Starts a new list (DBMS_LOGMNR.NEW)

- Adds a file to an existing list (DBMS_LOGMNR.ADDFILE), or

- Removes a redo log (DBMS_LOGMNR.REMOVEFILE)

See Table 25–1, " Constants for ADD_LOGFILE Options Flag".
DBMS_LOGMNR 25-5

START_LOGMNR Procedure
Syntax
DBMS_LOGMNR.START_LOGMNR(

startScn IN NUMBER default 0,
endScn IN NUMBER default 0,
startTime IN DATE default ’01-jan-1988’,
endTime IN DATE default ’01-jan-2988’,
DictFileName IN VARCHAR2 default ’’,
Options IN BINARY_INTEGER default 0);

Parameters
Table 25–5 describes the parameters for the DBMS_LOGMNR.START_LOGMNR
procedure.

Note: This procedure fails if you did not previously use the ADD_
LOGFILE procedure to specify a list of redo logs to be analyzed.

Table 25–5 START_LOGMNR Procedure Parameters

Parameter Description

startScn Only consider redo records with SCN greater than or equal to the
startSCN specified. This fails if there is no redo log with an SCN
range (that is, the LOW_SCN and NEXT_SCN associated with the
redo log as shown in V$LOGMNR_LOGS view) containing the
startScn .

endScn Only consider redo records with SCN less than or equal to the
endSCN specified. This fails if there is no redo log with an SCN
range (that is, the LOW_SCN and NEXT_SCN associated with the
redo log as shown in V$LOGMNR_LOGS view) containing the
endScn .

startTime Only consider redo records with timestamp greater than or equal
to the startTime specified. This fails if there is no redo log with
a time range (that is, the LOW_TIME and HIGH_TIME associated
with the redo log as shown in V$LOGMNR_LOGS view) containing
the startTime . This parameter is ignored if startScn is
specified.

endTime Only consider redo records with timestamp less than or equal to
the endTime specified. This fails if there is no redo log with a
time range (that is, the LOW_TIME and HIGH_TIME associated
with the redo log as shown in V$LOGMNR_LOGS view) containing
the endTime . This parameter is ignored if endScn is specified.
25-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms
After executing the START_LOGMNR procedure, you can make use of the following
views:

� V$LOGMNR_CONTENTS - contains history of information in redo logs

� V$LOGMNR_DICTIONARY - contains current information about the dictionary
file

� V$LOGMNR_LOGS - contains information about the redo logs being analyzed

� V$LOGMNR_PARAMETERS - contains information about the LogMiner session

Exceptions
� ORA-1280: The procedure fails with this exception if LogMiner encounters an

internal error

� ORA-1281: endScn is less than startScn

� ORA-1282: endDate is earlier than startDate

� ORA-1283: Invalid option is specified

� ORA-1292: No redo log file has been registered with LogMiner

� ORA-1293: The procedure fails with this exception for the following reasons:

1. No logfile has (LOW_SCN, NEXT_SCN) range containing the startScn
specified.

2. No logfile has (LOW_SCN, NEXT_SCN) range containing the endScn
specified.

DictFileName This flat file contains a snapshot of the database catalog. It is used
to reconstruct SQL_REDO and SQL_UNDO columns in V$LOGMNR_
CONTENTS, as well as to fully translate SEG_NAME, SEG_OWNER,
SEG_TYPE_NAME, and TABLE_SPACE columns. The fully
qualified path name for the dictionary file must be specified (This
file must have been created previously through the DBMS_
LOGMNR_D.BUILD procedure).

You only need to specify this parameter if neither DICT_FROM_
REDO_LOGS nor DICT_FROM_ONLINE_CATALOG is specified.

Options See Table 25–2, " Constants for START_LOGMNR Options Flag".

Table 25–5 (Cont.) START_LOGMNR Procedure Parameters

Parameter Description
DBMS_LOGMNR 25-7

END_LOGMNR Procedure
3. No logfile has (LOW_TIME, HIGH_TIME) range containing the startTime
specified.

4. No logfile has (LOW_TIME, HIGH_TIME) range containing the endTime
specified.

� ORA-1294: Dictionary file specified is corrupt.

� ORA-1295: Dictionary specified does not correspond to the same database that
produced the log files being analyzed.

� ORA-1296: Character set specified in the data dictionary does not match, and is
incompatible with, that of the mining database.

� ORA-1297: Redo version mismatch between the dictionary and the registered
redo log files.

� ORA-1299: The specified dictionary is from a different database incarnation.

� ORA-1300: Enabled thread bit vector from the dictionary does not match the
redo log file. Not all redo threads have been registered with LogMiner.

END_LOGMNR Procedure
This procedure finishes a LogMiner session. Because this procedure performs
cleanup operations which may not otherwise be done, you must use it to properly
end a LogMiner session.

Syntax
DBMS_LOGMNR.END_LOGMNR;

Parameters
None.

Exceptions
� ORA-1307: No LogMiner session is active. The END_LOGMNR procedure was

called without adding any logfiles.

MINE_VALUE Function
The MINE_VALUE function takes two arguments. The first one specifies whether to
mine the redo (REDO_VALUE) or undo (UNDO_VALUE) portion of the data. The
second argument is a string that specifies the fully-qualified name of the column to
25-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms
be mined. The MINE_VALUE function always returns a string that can be converted
back to the original datatype.

Syntax
dbms_logmnr.mine_value(

sql_redo_undo IN RAW,
column_name IN VARCHAR2 default ’’) RETURN VARCHAR2;

Parameters
Table 25–6 describes the parameters for the MINE_VALUE function.

Returns
Table 25–7 describes the return values for the MINE_VALUE function.

Exceptions
� ORA-1302: Specified table or column does not exist.

Usage Notes
� To use the MINE_VALUE function, you must have successfully started a

LogMiner session.

Table 25–6 MINE_VALUE Function Parameters

Parameter Description

sql_redo_undo The column in V$LOGMNR_CONTENTS from which to extract
data values. This parameter can be thought of as a
self-describing record that contains values corresponding to
several columns in a table.

column_name Fully qualified name (schema.table.column) of the column
for which this function will return information.

Table 25–7 Return Values for MINE_VALUE Function

Return Description

NULL The column is not contained within the self-describing record
or the column value is NULL.

NON-NULL The column is contained within the self-describing record; the
value is returned in string format.
DBMS_LOGMNR 25-9

COLUMN_PRESENT Function
� The MINE_VALUE function must be invoked in the context of a select operation
from the V$LOGMNR_CONTENTS view.

� The MINE_VALUE function does not support LONG, LOB, ADT, or COLLECTION
datatypes.

� When the column argument is of type DATE, the string that is returned is
formatted in canonical form (DD-MON-YYYY HH24:MI:SS.SS) regardless of the
date format of the current session.

COLUMN_PRESENT Function
This function is meant to be used in conjunction with the MINE_VALUE function.

If the MINE_VALUE function returns a NULL value, it can mean either:

� The specified column is not present in the redo or undo portion of the data.

� The specified column is present and has a null value.

To distinguish between these two cases, use the COLUMN_PRESENT function which
returns a 1 if the column is present in the redo or undo portion of the data.
Otherwise, it returns a 0.

Syntax
dbms_logmnr.column_present(

sql_redo_undo IN RAW,
column_name IN VARCHAR2 default ’’) RETURN NUMBER;

Parameters
Table 25–8 describes the parameters for the COLUMN_PRESENT function.

Table 25–8 COLUMN_PRESENT Function Parameters

Parameter Description

sql_redo_undo The column in V$LOGMNR_CONTENTS from which to extract
data values. This parameter can be thought of as a
self-describing record that contains values corresponding to
several columns in a table.

column_name Fully qualified name (schema.table.column) of the column
for which this function will return information.
25-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms
Returns
Table 25–9 describes the return values for the COLUMN_PRESENT function.

Exceptions
� ORA-1302: Specified table or column does not exist.

Usage Notes
� To use the COLUMN_PRESENT function, you must have successfully started a

LogMiner session.

� The COLUMN_PRESENT function must be invoked in the context of a select
operation from the V$LOGMNR_CONTENTS view.

� The COLUMN_PRESENT function does not support LONG, LOB, ADT, or
COLLECTION datatypes.

� When the column argument is of type DATE, the string that is returned is
formatted in canonical form (DD-MON-YYYY HH24:MI:SS.SS) regardless of the
date format of the current session.

Table 25–9 Return Values for COLUMN_PRESENT Function

Return Description

0 Specified column is not present in this row of V$LOGMNR_
CONTENTS.

1 Column is present in this row of V$LOGMNR_CONTENTS.

Returns 1 if the self-describing record (the first parameter)
contains the column specified in the second parameter. This
can be used to distinguish between NULL returns from the
DBMS_LOGMNR.MINE_VALUE function.
DBMS_LOGMNR 25-11

COLUMN_PRESENT Function
25-12 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LOGMNR_CDC_
26

DBMS_LOGMNR_CDC_PUBLISH

Oracle Change Data Capture identifies new data that has been added to, modified,
or removed from relational tables and publishes the changed data in a form that is
usable by an application.

This chapter describes how to use the DBMS_LOGMNR_CDC_PUBLISH supplied
package to set up an Oracle Change Data Capture system to capture and publish
data from one or more Oracle relational source tables. Change Data Capture
captures and publishes only committed data.

Typically, a Change Data Capture system has one publisher that captures and
publishes changes for any number of Oracle source (relational) tables. The publisher
then provides subscribers, typically applications, with access to the published data.

This chapter discusses the following topics:

� Publishing Change Data

� Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

See Also: Oracle9i Data Warehousing Guide for more information
about the Oracle Change Data Capture publish and subscribe
model.
PUBLISH 26-1

Publishing Change Data
Publishing Change Data
The publisher, typically a database administrator, is concerned primarily with the
source of the data and with creating the schema objects that describe the structure
of the capture system: change sources, change sets, and change tables.

Most Change Data Capture systems have one publisher and many subscribers. The
publisher accomplishes the following main objectives:

1. Determine which source table changes need to be published.

2. Use the procedures in the DBMS_LOGMNR_CDC_PUBLISH package to capture
change data and makes it available from the source tables by creating and
administering the change source, change set, and change table objects.

3. Allow controlled access to subscribers by using the SQL GRANT and REVOKE
statements to grant and revoke the SELECT privilege on change tables for users
and roles.

This is necessary to allow the subscribers, usually applications, to use the
DBMS_LOGMNR_CDC_SUBSCRIBE procedure to subscribe to the change data.

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
Through the DBMS_LOGMNR_CDC_PUBLISH package, the publisher creates and
maintains change sources, change sets, and change tables, and eventually drops
them when they are no longer useful.

Table 26–1 describes the procedures in the DBMS_LOGMNR_CDC_PUBLISH supplied
package.

Note: To use the DBMS_LOGMNR_CDC_PUBLISH package, you
must have the EXECUTE_CATALOG_ROLEprivilege, and you must
have the SELECT_CATALOG_ROLE privilege to look at all of the
views.
26-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
CREATE_CHANGE_TABLE Procedure
This procedure creates a change table in a specified schema.

Syntax
The following syntax specifies columns and datatypes using a comma-delimited
string.

DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE (
owner IN VARCHAR2,
change_table_name IN VARCHAR2,
change_set_name IN VARCHAR2,
source_schema IN VARCHAR2,
source_table IN VARCHAR2,
column_type_list IN VARCHAR2,
capture_values IN VARCHAR2,
rs_id IN CHAR,
row_id IN CHAR,
user_id IN CHAR,
timestamp IN CHAR,
object_id IN CHAR,
source_colmap IN CHAR,
target_colmap IN CHAR,
options_string IN VARCHAR2);

Table 26–1 DBMS_LOGMNR_CDC_PUBLISH Package Subprograms

Subprogram Description

CREATE_CHANGE_TABLE
Procedure on page 26-3

Creates a change table in a specified schema and creates corresponding
Change Data Capture metadata.

ALTER_CHANGE_TABLE
Procedure on page 26-8

Adds or drops columns for an existing change table, or changes the
properties of an existing change table.

DROP_SUBSCRIBER_VIEW
Procedure on page 26-12

Allows the publisher to drop a subscriber view from the subscriber’s
schema. The view must have been created by a prior call to the PREPARE_
SUBSCRIBER_VIEW procedure.

DROP_SUBSCRIPTION
Procedure on page 26-13

Allows a publisher to drop a subscription that was created with a prior call
to the GET_SUBSCRIPTION_HANDLE procedure.

DROP_CHANGE_TABLE
Procedure on page 26-14

Drops an existing change table when there is no more activity on the table.

PURGE Procedure on page 26-16 Monitors usage by all subscriptions, determines which rows are no longer
needed by subscriptions, and removes the unneeded rows to prevent change
tables from growing endlessly.
DBMS_LOGMNR_CDC_PUBLISH 26-3

CREATE_CHANGE_TABLE Procedure
Parameters

Table 26–2 CREATE_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_
name

Name of the change table that is being created.

change_set_
name

Name of an existing change set with which this change table is
associated. Synchronous change tables must specify SYNC_SET.

source_schema The schema where the source table is located.

source_table The source table from which the change records are captured.

column_type_
list

Comma-delimited list of columns and datatypes that are being
tracked.

capture_values Set this parameter to one of the following capture values for update
operations:

� OLD: Captures the original values from the source table.

� NEW: Captures the changed values from the source table.

� BOTH: Captures the original and changed values from the source
table.

rs_id Adds a column to the change table that contains the row sequence
number. This parameter orders the operations in a transaction in the
sequence that they were committed in the database. The row sequence
ID (rs_id) parameter is optional for synchronous mode.

Note: For synchronous mode, the rs_id parameter reflects an
operations capture order within a transaction, but you cannot use the
rs_id parameter by itself to order committed operations across
transactions.

Set this parameter to Y or N, as follows:

Y: Indicates that you want to add a column to the change table that
will contain the row sequence of the change.

N: Indicates that you do not want to track the rs_id column.

row_id Adds a column to the change table that contains the
row ID of the changed row in the source table, as
follows.

Y: Indicates that you want to add a column to the change table that
contains the row ID of the changed row in the source table.

N: Indicates that you do not want to track the row_id column.
26-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

tes
user_id Adds a column to the change table that contains the user name of the
user who entered a DML statement, as follows.

Y: Indicates that you want to add a column to the change table that
contains the user name of the user who entered a DML statement.

N: Indicates that you do not want to track users.

timestamp Adds a column to the change table that contains the capture
timestamp of the change record, as follows:

Y: Indicates that you want to add a column to the change table that
contains the capture timestamp of the change record.

N: Indicates that you do not want to track timestamps.

object_id Adds a column to the change table that contains the object ID of this
change record. This is a control column for object support. Specify Y
or N, as follows:

Y: Indicates that you want to add a column to the change table that
contains the object ID of this change record.

N: Indicates that you do not want to track object IDs.

source_colmap Adds a column to the change table as a change column vector that
indicates which source columns actually changed. Specify Y or N, as
follows:

Y: Indicates that you want to add a column to the change table to track
the source columns that have changed.

N: Indicates that you do not want to track which source columns
changed.

target_colmap Adds a column to the change table as a column vector indicating
which change table user columns actually changed. Specify Y or N, as
follows.

Y: Indicates that you want to add a column to the change table to track
the change table user columns that have changed.

N: Indicates that you do not want to track changes which change table
user columns changed.

options_string A string that contains syntactically correct options to be passed to a
CREATE TABLE DDL statement. The options string is appended to the
generatedCREATE TABLEDDL statement after the closing
parenthesis that defines the columns of the table. See the Usage No
for more information.

Table 26–2 CREATE_CHANGE_TABLE Procedure Parameters

Parameter Description
DBMS_LOGMNR_CDC_PUBLISH 26-5

CREATE_CHANGE_TABLE Procedure
Exceptions

Table 26–3 CREATE_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31409 One or more of the input parameters to the CREATE_CHANGE_TABLE
procedure had invalid values. Identify the incorrect parameters and supply
the correct values to the procedure.

ORA-31416 The value specified for the source_colmap parameter is invalid. For
synchronous mode, specify either Y or N.

ORA-31417 A reserved column name was specified in a column list or column type
parameter. Ensure that the name specified does not conflict with a reserved
column name.

ORA-31418 While creating a synchronous change table, the name of the source schema
did not match any existing schema name in the database.

ORA-31419 When creating a synchronous change table, the underlying source table did
not exist when the procedure was called.

ORA-31420 When creating the first change table, a purge job is submitted to the job
queue. Submission of this purge job failed.

ORA-31421 The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

ORA-31422 Owner schema does not exist.

ORA-31438 Duplicate change table. Re-create the change table with a unique name.

ORA-31450 Invalid value was specified for change_table_name.

ORA-31451 Invalid value was specified for the capture_value. Expecting either OLD,
NEW, or BOTH.

ORA-31452 Invalid value was specified. Expecting either Y or N.

ORA-31459 System triggers for DBMS_LOGMRN_CDC_PUBLISH package are not
installed.

ORA-31467 No column found in the source table. The OBJECT_ID flag was set to Y on
the call to CREATE_CHANGE_TABLE and change table belongs to the
synchronous change set. The corresponding object column was not
detected in the source table.
26-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
Usage Notes
� A change table is a database object that contains the change data resulting from

DML statements (INSERT, UPDATE, and DELETE) made to a source table. A
given change table can capture changes from only one source table.

� A synchronous change table must belong to the SYNC_SET change set.

� A change table is a database table that maintains the change data in these two
types of columns:

– Source columns identify the columns from the source table to capture.
Source columns are copies of actual source table columns that reside in the
change table.

– Control columns maintain special metadata for each change row in the
container table. Information such as the DML operation performed, the
capture time (timestamp), and changed column vectors are examples of
control columns.

� The publisher can control a change table’s physical properties, tablespace
properties, and so on by specifying the options_string parameter. With the
options_string parameter, you can set any option that is valid for the
CREATE TABLE DDL statement.

� Do not attempt to control a change table’s partitioning properties. When
Change Data Capture performs a purge operation to remove rows from a
change set, it automatically manages the change table partitioning for you.

Example
execute DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(OWNER => 'cdc1', \

CHANGE_TABLE_NAME => 'emp_ct', \
CHANGE_SET_NAME => 'SYNC_SET', \
SOURCE_SCHEMA => 'scott', \
SOURCE_TABLE => 'emp', \

Note: How you define the options_string parameter can have
an effect on the performance and operations in a Change Data
Capture system. For example, if the publisher places several
constraints in the options column, it can have a noticeable effect on
performance. Also, if the publisher uses NOT NULL constraints and
a particular column is not changed in an incoming change row,
then the constraint can cause the entire INSERT operation to fail.
DBMS_LOGMNR_CDC_PUBLISH 26-7

ALTER_CHANGE_TABLE Procedure
COLUMN_TYPE_LIST => 'empno number, ename varchar2(10), job varchar2(9), mgr
number, hiredate date, deptno number', \

CAPTURE_VALUES => 'both', \
RS_ID => 'y', \
ROW_ID => 'n', \
USER_ID => 'n', \
TIMESTAMP => 'n', \
OBJECT_ID => 'n',\
SOURCE_COLMAP => 'n', \
TARGET_COLMAP => 'y', \
OPTIONS_STRING => NULL);

ALTER_CHANGE_TABLE Procedure
This procedure adds columns to, or drops columns from, an existing change table.

Syntax
The following syntax specifies columns and datatypes as a comma-delimited list.

DBMS_LOGMNR_CDC_PUBLISH.ALTER_CHANGE_TABLE (
owner IN VARCHAR2,
change_table_name IN VARCHAR2,
operation IN VARCHAR2,
column_list IN VARCHAR2,
rs_id IN CHAR,
row_id IN CHAR,
user_id IN CHAR,
timestamp IN CHAR,
object_id IN CHAR,
source_colmap IN CHAR,
target_colmap IN CHAR);

Parameters

Table 26–4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_
name

Name of the change table that is being altered.

operation Specifies either the value DROP or ADD to indicate whether to add or
drop the columns in the field column_table or column_list.
26-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
column_list A comma-delimited list of column names and datatypes for each
column of the source table that should be added to, or dropped from,
the change table.

rs_id Adds or drops the control column that tracks the row sequence (rs_
id). Set this parameter to Y or N, as follows:

Y: Adds or drops a column on the change table that contains the row
sequence (rs_id).

N: The rs_id control column is not changed in the change table.

row_id Adds or drops a row_id column, as follows:

Y: Adds or drops the row_id control column for the change table.

N: The row_id column is not changed in the change table.

user_id Adds or drops the user name control column. Specify Y or N, as
follows:

Y: Adds or drops a column on the change table that contains the user
name (user_id).

N: The user_id column is not changed in the change table.

timestamp Adds or drops the timestamp control column to the change table, as
follows:

Y: Adds or drops a column on the change table that contains the
timestamp.

N: The timestamp control column is not changed in the change table.

object_id Add or drops the object_id column, as follows:

Y: Adds or drops a column on the change table that contains the
object_id .

N: The object_id control column is not changed in the change table.

source_colmap Adds or drops the source_colmap control column from the change
table, as follows:

Y: Adds or drops a column on the change table that contains the
source columns (source_colmap).

N: The source_colmap column is not changed in the change table.

Table 26–4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description
DBMS_LOGMNR_CDC_PUBLISH 26-9

ALTER_CHANGE_TABLE Procedure
Exceptions

Usage Notes
� You cannot add and drop user columns in the same call to the ALTER_CHANGE_

TABLE procedure; these schema changes require separate calls.

� Do not specify the name of the control columns in the user-column lists.

target_colmap Adds or drops the target_colmap control column from the change
table, as follows:

Y: Adds or drops a column on the change table that contains the target
columns (target_colmap).

N: The target_colmap column is not changed in the change table.

Table 26–5 ALTER_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31403 You issued an ALTER_CHANGE_TABLE procedure with an ADD operation
but a column by this name already exists in the specified table.

ORA-31409 One or more of the input parameters to the ALTER_CHANGE_SET
procedure had invalid values. Identify the incorrect parameters and supply
the correct values to the procedure.

ORA-31417 A reserved column name was specified in the column list parameter.
Ensure that the name specified does not conflict with a reserved column
name.

ORA-31421 The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

ORA-31423 You issued the ALTER_CHANGE_TABLE with a drop operation and the
specified column does not exist in the change table.

ORA-31454 Illegal value was specified for operation parameter; expecting ADD or DROP.

ORA-31455 Nothing to alter. The specified column list is NULL and all optional control
columns are N.

ORA-31456 An internal attempt to invoke a procedure within the DBMS_CDC_UTILITY
package failed. Check the trace logs for more information.

ORA-31459 One or more required system triggers are not installed.

Table 26–4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description
26-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
� The following table describes what happens when you add a column to a
change table:

Example
EXECUTE DBMS_LOGMNR_CDC_PUBLISH.ALTER_CHANGE_TABLE (OWNER => ’cdc1’) \

CHANGE_TABLE_NAME => ’emp_ct’ \
OPERATION => ADD \
ADD_COLUMN_LIST => ’’ \
RS_ID => ’Y’ \
ROW_ID => ’N’ \
USER_ID => ’N’ \
TIMESTAMP => ’N’ \
OBJECT_ID => ’N’ \

If the publisher
adds And Then . . .

A user column A new
subscription
includes this
column

The subscription window starts at the point the column
was added.

A user column A new
subscription
does not
include this
newly added
column

The subscription window starts at the low-water mark
for the change table thus enabling the subscriber to see
the entire table.

A user column Old
subscriptions
exist

The subscription window remains unchanged and the
entire table can be seen.

A control column There is a new
subscription

The subscription window starts at the low-water mark
for the change table. The subscription can see the
control column immediately. All rows that existed in
the change table prior to adding the control column
will have the value NULL for the newly added control
column field.

A control column — Any existing subscriptions can see the new control
column when the window is extended (DBMS_
LOGMNR_CDC_PUBLISH.EXTEND_WINDOW procedure)
such that the low watermark for the window crosses
over the point when the control column was added.
DBMS_LOGMNR_CDC_PUBLISH 26-11

DROP_SUBSCRIBER_VIEW Procedure
SOURCE_COLMAP => ’N’ \
TARGET_COLMAP => ’N’);

DROP_SUBSCRIBER_VIEW Procedure
This procedure allows a publisher to drop a subscriber view in the subscriber’s
schema.

Syntax
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW (

subscription_handle IN NUMBER,
source_schema IN VARCHAR2,
source_table IN VARCHAR2)

Parameters

Exceptions

Note: This procedure works the same way as the DBMS_LOGMNR_
CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW procedure.

Table 26–6 DROP_SUBSCRIBER_VIEW Procedure Parameters

Parameter Description

subscription_handle Unique number of the subscription handle that was returned by a
previous call to the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_
SUBSCRIPTION_HANDLE procedure.

source_schema Schema name where the source table resides.

source_table Name of the published source table.

Table 26–7 DROP_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31429 The subscription has not been activated. Check the subscription handle
and correct it, if necessary. Call the DBMS_LOGMNR_CDC_
SUBSCRIBE.ACTIVATE_SUBSCRIPTION procedure for this subscription
handle and then try the original command again.
26-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

W

Usage Notes
� This procedure provides the publisher with a way to clean up views that have

not been removed by the subscriber. (Typically, subscribers drop the subscriber
views using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIE
procedure.)

� The subscriber view you want to drop must have been created with a prior call
to the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure.

� You must use this procedure to drop any subscriber views prior to dropping a
subscription using the DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION
procedure.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW(\

SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>'scott', \
SOURCE_TABLE => 'emp');

DROP_SUBSCRIPTION Procedure
This procedure allows a publisher to drop a subscription that was created with a
prior call to the DBMS_LOGMNR_CDC_SUBSCRIBE. GET_SUBSCRIPTION_HANDLE
procedure.

ORA-31432 The schema_name.source_table does not exist or does not belong to this
subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.

ORA-31433 The subscriber view does not exist. Either you specified an incorrect
subscriber view or the view is already dropped. Check the name and
specify the name of an existing subscriber view.

Note: This procedure works the same way as the DBMS_LOGMNR_
CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.

Table 26–7 DROP_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description
DBMS_LOGMNR_CDC_PUBLISH 26-13

DROP_CHANGE_TABLE Procedure
Syntax
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION (

subscription_handle IN NUMBER)

Parameters

Exceptions

Usage Notes
� This procedure provides the publisher with a way to drop subscriptions that

have not been dropped by the subscriber. (Typically, subscribers drop
subscriptions using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_
SUBSCRIPTION procedure.)

� Prior to dropping a subscription, you must drop the subscriber view using the
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW procedure.

Example
EXECUTE DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION (\

SUBSCRIPTION_HANDLE => :subhandle);

DROP_CHANGE_TABLE Procedure
This procedure drops an existing change table.

Table 26–8 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_handle Unique number of the subscription handle that was returned by a
previous call to the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_
SUBSCRIPTION_HANDLE procedure.

Table 26–9 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW procedure and
then try the original command again.
26-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
Syntax
DBMS_LOGMNR_CDC_PUBLISH.DROP_CHANGE_TABLE (

owner IN VARCHAR2,
change_table_name IN VARCHAR2,
force_flag IN CHAR)

Parameters

Exceptions

Example
EXECUTE DBMS_LOGMNR_CDC_PUBLISH.DROP_CHANGE_TABLE (\

OWNER => ’cdc1’, \
CHANGE_TABLE_NAME => ’emp_ct’ \
FORCE_FLAG => ’N’)

Table 26–10 DROP_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_name Name of the change table that is being dropped.

force_flag Drops the change table, depending on whether or not there are
subscriptions making references to it, as follows:

Y: Drops the change table even if there are subscriptions making
references to it.

N: Drops the change table only if there are no subscribers referencing
it.

Table 26–11 DROP_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31421 The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

ORA-31422 Owner schema does not exist.

ORA-31424 The specified change table has active subscriptions, and thus it cannot be
dropped. If you must drop the table, use the force_flag parameter to
immediately drop the change table from all of the subscribers.

ORA-31441 Table is not a change table. You attempted to execute the DROP_CHANGE_
TABLE procedure on a table that is not a change table.
DBMS_LOGMNR_CDC_PUBLISH 26-15

PURGE Procedure
PURGE Procedure
This procedure monitors change table usage by all subscriptions, determines which
rows are no longer needed by subscriptions, and removes the unneeded rows to
prevent change tables from growing endlessly.

Syntax
DBMS_LOGMNR_CDC_PUBLISH.PURGE ()

Exceptions
Only standard Oracle exceptions (for example, a privilege violation) are returned
during a purge operation.

Usage Notes
� You can run this procedure manually or automatically:

– Run this procedure manually from the command line at any time that you
want to purge data from change tables.

– Run this procedure in a script to routinely perform a purge operation and
proactively control the growth of change tables. You can always remove or
disable (or suspend) the purge operation if you want to prevent it from
running automatically.

� Use this procedure to control the growth of change tables.

� Do not attempt to control a change table’s partitioning properties. When the
DBMS_LOGMNR_CDC_PUBLISH.PURGE procedure runs, Change Data Capture
performs partition maintenance automatically.

Example
EXECUTE DBMS_LOGMNR_CDC_PUBLISH.PURGE
26-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LOGMNR_CDC_SU
27

DBMS_LOGMNR_CDC_SUBSCRIBE

This chapter describes how to use the DBMS_LOGMNR_CDC_SUBSCRIBE package to
view and query the change data that was captured and published with the DBMS_
LOGMNR_CDC_PUBLISH package.

A Change Data Capture system usually has one publisher that captures and
publishes changes for any number of Oracle source (relational) tables and many
subscribers. The subscribers, typically applications, use the Oracle supplied
package, DBMS_LOGMNR_CDC_SUBSCRIBE, to access the published data.

This chapter discusses the following topics:

� Subscribing to Change Data

� Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

See Also: Oracle9i Data Warehousing Guide for more information
about the Oracle Change Data Capture publish and subscribe
model.
BSCRIBE 27-1

Subscribing to Change Data
Subscribing to Change Data
Once the publisher sets up the system to capture data into change tables and grants
access, subscribers can access and query the published change data for any of the
source tables of interest. Using the procedures in the DBMS_LOGMNR_CDC_
SUBSCRIBE package, the subscriber accomplishes the following main objectives:

1. Indicate the change data of interest by creating subscriptions to published
source tables and source columns.

2. Extend the subscription window and create a new subscriber view when the
subscriber is ready to receive a set of change data.

3. Use SELECT statements to retrieve change data from the subscriber views.

4. Drop the subscriber view and purge the subscription window when finished
processing a block of changes.

5. Drop the subscription when the subscriber no longer needs its change data.

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
The primary role of the subscriber is to use the change data. Through the DBMS_
LOGMNR_CDC_SUBSCRIBE package, each subscriber registers interest in a set of
source tables by subscribing to them.

Table 27–1 describes the procedures for the DBMS_LOGMNR_CDC_SUBSCRIBE
package.

Table 27–1 DBMS_LOGMNR_CDC_SUBSCRIBE Package Subprograms

Subprogram Description

GET_SUBSCRIPTION_
HANDLE Procedure on
page 27-5

Creates a subscription handle that associates the subscription with one
change set.

SUBSCRIBE Procedure on
page 27-6

Specifies the source tables and source columns for which the subscriber
wants to access change data.

ACTIVATE_SUBSCRIPTION
Procedure on page 27-9

Indicates that a subscription is ready to start accessing change data.

EXTEND_WINDOW Procedure
on page 27-10

Sets the subscription window boundaries (low-water and high-water mark)
so that new change data can be seen.

PREPARE_SUBSCRIBER_VIEW
Procedure on page 27-11

Creates a subscriber view in the subscriber’s schema in which the subscriber
can query the change data encompassed by the current subscription
window.
27-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
Subscribers call the procedures in the order shown in Table 27–1 unless an error
occurs, at which time the subscribers should exit. Figure 27–1 shows the most
common steps for using the procedures in the DBMS_LOGMNR_CDC_SUBSCRIBE
package.

DROP_SUBSCRIBER_VIEW
Procedure on page 27-13

Drops a subscriber view from the subscriber’s schema.

PURGE_WINDOW Procedure
on page 27-14

Sets the low-water mark for a subscription window to notify the capture
system that the subscriber is finished processing a set of change data.

DROP_SUBSCRIPTION
Procedure on page 27-14

Drops a subscription that was created with a prior call to the GET_
SUBSCRIPTION_HANDLE procedure.

Table 27–1 DBMS_LOGMNR_CDC_SUBSCRIBE Package Subprograms (Cont.)

Subprogram Description
DBMS_LOGMNR_CDC_SUBSCRIBE 27-3

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
Figure 27–1 Subscription Flow

In Figure 27–1:

1. If you use the PURGE_WINDOWprocedure immediately after using an EXTEND_
WINDOW procedure, then change data is lost without ever being processed.

1

3

2

SELECT

PURGE_WINDOW

Error Condition

DROP_SUBSCRIBER_VIEW

DROP_SUBSCRIPTION

ACTIVATE_SUBSCRIPTIONSUBSCRIBEGET_SUBSCRIPTION_HANDLE

EXTEND_WINDOW

PREPARE_SUBSCRIBER_VIEW
27-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
2. If you use the EXTEND_WINDOW procedure immediately after using the DROP_
SUBSCRIBER_VIEW procedure, you will see the data that you just processed
again and possibly some new data.

3. If an error occurs during any step in the process, the application program
calling the DBMS_LOGMNR_CDC_SUBSCRIBE procedures should detect the error
and exit. For example, if the PREPARE_SUBSCRIBER_VIEW procedure fails for
any reason, and the application ignores the error and continues, then the
PURGE_WINDOW procedure will delete data that was never seen or selected by
the subscriber.

GET_SUBSCRIPTION_HANDLE Procedure
This procedure creates a subscription handle that associates the subscription with
one change set. Creating a subscription handle is the first step in obtaining a
subscription.

Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE(

change_set IN VARCHAR2,
description IN VARCHAR2 := NULL,
subscription_handle OUT NUMBER);

Parameters

Exception

Table 27–2 GET_SUBSCRIPTION_HANDLE Procedure Parameters

Parameter Description

change_set Name of an existing change set to which the application
subscribes. You must set the value to SYNC_SET.

description Describes the subscription handle and the purpose for which it is
used.

subscription_handle Unique number of the subscription handle for this subscription.

Table 27–3 GET_SUBSCRIPTION_HANDLE Procedure Exceptions

Exception Description

ORA-31415 Could not find an existing change set with this name.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-5

SUBSCRIBE Procedure
Usage Notes
� The GET_SUBSCRIPTION_HANDLE procedure allows a subscriber to register

interest in a change set associated with source tables of interest.

� To see all of the published source tables for which the subscriber has privileges,
query the ALL_PUBLICATIONS view.

� A subscriber can later use a single subscription handle to access the multiple
change tables in the subscription.

� Subscription handles:

– Never get reused and are tracked from the time of creation until they are
dropped with the DROP_SUBSCRIPTION procedure.

– Are not shared among subscribers; rather, each subscription handle is
validated against the subscriber’s login ID.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE(\

CHANGE_SET=>'SYNC_SET', \
DESCRIPTION=>'Change data for emp',\
SUBSCRIPTION_HANDLE=>:subhandle);

SUBSCRIBE Procedure
This procedure specifies the source tables and source columns for which the
subscriber wants to access change data.

Syntax
There are two versions of syntax for the SUBSCRIBE procedure, each of which
specifies the subscriber columns and datatypes. If the subscribers know which
publication contains the source columns of interest, the subscribers can use the
version of the procedure that contains the publication ID. If they do not know the

ORA-31457 The maximum number of characters permitted in the description
field was exceeded.

ORA-31458 This is an internal error. Contact Oracle Support Services and
report the error.

Table 27–3 GET_SUBSCRIPTION_HANDLE Procedure Exceptions (Cont.)

Exception Description
27-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
publication ID, the Change Data Capture system will select a publication based on
the supplied source schema and source table.

The following syntax identifies the source table of interest, allowing Change Data
Capture to select any publication that contains all source columns of interest.

DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (
subscription_handle IN NUMBER,
source_schema IN VARCHAR2,
source_table IN VARCHAR2,
column_list IN VARCHAR2);

The following syntax specifies the publication ID for a specific publication that
contains the source columns of interest.

DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (
subscription_handle IN NUMBER,
publication_id IN NUMBER,
column_list IN VARCHAR2);

Parameters

Exceptions

Table 27–4 SUBSCRIBE Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

source_schema Schema name where the source table resides.

source_table Name of a published source table.

column_list A comma-delimited list of columns from the published source
table.

publication_id A valid publication_id, which you can obtain from the ALL_
PUBLISHED_COLUMNS view.

Table 27–5 SUBSCRIBE Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to
this user or application.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-7

SUBSCRIBE Procedure
Usage Notes
� You can subscribe to any valid publication_id. You can find valid publications

in the ALL_PUBLISHED_COLUMNS view.

� The SUBSCRIBE procedure allows an application to subscribe to one or more
published source tables and to specific columns in each source table.

� To see all of the published source table columns for which the subscriber has
privileges, query the ALL_PUBLISHED_COLUMNS view.

� Subscriptions must be created before the application actually needs the data.
The Change Data Capture system does not guarantee that there will be any
change data available at the moment the subscription is created.

� Subscribers can subscribe only to published columns from the source table.
Also, all of the columns must come from the same publication. Any control
columns associated with the underlying change table are added to the
subscription automatically.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.SUBSCRIBE(\

SUBSCRIPTION_HANDLE=>:subhandle, \
SOURCE_SCHEMA=>'scott', \
SOURCE_TABLE=>'emp', \
COLUMN_LIST=>'empno, ename, hiredate');

ORA-31426 The subscription handle has been activated; additional calls to the
SUBSCRIBE procedure are prohibited. You must subscribe to all of the
desired tables and columns before activating the subscription. Ensure that
the correct subscription handle was specified.

ORA-31427 The subscription represented by the subscription handle already contains
the schema name and source table. Check the values of the
subscription_handle , source_schema , and source_table
parameters. Do not attempt to subscribe to the same table more than once
using the same subscription handle.

ORA-31428 No publication contains all of the specified columns. One or more of the
specified columns cannot be found in a single publication. Consult the
ALL_PUBLISHED_COLUMNS view to see the current publications and
change the subscription request to select only the columns that are in the
same publication.

Table 27–5 SUBSCRIBE Procedure Exceptions (Cont.)

Exception Description
27-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
ACTIVATE_SUBSCRIPTION Procedure
The ACTIVATE_SUBSCRIPTION procedure indicates that a subscription is ready to
start accessing change data.

Syntax
DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (

subscription_handle IN NUMBER);

Parameters

Exceptions

Usage Notes
� The ACTIVATE_SUBSCRIPTION procedure indicates that you are finished

subscribing to tables, and the subscription is ready to start accessing data.

� Once the subscriber activates the subscription:

– No additional source tables can be added to the subscription.

– The Change Data Capture system holds the available data for the source
tables and sets the subscription window to empty.

– The subscriber must use the EXTEND_WINDOW procedure to see the initial
set of change data.

– The subscription cannot be activated again.

Table 27–6 ACTIVATE_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

Table 27–7 ACTIVATE_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to
this user ID or application.

ORA-31439 The subscription is already active. You can activate a subscription only
once.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-9

EXTEND_WINDOW Procedure
Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION(\

SUBSCRIPTION_HANDLE=>:subhandle);

EXTEND_WINDOW Procedure
This procedure sets the subscription window boundaries (low-water and
high-water mark) so that new change data can be seen.

Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND_WINDOW (

subscription_handle IN NUMBER);

Parameters

Exceptions

Usage Notes
� Until you call the EXTEND_WINDOW procedure to begin capturing change data,

the subscription window remains empty.

Table 27–8 EXTEND_WINDOW Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

Table 27–9 EXTEND_WINDOW Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist or it does not belong to
this user or application.

ORA-31429 The subscription handle must be activated before you use the EXTEND_
WINDOW procedure. Call the ACTIVATE_SUBSCRIPTION procedure for this
subscription handle and then try the original command again.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DROP_SUBSCRIBER_VIEW procedure and then try the original command
again.
27-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
– The first time that you call the EXTEND_WINDOW procedure, it establishes
the initial boundaries for the subscription window.

– Subsequent calls to the EXTEND_WINDOW procedure extend the high-water
mark of the subscription window so that new change data can be seen.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW(\
subscription_handle=>:subhandle);

PREPARE_SUBSCRIBER_VIEW Procedure
This procedure creates a subscriber view in the subscriber’s schema in which the
subscriber can query the change data encompassed by the current subscription
window.

Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW (

subscription_handle IN NUMBER,
source_schema IN VARCHAR2,
source_table IN VARCHAR2,
view_name OUT VARCHAR2);

Parameters

Table 27–10 PREPARE_SUBSCRIBER_VIEW Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

source_schema Schema name where the source table resides.

source_table Name of the published source table that belongs to the subscription
handle.

view_name Name of the newly-created view that will return the change data for
the source table.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-11

PREPARE_SUBSCRIBER_VIEW Procedure
Exceptions

Usage Notes
� This procedure creates a subscriber view in the subscriber’s schema in which to

display the change data. After the subscriber view is created, the subscriber can
select change data that is within the boundaries defined (by the EXTEND_
WINDOW procedure) for the subscription window.

� The Change Data Capture system determines the name of the subscriber view
and returns the name to the subscriber. The name of the subscriber view is
constant over the life of the subscription. To access the change data, there must
be a view for each source table in the subscription. Applications use a SELECT
statement from these views and retrieve the change data. For the purpose of the
following example, assume that sys.sub9view was the view name returned
by the PREPARE_SUBSCRIBER_VIEW procedure:

SELECT * FROM sys.sub9view;
.
.
.

� If a view already exists with the same view_name (for example, if the previous
view was not dropped with a DROP VIEWDDL statement), an exception
occurs. The PREPARE_SUBSCRIBER_VIEW procedure checks if the underlying
change table still exists.

Table 27–11 PREPARE_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to
this user or application.

ORA-31429 The subscription has not been activated. The subscription handle must be
activated before you use the PREPARE_SUBSCRIBER_VIEW procedure.
Call the ACTIVATE_SUBSCRIPTION procedure for this subscription
handle and then try the original command again.

ORA-31430 An earlier subscriber view was not dropped prior to making this call. Call
the DROP_SUBSCRIBER_VIEW procedure and then try the original
command again.

ORA-31432 The schema name or source table does not exist or does not belong to this
subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.
27-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
Examples
EXECUTE sys.DBMS_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW(\

SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>'scott', \
SOURCE_TABLE => 'emp', \
VIEW_NAME => :viewname);

DROP_SUBSCRIBER_VIEW Procedure
This procedure drops a subscriber view from the subscriber’s schema.

Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW (

subscription_handle IN NUMBER,
source_schema IN VARCHAR2,
source_table IN VARCHAR2);

Parameters

Exceptions

Table 27–12 DROP_SUBSCRIBER_VIEW Procedure Parameters

Parameter Description

subscription_handle Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

source_schema Schema name where the source table resides.

source_table Name of the published source table that belongs to the subscription
handle.

Table 27–13 DROP_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31429 The subscription has not been activated. Check the subscription handle
and correct it, if necessary. Call the ACTIVATE_SUBSCRIPTION procedure
for this subscription handle and then try the original command again.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-13

PURGE_WINDOW Procedure
Usage Notes
� The subscriber view you want to drop must have been created with a prior call

to the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure.

� You must use this procedure to drop the subscriber view prior to dropping a
subscription using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_
SUBSCRIPTION procedure.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW(\

SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>'scott', \
SOURCE_TABLE => 'emp');

PURGE_WINDOW Procedure
The subscriber calls this procedure to notify the capture system it is finished
processing a block of changes. The PURGE_WINDOW procedure sets the low-water
mark so that the subscription no longer sees any data, effectively making the
subscription window empty.

Syntax
DBMS_CDC_SUBSCRIBE.PURGE_WINDOW(

subscription_handle IN NUMBER);

ORA-31432 The schema_name.source_table does not exist or does not belong to this
subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.

ORA-31433 The subscriber view does not exist. Either you specified an incorrect source
table or its view is already dropped.

Table 27–13 DROP_SUBSCRIBER_VIEW Procedure Exceptions (Cont.)

Exception Description
27-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
Parameters

Exceptions

Usage Notes
� When finished with a set of changes, the subscriber purges the subscription

window with the PURGE_WINDOW procedure. By this action the subscriber
performs the following functions:

– Informs the change capture system that the subscriber is ready to receive
the next batch of change data.

– Enables the system to remove change data that is no longer needed by any
subscribers.

The Change Data Capture system manages the change data to ensure that it is
available as long as there are subscribers who need it.

Example
EXECUTE sys.DBMS_CDC_SUBSCRIBE.PURGE_WINDOW (\
SUBSCRIPTION_HANDLE=>:subhandle);

Table 27–14 PURGE_WINDOW Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

Table 27–15 PURGE_WINDOW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31429 The subscription handle must be activated before you use the EXTEND_
WINDOW procedure. Call the ACTIVATE_SUBSCRIPTION procedure for
this subscription handle and then try the original command again.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DROP_SUBSCRIBER_VIEW Procedure and then try the original command
again.
DBMS_LOGMNR_CDC_SUBSCRIBE 27-15

DROP_SUBSCRIPTION Procedure
DROP_SUBSCRIPTION Procedure
This procedure drops a subscription that was created with a prior call to the GET_
SUBSCRIPTION_HANDLE procedure.

Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (

subscription_handle IN NUMBER);

Parameters

Exceptions

Usage Notes
� Prior to dropping a subscription, you must drop the subscriber view using the

DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW procedure.

Example
EXECUTE DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (\

SUBSCRIPTION_HANDLE => :subhandle);

Table 27–16 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_
handle

Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLE procedure.

Table 27–17 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DROP_SUBSCRIBER_VIEW procedure and then try the original command
again.
27-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LOGM
28

DBMS_LOGMNR_D

The DBMS_LOGMNR_D package contains the LogMiner procedures, DBMS_LOGMNR_
D.BUILD and DBMS_LOGMNR_D.SET_TABLESPACE.The DBMS_LOGMNR_D.BUILD
procedure extracts the dictionary to either the redo logs or to a flat file. This
information is saved in preparation for future analysis of redo logs using the
LogMiner tool. The DBMS_LOGMNR_D.SET_TABLESPACE procedure re-creates all
LogMiner tables in an alternate tablespace.

This chapter discusses the following topics:

� Summary of DBMS_LOGMNR_D Subprograms

– BUILD Procedure

– SET_TABLESPACE Procedure

See Also: Oracle9i Database Administrator’s Guide for information
about using LogMiner
NR_D 28-1

Summary of DBMS_LOGMNR_D Subprograms
Summary of DBMS_LOGMNR_D Subprograms
Table 28–1 describes the procedures in the DBMS_LOGMNR_D supplied package.

BUILD Procedure
The syntax for the DBMS_LOGMNR_D.BUILD procedure is as follows:

Syntax
DBMS_LOGMNR_D.BUILD (
dictionary_filename IN VARCHAR2,
dictionary_location IN VARCHAR2,
options IN NUMBER);

Parameters
Table 28–2 describes the parameters for the BUILD procedure.

To extract the dictionary to a flat file, you must supply a filename and location.

To extract the dictionary to the redo logs, specify only the STORE_IN_REDO_LOGS
option. The size of the dictionary may cause it to be contained in multiple redo logs.

In summary, the combinations of parameters used result in the following behavior:

� If you do not specify any parameters, an error message is returned.

Table 28–1 DBMS_LOGMNR_D Package Subprograms

Subprogram Description

BUILD Procedure on
page 28-2

Extracts the database dictionary to either a flat file or a file in
the redo logs.

SET_TABLESPACE
Procedure on page 28-5

Re-creates all LogMiner tables in an alternate tablespace.

Table 28–2 BUILD Procedure Parameters

Parameter Description

dictionary_filename Name of the dictionary file

dictionary_location Path to file directory

options Specifies that the dictionary is written to either a flat file
(STORE_IN_FLAT_FILE) or the redo logs (STORE_IN_REDO_
LOGS) destination
28-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_D Subprograms
� If you specify a filename and location, without any options, the dictionary is
extracted to a flat file with that name.

� If you specify a filename and location, as well as the DBMS_LOGMNR_D.STORE_
IN_FLAT_FILE option, the dictionary is extracted to a flat file with the
specified name.

� If you do not specify a filename and location, but do specify the DBMS_
LOGMNR_D.STORE_IN_REDO_LOGS option, the dictionary is extracted to the
redo logs.

� If you specify a filename and location, as well as the STORE_IN_REDO_LOGS
option, an error is returned.

Exceptions
� ORA-1308: initialization parameter UTL_FILE_DIR is not set.

� ORA-1336 - this error is returned under the following conditions:

1. Dictionary_location does not exist.

2. UTL_FILE_DIR is not set to have access to dictionary_location.

3. Dictionary file is read only.

Usage Notes
� Ideally, the dictionary file will be created after all dictionary changes to a

database and prior to the creation of any redo logs that are to be analyzed. As of
Oracle9i release 1 (9.0.1), you can use LogMiner to dump the dictionary to the
redo logs, perform DDL operations, and dynamically apply the changes to the
LogMiner dictionary.

� The DBMS_LOGMNR_D.BUILD procedure will not run if there are any ongoing
DDL operations.

� To use the DBMS_LOGMNR_D.BUILD procedure, the database whose files you
want to analyze must be mounted and open.

� To monitor progress of the dictionary build, issue the SET SERVEROUTPUT ON
command.

� When extracting a dictionary to a flat file, the procedure queries the dictionary
tables of the current database and creates a text-based file containing the
contents of the tables. To extract a dictionary to a flat file, the following
conditions must be met:
DBMS_LOGMNR_D 28-3

BUILD Procedure
– The dictionary file must be created from the same database that generated
the redo logs you want to analyze

– You must specify a directory for use by the PL/SQL procedure. To do so, set
the initialization parameter UTL_FILE_DIR in the init .ora file. For
example:

UTL_FILE_DIR = /oracle/dictionary

If you do not set this parameter, the procedure will fail.

– You must ensure that no DDL operations occur while the dictionary build is
running. Otherwise, the dictionary file may not contain a consistent
snapshot of the data dictionary.

� To extract a dictionary file to the redo logs, the following conditions must be
met:

– Supplemental logging (at least the minimum level) must be enabled to
ensure that the redo logs contain useful information. See Oracle9i Database
Administrator’s Guide for information about using supplemental logging
with LogMiner.

– The DBMS_LOGMNR_D.BUILD procedure must be run on a system that is
running Oracle9i or later

– Archiving mode must be enabled in order to generate usable redo

– Oracle9i compatibility must be employed

– The mining system must be Oracle9i or later

– The dictionary redo files must be created from the same database that
generated the redo logs you want to analyze

Example 1: Extracting the Dictionary to a Flat File
The following example extracts the dictionary file to a flat file named
dictionary.ora in a specified path (/oracle/database).

SQL> EXECUTE dbms_logmnr_d.build(’dictionary.ora’, -
2 ’/oracle/database/’, -
3 options => dbms_logmnr_d.store_in_flat_file);

Example 2: Extracting the Dictionary to the Redo Logs
The following example extracts the dictionary to the redo logs.

SQL> EXECUTE dbms_logmnr_d.build (-
28-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_D Subprograms
2 options => dbms_logmnr_d.store_in_redo_logs);

SET_TABLESPACE Procedure
By default all LogMiner tables are created to use the SYSTEM tablespace. However,
it may be desirable to alter LogMiner tables to employ an alternate tablespace. Use
this routine to re-create all LogMiner tables in an alternate tablespace.

Parameters
Table 28–3 describes the parameters for the SET_TABLESPACE procedure.

Usage Notes
� There can be no LogMiner sessions running at the time this procedure is run,

nor can LogMiner have been terminated abnormally prior to this procedure
being run. Either situation can cause unpredictable results.

� Though the intent is that this routine is to be run only once to configure
LogMiner for use by other products, it can be run multiple times should it be
necessary to redefine the tablespaces that are to be employed. However, the
previous usage note is still enforced. Because the techniques required to force
layered products to terminate their LogMiner sessions may be non-trivial,
Oracle Corporation does not recommend that this routine be used more than
once.

Table 28–3 SET_TABLESPACE Parameters

Parameter Description

new_tablespace A string naming a preexistent tablespace. To re-create all
LogMiner tables to employ this tablespace, supply only this
parameter.

dictionary_
tablespace

A string naming a preexistent tablespace. This parameter
places LogMiner Dictionary data in a tablespace different from
that where LogMiner spill data is to be written. This parameter
overrides the new_tablespace parameter with respect to
LogMiner Dictionary tables.

spill_tablespace A string naming a preexistent tablespace. This parameter
places LogMiner spill data in a tablespace different from that
where LogMiner Dictionary data is to be written. This
parameter overrides the new_tablespace parameter with
respect to LogMiner spill tables.
DBMS_LOGMNR_D 28-5

SET_TABLESPACE Procedure
� Certain layered products require that this routine be used to alter the tablespace
of all LogMiner tables before the layered product will operate.

� Certain performance optimizations can be made when LogMiner tables do not
employ the SYSTEM tablespace. Specifically, certain easily repeatable
operations, such as memory spill, LogMiner dictionary load, and index creation
will not be logged. This would have unacceptable implications with respect to
the SYSTEM tablespace in the event of a database recovery.

� Users of this routine must supply an existing tablespace. Information about
tablespaces and how to create them is available in Oracle9i Database Concepts
and Oracle9i SQL Reference.

Example: Using the DBMS_LOGMNR_D.SET_TABLESPACE Procedure
The following example shows creation of an alternate tablespace and execution of
the DBMS_LOGMNR_D.SET_TABLESPACE procedure.

SQL> CREATE TABLESPACE logmnrts$ datafile ’/usr/oracle/dbs/logmnrts’
2 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

SQL> EXECUTE dbms_logmnr_d.set_tablespace(’logmnrts$’);
28-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_L
29

DBMS_LOGSTDBY

The DBMS_LOGSTDBY package provides procedures for configuring and managing
the logical standby database environment.

This chapter discusses the following topics:

� Configuring and Managing the Logical Standby Environment

� Summary of DBMS_LOGSTDBY Subprograms

See Also: Oracle9i Data Guard Concepts and Administration for
more information about logical standby databases.
OGSTDBY 29-1

Configuring and Managing the Logical Standby Environment
Configuring and Managing the Logical Standby Environment
The DBMS_LOGSTDBY package provides procedures to help you manage the logical
standby environment. The procedures in the DBMS_LOGSTDBY package help you to
accomplish the following main objectives:

� Allow controlled access to tables in the standby database that may require
maintenance

� Provide a way to skip applying archived redo logs to selected tables or entire
schemas in the standby database, and describe how exceptions should be
handled

� Manage initialization parameters used by log apply services

� Ensure supplemental logging is enabled properly and build the LogMiner
dictionary

Summary of DBMS_LOGSTDBY Subprograms
Table 29–1 describes the procedures of the DBMS_LOGSTDBY package.

Table 29–1 DBMS_LOGSTDBY Package Subprograms

Subprograms Description

APPLY_SET Procedure on page 29-3 Allows you to set the values of specific
initialization parameters to configure and
maintain log apply services

APPLY_UNSET Procedure on page 29-7 Resets the value of specific initialization
parameters to the system default values.

BUILD Procedure on page 29-8 Ensures supplemental logging is enabled
properly and builds the LogMiner dictionary

GUARD_BYPASS_OFF Procedure on
page 29-9

Re-enables the database guard that you
bypassed previously with the GUARD_
BYPASS_ON procedure

GUARD_BYPASS_ON Procedure on
page 29-9

Allows the current session to bypass the
database guard so that tables in a logical
standby database can be modified

INSTANTIATE_TABLE Procedure on
page 29-10

Creates and populates a table in the standby
database from a corresponding table in the
primary database
29-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
APPLY_SET Procedure
Use this procedure to set and modify the values of initialization parameters that
configure and manage log apply services in a logical standby database
environment. Log apply services cannot be running when you use this procedure.

Syntax
DBMS_LOGSTDBY.APPLY_SET (

parameter IN VARCHAR,
value IN VARCHAR);

Parameters
Table 29–2 describes the parameters for the APPLY_SET procedure.

SKIP Procedure on page 29-11 Allows you to specify what database operations
that are done on the primary database will not
be applied to the logical standby database

SKIP_ERROR Procedure on page 29-18 Specifies criteria to follow if an error is
encountered. You can choose to stop log apply
services or ignore the error

SKIP_TRANSACTION Procedure on
page 29-21

Specifyies transaction identification information
to skip (ignore) applying specific transactions to
the logical standby database

UNSKIP Procedure on page 29-22 Modifies the options set in the SKIP procedure

UNSKIP_ERROR Procedure on
page 29-23

Modifies the options set in the SKIP_ERROR
procedure

UNSKIP_TRANSACTION Procedure on
page 29-23

Modifies the options set in the SKIP_
TRANSACTION procedure

Table 29–2 DBMS_LOGSTDBY.APPLY_SET Procedure Parameters

Parameter Description

APPLY_DELAY Specifies an apply delay interval (in minutes) to the
managed recovery operation on the standby database.

Use the APPLY_DELAY parameter with the APPLY_UNSET
procedure after a failover scenario, when the primary
database is not expected to return.

Table 29–1 (Cont.) DBMS_LOGSTDBY Package Subprograms

Subprograms Description
DBMS_LOGSTDBY 29-3

APPLY_SET Procedure
MAX_SGA Number of megabytes for the system global area (SGA)
allocation for log apply services cache. The default value is
one quarter of the value set for the SHARED_POOL_SIZE
initialization parameter.

MAX_SERVERS Number of parallel query servers specifically reserved for
log apply services. By default, log apply services use all
available parallel query servers to read the log files and
apply changes. See Oracle9i Database Reference for more
information about parallel query servers.

MAX_EVENTS_RECORDED Number of events that will be stored in the DBA_
LOGSTDBY_EVENTS table, which stores logical standby
event information.

Table 29–2 (Cont.) DBMS_LOGSTDBY.APPLY_SET Procedure Parameters

Parameter Description
29-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
TRANSACTION_CONSISTENCYLevel of transaction consistency maintained between the
primary and standby databases. Specify one of the
following values:

FULL: Transactions are applied to the logical standby
database in the exact order in which they were committed
on the primary database. (Transactions are applied in
commit SCN order.) This option results in the lowest
performance. This is the default parameter setting.

NONE: Transactions are applied out of order. This results in
the best performance of the three modes. However, this
setting might give you inconsistent results on the standby
database. If applications that are reading the logical
standby database make no assumptions about transaction
order, this option works well. For example, on the primary
database, one transaction added a new customer and a
second transaction added a new order for that customer.
On the standby database, those transactions may be
reversed. The order for the new customer might be added
first. If you then run a reporting application on the standby
database which expects to find a customer for the new
order, the reporting application might fail because
constraints are not checked and triggers are not fired.

READ_ONLY: Transactions are committed out of order
(which provides better performance), but periodically
enforced in order apply. SQL SELECT statements, executed
on the standby database, always return consistent results
based on the last consistent SCN known to the apply
engine. The apply engine periodically refreshes an SCN
maintained in SGA which represents a consistent state.
Queries executed on the standby database, automatically
use Oracle Flashback to the maintained SCN. This is
beneficial when the logical standby database is being used
to generate reports. Any Oracle Flashback restrictions
apply to this mode.

RECORD_SKIP_ERRORS Controls whether skipped errors (as described by the
SKIP_ERROR procedure) are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Skipped errors are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Skipped errors are not recorded in the DBA_
LOGSTDBY_EVENTS table.

Table 29–2 (Cont.) DBMS_LOGSTDBY.APPLY_SET Procedure Parameters

Parameter Description
DBMS_LOGSTDBY 29-5

APPLY_SET Procedure
Exceptions
Table 29–3 describes the exceptions for the APPLY_SET procedure.

Usage Notes
� Although the default values provided by the system for initialization

parameters are adequate for most applications, you might want to use the
APPLY_SET procedure when you need to perform tuning and maintenance
tasks. For example, use the APPLY_SET procedure when you want to override
default initialization parameter values to tune log apply services.

� Log apply services must not be applying archived redo log data to the standby
database when you modify initialization parameters with the APPLY_SET

RECORD_SKIP_DDL Controls whether skipped DDL statements are recorded in
the DBA_LOGSTDBY_EVENTS table. Specify one of the
following values:

TRUE: Skipped DDL statements are recorded in the DBA_
LOGSTDBY_EVENTS table. This is the default parameter
setting.

FALSE: Skipped DDL statements are not recorded in the
DBA_LOGSTDBY_EVENTS table.

RECORD_APPLIED_DDL Controls whether DDL statements that have been applied
to the logical standby database are recorded in the DBA_
LOGSTDBY_EVENTS table. Specify one of the following
values:

TRUE: Indicates that DDL statements applied to the logical
standby database are recorded in the DBA_LOGSTDBY_
EVENTS table. This is the default parameter setting.

FALSE: Indicates that applied DDL statements are not
recorded.

Table 29–3 DBMS_LOGSTDBY.APPLY_SET Procedure Exceptions

Exception Description

ORA-16104 Invalid option

ORA-16103 Logical standby database must be stopped

Table 29–2 (Cont.) DBMS_LOGSTDBY.APPLY_SET Procedure Parameters

Parameter Description
29-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
procedure. The initialization parameter values that you set using this procedure
do not become active until you start log apply services.

� When a primary database is no longer available after failover, use the DBMS_
LOGSTDBY.APPLY_UNSET(’APPLY_DELAY’) procedure to remove the setting
provided by the initialization parameter file.

� Use the APPLY_UNSET Procedure to reverse (undo) the actions of the
APPLY_SET procedure.

Example
If parallel queries are routinely being performed by applications, a certain number
of parallel servers should be reserved for those queries. To allocate 30 parallel query
servers for logical standby log apply services, enter the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET(’MAX_SERVERS’, 30);

Thus, if the PARALLEL_MAX_SERVERS parameter is set to 50, 30 servers will be
available for logical standby processing and 20 parallel query servers will be
allocated for parallel query processing.

APPLY_UNSET Procedure
Use the APPLY_UNSET procedure to reverse or undo the settings that you made
with the APPLY_SET procedure. The APPLY_UNSET procedure resets the specified
initialization parameter value to the system default value. The initialization
parameter default value does not become active until log apply services are started.

Syntax
DBMS_LOGSTDBY.APPLY_UNSET (

parameter IN VARCHAR);

Parameters
The APPLY_UNSET procedure supports the same initialization parameters shown
for the APPLY_SET procedure.

Note: If you start log apply services while a parallel query is
running, you may get an error.

See Also: Table 29–2 for the APPLY_SET procedure parameters
DBMS_LOGSTDBY 29-7

BUILD Procedure
Usage Notes
� Log apply services must not be applying archived redo log data to the standby

database when you modify initialization parameters with the APPLY_UNSET
procedure.

� Use the APPLY_SET procedure to set the values of initialization parameters.

Example
To unset the number of parallel query servers for log apply services, enter the
following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET(’MAX_SERVERS’);

Assuming that the PARALLEL_MAX_SERVERS initialization parameter is set to 50,
this statement will result in 50 parallel query servers being available for parallel
query processing. This is because, by default, log apply services use all available
parallel query servers to read the log files and apply changes.

BUILD Procedure
Use this procedure on the primary database to preserve important metadata
(LogMiner dictionary) information in the redo logs. If supplemental logging has not
been set correctly, this procedure sets it up and enables it automatically.

Syntax
DBMS_LOGSTDBY.BUILD;

Parameters
None.

Exceptions
None.

Usage Notes
� Supplemental log information includes extra information in the archived redo

logs that helps log apply services to uniquely identify and correctly maintain
tables in a logical standby database.

Note: If you start log apply services while a parallel query is
running, you may get an error.
29-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
� LogMiner dictionary information allows log apply services to interpret data in
the redo logs.

GUARD_BYPASS_OFF Procedure
Use the GUARD_BYPASS_OFF procedure to re-enable the database guard that
you bypassed previously with the GUARD_BYPASS_ON Procedure procedure.

Syntax
DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

Parameters
None.

Exceptions
None.

Usage Notes
� See the GUARD_BYPASS_ON Procedure procedure for information about

bypassing the database guard and performing maintenance on a table in the logical
standby database.

Example
Enter the following statement to return the current session to the state it was in
before the GUARD_BYPASS_ON Procedure was executed.

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

Typically, you need to use this command only after executing the GUARD_BYPASS_
ON Procedure to bypass the database guard.

GUARD_BYPASS_ON Procedure
By default, tables in a logical standby database are protected from modifications.
However, you can use the GUARD_BYPASS_ON procedure to bypass the database
guard and make modifications to the logical standby database. For example, to perform
maintenance or correct problems on a table in the logical standby database.
Applications should not execute transactions against the database when you use
this procedure, because triggers are not run and constraints are not checked.
DBMS_LOGSTDBY 29-9

INSTANTIATE_TABLE Procedure
Syntax
DBMS_LOGSTDBY.GUARD_BYPASS_ON;

Parameters
None.

Exceptions
None.

Usage Notes
� This procedure affects the current session only.

� When you bypass the database guard with the GUARD_BYPASS_ON procedure,
triggers are not run and constraints are not checked.

� Do not allow applications to execute when the use the GUARD_BYPASS_ON
procedure to bypass the database guard. This environment is intended only for
maintenance reasons, such as to correct problems or to perform maintenance
such as rebuilding indexes or refreshing materialized views.

Example
Enter the following statement to allow modifications to tables in the logical standby
database.

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;

INSTANTIATE_TABLE Procedure
This procedure creates and populates a table in the standby database from a
corresponding table in the primary database. The table requires the name of the
database link (dblink) as an input parameter.

Use the INSTANTIATE_TABLE procedure to:

� Add a table to a standby database

� Re-create a table in a standby database

Syntax
DBMS_LOGSTDBY.INSTANTIATE_TABLE (

table_name IN VARCHAR2,
29-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
schema_name IN VARCHAR2,
dblink IN VARCHAR2);

Parameters
Table 29–4 describes the parameters for the INSTANTIATE_TABLE procedure.

Exceptions
None.

Usage Notes
� Use this procedure to create and populate a table in a way that keeps the data

on the standby database transactionally consistent with the primary database.

� This procedure assumes that the metadata has been maintained correctly.

� This table is not safe until the redo log that was current on the primary database
at the time of execution is applied to the standby database.

Example
Enter this statement to create and populate a new table on the standby database.

SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE (’myschema’, ’mytable’, ’mydblink’);

SKIP Procedure
By default, all SQL statements executed on a primary database are applied to a
logical standby database. If only a subset of activity on a primary database is of
interest for replication, the SKIP procedure defines filters that prevent the
application of SQL statements on the logical standby database. While skipping
(ignoring) SQL statements is the primary goal of filters, it is also possible to
associate a stored procedure with a filter so that runtime determinations can be

Table 29–4 DBMS_LOGSTDBY.INSTANTIATE_TABLE Procedure Parameters

Parameter Description

table_name Name of the table to be created or re-created in the standby
database.

schema_name Name of the schema.

dblink Name of the database link account that has privileges to read and
lock the table in the primary database.
DBMS_LOGSTDBY 29-11

SKIP Procedure
made whether to skip the statement, execute this statement, or execute a
replacement statement.

Before calling this procedure, log apply services must be halted. This is done by
issuing an ALTER DATABASE STOP LOGICAL STANDBY APPLY statement. Once
all desired filters have been specified, issue an ALTER DATABASE START
LOGICAL STANDBY APPLY statement to start log apply services using the new
filter settings.

Syntax
DBMS_LOGSTDBY.SKIP (

statement_option IN VARCHAR2,
schema_name IN VARCHAR2,
object_name IN VARCHAR2,
proc_name IN VARCHAR2);

Parameters
Table 29–5 describes the parameters for the SKIP procedure.

Table 29–5 DBMS_LOGSTDBY.SKIP Procedure Parameters

Parameter Description

statement_option Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 29–6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the
statement_option parameter. If not applicable, this value must
be set to NULL.

object_nam e The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the
statement_option . If not applicable, this value must be set to
NULL.
29-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
proc_name Name of a stored procedure to call when log apply services
determines that a particular statement matches the filter defined
by the statement_option , schema_name, and object_name
parameters. Specify the procedure in the following format:

 ’"schema"."package"."procedure"’

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services calls the stored procedure with the following
call signature:

� IN STATEMENT VARCHAR2 -- The SQL statement that
matches the filter

� IN STATEMENT_TYPE VARCHAR2 -- The statement_
option of the filter

� IN SCHEMA VARCHAR2 -- The schema_name of the filter, if
applicable

� IN NAME VARCHAR2 -- The object_name of the filter, if
applicable

� IN XIDUSN NUMBER -- Transaction ID part 1

� IN XIDSLT NUMBER -- Transaction ID part 2

� IN XIDSQN NUMBER -- Transaction ID part 3

� OUT SKIP_ACTION NUMBER -- Action to be taken by log
apply services upon completion of this routine. Valid values
are:

SKIP_ACTION_APPLY -- Execute the statement

SKIP_ACTION_SKIP -- Skip the statement

SKIP_ACTION_REPLACE -- Execute the replacement
statement supplied in the NEW_STATEMENT output parameter

� OUT NEW_STATEMENT VARCHAR2 -- The statement to
execute in place of the original statement. Use of this option
requires that SKIP_ACTION be set to SKIP_ACTION_
REPLACE. Otherwise, set this option to NULL.

Table 29–5 (Cont.) DBMS_LOGSTDBY.SKIP Procedure Parameters

Parameter Description
DBMS_LOGSTDBY 29-13

SKIP Procedure
Skip Statement Options
Table 29–6 lists the supported values for the statement_option parameter of the
SKIP procedure. The left column of the table lists the keywords that may be used to
identify the set of SQL statements to the right of the keyword. Any of the SQL
statements in the right column, however, are also valid values. Note that keywords
are generally defined by database object.

Caution: Atomic execution cannot be guaranteed if hardware or
software failures stop log apply services. In a failure situation, a
statement maybe executed more than once.

These stored procedures are not supported with DBMS_
LOGSTDBY.SKIP(’DML’...) . If multiple wildcards match a
given database statement object defined by the statement_
option parameter, only one of the matching stored procedures will
be called (alphabetically, by procedure).

Table 29–6 Supported Values for statement_option Parameter

Keyword Associated SQL Statements

NON_SCHEMA_DDL All DDL that does not pertain to a particular schema

SCHEMA_DLL All DDL that pertains to a particular schema

DML Sequence operations such as sequence.nextval

CLUSTER CREATE CLUSTER
AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT
DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DIMENSION CREATE DIMENSION
ALTER DIMENSION
DROP DIMENSION

DIRECTORY CREATE DIRECTORY
DROP DIRECTORY
29-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
INDEX CREATE INDEX
ALTER INDEX
DROP INDEX

PROCEDURE1 CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK STATEMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT SQL_statements
NOAUDIT SQL_statements

SYSTEM GRANT GRANT system_privileges_and_roles
REVOKE system_privileges_and_roles

Table 29–6 (Cont.) Supported Values for statement_option Parameter

Keyword Associated SQL Statements
DBMS_LOGSTDBY 29-15

SKIP Procedure
Exceptions
Table 29–7 describes an exception for the SKIP procedure.

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE
DROP TABLESPACE
TRUNCATE TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER with ENABLE and DISABLE clauses
DROP TRIGGER
ALTER TABLE with ENABLE ALL TRIGGERS clause
ALTER TABLE with DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE
DROP TYPE
DROP TYPE BODY

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

1 Java schema objects (sources, classes, and resources) are considered the same as procedure for
purposes of skipping (ignoring) SQL statements.

Table 29–7 DBMS_LOGSTDBY.SKIP Procedure Exceptions

Exception Description

ORA-16203 "Unable to interpret skip procedure return values."

Indicates that a SKIP procedure has either generated an exception
or has returned ambiguous values. You can identify the offending
procedure by examining the DBA_LOGSTDBY_EVENTS view.

Table 29–6 (Cont.) Supported Values for statement_option Parameter

Keyword Associated SQL Statements
29-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
Usage Notes
� Use the SKIP procedure with caution, particularly when skipping DDL

statements. If a CREATE TABLE statement is skipped, for example, you must
also specify other DDL statements that refer to that table in the SKIP procedure.
Otherwise, the statements will fail and cause an exception. When this happens,
log apply services stop running.

� See the UNSKIP Procedure for information about reversing (undoing) the
settings of the SKIP procedure.

Example
The following example shows how to use the SKIP procedure to skip (ignore) a
schema on the logical standby database.

Example 1 Skip a Schema
To skip changes for a given schema, you must prevent log apply services from
creating new objects in the schema and from modifying existing objects in the
schema. In addition, the tablespace that supports the schema must not change. The
following example demonstrates this using the SKIP procedure in a situation where
schema smith has some number of tables defined in tablespace bones that we wish to
ignore.

BEGIN
DBMS_LOGSTDBY.SKIP('SCHEMA_DDL', 'SMITH', '%', null);
DBMS_LOGSTDBY.SKIP('DML', 'SMITH', '%', null);
DBMS_LOGSTDBY.SKIP('TABLESPACE', null, null, 'SMITH.PROTECT_BONES');

END;

In the previous example, wildcards were used for the object_name parameter to
indicate that the filter applies to all objects. In the last call to the SKIP procedure,
the PROTECT_BONES procedure was supplied so that TABLESPACE could prevent
tablespace operations on BONES. The following example is the definition for the
PROTECT_BONES procedure:

CREATE OR REPLACE PROCEDURE PROTECT_BONES (statement IN VARCHAR2,
statement_type IN VARCHAR2,
schema IN VARCHAR2,
name IN VARCHAR2,
xidusn IN NUMBER,
xidslt IN NUMBER,
xidsqn IN NUMBER,
DBMS_LOGSTDBY 29-17

SKIP_ERROR Procedure
skip_action OUT NUMBER,
new_statement OUT VARCHAR2) AS

BEGIN
-- Init
new_statement := NULL;

-- Guaranteed to be either CREATE, DROP, or TRUNCATE TABLESPACE
IF statement LIKE '%TABLESPACE BONES%'
THEN

-- Skip the statement
skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;

ELSE
-- Apply the statement
skip_action := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;

END IF;
END protect_bones;

SKIP_ERROR Procedure
Upon encountering an error, the logical standby feature uses the criteria contained
in this procedure to determine if the error should cause log apply services to stop.
All errors to be skipped are stored in system tables that describe how exceptions
should be handled.

Syntax
DBMS_LOGSTDBY.SKIP_ERROR (

statement_option IN VARCHAR2,
schema_name IN VARCHAR2,
object_name IN VARCHAR2,
proc_name IN VARCHAR2);

Parameters
Table 29–8 describes the parameters for the SKIP_ERROR procedure.
29-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
Table 29–8 DBMS_LOGSTDBY.SKIP_ERROR Procedure Parameters

Parameter Description

statement_option Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 29–6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the
statement_option parameter. If not applicable, this value must
be set to NULL.

object_name The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the
statement_option . If not applicable, this value must be set to
NULL.
DBMS_LOGSTDBY 29-19

SKIP_ERROR Procedure
Exceptions
None.

Usage Notes
� A stored procedure provided to the SKIP_ERROR procedure is called when log

apply services encounter an error that could shut down the application of redo
logs to the standby database.

Running this stored procedure affects the error being written in the STATUS
column of the DBA_LOGSTDBY_EVENTS table. The STATUS_CODE column

proc_name Name of a stored procedure to call when log apply services
determines a particular statement matches the filter defined by
the statement_option , schema_name, and object_name
parameters. Specify the procedure in the following format:

 ’schema.package.procedure’

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services calls the stored procedure with the following
call signature:

� IN STATEMENT VARCHAR(4000) -- The first 4K of the
statement

� IN STATEMENT_TYPE VARCHAR2 -- The statement_
option of the filter

� IN SCHEMA VARCHAR2 -- The schema_name of the filter, if
applicable

� IN NAME VARCHAR2 -- The object_name of the filter, if
applicable

� IN XIDUSN NUMBER -- Transaction ID part 1

� IN XIDSLT NUMBER -- Transaction ID part 2

� IN XIDSQN NUMBER -- Transaction ID part 3

� IN ERROR VARCHAR(4000) -- Text of error to be recorded
(optional)

� OUT NEW_ERROR VARCHAR(4000) -- Null or modified error
text

Table 29–8 (Cont.) DBMS_LOGSTDBY.SKIP_ERROR Procedure Parameters

Parameter Description
29-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
remains unchanged. If the stored procedure is to have no effect, that is, apply
will be stopped, then the NEW_ERROR is written to the events table. To truely
have no effect, set NEW_ERROR to ERROR in the procedure.

If the stored procedure requires that a shutdown be avoided, then you must set
NEW_ERROR to NULL.

Example
DBMS_LOGSTDBY.SKIP_ERROR(’DDL’, ’joe’, ’apptemp’, null);

SKIP_TRANSACTION Procedure
This procedure provides a way to skip (ignore) applying transactions to the logical
standby database. You can skip specific transactions by specifying transaction
identification information.

You may want to use the SKIP_TRANSACTION procedure to:

� Skip a transaction that has already failed and that might otherwise cause log
apply services to stop.

� Skip a transaction that may logically corrupt data.

If log apply services stop due to a particular transaction (for example, a DDL
transaction), you can specify that transaction ID and then continue to apply. You can
call this procedure multiple times for as many transactions as you want log apply
services to ignore.

Syntax
DBMS_LOGSTDBY.SKIP_TRANSACTION (

XIDUSN NUMBER STRING,
XIDSLT NUMBER STRING,
XIDSQN NUMBER STRING);

Parameters
Table 29–9 describes the parameters for the SKIP_TRANSACTION procedure.

Note: Do not let the primary and logical standby databases
diverge when skipping transactions. If possible, you should
manually execute a compensating transaction in place of the
skipped transaction.
DBMS_LOGSTDBY 29-21

UNSKIP Procedure
Usage Notes
� View the last statement in DBA_LOGSTDBY_EVENTS to determine the reason

that log apply services stopped processing transactions to the logical standby
database. Examine the statement and error condition provided.

� Use the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that
are going to be skipped by log apply services.

Exceptions
None.

UNSKIP Procedure
This procedure reverses the actions of the SKIP procedure by finding the record,
matching all the parameters, and removing the record from the system table. The
match must be exact, and multiple skip actions can be undone only by a matching
number of unskip actions. You cannot undo multiple skip actions using wildcard
characters.

Syntax
DBMS_LOGSTDBY.UNSKIP (

statement_option IN VARCHAR2,
schema_name IN VARCHAR2,
object_name IN VARCHAR2);

Parameters
The parameter information for the UNSKIP procedure is the same as that described
for the SKIP procedure. See Table 29–5 for complete parameter information.

Table 29–9 DBMS_LOGSTDBY.SKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER Transaction ID sequence number of the transaction being skipped.
29-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms
Exceptions
None.

UNSKIP_ERROR Procedure
This procedure reverses or undoes the actions of the SKIP_ERROR procedure by
finding the record, matching all the parameters, and removing the record from the
system table. The match must be exact, and multiple skip actions can be undone
only by a matching number of unskip actions. You cannot undo multiple skip
actions with just one unskip procedure call.

Syntax
DBMS_LOGSTDBY.UNSKIP_ERROR (

statement_option IN VARCHAR2,
schema_name IN VARCHAR2,
object_name IN VARCHAR2);

Parameters
The parameter information for the UNSKIP_ERROR procedure is the same as that
described for the SKIP_ERROR procedure. See Table 29–8 for complete parameter
information.

Exceptions
None.

Example
DBMS_LOGSTDBY.UNSKIP_ERROR;

UNSKIP_TRANSACTION Procedure
This procedure reverses the actions of the SKIP_TRANSACTION procedure. The
match must be exact, and multiple skip transaction actions can be undone only by a
matching number of unskip transaction actions. You cannot undo multiple skip
transaction actions using wildcard characters.

Syntax
DBMS_LOGSTDBY.UNSKIP_TRANSACTION (

XIDUSN NUMBER STRING,
XIDSLT NUMBER STRING,
DBMS_LOGSTDBY 29-23

UNSKIP_TRANSACTION Procedure
XIDSQN NUMBER STRING);

Parameters
Table 29–10 describes the parameters for the UNSKIP_TRANSACTION procedure.

Usage Notes
� Use the DBA_LOGSTDBY_SKIP_TRANSACTION view to list the transactions that

are going to be skipped by log apply services.

Exceptions
None.

Table 29–10 DBMS_LOGSTDBY.UNSKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER Transaction ID sequence number of the transaction being
skipped.
29-24 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_MET
30

DBMS_METADATA

With DBMS_METADATA you can retrieve complete database object definitions
(metadata) from the dictionary by specifying:

� The type of object, for example, tables, indexes, or procedures

� Optional selection criteria, such as owner or name

� Parse items (attributes of the returned objects that are to be parsed and returned
separately).

� Optional transformations on the output. By default the output is represented in
XML, but callers can specify transformations (into SQL DDL, for example),
which are implemented by XSLT (Extensible Stylesheet Language
Transformation) stylesheets stored in the database or externally.

DBMS_METADATA provides the following retrieval interfaces:

� For programmatic use: OPEN, SET_FILTER, SET_COUNT, GET_QUERY, SET_
PARSE_ITEM, ADD_TRANSFORM, SET_TRANSFORM_PARAM, FETCH_xxx and
CLOSE retrieve multiple objects.

� For use in SQL queries and for browsing: GET_XML and GET_DDL return
metadata for a single named object. The GET_DEPENDENT_XML, GET_
DEPENDENT_DDL, GET_GRANTED_XML, and GET_GRANTED_DDL interfaces
return metadata for one or more dependent or granted objects.

This chapter discusses the following topics:

� Summary of DBMS_METADATA Subprograms
ADATA 30-1

Summary of DBMS_METADATA Subprograms
Summary of DBMS_METADATA Subprograms
Table 30–1 provides a summary of DBMS_METADATA subprograms.

OPEN Procedure
OPEN specifies the type of object to be retrieved, the version of its metadata, and the
object model. The return value is an opaque context handle for the set of objects to
be used in subsequent calls.

Table 30–1 DBMS_METADATA Subprograms

Subprogram Description

OPEN Procedure on page 30-2 Specifies the type of object to be retrieved, the version of
its metadata, and the object model.

SET_FILTER Procedure on
page 30-6

Specifies restrictions on the objects to be retrieved, for
example, the object name or schema.

SET_COUNT Procedure on
page 30-12

Specifies the maximum number of objects to be retrieved
in a single FETCH_xxx call.

GET_QUERY Procedure on
page 30-12

Returns the text of the queries that are used by FETCH_
xxx .

SET_PARSE_ITEM Procedure
on page 30-13

Enables output parsing by specifying an object attribute to
be parsed and returned.

ADD_TRANSFORM Procedure
on page 30-15

Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects.

SET_TRANSFORM_PARAM
Procedure on page 30-17

Specifies parameters to the XSLT stylesheet identified by
transform_handle.

FETCH_xxx Procedure on
page 30-21

Returns metadata for objects meeting the criteria
established by OPEN, SET_FILTER, SET_COUNT, ADD_
TRANSFORM, and so on.

CLOSE Procedure on
page 30-24

Invalidates the handle returned by OPEN and cleans up the
associated state.

GET_XML and GET_DDL
Functions on page 30-28

Returns the metadata for the specified object as XML or
DDL.

GET_DEPENDENT_XML and
GET_DEPENDENT_DDL
Functions on page 30-31

Returns the metadata for one or more dependent objects,
specified as XML or DDL.

GET_GRANTED_XML and
GET_GRANTED_DDL
Functions on page 30-33

Returns the metadata for one or more granted objects,
specified as XML or DDL.
30-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
Syntax
DBMS_METADATA.OPEN (

object_type IN VARCHAR2,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,)

RETURN NUMBER;

Parameters
Table 30–2 provides descriptions of the parameters for the OPEN procedure.

Table 30–2 Open() Parameters

Parameter Description

object_type The type of object to be retrieved. Table 30–3 lists the valid type
names and their meanings. These object types will be
supported for the ORACLE model of metadata (see model in
this table) in Oracle9i. Future models may support a different
set of object types.

 The "Attributes" column specifies some object type attributes.
Schema objects, such as tables, belong to schemas. Named
objects have unique names (if they are schema objects, the
name is unique to the schema). Dependent objects, such as
indexes, are defined with reference to a base schema object.
Granted objects are granted or assigned to a user or role and
therefore have a named grantee.

These differences are relevant when choosing object selection
criteria. See "SET_FILTER Procedure" on page 30-6 for more
information.

version The version of metadata to be extracted. Database objects or
attributes that are incompatible with the version will not be
extracted. Legal values for this parameter are:

COMPATIBLE (default)—the version of the metadata
corresponds to the database compatibility level. Note that
database compatibility must be set to 9.0.1 or higher.

LATEST—the version of the metadata corresponds to the
database version.

A specific database version, for example, 9.0.1 .

model Specifies which view to use, because the API can support
multiple views on the metadata. Only the ORACLE model is
supported in Oracle9i.
DBMS_METADATA 30-3

OPEN Procedure
Table 30–3 provides the name, meaning, attributes, and notes for the DBMS_
METADATA package object types. In the attributes column, S represents a schema
object, N represents a named object, D represents a dependent object, and G
represents a granted object.

Table 30–3 DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

ASSOCIATION associate statistics D

AUDIT audits of SQL statements DG Modeled as dependent, granted object.
The base object name is the statement
audit option name (for example,
ALTER SYSTEM). There is no base
object schema. The grantee is the user
or proxy whose statements are
audited.

AUDIT_OBJ audits of schema objects D None

CLUSTER clusters SN None

COMMENT comments D None

CONSTRAINT constraints SND Does not include:

� primary key constraint for IOT

� column NOT NULL constraints

� certain REF SCOPE and WITH
ROWID constraints for tables with
REF columns

CONTEXT application contexts N None

DB_LINK database links SN Modeled as schema objects because
they have owners. For public links, the
owner is PUBLIC. For private links,
the creator is the owner.

DEFAULT_ROLE default roles G Granted to a user by ALTER USER

DIMENSION dimensions SN None

DIRECTORY directories N None

FUNCTION stored functions SN None

INDEX indexes SND None

INDEXTYPE indextypes SN None
30-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
JAVA_SOURCE Java sources SN None

LIBRARY external procedure
libraries

SN None

MATERIALIZED_VIEW materialized views SN None

MATERIALIZED_
VIEW_LOG

materialized view logs D None

OBJECT_GRANT object grants DG None

OPERATOR operators SN None

OUTLINE stored outlines N None

PACKAGE stored packages SN By default, both package specification
and package body are retrieved. See
"SET_FILTER Procedure" on page 30-6.

PACKAGE_SPEC package specifications SN None

PACKAGE_BODY package bodies SN None

PROCEDURE stored procedures SN None

PROFILE profiles N None

PROXY proxy authentications G Granted to a user by ALTER USER

REF_CONSTRAINT referential constraint SND None

ROLE roles N None

ROLE_GRANT role grants G None

ROLLBACK_SEGMENT rollback segments N None

SEQUENCE sequences SN None

SYNONYM synonyms See notes. Private synonyms are schema objects.
Public synonyms are not, but for the
purposes of this API, their schema
name is PUBLIC. The name of a
synonym is considered to be the
synonym itself. For example, in
CREATE PUBLIC SYNONYM FOO
FOR BAR, the resultant object is
considered to have name FOO and
schema PUBLIC.

Table 30–3 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes
DBMS_METADATA 30-5

SET_FILTER Procedure
Returns
An opaque handle to the class of objects. This handle is used as input to SET_
FILTER , SET_COUNT, ADD_TRANSFORM, GET_QUERY, SET_PARSE_ITEM,
FETCH_xxx, and CLOSE.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OBJECT_PARAM. The version or model parameter was not valid
for the object_type .

SET_FILTER Procedure
SET_FILTER specifies restrictions on the objects to be retrieved, for example, the
object name or schema.

SYSTEM_GRANT system privilege grants G None

TABLE tables SN None

TABLESPACE tablespaces N None

TABLESPACE_QUOTA tablespace quotas G Granted with ALTER USER

TRIGGER triggers SND None

TRUSTED_DB_LINK trusted links N None

TYPE user-defined types SN By default, both type and type body
are retrieved. See "SET_FILTER
Procedure" on page 30-6.

TYPE_SPEC type specifications SN None

TYPE_BODY type bodies SN None

USER users N None

VIEW views SN None

XMLSCHEMA XML schema SN The object’s name is its URL (which
may be longer than 30 characters). Its
schema is the user who registered it.

Table 30–3 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes
30-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
Syntax
DBMS_METADATA.SET_FILTER (

handle IN NUMBER,
name IN VARCHAR2,
value IN VARCHAR2);

DBMS_METADATA.SET_FILTER (
handle IN NUMBER,
name IN VARCHAR2,
value IN BOOLEAN DEFAULT TRUE);

Parameters
Table 30–4 describes the parameters for the SET_FILTER procedure.

Table 30–5 describes the object type, name, datatype, and meaning of the filters
available with the SET_FILTER procedure.

Table 30–4 SET_FILTER Parameters

Parameter Description

handle The handle returned from OPEN.

name The name of the filter. For each filter, Table 30–5 lists the
object_type it applies to, its name, its datatype (text or
Boolean) and its meaning or effect (including its default value,
if any).

value The value of the filter.
DBMS_METADATA 30-7

SET_FILTER Procedure
Table 30–5 SET_FILTER: Filters

Object Type Name Datatype Meaning

Named objects NAME text Objects with this exact name are selected.

NAME_EXPR text The filter value is the right-hand side of a SQL
comparison, that is, a SQL comparison operator
(=,!=, and so on) and the value compared against.
The value must contain parentheses and quotation
marks where appropriate. In PL/SQL and SQL*Plus,
two single quotes (not a double quote) are needed to
represent an apostrophe. For example:

’IN (’’DEPT’’,’’EMP’’)’

The filter value is combined with the object attribute
corresponding to the object name to produce a
WHERE condition in the query that fetches the
objects. In the preceding example, objects named
DEPT and EMP are retrieved.

By default, all named objects of object_type are
selected.

Schema objects SCHEMA text Objects in this schema are selected.

SCHEMA_EXPR text The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
object attribute corresponding to the object schema
to produce a WHERE condition in the query that
fetches the objects. See NAME_EXPR for syntax
details.

Default:

 - if BASE_OBJECT_SCHEMA is specified, then
objects in that schema are selected;

 - otherwise, objects in the current schema are
selected.

See "Security" on page 30-10.

PACKAGE,

TYPE

SPECIFICATION Boolean If TRUE, retrieve the package or type specification.
Defaults to TRUE.

BODY Boolean If TRUE, retrieve the package or type body. Defaults
to TRUE.
30-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
TABLE TABLESPACE text Objects in this tablespace (or having a partition in
this tablespace) are selected.

TABLESPACE_
EXPR

text The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
attribute corresponding to the object’s tablespace (or
in the case of a partitioned table, the partition’s
tablespaces) to produce a WHERE condition in the
query that fetches the objects. See NAME_EXPR for
syntax details. By default, objects in all tablespaces
are selected.

Dependent Objects BASE_OBJECT_
NAME

text Objects are selected that are defined or granted on
objects with this name. Specify SCHEMA for triggers
on schemas. Specify DATABASE for database
triggers. Column-level comments cannot be selected
by column name; the base object name must be the
name of the table, view, or materialized view
containing the column.

BASE_OBJECT_
SCHEMA

text Objects are selected that are defined or granted on
objects in this schema. If BASE_OBJECT_NAME is
specified with a value other than SCHEMA or
DATABASE, this defaults to the current schema.

INDEX, TRIGGER SYSTEM_
GENERATED

Boolean If TRUE, select indexes or triggers even if they are
system-generated. If FALSE, omit system-generated
indexes or triggers. Defaults to TRUE.

Granted Objects GRANTEE text Objects are selected that are granted to this user or
role. Specify PUBLIC for grants to PUBLIC.

OBJECT_GRANT GRANTOR text Object grants are selected that are granted by this
user.

Table 30–5 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning
DBMS_METADATA 30-9

SET_FILTER Procedure
Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OPERATION. SET_FILTER was called after the first call to FETCH_
xxx for the OPEN context. After the first call to FETCH_xxx is made, no further
calls to SET_FILTER for the current OPEN context are permitted.

� INCONSISTENT_ARGS. The filter name is not valid for the object type
associated with the OPEN context, or the filter value is the wrong datatype.

Security
With SET_FILTER, you can specify the schema of objects to be retrieved, but
security considerations may override this specification. If the caller is SYS or has
SELECT_CATALOG_ROLE, then any object can be retrieved; otherwise, only the
following can be retrieved:

� Schema objects owned by the caller

SYNONYM, JAVA_
SOURCE,
XMLSCHEMA

LONGNAME text A name longer than 30 characters. Objects with this
exact name are selected. If the object name is 30
characters or less, the NAME filter must be used.

LONGNAME_EXPRtext The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
attribute corresponding to the object’s long name to
produce a WHERE condition in the query that fetches
the objects. See NAME_EXPR for syntax details. By
default, no filtering is done on the long name of an
object.

All objects CUSTOM_FILTER text The text of a WHERE condition. The condition is
appended to the query that fetches the objects. By
default, no custom filter is used. The other filters are
intended to meet the needs of the majority of users.
Use CUSTOM_FILTER when no defined filters exists
for your purpose. Of necessity such a filter depends
on the detailed structure of the UDTs and views
used in the query that are defined in
admin/catmeta.sql . Because filters may change
from version to version, upward compatibility is not
guaranteed.

Table 30–5 (Cont.) SET_FILTER: Filters

Object Type Name Datatype Meaning
30-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
� Public synonyms

� System privileges granted to the caller or to PUBLIC

� Grants on objects for which the caller is owner, grantor or grantee (either
explicitly or as PUBLIC).

If you request objects that you are not privileged to retrieve, no exception is raised;
the object is not retrieved, as if it did not exist.

Usage Notes
� You can use the same text expression filter multiple times with different values.

All the filter conditions will be applied to the query. For example, to get objects
with names between Felix and Oscar, do the following:

dbms_metadata.set_filter(handle,’NAME_EXPR’,’>=’’FELIX’’’);
dbms_metadata.set_filter(handle,’NAME_EXPR’,’<=’’OSCAR’’’);

� For dependent objects such as triggers, grants, and indexes, the following
conditions apply:

– When connected as a nonprivileged user — If BASE_OBJECT_NAME is
specified as a filter, BASE_OBJECT_SCHEMA defaults to the current schema:

dbms_metadata.set_filter(h,'BASE_OBJECT_NAME','EMP');

– When connected as a privileged user with SELECT_CATALOG_ROLE —
The schema defaults to BASE_OBJECT_SCHEMA if specified; otherwise it
defaults to the current schema. For example, to see all indexes in SCOTT
that are defined on SCOTT.EMP, the filters are:

dbms_metadata.set_filter(h,'BASE_OBJECT_NAME','EMP');
dbms_metadata.set_filter(h,'BASE_OBJECT_SCHEMA','SCOTT');

To see indexes in other schemas:

dbms_metadata.set_filter(h,'SCHEMA_EXPR','LIKE ''%''');

Some indexes and triggers are system generated (such as indexes used to
enforce unique constraints). Set the SYSTEM_GENERATED filter to FALSE so that
you do not retrieve them.
DBMS_METADATA 30-11

SET_COUNT Procedure
SET_COUNT Procedure
SET_COUNT specifies the maximum number of objects to be retrieved in a single
FETCH_xxx call. By default, each call to FETCH_xxx returns one object. With SET_
COUNT, you can override this default. If FETCH_xxx is called from a client,
specifying a count value greater than 1 can result in fewer server round trips and,
therefore, improved performance. Note that the procedure stops when NULL is
returned, but not if less than the maximum number of objects is returned.

Syntax
DBMS_METADATA.SET_COUNT (

handle IN NUMBER,
value IN NUMBER);

Parameters
Table 30–6 describes the parameters for the SET_COUNT procedure.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OPERATION. SET_COUNT was called after the first call to FETCH_
xxx for the OPEN context. After the first call to FETCH_xxx is made, no further
calls to SET_COUNT for the current OPEN context are permitted.

GET_QUERY Procedure
GET_QUERY returns the text of the queries that are used by FETCH_xxx. This
function assists in debugging.

Syntax
DBMS_METADATA.GET_QUERY (

handle IN NUMBER)
RETURN VARCHAR2;

Table 30–6 SET_COUNT Parameters

Parameter Description

handle The handle returned from OPEN.

value The number of objects to retrieve.
30-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
Parameters
Table 30–7 describes the parameters for the GET_QUERY procedure.

Returns
The text of the queries that will be used by FETCH_xxx.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for the handle

parameter.

SET_PARSE_ITEM Procedure
SET_PARSE_ITEM enables output parsing by specifying an object attribute to be
parsed and returned. It should only be used in conjunction with FETCH_DDL.

Syntax
DBMS_METADATA.SET_PARSE_ITEM (

handle IN NUMBER,
name IN VARCHAR2);

Parameters
Table 30–8 describes the parameters for the SET_PARSE_ITEM procedure.

Table 30–9 describes the object type, name, and meaning of the items available in
the SET_PARSE_ITEM procedure.

Table 30–7 GET_QUERY Parameters

Parameter Description

handle The handle returned from OPEN.

Table 30–8 SET_PARSE_ITEM Parameters

Parameter Description

handle The handle returned from OPEN.

name The name of the object attribute to be parsed and returned. See
Table 30–9 for the attribute object type, name, and meaning.
DBMS_METADATA 30-13

SET_PARSE_ITEM Procedure
Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OPERATION. SET_PARSE_ITEM was called after the first call to
FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no
further calls to SET_PARSE_ITEM are permitted.

� INCONSISTENT_ARGS. The attribute name is not valid for the object type
associated with the OPEN context.

Usage Notes
By default fetch_ddl returns object metadata as creation DDL. By calling SET_
PARSE_ITEM, you can request that individual attributes of the object be returned
also, to avoid the tedious process of parsing SQL text. This is useful when fetching
objects based on the value of a returned object, for example, fetching indexes for a
returned table.

Table 30–9 SET_PARSE_ITEM: Parse Items

Object Type Name Meaning

All objects VERB For every row in the sys .ku$_ddls nested table returned by
fetch_ddl the verb in the corresponding ddlText is returned. If
the ddlText is a SQL DDL statement, then the SQL verb (for
example, CREATE, GRANT, AUDIT) is returned. If the ddlText is a
procedure call (for example., DBMS_RLS.ADD_POLICY_CONTEXT)
then the package.procedure-name is returned.

OBJECT_TYPE If the ddlText is a SQL DDL statement whose verb is CREATE or
ALTER, the object type as used in the DDL statement is returned,
for example, TABLE, PACKAGE BODY, and so on. Otherwise, an
object type name from Table 30–3, " DBMS_METADATA: Object
Types" is returned.

SCHEMA The object schema is returned. If the object is not a schema object,
NULL is returned.

NAME The object name is returned. If the object is not a named object,
NULL is returned.

TABLE,

INDEX

TABLESPACE The tablespace name of the table or index is returned.

TRIGGER ENABLE If the trigger is enabled, ENABLE is returned. If the trigger is
disabled, DISABLE is returned.
30-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
You can call SET_PARSE_ITEM multiple times to ask for multiple items to be
parsed and returned. Parsed items are returned in the sys.ku$_parsed_items
nested table. An example of using sys.ku$_parsed_items is shown within
Example: Retrieving Payroll Tables and their Indexes as DDL on page 30-24.

ADD_TRANSFORM Procedure
ADD_TRANSFORM specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects. It is possible to add more than one
transform.

Syntax
DBMS_METADATA.ADD_TRANSFORM (

handle IN NUMBER,
name IN VARCHAR2,
encoding IN VARCHAR2 DEFAULT NULL)

RETURN NUMBER;

Parameters
Table 30–10 describes the parameters for the ADD_TRANSFORM procedure.

See Also:

� "FETCH_xxx Procedure" on page 30-21

� Oracle9i Database Utilities for information about using the
Metadata API

Table 30–10 ADD_TRANSFORM Parameters

Parameters Description

handle The handle returned from OPEN.
DBMS_METADATA 30-15

ADD_TRANSFORM Procedure
Returns
An opaque handle to the transform. This handle is used as input to SET_
TRANSFORM_PARAM. Note that this handle is different from the handle returned by
OPEN; it refers to the transform, not the set of objects to be retrieved.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OPERATION. ADD_TRANSFORM was called after the first call to
FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made, no
further calls to ADD_TRANSFORM for the current OPEN context are permitted.

Usage Notes
With no transforms added, objects are returned by default as XML documents. You
call ADD_TRANSFORM to specify an XSLT stylesheet to transform the returned
documents.

You can call ADD_TRANSFORM more than once to apply multiple transforms to the
returned XML documents. FETCH_xxx will apply the transforms in the order in
which they were specified, the output of the first transform being used as input to
the second, and so on.

The encoding parameter must be specified if either of the following is true:

name The name of the transform. If the name is DDL, creation DDL
will be generated using XSLT stylesheets stored within the
Oracle dictionary. If the name contains a period (.), colon (:) or
forward slash (/), it is interpreted as the URL of a
user-supplied XSLT stylesheet. See Oracle9i XML Database
Developer’s Guide - Oracle XML DB.

encoding The name of NLS character set (see National Language
Support Guide) in which the stylesheet pointed to by name is
encoded. This is only valid if the name is a URL. If left NULL
and the URL is external to the database (e.g,
/usr/williams/xsl/mystylesheet.xsl), UTF-8 encoding is
assumed. If left NULL and the URL is internal to the database,
that is, it begins with /oradb/, then the database character set
is assumed to be the encoding.

Table 30–10 (Cont.) ADD_TRANSFORM Parameters

Parameters Description
30-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
� The XSL stylesheet pointed to by an external URL is encoded in a character set
that is not a subset of UTF-8

� The XSL stylesheet pointed to by a database-internal URL is encoded in a
character set that is not a subset of the database character set.

An example of the latter might be if the database-internal URL pointed to an
NCLOB or NVARCHAR column. Normally, this need not be specified, although
explicitly setting it to US7ASCII (if applicable) results in slightly better XML parsing
performance.

SET_TRANSFORM_PARAM Procedure
SET_TRANSFORM_PARAM specifies parameters to the XSLT stylesheet identified by
transform_handle. Use it to modify or customize the output of the transform.

Syntax
DBMS_METADATA.SET_TRANSFORM_PARAM (

transform_handle IN NUMBER,
name IN VARCHAR2,
value IN VARCHAR2);

DBMS_METADATA.SET_TRANSFORM_PARAM (
transform_handle IN NUMBER,
name IN VARCHAR2,
value IN BOOLEAN DEFAULT TRUE);

Parameters
Table 30–11 describes the parameters for the SET_TRANSFORM_PARAM procedure.

Note: The output of the DDL transform is not an XML document.
Therefore, no transform should be added after the DDL transform.

Table 30–11 SET_TRANSFORM_PARAM Parameters

Parameters Description

transform_handle Either (1) the handle returned from ADD_TRANSFORM, or (2)
the enumerated constant SESSION_TRANSFORM that
designates the DDL transform for the whole session. Note that
the handle returned by OPEN is not a valid transform handle.
DBMS_METADATA 30-17

SET_TRANSFORM_PARAM Procedure
Table 30–12 describes the object type, name, datatype, and meaning of the
parameters for the DDL transform in the SET_TRANSFORM_PARAM procedure.

name The name of the parameter. Table 30–12 lists the transform
parameters defined for the DDL transform, specifying the
object_type it applies to, its datatype (in this case, always
Boolean) and its meaning or effect (including its default value,
if any).

value The value of the transform.

Table 30–12 SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning

All objects PRETTY Boolean If TRUE, format the output with indentation and
line feeds. Defaults to TRUE.

SQLTERMINATOR Boolean If TRUE, append a SQL terminator (; or /) to
each DDL statement. Defaults to FALSE.

TABLE SEGMENT_ATTRIBUTES Boolean If TRUE, emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE.

STORAGE Boolean If TRUE, emit storage clause. (Ignored if
SEGMENT_ATTRIBUTES is FALSE.) Defaults to
TRUE.

TABLESPACE Boolean If TRUE, emit tablespace. (Ignored if SEGMENT_
ATTRIBUTES is FALSE.) Defaults to TRUE.

Table 30–11 (Cont.) SET_TRANSFORM_PARAM Parameters

Parameters Description
30-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
TABLE CONSTRAINTS Boolean If TRUE, emit all non-referential table
constraints. Defaults to TRUE.

REF_CONSTRAINTS Boolean If TRUE, emit all referential constraints (foreign
key and scoped refs). Defaults to TRUE.

CONSTRAINTS_AS_ALTER Boolean If TRUE, emit table constraints as separate
ALTER TABLE (and, if necessary, CREATE
INDEX) statements. If FALSE, specify table
constraints as part of the CREATE TABLE
statement. Defaults to FALSE. Requires that
CONSTRAINTS be TRUE.

OID Boolean If TRUE, emit the OID clause for object tables.
Defaults to FALSE.

SIZE_BYTE_KEYWORD Boolean If TRUE, emit the BYTE keyword as part of the
size specification of CHAR and VARCHAR2
columns that use byte semantics. If FALSE, omit
the keyword. Defaults to FALSE.

INDEX SEGMENT_ATTRIBUTES Boolean If TRUE, emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE.

STORAGE Boolean If TRUE, emit storage clause. (Ignored if
SEGMENT_ATTRIBUTES is FALSE.) Defaults to
TRUE.

TABLESPACE Boolean If TRUE, emit tablespace. (Ignored if SEGMENT_
ATTRIBUTES is FALSE.) Defaults to TRUE.

TYPE SPECIFICATION Boolean If TRUE, emit the type specification. Defaults to
TRUE.

BODY Boolean If TRUE, emit the type body. Defaults to TRUE.

PACKAGE SPECIFICATION Boolean If TRUE, emit the package specification. Defaults
to TRUE.

BODY Boolean If TRUE, emit the package body. Defaults to
TRUE.

Table 30–12 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning
DBMS_METADATA 30-19

SET_TRANSFORM_PARAM Procedure
Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� INVALID_OPERATION. SET_TRANSFORM_PARAM was called after the first call
to FETCH_xxx for the OPEN context. After the first call to FETCH_xxx is made,
no further calls to SET_TRANSFORM_PARAM are permitted.

� INCONSISTENT_ARGS. The transform parameter name is not valid for the
object type associated with the OPEN context.

Usage Notes
XSLT allows parameters to be passed to stylesheets. You call SET_TRANSFORM_
PARAM to specify the value of a parameter to be passed to the stylesheet identified
by transform_handle. The most general way to specify stylesheet parameter
values is as text strings. However, for the DDL transform, it is convenient to expose
some parameters as Booleans. Consequently, two variants of the procedure are
provided.

The GET_DDL function allows the casual browser to extract the creation DDL for an
object. So that you can specify transform parameters, this package defines an
enumerated constant SESSION_TRANSFORM as the handle of the DDL transform at
the session level. You can call SET_TRANSFORM_PARAM using DBMS_
METADATA.SESSION_TRANSFORMas the transform handle to set transform

VIEW FORCE Boolean If TRUE, use the FORCE keyword in the CREATE
VIEW statement. Defaults to TRUE.

All objects DEFAULT Boolean Calling SET_TRANSFORM_PARAM with this
parameter set to TRUE has the effect of resetting
all parameters for the transform to their default
values. Setting this FALSE has no effect. There is
no default.

INHERIT Boolean If TRUE, inherits session-level parameters.
Defaults to FALSE. If an application calls ADD_
TRANSFORM to add the DDL transform, then by
default the only transform parameters that apply
are those explicitly set for that transform handle.
This has no effect if the transform handle is the
session transform handle.

Table 30–12 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning
30-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
parameters for the whole session. GET_DDL inherits these parameters when it
invokes the DDL transform.

FETCH_xxx Procedure
FETCH_xxx returns metadata for objects meeting the criteria established by OPEN,
SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on. See "Usage Notes" on
page 30-22 for the variants.

Syntax
The FETCH functions and procedures are:

DBMS_METADATA.FETCH_XML (
handle IN NUMBER)

RETURN sys.XMLType;

DBMS_METADATA.FETCH_DDL (
handle IN NUMBER)

RETURN sys.ku$_ddls;

The following types comprise the return nested table type sys.ku$_ddls :

TYPE sys.ku$_parsed_item AS OBJECT (
item VARCHAR2(30),
value VARCHAR2(4000),
object-row NUMBER);

TYPE sys.ku$_parsed_items IS TABLE OF sys.ku$_parsed_item;
TYPE sys.ku$_ddl AS OBJECT (

ddlText CLOB,
parsedItems sys.ku$_parsed_items);

TYPE sys.ku$_ddls IS TABLE OF sys.ku$_ddl;

DBMS_METADATA.FETCH_CLOB (
handle IN NUMBER)

RETURN CLOB;
DBMS_METADATA.FETCH_CLOB (

handle IN NUMBER,

Note: The enumerated constant must be prefixed with the
package name DBMS_METADATA.SESSION_TRANSFORM.

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for a description of XMLType
DBMS_METADATA 30-21

FETCH_xxx Procedure
doc IN OUT NOCOPY CLOB);

Parameters
Table 30–13 describes the parameters for the FETCH_xxx procedure.

Returns
The metadata for the objects or NULL if all objects have been returned.

Exceptions
Most exceptions raised during execution of the query are propagated to the caller.
Also, the following exceptions may be raised:

� INVALID_ARGVAL. A NULL or invalid value was supplied for an input
parameter. The error message text identifies the parameter.

� INCONSISTENT_OPERATION. Either (1) FETCH_XML was called when the DDL
transform had been specified, or (2) FETCH_DDL was called when the DDL
transform had not been specified.

Usage Notes
These functions and procedures return metadata for objects meeting the criteria
established by calls to OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so
on. Each call to FETCH_xxx returns the number of objects specified by SET_COUNT
(or less, if fewer objects remain in the underlying cursor) until all objects have been
returned. After the last object is returned, subsequent calls to FETCH_xxx return
NULL and cause the stream created by OPEN to be transparently closed.

There are several different FETCH_xxx functions and procedures:

� FETCH_XML returns the XML metadata for an object as an XMLType. It assumes
that if any transform has been specified, the transform will produce an XML
document. In particular, it assumes that the DDL transform has not been
specified.

Table 30–13 FETCH_xxx Parameters

Parameters Description

handle The handle returned from OPEN.

doc (procedure fetch_
clob)

The metadata for the objects or NULL if all objects have been
returned.
30-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
� FETCH_DDL returns the creation DDL in a sys.ku$_ddls nested table. It
assumes that the DDL transform has been specified. Each row of the sys.ku$_
ddls nested table contains a single DDL statement in the ddlText column; if
requested, parsed items for the DDL statement will be returned in the
parsedItems column. Multiple DDL statements may be returned under the
following circumstances:

� When you call SET_COUNT to specify a count greater than 1

� When an object is transformed into multiple DDL statements. For example,
A TYPE object can be transformed into both CREATE TYPE and CREATE
TYPE BODY statements. A TABLE object can be transformed into a CREATE
TABLE, zero or more CREATE INDEX statements, and zero or more ALTER
TABLE statements.

� FETCH_CLOB simply returns the object, transformed or not, as a CLOB.

FETCH_CLOB comes in both function and procedure variants. The procedure
variant returns the object by reference in an IN OUT NOCOPY parameter.

All LOBs returned by FETCH_xxx are temporary LOBs. You must free the LOB. The
same applies to the XMLType object.

If SET_PARSE_ITEM was called, FETCH_DDL returns attributes of the DDL
statement in a sys.ku$_parsed_items nested table, which is a column in the
returned sys.ku$_ddls nested table. Each row of the sys.ku$_parsed_items
nested table corresponds to an item specified by SET_PARSE_ITEM and contains
the following columns:

� item —The name of the attribute as specified in the name parameter to SET_
PARSE_ITEM.

� value —The attribute value, or NULL if the attribute is not present in the DDL
statement.

� object-row —For future use.

The order of the rows is undetermined; to find a particular item you must search
the table for a match on item .

If SET_PARSE_ITEM was not called, NULL is returned as the value of the sys.ku$_
parsed_items nested table.

When Variants of FETCH_xxx Are Called
It is expected that the same variant of FETCH_xxx will be called for all objects
selected by OPEN, that is, that programs will not intermix calls to FETCH_XML,
DBMS_METADATA 30-23

CLOSE Procedure
FETCH_DDL, and FETCH_CLOB using the same OPEN handle. The effect of calling
different variants is undefined; it may not do what you expect.

CLOSE Procedure
CLOSE invalidates the handle returned by OPEN and cleans up the associated state.

Syntax
DBMS_METADATA.CLOSE (

handle IN NUMBER);

Parameters
Table 30–14 describes the parameters for the CLOSE procedure.

Exceptions
� INVALID_ARGVAL. The value for the handle parameter is NULL or invalid.

Usage Notes
You can prematurely terminate the stream of objects established by OPEN.

� If a call to FETCH_xxx returns NULL, indicating no more objects, a call to
CLOSE is made transparently. In this case, you can still call CLOSE on the
handle and not get an exception. (The call to CLOSE is not required.)

� If you know that only one specific object will be returned, you should explicitly
call CLOSE after the single FETCH_xxx call to free resources held by the handle.

Example: Retrieving Payroll Tables and their Indexes as DDL
This example retrieves the creation DDL for all tables in the current schema whose
names begin with PAYROLL. For each table it also returns the creation DDL for the
indexes defined on the table. The returned DDL is written to an output file.

CREATE OR REPLACE PACKAGE dbms_metadata_example AS

PROCEDURE get_payroll_tables;

Table 30–14 CLOSE Parameters

Parameter Description

handle The handle returned from OPEN.
30-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
END;
/
CREATE OR REPLACE PACKAGE BODY dbms_metadata_example AS

-- Global Variables

fileHandle UTL_FILE.FILE_TYPE;

-- Exception initialization

file_not_found EXCEPTION;
PRAGMA EXCEPTION_INIT(file_not_found, -1309);

-- Package-private routine to write a CLOB to an output file.

PROCEDURE write_lob(doc IN CLOB) IS

outString varchar2(32760);
cloblen number;
offset number := 1;
amount number;

BEGIN
cloblen := dbms_lob.getlength(doc);
WHILE cloblen > 0
LOOP

IF cloblen > 32760 THEN
amount := 32760;

ELSE
amount := cloblen;

END IF;
outString := dbms_lob.substr(doc, amount, offset);
utl_file.put(fileHandle, outString);
utl_file.fflush(fileHandle);
offset := offset + amount;
cloblen := cloblen - amount;

END LOOP;
RETURN;

END;

-- Public routines

-- GET_PAYROLL_TABLES: Fetch DDL for payroll tables and their indexes.

PROCEDURE get_payroll_tables IS
DBMS_METADATA 30-25

CLOSE Procedure
tableOpenHandle NUMBER;
indexOpenHandle NUMBER;
tableTransHandle NUMBER;
indexTransHandle NUMBER;
schemaName VARCHAR2(30);
tableName VARCHAR2(30);
tableDDLs sys.ku$_ddls;
tableDDL sys.ku$_ddl;
parsedItems sys.ku$_parsed_items;
indexDDL CLOB;

BEGIN

-- open the output file... note that the 1st param. (dir. path) must be
-- included in the database’s UTL_FILE_DIR init. parameter.
--

BEGIN
fileHandle := utl_file.fopen(’/private/xml’, ’ddl.out’, ’w’, 32760);

EXCEPTION
WHEN OTHERS THEN

RAISE file_not_found;
END;

-- Open a handle for tables in the current schema.
tableOpenHandle := dbms_metadata.open(’TABLE’);

-- Call ’set_count’ to request retrieval of one table at a time.
-- This call is not actually necessary because 1 is the default.

dbms_metadata.set_count(tableOpenHandle, 1);

-- Retrieve tables whose name starts with ’PAYROLL’. When the filter is
-- ’NAME_EXPR’, the filter value string must include the SQL operator. This
-- gives the caller flexibility to use LIKE, IN, NOT IN, subqueries, and so on.

dbms_metadata.set_filter(tableOpenHandle, ’NAME_EXPR’, ’LIKE ’’PAYROLL%’’’);

-- Tell Metadata API to parse out each table’s schema and name separately
-- so we can use them to set up the calls to retrieve its indexes.

dbms_metadata.set_parse_item(tableOpenHandle, ’SCHEMA’);
dbms_metadata.set_parse_item(tableOpenHandle, ’NAME’);

-- Add the DDL transform so we get SQL creation DDL
tableTransHandle := dbms_metadata.add_transform(tableOpenHandle, ’DDL’);

-- Tell the XSL stylesheet we don’t want physical storage information (storage,
30-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
-- tablespace, etc), and that we want a SQL terminator on each DDL. Notice that
-- these calls use the transform handle, not the open handle.

dbms_metadata.set_transform_param(tableTransHandle,
’SEGMENT_ATTRIBUTES’, FALSE);

dbms_metadata.set_transform_param(tableTransHandle,
’SQLTERMINATOR’, TRUE);

-- Ready to start fetching tables. We use the FETCH_DDL interface (rather than
-- FETCH_XML or FETCH_CLOB). This interface returns a SYS.KU$_DDLS; a table of
-- SYS.KU$_DDL objects. This is a table because some object types return
-- multiple DDL statements (like types / pkgs which have create header and
-- body statements). Each KU$_DDL has a CLOB containing the ’CREATE TABLE’
-- statement plus a nested table of the parse items specified. In our case,
-- we asked for two parse items; Schema and Name.

LOOP
tableDDLs := dbms_metadata.fetch_ddl(tableOpenHandle);
EXIT WHEN tableDDLs IS NULL; -- Get out when no more payroll tables

-- In our case, we know there is only one row in tableDDLs (a KU$_DDLS tbl obj)
-- for the current table. Sometimes tables have multiple DDL statements,
-- for example, if constraints are applied as ALTER TABLE statements,
-- but we didn’t ask for that option.
-- So, rather than writing code to loop through tableDDLs,
-- we’ll just work with the 1st row.
--
-- First, write the CREATE TABLE text to our output file, then retrieve the
-- parsed schema and table names.

tableDDL := tableDDLs(1);
write_lob(tableDDL.ddltext);
parsedItems := tableDDL.parsedItems;

-- Must check the name of the returned parse items as ordering isn’t guaranteed
FOR i IN 1..2 LOOP

IF parsedItems(i).item = ’SCHEMA’
THEN

schemaName := parsedItems(i).value;
ELSE

tableName := parsedItems(i).value;
END IF;

END LOOP;

-- Then use the schema and table names to set up a 2nd stream for retrieval of
-- the current table’s indexes.
-- (Note that we don’t have to specify a SCHEMA filter for the indexes,
DBMS_METADATA 30-27

GET_XML and GET_DDL Functions
-- Because SCHEMA defaults to the value of BASE_OBJECT_SCHEMA.)
indexOpenHandle := dbms_metadata.open(’INDEX’);
dbms_metadata.set_filter(indexOpenHandle,’BASE_OBJECT_SCHEMA’,schemaName);
dbms_metadata.set_filter(indexOpenHandle,’BASE_OBJECT_NAME’,tableName);

-- Add the DDL transform and set the same transform options we did for tables
indexTransHandle := dbms_metadata.add_transform(indexOpenHandle, ’DDL’);
dbms_metadata.set_transform_param(indexTransHandle,

’SEGMENT_ATTRIBUTES’, FALSE);
dbms_metadata.set_transform_param(indexTransHandle,

’SQLTERMINATOR’, TRUE);

-- Retrieve index DDLs as CLOBs and write them to the output file.
LOOP

indexDDL := dbms_metadata.fetch_clob(indexOpenHandle);
EXIT WHEN indexDDL IS NULL;
write_lob(indexDDL);

END LOOP;

-- Free resources allocated for index stream.
dbms_metadata.close(indexOpenHandle);

END LOOP;

-- Free resources allocated for table stream and close output file.
dbms_metadata.close(tableOpenHandle);
utl_file.fclose(fileHandle);
RETURN;

END; -- of procedure get_payroll_tables

END dbms_metadata_example;
/

GET_XML and GET_DDL Functions
GET_XML and GET_DDL return the metadata for the specified object as XML or
DDL.

Syntax
DBMS_METADATA.GET_XML (

object_type IN VARCHAR2,
name IN VARCHAR2,
schema IN VARCHAR2 DEFAULT NULL,
30-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT NULL)

RETURN CLOB;

DBMS_METADATA.GET_DDL (
object_type IN VARCHAR2,
name IN VARCHAR2,
schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT ’DDL’)

RETURN CLOB;

Parameters
Table 30–15 describes the parameters for the GET_xxx function.

Returns
The metadata for the specified object as XML or DDL.

Table 30–15 GET_xxx Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter.

name An object name (case-sensitive). If object_type is SYNONYM
andname is longer than 30 characters, thenname will be treated as a
LONGNAMEfilter. SeeTable 30–5.

schema A schema name (case sensitive). The default is the current
schema if object_type refers to a schema object; otherwise
the default is NULL.

version The version of metadata to be extracted. This parameter takes
the same values as the OPEN version parameter.

model The object model to use. This parameter takes the same values
as the OPEN model parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORM name
parameter. For GET_XML this must not be DDL.
DBMS_METADATA 30-29

GET_XML and GET_DDL Functions
Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� OBJECT_NOT_FOUND. The specified object was not found in the database.

Usage Notes
These functions provide a simple way to return the metadata for a single object.
Conceptually each GET_xxx call is comprised of an OPEN, one or two SET_FILTER
calls, optionally an ADD_TRANSFORM, a FETCH_xxx and a CLOSE. The object_
type parameter has the same semantics as in OPEN. The schema and name
parameters are used for filtering. If a transform is specified, schema-level transform
flags are inherited.

This function can only be used to fetch named objects. It cannot be used to fetch
objects of type OBJECT_GRANT or SYSTEM_GRANT. To fetch these objects, use the
programmatic interface.

Example 1. Fetching the XML Representation of SCOTT.EMP
To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to
some large number, as shown, before executing your query.

set pagesize 0
set long 90000
SELECT DBMS_METADATA.GET_XML

(
’TABLE’,’EMP’,’SCOTT’)

FROM DUAL;

Example 2. Fetching the DDL for all Complete Tables in the Current Schema, Filtering Out Nested
Tables and Overflow Segments

This example fetches the DDL for all “complete” tables in the current schema,
filtering out nested tables and overflow segments. The example uses SET_
TRANSFORM_PARAM (with the handle value = DBMS_METADATA.SESSION_
TRANSFORM meaning “for the current session”) to specify that storage clauses are
not to be returned in the SQL DDL. Afterwards, the example resets the session-level
parameters to their defaults. (To generate complete, uninterrupted output, set the
PAGESIZE to 0 and set LONG to some large number, as shown, before executing
your query.)

set pagesize 0
set long 90000
30-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
execute DBMS_METADATA.SET_TRANSFORM_PARAM(
DBMS_METADATA.SESSION_TRANSFORM,’STORAGE’,false);

SELECT DBMS_METADATA.GET_DDL(’TABLE’,u.table_name)
FROM USER_ALL_TABLES u
WHERE u.nested=’NO’
AND (u.iot_type is null or u.iot_type=’IOT’);

execute DBMS_METADATA.SET_TRANSFORM_PARAM(
DBMS_METADATA.SESSION_TRANSFORM,’DEFAULT’);

GET_DEPENDENT_XML and GET_DEPENDENT_DDL Functions
The GET_DEPENDENT_XML and GET_DEPENDENT_DDL functions return metadata
for one or more dependent objects.

Syntax
DBMS_METADATA.GET_DEPENDENT_XML (

object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)

RETURN CLOB;

DBMS_METADATA.GET_DEPENDENT_DDL (
object_type IN VARCHAR2,
base_object_name IN VARCHAR2,
base_object_schema IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT DDL,
object_count IN NUMBER DEFAULT 10000)

RETURN CLOB;

Parameters
Table 30–16 describes the parameters for the GET_DEPENDENT_xxx function.
DBMS_METADATA 30-31

GET_DEPENDENT_XML and GET_DEPENDENT_DDL Functions
Returns
The metadata for the objects as XML or DDL.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� OBJECT_NOT_FOUND. The specified object was not found in the database.

Usage Notes
The GET_DEPENDENT_xxx functions allow you to fetch metadata for dependent
objects with a single call. For some object types, you can use more than one
function. For example, you can use GET_xxx to fetch an index by its name or you
can use GET_DEPENDENT_xxx to fetch the same index by specifying the table on
which it is defined.

Table 30–16 GET_DEPENDENT_xxx Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter. See
Table 30–2, " Open() Parameters". The attributes of the object
type must be appropriate to the function. For GET_
DEPENDENT_xxx it must be a dependent object.

base_object_name The base object name, which will be used internally in a BASE_
OBJECT_NAME filter.

base_object_schema The base object schema, which will be used internally in a
BASE_OBJECT_SCHEMA filter. The default is the current user.

version The version of metadata to be extracted. This parameter takes
the same values as the OPEN version parameter.

model The object model to use. This parameter takes the same values
as the OPEN model parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORM name
parameter. For GET_DEPENDENT_XML this must not be DDL.

object_count The maximum number of objects to return.
30-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
An arbitrary number of dependent objects may match the input criteria for GET_
DEPENDENT_xxx. You can specify an object count when fetching these objects,
although the default count of 10000 should usually be adequate.

If the DDL transform is specified, session-level transform parameters are inherited.

If you invoke these functions from SQL*Plus, you should use the SET LONG and
SET PAGESIZE commands to generate complete, uninterrupted output.

Example: Fetch the DDL For All Object Grants On SCOTT.EMP
SQL> SET PAGESIZE 0
SQL> SET LONG 90000
SQL> SELECT DBMS_METADATA.GET_DEPENDENT_DDL(’OBJECT_GRANT’,
> ’EMP’, ’SCOTT’) FROM DUAL;

GET_GRANTED_XML and GET_GRANTED_DDL Functions
The GET_GRANTED_XML and GET_GRANTED_DDL functions return metadata for
one or more granted objects.

Syntax
DBMS_METADATA.GET_GRANTED_XML (

object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT NULL,
object_count IN NUMBER DEFAULT 10000)

RETURN CLOB;

DBMS_METADATA.GET_GRANTED_DDL (
object_type IN VARCHAR2,
grantee IN VARCHAR2 DEFAULT NULL,
version IN VARCHAR2 DEFAULT ’COMPATIBLE’,
model IN VARCHAR2 DEFAULT ’ORACLE’,
transform IN VARCHAR2 DEFAULT DDL,
object_count IN NUMBER DEFAULT 10000)

RETURN CLOB;

Parameters
Table 30–17 describes the parameters for the GET_GRANTED_xxx function.
DBMS_METADATA 30-33

GET_GRANTED_XML and GET_GRANTED_DDL Functions
Returns
The metadata for the objects as XML or DDL.

Exceptions
� INVALID_ARGVAL. A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

� OBJECT_NOT_FOUND. The specified object was not found in the database.

Usage Notes
The GET_GRANTED_xxx functions allow you to fetch metadata for dependent
objects with a single call.

An arbitrary number of granted objects may match the input criteria for GET_
GRANTED_xxx. You can specify an object count when fetching these objects,
although the default count of 10000 should usually be adequate.

If the DDL transform is specified, session-level transform parameters are inherited.

If you invoke these functions from SQL*Plus, you should use the SET LONG and
SET PAGESIZE commands to generate complete, uninterrupted output.

Table 30–17 GET_GRANTED_xxx Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter. See
Table 30–2, " Open() Parameters". The attributes of the object
type must be appropriate to the function. For GET_GRANTED_
xxx it must be a granted object

grantee The grantee. It will be used internally in a GRANTEE filter. The
default is the current user.

version The version of metadata to be extracted. This parameter takes
the same values as the OPEN version parameter.

model The object model to use. This parameter takes the same values
as the OPEN model parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORM name
parameter. For GET_GRANTED_XML this must not be DDL.

object_count The maximum number of objects to return.
30-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms
Example: Fetch the DDL For All System Grants Granted to SCOTT
SQL> SET PAGESIZE 0
SQL> SET LONG 90000
SQL> SELECT DBMS_METADATA.GET_GRANTED_DDL(’SYSTEM_GRANT’,’SCOTT’)
> FROM DUAL;
DBMS_METADATA 30-35

GET_GRANTED_XML and GET_GRANTED_DDL Functions
30-36 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_MG
31

DBMS_MGWADM

DBMS_MGWADM defines the Messaging Gateway administrative interface. The
package and object types are owned by SYS.

The following topics are discussed in this chapter:

� Summary of DBMS_MGWADM Object Types and Methods

� DBMS_MGWADM Constants

� MQSeries System Properties

� Summary of DBMS_MGWADM Subprograms

� Summary of Database Views

Note: You must run the catmgw.sql script to load the
Messaging Gateway packages and types into the database. Refer to
the Oracle9i Application Developer’s Guide - Advanced Queuing for
information on loading database objects.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing contains information about using DBMS_MGWADM
WADM 31-1

Summary of DBMS_MGWADM Object Types and Methods
Summary of DBMS_MGWADM Object Types and Methods

MGW_PROPERTY Type

This type specifies a named property. MGW_PROPERTY is used to specify optional
properties for messaging links and foreign queues.

Syntax
TYPE SYS.MGW_PROPERTY IS OBJECT(

name VARCHAR2(100),
value VARCHAR2(1000));

Table 31–1 DBMS_MGWADM Object Types

Object Type Description

MGW_PROPERTY Type on
page 31-2

Specifies a named property

MGW_
PROPERTY.CONSTRUCT
Method on page 31-3

Constructs a new MGW_PROPERTY instance

MGW_
PROPERTY.CONSTRUCT
Method on page 31-3

Constructs a new MGW_PROPERTY instance initialized using
parameters

MGW_PROPERTIES Type
on page 31-4

Specifies an array of properties

MGW_MQSERIES_
PROPERTIES Type on
page 31-5

Specifies basic properties for an MQSeries messaging system
link

MGW_MQSERIES_
PROPERTIES.CONSTRUCT
Method on page 31-6

Constructs a new MGW_MQSERIES_PROPERTIES instance

MGW_MQSERIES_
PROPERTIES.ALTER_
CONSTRUCT Method on
page 31-7

Constructs a new MGW_MQSERIES_PROPERTIES instance for
altering the properties of an existing messaging link
31-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Object Types and Methods
Attributes

MGW_PROPERTY.CONSTRUCT Method

This method constructs a new MGW_PROPERTY instance. All attributes are assigned
a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_PROPERTY;

MGW_PROPERTY.CONSTRUCT Method

This method constructs a new MGW_PROPERTY instance initialized using the given
parameters.

Syntax
STATIC FUNCTION CONSTRUCT(

p_name IN VARCHAR2,
p_value IN VARCHAR2)

RETURN SYS.MGW_PROPERTY;

Parameters

Table 31–2 MGW_PROPERTY Attributes

Attribute Description

name Property name

value Property value

Table 31–3 MGW_PROPERTY.CONSTRUCT Parameters

Parameter Description

p_name Property name

p_value Property value
DBMS_MGWADM 31-3

MGW_PROPERTIES Type
MGW_PROPERTIES Type

This type specifies an array of properties.

Syntax
TYPE SYS.MGW_PROPERTIES AS VARRAY (100) OF SYS.MGW_PROPERTY;

Usage Notes
Unless noted otherwise, Messaging Gateway uses named properties as follows:

� Names with the ’MGWPROP$_’ prefix are reserved. They are used for special
purposes and are invalid when used as a normal property name.

� A property name can exist only once in a property list; that is, a list can contain
only one value for a given name. The name is treated in a case-insensitive
manner.

� In general, a property list is order-independent and the property names may
appear in any order. An alter property list is an exception.

� To alter an existing property list, a new property list may be used where each
new property modifies the original list in one of the following ways: adds a
new property, modifies a property, removes a property, or removes all
properties.

The alter list is processed in order, from the first element to the last element. Thus
the order in which the elements appear in the alter list is meaningful, especially
when the alter list is used to remove properties from an existing list.

The property name and value are used to determine how that element affects the
original list. The following rules apply:

� Add/Modify Property

MGW_PROPERTY.NAME = <property name>
MGW_PROPERTY.VALUE = <property value>

If a property of the given name already exists, the current value is replaced with the
new value; otherwise the new property is added to the end of the list.

� Remove Property

MGW_PROPERTY.NAME = ’MGWPROP$_REMOVE’
MGW_PROPERTY.VALUE = <name of property to remove>
31-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Object Types and Methods
No action is taken if the property name does not exist in the original list.

� Remove All Properties

MGW_PROPERTY.NAME = ’MGWPROP$_REMOVE_ALL’
MGW_PROPERTY.VALUE = not used

The DBMS_MGWADM package defines constants to represent the reserved property
names. Refer to the MGWPROP_< > constants.

MGW_MQSERIES_PROPERTIES Type

This type specifies basic properties for an MQSeries messaging system link.

Syntax
TYPE SYS.MGW_MQSERIES_PROPERTIES IS OBJECT (

queue_manager VARCHAR2(64),
hostname VARCHAR2(64),
port INTEGER,
channel VARCHAR2(64),
interface_type INTEGER,
max_connections INTEGER,
username VARCHAR2(64),
password VARCHAR2(64),
inbound_log_queue VARCHAR2(64),
outbound_log_queue VARCHAR2(64));

Attributes

Table 31–4 MGW_MQSERIES_PROPERTIES Attributes

Attribute Description

queue_manager The name of the MQSeries queue manager

hostname The host on which the MQSeries messaging system resides. If
hostname is NULL, an MQSeries bindings connection is used.
If nonnull, a client connection is used and requires that a port
and channel be specified.

port The port number. This is used only for client connections; that
is, when hostname is NULL.
DBMS_MGWADM 31-5

MGW_MQSERIES_PROPERTIES.CONSTRUCT Method
MGW_MQSERIES_PROPERTIES.CONSTRUCT Method

This method constructs a new MGW_MQSERIES_PROPERTIES instance. All
attributes are assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_MQSERIES_PROPERTIES ;

channel The channel used when establishing a connection to the queue
manager. This is used only for client connections; that is, when
hostname is NULL.

interface_type The type of messaging interface to use. Values: DBMS_
MGWADM.MQSERIES_BASE_JAVA_INTERFACE for the
MQSeries Base Java interface.

max_connections The maximum number of messaging connections to the
MQSeries messaging system

username The user name used for authentication to the MQSeries
messaging system

password The password used for authentication to the MQSeries
messaging system

inbound_log_queue The message provider (native) name of the MQSeries queue
used for propagation recovery purposes when the messaging
link is used for inbound propagation; that is, when queues
associated with this link serve as a propagation source. The
queue must be created using MQSeries administration tools.

outbound_log_queue The message provider (native) name of the MQSeries queue
used for propagation recovery purposes when the messaging
link is used for outbound propagation; that is, when queues
associated with this link serve as a propagation destination.
The queue must be created using MQSeries administration
tools.

Table 31–4 MGW_MQSERIES_PROPERTIES Attributes

Attribute Description
31-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_MGWADM Constants
MGW_MQSERIES_PROPERTIES.ALTER_CONSTRUCT Method

This method constructs a new MGW_MQSERIES_PROPERTIES instance for altering
the properties of an existing messaging link. All attributes having a VARCHAR2 data
type are assigned a value of DBMS_MGWADM.NO_CHANGE. Attributes of other data
types are assigned a value of NULL.

Syntax
STATIC FUNCTION ALTER_CONSTRUCT
RETURN SYS.MGW_MQSERIES_PROPERTIES ;

DBMS_MGWADM Constants

Table 31–5 DBMS_MGWADM Constants—Propagation Types

Name Type Description

OUTBOUND_PROPAGATION CONSTANT BINARY_INTEGER;Represents the propagation type for AQ to
non-Oracle propagation. The propagation
source is a local AQ queue and the
destination is a queue in a foreign
(non-Oracle) messaging system.

INBOUND_PROPAGATION CONSTANT BINARY_INTEGER;Represents the propagation type for
non-Oracle to AQ propagation. The
propagation source is a queue in a foreign
(non-Oracle) messaging system and the
destination is a local AQ queue.

Table 31–6 DBMS_MGWADM Constants—Queue Domain Types

Name Type Description

DOMAIN_QUEUE CONSTANT BINARY_INTEGER;Represents a queue destination. A JMS
queue (point-to-point model) is classified as
a queue.

DOMAIN_TOPIC CONSTANT BINARY_INTEGER; Represents a topic destination. A JMS topic
(publish-subscribe model) is classified as a
topic.
DBMS_MGWADM 31-7

DBMS_MGWADM Constants
Table 31–7 DBMS_MGWADM Constants—Force Values

Name Type Description

NO_FORCE CONSTANT BINARY_INTEGER;Represents a normal, nonforced action

FORCE CONSTANT BINARY_INTEGER; Represents a forced action

Table 31–8 DBMS_MGWADM Constants—Shutdown Modes

Name Type Description

SHUTDOWN_NORMAL CONSTANT BINARY_INTEGER;Represents the normal shutdown mode

SHUTDOWN_IMMEDIATE CONSTANT BINARY_INTEGER;Represents the immediate shutdown mode

Table 31–9 DBMS_MGWADM Constants—Cleanup Actions

Name Type Description

CLEAN_STARTUP_STATE CONSTANT BINARY_INTEGER;Represents the cleanup action for gateway
startup state recovery

Table 31–10 DBMS_MGWADM Constants—Logging Levels

Name Type Description

BASIC_LOGGING CONSTANT BINARY_INTEGER; Represents the detail of logging information
written to the log file. The logging level
ranges from BASIC_LOGGING for standard
(the least) information to TRACE_DEBUG_
LOGGING for the greatest information.

TRACE_LITE_LOGGING CONSTANT BINARY_INTEGER;

TRACE_HIGH_LOGGING CONSTANT BINARY_INTEGER;

TRACE_DEBUG_LOGGING CONSTANT BINARY_INTEGER;

Table 31–11 DBMS_MGWADM Constants—MQSeries Interface Types

Name Type Description

MQSERIES_BASE_JAVA_
INTERFACE

CONSTANT BINARY_INTEGER; Represents the Base Java interface for the
MQSeries messaging system

MQSERIES_JMS_INTERFACE CONSTANT BINARY_INTEGER;Represents the JMS interface for the
MQSeries messaging system
31-8 Oracle9i Supplied PL/SQL Packages and Types Reference

MQSeries System Properties
MQSeries System Properties
The following sections discuss properties of MQSeries related to links and queues.
Refer to IBM MQSeries documentation for more information.

Basic Link Properties (MGW_MQSERIES_PROPERTIES)

Table 31–14 summarizes the basic configuration properties for an MQSeries
messaging link. (Refer to "Notes on Table 31–14" on page 31-10 for an explanation of
the numbers in parentheses.) The table indicates which properties are optional
(NULL allowed), which can be altered, and if alterable, which values can be
dynamically changed.

Table 31–14 MQSeries Link Properties

Table 31–12 DBMS_MGWADM Constants—Named Property Constants

Name Type Description

MGWPROP_PREFIX CONSTANT VARCHAR2; A constant (MGWPROP$_) for the reserved
property name prefix

MGWPROP_REMOVE CONSTANT VARCHAR2; A constant (MGWPROP$_REMOVE) for the
reserved property name used to remove an
existing property

MGWPROP_REMOVE_ALL CONSTANT VARCHAR2; A constant (MGWPROP$_REMOVE_ALL) for
the reserved property name used to remove
all properties

Table 31–13 DBMS_MGWADM Constants—Other Constants

Name Type Description

NO_CHANGE CONSTANT VARCHAR2; Indicates that an existing value should be
preserved (not changed). This is used for
certain APIs where the desire is to change
one or more parameters but leave others
unchanged.

Attribute NULL Allowed? Alter Value? Dynamic?

queue_manager no no --

hostname yes (1) no --
DBMS_MGWADM 31-9

Optional Link Properties
Notes on Table 31–14
1. If the hostname is NULL, the port and channel must be NULL. If the hostname is

nonnull, the port and channel must be nonnull. If the hostname is NULL, an
MQSeries bindings connection is used; otherwise a client connection is used.

2. If NULL, a default value of DBMS_MGWADM.MQSERIES_BASE_JAVA_
INTERFACE is used.

3. If NULL, a default value of 1 is used.

4. The inbound log queue can be NULL if the link is not used for inbound
propagation. The log queue can be altered only when no inbound propagation
subscriber references the link.

5. The outbound log queue can be NULL if the link is not used for outbound
propagation. The log queue can be altered only when no outbound propagation
subscriber references the link.

Optional Link Properties

This section describes optional configuration properties supported for an MQSeries
messaging link. These properties are specified by using the options parameter of
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK and DBMS_MGWADM.ALTER_
MSGSYSTEM_LINK.

port yes (1) no --

channel yes (1) no --

interface_type yes (2) no --

max_connections yes (3) yes yes

username yes yes yes

password yes yes yes

inbound_log_queue yes (4) yes(4) yes

outbound_log_queue yes (5) yes(5) yes

Attribute NULL Allowed? Alter Value? Dynamic?
31-10 Oracle9i Supplied PL/SQL Packages and Types Reference

MQSeries System Properties
MQ_ccsid
This property specifies the character set identifier to be used. This should be the
character set’s integer value (for example, 819) rather than a descriptive string. If
not set, the MQSeries default character set 819 is used.

Default: 819

Alterable: yes

Dynamic: no

MQ_ReceiveExit
This property specifies the fully qualified Java classname of a class implementing
the MQReceiveExit interface. If not set, no default is used. This class must be in
the CLASSPATH of the Messaging Gateway agent.

Default: none

Alterable: yes

Dynamic: no

MQ_SendExit
This property specifies the fully qualified Java classname of a class implementing
the MQSendExit interface. If not set, no default is used. This class must be in the
CLASSPATH of the Messaging Gateway agent.

Default: none

Alterable: yes

Dynamic: no

MQ_SecurityExit
This property specifies the fully qualified Java classname of a class implementing
the MQSecurityExit interface. If not set, no default is used. This class must be in
the CLASSPATH of the Messaging Gateway agent.

Default: none

Alterable: yes

Dynamic: no
DBMS_MGWADM 31-11

Optional Queue Properties
Optional Queue Properties

This section describes optional configuration properties supported for a registered
queue of an MQSeries messaging link. These properties are specified by using the
options parameter of DBMS_MGWADM.REGISTER_FOREIGN_QUEUE.

MQ_openOptions
This property specifies the value used for the openOptions argument of the
MQSeries Base Java MQQueueManager.accessQueue method. No value is
required but if one is given, the Messaging Gateway agent adds MQOO_OUTPUT to
the specified value for an enqueue (put) operation. MQOO_INPUT_SHARED is added
for a dequeue (get) operation.

Default: MQOO_OUTPUT for an enqueue/put operation; MQOO_INPUT_SHARED for a
dequeue/get operation

Alterable: no

Dynamic: no

Summary of DBMS_MGWADM Subprograms

Table 31–15 DBMS_MGWADM Subprograms

Subprogram Description

ALTER_AGENT Procedure on
page 31-13

Alters Messaging Gateway agent parameters

DB_CONNECT_INFO Procedure on
page 31-14

Configures connection information used by the
Messaging Gateway agent for connections to the
Oracle database

STARTUP Procedure on page 31-15 Starts the Messaging Gateway agent

SHUTDOWN Procedure on
page 31-16

Shuts down the Messaging Gateway agent

CLEANUP_GATEWAY Procedure on
page 31-17

Cleans up Messaging Gateway

SET_LOG_LEVEL Procedure on
page 31-18

Dynamically alters the Messaging Gateway agent
logging level

CREATE_MSGSYSTEM_LINK
Procedure on page 31-18

Creates a messaging system link to an MQSeries
messaging system
31-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
ALTER_AGENT Procedure

This procedure alters Messaging Gateway agent parameters.

Syntax
DBMS_MGWADM.ALTER_AGENT (

ALTER_MSGSYSTEM_LINK
Procedure on page 31-19

Alters the properties of an MQSeries messaging
system link

REMOVE_MSGSYSTEM_LINK
Procedure on page 31-21

Removes a messaging system link for a non-Oracle
messaging system

REGISTER_FOREIGN_QUEUE
Procedure on page 31-21

Registers a non-Oracle queue entity in Messaging
Gateway

UNREGISTER_FOREIGN_QUEUE
Procedure on page 31-22

Removes a non-Oracle queue entity in Messaging
Gateway

ADD_SUBSCRIBER Procedure on
page 31-23

Adds a subscriber used to consume messages from a
source queue for propagation to a destination

ALTER_SUBSCRIBER Procedure on
page 31-26

Alters the parameters of a subscriber used to
consume messages from a source queue for
propagation to a destination

REMOVE_SUBSCRIBER Procedure
on page 31-28

Removes a subscriber used to consume messages
from a source queue for propagation to a destination

RESET_SUBSCRIBER Procedure on
page 31-29

Resets the propagation error state for a subscriber

SCHEDULE_PROPAGATION
Procedure on page 31-30

Schedules message propagation from a source to a
destination

UNSCHEDULE_PROPAGATION
Procedure on page 31-32

Removes a propagation schedule

ALTER_PROPAGATION_
SCHEDULE Procedure on page 31-32

Alters a propagation schedule

ENABLE_PROPAGATION_
SCHEDULE Procedure on page 31-33

Enables a propagation schedule

DISABLE_PROPAGATION_
SCHEDULE Procedure on page 31-34

Disables a propagation schedule

Table 31–15 DBMS_MGWADM Subprograms

Subprogram Description
DBMS_MGWADM 31-13

DB_CONNECT_INFO Procedure
max_connections IN BINARY_INTEGER DEFAULT NULL,
max_memory IN BINARY_INTEGER DEFAULT NULL);

Parameters

Usage Notes
The default values for configuration parameters are set when Messaging Gateway is
installed.

The max_memory parameter changes take effect the next time the gateway agent is
active. If the agent is currently active, the gateway must be shut down and started
for the changes to take effect.

The max_connections parameter specifies the maximum number of JDBC
messaging connections created and used by the AQ driver. This parameter is
dynamically changed for a larger value only. In release 9.2, the gateway agent must
be shut down and restarted before a smaller value takes effect.

DB_CONNECT_INFO Procedure

This procedure configures connection information used by the Messaging Gateway
agent for connections to the Oracle database.

Syntax
DBMS_MGWADM.DB_CONNECT_INFO (

username IN VARCHAR2,
password IN VARCHAR2,
database IN VARCHAR2 DEFAULT NULL);

Table 31–16 ALTER_AGENT Procedure Parameters

Parameter Description

max_connections The maximum number of messaging connections to the Oracle
database used by the gateway agent. If NULL, the current
value is unchanged. If nonnull, the value must be 1 or greater.

max_memory The maximum heap size, in MB, used by the gateway agent. If
NULL, the current value is unchanged. If nonnull, the value
must be 64 or greater.
31-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Parameters

Usage Notes
The gateway agent connects to the Oracle database as the user configured by this
API. An Oracle administrator should create the user, grant it the role MGW_AGENT_
ROLE, and then call this procedure to configure Messaging Gateway. The MGW_
AGENT_ROLE is used to grant this user special privileges needed to access gateway
configuration information stored in the database, enqueue or dequeue messages to
and from Oracle queues, and perform certain AQ administration tasks.

STARTUP Procedure

This procedure starts the Messaging Gateway agent. It must be called before any
propagation activity can take place.

Syntax
DBMS_MGWADM.STARTUP(

instance IN BINARY_INTEGER DEFAULT 0,
force IN BINARY_INTEGER DEFAULT dbms_mgwadm.NO_FORCE);

Parameters

Table 31–17 DB_CONNECT_INFO Procedure Parameters

Parameter Description

username The user name used for connections to the Oracle database.
NULL is not allowed

password The password used for connections to the Oracle database.
NULL is not allowed

database The database connect string used by the gateway agent. NULL
indicates that a local connection should be used.

Table 31–18 STARTUP Procedure Parameters

Parameter Description

instance Specifies which instance can execute the job queue job used to
start the Messaging Gateway agent. If this is zero, then the job
can be run by any instance.
DBMS_MGWADM 31-15

SHUTDOWN Procedure
Usage Notes
The Messaging Gateway agent cannot be started until an agent user has been
configured using DB_CONNECT_INFO.

This procedure submits a job queue job, which starts the Messaging Gateway agent
when executed. The instance and force parameters are used for job queue
affinity, which you use to indicate whether a particular instance or any instance can
run a submitted job.

SHUTDOWN Procedure

This procedure shuts down the Messaging Gateway agent. No propagation activity
occurs until the gateway is started.

Syntax
DBMS_MGWADM.SHUTDOWN (

sdmode IN BINARY_INTEGER DEFAULT DBMS_MGWADM.SHUTDOWN_NORMAL);

Parameters

force If this is dbms_mgwadm.FORCE, then any positive integer is
acceptable as the job instance. If this is dbms_mgwadm.NO_
FORCE (the default), then the specified instance must be
running; otherwise the routine raises an exception.

Table 31–19 SHUTDOWN Procedure Parameters

Parameter Description

sdmode The shutdown mode. Values:

� SHUTDOWN_NORMAL for normal shutdown. The gateway
agent may attempt to complete any propagation work
currently in progress.

� SHUTDOWN_IMMEDIATE for immediate shutdown. The
gateway terminates any propagation work currently in
progress and shuts down immediately.

Table 31–18 STARTUP Procedure Parameters

Parameter Description
31-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Usage Notes
In release 9.2, the sdmode parameter is ignored and all shutdown modes behave the
same way.

CLEANUP_GATEWAY Procedure

This procedure cleans up Messaging Gateway. The procedure performs cleanup or
recovery actions that may be needed when the gateway is left in some abnormal or
unexpected condition. The MGW_GATEWAY view lists gateway status and
configuration information that pertains to the cleanup actions.

Syntax
DBMS_MGWADM.CLEANUP_GATEWAY(

action IN BINARY_INTEGER);

Parameters

Usage Notes
The CLEAN_STARTUP_STATE action involves recovery tasks that set the gateway to
a known state when the gateway agent has crashed or some other abnormal event
occurs so that the gateway cannot be started. This should only be done when the
gateway agent has been started but appears to have crashed or has been
nonresponsive for an extended period of time.

Conditions or indications where this action may be needed:

� The MGW_GATEWAY view shows that the AGENT_STATUS value is something
other than NOT_STARTED or START_SCHEDULED, and the AGENT_PING value
is UNREACHABLE for an extended period of time.

The cleanup tasks include:

� Removing the queued job used to start the external gateway agent process.

Table 31–20 CLEANUP_GATWAY Procedure Parameters

Parameter Description

action The cleanup action to be performed. Values:

CLEAN_STARTUP_STATE for gateway startup state recovery.
DBMS_MGWADM 31-17

SET_LOG_LEVEL Procedure
� Setting certain configuration information to a known state. For example, setting
the agent status to NOT_STARTED.

The following considerations apply:

� This fails if the agent status is NOT_STARTED or START_SCHEDULED.

� This fails if no shutdown attempt has been made prior to calling this procedure,
except if the agent status is STARTING.

� This attempts to contact (ping) the gateway agent. If successful, the assumption
is that the agent is active and this procedure fails. If the agent does not respond
after several attempts have been made, the cleanup tasks are performed.

� This procedure takes several seconds, possibly up to one minute, if the gateway
agent never responds to the ping attempts. This is expected behavior under
conditions where this particular cleanup action is appropriate and necessary.

SET_LOG_LEVEL Procedure

This procedure dynamically alters the Messaging Gateway agent logging level. The
Messaging Gateway agent must be running.

Syntax
DBMS_MGWADM.SET_LOG_LEVEL (

log_level IN BINARY_INTEGER);

Parameters

CREATE_MSGSYSTEM_LINK Procedure

This procedure creates a messaging system link to an MQSeries messaging system.

Table 31–21 SET_LOG_LEVEL Procedure Parameters

Parameter Description

log_level Level at which the Messaging Gateway agent logs information;
refer to the DBMS_MGWADM.<>_LOGGING constants. BASIC_
LOGGING generates the least information while TRACE_
DEBUG_LOGGING generates the most information.
31-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Syntax
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(

linkname IN VARCHAR2,
properties IN sys.mgw_mqseries_properties,
options IN sys.mgw_properties DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
Refer to "Basic Link Properties (MGW_MQSERIES_PROPERTIES)" on page 31-9 for
more information about messaging link properties.

ALTER_MSGSYSTEM_LINK Procedure

This procedure alters the properties of an MQSeries messaging system link.

Syntax
DBMS_MGWADM.ALTER_MSGSYSTEM_LINK (

linkname IN VARCHAR2,
properties IN SYS.MGW_MQSERIES_PROPERTIES,
options IN SYS.MGW_PROPERTIES DEFAULT NULL,
comment IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);

Table 31–22 CREATE_MSGSYSTEM_LINK Procedure Parameters

Parameter Description

linkname A user-defined name to identify the message system link

properties Basic properties of an MQSeries messaging system link

options Optional link properties. NULL if there are none. These are less
frequently used configuration properties supported by the
messaging system.

comment A user-specified description. NULL if one is not desired
DBMS_MGWADM 31-19

ALTER_MSGSYSTEM_LINK Procedure
Parameters

Usage Notes
In release 9.2, the MGW_MQSERIES_PROPERTIES.MAX_CONNECTIONS parameter
specifies the maximum number of messaging connections created and used for that
messaging link. This parameter is dynamically changed for a larger value only. The
gateway agent must be shut down and restarted before a smaller value takes effect.

To retain an existing value for a messaging link property with a VARCHAR2 data
type, specify DBMS_MGWADM.NO_CHANGE for that particular property. To preserve
an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current option
properties. Each property affects the current property list in a particular manner;
add a new property, replace an existing property, remove an existing property, or
remove all properties.

Some properties cannot be modified and this procedure will fail if you try. Other
properties can be modified only under certain conditions, depending on the current
configuration; for example, when there are no propagation subscribers or schedules
that have a source or destination associated with the link.

For properties that can be changed, a few are dynamic, while others require
Messaging Gateway to be shut down and restarted before they take effect.

Refer to "Basic Link Properties (MGW_MQSERIES_PROPERTIES)" on page 31-9 for
more information on messaging link properties.

Table 31–23 ALTER_MSGSYSTEM_LINK Procedure Parameters

Parameters Description

linkname The messaging system link name

properties Basic properties for an MQSeries messaging system link. If
NULL, no link properties are changed.

options Optional link properties. NULL if no options are changed. If
nonnull, the properties specified in this list are combined with
the current options properties to form a new set of link options.

comment An optional description or NULL if not desired. If DBMS_
MGWADM.NO_CHANGE is specified, the current value is not
changed.
31-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
REMOVE_MSGSYSTEM_LINK Procedure

This procedure removes a messaging system link for a non-Oracle messaging
system.

Syntax
DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK(

linkname IN VARCHAR2);

Parameters

Usage Notes
All registered queues associated with this link must be removed before the
messaging system link can be removed. This fails if there is a registered foreign
(non-Oracle) queue that references this link.

REGISTER_FOREIGN_QUEUE Procedure

This procedure registers a non-Oracle queue entity in Messaging Gateway.

Syntax
DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(

name IN VARCHAR2,
linkname IN VARCHAR2,
provider_queue IN VARCHAR2 DEFAULT NULL,
domain IN INTEGER DEFAULT NULL,
options IN sys.mgw_properties DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);

Table 31–24 REMOVE_MSGSYSTEM_LINK Procedure Parameters

Parameters Description

linkname The messaging system link name
DBMS_MGWADM 31-21

UNREGISTER_FOREIGN_QUEUE Procedure
Parameters

Usage Notes
This procedure does not create the physical queue in the non-Oracle messaging
system. The non-Oracle queue must be created using the administration tools for
that messaging system.

In release 9.2, domain is not used and must be NULL because the domain type can
be automatically determined for the messaging systems currently supported.

Refer to "Basic Link Properties (MGW_MQSERIES_PROPERTIES)" on page 31-9 for
more information on messaging link properties.

UNREGISTER_FOREIGN_QUEUE Procedure

This procedure removes a non-Oracle queue entity in Messaging Gateway.

Syntax
DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE(

Table 31–25 REGISTER_FOREIGN_QUEUE Procedure Parameters

Parameters Description

name The registered queue name. This name identifies the foreign
queue within Messaging Gateway and need not match the
name of the queue in the foreign messaging system.

linkname The link name for the messaging system on which this queue
exists

provider_queue The message provider (native) queue name. If NULL, the value
provided for the name parameter is used as the provider queue
name.

domain The domain type of the queue. Values:

� NULL if the domain type is automatically determined
based on the messaging system of the queue

� DOMAIN_QUEUE for a queue (point-to-point model)

� DOMAIN_TOPIC for a topic (publish-subscribe model)

options Optional queue properties

comment A user-specified description. Can be NULL.
31-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
name IN VARCHAR2,
linkname IN VARCHAR2);

Parameters

Usage Notes
This procedure does not remove the physical queue in the non-Oracle messaging
system.

All subscribers and schedules referencing this queue must be removed before it can
be unregistered. This fails if a subscriber or propagation schedule references the
non-Oracle queue.

ADD_SUBSCRIBER Procedure

This procedure adds a subscriber used to consume messages from a source queue
for propagation to a destination.

Syntax
DBMS_MGWADM.ADD_SUBSCRIBER(

subscriber_id IN VARCHAR2,
propagation_type IN BINARY_INTEGER,
queue_name IN VARCHAR2,
destination IN VARCHAR2,
rule IN VARCHAR2 DEFAULT NULL,
transformation IN VARCHAR2 DEFAULT NULL,
exception_queue IN VARCHAR2 DEFAULT NULL);

Table 31–26 UNREGISTER_FOREIGN_QUEUE Procedure Parameters

Parameter Description

name The queue name

linkname The link name for the messaging system on which the queue
exists
DBMS_MGWADM 31-23

ADD_SUBSCRIBER Procedure
Parameters

Table 31–27 ADD_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Specifies a user-defined name that identifies this subscriber.

propagation_type Specifies the type of message propagation. Values:

� DBMS_MGWADM.OUTBOUND_PROPAGATION for AQ to
non-Oracle propagation

� DBMS_MGWADM.INBOUND_PROPAGATION for non-Oracle
to AQ propagation

queue_name Specifies the source queue to which this subscriber is being
added. The syntax and interpretation of this parameter depend
on the value specified for propagation_type.

destination Specifies the destination queue to which messages consumed
by this subscriber are propagated. The syntax and
interpretation of this parameter depend on the value specified
for propagation_type.

rule Specifies an optional subscription rule used by the subscriber
to dequeue messages from the source queue. This is NULL if no
rule is needed. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

transformation Specifies the transformation needed to convert between the AQ
payload and a gateway-defined ADT. The type of
transformation needed depends on the value specified for
propagation_type.

If no transformation is provided (a NULL value is specified), the
gateway makes a best effort to propagate messages based on
the AQ payload type and the capabilities of the non-Oracle
messaging system. For example, the gateway automatically
propagates messages for an AQ queue having a RAW payload
and non-Oracle messaging systems that support a ‘bytes’
message body.

exception_queue Specifies a queue used for exception message logging
purposes. This queue must be on the same messaging system
as the propagation source. If NULL, an exception queue is not
used and propagation stops if a problem occurs. The syntax
and interpretation of this parameter depend on the value
specified for propagation_type.

The source queue and exception queue cannot be the same
queue.
31-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Usage Notes
For OUTBOUND_PROPAGATION, parameters are interpreted as follows:

� queue_name - specifies the local AQ queue that is the propagation source. This
must have a syntax of schema.queue .

� destination - specifies the foreign queue to which messages are propagated.
This must have a syntax of registered_queue@message_link.

� rule - specifies an optional AQ subscriber rule. This is NULL if no rule is
needed.

� transformation - specifies the transformation used to convert the AQ
payload to a gateway-defined ADT.

The gateway propagation dequeues messages from the AQ queue using the
transformation to convert the AQ payload to a known gateway-defined ADT.
The message is then enqueued in the foreign messaging system based on the
gateway ADT.

� exception_queue - specifies the name of a local AQ queue to which
messages are moved if an exception occurs. This must have a syntax of
schema.queue .

For INBOUND_PROPAGATION, parameters are interpreted as follows:

� queue_name - specifies the foreign queue that is the propagation source. This
must have a syntax of registered_queue@message_link.

� destination - specifies the local AQ queue to which message are propagated.
This must have a syntax of schema.queue.

� rule - specifies an optional subscriber rule that is valid for the foreign
messaging system. This is NULL if no rule is needed.

� transformation - specifies the transformation used to convert a
gateway-defined ADT to the AQ payload type.

The gateway propagation dequeues messages from the foreign messaging
system and converts the message body to a known gateway-defined ADT. The
transformation is used to convert the gateway ADT to an AQ payload type
when the message is enqueued to the AQ queue.

� exception_queue - specifies the name of a foreign queue to which messages
are moved if an exception occurs. This must have a syntax of registered_
queue@message_link.
DBMS_MGWADM 31-25

ALTER_SUBSCRIBER Procedure
For OUTBOUND_PROPAGATION, a local subscriber is added to the AQ queue. The
subscriber is of the form aq$_agent(‘MGW_<subscriber_id>’,NULL,NULL).

For INBOUND_PROPAGATION, whether or not a subscriber is needed depends on
the requirements of the non-Oracle messaging system.

For OUTBOUND_PROPAGATION, the exception queue has the following
considerations:

� The user is responsible for creating the AQ queue to be used as the exception
queue.

� The payload type of the source and exception queue must match.

� The exception queue must be created as a queue type of NORMAL_QUEUE rather
than EXCEPTION_QUEUE. Enqueue restrictions prevent the gateway
propagation from using an AQ queue of type EXCEPTION_QUEUE as a gateway
exception queue.

For INBOUND_PROPAGATION, the exception queue has the following
considerations:

� The exception queue must be a registered non-Oracle queue.

� The source and exception queues must use the same messaging system link.

ALTER_SUBSCRIBER Procedure

This procedure alters the parameters of a subscriber used to consume messages
from a source queue for propagation to a destination.

Syntax
DBMS_MGWADM.ALTER_SUBSCRIBER (

subscriber_id IN VARCHAR2,
rule IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
transformation IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
exception_queue IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE);
31-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Parameters

Usage Notes
For a subscriber having a propagation type of OUTBOUND_PROPAGATION,
parameters are interpreted as follows:

� rule - specifies an optional AQ subscriber rule.

� transformation - specifies the transformation used to convert the AQ
payload to a gateway-defined ADT.

The gateway propagation dequeues messages from the AQ queue using the
transformation to convert the AQ payload to a known gateway-defined ADT.
The message is then enqueued in the foreign messaging system based on the
gateway ADT.

Table 31–28 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber to be altered

rule Specifies an optional subscription rule used by the subscriber
to dequeue messages from the source queue. The syntax and
interpretation of this parameter depend on the subscriber’s
propagation type.

A NULL value indicates that no subscription rule is needed. If
DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

transformation Specifies the transformation needed to convert between the AQ
payload and a gateway-defined ADT. The type of
transformation needed depends on the subscriber’s
propagation type.

A NULL value indicates that no transformation is needed. If
DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

exception_queue Specifies a queue used for exception message logging
purposes. This queue must be on the same messaging system
as the propagation source. If no exception queue is associated
with the subscriber, propagation stops if a problem occurs. The
syntax and interpretation of this parameter depend on the
subscriber’s propagation type.

A NULL value indicates that no exception queue is used. If
DBMS_MGWADM.NO_CHANGE, the current value is unchanged.

The source queue and exception queue cannot be the same
queue.
DBMS_MGWADM 31-27

REMOVE_SUBSCRIBER Procedure
� exception_queue - specifies the name of a local AQ queue to which
messages are moved if an exception occurs. This must have a syntax of
schema.queue .

For a subscriber having a propagation type of INBOUND_PROPAGATION,
parameters are interpreted as follows:

� rule - specifies an optional subscriber rule that is valid for the foreign
messaging system.

� transformation - specifies the transformation used to convert a
gateway-defined ADT to the AQ payload type.

The gateway propagation dequeues messages from the foreign messaging
system and converts the message body to a known gateway-defined ADT. The
transformation is used to convert the gateway ADT to an AQ payload type
when the message is enqueued to the AQ queue.

� exception_queue - specifies the name of a foreign queue to which messages
are moved if an exception occurs. This must have a syntax of registered_
queue@message_link.

For OUTBOUND_PROPAGATION, the exception queue has the following
considerations:

� The user is responsible for creating the AQ queue to be used as the exception
queue.

� The payload type of the source and exception queues must match.

� The exception queue must be created as a queue type of NORMAL_QUEUE rather
than EXCEPTION_QUEUE. Enqueue restrictions prevent gateway propagation
from using an AQ queue of type EXCEPTION_QUEUE as a gateway exception
queue.

For INBOUND_PROPAGATION, the exception queue has the following
considerations:

� The exception queue must be a registered non-Oracle queue.

� The source and exception queues must use the same messaging system link.

REMOVE_SUBSCRIBER Procedure

This procedure removes a subscriber used to consume messages from a source
queue for propagation to a destination.
31-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Syntax
DBMS_MGWADM.REMOVE_SUBSCRIBER (

subscriber_id IN VARCHAR2,
force IN BINARY_INTEGER DEFAULT DBMS_MGWADM.NO_FORCE);

Parameters

Usage Notes
For outbound propagation, a local subscriber is removed from the AQ queue.

RESET_SUBSCRIBER Procedure

This procedure resets the propagation error state for a subscriber.

Syntax
DBMS_MGWADM.RESET_SUBSCRIBER (

subscriber_id IN VARCHAR2);

Table 31–29 REMOVE_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber to be removed

force Specifies whether this procedure should succeed even if the
gateway is not able to perform all cleanup actions pertaining to
this subscriber. Values:

� NO_FORCE (0) if this should fail if unable to cleanup
successfully.

� FORCE (1) if this should succeed even though all
cleanup actions may not be done.

The gateway agent uses various resources of the Oracle
database and non-Oracle messaging system for its propagation
work; for example, it enqueues messages to log queues, creates
subscribers, and so on. These resources are typically associated
with each subscriber and need to be released when the
subscriber is no longer needed. Typically, this procedure
should only be called when the gateway agent is running and
able to access the non-Oracle messaging system associated
with this subscriber.
DBMS_MGWADM 31-29

SCHEDULE_PROPAGATION Procedure
Parameters

SCHEDULE_PROPAGATION Procedure

This procedure schedules message propagation from a source to a destination. The
schedule must be enabled and the gateway started in order for messages to be
propagated.

Syntax
DBMS_MGWADM.SCHEDULE_PROPAGATION (

schedule_id IN VARCHAR2,
propagation_type IN BINARY_INTEGER,
source IN VARCHAR2,
destination IN VARCHAR2,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

Parameters

Table 31–30 RESET_SUBSCRIBER Procedure Parameters

Parameter Description

subscriber_id Identifies the subscriber

Table 31–31 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

schedule_id Specifies a user-defined name that identifies the schedule.

propagation_type Specifies the type of message propagation. Values:

� DBMS_MGWADM.OUTBOUND_PROPAGATION for AQ to
non-Oracle propagation

� DBMS_MGWADM.INBOUND_PROPAGATION for non-Oracle
to AQ propagation.

source Specifies the source queue whose messages are to be
propagated. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.
31-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Usage Notes
In release 9.2, all window parameters are ignored.

For OUTBOUND_PROPAGATION, parameters are as follows:

� source - specifies the local AQ queue, which is the propagation source. This
must have a syntax of schema.queue.

� destination - specifies the foreign queue to which messages are propagated.
This must have a syntax of registered_queue@message_link.

For INBOUND_PROPAGATION, parameters are interpreted as follows:

� source - specifies the foreign queue, which is the propagation source. This must
have a syntax of registered_queue@message_link.

� destination - specifies the local AQ queue to which message are propagated.
This must have a syntax of schema.queue.

The schedule is set to an enabled state when it is created.

destination Specifies the destination queue to which messages are
propagated. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

start_time Specifies the initial start time for the propagation window for
messages from the source queue to the destination

duration Specifies the duration of the propagation window, in seconds.
A NULL value means that the propagation window is forever,
or until the propagation is unscheduled.

next_time Specifies the date function to compute the start of the next
propagation window from the end of the current window. A
NULL value means that the propagation is stopped at the end
of the current window.

latency Specifies the maximum wait, in seconds, in the propagation
window for a message to be propagated after it is enqueued.
However, if for example, the latency is 60 seconds, and if no
messages are waiting to be propagated, then during the
propagation window, no messages are propagated from the
source to the destination for at least 60 more seconds.

If the latency is 0, then a message is propagated as soon as it is
enqueued.

Table 31–31 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description
DBMS_MGWADM 31-31

UNSCHEDULE_PROPAGATION Procedure
UNSCHEDULE_PROPAGATION Procedure

This procedure removes a propagation schedule.

Syntax
DBMS_MGWADM.UNSCHEDULE_PROPAGATION (

schedule_id IN VARCHAR2);

Parameters

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters a propagation schedule.

Syntax
DBMS_MGWADM.ALTER_PROPAGATION_SCHEDULE (

schedule_id IN VARCHAR2,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

Parameters

Table 31–32 UNSCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be removed

Table 31–33 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be altered

duration Specifies the duration of the propagation window, in seconds.
A NULL value means that the propagation window is forever,
or until the propagation is unscheduled.
31-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms
Usage Notes
In release 9.2, propagation window parameters are ignored.

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a propagation schedule.

Syntax
DBMS_MGWADM.ENABLE_PROPAGATION_SCHEDULE (

schedule_id IN VARCHAR2);

next_time Specifies the date function to compute the start of the next
propagation window from the end of the current window. A
NULL value means that the propagation is stopped at the end
of the current window.

latency Specifies the maximum wait, in seconds, in the propagation
window for a message to be propagated after it is enqueued.
However, if for example, the latency is 60 seconds, and if no
messages are waiting to be propagated, then during the
propagation window, no messages are propagated from the
source to the destination for at least 60 additional seconds.

If the latency is 0, then a message is propagated as soon as it is
enqueued.

Caution: This procedure always overwrites the existing value for
each parameter. If a given parameter is not specified, the existing
values are overwritten with the default value.

Table 31–33 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description
DBMS_MGWADM 31-33

DISABLE_PROPAGATION_SCHEDULE Procedure
Parameters

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax
DBMS_MGWADM.DISABLE_PROPAGATION_SCHEDULE (

schedule_id IN VARCHAR2);

Parameters

Summary of Database Views
The views listed in Table 31–36 provide Messaging Gateway configuration, status,
and statistical information. Unless otherwise indicated, the SELECT privilege is
granted to MGW_ADMINISTRATOR_ROLE so that only Messaging Gateway
administrators have access to the views. All views are owned by SYS.

Table 31–34 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be enabled

Table 31–35 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

schedule_id Identifies the propagation schedule to be disabled

Table 31–36 Database Views

Name Description

MGW_GATEWAY View Lists configuration and status information for Messaging Gateway

MGW_LINKS View Lists the name and types of messaging system links currently created

MGW_MQSERIES_LINKS View Lists messaging system properties for MQSeries links
31-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Database Views
MGW_GATEWAY View

This view lists configuration and status information for Messaging Gateway, as
shown in Table 31–37.

MGW_FOREIGN_QUEUES View Lists the queue properties of registered queues

MGW_SUBSCRIBERS View Lists subscriber properties, status, and statistical information

MGW_SCHEDULES View Lists schedule properties and status

Table 31–37 MGW_GATEWAY Properties

Name Type Description

AGENT_STATUS VARCHAR2 Status of the gateway agent. Values:

� NOT_STARTED if the gateway agent has not been started.

� START_SCHEDULED if gateway agent has been scheduled to
start; this indicates the gateway has been started using DBMS_
MGWADM.STARTUP but the queued job used to start the gateway
agent has not been executed.

� STARTING if gateway agent is starting; this indicates the queued
job has been executed and the gateway agent is starting up.

� INITIALIZING if gateway agent has started and is initializing.

� RUNNING if gateway agent is running.

� SHUTTING_DOWN if gateway agent is shutting down.

AGENT_PING VARCHAR2 Gateway agent ping status. Values:

� NULL if no ping attempt was made.

� REACHABLE if ping attempt was successful.

� UNREACHABLE if ping attempt failed.

AGENT_PING attempts to contact the gateway agent. There is a short
delay (up to 5 seconds) if the ping attempt fails. No ping is attempted
if the AGENT_STATUS is NOT_STARTED or START_SCHEDULED.

AGENT_JOB NUMBER Job number of the queued job used to start the Messaging Gateway
agent process. The job number is set when the Messaging Gateway is
started and cleared when it shuts down.

Table 31–36 Database Views

Name Description
DBMS_MGWADM 31-35

MGW_LINKS View
MGW_LINKS View

This view lists the names and types of messaging system links currently defined.

MGW_MQSERIES_LINKS View

This view lists information for the MQSeries messaging system links. The view
includes most of the messaging system properties specified when the link is created.

AGENT_USER VARCHAR2 Database user name used by the gateway agent to connect to the
database

AGENT_DATABASE VARCHAR2 The database connect string used by the gateway agent. NULL
indicates that a local connection is used.

LAST_ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error
information is cleared when Messaging Gateway is started. It is set if
the Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER Maximum number of messaging connections to the Oracle database

MAX_MEMORY NUMBER Maximum heap size used by gateway agent (in MB)

Table 31–38 MGW_LINKS Properties

Name Type Description

LINK_NAME VARCHAR2 Name of the messaging system link

LINK_TYPE VARCHAR2 Type of messaging system link. Values: MQSERIES

LINK_COMMENT VARCHAR2 User comment for the link

Table 31–37 MGW_GATEWAY Properties

Name Type Description
31-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Database Views
MGW_FOREIGN_QUEUES View

This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered.

Table 31–39 MGW_MQSERIES_LINKS Properties

Name Type Description

LINK_NAME VARCHAR2 Name of the messaging system link

QUEUE_MANAGER VARCHAR2 Name of the MQSeries queue manager

HOSTNAME VARCHAR2 Name of the MQSeries host

PORT NUMBER Port number

CHANNEL VARCHAR2 Connection channel

INTERFACE_TYPE VARCHAR2 Messaging interface type. Values: BASE_JAVA for the
MQSeries Base Java interface

MAX_CONNECTIONS NUMBER Maximum number of messaging connections

INBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

OUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue

OPTIONS SYS.MGW.PROPERTIESLink options

LINK_COMMENT VARCHAR2 User comment for the link

Table 31–40 MGW_FOREIGN_QUEUES Properties

Name Type Description

NAME VARCHAR2 Name of the registered queue

LINK_NAME VARCHAR2 Name of the messaging system link

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name
DBMS_MGWADM 31-37

MGW_SUBSCRIBERS View
MGW_SUBSCRIBERS View

This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information.

DOMAIN VARCHAR2 Queue domain type. Values:

� NULL if automatically determined by messaging
system

� QUEUE for a queue (point-to-point) model

� TOPIC for a topic (publish-subscribe) model

OPTIONS SYS.MGW.PROPERTIES Optional queue properties

QUEUE_COMMENT VARCHAR2 User comment for the foreign queue

Table 31–41 MGW_SUBSCRIBERS Properties

Name Type Description

SUBSCRIBER_ID VARCHAR2 Propagation subscriber identifier

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

� OUTBOUND for AQ to non-Oracle propagation

� INBOUND for non-Oracle to AQ propagation

QUEUE_NAME VARCHAR2 Subscriber source queue

DESTINATION VARCHAR2 Destination queue to which messages are propagated

RULE VARCHAR2 Subscription rule

TRANSFORMATION VARCHAR2 Transformation used for message conversion

EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes

Table 31–40 MGW_FOREIGN_QUEUES Properties

Name Type Description
31-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Database Views
MGW_SCHEDULES View

This view lists configuration and status information for Messaging Gateway
schedules. The view includes most of the schedule properties specified when the
schedule is created, as well as other status information.

STATUS VARCHAR2 Subscriber status. Values:

� ENABLED if the subscriber is enabled

� DELETE_PENDING if subscriber removal is pending;
typically the case when DBMS_MGWADM.REMOVE_
SUBSCRIBER has been called but certain cleanup
tasks pertaining to this subscriber are still
outstanding.

FAILURES NUMBER Number of propagation failures

LAST_ERROR_DATE DATE Date of last propagation error

LAST_ERROR_TIME VARCHAR2 Time of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

PROPAGATED_MSGS NUMBER Number of messages propagated to the destination
queue since the last time the agent was started

EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation
exception queue since the last time the agent was started

Table 31–42 MGW_SCHEDULES Properties

Name Type Description

SCHEDULE_ID VARCHAR2 Propagation schedule identifier

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

� OUTBOUND for AQ to non-Oracle propagation

� INBOUND for non-Oracle to AQ propagation

SOURCE VARCHAR2 Propagation source

DESTINATION VARCHAR2 Propagation destination

START_DATE DATE Schedule start date

Table 31–41 MGW_SUBSCRIBERS Properties

Name Type Description
DBMS_MGWADM 31-39

MGW_SCHEDULES View
START_TIME VARCHAR2 Schedule start time

PROPAGATION_WINDOW NUMBER Duration of the propagation window (in seconds)

NEXT_TIME VARCHAR2 Date function used to compute the start of the next
propagation window

LATENCY NUMBER Propagation window latency (in seconds)

SCHEDULE_DISABLED VARCHAR2 Indicates whether the schedule is disabled. Values:

� Y if schedule is disabled

� N if schedule is enabled

Table 31–42 MGW_SCHEDULES Properties

Name Type Description
31-40 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_MG
32

DBMS_MGWMSG

DBMS_MGWMSG provides object types—used by the canonical message types to
convert message bodies—and helper methods, constants, and subprograms for
working with the Messaging Gateway message types. The package and object types
are owned by SYS.

The following topics are discussed in this chapter:

� Summary of DBMS_MGWMSG Object Types and Methods

� DBMS_MGWMSG Constants

� Summary of DBMS_MGWMSG Subprograms

Note: You must run the catmgw.sql script to load the
Messaging Gateway packages and types into the database. Refer to
the Oracle9i Application Developer’s Guide - Advanced Queuing for
information on loading database objects.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing contains information about using DBMS_MGWMSG.
WMSG 32-1

Summary of DBMS_MGWMSG Object Types and Methods
Summary of DBMS_MGWMSG Object Types and Methods

MGW_NAME_VALUE_T Type

This type specifies a named value. The name and type attributes and one of the
< >_value attributes are typically nonnull.

Syntax
TYPE SYS.MGW_NAME_VALUE_T IS OBJECT

name VARCHAR2(250),
type INTEGER,
integer_value INTEGER,
number_value NUMBER,
text_value VARCHAR2(4000),
raw_value RAW(2000),
date_value DATE);

Table 32–1 DBMS_MGWMSG Object Types and Methods

Object Type Description

MGW_NAME_VALUE_T Type Specifies a named value

MGW_NAME_VALUE_T.CONSTRUCT
Method

Constructs a new MGW_NAME_VALUE_T
instance

MGW_NAME_VALUE_T.CONSTRUCT_
<TYPE> Methods

Constructs a new MGW_NAME_VALUE_T
instance initialized with the value of a specific
type

MGW_NAME_TYPE_ARRAY_T Type Specifies an array of name-value pairs

MGW_TEXT_VALUE_T Type Specifies a TEXT value

MGW_TEXT_VALUE_T.CONSTRUCT
Method

Constructs a new MGW_TEXT_VALUE_T
instance

MGW_RAW_VALUE_T Type Specifies a RAW value

MGW_RAW_VALUE_T.CONSTRUCT
Method

Constructs a new MGW_RAW_VALUE_T
instance

MGW_BASIC_MSG_T Type A canonical type for a basic TEXT or RAW
message

MGW_BASIC_MSG_T.CONSTRUCT
Method

Constructs a new MGW_BASIC_MSG_T
instance
32-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Object Types and Methods
Attributes

Type-Attribute Mapping
Table 32–3 shows the mapping between the value type and the attribute used to
store the value.

Table 32–2 MGW_NAME_VALUE_T Attributes

Attribute Description

name Name associated with the value

type Value type. Refer to the DBMS_MGWMSG.< >_VALUE constants
in Table 32–7. This indicates which Java datatype and class are
associated with the value. It also indicates which attribute
stores the value.

integer_value Stores a numeric integer value

number_value Stores a numeric float or large integer value

text_value Stores a TEXT value

raw_value Stores a RAW (bytes) value

date_value Stores a date value

Table 32–3 Type-Attribute Mapping

Type Value Stored in Attribute

DBMS_MGWMSG.TEXT_VALUE text_value

DBMS_MGWMSG.RAW_VALUE raw_value

DBMS_MGWMSG.BOOLEAN_VALUE integer_value

DBMS_MGWMSG.BYTE_VALUE integer_value

DBMS_MGWMSG.SHORT_VALUE integer_value

DBMS_MGWMSG.INTEGER_VALUE integer_value

DBMS_MGWMSG.LONG_VALUE number_value

DBMS_MGWMSG.FLOAT_VALUE number_value

DBMS_MGWMSG.DOUBLE_VALUE number_value

DBMS_MGWMSG.DATE_VALUE date_value
DBMS_MGWMSG 32-3

MGW_NAME_VALUE_T.CONSTRUCT Method
MGW_NAME_VALUE_T.CONSTRUCT Method

This method constructs a new MGW_NAME_VALUE_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_NAME_VALUE_T;

MGW_NAME_VALUE_T.CONSTRUCT_<TYPE> Methods

These methods construct a new MGW_NAME_VALUE_T instance initialized with the
value of a specific type. Each method sets the name and type attributes and one of
the < >_value attributes, as shown in the mappings in Table 32–3.

Syntax
STATIC FUNCTION CONSTRUCT_BOOLEAN (

name IN VARCHAR2,
value IN INTEGER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_BYTE (
name IN VARCHAR2,
value IN INTEGER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_SHORT (
name IN VARCHAR2,
value IN INTEGER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_INTEGER (
name IN VARCHAR2,
value IN INTEGER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_LONG (
name IN VARCHAR2,
value IN NUMBER)

RETURN SYS.MGW_NAME_VALUE_T,
32-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Object Types and Methods
STATIC FUNCTION CONSTRUCT_FLOAT (
name IN VARCHAR2,
value IN NUMBER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_DOUBLE (
name IN VARCHAR2,
value IN NUMBER)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_TEXT (
name IN VARCHAR2,
value IN VARCHAR2)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_RAW (
name IN VARCHAR2,
value IN RAW)

RETURN SYS.MGW_NAME_VALUE_T,

STATIC FUNCTION CONSTRUCT_DATE (
name IN VARCHAR2,
value IN DATE)

RETURN SYS.MGW_NAME_VALUE_T);

Usage Notes
The construct_boolean method sets the value to either DBMS_
MGWMSG.BOOLEAN_TRUE or DBMS_MGWMSG.BOOLEAN_FALSE.

MGW_NAME_TYPE_ARRAY_T Type

This type specifies an array of name-value pairs. An object of MGW_NAME_VALUE_
ARRAY_T type can have up to 1024 elements.

Syntax
TYPE SYS.MGW_NAME_VALUE_ARRAY_T AS VARRAY (1024) OF SYS.MGW_NAME_VALUE_T;
DBMS_MGWMSG 32-5

MGW_TEXT_VALUE_T Type
MGW_TEXT_VALUE_T Type

This type specifies a TEXT value. It can store a large value as a CLOB or a smaller
value (size <= 4000) as VARCHAR2. Only one of the < >_ value attributes should
be set.

Syntax
TYPE SYS.MGW_TEXT_VALUE_T IS OBJECT

small_value VARCHAR2(4000),
large_value CLOB);

Attributes

MGW_TEXT_VALUE_T.CONSTRUCT Method

This method constructs a new MGW_TEXT_VALUE_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_TEXT_VALUE_T;

MGW_RAW_VALUE_T Type

This type specifies a RAW value. This type can store a large value as a BLOB or a
smaller value (size <= 2000) as RAW. Only one of the < >_value attributes should
be set.

Table 32–4 MGW_TEXT_VALUE_T Attributes

Attribute Description

small_value Small TEXT value. Used for values <= 4000.

large_value Large TEXT value. Used when the value is too large for the
small_value attribute.
32-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Object Types and Methods
Syntax
TYPE SYS.MGW_RAW_VALUE_T IS OBJECT(

small_value RAW(2000),
large_value BLOB);

Attributes

MGW_RAW_VALUE_T.CONSTRUCT Method

This method constructs a new MGW_RAW_VALUE_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_RAW_VALUE_T;

MGW_BASIC_MSG_T Type

This is a canonical type for a basic TEXT or RAW message. Only a single TEXT or RAW
value is typically set. An object of this type should not have both TEXT and RAW set
to a nonnull value at the same time.

Syntax
TYPE SYS.MGW_BASIC_MSG_T IS OBJECT

header SYS.MGW_NAME_VALUE_ARRAY_T,
text_body SYS.MGW_TEXT_VALUE_T,
raw_body SYS.MGW_RAW_VALUE_T);

Table 32–5 MGW_RAW_VALUE_T Attributes

Attribute Description

small_value Small RAW (bytes) value <= 2000

large_value Large RAW value. Used when the value is too large for the
small_value attribute.
DBMS_MGWMSG 32-7

MGW_BASIC_MSG_T.CONSTRUCT Method
Attributes

MGW_BASIC_MSG_T.CONSTRUCT Method

This method constructs a new MGW_BASIC_MSG_T instance. All attributes are
assigned a value of NULL.

Syntax
STATIC FUNCTION CONSTRUCT
RETURN SYS.MGW_BASIC_MSG_T;

DBMS_MGWMSG Constants

Table 32–6 MGW_BASIC_MSG_T Attributes

Attribute Description

header Message header information as an array of name-value pairs

text_body Message body for a TEXT message

raw_body Message body for a RAW (bytes) message

Table 32–7 DBMS_MGWMSG Constants: Value Types—Constants representing the
type of value for a SYS.MGW_NAME_VALUE_T object

Value Constant

TEXT_VALUE CONSTANT BINARY_INTEGER := 1;

RAW_VALUE CONSTANT BINARY_INTEGER := 2;

BOOLEAN_VALUE CONSTANT BINARY_INTEGER := 3;

BYTE_VALUE CONSTANT BINARY_INTEGER := 4;

SHORT_VALUE CONSTANT BINARY_INTEGER := 5;

INTEGER_VALUE CONSTANT BINARY_INTEGER := 6;

LONG_VALUE CONSTANT BINARY_INTEGER := 7;

FLOAT_VALUE CONSTANT BINARY_INTEGER := 8;

DOUBLE_VALUE CONSTANT BINARY_INTEGER := 9;

DATE_VALUE CONSTANT BINARY_INTEGER := 10;
32-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
Summary of DBMS_MGWMSG Subprograms

Table 32–8 DBMS_MGWMSG Constants: Boolean Values—Constants Representing a
Boolean as a Numeric Value

Value Constant

BOOLEAN_FALSE CONSTANT BINARY_INTEGER := 0;

BOOLEAN_TRUE CONSTANT BINARY_INTEGER := 1;

Table 32–9 DBMS_MGWMSG Constants: Case Comparisons

Value Constant

CASE_SENSITIVE CONSTANT BINARY_INTEGER := 0;

CASE_INSENSITIVE CONSTANT BINARY_INTEGER := 1;

Table 32–10 DBMS_MGWMSG Subprograms

Subprogram Description

NVARRAY_ADD Procedure
on page 32-10

Appends a name-value element to the end of a name-value
array

NVARRAY_GET Function on
page 32-10

Gets the name-value element of the name you specify in p_
name from a name-value array

NVARRAY_GET_BOOLEAN
Function on page 32-11

Gets the value of the name-value array element that you
specify in p_name and with the BOOLEAN_VALUE value type

NVARRAY_GET_BYTE
Function on page 32-12

Gets the value of the name-value array element that you
specify in p_name and with the BYTE_VALUE value type

NVARRAY_GET_SHORT
Function on page 32-13

Gets the value of the name-value array element that you
specify in p_name and with the SHORT_VALUE value type

NVARRAY_GET_INTEGER
Function on page 32-13

Gets the value of the name-value array element that you
specify in p_name and with the INTEGER_VALUE value type

NVARRAY_GET_LONG
Function on page 32-14

Gets the value of the name-value array element that you
specify in p_name and with the LONG_VALUE value type

NVARRAY_GET_FLOAT
Function on page 32-15

Gets the value of the name-value array element that you
specify in p_name and with the FLOAT_VALUE value type

NVARRAY_GET_DOUBLE
Function on page 32-15

Gets the value of the name-value array element that you
specify in p_name and with the DOUBLE_VALUE value type
DBMS_MGWMSG 32-9

NVARRAY_ADD Procedure
NVARRAY_ADD Procedure

This procedure appends a name-value element to the end of a name-value array.

Syntax
DBMS_MGWMSG.NVARRAY_ADD (

p_array IN OUT SYS.MGW_NAME_VALUE_ARRAY_T,
p_value IN SYS.MGW_NAME_VALUE_T);

Parameters

NVARRAY_GET Function

This function gets the name-value element of the name you specify in p_name from
a name-value array.

NVARRAY_GET_TEXT
Function on page 32-16

Gets the value of the name-value array element that you
specify in p_name and with the TEXT_VALUE value type

NVARRAY_GET_RAW
Function on page 32-17

Gets the value of the name-value array element that you
specify in p_name and with the RAW_VALUE value type

NVARRAY_GET_DATE
Function on page 32-17

Gets the value of the name-value array element that you
specify in p_name and with the DATE_VALUE value type

NVARRAY_FIND_NAME
Function on page 32-18

Searches a name-value array for the element with the name
you specify in p_name

NVARRAY_FIND_NAME_
TYPE Function on
page 32-19

Searches a name-value array for an element with the name
and value type you specify

Table 32–11 NVARRAY_ADD Procedure Parameters

Parameter Description

p_array The name-value array instance. On input, the array to modify.
If NULL, a new array is created. On output, the modified array.

p_value The value to add. If NULL, p_array is not changed.

Table 32–10 DBMS_MGWMSG Subprograms

Subprogram Description
32-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
Syntax
DBMS_MGWMSG.NVARRAY_GET (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN SYS.MGW_NAME_VALUE_T;

Parameters

Returns
The matching element, or NULL if the specified name is not found.

NVARRAY_GET_BOOLEAN Function

This function gets the value of the name-value array element that you specify in p_
name and with the BOOLEAN_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_BOOLEAN (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN INTEGER;

Parameters

Table 32–12 NVARAAY_GET Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–13 NVARRAY_GET_BOOLEAN Function Parameters

Parameter Description

p_array The name-value array
DBMS_MGWMSG 32-11

NVARRAY_GET_BYTE Function
Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_BYTE Function

This function gets the value of the name-value array element that you specify in p_
name and with the BYTE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_BYTE (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN INTEGER;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–14 NVARRAY_GET_BYTE Function

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–13 NVARRAY_GET_BOOLEAN Function Parameters

Parameter Description
32-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
NVARRAY_GET_SHORT Function

This function gets the value of the name-value array element that you specify in p_
name and with the SHORT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_SHORT (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN INTEGER;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_INTEGER Function

This function gets the value of the name-value array element that you specify in p_
name and with the INTEGER_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_INTEGER (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN INTEGER;

Table 32–15 NVARRAY_GET_SHORT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
DBMS_MGWMSG 32-13

NVARRAY_GET_LONG Function
Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_LONG Function

This function gets the value of the name-value array element that you specify in p_
name and with the LONG_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_LONG (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN NUMBER;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

Table 32–16 NVARRAY_GET_INTEGER Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–17 NVARRAY_GET_LONG Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
32-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
NVARRAY_GET_FLOAT Function

This function gets the value of the name-value array element that you specify in p_
name and with the FLOAT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_FLOAT (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN NUMBER;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_DOUBLE Function

This function gets the value of the name-value array element that you specify in p_
name and with the DOUBLE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_DOUBLE (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN NUMBER;

Table 32–18 NVARRAY_GET_FLOAT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
DBMS_MGWMSG 32-15

NVARRAY_GET_TEXT Function
Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_TEXT Function

This function gets the value of the name-value array element that you specify in p_
name and with the TEXT_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_TEXT (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN VARCHAR2;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

Table 32–19 NVARRAY_GET_DOUBLE Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–20 NVARRAY_GET_TEXT Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
32-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
NVARRAY_GET_RAW Function

This function gets the value of the name-value array element that you specify in p_
name and with the RAW_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_RAW (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN RAW;

Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_GET_DATE Function

This function gets the value of the name-value array element that you specify in p_
name and with the DATE_VALUE value type.

Syntax
DBMS_MGWMSG.NVARRAY_GET_DATE (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN DATE;

Table 32–21 NVARRAY_GET_RAW Function Parameters

Parameter Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
DBMS_MGWMSG 32-17

NVARRAY_FIND_NAME Function
Parameters

Returns
The value, or NULL if the specified name is not found or if a type mismatch exists.

NVARRAY_FIND_NAME Function

This function searches a name-value array for the element with the name you
specify in p_name.

Syntax
DBMS_MGWMSG.NVARRAY_FIND_NAME (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN BINARY_INTEGER;

Parameters

Table 32–22 NVARRAY_GET_DATE Function Parameters

Parameters Description

p_array The name-value array

p_name The value name

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE

Table 32–23 NVARRAY_FIND_NAME Function Parameters

Parameters Description

p_array The name-value array to search

p_name The name to find

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
32-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWMSG Subprograms
Returns
� A positive integer that is the array index of the matching element

� 0 if the specified name is not found

NVARRAY_FIND_NAME_TYPE Function

This function searches a name-value array for an element with the name and value
type you specify.

Syntax
DBMS_MGWMSG.NVARRAY_FIND_NAME_TYPE (

p_array IN SYS.MGW_NAME_VALUE_ARRAY_T,
p_name IN VARCHAR2,
p_type IN BINARY_INTEGER
p_compare IN BINARY_INTEGER DEFAULT CASE_SENSITIVE)

RETURN BINARY_INTEGER;

Parameters

Returns
� A positive integer that is the array index of the matching element

� 0 if the specified name is not found

� -1 if the specified name is found but a type mismatch exists

Table 32–24 NVARRAY_FIND_NAME_TYPE Function Parameters

Parameter Description

p_array The name-value array to search

p_name The name to find

p_type The value type. Refer to the value type constants in Table 32–7
on page 32-8.

p_compare Name comparison method. Values: CASE_SENSITIVE,
CASE_INSENSITIVE
DBMS_MGWMSG 32-19

NVARRAY_FIND_NAME_TYPE Function
32-20 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_M
33

DBMS_MVIEW

DBMS_MVIEW enables you to understand capabilities for materialized views and
potential materialized views, including their rewrite availability. It also enables you
to refresh materialized views that are not part of the same refresh group and purge
logs.

This chapter discusses the following topics:

� Summary of DBMS_MVIEW Subprograms

Note: DBMS_SNAPSHOT is a synonym for DBMS_MVIEW.

See Also:

� Oracle9i Replication for more information about using
materialized views in a replication environment

� Oracle9i Data Warehousing Guide for more information about
using materialized views in a data warehousing environment
VIEW 33-1

Summary of DBMS_MVIEW Subprograms
Summary of DBMS_MVIEW Subprograms

Table 33–1 DBMS_MVIEW Package Subprograms

Subprogram Description

BEGIN_TABLE_
REORGANIZATION
Procedure on page 33-3

Performs a process to preserve materialized view data
needed for refresh.

END_TABLE_
REORGANIZATION
Procedure on page 33-4

Ensures that the materialized view data for the master
table is valid and that the master table is in the proper
state.

EXPLAIN_MVIEW Procedure
on page 33-4

Explains what is possible with a materialized view or
potential materialized view.

EXPLAIN_REWRITE
Procedure on page 33-5

Explains why a query failed to rewrite.

I_AM_A_REFRESH Function
on page 33-6

Returns the value of the I_AM_REFRESH package state.

PMARKER Function on
page 33-7

Returns a partition marker from a rowid. This function is
used for Partition Change Tracking (PCT).

PURGE_DIRECT_LOAD_LOG
Procedure on page 33-7

Purges rows from the direct loader log after they are no
longer needed by any materialized views (used with data
warehousing).

PURGE_LOG Procedure on
page 33-7

Purges rows from the materialized view log.

PURGE_MVIEW_FROM_LOG
Procedure on page 33-8

Purges rows from the materialized view log.

REFRESH Procedure on
page 33-10

Refreshes one or more materialized views that are not
members of the same refresh group.

REFRESH_ALL_MVIEWS
Procedure on page 33-12

Refreshes all materialized views that do not reflect
changes to their master table or master materialized view.

REFRESH_DEPENDENT
Procedure on page 33-14

Refreshes all table-based materialized views that depend
on a specified master table or master materialized view, or
list of master tables or master materialized views.

REGISTER_MVIEW Procedure
on page 33-16

Enables the administration of individual materialized
views.
33-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
BEGIN_TABLE_REORGANIZATION Procedure

This procedure performs a process to preserve materialized view data needed for
refresh. It must be called before a master table is reorganized.

Syntax
DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION (

tabowner IN VARCHAR2,
tabname IN VARCHAR2);

Parameters

UNREGISTER_MVIEW
Procedure on page 33-18

Enables the administration of individual materialized
views. Invoked at a master site or master materialized
view site to unregister a materialized view.

Note: If a query is less than 256 characters long, you can invoke
EXPLAIN_REWRITE() using the EXECUTE command from
SQL*PLUS. Otherwise, the recommended method is to use a
PL/SQL BEGIN..END block, as shown in the examples in
/rdbms/demo/smxrw.sql . The EXPLAIN_REWRITE() API
cannot accept queries longer than 32627 characters. These
restrictions also apply when passing the defining query of a
materialized view to the EXPLAIN_MVIEW procedure.

Table 33–2 BEGIN_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.

Table 33–1 DBMS_MVIEW Package Subprograms (Cont.)

Subprogram Description
DBMS_MVIEW 33-3

END_TABLE_REORGANIZATION Procedure
END_TABLE_REORGANIZATION Procedure

This procedure ensures that the materialized view data for the master table is valid
and that the master table is in the proper state. It must be called after a master table
is reorganized.

Syntax
DBMS_MVIEW.END_TABLE_REORGANIZATION (

tabowner IN VARCHAR2,
tabname IN VARCHAR2);

Parameters

EXPLAIN_MVIEW Procedure

This procedure enables you to learn what is possible with a materialized view or
potential materialized view. For example, you can determine if a materialized view
is fast refreshable and what types of query rewrite you can perform with a
particular materialized view.

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as parameters the schema and materialized view name for an
existing materialized view. Alternatively, you can specify the SELECT string for a
potential materialized view. The materialized view or potential materialized view is
then analyzed and the results are written into either a table called MV_
CAPABILITIES_TABLE , which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW
except when you direct output to a VARRAY. The script is found in the admin
directory. In addition, you must create MV_CAPABILITIES_TABLE in the current
schema.

Table 33–3 END_TABLE_REORGANIZATION Procedure Parameters

Parameter Description

tabowner Owner of the table being reorganized.

tabname Name of the table being reorganized.
33-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
Syntax
The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an
existing materialized view and a potential materialized view with output to a table
and to a VARRAY.

To explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (
mv IN VARCHAR2,
statement_id IN VARCHAR2:= NULL);

To explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW (
mv IN VARCHAR2,
msg_array OUT SYS.ExplainMVArrayType);

Parameters

EXPLAIN_REWRITE Procedure

This procedure enables you to learn why a query failed to rewrite, or, if it rewrites,
which materialized views will be used. Using the results from the procedure, you
can take the appropriate action needed to make a query rewrite if at all possible.
The query specified in the EXPLAIN_REWRITE statement is never actually executed.

Table 33–4 EXPLAIN_MVIEW Procedure Parameters

Parameter Description

mv The name of an existing materialized view (optionally qualified
with the owner name separated by a ".") or a SELECT statement
for a potential materialized view.

statement_id A client-supplied unique identifier to associate output rows with
specific invocations of EXPLAIN_MVIEW.

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_MVIEW’s output to a PL/SQL VARRAY rather
than MV_CAPABILITIES_TABLE .
DBMS_MVIEW 33-5

I_AM_A_REFRESH Function
To obtain the output into a table, you must run the admin/utlxrw.sq l script
before calling EXPLAIN_REWRITE. This script creates a table named REWRITE_
TABLE in the current schema.

Syntax
You can obtain the output from EXPLAIN_REWRITE in two ways. The first is to use
a table, while the second is to create a VARRAY. The following shows the basic
syntax for using an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
query IN VARCHAR2,
mv IN VARCHAR2,
statement_id IN VARCHAR2;

If you want to direct the output of EXPLAIN_REWRITE to a varray, instead of a
table, then the procedure should be called as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
query IN VARCHAR2(2000),
mv IN VARCHAR2(30),
msg_array IN OUT SYS.RewriteArrayType);

Parameters

I_AM_A_REFRESH Function

This function returns the value of the I_AM_REFRESH package state. A return value
of TRUE indicates that all local replication triggers for materialized views are
effectively disabled in this session because each replication trigger first checks this
state. A return value of FALSE indicates that these triggers are enabled.

Table 33–5 EXPLAIN_REWRITE Procedure Parameters

Parameter Description

query SQL select statement to be explained.

mv The fully qualified name of an existing materialized view in the form
of SCHEMA.MV

statement_id A client-supplied unique identifier to distinguish output messages

msg_array The PL/SQL varray that receives the output. Use this parameter to
direct EXPLAIN_REWRITE’s output to a PL/SQL VARRAY
33-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
Syntax
DBMS_MVIEW.I_AM_A_REFRESH()

RETURN BOOLEAN;

PMARKER Function

This function returns a partition marker from a rowid. It is used for Partition
Change Tracking (PCT).

Syntax
DBMS_MVIEW.PMARKER(rid IN ROWID)

RETURN NUMBER;

Parameters

PURGE_DIRECT_LOAD_LOG Procedure

This procedure removes entries from the direct loader log after they are no longer
needed for any known materialized view. This procedure usually is used in
environments using Oracle’s data warehousing technology.

Syntax
DBMS_MVIEW.PURGE_DIRECT_LOAD_LOG();

PURGE_LOG Procedure

This procedure purges rows from the materialized view log.

Syntax
DBMS_MVIEW.PURGE_LOG (

Table 33–6 PMARKER Procedure Parameters

Parameter Description

rid The rowid of a row entry in a master table.

See Also: Oracle9i Data Warehousing Guide for more information
DBMS_MVIEW 33-7

PURGE_MVIEW_FROM_LOG Procedure
master IN VARCHAR2,
num IN BINARY_INTEGER := 1,
flag IN VARCHAR2 := ’NOP’);

Parameters

PURGE_MVIEW_FROM_LOG Procedure

This procedure is called on the master site or master materialized view site to delete
the rows in materialized view refresh related data dictionary tables maintained at
the master for the specified materialized view identified by its mview_id or the
combination of the mviewowner , mviewname, and the mviewsite . If the
materialized view specified is the oldest materialized view to have refreshed from
any of the master tables or master materialized views, then the materialized view
log is also purged. This procedure does not unregister the materialized view.

Table 33–7 PURGE_LOG Procedure Parameters

Parameter Description

master Name of the master table or master materialized view.

num Number of least recently refreshed materialized views whose rows
you want to remove from materialized view log. For example, the
following statement deletes rows needed to refresh the two least
recently refreshed materialized views:

DBMS_MVIEW.PURGE_LOG(’master_table’, 2);

To delete all rows in the materialized view log, indicate a high
number of materialized views to disregard, as in this example:

DBMS_MVIEW.PURGE_LOG(’master_table’,9999);

This statement completely purges the materialized view log that
corresponds to master_table if fewer than 9999 materialized
views are based on master_table . A simple materialized view
whose rows have been purged from the materialized view log
must be completely refreshed the next time it is refreshed.

flag Specify delete to guarantee that rows are deleted from the
materialized view log for at least one materialized view. This
parameter can override the setting for the parameter num. For
example, the following statement deletes rows from the
materialized view log that has dependency rows in the least
recently refreshed materialized view:

DBMS_MVIEW.PURGE_LOG(’master_table’,1,’delete’);
33-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
If there is an error while purging one of the materialized view logs, the successful
purge operations of the previous materialized view logs are not rolled back. This is
to minimize the size of the materialized view logs. In case of an error, this procedure
can be invoked again until all the materialized view logs are purged.

Syntax
DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (

mview_id IN BINARY_INTEGER |
mviewowner IN VARCHAR2,
mviewname IN VARCHAR2,
mviewsite IN VARCHAR2);

Parameters

Note: This procedure is overloaded. The mview_id parameter is
mutually exclusive with the three remaining parameters:
mviewowner , mviewname, and mviewsite .

Table 33–8 PURGE_MVIEW_FROM_LOG Procedure Parameters

Parameter Description

mview_id If you want to execute this procedure based on the identification of
the target materialized view, specify the materialized view
identification using the mview_id parameter. Query the DBA_
BASE_TABLE_MVIEWS view at the materialized view log site for a
listing of materialized view IDs.

Executing this procedure based on the materialized view
identification is useful if the target materialized view is not listed in
the list of registered materialized views (DBA_REGISTERED_
MVIEWS).

mviewowner If you do not specify a mview_id , enter the owner of the target
materialized view using the mviewowner parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view owners.

mviewname If you do not specify a mview_id , enter the name of the target
materialized view using the mviewname parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view names.
DBMS_MVIEW 33-9

REFRESH Procedure
REFRESH Procedure

This procedure refreshes a list of materialized views.

Syntax
DBMS_MVIEW.REFRESH (

{ list IN VARCHAR2,
| tab IN OUT DBMS_UTILITY.UNCL_ARRAY,}
method IN VARCHAR2 := NULL,
rollback_seg IN VARCHAR2 := NULL,
push_deferred_rpc IN BOOLEAN := true,
refresh_after_errors IN BOOLEAN := false,
purge_option IN BINARY_INTEGER := 1,
parallelism IN BINARY_INTEGER := 0,
heap_size IN BINARY_INTEGER := 0,
atomic_refresh IN BOOLEAN := true);

mviewsite If you do not specify a mview_id , enter the site of the target
materialized view using the mviewsite parameter. Query the
DBA_REGISTERED_MVIEWS view at the materialized view log site
to view the materialized view sites.

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 33–8 PURGE_MVIEW_FROM_LOG Procedure Parameters

Parameter Description
33-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
Parameters

Table 33–9 REFRESH Procedure Parameters (Page 1 of 2)

Parameter Description

list | tab Comma-separated list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your local database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of
a materialized view.

method A string of refresh methods indicating how to refresh the listed
materialized views. An f indicates fast refresh, ? indicates force
refresh, C or c indicates complete refresh, and A or a indicates
always refresh. A and C are equivalent.

If a materialized view does not have a corresponding refresh
method (that is, if more materialized views are specified than
refresh methods), then that materialized view is refreshed
according to its default refresh method. For example, consider the
following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH
('countries_mv,regions_mv,hr.employees_mv','cf');

This statement performs a complete refresh of the countries_mv
materialized view, a fast refresh of the regions_mv materialized
view, and a default refresh of the hr.employees materialized
view.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

push_deferred_rpc Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master tables or master materialized views before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

refresh_after_
errors

If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.
DBMS_MVIEW 33-11

REFRESH_ALL_MVIEWS Procedure
REFRESH_ALL_MVIEWS Procedure

This procedure refreshes all materialized views that have the following properties:

� The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

� The materialized view and all of the master tables or master materialized views
on which it depends are local.

� The materialized view is in the view DBA_MVIEWS.

purge_option If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), 0 means do not purge, 1
means lazy purge, and 2 means aggressive purge. In most cases,
lazy purge is the optimal setting. Set purge to aggressive to trim
the queue if multiple master replication groups are pushed to
different target sites, and updates to one or more replication
groups are infrequent and infrequently pushed. If all replication
groups are infrequently updated and pushed, then set this
parameter to 0 and occasionally execute PUSH with this parameter
set to 2 to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

atomic_refresh If this parameter is set to true , then the list of materialized views
is refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the materialized
views is refreshed in a separate transaction. The number of job
queue processes must be set to 1 or greater if this parameter is
false .

Table 33–9 REFRESH Procedure Parameters (Page 2 of 2)

Parameter Description
33-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_ALL_MVIEWS (

number_of_failures OUT BINARY_INTEGER,
method IN VARCHAR2 := NULL,
rollback_seg IN VARCHAR2 := NULL,
refresh_after_errors IN BOOLEAN := false,
atomic_refresh IN BOOLEAN := true);

Parameters

Table 33–10 REFRESH_ALL_MVIEWS Procedure Parameters

Parameter Description

number_of_
failures

Returns the number of failures that occurred during processing.

method A single refresh method indicating the type of refresh to perform
for each materialized view that is refreshed. F or f indicates fast
refresh, ? indicates force refresh, C or c indicates complete refresh,
and A or a indicates always refresh. A and C are equivalent. If no
method is specified, a materialized view is refreshed according to
its default refresh method.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_
errors

If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

atomic_refresh If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false .
DBMS_MVIEW 33-13

REFRESH_DEPENDENT Procedure
REFRESH_DEPENDENT Procedure

This procedure refreshes all materialized views that have the following properties:

� The materialized view depends on a master table or master materialized view
in the list of specified masters.

� The materialized view has not been refreshed since the most recent change to a
master table or master materialized view on which it depends.

� The materialized view and all of the master tables or master materialized views
on which it depends are local.

� The materialized view is in the view DBA_MVIEWS.

This procedure is intended for use with data warehouses.

Syntax
DBMS_MVIEW.REFRESH_DEPENDENT (

number_of_failures OUT BINARY_INTEGER,
{ list IN VARCHAR2,
| tab IN OUT DBMS_UTILITY.UNCL_ARRAY,}
method IN VARCHAR2 := NULL,
rollback_seg IN VARCHAR2 := NULL,
refresh_after_errors IN BOOLEAN := false,
atomic_refresh IN BOOLEAN := true);

Parameters

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 33–11 REFRESH_DEPENDENT Procedure Parameters (Page 1 of 3)

Parameter Description

number_of_
failures

Returns the number of failures that occurred during processing.
33-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
list | tab Comma-separated list of master tables or master materialized
views on which materialized views can depend. (Synonyms are
not supported.) These tables and the materialized views that
depend on them can be located in different schemas. However, all
of the tables and materialized views must be in your local
database.

Alternatively, you may pass in a PL/SQL index-by table of type
DBMS_UTILITY.UNCL_ARRAY, where each element is the name of
a table.

method A string of refresh methods indicating how to refresh the
dependent materialized views. All of the materialized views that
depend on a particular table are refreshed according to the refresh
method associated with that table. F or f indicates fast refresh, ?
indicates force refresh, C or c indicates complete refresh, and A or
a indicates always refresh. A and C are equivalent.

If a table does not have a corresponding refresh method (that is, if
more tables are specified than refresh methods), then any
materialized view that depends on that table is refreshed
according to its default refresh method. For example, the
following EXECUTE statement within SQL*Plus:

DBMS_MVIEW.REFRESH_DEPENDENT
('employees,deptartments,hr.regions','cf');

performs a complete refresh of the materialized views that depend
on the employees table, a fast refresh of the materialized views
that depend on the departments table, and a default refresh of
the materialized views that depend on the hr.regions table.

rollback_seg Name of the materialized view site rollback segment to use while
refreshing materialized views.

refresh_after_
errors

If this parameter is true , an updatable materialized view
continues to refresh even if there are outstanding conflicts logged
in the DEFERROR view for the materialized view's master table or
master materialized view. If this parameter is true and atomic_
refresh is false , this procedure continues to refresh other
materialized views if it fails while refreshing a materialized view.

Table 33–11 REFRESH_DEPENDENT Procedure Parameters (Page 2 of 3)

Parameter Description
DBMS_MVIEW 33-15

REGISTER_MVIEW Procedure
REGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to register a materialized
view.

Syntax
DBMS_MVIEW.REGISTER_MVIEW (

mviewowner IN VARCHAR2,
mviewname IN VARCHAR2,
mviewsite IN VARCHAR2,
mview_id IN DATE | BINARY_INTEGER,
flag IN BINARY_INTEGER,
qry_txt IN VARCHAR2,
rep_type IN BINARY_INTEGER := DBMS_MVIEW.REG_UNKNOWN);

atomic_refresh If this parameter is set to true , then the refreshed materialized
views are refreshed in a single transaction. All of the refreshed
materialized views are updated to a single point in time. If the
refresh fails for any of the materialized views, none of the
materialized views are updated.

If this parameter is set to false , then each of the refreshed
materialized views is refreshed in a separate transaction. The
number of job queue processes must be set to 1 or greater if this
parameter is false .

Note: Typically, a materialized view is registered automatically
during materialized view creation. You should only run this
procedure to manually register a materialized view if the automatic
registration failed or if the registration information was deleted.

Table 33–11 REFRESH_DEPENDENT Procedure Parameters (Page 3 of 3)

Parameter Description
33-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
Parameters

Table 33–12 REGISTER_MVIEW Procedure Parameters

Parameter Description

mviewown
er

Owner of the materialized view.

mviewnam
e

Name of the materialized view.

mviewsit
e

Name of the materialized view site for a materialized view registering at an
Oracle8 and higher master site or master materialized view site. This name
should not contain any double quotes.

mview_id The identification number of the materialized view. Specify an Oracle8 and
higher materialized view as a BINARY_INTEGER. Specify an Oracle7
materialized view registering at an Oracle8 and higher master sites or master
materialized view sites as a DATE.

flag A constant that describes the properties of the materialized view being
registered. Valid constants that can be assigned include the following:

� dbms_mview.reg_rowid_mview for a rowid materialized view

� dbms_mview.reg_primary_key_mview for a primary key
materialized view

� dbms_mview.reg_object_id_mview for an object id materialized
view

� dbms_mview.reg_fast_refreshable_mview for a materialized
view that can be fast refreshed

� dbms_mview.reg_updatable_mview for a materialized view that is
updatable

A materialized view can have more than one of these properties. In this case,
use the plus sign (+) to specify more than one property. For example, if a
primary key materialized view can be fast refreshed, you can enter the
following for this parameter:

dbms_mview.reg_primary_key_mview + dbms_mview.reg_fast_refreshable_mview

You can determine the properties of a materialized view by querying the
ALL_MVIEWS data dictionary view.

qry_txt The first 32,000 bytes of the materialized view definition query.
DBMS_MVIEW 33-17

UNREGISTER_MVIEW Procedure
Usage Notes
This procedure is invoked at the master site or master materialized view site by a
remote materialized view site using a remote procedure call. If REGISTER_MVIEW is
called multiple times with the same mviewowner , mviewname, and mviewsite ,
then the most recent values for mview_id , flag , and qry_txt are stored. If a
query exceeds the maximum VARCHAR2 size, then qry_txt contains the first 32000
characters of the query and the remainder is truncated. When invoked manually,
the value of mview_id must be looked up in the materialized view data dictionary
views by the person who calls the procedure.

UNREGISTER_MVIEW Procedure

This procedure enables the administration of individual materialized views. It is
invoked at a master site or master materialized view site to unregister a
materialized view.

Syntax
DBMS_MVIEW.UNREGISTER_MVIEW (

mviewowner IN VARCHAR2,
mviewname IN VARCHAR2,
mviewsite IN VARCHAR2);

rep_type Version of the materialized view. Valid constants that can be assigned include
the following:

� dbms_mview.reg_v7_snapshot if the materialized view is at an
Oracle7 site

� dbms_mview.reg_v8_snapshot if the materialized view is at an
Oracle8 or higher site

� dbms_mview.reg_unknown (the default) if you do not know whether
the materialized view is at an Oracle7 site or an Oracle8 (or higher) site

Table 33–12 REGISTER_MVIEW Procedure Parameters

Parameter Description
33-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MVIEW Subprograms
Parameters

Table 33–13 UNREGISTER_MVIEW Procedure Parameters

Parameters Description

mviewowner Owner of the materialized view.

mviewname Name of the materialized view.

mviewsite Name of the materialized view site.
DBMS_MVIEW 33-19

UNREGISTER_MVIEW Procedure
33-20 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_OBFUSCATION_T
34

DBMS_OBFUSCATION_TOOLKIT

DBMS_OBFUSCATION_TOOLKIT allows an application to encrypt data using either
the Data Encryption Standard (DES) or the Triple DES algorithms.

The Data Encryption Standard (DES), also known as the Data Encryption Algorithm
(DEA) by the American National Standards Institute (ANSI) and DEA-1 by the
International Standards Organization (ISO), has been a worldwide encryption
standard for over 20 years. The banking industry has also adopted DES-based
standards for transactions between private financial institutions, and between
financial institutions and private individuals. DES will eventually be replaced by a
new Advanced Encryption Standard (AES).

DES is a symmetric key cipher; that is, the same key is used to encrypt data as well
as decrypt data. DES encrypts data in 64-bit blocks using a 56-bit key. The DES
algorithm ignores 8 bits of the 64-bit key that is supplied; however, developers must
supply a 64-bit key to the algorithm.

Triple DES (3DES) is a far stronger cipher than DES; the resulting ciphertext
(encrypted data) is much harder to break using an exhaustive search: 2**112 or
2**168 attempts instead of 2**56 attempts. Triple DES is also not as vulnerable to
certain types of cryptanalysis as is DES. DES procedures are as follows:

� DESEncrypt Procedure

� DESDecrypt Procedure

Oracle installs this package in the SYS schema. You can then grant package access to
existing users and roles as needed. The package also grants access to the PUBLIC
role so no explicit grant needs to be done.

This chapter discusses the following topics:

� Overview of Key Management

� Summary of DBMS_OBFUSCATION Subprograms
OOLKIT 34-1

Overview of Key Management
Overview of Key Management
Key management, including both generation and secure storage of cryptographic
keys, is one of the most important aspects of encryption. If keys are poorly chosen
or stored improperly, then it is far easier for a malefactor to break the encryption.
Rather than using an exhaustive key search attack (that is, cycling through all the
possible keys in hopes of finding the correct decryption key), cryptanalysts typically
seek weaknesses in the choice of keys, or the way in which keys are stored.

Key generation is an important aspect of encryption. Typically, keys are generated
automatically through a random-number generator. Provided that the random
number generation is cryptographically secure, this can be an acceptable form of
key generation. However, if random numbers are not cryptographically secure, but
have elements of predictability, the security of the encryption may be easily
compromised.

The DBMS_OBFUSCATION_TOOLKIT package does not generate encryption keys
nor does it maintain them. Care must be taken by the application developer to
ensure the secure generation and storage of encryption keys used with this package.
Furthermore, the encryption and decryption done by the DBMS_OBFUSCATION_
TOOLKIT takes place on the server, not the client. If the key is passed over the
connection between the client and the server, the connection must be protected
using Oracle Advanced Security; otherwise the key is vulnerable to capture over the
wire.

Key storage is one of the most important, yet difficult aspects of encryption and one
of the hardest to manage properly. To recover data encrypted with a symmetric key,
the key must be accessible to the application or user seeking to decrypt data. The
key needs to be easy enough to retrieve that users can access encrypted data when
they need to without significant performance degradation. The key also needs to be
secure enough that it is not easily recoverable by an unauthorized user trying to
access encrypted data he is not supposed to see.

The three options available to a developer are:

� Store the key in the database

� Store the key in the operating system

� Have the user manage the key

Storing the Key in the Database
Storing the keys in the database cannot always provide bullet-proof security if you
are trying to protect data against the DBA accessing encrypted data (since an
all-privileged DBA can access tables containing encryption keys), but it can provide
34-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Overview of Key Management
security against the casual snooper, or against someone compromising the database
files on the operating system. Furthermore, the security you can obtain by storing
keys in the database does not have to be bullet-proof in order to be extremely
useful.

For example, suppose you want to encrypt an employee’s social security number,
one of the columns in table EMP. You could encrypt each employee’s SSN using a
key which is stored in a separate column in EMP. However, anyone with SELECT
access on the EMP table could retrieve the encryption key and decrypt the matching
social security number. Alternatively, you could store the encryption keys in
another table, and use a package to retrieve the correct key for the encrypted data
item, based on a primary key-foreign key relationship between the tables.

A developer could envelope both the DBMS_OBFUSCATION_TOOLKIT package and
the procedure to retrieve the encryption keys supplied to the package. Furthermore,
the encryption key itself could be transformed in some way (for example, XORed
with the foreign key to the EMP table) so that the key itself is not stored in easily
recoverable form.

Oracle recommends using the wrap utility of PL/SQL to obfuscate the code within
a PL/SQL package itself that does the encryption. That prevents people from
breaking the encryption by looking at the PL/SQL code that handles keys, calls
encrypting routines, and so on. In other words, use the wrap utility to obfuscate the
PL/SQL packages themselves. This scheme is secure enough to prevent users with
SELECT access to EMP from reading unencrypted sensitive data, and a DBA from
easily retrieving encryption keys and using them to decrypt data in the EMP table. It
can be made more secure by changing encryption keys regularly, or having a better
key storage algorithm (so the keys themselves are encrypted, for example).

Storing the Key in the Operating System
Storing keys in the operating system (that is, in a flat file) is another option. With
Oracle8i you can make callouts from PL/SQL, which you could use to retrieve
encryption keys. If you store keys in the O/S and make callouts to retrieve the keys,
the security of your encrypted data is only as secure as the protection of the key file
on the O/S. Of course, a user retrieving keys from the operating system would have
to be able to either access the Oracle database files (to decrypt encrypted data), or be
able to gain access to the table in which the encrypted data is stored as a legitimate
user.

User-Supplied Keys
If you ask a user to supply the key, it is crucial that you use network encryption,
such as that provided by Oracle Advanced Security, so the key is not passed from
DBMS_OBFUSCATION_TOOLKIT 34-3

Summary of DBMS_OBFUSCATION Subprograms
client to server in the clear. The user must remember the key, or your data is
nonrecoverable.

Summary of DBMS_OBFUSCATION Subprograms

DESEncrypt Procedure

The DESEncrypt procedure generates the encrypted form of the input data. An
example of the DESEncrypt procedure appears at the end of this chapter.

The DES algorithm encrypts data in 64-bit blocks using a 56-bit key. The DES
algorithm throws away 8 bits of the supplied key (the particular bits which are
thrown away is beyond the scope of this documentation). However, developers
using the algorithm must supply a 64-bit key or the package will raise an error.

Parameters

Table 34–1 DBMS_OBFUSCATION Subprograms

Subprogram Description

DESEncrypt Procedure on
page 34-4

Generates the encrypted form of the input data.

DESDecrypt Procedure on
page 34-5

Generates the decrypted form of the input data.

DES3Encrypt Procedure
on page 34-8

Generates the encrypted form of the input data by passing it
through the Triple DES (3DES) encryption algorithm.

DES3Decrypt Procedure
on page 34-10

Generates the decrypted form of the input data.

Table 34–2 DESEncrypt Parameters for Raw Data

Parameter Name Mode Type Description

input IN RAW data to be encrypted

key IN RAW encryption key

encrypted_data OUT RAW encrypted data
34-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms
If the input data or key given to the PL/SQL DESEncrypt procedure is empty, then
the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DESEncrypt procedure is not a multiple of 8 bytes, the
procedure raises the error ORA-28232 "Invalid input size for Obfuscation toolkit".

If the user tries to double encrypt data using the DESEncrypt procedure, then the
procedure raises the error ORA-28233 "Double encryption not supported".

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are
ignored. So a 9-byte key will not generate an exception.

Restrictions
The DESEncryption procedure has two restrictions. The first is that the DES key
length for encryption is fixed at 56 bits; you cannot alter this key length.

The second is that you cannot execute multiple passes of encryption. That is, you
cannot re-encrypt previously encrypted data by calling the function twice.

DESDecrypt Procedure

The purpose of the DESDecrypt procedure is to generate the decrypted form of the
input data. An example of the DESDecrypt procedure appears at the end of this
chapter.

Table 34–3 DESEncrypt Parameters for String Data

Parameter Name Mode Type Description

input_string IN VARCHAR2 string to be encrypted

key_string IN VARCHAR2 encryption key string

encrypted_string OUT VARCHAR2 encrypted string

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of US regulations
governing the export of cryptographic products.
DBMS_OBFUSCATION_TOOLKIT 34-5

DESDecrypt Procedure
Parameters

If the input data or key given to the PL/SQL DESDecrypt function is empty, then
Oracle raises ORA error 28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DESDecrypt function is not a multiple of 8 bytes,
Oracle raises ORA error 28232 "Invalid input size for Obfuscation toolkit".

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are
ignored. So a 9-byte key will not generate an exception.

Restrictions
The DES key length for encryption is fixed at 64 bits (of which 56 bits are used); you
cannot alter this key length.

Table 34–4 DESDecrypt Parameters for Raw Data

Parameter Name Mode Type Description

input IN RAW Data to be decrypted

key IN RAW Decryption key

decrypted_data OUT RAW Decrypted data

Table 34–5 DESDecrypt Parameters for String Data

Parameter Name Mode Type Description

input_string IN VARCHAR2 String to be decrypted

key_string IN VARCHAR2 Decryption key string

decrypted_string OUT VARCHAR2 Decrypted string

Note: ORA-28233 is not applicable to the DESDecrypt function.

Note: The key length limitation is a requirement of U.S.
regulations governing the export of cryptographic products.
34-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms
Example
A sample PL/SQL program follows. Segments of the code are numbered and
contain narrative text explaining portions of the code.

DECLARE
input_string VARCHAR2(16) := ’tigertigertigert’;
raw_input RAW(128) := UTL_RAW.CAST_TO_RAW(input_string);
key_string VARCHAR2(8) := ’scottsco’;
raw_key RAW(128) := UTL_RAW.CAST_TO_RAW(key_string);
encrypted_raw RAW(2048);
encrypted_string VARCHAR2(2048);
decrypted_raw RAW(2048);
decrypted_string VARCHAR2(2048);
error_in_input_buffer_length EXCEPTION;
PRAGMA EXCEPTION_INIT(error_in_input_buffer_length, -28232);
INPUT_BUFFER_LENGTH_ERR_MSG VARCHAR2(100) :=

’*** DES INPUT BUFFER NOT A MULTIPLE OF 8 BYTES - IGNORING
EXCEPTION ***’;

double_encrypt_not_permitted EXCEPTION;
PRAGMA EXCEPTION_INIT(double_encrypt_not_permitted, -28233);
DOUBLE_ENCRYPTION_ERR_MSG VARCHAR2(100) :=

’*** CANNOT DOUBLE ENCRYPT DATA - IGNORING EXCEPTION ***’;

-- 1. Begin testing raw data encryption and decryption
BEGIN
dbms_output.put_line(’> ========= BEGIN TEST RAW DATA =========’);
dbms_output.put_line(’> Raw input : ’ ||

UTL_RAW.CAST_TO_VARCHAR2(raw_input));
BEGIN

dbms_obfuscation_toolkit.DESEncrypt(input => raw_input,
key => raw_key, encrypted_data => encrypted_raw);

dbms_output.put_line(’> encrypted hex value : ’ ||
rawtohex(encrypted_raw));

dbms_obfuscation_toolkit.DESDecrypt(input => encrypted_raw,
key => raw_key, decrypted_data => decrypted_raw);

dbms_output.put_line(’> Decrypted raw output : ’ ||
UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw));

dbms_output.put_line(’> ’);
if UTL_RAW.CAST_TO_VARCHAR2(raw_input) =

UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw) THEN
dbms_output.put_line(’> Raw DES Encyption and Decryption successful’);

END if;
EXCEPTION

WHEN error_in_input_buffer_length THEN
dbms_output.put_line(’> ’ || INPUT_BUFFER_LENGTH_ERR_MSG);
DBMS_OBFUSCATION_TOOLKIT 34-7

DES3Encrypt Procedure
END;
dbms_output.put_line(’> ’);

-- 2. Begin testing string data encryption and decryption
dbms_output.put_line(’> ========= BEGIN TEST STRING DATA =========’);

BEGIN
dbms_output.put_line(’> input string : ’

|| input_string);
dbms_obfuscation_toolkit.DESEncrypt(

input_string => input_string,
key_string => key_string,
encrypted_string => encrypted_string);

dbms_output.put_line(’> encrypted hex value : ’ ||
rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_string)));

dbms_obfuscation_toolkit.DESDecrypt(
input_string => encrypted_string,
key_string => key_string,
decrypted_string => decrypted_string);

dbms_output.put_line(’> decrypted string output : ’ ||
decrypted_string);

if input_string = decrypted_string THEN
dbms_output.put_line(’> String DES Encyption and Decryption

successful’);
END if;

EXCEPTION
WHEN error_in_input_buffer_length THEN

dbms_output.put_line(’ ’ || INPUT_BUFFER_LENGTH_ERR_MSG);
END;
dbms_output.put_line(’> ’);

END;

DES3Encrypt Procedure

The DES3Encrypt procedure generates the encrypted form of the input data by
passing it through the Triple DES (3DES) encryption algorithm. An example of the
DESEncrypt procedure appears at the end of this chapter.

Oracle's implementation of 3DES supports either a 2-key or 3-key implementation,
in outer cipher-block-chaining (CBC) mode.

A developer using Oracle's 3DES interface with a 2-key implementation must
supply a single key of 128 bits as an argument to the DES3Encrypt procedure. With
34-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms
a 3-key implementation, you must supply a single key of 192 bits. Oracle then
breaks the supplied key into two 64-bit keys. As with DES, the 3DES algorithm
throws away 8 bits of each derived key. However, you must supply a single 128-bit
key for the 2-key 3DES implementation or a single 192-bit key for the 3-key 3DES
implementation; otherwise the package will raise an error. The DES3Encrypt
procedure uses the 2-key implementation by default.

Parameters

If the input data or key given to the PL/SQL DES3Encrypt procedure is empty, then
the procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DES3Encrypt procedure is not a multiple of 8 bytes,
the procedure raises the error ORA-28232 "Invalid input size for Obfuscation
toolkit".

If the user tries to double encrypt data using the DES3Encrypt procedure, then the
procedure raises the error ORA-28233 "Double encryption not supported".

Table 34–6 DES3Encrypt Parameters for Raw Data

Parameter Name Mode Type Description

input IN RAW data to be encrypted

key IN RAW encryption key

encrypted_data OUT RAW encrypted data

which IN PLS_INTEGER If = 0, (default), then TwoKeyMode is
used. If = 1, then ThreeKeyMode is
used.

Table 34–7 DES3Encrypt Parameters for String Data

Parameter Name Mode Type Description

input_string IN VARCHAR2 string to be encrypted

key_string IN VARCHAR2 encryption key string

encrypted_string OUT VARCHAR2 encrypted string

which IN PLS_INTEGER If = 0, (default), then TwoKeyMode is
used. If = 1, then ThreeKeyMode is
used.
DBMS_OBFUSCATION_TOOLKIT 34-9

DES3Decrypt Procedure
If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are
ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the WHICH parameter, ORA-28236 "Invalid
Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1
(ThreeKeyMode) are valid.

Restrictions
The DES3Encrypt procedure has two restrictions. The first is that the DES key
length for encryption is fixed at 128 bits (for 2-key DES) or 192 bits (for 3-key DES);
you cannot alter these key lengths.

The second is that you cannot execute multiple passes of encryption using 3DES.
(Note: the 3DES algorithm itself encrypts data multiple times; however, you cannot
call the 3DESencrypt function itself more than once to encrypt the same data using
3DES.)

DES3Decrypt Procedure

The purpose of the DES3Decrypt procedure is to generate the decrypted form of the
input data. An example of the DES3Decrypt procedure appears at the end of this
chapter.

Parameters

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of US regulations
governing the export of cryptographic products.

Table 34–8 DES3Decrypt Parameters for Raw Data

Parameter Name Mode Type Description

input IN RAW Data to be decrypted

key IN RAW Decryption key

decrypted_data OUT RAW Decrypted data
34-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms
If the input data or key given to the DES3Decrypt procedure is empty, then the
procedure raises the error ORA-28231 "Invalid input to Obfuscation toolkit".

If the input data given to the DES3Decrypt procedure is not a multiple of 8 bytes,
the procedure raises the error ORA-28232 "Invalid input size for Obfuscation
toolkit". ORA-28233 is NOT applicable for the DES3Decrypt function.

If the key length is missing or is less than 8 bytes, then the procedure raises the error
ORA-28234 "Key length too short." Note that if larger keys are used, extra bytes are
ignored. So a 9-byte key will not generate an exception.

If an incorrect value is specified for the WHICH parameter, ORA-28236 "Invalid
Triple DES mode" is generated. Only the values 0 (TwoKeyMode) and 1
(ThreeKeyMode) are valid.

Restrictions
A developer must supply a single key of either 128 bits for a 2-key implementation
(of which only 112 are used), or a single key of 192 bits for a 3-key implementation
(of which 168 bits are used). Oracle automatically truncates the supplied key into
56-bit lengths for decryption. This key length is fixed and cannot be altered.

which IN PLS_INTEGER If = 0, (default), then TwoKeyMode is
used. If = 1, then ThreeKeyMode is
used.

Table 34–9 DES3Decrypt parameters for string data

Parameter Name Mode Type Description

input_string IN VARCHAR2 String to be decrypted

key_string IN VARCHAR2 Decryption key string

decrypted_
string

 OUT VARCHAR2 Decrypted string

which IN PLS_INTEGER If = 0, (default), then TwoKeyMode is
used. If = 1, then ThreeKeyMode is used.

Table 34–8 DES3Decrypt Parameters for Raw Data

Parameter Name Mode Type Description
DBMS_OBFUSCATION_TOOLKIT 34-11

DES3Decrypt Procedure
Example
Following is a sample PL/SQL program for your reference. Segments of the code
are numbered and contain narrative text explaining portions of the code.

DECLARE
input_string VARCHAR2(16) := ’tigertigertigert’;
raw_input RAW(128) := UTL_RAW.CAST_TO_RAW(input_string);
key_string VARCHAR2(16) := ’scottscottscotts’;
raw_key RAW(128) := UTL_RAW.CAST_TO_RAW(key_string);

encrypted_raw RAW(2048);
encrypted_string VARCHAR2(2048);

decrypted_raw RAW(2048);
decrypted_string VARCHAR2(2048);
error_in_input_buffer_length EXCEPTION;
PRAGMA EXCEPTION_INIT(error_in_input_buffer_length, -28232);
INPUT_BUFFER_LENGTH_ERR_MSG VARCHAR2(100) :=

’*** DES INPUT BUFFER NOT A MULTIPLE OF 8 BYTES - IGNORING EXCEPTION ***’;
double_encrypt_not_permitted EXCEPTION;
PRAGMA EXCEPTION_INIT(double_encrypt_not_permitted, -28233);
DOUBLE_ENCRYPTION_ERR_MSG VARCHAR2(100) :=

’*** CANNOT DOUBLE ENCRYPT DATA - IGNORING EXCEPTION ***’;

-- 1. Begin testing raw data encryption and decryption
BEGIN
dbms_output.put_line(’> ========= BEGIN TEST RAW DATA =========’);
dbms_output.put_line(’> Raw input : ’ ||

UTL_RAW.CAST_TO_VARCHAR2(raw_input));
BEGIN

dbms_obfuscation_toolkit.DES3Encrypt(input => raw_input,
key => raw_key, encrypted_data => encrypted_raw);

dbms_output.put_line(’> encrypted hex value : ’ ||
rawtohex(encrypted_raw));

dbms_obfuscation_toolkit.DES3Decrypt(input => encrypted_raw,
key => raw_key, decrypted_data => decrypted_raw);

dbms_output.put_line(’> Decrypted raw output : ’ ||
UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw));

dbms_output.put_line(’> ’);

Note: Both the key length limitation and the prevention of
multiple encryption passes are requirements of US regulations
governing the export of cryptographic products.
34-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OBFUSCATION Subprograms
if UTL_RAW.CAST_TO_VARCHAR2(raw_input) =
UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw) THEN

dbms_output.put_line(’> Raw DES3 Encyption and Decryption successful’);
END if;

EXCEPTION
WHEN error_in_input_buffer_length THEN

dbms_output.put_line(’> ’ || INPUT_BUFFER_LENGTH_ERR_MSG);
END;
dbms_output.put_line(’> ’);

END;

-- 2. Begin testing string data encryption and decryption
dbms_output.put_line(’> ========= BEGIN TEST STRING DATA =========’);

BEGIN
dbms_output.put_line(’> input string : ’

|| input_string);
dbms_obfuscation_toolkit.DES3Encrypt(

input_string => input_string,
key_string => key_string,
encrypted_string => encrypted_string);

dbms_output.put_line(’> encrypted hex value : ’ ||
rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_string)));

dbms_obfuscation_toolkit.DES3Decrypt(
input_string => encrypted_string,
key_string => key_string,
decrypted_string => decrypted_string);

dbms_output.put_line(’> decrypted string output : ’ ||
decrypted_string);

if input_string = decrypted_string THEN
dbms_output.put_line(’> String DES3 Encyption and Decryption

successful’);
END if;

EXCEPTION
WHEN error_in_input_buffer_length THEN

dbms_output.put_line(’ ’ || INPUT_BUFFER_LENGTH_ERR_MSG);
END;
dbms_output.put_line(’> ’);

END;
DBMS_OBFUSCATION_TOOLKIT 34-13

DES3Decrypt Procedure
34-14 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
35

DBMS_ODCI

DBMS_ODCI returns the CPU cost of a user function based on the elapsed time of
the function. The CPU cost is used by extensible optimizer routines.

This chapter discusses the following topics:

� Summary of DBMS_ODCI Subprograms
_ODCI 35-1

Summary of DBMS_ODCI Subprograms
Summary of DBMS_ODCI Subprograms

ESTIMATE_CPU_UNITS Function

ESTIMATE_CPU_UNITS returns the approximate number of CPU instructions (in
thousands) corresponding to a specified time interval (in seconds). This information
can be used to associate the CPU cost with a user-defined function for the extensible
optimizer.

The function takes as input the elapsed time of the user function, measures CPU
units by multiplying the elapsed time by the processor speed of the machine, and
returns the approximate number of CPU instructions that should be associated with
the user function. (For a multiprocessor machine, ESTIMATE_CPU_UNITS
considers the speed of a single processor.)

Syntax
DBMS_ODCI.ESTIMATE_CPU_UNITS (

elapsed_time NUMBER)
RETURN NUMBER;

Parameters

Usage Notes
When associating CPU cost with a user-defined function, use the full number of
CPU units rather than the number of thousands of CPU units returned by
ESTIMATE_CPU_UNITS. In other words, multiply the number returned by
ESTIMATE_CPU_UNITS by 1000.

Table 35–1 DBMS_ODCI Subprograms

Subprogram Description

ESTIMATE_CPU_UNITS
Function on page 35-2

Returns the approximate number of CPU instructions (in
thousands) corresponding to a specified time interval (in
seconds).

Table 35–2 ESTIMATE_CPU_UNITS Function Parameters

Parameter Description

elapsed_time The elapsed time in seconds to execute the function
35-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ODCI Subprograms
Example
To determine the number of CPU units used for a function that takes 10 seconds on
a machine:

DECLARE
a INTEGER;

BEGIN
a := DBMS_ODCI.ESTIMATE_CPU_UNITS(10);
DBMS_OUTPUT.PUT_LINE(’CPU units = ’|| a*1000);

END;
DBMS_ODCI 35-3

ESTIMATE_CPU_UNITS Function
35-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_OFFLIN
36

DBMS_OFFLINE_OG

The DBMS_OFFLINE_OG package contains public APIs for offline instantiation of
master groups.

This chapter discusses the following topics:

� Summary of DBMS_OFFLINE_OG Subprograms

Note: These procedures are used in performing an offline
instantiation of a master table in a multimaster replication
environment.

These procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.
E_OG 36-1

Summary of DBMS_OFFLINE_OG Subprograms
Summary of DBMS_OFFLINE_OG Subprograms

BEGIN_INSTANTIATION Procedure

This procedure starts offline instantiation of a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (

gname IN VARCHAR2,
new_site IN VARCHAR2
fname IN VARCHAR2);

Table 36–1 DBMS_OFFLINE_OG Package Subprograms

Subprogram Description

BEGIN_INSTANTIATION
Procedure on page 36-2

Starts offline instantiation of a master group.

BEGIN_LOAD Procedure on
page 36-3

Disables triggers while data is imported to new master site
as part of offline instantiation.

END_INSTANTIATION
Procedure on page 36-5

Completes offline instantiation of a master group.

END_LOAD Procedure on
page 36-6

Re-enables triggers after importing data to new master site
as part of offline instantiation.

RESUME_SUBSET_OF_
MASTERS Procedure on
page 36-7

Resumes replication activity at all existing sites except the
new site during offline instantiation of a master group.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.
36-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_OG Subprograms
Parameters

Exceptions

BEGIN_LOAD Procedure

This procedure disables triggers while data is imported to the new master site as
part of offline instantiation. You must call this procedure from the new master site.

Table 36–2 BEGIN_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you want to replicate to the
new site.

new_site The fully qualified database name of the new site to which you
want to replicate the replication group.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 36–3 BEGIN_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

sitealreadyexists Specified site is already a master site for this replication
group.

wrongstate Status of master definition site must be quiesced.

dbms_
repcat.missingrepgroup

gname does not exist as a master group.

dbms_repcat.missing_
flavor

If you receive this exception, contact Oracle Support
Services.
DBMS_OFFLINE_OG 36-3

BEGIN_LOAD Procedure
Syntax
DBMS_OFFLINE_OG.BEGIN_LOAD (

gname IN VARCHAR2,
new_site IN VARCHAR2);

Parameters

Exceptions

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

Table 36–4 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you are importing.

new_site The fully qualified database name of the new site at which you
will be importing the replication group members.

Table 36–5 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_
repcat.missingrepgroup

gname does not exist as a master group.
36-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_OG Subprograms
END_INSTANTIATION Procedure

This procedure completes offline instantiation of a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.END_INSTANTIATION (

gname IN VARCHAR2,
new_site IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

Table 36–6 END_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.
DBMS_OFFLINE_OG 36-5

END_LOAD Procedure
Exceptions

END_LOAD Procedure

This procedure re-enables triggers after importing data to new master site as part of
offline instantiation. You must call this procedure from the new master site.

Syntax
DBMS_OFFLINE_OG.END_LOAD (

gname IN VARCHAR2,
new_site IN VARCHAR2
fname IN VARCHAR2);

Table 36–7 END_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new master
site name.

dbms_
repcat.nonmasterdef

This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_
repcat.missingrepgroup

gname does not exist as a master group.

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.
36-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_OG Subprograms
Parameters

Exceptions

RESUME_SUBSET_OF_MASTERS Procedure

When you add a new master site to a master group by performing an offline
instantiation of a master site, it may take some time to complete the offline
instantiation process. This procedure resumes replication activity at all existing
sites, except the new site, during offline instantiation of a master group. You
typically execute this procedure after executing the DBMS_OFFLINE_OG.BEGIN_

Table 36–8 END_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you have finished
importing.

new_site The fully qualified database name of the new site at which you
have imported the replication group members.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 36–9 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_
repcat.missingrepgroup

gname does not exist as a master group.

dbms_repcat.flavor_
noobject

If you receive this exception, contact Oracle Support
Services.

dbms_repcat.flavor_
contains

If you receive this exception, contact Oracle Support
Services.
DBMS_OFFLINE_OG 36-7

RESUME_SUBSET_OF_MASTERS Procedure
INSTANTIATION procedure. You must call this procedure from the master
definition site.

Syntax
DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS (

gname IN VARCHAR2,
new_site IN VARCHAR2
override IN BOOLEAN := false);

Parameters

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_OFFLINE_SNAPSHOT package (used for performing an
offline instantiation of a materialized view) or with the procedures
in the DBMS_REPCAT_INSTANTIATE package (used for
instantiating a deployment template). See these respective packages
for more information on their usage.

Table 36–10 RESUME_SUBSET_OF_MASTERS Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

override If this is true , then any pending RepCat administrative requests
are ignored and normal replication activity is restored at each
master as quickly as possible. The override parameter should be
set to true only in emergency situations.

If this is false , then normal replication activity is restored at each
master only when there is no pending RepCat administrative
request for gname at that master.
36-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_OG Subprograms
Exceptions

Table 36–11 RESUME_SUBSET_OF_MASTERS Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_
repcat.missingrepgroup

gname does not exist as a master group.
DBMS_OFFLINE_OG 36-9

RESUME_SUBSET_OF_MASTERS Procedure
36-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_OFFLINE_SNA
37

DBMS_OFFLINE_SNAPSHOT

The DBMS_OFFLINE_SNAPSHOT package contains public APIs for offline
instantiation of materialized views.

This chapter discusses the following topics:

� Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

Note: These procedure are used in performing an offline
instantiation of a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See these respective packages for more
information on their usage.
PSHOT 37-1

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
Summary of DBMS_OFFLINE_SNAPSHOT Subprograms

BEGIN_LOAD Procedure

This procedure prepares a materialized view site for import of a new materialized
view as part of offline instantiation. You must call this procedure from the
materialized view site for the new materialized view.

Syntax
DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD (

gname IN VARCHAR2,
sname IN VARCHAR2,
master_site IN VARCHAR2,
snapshot_oname IN VARCHAR2,
storage_c IN VARCHAR2 := ’’,
comment IN VARCHAR2 := ’’,
min_communication IN BOOLEAN := true);

Table 37–1 DBMS_OFFLINE_SNAPSHOT P ackage Subprograms

Subprogram Description

BEGIN_LOAD
Procedure on page 37-2

Prepares a materialized view site for import of a new materialized
view as part of offline instantiation.

END_LOAD Procedure
on page 37-4

Completes offline instantiation of a materialized view.

Note: This procedure is used to perform an offline instantiation of
a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See these respective packages for more
information on their usage.
37-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
Parameters

Exceptions

Table 37–2 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group for the materialized view that you
are creating using offline instantiation.

sname Name of the schema for the new materialized view.

master_site Fully qualified database name of the materialized view’s master
site.

snapshot_oname Name of the temporary materialized view created at the master
site.

storage_c Storage options to use when creating the new materialized view at
the materialized view site.

comment User comment.

min_communication If true , then the update trigger sends the new value of a column
only if the update statement modifies the column. Also, if true ,
the update trigger sends the old value of the column only if it is a
key column or a column in a modified column group.

Table 37–3 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema,
master site, or materialized view name.

dbms_
repcat.missingrepgroup

gname does not exist as a replication group.

missingremotemview Could not locate specified materialized view at specified
master site.

dbms_
repcat.missingschema

Specified schema does not exist.

mviewtabmismatch Base table name of the materialized view at the master
and materialized view do not match.
DBMS_OFFLINE_SNAPSHOT 37-3

END_LOAD Procedure
END_LOAD Procedure

This procedure completes offline instantiation of a materialized view. You must call
this procedure from the materialized view site for the new materialized view.

Syntax
DBMS_OFFLINE_SNAPSHOT.END_LOAD (

gname IN VARCHAR2,
sname IN VARCHAR2,
snapshot_oname IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of
a materialized view.

These procedures should not be confused with the procedures in
the DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS_
REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See these respective packages for more
information on their usage.

Table 37–4 END_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group for the materialized view that you
are creating using offline instantiation.

sname Name of the schema for the new materialized view.

snapshot_oname Name of the materialized view.
37-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
Exceptions

Table 37–5 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group, schema, or
materialized view name.

dbms_
repcat.missingrepgroup

gname does not exist as a replication group.

dbms_repcat.nonmview This procedure must be called from the materialized
view site.
DBMS_OFFLINE_SNAPSHOT 37-5

END_LOAD Procedure
37-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
38

DBMS_OLAP

The DBMS_OLAP package provides a collection of materialized view analysis and
advisory functions that are callable from any PL/SQL program. Some of the
functions generate output tables.

This chapter discusses the following topics:

� Requirements

� Error Messages

� Summary of DBMS_OLAP Subprograms

� DBMS_OLAP Interface Views

See Also: Oracle9i Data Warehousing Guide for more information
regarding how to use DBMS_OLAP and its output tables
_OLAP 38-1

Requirements
Requirements
DBMS_OLAP performs seven major functions, which include materialized view
strategy recommendation, materialized view strategy evaluation, reporting and
script generation, repository management, workload management, filter
management, and dimension validation.

To perform materialized view strategy recommendation and evaluation functions,
the workload information can either be provided by the user or synthesized by the
Advisor engine. In the former case, cardinality information of all tables and
materialized views referenced in the workload are required. In the latter case,
dimension objects must be present and cardinality information for all dimension
tables, fact tables, and materialized views are required. Cardinality information
should be gathered with the DBMS_STATS.GATHER_TABLE_STATS procedure.
Once these functions are completed, the analysis results can be presented with the
reporting and script generation function.

The workload management function handles three types of workload, which are
user-specified workload, SQL cache workload, and Oracle Trace workload. To
process the user-specified workload, a user-defined workload table must be present
in the user’s schema. To process Oracle Trace workload, Oracle Trace formatter must
be run to preprocess collected workload statistics into default V-tables in the user’s
schema.

Error Messages
Table 38–1 lists basic DBMS_OLAP error messages.

Table 38–1 DBMS_OLAP Error Messages

Error Code Description

ORA-30442 Cannot find the definition for filter <NUMBER>

ORA-30443 Definition for filter <NUMBER>’s item <NUMBER> is invalid

ORA-30444 Rewrite terminated by the SQL Analyzer

ORA-30445 Workload queries not found

ORA-30446 Valid workload queries not found

ORA-30447 internal data for run number <NUMBER> is inconsistent

ORA-30448 Internal data of the Advisor repository is inconsistent

ORA-30449 Syntax error in parameter <NUMBER>
38-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Error Messages
ORA-30465 Supplied run_id is not valid: <NUMBER>

ORA-30466 Cannot find the specified workload <NUMBER>

ORA-30477 The input select_clause is incorrectly specified

ORA-30478 Specified dimension does not exist

ORA-30479 Summary Advisor error QSM message with more details

QSM-00501 Unable to initialize Summary Advisor environment

QSM-00502 OCI error

QSM-00503 Out of memory

QSM-00504 Internal error

QSM-00505 Syntax error in <parse_entity_name > - <error_description >

QSM-00506 No fact-tables could be found

QSM-00507 No dimensions could be found

QSM-00508 Statistics missing on tables/columns

QSM-00509 Invalid parameter - <parameter_name >

QSM-00510 Statistics missing on summaries

QSM-00511 Invalid fact-tables specified in fact-filter

QSM-00512 Invalid summaries specified in the retention-list

QSM-00513 One or more of the workload tables is missing

QSM-00550 The filter item type <NAME> is missing the required data

QSM-00551 The file <NAME> was not found

QSM-00552 The workload source was not defined or was not recognized

QSM-00553 The string value for filter item <NAME> has a maximum length of
<NUMBER> characters

QSM-00554 The required table name was not provided

QSM-00555 The table <NAME> cannot be accessed or does not exist

QSM-00556 The file <NAME> could not be opened

QSM-00557 The owner <NAME> cannot be accessed or does not exist

Table 38–1 DBMS_OLAP Error Messages

Error Code Description
DBMS_OLAP 38-3

Error Messages
QSM-00558 An error occurred while reading file <NAME>

QSM-00559 A workload already exists for the specified collection ID

QSM-00560 The character <NAME> is invalid at line <LINE_NUMBER>, column
<COLUMN_NUMBER

QSM-00561 Found <TOKEN> at line <NUMBER>, column <NUMBER>. Expecting 1of
the following items: <ITEMS>

QSM-00562 The requested Advisor task was not found

QSM-00563 Found <TOKEN> at line <NUMBER>, column <NUMBER> of file <NAME>.
Expecting 1 of the following items: <ITEMS>

QSM-00564 An internal lexical error occurred: <Additional error text>

QSM-00565 The <NAME> was not found while validating the <TABLE or COLUMN> at
line <NUMBER>, column <NUMBER>

QSM-00566 The <TOKEN> is ambiguous while validating the <TABLE or COLUMN>
at line <NUMBER>, column <NUMBER>

QSM-00567 A runtime error occurred: <Additional error text>

QSM-00568 The end-of-file was encountered

QSM-00569 The required column <NAME> was not found in table <NAME>

QSM-00570 The job has ended in error. Status changes are not permitted

QSM-00571 The job has already completed. Status changes are unnecessary

QSM-00572 No repository connection has been established

QSM-00573 The date <VALUE> must be in the form ’DD/MM/YYYY HH24:MI:SS’

QSM-00574 The file <NAME> could not be accessed due to a security violation

QSM-00575 The string <VALUE> cannot be converted to a number

QSM-00576 A usable Oracle Trace collection was not found in schema <NAME>

QSM-00577 The current operation was cancelled by the user

QSM-00578 A temporary file cannot be created using the specification <FILE_
NAME>

QSM-00579 The job has already completed. Cancellation is unnecessary

QSM-00580 The job has ended in error. Cancellation is not permitted

QSM-00581 Internal error: <Additional error text>

Table 38–1 DBMS_OLAP Error Messages

Error Code Description
38-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Error Messages
QSM-00582 A database error has occurred. <Additional error text>

QSM-00583 The filter item type <NAME> is invalid

QSM-00584 The SQL cache is not accessible by user <NAME>

QSM-00585 The workload was not found for collection ID <NUMBER>

QSM-00586 The filter was not found for filter ID <NUMBER>

QSM-00587 The analysis data was not found for run ID <NUMBER>

QSM-00588 The current user does not have the privilege to access the requested
workload, which is owned by user <NAME>

QSM-00589 The current user does not have the privilege to access the requested
workload filter, which is owned by user <NAME>

QSM-00590 The current user does not have the privilege to access the requested
Advisor items, which are owned by user <NAME>

QSM-00591 The specified report style <NAME> was not found

QSM-00592 The specified report field <NAME> already exists

QSM-00593 The specified report field <NAME> was not found

QSM-00594 The specified ID number is already being used by another user

QSM-00595 The specified ID number is being used by an Advisor <NAME> object
and cannot be used for this operation

QSM-00596 A specified ID number cannot be NULL or zero

QSM-00597 Found <TOKEN> at line <NUMBER>, column <NUMBER>

QSM-00598 The minimum range value for filter item <NAME> is greater than the
maximum range value

QSM-00599 The supplied workload filter contains items that are unsupported for
the requested workload operation: <OPERATION>

QSM-00602 The ID <NUMBER> is not a valid Summary Advisor run or collection ID
for the current user

QSM-00601 The flags value of <NUMBER> for the Summary Advisor detail report is
invalid

Table 38–1 DBMS_OLAP Error Messages

Error Code Description
DBMS_OLAP 38-5

Summary of DBMS_OLAP Subprograms
Summary of DBMS_OLAP Subprograms

Table 38–2 lists the subprograms available with DBMS_OLAP.

Table 38–2 DBMS_OLAP Package Subprograms

Subprogram Description

ADD_FILTER_ITEM Procedure
on page 38-7

Filters the contents being used during the
recommendation process.

CREATE_ID Procedure on
page 38-9

Generates an internal ID used by a new workload
collection, a new filter, or a new advisor run

ESTIMATE_MVIEW_SIZE
Procedure on page 38-9

Estimates the size of a materialized view that you might
create, in bytes and rows.

EVALUATE_MVIEW_
STRATEGY Procedure on
page 38-10

Measures the utilization of each existing materialized
view.

GENERATE_MVIEW_REPORT
Procedure on page 38-11

Generates an HTML-based report on the given Advisor
run

GENERATE_MVIEW_SCRIPT
Procedure on page 38-12

Generates a simple script containing the SQL commands
to implement Summary Advisor recommendations

LOAD_WORKLOAD_CACHE
Procedure on page 38-13

Obtains a SQL cache workload.

LOAD_WORKLOAD_TRACE
Procedure on page 38-14

Loads a workload collected by Oracle Trace.

LOAD_WORKLOAD_USER
Procedure on page 38-15

Loads a user-defined workload.

PURGE_FILTER Procedure on
page 38-16

Deletes a specific filter or all filters.

PURGE_RESULTS Procedure
on page 38-17

Removes all results or those for a specific run.

PURGE_WORKLOAD
Procedure on page 38-17

Deletes all workloads or a specific collection.

RECOMMEND_MVIEW_
STRATEGY Procedure on
page 38-18

Generates a set of recommendations about which
materialized views should be created, retained, or
dropped.

SET_CANCELLED Procedure
on page 38-19

Stops the Advisor if it takes too long returning results.
38-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
ADD_FILTER_ITEM Procedure

This procedure adds a new filter item to an existing filter to make it more restrictive.
It also creates a filter to restrict what is analyzed for the workload.

Syntax
ADD_FILTER_ITEM (

filter_id IN NUMBER,
filter_name IN VARCHAR2,
string_list IN VARCHAR2,
number_min IN NUMBER,
number_max IN NUMBER,
date_min IN VARCHAR2,
date_max IN VARCHAR2);

VALIDATE_DIMENSION
Procedure on page 38-20

Verifies that the relationships specified in a dimension
are correct.

VALIDATE_WORKLOAD_
CACHE Procedure on
page 38-21

Validates the SQL Cache workload before performing load
operations

VALIDATE_WORKLOAD_
TRACE Procedure on
page 38-22

Validates the Oracle Trace workload before performing
load operations

VALIDATE_WORKLOAD_
USER Procedure on page 38-22

Validates the user-supplied workload before performing
load operations

Table 38–3 ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description

filter_id NUMBER An ID that uniquely describes the filter. It is generated by
the DBMS_OLAP.CREATE_ID procedure

Table 38–2 DBMS_OLAP Package Subprograms (Cont.)

Subprogram Description
DBMS_OLAP 38-7

ADD_FILTER_ITEM Procedure
filter_name VARCHAR2 APPLICATION
String-workload's application column. An example of how
to load a SQL Cache workload follows:

BASETABLE
String-based tables referenced by workload queries. Name
must be fully qualified including owner and table name
(for example, SH.SALES)

CARDINALITY
Numerical-sum of cardinality of the referenced base tables

FREQUENCY
Numerical-workload's frequency column

LASTUSE
Date-workload's lastuse column. Not used by SQL Cache
workload.

OWNER
String-workload's owner column. Expected in uppercase
unless owner defined explicitly to be not all in uppercase.

PRIORITY
Numerical-workload's priority column. Not used by SQL
Cache workload.

RESPONSETIME
Numerical-workload's responsetime column. Not used by
SQL Cache workload.

SCHEMA
String-based schema referenced by workload filter.

TRACENAME
String-list of oracle trace collection names. Only used by a
Trace Workload

string_list VARCHAR2 A comma-delimited list of strings. This parameter is only
used by the filter items of the string type

number_min NUMBER The lower bound of a numerical range. NULL represents
the lowest possible value. This parameter is only used by
the parameters of the numerical type

number_max NUMBER The upper bound of a numerical range, NULL for no
upper bound. NULL represents the highest possible value.
This parameter is only used by the parameters of the
numerical type

Table 38–3 ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description
38-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
CREATE_ID Procedure

This creates a unique identifier, which is used to identify a filter, a workload or
results of an advisor or dimension validation run.

Syntax
CALL DBMS_OLAP.CREATE_ID (

id OUT NUMBER);

ESTIMATE_MVIEW_SIZE Procedure

This estimates the size of a materialized view that you might create, in bytes and
number of rows.

Syntax
DBMS_OLAP.ESTIMATE_MVIEW_SIZE (

stmt_id IN VARCHAR2,
select_clause IN VARCHAR2,
num_rows OUT NUMBER,
num_bytes OUT NUMBER);

date_min VARCHAR2 The lower bound of a date range. NULL represents the
lowest possible date value. This parameter is only used by
the parameters of the date type

date_max VARCHAR2 The upper bound of a date range. NULL represents the
highest possible date value. This parameter is only used
by the parameters of the date type

Table 38–4 CREATE_ID Procedure Parameters

Parameter Datatype Description

id NUMBER The unique identifier that can be used to identify a
filter, a workload, or an Advisor run

Table 38–3 ADD_FILTER_ITEM Procedure Parameters

Parameter Datatype Description
DBMS_OLAP 38-9

EVALUATE_MVIEW_STRATEGY Procedure
Parameters

EVALUATE_MVIEW_STRATEGY Procedure

This procedure measures the utilization of each existing materialized view based on
the materialized view usage statistics collected from the workload. The workload_
id is optional. If not provided, EVALUATE_MVIEW_STRATEGY uses a hypothetical
workload.

Periodically, the unused results can be purged from the system by calling the DBMS_
OLAP.PURGE_RESULTS procedure.

Syntax
DBMS_OLAP.EVALUATE_MVIEW_STRATEGY (
run_id IN NUMBER,
workload_id IN NUMBER,
filter_id IN NUMBER);

Parameters

Table 38–5 ESTIMATE_MVIEW_SIZE Procedure Parameters

Parameter Datatype Description

stmt_id NUMBER Arbitrary string used to identify the statement in
an EXPLAIN PLAN.

select_
clause

STRING The SELECT statement to be analyzed.

num_rows NUMBER Estimated cardinality.

num_bytes NUMBER Estimated number of bytes.

See Also: "DBMS_OLAP Interface Views" on page 38-23

Table 38–6 EVALUATE_MVIEW_STRATEGY Procedure Parameters

Parameter Datatype Description

run_id NUMBER An ID generated by the DBMS_OLAP.CREATE_ID
procedure to identify results of a run
38-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
GENERATE_MVIEW_REPORT Procedure

Generates an HTML-based report on the given Advisor run.

Syntax
DBMS_OLAP.GENERATE_MVIEW_REPORT (
filename IN VARCHAR2,
id IN NUMBER,
flags IN NUMBER);

workload_id NUMBER An optional workload ID that maps to a workload in
the current repository. Use the parameter DBMS_
OLAP.WORKLOAD_ALL to choose all workloads

filter_id NUMBER Specify filter for the workload to be used. The value
DBMS_OLAP.FILTER_NONE indicates no filtering

Table 38–7 GENERATE_MVIEW_REPORT Procedure Parameters

Parameter Datatype Description

filename VARCHAR2 Fully qualified output file name to receive HTML data.
Note that the Oracle server restricts file access within
Oracle stored procedures. See the "Security and
Performance" section of the Java Developer’s Guide for
more information on file permissions

id NUMBER An ID that identifies an advisor run. Or use the
parameter DBMS_OLAP.RUNID_ALL to indicate all
advisor runs should be reported

Table 38–6 EVALUATE_MVIEW_STRATEGY Procedure Parameters

Parameter Datatype Description
DBMS_OLAP 38-11

GENERATE_MVIEW_SCRIPT Procedure
GENERATE_MVIEW_SCRIPT Procedure

Generates a simple script containing the SQL commands to implement Summary
Advisor recommendations.

Syntax
DBMS_OLAP.GENERATE_MVIEW_SCRIPT(
filename IN VARCHAR2,
id IN NUMBER,
tspace IN VARCHAR2);

flags NUMBER Bit masked flags indicating what sections should be
reported

DBMS_OLAP.RPT_ACTIVITY -- Overall activities

DBMS_OLAP.RPT_JOURNAL -- Runtime journals

 DBMS_OLAP.RPT_WORKLOAD_FILTER -- Filters

DBMS_OLAP.RPT_WORKLOAD_DETAIL -- Workload
information

DBMS_OLAP.RPT_WORKLOAD_QUERY -- Workload
query information

DBMS_OLAP.RPT_RECOMMENDATION --
Recommendations

DBMS_OLAP.RPT_USAGE -- Materialized view usage

DBMS_OLAP.RPT_ALL -- All sections

Table 38–8 GENERATE_MVIEW_SCRIPT Procedure Parameters

Parameter Datatype Description

filename VARCHAR2 Fully qualified output file name to receive HTML data.
Note that the Oracle server restricts file access within
Oracle stored procedures. See the "Security and
Performance" section of the Java Developer’s Guide for
more information on file permissions

id NUMBER An ID that identifies an advisor run. The parameter
DBMS_OLAP.RUNID_ALL indicates all advisor runs
should be reported.

Table 38–7 GENERATE_MVIEW_REPORT Procedure Parameters

Parameter Datatype Description
38-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
LOAD_WORKLOAD_CACHE Procedure

Loads a SQL cache workload.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_CACHE (
workload_id IN NUMBER,
flags IN NUMBER,
filter_id IN NUMBER,
application IN VARCHAR2,
priority IN NUMBER);

tspace VARCHAR2 Optional tablespace name to use when creating
materialized views.

Table 38–9 LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Datatype Description

workload_id NUMBER Fully qualified output file name to receive HTML data.
Note that the Oracle server restricts file access within
Oracle stored procedures. See the "Security and
Performance" section of the Java Developer’s Guide for
more information on file permission

flags NUMBER DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

Table 38–8 GENERATE_MVIEW_SCRIPT Procedure Parameters

Parameter Datatype Description
DBMS_OLAP 38-13

LOAD_WORKLOAD_TRACE Procedure
LOAD_WORKLOAD_TRACE Procedure

Loads an Oracle Trace workload.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_TRACE (
workload_id IN NUMBER,
flags IN NUMBER,
filter_id IN NUMBER,
application IN VARCHAR2,
priority IN NUMBER,
owner_name IN VARCHAR2);

filter_id NUMBER Specify filter for the workload to be loaded

application VARCHAR2 The default business application name. This value will
be used for a query if one is not found in the target
workload

priority NUMBER The default business priority to be assigned to every
query in the target workload

Table 38–10 LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Datatype Description

collectionid NUMBER Fully qualified output file name to receive HTML data.
Note that the Oracle server restricts file access within
Oracle stored procedures. See the "Security and
Performance" section of the Java Developer’s Guide for
more information on file permission

Table 38–9 LOAD_WORKLOAD_CACHE Procedure Parameters

Parameter Datatype Description
38-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
LOAD_WORKLOAD_USER Procedure

A user-defined workload is loaded using the procedure LOAD_WORKLOAD_USER.

Syntax
DBMS_OLAP.LOAD_WORKLOAD_USER (
workload_id IN NUMBER,
flags IN NUMBER,
filter_id IN NUMBER,
owner_name IN VARCHAR2,
table_name IN VARCHAR2);

flags NUMBER DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

application VARCHAR2 The default business application name. This value will
be used for a query if one is not found in the target
workload

priority NUMBER The default business priority to be assigned to every
query in the target workload

owner_name VARCHAR2 The schema that contains the Oracle Trace data. If
omitted, the current user will be used

Table 38–10 LOAD_WORKLOAD_TRACE Procedure Parameters

Parameter Datatype Description
DBMS_OLAP 38-15

PURGE_FILTER Procedure
PURGE_FILTER Procedure

A filter can be removed at anytime by calling the procedure PURGE_FILTER which
is described as follows. You can delete a specific filter or all filters.

Syntax
DBMS_OLAP.PURGE_FILTER (
filter_id IN NUMBER);

Table 38–11 LOAD_WORKLOAD_USER Procedure Parameters

Parameter Datatype Description

workload_id NUMBER The required id that was returned by the DBMS_
OLAP.CREATE_ID call

flags NUMBER DBMS_OLAP.WORKLOAD_OVERWRITE

The load routine will explicitly remove any existing
queries from the workload that are owned by the
specified collection ID

DBMS_OLAP.WORKLOAD_APPEND

The load routine preserves any existing queries in the
workload. Any queries collected by the load operation
will be appended to the end of the specified workload

DBMS_OLAP.WORKLOAD_NEW

The load routine assumes there are no existing queries
in the workload. If it finds an existing workload
element, the call will fail with an error

Note: the flags have the same behavior irrespective of
the LOAD_WORKLOAD operation

filter_id NUMBER Specify filter for the workload to be loaded

owner_name VARCHAR2 The schema that contains the user supplied table or
view

table_name VARCHAR2 The table or view name containing valid workload data

Table 38–12 PURGE_FILTER Procedure Parameters

Parameter Datatype Description

filter_id NUMBER The parameter DBMS_OLAP.FILTER_ALL indicates all
filters should be removed.
38-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
PURGE_RESULTS Procedure

Many procedures in the DBMS_OLAP package generate output in system tables, such
as recommendation results for DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY and
evaluation results for DBMS_OLAP.EVALUATE_MVIEW_STRATEGY, dimension
validation results for DBMS_OLAP.VALIDATE_DIMENSION. These results can be
accessed through a set of interface views, as shown in "DBMS_OLAP Interface
Views" on page 38-23. When they are no longer required, they should be removed
using the procedure PURGE_RESULTS. You can remove all results or those for a
specific run.

Syntax
DBMS_OLAP.PURGE_RESULTS (
run_id IN NUMBER);

Parameters

PURGE_WORKLOAD Procedure

When workloads are no longer needed, they can be removed using the procedure
PURGE_WORKLOAD. You can delete all workloads or a specific collection.

Syntax
DBMS_OLAP.PURGE_WORKLOAD (
workload_id IN NUMBER);

Table 38–13 PURGE_RESULTS Procedure Parameters

Parameter Datatype Description

run_id NUMBER An ID generated with the DBMS_OLAP.CREATE_ID
procedure. The ID should be associated with a DBMS_
OLAP.RECOMMEND_MVIEW_STRATEGY or a DBMS_
OLAP.EVALUATE_MVIEW_STRATEGY or a DBMS_
OLAP.VALIDATE_DIMENSION run. Use the value
DBMS_OLAP.RUNID_ALL to specify all such runs
DBMS_OLAP 38-17

RECOMMEND_MVIEW_STRATEGY Procedure
RECOMMEND_MVIEW_STRATEGY Procedure

This procedure generates a set of recommendations about which materialized views
should be created, retained, or dropped, based on information in the workload
(gathered by Oracle Trace, the user workload, or the SQL cache), and an analysis of
table and column cardinality statistics gathered by the DBMS_STATS.GATHER_
TABLE_STATS procedure.

RECOMMEND_MVIEW_STRATEGY requires that you have run the DBMS_
STATS.GATHER_TABLE_STATS procedure to gather table and column cardinality
statistics and have collected and formatted the workload statistics.

The workload is aggregated to determine the count of each request in the workload,
and this count is used as a weighting factor during the optimization process. If the
workload_id is not provided, then RECOMMEND_MVIEW_STRATEGY uses a
hypothetical workload based on dimension definitions and other embedded
statistics.

The space of all dimensional materialized views that include the specified fact
tables identifies the set of materialized views that optimize performance across the
workload. The recommendation results are stored in system tables, which can be
accessed through the view SYSTEM.MVIEW_RECOMMENDATIONS.

Periodically, the unused results can be purged from the system by calling the DBMS_
OLAP.PURGE_RESULTS procedure

Syntax
DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY (

run_id IN NUMBER,
workload_id IN NUMBER,
filter_id IN NUMBER,
storage_in_bytes IN NUMBER,

Table 38–14 DBMS_OLAP.PURGE_WORKLOAD Procedure Parameters

Parameter Datatype Description

workload_id NUMBER An ID number originally assigned by the create_id call.
If the value of workload_id is set to DBMS_
OLAP.WORKLOAD_ALL, then all workloads for the
current user will be deleted

See Also: "DBMS_OLAP Interface Views" on page 38-23
38-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
retention_pct IN NUMBER,
retention_list IN VARCHAR2,
fact_table_filter IN VARCHAR2);

Parameters

SET_CANCELLED Procedure

If the Summary Advisor takes too long to make its recommendations using the
procedures RECOMMEND_MVIEW_STRATEGY, you can stop it by calling the

Table 38–15 RECOMMEND_MVIEW_STRATEGY Procedure Parameters

Parameter Description

run_id An ID generated by the DBMS_OLAP.CREATE_ID procedure to
uniquely identify results of a run

workload_id An optional workload ID that maps to a workload in the
current repository. Use the parameter DBMS_
OLAP.WORKLOAD_ALL to choose all workloads.

If the workload_id is set to NULL, the call will use a
hypothetical workload

filter_id An optional filter ID that maps to a set of user-supplied filter
items. Use the parameter DBMS_OLAP.FILTER_NONE to avoid
filtering

storage_in_bytes Maximum storage, in bytes, that can be used for storing
materialized views. This number must be nonnegative.

retention_pct Number between 0 and 100 that specifies the percent of
existing materialized view storage that must be retained, based
on utilization on the actual or hypothetical workload.

A materialized view is retained if the cumulative space, ranked
by utilization, is within the retention threshold specified (or if
it is explicitly listed in retention_list). Materialized views
that have a NULL utilization (for example, nondimensional
materialized views) are always retained.

retention_list Comma-delimited list of materialized view table names. A
drop recommendation is not made for any materialized view
that appears in this list.

fact_table_filter Optional list of fact tables used to filter real or ideal workload
DBMS_OLAP 38-19

VALIDATE_DIMENSION Procedure
procedure SET_CANCELLED and passing in the run_id for this recommendation
process.

Syntax
DBMS_OLAP.SET_CANCELLED (

run_id IN NUMBER);

VALIDATE_DIMENSION Procedure

This procedure verifies that the hierarchical and attribute relationships, and join
relationships, specified in an existing dimension object are correct. This provides a
fast way to ensure that referential integrity is maintained.

The validation results are stored in system tables, which can be accessed through
the view SYSTEM.MVIEW_EXCEPTIONS.

Periodically, the unused results can be purged from the system by calling the DBMS_
OLAP.PURGE_RESULTS procedure.

Syntax
DBMS_OLAP.VALIDATE_DIMENSION (

dimension_name IN VARCHAR2,
dimension_owner IN VARCHAR2,
incremental IN BOOLEAN,
check_nulls IN BOOLEAN,
run_id IN NUMBER);

Table 38–16 DBMS_OLAP.SET_CANCELLED Procedure Parameters

Parameter Datatype Description

run_id NUMBER Id that uniquely identifies an advisor analysis
operation. This call can be used to cancel a long
running workload collection as well as an Advisor
analysis session

See Also: "DBMS_OLAP Interface Views" on page 38-23
38-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
Parameters

VALIDATE_WORKLOAD_CACHE Procedure

This procedure validates the SQL Cache workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_CACHE (

valid OUT NUMBER,
error OUT VARCHAR2);

Parameters

Table 38–17 VALIDATE_DIMENSION Procedure Parameters

Parameter Description

dimension_name Name of the dimension to analyze.

dimension_owner Name of the dimension owner.

incremental If TRUE, then tests are performed only for the rows specified in
the sumdelta$ table for tables of this dimension; otherwise,
check all rows.

check_nulls If TRUE, then all level columns are verified to be nonnull;
otherwise, this check is omitted.

Specify FALSE when nonnullness is guaranteed by other
means, such as NOT NULL constraints.

run_id An ID generated by the DBMS_OLAP.CREATE_ID procedure to
identify a run

Table 38–18 VALIDATE_WORKLOAD_USER Procedure Parameters

Parameter Description

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2 , return error set
DBMS_OLAP 38-21

VALIDATE_WORKLOAD_TRACE Procedure
VALIDATE_WORKLOAD_TRACE Procedure

This procedure validates the Oracle Trace workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_TRACE (

owner_name IN VARCHAR2,
valid OUT NUMBER,
error OUT VARCHAR2);

Parameters

VALIDATE_WORKLOAD_USER Procedure

This procedure validates the user-supplied workload before performing load
operations.

Syntax
DBMS_OLAP.VALIDATE_WORKLOAD_USER (

owner_name IN VARCHAR2,
table_name IN VARCHAR2,
valid OUT NUMBER,
error OUT VARCHAR2);

Table 38–19 VALIDATE_WORKLOAD_TRACE Procedure Parameters

Parameter Description

owner_name Owner of the trace workload table

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2 , return error text
38-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
Parameters

DBMS_OLAP Interface Views

Several views are created when using DBMS_OLAP. All are in the SYSTEM schema.
To access these views, you must have a DBA role.

SYSTEM.MVIEW_EVALUATIONS

Table 38–20 VALIDATE_WORKLOAD_USER Procedure Parameters

Parameter Description

owner_name Owner of the user workload table

table_name User workload table name

valid Return DBMS_OLAP.VALID or DBMS_OLAP.INVALID Indicate
whether a workload is valid.

error VARCHAR2 , return error set

See Also: Oracle9i Data Warehousing Guide for more information
regarding how to use DBMS_OLAP

Table 38–21 SYSTEM.MVIEW_EVALUATIONS

Column NULL? Datatype Description

RUNID NOT NULL NUMBER Run id identifying a unique advisor call

MVIEW_OWNER - VARCHAR2(30) Owner of materialized view

MVIEW_NAME - VARCHAR2(30) Name of an exiting materialized view in
this database

RANK NOT NULL NUMBER Rank of this materialized view in
descending order of benefit_to_cost_
ratio

STORAGE_IN_BYTES - NUMBER Size of the materialized view in bytes
DBMS_OLAP 38-23

SYSTEM.MVIEW_EXCEPTIONS
SYSTEM.MVIEW_EXCEPTIONS

SYSTEM.MVIEW_FILTER

FREQUENCY - NUMBER Number of times this materialized view
appears in the workload

CUMULATIVE_BENEFIT - NUMBER The cumulative benefit of the
materialized view

BENEFIT_TO_COST_
RATIO

NOT NULL NUMBER The ratio of cumulative_benefit to
storage_in_bytes

Table 38–22 SYSTEM.MVIEW_EXCEPTIONS

Column NULL? Datatype Description

RUNID - NUMBER Run id identifying a unique advisor
call

OWNER - VARCHAR2(30) Owner name

TABLE_NAME - VARCHAR2(30) Table name

DIMENSION_NAME - VARCHAR2(30) Dimension name

RELATIONSHIP - VARCHAR2(11) Violated relation name

BAD_ROWID - ROWID Location of offending entry

Table 38–23 SYSTEM.MVIEW_FILTER

Column NULL? Datatype Description

FILTERID NOT NULL NUMBER Unique number used to identify the
operation that used this filter

SUBFILTERNUM NOT NULL NUMBER A unique id number that groups all filter
items together. A corresponding filter
header record can be found in the MVIEW_
LOG table

SUBFILTERTYPE - VARCHAR2(12) Filter item number

Table 38–21 SYSTEM.MVIEW_EVALUATIONS

Column NULL? Datatype Description
38-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
SYSTEM.MVIEW_FILTERINSTANCE

STR_VALUE - VARCHAR2(1028) String attribute for items that require
strings

NUM_VALUE1 - NUMBER Numeric low for items that require
numbers

NUM_VALUE2 - NUMBER Numeric high for items that require
numbers

DATE_VALUE1 - DATE Date low for items that require dates

DATE_VALUE2 - DATE Date high for items that require dates

Table 38–24 SYSTEM.MVIEW_FILTER

Column NULL? Datatype Description

RUNID NOT NULL NUMBER Unique number used to identify the
operation that used this filter

FILTERID - NUMBER A unique id number that groups all filter
items together. A corresponding filter
header record can be found in the
MVIEW_LOG table

SUBFILTERNUM - NUMBER Filter item number

SUBFILTERTYPE - VARCHAR2(12) Filter item type

STR_VALUE - VARCHAR2(1028) String attribute for items that require
strings

NUM_VALUE1 - NUMBER Numeric low for items that require
numbers

NUM_VALUE2 - NUMBER Numeric high for items that require
numbers

DATE_VALUE1 - DATE Date low for items that require dates

DATE_VALUE2 - DATE Date high for items that require dates

Table 38–23 SYSTEM.MVIEW_FILTER

Column NULL? Datatype Description
DBMS_OLAP 38-25

SYSTEM.MVIEW_LOG
SYSTEM.MVIEW_LOG

SYSTEM.MVIEW_RECOMMENDATIONS

Table 38–25 SYSTEM.MVIEW_LOG

Column NULL? Datatype Description

ID NOT NULL NUMBER Unique number used to identify the table entry.
The number must be created using the
CREATE_ID routine

FILTERID - NUMBER Optional filter id. Zero indicates no
user-supplied filter has been applied to the
operation

RUN_BEGIN - DATE Date at which the operation began

RUN_END - DATE Date at which the operation ended

TYPE - VARCHAR2(11) A name that identifies the type of operation

STATUS - VARCHAR2(11) The current operational status

MESSAGE - VARCHAR2(2000) Informational message indicating current
operation or condition

COMPLETED - NUMBER Number of steps completed by operation

TOTAL - NUMBER Total number steps to be performed

ERROR_CODE - VARCHAR2(20) Oracle error code in the event of an error

Table 38–26 SYSTEM.MVIEW_RECOMMENDATIONS

Column NULL? Datatype Description

RUNID - NUMBER Run id identifying a unique advisor call

ALL_TABLES - VARCHAR2(2000) A comma-delimited list of fully
qualified table names for structured
recommendations

FACT_TABLES - VARCHAR2(1000) A comma-delimited list of grouping
levels, if any, for structured
recommendation

GROUPING_LEVELS - VARCHAR2(2000) -
38-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OLAP Subprograms
SYSTEM.MVIEW_WORKLOAD

QUERY_TEXT - LONG Query text of materialized view if
RECOMMENDED_ACTION is
CREATE; null otherwise

RECOMMENDATION_
NUMBER

NOT NULL NUMBER Unique identifier for this
recommendation

RECOMMENDED_ACTION - VARCHAR2(6) CREATE, RETAIN, or DROP, Retain,
Create, or Drop

MVIEW_OWNER - VARCHAR2(30) Owner of the materialized view if
RECOMMENDED_ACTION is RETAIN
or DROP; null otherwise

MVIEW_NAME - VARCHAR2(30) Name of the materialized view if
RECOMMENDED_ACTION is RETAIN
or DROP; null otherwise

STORAGE_IN_BYTES - NUMBER Actual or estimated storage in bytes

PCT_PERFORMANCE_GAIN- NUMBER The expected incremental improvement
in performance obtained by accepting
this
recommendation relative to the initial
condition, assuming that all previous
recommendations have been accepted,
or NULL if unknown

BENEFIT_TO_COST_
RATIO

NOT NULL NUMBER Ratio of the incremental improvement in
performance to the size of the
materialized view in bytes, or NULL if
unknown

Table 38–27 SYSTEM.MVIEW_WORKLOAD

Column NULL? Datatype Description

APPLICATION - VARCHAR2(30) Optional application name for the query

CARDINALITY - NUMBER Total cardinality of all of tables in query

WORKLOADID - NUMBER Workload id identifying a unique sampling

FREQUENCY - NUMBER Number of times query executed

Table 38–26 SYSTEM.MVIEW_RECOMMENDATIONS

Column NULL? Datatype Description
DBMS_OLAP 38-27

SYSTEM.MVIEW_WORKLOAD
IMPORT_TIME - DATE Date at which item was collected

LASTUSE - DATE Last date of execution

OWNER - VARCHAR2(30) User who last executed query

PRIORITY - NUMBER User-supplied ranking of query

QUERY - LONG Query text

QUERYID - NUMBER Id number identifying a unique query

RESPONSETIME - NUMBER Execution time in seconds

RESULTSIZE - NUMBER Total bytes selected by the query

Table 38–27 SYSTEM.MVIEW_WORKLOAD

Column NULL? Datatype Description
38-28 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_ORACLE_TRAC
39

DBMS_ORACLE_TRACE_AGENT

The DBMS_ORACLE_TRACE_AGENT package provides some system level utilities.

This chapter discusses the following topics:

� Security

� Summary of DBMS_ORACLE_TRACE_AGENT Subprograms
E_AGENT 39-1

Security
Security
This package is only accessible to user SYS by default. You can control access to
these routines by only granting execute to privileged users.

Summary of DBMS_ORACLE_TRACE_AGENT Subprograms
This package contains only one subprogram: SET_ORACLE_TRACE_IN_SESSION.

SET_ORACLE_TRACE_IN_SESSION Procedure

This procedure collects Oracle Trace data for a database session other than your
own. It enables Oracle TRACE in the session identified by (sid , serial#). These
value are taken from v$session .

Syntax
DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION (

sid NUMBER DEFAULT 0,
serial# NUMBER DEFAULT 0,
on_off IN BOOLEAN DEFAULT false,
collection_name IN VARCHAR2 DEFAULT ’’,
facility_name IN VARCHAR2 DEFAULT ’’);

Parameters

Note: This package should only be granted to DBA or the Oracle
TRACE collection agent.

Table 39–1 SET_ORACLE_TRACE_IN_SESSION Procedure Parameters

Parameter Description

sid Session ID.

serial# Session serial number.

on_off TRUE or FALSE. Turns tracing on or off.

collection_name The Oracle TRACE collection name to be used.

facility_name The Oracle TRACE facility name to be used.
39-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ORACLE_TRACE_AGENT Subprograms
Usage Notes
If the collection does not occur, then check the following:

� Be sure that the server event set file identified by <facility_name> exists. If there
is no full file specification on this field, then the file should be located in the
directory identified by ORACLE_TRACE_FACILITY_PATH in the initialization
file.

� The following files should exist in your Oracle Trace admin directory:
REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, then you must
run the OTRCCREF executable to create them.

� The stored procedure packages should exist in the database. If the packages do
not exist, then run the OTRCSVR.SQL file (in your Oracle Trace or RDBMS
admin directories) to create the packages.

� The user has the EXECUTE privilege on the stored procedure.

Example
EXECUTE DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION
(8,12,TRUE,’NEWCOLL’,’oracled’);

Note: PROCESS.DAT was changed to FACILITY .DAT with Oracle8.
DBMS_ORACLE_TRACE_AGENT 39-3

SET_ORACLE_TRACE_IN_SESSION Procedure
39-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_ORACLE_TRAC
40

DBMS_ORACLE_TRACE_USER

DBMS_ORACLE_TRACE_USER provides public access to the Oracle TRACE
instrumentation for the calling user. Using the Oracle Trace stored procedures, you
can invoke an Oracle Trace collection for your own session or for another session.

This chapter discusses the following topics:

� Summary of DBMS_ORACLE_TRACE_USER Subprograms
E_USER 40-1

Summary of DBMS_ORACLE_TRACE_USER Subprograms
Summary of DBMS_ORACLE_TRACE_USER Subprograms
This package contains only one subprogram: SET_ORACLE_TRACE.

SET_ORACLE_TRACE Procedure

This procedure collects Oracle Trace data for your own database session.

Syntax
DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE (

on_off IN BOOLEAN DEFAULT false,
collection_name IN VARCHAR2 DEFAULT ’’,
facility_name IN VARCHAR2 DEFAULT ’’);

Parameters

Example
EXECUTE DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE
(TRUE,’MYCOLL’,’oracle’);

Table 40–1 SET_ORACLE_TRACE Procedure Parameters

Parameter Description

on_off TRUE or FALSE: Turns tracing on or off.

collection_name Oracle TRACE collection name to be used.

facility_name Oracle TRACE facility name to be used.
40-2 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
41

DBMS_OUTLN

The DBMS_OUTLN package, synonymous with OUTLN_PKG, contains the functional
interface for subprograms associated with the management of stored outlines.

A stored outline is the stored data that pertains to an execution plan for a given SQL
statement. It enables the optimizer to repeatedly re-create execution plans that are
equivalent to the plan originally generated along with the outline.The data stored in
an outline consists, in part, of a set of hints that are used to achieve plan stability.

This chapter discusses the following topics:

� Requirements and Security for DBMS_OUTLN

� Summary of DBMS_OUTLN Subprograms
_OUTLN 41-1

Requirements and Security for DBMS_OUTLN
Requirements and Security for DBMS_OUTLN

Requirements
DBMS_OUTLN contains management procedures that should be available to
appropriate users only. EXECUTE privilege is not extended to the general user
community unless the DBA explicitly does so.

Security
PL/SQL functions that are available for outline management purposes can be
executed only by users with EXECUTE privilege on the procedure (or package).

Summary of DBMS_OUTLN Subprograms

DROP_BY_CAT Procedure

This procedure drops outlines that belong to a specified category.

Table 41–1 DBMS_OUTLN Package Subprograms

Subprogram Description

DROP_BY_CAT Procedure on
page 41-1

Drops outlines that belong to a specified category.

DROP_COLLISION Procedure
on page 41-3

Drops an outline with an ol$.hintcount value that
does not match the number of hints for that outline in
ol$hints.

DROP_EXTRAS Procedure on
page 41-4

Cleans up after an import by dropping extra hint tuples
not accounted for by hintcount.

DROP_UNREFD_HINTS
Procedure on page 41-4

Drops hint tuples that have no corresponding outline in
the OL$ table.

DROP_BY_CAT Procedure on
page 41-2

Drops outlines that have never been applied in the
compilation of a SQL statement.

UPDATE_BY_CAT Procedure on
page 41-5

Changes the category of outlines in one category to a
new category.

GENERATE_SIGNATURE
Procedure on page 41-6

Generates a signature for the specified SQL text.
41-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTLN Subprograms
Syntax
DBMS_OUTLN.DROP_BY_CAT

cat VARCHAR2);

Parameters

Usage Notes
This procedure purges a category of outlines in a single call.

Example
This example drops all outlines in the DEFAULT category:

DBMS_OUTLN.DROP_BY_CAT(’DEFAULT’);

DROP_COLLISION Procedure

This procedure drops an outline with an ol$.hintcount value that does not
match the number of hints for that outline in ol$hints.

Syntax
DBMS_OUTLN.DROP_COLLISION;

Usage Notes
A concurrency problem can occur if an outline is created or altered at the same time
it is being imported. Because the outline must be imported according to its original
design, if the concurrent operation changes the outline in mid-import, the outline
will be dropped as unreliable based on the inconsistent metadata.

Table 41–2 DROP_BY_CAT Procedure Parameters

Parameter Description

cat Category of outlines to drop.
DBMS_OUTLN 41-3

DROP_EXTRAS Procedure
DROP_EXTRAS Procedure

This procedure cleans up after an import by dropping extra hint tuples not
accounted for by hintcount.

Syntax
DBMS_OUTLN.DROP_EXTRAS;

Usage Notes
The OL$-tuple of an outline will be rejected if an outline already exists in the target
database, either with the same name or the same signature. Hint tuples will also be
rejected, up to the number of hints in the already existing outline. Therefore, if the
rejected outline has more hint tuples than the existing one, spurious tuples will be
inserted into the OL$HINTS table. This procedure, executed automatically as a post
table action, will remove the wrongly inserted hint tuples.

DROP_UNREFD_HINTS Procedure

This procedure drops hint tuples that have no corresponding outline in the
OLSable.

Syntax
DBMS_OUTLN.DROP_UNREFD_HINTS;

Usage Notes
This procedure will execute automatically as a post table action to remove hints
with no corresponding entry in the OL$ table, a condition that can arise if an outline
is dropped and imported concurrently.

DROP_UNUSED Procedure

This procedure drops outlines that have never been applied in the compilation of a
SQL statement.
41-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTLN Subprograms
Syntax
DBMS_OUTLN.DROP_UNUSED;

Usage Notes
You can use DROP_UNUSED for outlines generated by an application for one-time
use only, created as a result of dynamic SQL statements. These outlines are never
used and take up valuable disk space.

UPDATE_BY_CAT Procedure

This procedure changes the category of all outlines in one category to a new
category. If the SQL text in an outline already has an outline in the target category, it
is not merged into the new category.

Syntax
DBMS.OUTLN.UPDATE_BY_CAT (

oldcat VARCHAR2 DEFAULT ’DEFAULT’,
newcat VARCHAR2 DEFAULT ’DEFAULT’);

Parameters

Usage Notes
Once satisfied with a set of outlines, you can move outlines from an experimental
category to a production category. Likewise, you may want to merge a set of outlines
from one category into another pre-existing category.

Example
This example changes all outlines in the DEFAULT category to the CAT1 category:

DBMS_OUTLN.UPDATE_BY_CAT(’DEFAULT’, ’CAT1’);

Table 41–3 UPDATE_BY_CAT Procedure Parameters

Parameter Description

oldcat Current category to be changed.

newcat Target category to change outline to.
DBMS_OUTLN 41-5

GENERATE_SIGNATURE Procedure
GENERATE_SIGNATURE Procedure

This procedure generates a signature for the specified SQL text.

Syntax
DBMS_OUTLN.GENERATE_SIGNATURE (

sqltxt IN VARCHAR2,
signature OUT RAW);

Parameters

Table 41–4 GENERATE_SIGNATURE Procedure Parameters

Parameter Description

sqltxt The specified SQL.

signature The signature to be generated.
41-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_OUTL
42

DBMS_OUTLN_EDIT

The DBMS_OUTLN_EDIT package is an invoker’s rights package.

This chapter discusses the following topics:

� Summary of DBMS_OUTLN_EDIT Subprograms
N_EDIT 42-1

Summary of DBMS_OUTLN_EDIT Subprograms
Summary of DBMS_OUTLN_EDIT Subprograms

CHANGE_JOIN_POS Procedure

This function changes the join position for the hint identified by outline name and
hint number to the position specified by newpos .

Syntax
DBMS_OUTLN_EDIT.CHANGE_JOIN_POS (

name VARCHAR2
hintno NUMBER
newpos NUMBER);

Parameters

Table 42–1 DBMS_OUTLN_EDIT Package Subprograms

Subprogram Description

CHANGE_JOIN_POS Procedure
on page 42-2

Changes the join position for the hint identified by
outline name and hint number to the position specified
by newpos .

CREATE_EDIT_TABLES
Procedure on page 42-3

Creates outline editing tables in calling a user’s schema.

DROP_EDIT_TABLES Procedure
on page 42-3

Drops outline editing tables in calling the user's schema.

REFRESH_PRIVATE_OUTLINE
Procedure on page 42-3

Refreshes the in-memory copy of the outline,
synchronizing its data with the edits made to the outline
hints.

Table 42–2 CHANGE_JOIN_POS Procedure Parameters

Parameter Description

name Name of the private outline to be modified.

hintno Hint number to be modified.

newpos New join position for the target hint.
42-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTLN_EDIT Subprograms
CREATE_EDIT_TABLES Procedure

This procedure creates outline editing tables in calling a user’s schema.

Syntax
DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES;

DROP_EDIT_TABLES Procedure

This procedure drops outline editing tables in calling the user's schema.

Syntax
DBMS_OUTLN_EDIT.DROP_EDIT_TABLES;

REFRESH_PRIVATE_OUTLINE Procedure

This procedure refreshes the in-memory copy of the outline, synchronizing its data
with the edits made to the outline hints.

Syntax
DBMS_OUTLN_EDIT.REFRESH_PRIVATE_OUTLINE (

name IN VARCHAR2);

Parameters

Table 42–3 REFRESH_PRIVATE_OUTLINE Procedure Parameters

Parameter Description

name Name of the private outline to be refreshed.
DBMS_OUTLN_EDIT 42-3

REFRESH_PRIVATE_OUTLINE Procedure
42-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_O
43

DBMS_OUTPUT

The DBMS_OUTPUT package enables you to send messages from stored procedures,
packages, and triggers.

The PUT and PUT_LINE procedures in this package enable you to place information
in a buffer that can be read by another trigger, procedure, or package. In a separate
PL/SQL procedure or anonymous block, you can display the buffered information
by calling the GET_LINE procedure.

If you do not call GET_LINE, or if you do not display the messages on your screen
in SQL*Plus or Enterprise Manager, then the buffered messages are ignored. The
DBMS_OUTPUT package is especially useful for displaying PL/SQL debugging
information.

This chapter discusses the following topics:

� Security, Errors, and Types for DBMS_OUTPUT

� Using DBMS_OUTPUT

� Summary of DBMS_OUTPUT Subprograms

Note: Messages sent using DBMS_OUTPUT are not actually sent
until the sending subprogram or trigger completes. There is no
mechanism to flush output during the execution of a procedure.
UTPUT 43-1

Security, Errors, and Types for DBMS_OUTPUT
Security, Errors, and Types for DBMS_OUTPUT

Security
At the end of this script, a public synonym (DBMS_OUTPUT) is created and EXECUTE
permission on this package is granted to public.

Errors
DBMS_OUTPUT subprograms raise the application error ORA-20000 , and the output
procedures can return the following errors:

Types
Type CHARARR is a table type.

Using DBMS_OUTPUT
A trigger might want to print out some debugging information. To do this, the
trigger would do:

DBMS_OUTPUT.PUT_LINE(’I got here:’||:new.col||’ is the new value’);

If you have enabled the DBMS_OUTPUT package, then this PUT_LINE would be
buffered, and you could, after executing the statement (presumably some INSERT,
DELETE, or UPDATE that caused the trigger to fire), get the line of information back.
For example:

BEGIN
DBMS_OUTPUT.GET_LINE(:buffer, :status);

END;

It could then display the buffer on the screen. You repeat calls to GET_LINE until
status comes back as nonzero. For better performance, you should use calls to GET_
LINES which can return an array of lines.

Table 43–1 DBMS_OUTPUT Errors

Error Description

ORU-10027: Buffer overflow

ORU-10028: Line length overflow
43-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTPUT Subprograms
Enterprise Manager and SQL*Plus implement a SET SERVEROUTPUT ON command
to know whether to make calls to GET_LINE(S) after issuing INSERT, UPDATE,
DELETE or anonymous PL/SQL calls (these are the only ones that can cause
triggers or stored procedures to be executed).

Summary of DBMS_OUTPUT Subprograms

ENABLE Procedure
This procedure enables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_
LINES . Calls to these procedures are ignored if the DBMS_OUTPUT package is not
enabled.

If there are multiple calls to ENABLE, then buffer_size is the largest of the values
specified. The maximum size is 1,000,000, and the minimum is 2,000.

Syntax
DBMS_OUTPUT.ENABLE (

buffer_size IN INTEGER DEFAULT 20000);

Table 43–2 DBMS_OUTPUT Package Subprograms

Subprogram Description

ENABLE Procedure on page 43-3 Enables message output.

DISABLE Procedure on page 43-4 Disables message output.

PUT and PUT_LINE Procedures
on page 43-4

PUT: Places a line in the buffer.

PUT_LINE: Places partial line in buffer.

NEW_LINE Procedure on
page 43-6

Terminates a line created with PUT.

GET_LINE and GET_LINES
Procedures on page 43-6

Retrieves one line, or an array of lines, from buffer.

Note: It is not necessary to call this procedure when you use the
SERVEROUTPUT option of Enterprise Manager or SQL*Plus.
DBMS_OUTPUT 43-3

DISABLE Procedure
Parameters

Pragmas
pragma restrict_references(enable,WNDS,RNDS);

Errors

DISABLE Procedure
This procedure disables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_
LINES , and purges the buffer of any remaining information.

As with ENABLE, you do not need to call this procedure if you are using the
SERVEROUTPUT option of Enterprise Manager or SQL*Plus.

Syntax
DBMS_OUTPUT.DISABLE;

Pragmas
pragma restrict_references(disable,WNDS,RNDS);

PUT and PUT_LINE Procedures
You can either place an entire line of information into the buffer by calling PUT_
LINE , or you can build a line of information piece by piece by making multiple calls
to PUT. Both of these procedures are overloaded to accept items of type VARCHAR2,
NUMBER, or DATE to place in the buffer.

Table 43–3 ENABLE Procedure Parameters

Parameter Description

buffer_size Amount of information, in bytes, to buffer.

Table 43–4 ENABLE Procedure Errors

Error Description

ORA-20000:,

ORU-10027:

Buffer overflow, limit of <buffer_limit > bytes.
43-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTPUT Subprograms
All items are converted to VARCHAR2 as they are retrieved. If you pass an item of
type NUMBER or DATE, then when that item is retrieved, it is formatted with TO_
CHAR using the default format. If you want to use a different format, then you
should pass in the item as VARCHAR2 and format it explicitly.

When you call PUT_LINE, the item that you specify is automatically followed by an
end-of-line marker. If you make calls to PUT to build a line, then you must add your
own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not
return lines that have not been terminated with a newline character.

If your line exceeds the buffer limit, then you receive an error message.

Syntax
DBMS_OUTPUT.PUT (item IN NUMBER);
DBMS_OUTPUT.PUT (item IN VARCHAR2);
DBMS_OUTPUT.PUT (item IN DATE);
DBMS_OUTPUT.PUT_LINE (item IN NUMBER);
DBMS_OUTPUT.PUT_LINE (item IN VARCHAR2);
DBMS_OUTPUT.PUT_LINE (item IN DATE);
DBMS_OUTPUT.NEW_LINE;

Parameters

Note: Output that you create using PUT or PUT_LINE is buffered.
The output cannot be retrieved until the PL/SQL program unit
from which it was buffered returns to its caller.

For example, Enterprise Manager or SQL*Plus do not display
DBMS_OUTPUT messages until the PL/SQL program completes.
There is no mechanism for flushing the DBMS_OUTPUT buffers
within the PL/SQL program. For example:

SQL> SET SERVER OUTPUT ON
SQL> BEGIN

2 DBMS_OUTPUT.PUT_LINE (’hello’);
3 DBMS_LOCK.SLEEP (10);
4 END;

Table 43–5 PUT and PUT_LINE Procedure Parameters

Parameter Description

item Item to buffer.
DBMS_OUTPUT 43-5

NEW_LINE Procedure
Errors

NEW_LINE Procedure
This procedure puts an end-of-line marker. GET_LINE(S) returns "lines" as
delimited by "newlines". Every call to PUT_LINE or NEW_LINE generates a line that
is returned by GET_LINE(S).

Syntax
DBMS_OUTPUT.NEW_LINE;

Errors

GET_LINE and GET_LINES Procedures
You can choose to retrieve from the buffer a single line or an array of lines. Call the
GET_LINE procedure to retrieve a single line of buffered information. To reduce the
number of calls to the server, call the GET_LINES procedure to retrieve an array of
lines from the buffer.

You can choose to automatically display this information if you are using Enterprise
Manager or SQL*Plus by using the special SET SERVEROUTPUT ON command.

After calling GET_LINE or GET_LINES, any lines not retrieved before the next call
to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the
next message.

Table 43–6 PUT and PUT_LINE Procedure Errors

Error Description

ORA-20000,
ORU-10027:

Buffer overflow, limit of <buf_limit > bytes.

ORA-20000,
ORU-10028:

Line length overflow, limit of 255 bytes per line.

Table 43–7 NEW_LINE Procedure Errors

Error Description

ORA-20000,
ORU-10027:

Buffer overflow, limit of <buf_limit > bytes.

ORA-20000,
ORU-10028:

Line length overflow, limit of 255 bytes per line.
43-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTPUT Subprograms
Syntax
DBMS_OUTPUT.GET_LINE (

line OUT VARCHAR2,
status OUT INTEGER);

Parameters

Syntax
DBMS_OUTPUT.GET_LINES (

lines OUT CHARARR,
numlines IN OUT INTEGER);

CHARARR is a table of VARCHAR2(255).

Parameters

Example 1: Debugging Stored Procedures and Triggers
The DBMS_OUTPUT package is commonly used to debug stored procedures and
triggers. This package can also be used to enable you to retrieve information about

Table 43–8 GET_LINE Procedure Parameters

Parameter Description

line Returns a single line of buffered information, excluding a final
newline character: The maximum length is 255 bytes.

status If the call completes successfully, then the status returns as 0. If
there are no more lines in the buffer, then the status is 1.

Table 43–9 GET_LINES Procedure Parameters

Parameter Description

lines Returns an array of lines of buffered information.

The maximum length of each line in the array is 255 bytes.

numlines Number of lines you want to retrieve from the buffer.

After retrieving the specified number of lines, the procedure
returns the number of lines actually retrieved. If this number is
less than the number of lines requested, then there are no more
lines in the buffer.
DBMS_OUTPUT 43-7

GET_LINE and GET_LINES Procedures
an object and format this output, as shown in "Example 2: Retrieving Information
About an Object" on page 43-9.

This function queries the employee table and returns the total salary for a specified
department. The function includes several calls to the PUT_LINE procedure:

CREATE FUNCTION dept_salary (dnum NUMBER) RETURN NUMBER IS
CURSOR emp_cursor IS

SELECT sal, comm FROM emp WHERE deptno = dnum;
total_wages NUMBER(11, 2) := 0;
counter NUMBER(10) := 1;

BEGIN

FOR emp_record IN emp_cursor LOOP
emp_record.comm := NVL(emp_record.comm, 0);
total_wages := total_wages + emp_record.sal

+ emp_record.comm;
DBMS_OUTPUT.PUT_LINE(’Loop number = ’ || counter ||

’; Wages = ’|| TO_CHAR(total_wages)); /* Debug line */
counter := counter + 1; /* Increment debug counter */

END LOOP;
/* Debug line */
DBMS_OUTPUT.PUT_LINE(’Total wages = ’ ||

TO_CHAR(total_wages));
RETURN total_wages;

END dept_salary;

Assume the EMP table contains the following rows:

EMPNO SAL COMM DEPT
----- ------- -------- -------
1002 1500 500 20
1203 1000 30
1289 1000 10
1347 1000 250 20

Assume the user executes the following statements in the Enterprise Manager SQL
Worksheet input pane:

SET SERVEROUTPUT ON
VARIABLE salary NUMBER;
EXECUTE :salary := dept_salary(20);

The user would then see the following information displayed in the output pane:
43-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_OUTPUT Subprograms
Loop number = 1; Wages = 2000
Loop number = 2; Wages = 3250
Total wages = 3250

PL/SQL procedure successfully executed.

Example 2: Retrieving Information About an Object
In this example, the user has used the EXPLAIN PLAN command to retrieve
information about the execution plan for a statement and has stored it in PLAN_
TABLE. The user has also assigned a statement ID to this statement. The example
EXPLAIN_OUT procedure retrieves the information from this table and formats the
output in a nested manner that more closely depicts the order of steps undergone in
processing the SQL statement.

/**/
/* Create EXPLAIN_OUT procedure. User must pass STATEMENT_ID to */
/* to procedure, to uniquely identify statement. */
/**/
CREATE OR REPLACE PROCEDURE explain_out

(statement_id IN VARCHAR2) AS

-- Retrieve information from PLAN_TABLE into cursor EXPLAIN_ROWS.

CURSOR explain_rows IS
SELECT level, id, position, operation, options,

object_name
FROM plan_table
WHERE statement_id = explain_out.statement_id
CONNECT BY PRIOR id = parent_id

AND statement_id = explain_out.statement_id
START WITH id = 0

ORDER BY id;

BEGIN

-- Loop through information retrieved from PLAN_TABLE:

FOR line IN explain_rows LOOP

-- At start of output, include heading with estimated cost.

IF line.id = 0 THEN
DBMS_OUTPUT.PUT_LINE (’Plan for statement ’
DBMS_OUTPUT 43-9

GET_LINE and GET_LINES Procedures
|| statement_id
|| ’, estimated cost = ’ || line.position);

END IF;

-- Output formatted information. LEVEL determines indention level.

DBMS_OUTPUT.PUT_LINE (lpad(’ ’,2*(line.level-1)) ||
line.operation || ’ ’ || line.options || ’ ’ ||
line.object_name);

END LOOP;

END;

See Also: Chapter 95, "UTL_FILE"
43-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_P
44

DBMS_PCLXUTIL

The DBMS_PCLXUTIL package provides intra-partition parallelism for creating
partition-wise local indexes.

DBMS_PCLXUTIL circumvents the limitation that, for local index creation, the
degree of parallelism is restricted to the number of partitions as only one slave
process for each partition is used.

DBMS_PCLXUTIL uses the DBMS_JOB package to provide a greater degree of
parallelism for creating a local index for a partitioned table. This is achieved by
asynchronous inter-partition parallelism using the background processes (with
DBMS_JOB), in combination with intra-partition parallelism using the parallel query
slave processes.

DBMS_PCLXUTIL works with both range and range-hash composite partitioning.

This chapter discusses the following topics:

� Using DBMS_PCLXUTIL

� Limitations

� Summary of DBMS_PCLUTTL Subprograms

See Also: There are several rules concerning partitions and
indexes. For more information, see Oracle9i Database Concepts and
Oracle9i Database Administrator’s Guide.

Note: For range partitioning, the minimum compatibility mode is
8.0; for range-hash composite partitioning, the minimum
compatibility mode is 8i.
CLXUTIL 44-1

Using DBMS_PCLXUTIL
Using DBMS_PCLXUTIL
The DBMS_PCLXUTIL package can be used during the following DBA tasks:

1. Local index creation

The procedure BUILD_PART_INDEX assumes that the dictionary information
for the local index already exists. This can be done by issuing the create index
SQL command with the UNUSABLE option.

CREATE INDEX <idx_name> on <tab_name>(...) local(...) unusable;

This causes the dictionary entries to be created without "building" the index
itself, the time consuming part of creating an index. Now, invoking the
procedure BUILD_PART_INDEX causes a concurrent build of local indexes with
the specified degree of parallelism.

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

For composite partitions, the procedure automatically builds local indexes for
all subpartitions of the composite table.

2. Local index maintenance

By marking desired partitions usable or unusable, the BUILD_PART_INDEX
procedure also enables selective rebuilding of local indexes. The force_opt
parameter provides a way to override this and build local indexes for all
partitions.

ALTER INDEX <idx_name> local(...) unusable;

Rebuild only the desired (sub)partitions (that are marked unusable):

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,FALSE);

Rebuild all (sub)partitions using force_opt = TRUE:

EXECUTE dbms_pclxutil.build_part_index(4,4,<tab_name>,<idx_name>,TRUE);

A progress report is produced, and the output appears on screen when the
program is ended (because the DBMS_OUTPUT package writes messages to a
buffer first, and flushes the buffer to the screen only upon termination of the
program).
44-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PCLUTTL Subprograms
Limitations
Because DBMS_PCLXUTIL uses the DBMS_JOB package, you must be aware of the
following limitations pertaining to DBMS_JOB:

� You must decide appropriate values for the job_queue_processes
initalization parameter. Clearly, if the job processes are not started before calling
BUILD_PART_INDEX(), then the package will not function properly. The
background processes are specified by the following init .ora parameters:

job_queue_processes=n #the number of background processes = n

� There is an upper limit to the number of simultaneous jobs in the queue,
dictated by the upper limit on the number of background processes marked
SNP[0..9] and SNP[A..Z], which is 36.

� Failure conditions are reported only in the trace files (a DBMS_JOB limitation),
making it impossible to give interactive feedback to the user. This package
prints a failure message, removes unfinished jobs from the queue, and requests
the user to take a look at the snp* .trc trace files.

Summary of DBMS_PCLUTTL Subprograms
DBMS_PCLXUTIL contains just one procedure: BUILD_PART_INDEX.

BUILD_PART_INDEX Procedure

Syntax
DBMS_PCLXUTIL.build_part_index (

procs_per_job IN NUMBER DEFAULT 1,
tab_name IN VARCHAR2 DEFAULT NULL,
idx_name IN VARCHAR2 DEFAULT NULL,
force_opt IN BOOLEAN DEFAULT FALSE);

See Also: Oracle9i Database Administrator’s Guide
DBMS_PCLXUTIL 44-3

BUILD_PART_INDEX Procedure
Parameters

Example
Suppose a table PROJECT is created with two partitions PROJ001 and PROJ002,
along with a local index IDX .

A call to the procedure BUILD_PART_INDEX(2,4,’PROJECT’,’IDX ’,TRUE) produces
the following output:

SQLPLUS> EXECUTE dbms_pclxutil.build_part_index(2,4,’PROJECT’,’IDX’,TRUE);
Statement processed.
INFO: Job #21 created for partition PROJ002 with 4 slaves
INFO: Job #22 created for partition PROJ001 with 4 slaves

Table 44–1 BUILD_PART_INDEX Procedure Parameters

Parameter Description

procs_per_job Number of parallel query slaves to be utilized for each local
index build (1 <= procs_per_job <= max_slaves).

tab_name Name of the partitioned table (an exception is raised if the
table does not exist or not partitioned).

idx_name Name given to the local index (an exception is raised if a local
index is not created on the table tab_name).

force_opt If TRUE, then force rebuild of all partitioned indexes;
otherwise, rebuild only the partitions marked ’UNUSABLE’.
44-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
45

DBMS_PIPE

The DBMS_PIPE package lets two or more sessions in the same instance
communicate. Oracle pipes are similar in concept to the pipes used in UNIX, but
Oracle pipes are not implemented using the operating system pipe mechanisms.

Information sent through Oracle pipes is buffered in the system global area (SGA).
All information in pipes is lost when the instance is shut down.

Depending upon your security requirements, you may choose to use either a public
or a private pipe.

This chapter discusses the following topics:

� Public Pipes, Private Pipes, and Pipe Uses

� Security, Constants, and Errors

� Summary of DBMS_PIPE Subprograms

Caution: Pipes are independent of transactions. Be careful using
pipes when transaction control can be affected.
S_PIPE 45-1

Public Pipes, Private Pipes, and Pipe Uses
Public Pipes, Private Pipes, and Pipe Uses

Public Pipes
You may create a public pipe either implicitly or explicitly. For implicit public pipes,
the pipe is automatically created when it is referenced for the first time, and it
disappears when it no longer contains data. Because the pipe descriptor is stored in
the SGA, there is some space usage overhead until the empty pipe is aged out of the
cache.

You create an explicit public pipe by calling the CREATE_PIPE function with the
private flag set to FALSE. You must deallocate explicitly-created pipes by calling
the REMOVE_PIPE function.

The domain of a public pipe is the schema in which it was created, either explicitly
or implicitly.

Writing and Reading Pipes
Each public pipe works asynchronously. Any number of schema users can write to a
public pipe, as long as they have EXECUTE permission on the DBMS_PIPE package,
and they know the name of the public pipe. However, once buffered information is
read by one user, it is emptied from the buffer, and is not available for other readers
of the same pipe.

The sending session builds a message using one or more calls to the PACK_
MESSAGE procedure. This procedure adds the message to the session’s local
message buffer. The information in this buffer is sent by calling the SEND_MESSAGE
function, designating the pipe name to be used to send the message. When SEND_
MESSAGE is called, all messages that have been stacked in the local buffer are sent.

A process that wants to receive a message calls the RECEIVE_MESSAGE function,
designating the pipe name from which to receive the message. The process then
calls the UNPACK_MESSAGE procedure to access each of the items in the message.

Private Pipes
You explicitly create a private pipe by calling the CREATE_PIPE function. Once
created, the private pipe persists in shared memory until you explicitly deallocate it
by calling the REMOVE_PIPE function. A private pipe is also deallocated when the
database instance is shut down.

You cannot create a private pipe if an implicit pipe exists in memory and has the
same name as the private pipe you are trying to create. In this case, CREATE_PIPE
returns an error.
45-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Public Pipes, Private Pipes, and Pipe Uses
Access to a private pipe is restricted to:

� Sessions running under the same userid as the creator of the pipe

� Stored subprograms executing in the same userid privilege domain as the pipe
creator

� Users connected as SYSDBA

An attempt by any other user to send or receive messages on the pipe, or to remove
the pipe, results in an immediate error. Any attempt by another user to create a pipe
with the same name also causes an error.

As with public pipes, you must first build your message using calls to PACK_
MESSAGE before calling SEND_MESSAGE. Similarly, you must call RECEIVE_
MESSAGE to retrieve the message before accessing the items in the message by
calling UNPACK_MESSAGE.

Pipe Uses
The pipe functionality has several potential applications:

� External service interface: You can communicate with user-written services that
are external to the RDBMS. This can be done effectively in a shared server
process, so that several instances of the service are executing simultaneously.
Additionally, the services are available asynchronously. The requestor of the
service does not need to block a waiting reply. The requestor can check (with or
without timeout) at a later time. The service can be written in any of the 3GL
languages that Oracle supports.

� Independent transactions: The pipe can communicate to a separate session
which can perform an operation in an independent transaction (such as logging
an attempted security violation detected by a trigger).

� Alerters (non-transactional): You can post another process without requiring the
waiting process to poll. If an "after-row" or "after-statement" trigger were to
alert an application, then the application would treat this alert as an indication
that the data probably changed. The application would then read the data to get
the current value. Because this is an "after" trigger, the application would want
to do a "select for update" to make sure it read the correct data.

� Debugging: Triggers and stored procedures can send debugging information to
a pipe. Another session can keep reading out of the pipe and display it on the
screen or write it to a file.
DBMS_PIPE 45-3

Security, Constants, and Errors
� Concentrator: This is useful for multiplexing large numbers of users over a
fewer number of network connections, or improving performance by
concentrating several user-transactions into one DBMS transaction.

Security, Constants, and Errors

Security
Security can be achieved by use of GRANT EXECUTE on the DBMS_PIPE package by
creating a pipe using the private parameter in the CREATE_PIPE function and by
writing cover packages that only expose particular features or pipenames to
particular users or roles.

Constants
maxwait constant integer := 86400000; /* 1000 days */

This is the maximum time to wait attempting to send or receive a message.

Errors
DBMS_PIPE package subprograms can return the following errors:

Summary of DBMS_PIPE Subprograms

Table 45–1 DBMS_PIPE Errors

Error Description

ORA-23321: Pipename may not be null. This can be returned by the CREATE_
PIPE function, or any subprogram that takes a pipe name as a
parameter.

ORA-23322: Insufficient privilege to access pipe. This can be returned by any
subprogram that references a private pipe in its parameter list.

Table 45–2 DBMS_PIPE Package Subprograms

Subprogram Description

CREATE_PIPE Function on
page 45-5

Creates a pipe (necessary for private pipes).

PACK_MESSAGE Procedure on
page 45-7

Builds message in local buffer.
45-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
CREATE_PIPE Function

This function explicitly creates a public or private pipe. If the private flag is TRUE,
then the pipe creator is assigned as the owner of the private pipe.

Explicitly-created pipes can only be removed by calling REMOVE_PIPE, or by
shutting down the instance.

Syntax
DBMS_PIPE.CREATE_PIPE (

pipename IN VARCHAR2,
maxpipesize IN INTEGER DEFAULT 8192,
private IN BOOLEAN DEFAULT TRUE)

RETURN INTEGER;

Pragmas
pragma restrict_references(create_pipe,WNDS,RNDS);

SEND_MESSAGE Function on
page 45-8

Sends message on named pipe: This implicitly creates a
public pipe if the named pipe does not exist.

RECEIVE_MESSAGE Function on
page 45-10

Copies message from named pipe into local buffer.

NEXT_ITEM_TYPE Function on
page 45-12

Returns datatype of next item in buffer.

UNPACK_MESSAGE Procedure
on page 45-13

Accesses next item in buffer.

REMOVE_PIPE Function on
page 45-14

Removes the named pipe.

PURGE Procedure on page 45-15 Purges contents of named pipe.

RESET_BUFFER Procedure on
page 45-16

Purges contents of local buffer.

UNIQUE_SESSION_NAME
Function on page 45-16

Returns unique session name.

Table 45–2 DBMS_PIPE Package Subprograms (Cont.)

Subprogram Description
DBMS_PIPE 45-5

CREATE_PIPE Function
Parameters

Returns

Table 45–3 CREATE_PIPE Function Parameters

Parameter Description

pipename Name of the pipe you are creating.

You must use this name when you call SEND_MESSAGE and
RECEIVE_MESSAGE. This name must be unique across the
instance.

Caution: Do not use pipe names beginning with ORA$. These
are reserved for use by procedures provided by Oracle
Corporation. Pipename should not be longer than 128 bytes,
and is case_insensitive. At this time, the name cannot contain
NLS characters.

maxpipesize The maximum size allowed for the pipe, in bytes.

The total size of all of the messages on the pipe cannot exceed
this amount. The message is blocked if it exceeds this
maximum. The default maxpipesize is 8192 bytes.

The maxpipesize for a pipe becomes a part of the
characteristics of the pipe and persists for the life of the pipe.
Callers of SEND_MESSAGE with larger values cause the
maxpipesize to be increased. Callers with a smaller value
use the existing, larger value.

private Uses the default, TRUE, to create a private pipe.

Public pipes can be implicitly created when you call SEND_
MESSAGE.

Table 45–4 CREATE_PIPE Function Returns

Return Description

0 Successful.

If the pipe already exists and the user attempting to create it is
authorized to use it, then Oracle returns 0, indicating success,
and any data already in the pipe remains.

If a user connected as SYSDBA/SYSOPER re-creates a pipe,
then Oracle returns status 0, but the ownership of the pipe
remains unchanged.
45-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
Exceptions

PACK_MESSAGE Procedure

This procedure builds your message in the local message buffer.

To send a message, first make one or more calls to PACK_MESSAGE. Then, call
SEND_MESSAGE to send the message in the local buffer on the named pipe.

The PACK_MESSAGE procedure is overloaded to accept items of type VARCHAR2,
NUMBER, or DATE. In addition to the data bytes, each item in the buffer requires one
byte to indicate its type, and two bytes to store its length. One additional byte is
needed to terminate the message.The overhead for all types other than VARCHAR is
4 bytes.

In Oracle8, the char-set-id (2 bytes) and the char-set-form (1 byte) are stored with
each data item. Therefore, the overhead when using Oracle8 is 7 bytes.

When you call SEND_MESSAGE to send this message, you must indicate the name of
the pipe on which you want to send the message. If this pipe already exists, then
you must have sufficient privileges to access this pipe. If the pipe does not already
exist, then it is created automatically.

Syntax
DBMS_PIPE.PACK_MESSAGE (item IN VARCHAR2);
DBMS_PIPE.PACK_MESSAGE (item IN NCHAR);
DBMS_PIPE.PACK_MESSAGE (item IN NUMBER);

ORA-23322 Failure due to naming conflict.

If a pipe with the same name exists and was created by a
different user, then Oracle signals error ORA-23322 , indicating
the naming conflict.

Table 45–5 CREATE_PIPE Function Exception

Exception Description

Null pipe name Permission error: Pipe with the same name already exists, and
you are not allowed to use it.

Table 45–4 CREATE_PIPE Function Returns

Return Description
DBMS_PIPE 45-7

SEND_MESSAGE Function
DBMS_PIPE.PACK_MESSAGE (item IN DATE);
DBMS_PIPE.PACK_MESSAGE_RAW (item IN RAW);
DBMS_PIPE.PACK_MESSAGE_ROWID (item IN ROWID);

Pragmas
pragma restrict_references(pack_message,WNDS,RNDS);
pragma restrict_references(pack_message_raw,WNDS,RNDS);
pragma restrict_references(pack_message_rowid,WNDS,RNDS);

Parameters

Exceptions
ORA-06558 is raised if the message buffer overflows (currently 4096 bytes). Each
item in the buffer takes one byte for the type, two bytes for the length, plus the
actual data. There is also one byte needed to terminate the message.

SEND_MESSAGE Function

This function sends a message on the named pipe.

The message is contained in the local message buffer, which was filled with calls to
PACK_MESSAGE. A pipe could be explicitly using CREATE_PIPE; otherwise, it is
created implicitly.

Syntax
DBMS_PIPE.SEND_MESSAGE (

pipename IN VARCHAR2,
timeout IN INTEGER DEFAULT MAXWAIT,
maxpipesize IN INTEGER DEFAULT 8192)

Note: The PACK_MESSAGE procedure is overloaded to accept
items of type VARCHAR2, NCHAR, NUMBER, or DATE. There are two
additional procedures to pack RAW and ROWID items.

Table 45–6 PACK_MESSAGE Procedure Parameters

Parameter Description

item Item to pack into the local message buffer.
45-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
RETURN INTEGER;

Pragmas
pragma restrict_references(send_message,WNDS,RNDS);

Parameters

Table 45–7 SEND_MESSAGE Function Parameters

Parameter Description

pipename Name of the pipe on which you want to place the message.

If you are using an explicit pipe, then this is the name that you
specified when you called CREATE_PIPE.

Caution: Do not use pipe names beginning with ’ORA$’. These
names are reserved for use by procedures provided by Oracle
Corporation. Pipename should not be longer than 128 bytes,
and is case-insensitive. At this time, the name cannot contain
NLS characters.

timeout Time to wait while attempting to place a message on a pipe, in
seconds.

The default value is the constant MAXWAIT, which is defined as
86400000 (1000 days).

maxpipesize Maximum size allowed for the pipe, in bytes.

The total size of all the messages on the pipe cannot exceed this
amount. The message is blocked if it exceeds this maximum.
The default is 8192 bytes.

The maxpipesize for a pipe becomes a part of the
characteristics of the pipe and persists for the life of the pipe.
Callers of SEND_MESSAGE with larger values cause the
maxpipesize to be increased. Callers with a smaller value
simply use the existing, larger value.

Specifying maxpipesize as part of the SEND_MESSAGE
procedure eliminates the need for a separate call to open the
pipe. If you created the pipe explicitly, then you can use the
optional maxpipesize parameter to override the creation
pipe size specifications.
DBMS_PIPE 45-9

RECEIVE_MESSAGE Function
Returns

Exceptions

RECEIVE_MESSAGE Function

This function copies the message into the local message buffer.

To receive a message from a pipe, first call RECEIVE_MESSAGE. When you receive a
message, it is removed from the pipe; hence, a message can only be received once.
For implicitly-created pipes, the pipe is removed after the last record is removed
from the pipe.

Table 45–8 SEND_MESSAGE Function Returns

Return Description

0 Success.

If the pipe already exists and the user attempting to create it is
authorized to use it, then Oracle returns 0, indicating success, and
any data already in the pipe remains.

If a user connected as SYSDBS/SYSOPER re-creates a pipe, then
Oracle returns status 0, but the ownership of the pipe remains
unchanged.

1 Timed out.

This procedure can timeout either because it cannot get a lock on
the pipe, or because the pipe remains too full to be used. If the
pipe was implicitly-created and is empty, then it is removed.

3 An interrupt occurred.

If the pipe was implicitly created and is empty, then it is removed.

ORA-23322 Insufficient privileges.

If a pipe with the same name exists and was created by a different
user, then Oracle signals error ORA-23322 , indicating the naming
conflict.

Table 45–9 SEND_MESSAGE Function Exception

Exception Description

Null pipe name Permission error. Insufficient privilege to write to the pipe. The
pipe is private and owned by someone else.
45-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
If the pipe that you specify when you call RECEIVE_MESSAGE does not already
exist, then Oracle implicitly creates the pipe and waits to receive the message. If the
message does not arrive within a designated timeout interval, then the call returns
and the pipe is removed.

After receiving the message, you must make one or more calls to UNPACK_MESSAGE
to access the individual items in the message. The UNPACK_MESSAGE procedure is
overloaded to unpack items of type DATE, NUMBER, VARCHAR2, and there are two
additional procedures to unpack RAW and ROWID items. If you do not know the type
of data that you are attempting to unpack, then call NEXT_ITEM_TYPE to determine
the type of the next item in the buffer.

Syntax
DBMS_PIPE.RECEIVE_MESSAGE (

pipename IN VARCHAR2,
timeout IN INTEGER DEFAULT maxwait)

RETURN INTEGER;

Pragmas
pragma restrict_references(receive_message,WNDS,RNDS);

Parameters

Returns

Table 45–10 RECEIVE_MESSAGE Function Parameters

Parameter Description

pipename Name of the pipe on which you want to receive a message.

Names beginning with ORA$ are reserved for use by Oracle

timeout Time to wait for a message, in seconds.

The default value is the constant MAXWAIT, which is defined as
86400000 (1000 days). A timeout of 0 allows you to read
without blocking.

Table 45–11 RECEIVE_MESSAGE Function Returns

Return Description

0 Success
DBMS_PIPE 45-11

NEXT_ITEM_TYPE Function
Exceptions

NEXT_ITEM_TYPE Function

This function determines the datatype of the next item in the local message buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, call NEXT_ITEM_TYPE.

Syntax
DBMS_PIPE.NEXT_ITEM_TYPE

RETURN INTEGER;

Pragmas
pragma restrict_references(next_item_type,WNDS,RNDS);

Returns

1 Timed out. If the pipe was implicitly-created and is empty,
then it is removed.

2 Record in the pipe is too large for the buffer. (This should not
happen.)

3 An interrupt occurred.

ORA-23322 User has insufficient privileges to read from the pipe.

Table 45–12 RECEIVE_MESSAGE Function Exceptions

Exception Description

Null pipe name Permission error. Insufficient privilege to remove the record
from the pipe. The pipe is owned by someone else.

Table 45–13 NEXT_ITEM_TYPE Function Returns

Return Description

0 No more items

Table 45–11 RECEIVE_MESSAGE Function Returns

Return Description
45-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
UNPACK_MESSAGE Procedure

This procedure retrieves items from the buffer.

After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, call UNPACK_MESSAGE.

Syntax
DBMS_PIPE.UNPACK_MESSAGE (item OUT VARCHAR2);
DBMS_PIPE.UNPACK_MESSAGE (item OUT NCHAR);
DBMS_PIPE.UNPACK_MESSAGE (item OUT NUMBER);
DBMS_PIPE.UNPACK_MESSAGE (item OUT DATE);
DBMS_PIPE.UNPACK_MESSAGE_RAW (item OUT RAW);
DBMS_PIPE.UNPACK_MESSAGE_ROWID (item OUT ROWID);

Pragmas
pragma restrict_references(unpack_message,WNDS,RNDS);
pragma restrict_references(unpack_message_raw,WNDS,RNDS);
pragma restrict_references(unpack_message_rowid,WNDS,RNDS);

6 NUMBER

9 VARCHAR2

11 ROWID

12 DATE

23 RAW

Note: The UNPACK_MESSAGE procedure is overloaded to return
items of type VARCHAR2, NCHAR, NUMBER, or DATE. There are two
additional procedures to unpack RAW and ROWID items.

Table 45–13 NEXT_ITEM_TYPE Function Returns

Return Description
DBMS_PIPE 45-13

REMOVE_PIPE Function
Parameters

Exceptions
ORA-06556 or 06559 are generated if the buffer contains no more items, or if the
item is not of the same type as that requested.

REMOVE_PIPE Function

This function removes explicitly-created pipes.

Pipes created implicitly by SEND_MESSAGE are automatically removed when
empty. However, pipes created explicitly by CREATE_PIPE are removed only by
calling REMOVE_PIPE, or by shutting down the instance. All unconsumed records
in the pipe are removed before the pipe is deleted.

This is similar to calling PURGE on an implicitly-created pipe.

Syntax
DBMS_PIPE.REMOVE_PIPE (

pipename IN VARCHAR2)
RETURN INTEGER;

Pragmas
pragma restrict_references(remove_pipe,WNDS,RNDS);

Parameters

Table 45–14 UNPACK_MESSAGE Procedure Parameters

Parameter Description

item Argument to receive the next unpacked item from the local
message buffer.

Table 45–15 REMOVE_PIPE Function Parameters

Parameter Description

pipename Name of pipe that you want to remove.
45-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
Returns

Exceptions

PURGE Procedure

This procedure empties the contents of the named pipe.

An empty implicitly-created pipe is aged out of the shared global area according to
the least-recently-used algorithm. Thus, calling PURGE lets you free the memory
associated with an implicitly-created pipe.

Because PURGE calls RECEIVE_MESSAGE, the local buffer might be overwritten
with messages as they are purged from the pipe. Also, you can receive an
ORA-23322 (insufficient privileges) error if you attempt to purge a pipe with which
you have insufficient access rights.

Syntax
DBMS_PIPE.PURGE (

pipename IN VARCHAR2);

Table 45–16 REMOVE_PIPE Function Returns

Return Description

0 Success

If the pipe does not exist, or if the pipe already exists and the
user attempting to remove it is authorized to do so, then Oracle
returns 0, indicating success, and any data remaining in the
pipe is removed.

ORA-23322 Insufficient privileges.

If the pipe exists, but the user is not authorized to access the
pipe, then Oracle signals error ORA-23322 , indicating
insufficient privileges.

Table 45–17 REMOVE_PIPE Function Exception

Exception Description

Null pipe name Permission error: Insufficient privilege to remove pipe. The
pipe was created and is owned by someone else.
DBMS_PIPE 45-15

RESET_BUFFER Procedure
Pragmas
pragma restrict_references(purge,WNDS,RNDS);

Parameters

Exceptions
Permission error if pipe belongs to another user.

RESET_BUFFER Procedure

This procedure resets the PACK_MESSAGE and UNPACK_MESSAGE positioning
indicators to 0.

Because all pipes share a single buffer, you may find it useful to reset the buffer
before using a new pipe. This ensures that the first time you attempt to send a
message to your pipe, you do not inadvertently send an expired message remaining
in the buffer.

Syntax
DBMS_PIPE.RESET_BUFFER;

Pragmas
pragma restrict_references(reset_buffer,WNDS,RNDS);

UNIQUE_SESSION_NAME Function

This function receives a name that is unique among all of the sessions that are
currently connected to a database.

Table 45–18 Purge Procedure Parameters

Parameter Description

pipename Name of pipe from which to remove all messages.

The local buffer may be overwritten with messages as they are
discarded. Pipename should not be longer than 128 bytes, and
is case-insensitive.
45-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
Multiple calls to this function from the same session always return the same value.
You might find it useful to use this function to supply the PIPENAME parameter for
your SEND_MESSAGE and RECEIVE_MESSAGE calls.

Syntax
DBMS_PIPE.UNIQUE_SESSION_NAME

RETURN VARCHAR2;

Pragmas
pragma restrict_references(unique_session_name,WNDS,RNDS,WNPS);

Returns
This function returns a unique name. The returned name can be up to 30 bytes.

Example 1: Debugging
This example shows the procedure that a PL/SQL program can call to place
debugging information in a pipe.

CREATE OR REPLACE PROCEDURE debug (msg VARCHAR2) AS
status NUMBER;

BEGIN
DBMS_PIPE.PACK_MESSAGE(LENGTH(msg));
DBMS_PIPE.PACK_MESSAGE(msg);
status := DBMS_PIPE.SEND_MESSAGE(’plsql_debug’);
IF status != 0 THEN

raise_application_error(-20099, ’Debug error’);
END IF;

END debug;

The following Pro*C code receives messages from the PLSQL_DEBUG pipe in
"Example 1: Debugging" and displays the messages. If the Pro*C session is run in a
separate window, then it can be used to display any messages that are sent to the
debug procedure from a PL/SQL program executing in a separate session.

#include <stdio.h>
#include <string.h>

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR username[20];
int status;
int msg_length;
char retval[2000];
DBMS_PIPE 45-17

UNIQUE_SESSION_NAME Function
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sql_error();

main()
{

-- Prepare username:
strcpy(username.arr, "SCOTT/TIGER");
username.len = strlen(username.arr);

EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username;

printf("connected\n");

-- Start an endless loop to look for and print messages on the pipe:
FOR (;;)
{

EXEC SQL EXECUTE
DECLARE

len INTEGER;
typ INTEGER;
sta INTEGER;
chr VARCHAR2(2000);

BEGIN
chr := ’’;
sta := dbms_pipe.receive_message(’plsql_debug’);
IF sta = 0 THEN

DBMS_PIPE.UNPACK_MESSAGE(len);
DBMS_PIPE.UNPACK_MESSAGE(chr);

END IF;
:status := sta;
:retval := chr;
IF len IS NOT NULL THEN

:msg_length := len;
ELSE

:msg_length := 2000;
END IF;

END;
END-EXEC;
IF (status == 0)

printf("\n%.*s\n", msg_length, retval);
45-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
ELSE
printf("abnormal status, value is %d\n", status);

}
}

void sql_error()
{

char msg[1024];
int rlen, len;
len = sizeof(msg);
sqlglm(msg, &len, &rlen);
printf("ORACLE ERROR\n");
printf("%.*s\n", rlen, msg);
exit(1);

}

Example 2: Execute System Commands
This example shows PL/SQL and Pro*C code let a PL/SQL stored procedure (or
anonymous block) call PL/SQL procedures to send commands over a pipe to a
Pro*C program that is listening for them.

The Pro*C program sleeps and waits for a message to arrive on the named pipe.
When a message arrives, the C program processes it, carrying out the required
action, such as executing a UNIX command through the system() call or executing a
SQL command using embedded SQL.

DAEMON.SQL is the source code for the PL/SQL package. This package contains
procedures that use the DBMS_PIPE package to send and receive message to and
from the Pro*C daemon. Note that full handshaking is used. The daemon always
sends a message back to the package (except in the case of the STOP command).
This is valuable, because it allows the PL/SQL procedures to be sure that the Pro*C
daemon is running.

You can call the DAEMON packaged procedures from an anonymous PL/SQL
block using SQL*Plus or Enterprise Manager. For example:

SQLPLUS> variable rv number
SQLPLUS> execute :rv := DAEMON.EXECUTE_SYSTEM(’ls -la’);

On a UNIX system, this causes the Pro*C daemon to execute the command
system("ls -la").
DBMS_PIPE 45-19

UNIQUE_SESSION_NAME Function
Remember that the daemon needs to be running first. You might want to run it in
the background, or in another window beside the SQL*Plus or Enterprise Manager
session from which you call it.

The DAEMON.SQL also uses the DBMS_OUTPUT package to display the results. For
this example to work, you must have execute privileges on this package.

DAEMON.SQL Example. This is the code for the PL/SQL DAEMON package:

CREATE OR REPLACE PACKAGE daemon AS
FUNCTION execute_sql(command VARCHAR2,

timeout NUMBER DEFAULT 10)
RETURN NUMBER;

FUNCTION execute_system(command VARCHAR2,
timeout NUMBER DEFAULT 10)

RETURN NUMBER;

PROCEDURE stop(timeout NUMBER DEFAULT 10);
END daemon;
/
CREATE OR REPLACE PACKAGE BODY daemon AS

FUNCTION execute_system(command VARCHAR2,
timeout NUMBER DEFAULT 10)

RETURN NUMBER IS

status NUMBER;
result VARCHAR2(20);
command_code NUMBER;
pipe_name VARCHAR2(30);

BEGIN
pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

DBMS_PIPE.PACK_MESSAGE(’SYSTEM’);
DBMS_PIPE.PACK_MESSAGE(pipe_name);
DBMS_PIPE.PACK_MESSAGE(command);
status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
IF status <> 0 THEN

RAISE_APPLICATION_ERROR(-20010,
’Execute_system: Error while sending. Status = ’ ||

status);
END IF;

status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);
IF status <> 0 THEN
45-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
RAISE_APPLICATION_ERROR(-20011,
’Execute_system: Error while receiving.

Status = ’ || status);
END IF;

DBMS_PIPE.UNPACK_MESSAGE(result);
IF result <> ’done’ THEN

RAISE_APPLICATION_ERROR(-20012,
’Execute_system: Done not received.’);

END IF;

DBMS_PIPE.UNPACK_MESSAGE(command_code);
DBMS_OUTPUT.PUT_LINE(’System command executed. result = ’ ||

command_code);
RETURN command_code;

END execute_system;

FUNCTION execute_sql(command VARCHAR2,
timeout NUMBER DEFAULT 10)

RETURN NUMBER IS

status NUMBER;
result VARCHAR2(20);
command_code NUMBER;
pipe_name VARCHAR2(30);

BEGIN
pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

DBMS_PIPE.PACK_MESSAGE(’SQL’);
DBMS_PIPE.PACK_MESSAGE(pipe_name);
DBMS_PIPE.PACK_MESSAGE(command);
status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
IF status <> 0 THEN

RAISE_APPLICATION_ERROR(-20020,
’Execute_sql: Error while sending. Status = ’ || status);

END IF;

status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);

IF status <> 0 THEN
RAISE_APPLICATION_ERROR(-20021,

’execute_sql: Error while receiving.
Status = ’ || status);

END IF;
DBMS_PIPE 45-21

UNIQUE_SESSION_NAME Function
DBMS_PIPE.UNPACK_MESSAGE(result);
IF result <> ’done’ THEN

RAISE_APPLICATION_ERROR(-20022,
’execute_sql: done not received.’);

END IF;

DBMS_PIPE.UNPACK_MESSAGE(command_code);
DBMS_OUTPUT.PUT_LINE

(’SQL command executed. sqlcode = ’ || command_code);
RETURN command_code;

END execute_sql;

PROCEDURE stop(timeout NUMBER DEFAULT 10) IS
status NUMBER;

BEGIN
DBMS_PIPE.PACK_MESSAGE(’STOP’);
status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
IF status <> 0 THEN

RAISE_APPLICATION_ERROR(-20030,
’stop: error while sending. status = ’ || status);

END IF;
END stop;

END daemon;

daemon.pc Example. This is the code for the Pro*C daemon. You must precompile
this using the Pro*C Precompiler, Version 1.5.x or later. You must also specify the
USERID and SQLCHECK options, as the example contains embedded PL/SQL code.

proc iname=daemon userid=scott/tiger sqlcheck=semantics

Then C-compile and link in the normal way.

#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

Note: To use a VARCHAR output host variable in a PL/SQL
block, you must initialize the length component before entering the
block.
45-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
EXEC SQL BEGIN DECLARE SECTION;
char *uid = "scott/tiger";
int status;
VARCHAR command[20];
VARCHAR value[2000];
VARCHAR return_name[30];

EXEC SQL END DECLARE SECTION;

void
connect_error()
{

char msg_buffer[512];
int msg_length;
int buffer_size = 512;

EXEC SQL WHENEVER SQLERROR CONTINUE;
sqlglm(msg_buffer, &buffer_size, &msg_length);
printf("Daemon error while connecting:\n");
printf("%.*s\n", msg_length, msg_buffer);
printf("Daemon quitting.\n");
exit(1);

}

void
sql_error()
{

char msg_buffer[512];
int msg_length;
int buffer_size = 512;

EXEC SQL WHENEVER SQLERROR CONTINUE;
sqlglm(msg_buffer, &buffer_size, &msg_length);
printf("Daemon error while executing:\n");
printf("%.*s\n", msg_length, msg_buffer);
printf("Daemon continuing.\n");

}
main()
{
command.len = 20; /*initialize length components*/
value.len = 2000;
return_name.len = 30;

EXEC SQL WHENEVER SQLERROR DO connect_error();
EXEC SQL CONNECT :uid;
printf("Daemon connected.\n");
DBMS_PIPE 45-23

UNIQUE_SESSION_NAME Function
EXEC SQL WHENEVER SQLERROR DO sql_error();
printf("Daemon waiting...\n");
while (1) {

EXEC SQL EXECUTE
BEGIN

:status := DBMS_PIPE.RECEIVE_MESSAGE(’daemon’);
IF :status = 0 THEN

DBMS_PIPE.UNPACK_MESSAGE(:command);
END IF;

END;
END-EXEC;
IF (status == 0)
{

command.arr[command.len] = ’\0’;
IF (!strcmp((char *) command.arr, "STOP"))
{

printf("Daemon exiting.\n");
break;

}

ELSE IF (!strcmp((char *) command.arr, "SYSTEM"))
{

EXEC SQL EXECUTE
BEGIN

DBMS_PIPE.UNPACK_MESSAGE(:return_name);
DBMS_PIPE.UNPACK_MESSAGE(:value);

END;
END-EXEC;
value.arr[value.len] = ’\0’;
printf("Will execute system command ’%s’\n", value.arr);

status = system(value.arr);
EXEC SQL EXECUTE

BEGIN
DBMS_PIPE.PACK_MESSAGE(’done’);
DBMS_PIPE.PACK_MESSAGE(:status);
:status := DBMS_PIPE.SEND_MESSAGE(:return_name);

END;
END-EXEC;

IF (status)
{

printf
("Daemon error while responding to system command.");

printf(" status: %d\n", status);
45-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
}
}
ELSE IF (!strcmp((char *) command.arr, "SQL")) {

EXEC SQL EXECUTE
BEGIN

DBMS_PIPE.UNPACK_MESSAGE(:return_name);
DBMS_PIPE.UNPACK_MESSAGE(:value);

END;
END-EXEC;
value.arr[value.len] = ’\0’;
printf("Will execute sql command ’%s’\n", value.arr);

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :value;
status = sqlca.sqlcode;

EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL EXECUTE

BEGIN
DBMS_PIPE.PACK_MESSAGE(’done’);
DBMS_PIPE.PACK_MESSAGE(:status);
:status := DBMS_PIPE.SEND_MESSAGE(:return_name);

END;
END-EXEC;

IF (status)
{

printf("Daemon error while responding to sql command.");
printf(" status: %d\n", status);

}
}
ELSE
{

printf
("Daemon error: invalid command ’%s’ received.\n",

command.arr);
}

}
ELSE
{

printf("Daemon error while waiting for signal.");
printf(" status = %d\n", status);

}
}
EXEC SQL COMMIT WORK RELEASE;
DBMS_PIPE 45-25

UNIQUE_SESSION_NAME Function
exit(0);

Example 3: External Service Interface
Put the user-written 3GL code into an OCI or Precompiler program. The program
connects to the database and executes PL/SQL code to read its request from the
pipe, computes the result, and then executes PL/SQL code to send the result on a
pipe back to the requestor.

Below is an example of a stock service request. The recommended sequence for the
arguments to pass on the pipe for all service requests is:

protocol_version VARCHAR2 - ’1’, 10 bytes or less
returnpipe VARCHAR2 - 30 bytes or less
service VARCHAR2 - 30 bytes or less
arg1 VARCHAR2/NUMBER/DATE

...
argn VARCHAR2/NUMBER/DATE

The recommended format for returning the result is:

success VARCHAR2 - ’SUCCESS’ if OK,
otherwise error message

arg1 VARCHAR2/NUMBER/DATE
...

argn VARCHAR2/NUMBER/DATE

The "stock price request server" would do, using OCI or PRO* (in pseudo-code):

<loop forever>
BEGIN dbms_stock_server.get_request(:stocksymbol); END;
<figure out price based on stocksymbol (probably from some radio

signal), set error if can’t find such a stock>
BEGIN dbms_stock_server.return_price(:error, :price); END;

A client would do:

BEGIN :price := stock_request(’YOURCOMPANY’); end;

The stored procedure, dbms_stock_server , which is called by the preceding
"stock price request server" is:

CREATE OR REPLACE PACKAGE dbms_stock_server IS
PROCEDURE get_request(symbol OUT VARCHAR2);
PROCEDURE return_price(errormsg IN VARCHAR2, price IN VARCHAR2);

END;
45-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PIPE Subprograms
CREATE OR REPLACE PACKAGE BODY dbms_stock_server IS
returnpipe VARCHAR2(30);

PROCEDURE returnerror(reason VARCHAR2) IS
s INTEGER;

BEGIN
dbms_pipe.pack_message(reason);
s := dbms_pipe.send_message(returnpipe);
IF s <> 0 THEN

raise_application_error(-20000, ’Error:’ || to_char(s) ||
’ sending on pipe’);

END IF;
END;

PROCEDURE get_request(symbol OUT VARCHAR2) IS
protocol_version VARCHAR2(10);
s INTEGER;
service VARCHAR2(30);

BEGIN
s := dbms_pipe.receive_message(’stock_service’);
IF s <> 0 THEN

raise_application_error(-20000, ’Error:’ || to_char(s) ||
’reading pipe’);

END IF;
dbms_pipe.unpack_message(protocol_version);
IF protocol_version <> ’1’ THEN

raise_application_error(-20000, ’Bad protocol: ’ ||
protocol_version);

END IF;
dbms_pipe.unpack_message(returnpipe);
dbms_pipe.unpack_message(service);
IF service != ’getprice’ THEN

returnerror(’Service ’ || service || ’ not supported’);
END IF;
dbms_pipe.unpack_message(symbol);

END;

PROCEDURE return_price(errormsg in VARCHAR2, price in VARCHAR2) IS
s INTEGER;

BEGIN
IF errormsg is NULL THEN

dbms_pipe.pack_message(’SUCCESS’);
dbms_pipe.pack_message(price);

ELSE
dbms_pipe.pack_message(errormsg);
DBMS_PIPE 45-27

UNIQUE_SESSION_NAME Function
END IF;
s := dbms_pipe.send_message(returnpipe);
IF s <> 0 THEN

raise_application_error(-20000, ’Error:’||to_char(s)||
’ sending on pipe’);

END IF;
END;

END;

The procedure called by the client is:

CREATE OR REPLACE FUNCTION stock_request (symbol VARCHAR2)
RETURN VARCHAR2 IS

s INTEGER;
price VARCHAR2(20);
errormsg VARCHAR2(512);

BEGIN
dbms_pipe.pack_message(’1’); -- protocol version
dbms_pipe.pack_message(dbms_pipe.unique_session_name); -- return pipe
dbms_pipe.pack_message(’getprice’);
dbms_pipe.pack_message(symbol);
s := dbms_pipe.send_message(’stock_service’);
IF s <> 0 THEN

raise_application_error(-20000, ’Error:’||to_char(s)||
’ sending on pipe’);

END IF;
s := dbms_pipe.receive_message(dbms_pipe.unique_session_name);
IF s <> 0 THEN

raise_application_error(-20000, ’Error:’||to_char(s)||
’ receiving on pipe’);

END IF;
dbms_pipe.unpack_message(errormsg);
IF errormsg <> ’SUCCESS’ THEN

raise_application_error(-20000, errormsg);
END IF;
dbms_pipe.unpack_message(price);
RETURN price;

END;

You would typically only grant execute on dbms_stock_service to the stock
service application server, and would only grant execute on stock_request to
those users allowed to use the service.

See Also: Chapter 2, "DBMS_ALERT"
45-28 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_P
46

DBMS_PROFILER

Oracle8i provides a Profiler API to profile existing PL/SQL applications and to
identify performance bottlenecks. You can use the collected profiler (performance)
data for performance improvement or for determining code coverage for PL/SQL
applications. Application developers can use code coverage data to focus their
incremental testing efforts.

The profiler API is implemented as a PL/SQL package, DBMS_PROFILER, that
provides services for collecting and persistently storing PL/SQL profiler data.

This chapter discusses the following topics:

� Using DBMS_PROFILER

� Requirements

� Security

� Exceptions

� Error Codes

� Summary of DBMS_PROFILER Subprograms

Note: DBMS_PROFILER treats any program unit that is compiled
in NATIVE mode as if you do not have CREATE privilege, that is,
you will not get any output.
ROFILER 46-1

Using DBMS_PROFILER
Using DBMS_PROFILER
Improving application performance is an iterative process. Each iteration involves
the following steps:

1. Running the application with one or more benchmark tests with profiler data
collection enabled.

2. Analyzing the profiler data and identifying performance problems.

3. Fixing the problems.

The PL/SQL profiler supports this process using the concept of a "run". A run
involves running the application through benchmark tests with profiler data
collection enabled. You can control the beginning and the ending of a run by calling
the START_PROFILER and STOP_PROFILER functions.

A typical run involves:

� Starting profiler data collection in the run.

� Executing PL/SQL code for which profiler and code coverage data is required.

� Stopping profiler data collection, which writes the collected data for the run
into database tables

As the application executes, profiler data is collected in memory data structures that
last for the duration of the run. You can call the FLUSH_DATA function at
intermediate points during the run to get incremental data and to free memory for
allocated profiler data structures.

Flushing the collected data involves storing collected data in database tables. The
tables should already exist in the profiler user’s schema. The PROFTAB.SQL script
creates the tables and other data structures required for persistently storing the
profiler data.

Note that running PROFTAB.SQL drops the current tables. The PROFTAB.SQL
script is in the RDBMS/ADMIN directory. Some PL/SQL operations, such as the first
execution of a PL/SQL unit, may involve I/O to catalog tables to load the byte code

Note: The collected profiler data is not automatically stored when
the user disconnects. You must issue an explicit call to the FLUSH_
DATA or the STOP_PROFILER function to store the data at the end
of the session. Stopping data collection stores the collected data.
46-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Requirements
for the PL/SQL unit being executed. Also, it may take some time executing package
initialization code the first time a package procedure or function is called.

To avoid timing this overhead, "warm up" the database before collecting profile
data. To do this, run the application once without gathering profiler data.

System-Wide Profiling
You can allow profiling across all users of a system, for example, to profile all users
of a package, independent of who is using it. In such cases, the SYSADMIN should
use a modified PROFLOAD.SQL script which:

� Creates the profiler tables and sequence

� Grants SELECT/INSERT/UPDATE on those tables and sequence to all users

� Defines public synonyms for the tables and sequence

Requirements
DBMS_PROFILER must be installed as SYS.

Use the PROFLOAD.SQL script to load the PL/SQL Profiler packages.

Collected Data
With the Probe Profiler API, you can generate profiling information for all named
library units that are executed in a session. The profiler gathers information at the
PL/SQL virtual machine level. This information includes the total number of times
each line has been executed, the total amount of time that has been spent executing
that line, and the minimum and maximum times that have been spent on a
particular execution of that line.

Note: Do not alter the actual fields of the tables.

See Also: "FLUSH_DATA Function" on page 46-8.

Note: It is possible to infer the code coverage figures for PL/SQL
units for which data has been collected.
DBMS_PROFILER 46-3

Requirements
The profiling information is stored in database tables. This enables querying on the
data: you can build customizable reports (summary reports, hottest lines, code
coverage data, and so on. And you can analyze the data.

PROFTAB.SQL
The PROFTAB.SQL script creates tables with the columns, datatypes, and
definitions as shown in Table 46–1, Table 46–2, and Table 46–3.

Table 46–1 Columns in Table PLSQL_PROFILER_RUNS

Column Datatype Definition

runid number primary key Unique run identifier from plsql_profiler_
runnumber

related_run number Runid of related run (for client/server correlation)

run_owner varchar2(32), User who started run

run_date date Start time of run

run_comment varchar2(2047) User provided comment for this run

run_total_time number Elapsed time for this run in nanoseconds

run_system_info varchar2(2047) Currently unused

run_comment1 varchar2(2047) Additional comment

spare1 varchar2(256) Unused

Table 46–2 Columns in Table PLSQL_PROFILER_UNITS

Column Datatype Definition

runid number Primary key, references plsql_profiler_runs,

unit_number number Primary key, internally generated library unit #

unit_type varchar2(32) Library unit type

unit_owner varchar2(32) Library unit owner name

unit_name varchar2(32) Library unit name timestamp on library unit

unit_timestamp date In the future will be used to detect changes to unit
between runs
46-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Security
With Oracle8, a sample textual report writer(profrep.sql) is provided with the
PL/SQL demo scripts.

Security
The profiler only gathers data for units for which a user has CREATE privilege; you
cannot use the package to profile units for which EXECUTE ONLY access has been
granted. In general, if a user can debug a unit, the same user can profile it.
However, a unit can be profiled whether or not it has been compiled DEBUG. Oracle
advises that modules that are being profiled should be compiled DEBUG, since this
provides additional information about the unit in the database

 total_time number Total time spent in this unit in nanoseconds. The profiler
does not set this field, but it is provided for the
convenience of analysis tools.

 spare1 number Unused

 spare2 number Unused

Table 46–3 Columns in Table PLSQL_PROFILER_DATA

Column Datatype Definition

runid number Primary key, unique (generated) run identifier

unit_number number Primary key, internally generated library unit number

line# number Primary key, not null, line number in unit

total_occur number Number of times line was executed

total_time number Total time spent executing line in nanoseconds

min_time number Minimum execution time for this line in nanoseconds

max_time number Maximum execution time for this line in nanoseconds

spare1 number Unused

spare2 number Unused

spare3 number Unused

spare4 number Unused

Table 46–2 Columns in Table PLSQL_PROFILER_UNITS

Column Datatype Definition
DBMS_PROFILER 46-5

Exceptions
Two Methods of Exception Generation
Each routine in this package has two versions that allow you to determine how
errors are reported.

� A function that returns success/failure as a status value and will never raise an
exception

� A procedure that returns normally if it succeeds and raises an exception if it
fails

In each case, the parameters of the function and procedure are identical. Only the
method by which errors are reported differs. If there is an error, there is a
correspondence between the error codes that the functions return, and the
exceptions that the procedures raise.

To avoid redundancy, the following section only provides details about the
functional form.

Exceptions

Table 46–4 DBMS_PROFILER Exceptions

Error Codes
A 0 return value from any function denotes successful completion; a nonzero return
value denotes an error condition. The possible errors are as follows:

� ’A subprogram was called with an incorrect parameter.’

error_param constant binary_integer := 1;

� ’Data flush operation failed. Check whether the profiler tables have been
created, are accessible, and that there is adequate space.’

error_io constant binary_integer := 2;

� There is a mismatch between package and database implementation. Oracle
returns this error if an incorrect version of the DBMS_PROFILERpackage is
installed, and if the version of the profiler package cannot work with this

Exception Description

version_mismatch Corresponds to error_version.

profiler_error Corresponds to either "error_param" or "error_io".
46-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PROFILER Subprograms
database version. The only recovery is to install the correct version of the
package.

error_version constant binary_integer := -1;

Summary of DBMS_PROFILER Subprograms

START_PROFILER Function

This function starts profiler data collection in the user’s session.

Syntax
There are two overloaded forms of the START_PROFILER function; one returns the
run number of the started run, as well as the result of the call. The other does not
return the run number. The first form is intended for use with GUI-based tools
controlling the profiler.

Table 46–5 DBMS_PROFILER Subprograms

Subprogram Description

START_PROFILER
Function on page 46-7

Starts profiler data collection in the user’s session.

STOP_PROFILER
Function on page 46-8

Stops profiler data collection in the user’s session.

FLUSH_DATA Function
on page 46-8

Flushes profiler data collected in the user’s session.

PAUSE_PROFILER
Function on page 46-9

Pauses profiler data collection.

RESUME_PROFILER
Function on page 46-9

Resumes profiler data collection.

GET_VERSION Procedure
on page 46-9

Gets the version of this API.

INTERNAL_VERSION_
CHECK Function on
page 46-10

Verifies that this version of the DBMS_PROFILER package can
work with the implementation in the database.
DBMS_PROFILER 46-7

STOP_PROFILER Function
The first form is:

DBMS_PROFILER.START_PROFILER(run_comment IN VARCHAR2 := sysdate,
run_comment1 IN VARCHAR2 :=’’,
run_number OUT BINARY_INTEGER)
RETURN BINARY_INTEGER;

The second form is:

DBMS_PROFILER.START_PROFILER(run_comment IN VARCHAR2 := sysdate,
run_comment1 IN VARCHAR2 :=’’)
RETURN BINARY_INTEGER;

Parameters

STOP_PROFILER Function

This function stops profiler data collection in the user’s session.

This function has the side effect of flushing data collected so far in the session, and
it signals the end of a run.

Syntax
DBMS_PROFILER.STOP_PROFILER

RETURN BINARY_INTEGER;

FLUSH_DATA Function

This function flushes profiler data collected in the user’s session. The data is flushed
to database tables, which are expected to preexist.

Table 46–6 START_PROFILER Function Parameters

Parameter Description

run_comment Each profiler run can be associated with a comment. For
example, the comment could provide the name and version of
the benchmark test that was used to collect data.

run_number Stores the number of the run so you can store and later recall
the run’s data.

run_comment1 Allows you to make interesting comments about the run.
46-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PROFILER Subprograms
Syntax
DBMS_PROFILER.FLUSH_DATA

RETURN BINARY_INTEGER;

PAUSE_PROFILER Function

This function pauses profiler data collection.

RESUME_PROFILER Function

This function resumes profiler data collection.

GET_VERSION Procedure

This procedure gets the version of this API.

Syntax
DBMS_PROFILER.GET_VERSION (

major OUT BINARY_INTEGER,
minor OUT BINARY_INTEGER);

Parameters

Note: Use the PROFTAB.SQL script to create the tables and other
data structures required for persistently storing the profiler data.

Table 46–7 GET_VERSION Procedure Parameters

Parameter Description

major Major version of DBMS_PROFILER.

minor Minor version of DBMS_PROFILER.
DBMS_PROFILER 46-9

INTERNAL_VERSION_CHECK Function
INTERNAL_VERSION_CHECK Function

This function verifies that this version of the DBMS_PROFILER package can work
with the implementation in the database.

Syntax
DBMS_PROFILER.INTERNAL_VERSION_CHECK

RETURN BINARY_INTEGER;
46-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_PROPAGATION
47

DBMS_PROPAGATION_ADM

The DBMS_PROPAGATION_ADM package provides administrative procedures for
configuring propagation from a source queue to a destination queue.

This chapter contains the following topic:

� Summary of DBMS_PROPAGATION_ADM Subprograms

See Also: Oracle9i Streams for more information about
propagation in a Streams environment
_ADM 47-1

Summary of DBMS_PROPAGATION_ADM Subprograms
Summary of DBMS_PROPAGATION_ADM Subprograms

Table 47–1 DBMS_PROPAGATION_ADM Subprograms

Subprogram Description

"ALTER_PROPAGATION Procedure"
on page 47-3

Adds, alters, or removes a rule set for a
propagation job

"CREATE_PROPAGATION Procedure"
on page 47-4

Creates a propagation job and specifies the source
queue, destination queue, and rule set for the
propagation job.

"DROP_PROPAGATION Procedure"
on page 47-7

Drops a propagation job

Note: All procedures commit unless specified otherwise.
47-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PROPAGATION_ADM Subprograms
ALTER_PROPAGATION Procedure

Adds, alters, or removes a rule set for a propagation job.

Syntax
DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(

propagation_name IN VARCHAR2,
rule_set_name IN VARCHAR2);

Parameters

See Also: Oracle9i Streams and Chapter 64, "DBMS_RULE_ADM"
for more information about rules and rule sets

Table 47–2 ALTER_PROPAGATION Procedure Parameters

Parameter Description

propagation_name The name of the propagation job being altered. You must
specify an existing propagation job name.

rule_set_name The name of the rule set that contains the propagation rules for
this propagation job. If you want to use a rule set for the
propagation job, then you must specify an existing rule set in
the form [schema_name.] rule_set_name . For example, to
specify a rule set in the hr schema named prop_rules , enter
hr.prop_rules . If the schema is not specified, then the
current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

If you specify NULL, then the propagation job propagates all
LCRs and user messages in its queue.
DBMS_PROPAGATION_ADM 47-3

CREATE_PROPAGATION Procedure
CREATE_PROPAGATION Procedure

Creates a propagation job and specifies the source queue, destination queue, and
any rule set for the propagation job. A propagation job propagates events in a local
source queue to a destination queue. The destination queue may or may not be in
the same database as the source queue. The user who runs this procedure owns the
propagation job.

This procedure also starts propagation and establishes a default schedule for the
propagation job. The default schedule has the following properties:

� The start time is SYSDATE().

� The duration is NULL, which means infinite.

� The next time is NULL, which means that propagation restarts as soon as it
finishes the current duration.

� The latency is five seconds, which is the wait time for a message to be
propagated to a destination queue after it is enqueued into a queue with no
messages requiring propagation to the same destination queue.

After the propagation job is created, you can administer it using the following
procedures in the DBMS_AQADM package:

� To alter the default schedule for a propagation job, use the
ALTER_PROPAGATION_SCHEDULE procedure.

� To stop propagation, use the DISABLE_PROPAGATION_SCHEDULE procedure
and specify the source queue for the queue_name parameter and the database
link for the destination parameter.

� To restart propagation, use the ENABLE_PROPAGATION_SCHEDULE procedure
and specify the source queue for the queue_name parameter and the database
link for the destination parameter. Restarting propagation may be necessary
if a propagation job is disabled automatically due to errors.

These types of changes affect all propagation jobs on the database link for the
source queue.
47-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PROPAGATION_ADM Subprograms
The user who owns the source queue is the user who propagates events. This user
must have the necessary privileges to propagate events. These privileges include
the following:

� Execute privilege on the rule set used by the propagation job

� Execute privilege on all transformation functions used in the rule set

� Enqueue privilege on the destination queue if the destination queue is in the
same database

If the propagation job propagates events to a destination queue in a remote
database, then the owner of the source queue must be able to use the propagation
job’s database link and the user to which the database link connects at the remote
database must have enqueue privilege on the destination queue.

Note:

� Currently, a single propagation job propagates all events that
use a particular database link, even if the database link
propagates events to multiple destination queues.

� The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

See Also:

� Chapter 64, "DBMS_RULE_ADM"

� Oracle9i Streams
DBMS_PROPAGATION_ADM 47-5

CREATE_PROPAGATION Procedure
Syntax
DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(

propagation_name IN VARCHAR2,
source_queue IN VARCHAR2,
destination_queue IN VARCHAR2,
destination_dblink IN VARCHAR2 DEFAULT NULL,
rule_set_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 47–3 CREATE_PROPAGATION Procedure Parameters

Parameter Description

propagation_name The name of the propagation job being created. A NULL
setting is not allowed.

source_queue The name of the source queue. The current database must
contain the source queue.

destination_queue The name of the destination queue

destination_dblink The name of the database link that will be used by the
propagation job. The database link is from the database that
contains the source queue to the database that contains the
destination queue.

If NULL, then the source queue and destination queue must
be in the same database.

Note: Connection qualifiers are not allowed.

rule_set_name The name of the rule set that contains the propagation rules
for this propagation job. You must specify an existing rule
set in the form [schema_name.] rule_set_name . For
example, to specify a rule set in the hr schema named
prop_rules , enter hr.prop_rules . If the schema is not
specified, then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the
DBMS_RULE_ADM package.

If you specify NULL, then the propagation job propagates all
LCRs and user messages in its queue.
47-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_PROPAGATION_ADM Subprograms
DROP_PROPAGATION Procedure

Drops a propagation job and deletes all messages for the destination queue in the
source queue. This procedure also removes the schedule for propagation from the
source queue to the destination queue.

Syntax
DBMS_PROPAGATION_ADM.DROP_PROPAGATION(

propagation_name IN VARCHAR2);

Parameter

Table 47–4 DROP_PROPAGATION Procedure Parameter

Parameter Description

propagation_name The name of the propagation job being dropped. You must
specify an existing propagation job name.
DBMS_PROPAGATION_ADM 47-7

DROP_PROPAGATION Procedure
47-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_
48

DBMS_RANDOM

The DBMS_RANDOM package provides a built-in random number generator. It is
faster than generators written in PL/SQL because it calls Oracle’s internal random
number generator.

This chapter discusses the following topics:

� Requirements

� Summary of DBMS_RANDOM Subprograms
RANDOM 48-1

Requirements
Requirements
DBMS_RANDOM must be initialized before calling the random number generator. The
generator produces 8-digit integers. If the initialization subprogram is not called,
then the package raises an exception.

Summary of DBMS_RANDOM Subprograms

INITIALIZE Procedure

To use the package, first call the initialize subprogram with the seed to use.

Syntax
DBMS_RANDOM.INITIALIZE (

seed IN BINARY_INTEGER);

Table 48–1 DBMS_RANDOM Package Subprograms

Subprogram Description

INITIALIZE Procedure on
page 48-2

Initializes the package with a seed value.

SEED Procedure on
page 48-3

Resets the seed.

RANDOM Function on
page 48-3

Gets the random number.

TERMINATE Procedure
on page 48-3

Closes the package.

Note: Use a seed that is sufficiently large, more than 5 digits. A
single digit may not return sufficiently random numbers. Also
consider getting the seed from variable values such as the time.
48-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RANDOM Subprograms
Parameters

SEED Procedure

This procedure resets the seed.

Syntax
DBMS_RANDOM.SEED (

seed IN BINARY_INTEGER);

Parameters

RANDOM Function

This function gets the random number.

Syntax
DBMS_RANDOM.RANDOM

RETURN BINARY_INTEGER;

TERMINATE Procedure

When you are finished with the package, call the TERMINATE procedure.

Syntax
DBMS_RANDOM.TERMINATE;

Table 48–2 INITIALIZE Procedure Parameters

Parameter Description

seed Seed number used to generate a random number.

Table 48–3 INITIALIZE Procedure Parameters

Parameter Description

seed Seed number used to generate a random number.
DBMS_RANDOM 48-3

TERMINATE Procedure
48-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RECTIFIER
49

DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package contains APIs used to detect and resolve
data inconsistencies between two replicated sites.

This chapter discusses the following topics:

� Summary of DBMS_RECTIFIER_DIFF Subprograms
_DIFF 49-1

Summary of DBMS_RECTIFIER_DIFF Subprograms
Summary of DBMS_RECTIFIER_DIFF Subprograms

DIFFERENCES Procedure

This procedure determines the differences between two tables. It accepts the storage
table of a nested table.

Syntax
DBMS_RECTIFIER_DIFF.DIFFERENCES (

sname1 IN VARCHAR2,
oname1 IN VARCHAR2,
reference_site IN VARCHAR2 := ’’,
sname2 IN VARCHAR2,
oname2 IN VARCHAR2,
comparison_site IN VARCHAR2 := ’’,
where_clause IN VARCHAR2 := ’’,
{ column_list IN VARCHAR2 := ’’,
| array_columns IN dbms_utility.name_array, }
missing_rows_sname IN VARCHAR2,
missing_rows_oname1 IN VARCHAR2,
missing_rows_oname2 IN VARCHAR2,
missing_rows_site IN VARCHAR2 := ’’,
max_missing IN INTEGER,
commit_rows IN INTEGER := 500);

Table 49–1 DBMS_RECTIFIER_DIFF Package Subprograms

Subprogram Description

DIFFERENCES
Procedure on page 49-2

Determines the differences between two tables.

RECTIFY Procedure on
page 49-5

Resolves the differences between two tables.

Note: This procedure cannot be used on LOB columns, nor on
columns based on user-defined types.
49-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
Parameters

Note: This procedure is overloaded. The column_list and
array_columns parameters are mutually exclusive.

Table 49–2 DIFFERENCES Procedure Parameters (Page 1 of 2)

Parameter Description

sname1 Name of the schema at reference_site .

oname1 Name of the table at reference_site .

reference_site Name of the reference database site. The default, NULL, indicates
the current site.

sname2 Name of the schema at comparison_site .

oname2 Name of the table at comparison_site .

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.

where_clause Only rows satisfying this clause are selected for comparison. The
default, NULL, indicates all rows are compared.

column_list A comma-delimited list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_
sname

Name of the schema containing the tables with the missing rows.

missing_rows_
oname1

Name of an existing table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site site that are
missing from the table at reference_site .
DBMS_RECTIFIER_DIFF 49-3

DIFFERENCES Procedure
missing_rows_
oname2

Name of an existing table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the R_ID column shows the rowid of the row in the missing_
rows_oname1 table, the PRESENT column shows the name of the
site where the row is present, and the ABSENT column shows
name of the site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

max_missing Integer that specifies the maximum number of rows that should be
inserted into the missing_rows_oname table. If more than max_
missing rows are missing, then that many rows are inserted into
missing_rows_oname , and the routine then returns normally
without determining whether more rows are missing. This
parameter is useful if the fragments are so different that the
missing rows table has too many entries and there is no point in
continuing. Raises exception badnumber if max_missing is less
than 1 or NULL.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIT occurs. By default, a COMMIT
occurs after 500 inserts or 500 deletes. An empty string (' ') or
NULL indicates that a COMMIT should be issued only after all rows
for a single table have been inserted or deleted.

Table 49–2 DIFFERENCES Procedure Parameters (Page 2 of 2)

Parameter Description
49-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
Exceptions

Restrictions
The error ORA-00001 (unique constraint violated) is issued when there are any
unique or primary key constraints on the missing rows table.

RECTIFY Procedure

This procedure resolves the differences between two tables. It accepts the storage
table of a nested table.

Syntax
DBMS_RECTIFIER_DIFF.RECTIFY (

sname1 IN VARCHAR2,

Table 49–3 DIFFERENCES Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

missingprimarykey Column list must include primary key (or SET_COLUMNS
equivalent).

badname NULL or empty string for table or schema name.

cannotbenull Parameter cannot be NULL.

notshapeequivalent Tables being compared are not shape equivalent. Shape
refers to the number of columns, their column names, and
the column datatypes.

unknowncolumn Column does not exist.

unsupportedtype Type not supported.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_
repcat.missingobject

Table does not exist.

Note: This procedure cannot be used on LOB columns, nor on
columns based on user-defined types.
DBMS_RECTIFIER_DIFF 49-5

RECTIFY Procedure
oname1 IN VARCHAR2,
reference_site IN VARCHAR2 := ’’,
sname2 IN VARCHAR2,
oname2 IN VARCHAR2,
comparison_site IN VARCHAR2 := ’’,
{ column_list IN VARCHAR2 := ’’,
| array_columns IN dbms_utility.name_array, }
missing_rows_sname IN VARCHAR2,
missing_rows_oname1 IN VARCHAR2,
missing_rows_oname2 IN VARCHAR2,
missing_rows_site IN VARCHAR2 := ’’,
commit_rows IN INTEGER := 500);

Parameters

Note: This procedure is overloaded. The column_list and
array_columns parameters are mutually exclusive.

Table 49–4 RECTIFY Procedure Parameters (Page 1 of 2)

Parameter Description

sname1 Name of the schema at reference_site .

oname1 Name of the table at reference_site .

reference_site Name of the reference database site. The default, NULL, indicates
the current site.

sname2 Name of the schema at comparison_site .

oname2 Name of the table at comparison_site .

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.

column_list A comma-delimited list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_sname Name of the schema containing the tables with the missing rows.
49-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms
Exceptions

missing_rows_
oname1

Name of the table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site , and
information about the rows at comparison_site that are
missing from the table at reference_site .

missing_rows_
oname2

Name of the table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the rowid of the row in the missing_rows_oname1 table, the
name of the site at which the row is present, and the name of the
site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIT occurs. By default, a
COMMIT occurs after 500 inserts or 500 deletes. An empty string ('
') or NULL indicates that a COMMIT should be issued only after all
rows for a single table have been inserted or deleted.

Table 49–5 RECTIFY Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

badname NULL or empty string for table or schema name.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_
repcat.missingobject

Table does not exist.

Table 49–4 RECTIFY Procedure Parameters (Page 2 of 2)

Parameter Description
DBMS_RECTIFIER_DIFF 49-7

RECTIFY Procedure
49-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_REDE
50

DBMS_REDEFINITION

With DBMS_REDEFINITION, you can perform an online redefinition of tables. To
achieve this online redefinition, incrementally maintainable local materialized
views are used. Snapshot logs need to be defined on the master tables to support
incrementally maintainable materialized views. These logs keep track of the
changes to the master tables and are used by the materialized views during refresh
synchronization. Restrictions on the tables that can be redefined online are as
follows:

� Tables that have materialized views and materialized view logs defined on
them cannot be redefined online.

� Tables that are materialized view container tables and AQ tables cannot be
redefined online.

� The overflow table of an IOT table cannot be redefined online.

This chapter discusses the following topics:

� Constants for DBMS_REDEFINITION

� Summary of DBMS_REDEFINITION Subprograms

See Also: Oracle9i Database Administrator’s Guide for more
information.
FINITION 50-1

Constants for DBMS_REDEFINITION
Constants for DBMS_REDEFINITION
The following constants are defined for this package:

� cons_use_pk constant BINARY_INTEGER := 1;

� cons_use_rowid constant BINARY_INTEGER := 2;

Summary of DBMS_REDEFINITION Subprograms

CAN_REDEF_TABLE Procedure

This procedure determines if a given table can be redefined online. This is the first
step of the online redefinition process. If the table is not a candidate for online
redefinition, an error message is raised.

Syntax
DBMS_REDEFINITION.can_redef_table (

uname IN VARCHAR2,
tname IN VARCHAR2,
options_flag IN BINARY_INTEGER := 1);

Exceptions
If the table is not a candidate for online redefinition, an error message is raised.

Table 50–1 DBMS_REDEFINITION Subprograms

Subprogram Description

CAN_REDEF_TABLE
Procedure on page 50-2

Determines if a given table can be redefined online.

START_REDEF_TABLE
Procedure on page 50-3

Initiates the redefinition process.

FINISH_REDEF_TABLE
Procedure on page 50-4

Completes the redefinition process.

SYNC_INTERIM_TABLE
Procedure on page 50-5

Keeps the interim table synchronized with the original table.

ABORT_REDEF_TABLE
Procedure on page 50-5

Cleans up errors that occur during the redefinition process.
50-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REDEFINITION Subprograms
Parameters

START_REDEF_TABLE Procedure

This procedure initiates the redefinition process. After verifying that the table can
be redefined online, you create an empty interim table (in the same schema as the
table to be redefined) with the desired attributes of the post-redefinition table.

Syntax
DBMS_REDINITION.start_redef_table (

uname IN VARCHAR2,
orig_table IN VARCHAR2,
int_table IN VARCHAR2,
col_mapping IN VARCHAR2 := NULL,
options_flag IN BINARY_INTEGER := 1);

Parameters

Table 50–2 CAN_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the table.

tname The name of the table to be redefined.

options_flag Indicates the type of redefinition method to use. If the value of
this flag is dbms_redefinition.cons_use_pk , then the
redefinition is done using primary keys. If the value of this
flag is dbms_redefinition.cons_use_rowid , then the
redefinition is done using rowids. The default method of
redefinition is using primary keys.

Table 50–3 START_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.
DBMS_REDEFINITION 50-3

FINISH_REDEF_TABLE Procedure
FINISH_REDEF_TABLE Procedure

This procedure completes the redefinition process. Before this step, you can create
new indexes, triggers, grants, and constraints on the interim table. The referential
constraints involving the interim table must be disabled. After completing this step,
the original table is redefined with the attributes and data of the interim table. The
original table is locked briefly during this procedure.

Syntax
DBMS_REDFINITION.finish_redef_table (

uname IN VARCHAR2,
orig_table IN VARCHAR2,
int_table IN VARCHAR2);

Parameters

col_mapping The mapping information from the columns in the interim
table to the columns in the original table. (This is similar to the
column list on the SELECT clause of a query.) If NULL, all the
columns in the original table are selected and have the same
name after redefinition.

options_flag Indicates the type of redefinition method to use. If the value of
this flag is dbms_redefinition.cons_use_pk , then the
redefinition is done using primary keys. If the value of this
flag is dbms_redefinition.cons_use_rowid , then the
redefinition is done using rowids. The default method of
redefinition is using primary keys.

Table 50–4 FINISH_REDEF_TABLE Procedure Parameters

Parameters Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.

Table 50–3 START_REDEF_TABLE Procedure Parameters

Parameter Description
50-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REDEFINITION Subprograms
SYNC_INTERIM_TABLE Procedure

This procedure keeps the interim table synchronized with the original table. This
step is useful in minimizing the amount of synchronization needed to be done by
finish_reorg_table before completing the online redefinition. This procedure
can be called between long running operations (such as create index) on the interim
table to sync it up with the data in the original table and speed up subsequent
operations.

Syntax
DBMS_REDFINITION.sync_interim_table (

uname IN VARCHAR2,
orig_table IN VARCHAR2,
int_table IN VARCHAR2);

Parameters

ABORT_REDEF_TABLE Procedure

This procedure cleans up errors that occur during the redefinition process. This
procedure can also be used to abort the redefinition process any time after start_
reorg_table has been called and before finish_reorg_table is called.

Syntax
DBMS_REDEFINITION.abort_redef_table (

uname IN VARCHAR2,
orig_table IN VARCHAR2,
int_table IN VARCHAR2);

Table 50–5 SYNC_INTERIM_TABLE Procedure Parameters

Parameter Description

uname The schema name of the table.

orig_table The name of the table to be redefined.

int_table The name of the interim table.
DBMS_REDEFINITION 50-5

ABORT_REDEF_TABLE Procedure
Parameters

Table 50–6 ABORT_REDEF_TABLE Procedure Parameters

Parameter Description

uname The schema name of the tables.

orig_table The name of the table to be redefined.

int_table The name of the interim table.
50-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_REF
51

DBMS_REFRESH

DBMS_REFRESH enables you to create groups of materialized views that can be
refreshed together to a transactionally consistent point in time.

This chapter discusses the following topics:

� Summary of DBMS_REFRESH Subprograms
RESH 51-1

Summary of DBMS_REFRESH Subprograms
Summary of DBMS_REFRESH Subprograms

ADD Procedure

This procedure adds materialized views to a refresh group.

Syntax
DBMS_REFRESH.ADD (

name IN VARCHAR2,
{ list IN VARCHAR2,
| tab IN DBMS_UTILITY.UNCL_ARRAY, }
lax IN BOOLEAN := false);

Table 51–1 DBMS_REFRESH Package Subprograms

Subprogram Description

ADD Procedure on
page 51-2

Adds materialized views to a refresh group.

CHANGE Procedure on
page 51-3

Changes the refresh interval for a refresh group.

DESTROY Procedure
on page 51-5

Removes all of the materialized views from a refresh group and
deletes the refresh group.

MAKE Procedure on
page 51-6

Specifies the members of a refresh group and the time interval
used to determine when the members of this group should be
refreshed.

REFRESH Procedure on
page 51-8

Manually refreshes a refresh group.

SUBTRACT Procedure
on page 51-9

Removes materialized views from a refresh group.

See Also: Oracle9i Replication for more information
51-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REFRESH Subprograms
Parameters

CHANGE Procedure

This procedure changes the refresh interval for a refresh group.

Syntax
DBMS_REFRESH.CHANGE (

name IN VARCHAR2,
next_date IN DATE := NULL,
interval IN VARCHAR2 := NULL,
implicit_destroy IN BOOLEAN := NULL,
rollback_seg IN VARCHAR2 := NULL,
push_deferred_rpc IN BOOLEAN := NULL,
refresh_after_errors IN BOOLEAN := NULL,
purge_option IN BINARY_INTEGER := NULL,

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 51–2 ADD Procedures Parameters

Parameter Description

name Name of the refresh group to which you want to add members.

list Comma-delimited list of materialized views that you want to add
to the refresh group. (Synonyms are not supported.)

tab Instead of a comma-delimited list, you can supply a PL/SQL
index-by table of type DBMS_UTILITY.UNCL_ARRAY, where each
element is the name of a materialized view. The first materialized
view should be in position 1. The last position must be NULL.

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from one group to
another, then you must set the lax flag to true to succeed. Oracle
then automatically removes the materialized view from the other
refresh group and updates its refresh interval to be that of its new
group. Otherwise, the call to ADD generates an error message.

See Also: Oracle9i Replication for more information about refresh
groups
DBMS_REFRESH 51-3

CHANGE Procedure
parallelism IN BINARY_INTEGER := NULL,
heap_size IN BINARY_INTEGER := NULL);

Parameters

Table 51–3 CHANGE Procedures Parameters (Page 1 of 2)

Parameter Description

name Name of the refresh group for which you want to alter the refresh
interval.

next_date Next date that you want a refresh to occur. By default, this date
remains unchanged.

interval Function used to calculate the next time to refresh the materialized
views in the refresh group. This interval is evaluated immediately
before the refresh. Thus, you should select an interval that is
greater than the time it takes to perform a refresh. By default, the
interval remains unchanged.

implicit_destroy Allows you to reset the value of the implicit_destroy flag. If
this flag is set, then Oracle automatically deletes the group if it no
longer contains any members. By default, this flag remains
unchanged.

rollback_seg Allows you to change the rollback segment used. By default, the
rollback segment remains unchanged. To reset this parameter to
use the default rollback segment, specify NULL, including the
quotes. Specifying NULL without quotes indicates that you do not
want to change the rollback segment currently being used.

push_deferred_rpc Used by updatable materialized views only. Set this parameter to
true if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost. By default, this flag remains
unchanged.

refresh_after_
errors

Used by updatable materialized views only. Set this parameter to
true if you want the refresh to proceed even if there are
outstanding conflicts logged in the DEFERROR view for the
materialized view’s master table or master materialized view. By
default, this flag remains unchanged.
51-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REFRESH Subprograms
DESTROY Procedure

This procedure removes all of the materialized views from a refresh group and
delete the refresh group.

Syntax
DBMS_REFRESH.DESTROY (

name IN VARCHAR2);

purge_option If you are using the parallel propagation mechanism (that is,
parallelism is set to 1 or greater), then:

� 0 = do not purge

� 1 = lazy (default)

� 2 = aggressive

In most cases, lazy purge is the optimal setting. Set purge to
aggressive to trim back the queue if multiple master replication
groups are pushed to different target sites, and updates to one or
more replication groups are infrequent and infrequently pushed. If
all replication groups are infrequently updated and pushed, then
set purge to do not purge and occasionally execute PUSH with
purge set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

See Also: Oracle9i Replication for more information refresh groups

Table 51–3 CHANGE Procedures Parameters (Page 2 of 2)

Parameter Description
DBMS_REFRESH 51-5

MAKE Procedure
Parameters

MAKE Procedure

This procedure specifies the members of a refresh group and the time interval used
to determine when the members of this group should be refreshed.

Syntax
DBMS_REFRESH.MAKE (

name IN VARCHAR2
{ list IN VARCHAR2,
| tab IN DBMS_UTILITY.UNCL_ARRAY,}
next_date IN DATE,
interval IN VARCHAR2,
implicit_destroy IN BOOLEAN := false,
lax IN BOOLEAN := false,
job IN BINARY INTEGER := 0,
rollback_seg IN VARCHAR2 := NULL,
push_deferred_rpc IN BOOLEAN := true,
refresh_after_errors IN BOOLEAN := false)
purge_option IN BINARY_INTEGER := NULL,
parallelism IN BINARY_INTEGER := NULL,
heap_size IN BINARY_INTEGER := NULL);

Table 51–4 DESTROY Procedure Parameters

Parameter Description

name Name of the refresh group that you want to destroy.

See Also: Oracle9i Replication for more information

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.
51-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REFRESH Subprograms
Parameters

Table 51–5 MAKE Procedure Parameters (Page 1 of 2)

Parameter Description

name Unique name used to identify the refresh group. Refresh groups
must follow the same naming conventions as tables.

list Comma-delimited list of materialized views that you want to
refresh. (Synonyms are not supported.) These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your current database.

tab Instead of a comma separated list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

next_date Next date that you want a refresh to occur.

interval Function used to calculate the next time to refresh the materialized
views in the group. This field is used with the next_date value.

For example, if you specify NEXT_DAY(SYSDATE+1, "MONDAY")
as your interval, and if your next_date evaluates to Monday,
then Oracle refreshes the materialized views every Monday. This
interval is evaluated immediately before the refresh. Thus, you
should select an interval that is greater than the time it takes to
perform a refresh.

implicit_destroy Set this to true if you want to delete the refresh group
automatically when it no longer contains any members. Oracle
checks this flag only when you call the SUBTRACT procedure. That
is, setting this flag still enables you to create an empty refresh
group.

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from an existing
group to a new refresh group, then you must set this to true to
succeed. Oracle then automatically removes the materialized view
from the other refresh group and updates its refresh interval to be
that of its new group. Otherwise, the call to MAKE generates an
error message.

job Needed by the Import utility. Use the default value, 0.

rollback_seg Name of the rollback segment to use while refreshing materialized
views. The default, NULL, uses the default rollback segment.
DBMS_REFRESH 51-7

REFRESH Procedure
REFRESH Procedure

This procedure manually refreshes a refresh group.

Syntax
DBMS_REFRESH.REFRESH (

push_deferred_rpc Used by updatable materialized views only. Use the default value,
true , if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes may
appear to be temporarily lost.

refresh_after_
errors

Used by updatable materialized views only. Set this to 0 if you
want the refresh to proceed even if there are outstanding conflicts
logged in the DEFERROR view for the materialized view’s master
table or master materialized view.

purge_option If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), then 0 = do not purge; 1 =
lazy (default); 2 = aggressive. In most cases, lazy purge is the
optimal setting.

Set purge to aggressive to trim back the queue if multiple master
replication groups are pushed to different target sites, and updates
to one or more replication groups are infrequent and infrequently
pushed. If all replication groups are infrequently updated and
pushed, then set purge to do not purge and occasionally execute
PUSH with purge set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

See Also: Oracle9i Replication for more information about refresh
groups

Table 51–5 MAKE Procedure Parameters (Page 2 of 2)

Parameter Description
51-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REFRESH Subprograms
name IN VARCHAR2);

Parameters

SUBTRACT Procedure

This procedure removes materialized views from a refresh group.

Syntax
DBMS_REFRESH.SUBTRACT (

name IN VARCHAR2,
{ list IN VARCHAR2,
| tab IN DBMS_UTILITY.UNCL_ARRAY, }
lax IN BOOLEAN := false);

Table 51–6 REFRESH Procedure Parameters

Parameter Description

name Name of the refresh group that you want to refresh manually.

See Also: Oracle9i Replication for more information about refresh
groups

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.
DBMS_REFRESH 51-9

SUBTRACT Procedure
Parameters

Table 51–7 SUBTRACT Procedure Parameters

Parameter Description

name Name of the refresh group from which you want to remove
members.

list Comma-delimited list of materialized views that you want to
remove from the refresh group. (Synonyms are not supported.)
These materialized views can be located in different schemas and
have different master tables or master materialized views.
However, all of the listed materialized views must be in your
current database.

tab Instead of a comma-delimited list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

lax Set this to false if you want Oracle to generate an error message
if the materialized view you are attempting to remove is not a
member of the refresh group.
51-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
52

DBMS_REPAIR

DBMS_REPAIR contains data corruption repair procedures that enable you to detect
and repair corrupt blocks in tables and indexes. You can address corruptions where
possible and continue to use objects while you attempt to rebuild or repair them.

This chapter discusses the following topics:

� Security, Enumeration Types, and Exceptions

� Summary of DBMS_REPAIR Subprograms

Note: The DBMS_REPAIR package is intended for use by database
administrators only. It is not intended for use by application
developers.

See Also: For detailed information about using the DBMS_
REPAIR package, see Oracle9i Database Administrator’s Guide.
_REPAIR 52-1

Security, Enumeration Types, and Exceptions
Security, Enumeration Types, and Exceptions

Security
The package is owned by SYS. Execution privilege is not granted to other users.

Enumeration Types
The DBMS_REPAIR package defines several enumerated constants that should be
used for specifying parameter values. Enumerated constants must be prefixed with
the package name. For example, DBMS_REPAIR.TABLE_OBJECT.

Table 52–1 lists the parameters and the enumerated constants.

Exceptions

Table 52–1 DBMS_REPAIR Enumeration Types

Parameter Constant

object_type TABLE_OBJECT, INDEX_OBJECT, CLUSTER_OBJECT

action CREATE_ACTION, DROP_ACTION, PURGE_ACTION

table_type REPAIR_TABLE, ORPHAN_TABLE

flags SKIP_FLAG, NOSKIP_FLAG

Note: The default table_name will be REPAIR_TABLE when
table_type is REPAIR_TABLE, and will be ORPHAN_KEY_TABLE
when table_type is ORPHAN_TABLE.

Table 52–2 DBMS_REPAIR Exceptions

Exception Description Action

942 Reported by DBMS_REPAIR.ADMIN_
TABLES during a DROP_ACTION
when the specified table doesn’t
exist.

955 Reported by DBMS_REPAIR.
CREATE_ACTION when the specified
table already exists.
52-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Security, Enumeration Types, and Exceptions
24120 An invalid parameter was passed to
the specified DBMS_REPAIR
procedure.

Specify a valid parameter value or use
the parameter’s default.

24122 An incorrect block range was
specified.

Specify correct values for the BLOCK_
START and BLOCK_END parameters.

24123 An attempt was made to use the
specified feature, but the feature is
not yet implemented.

Do not attempt to use the feature.

24124 An invalid ACTION parameter was
specified.

Specify CREATE_ACTION, PURGE_
ACTION or DROP_ACTION for the
ACTION parameter.

24125 An attempt was made to fix corrupt
blocks on an object that has been
dropped or truncated since DBMS_
REPAIR.CHECK_OBJECT was run.

Use DBMS_REPAIR.ADMIN_TABLES to
purge the repair table and run DBMS_
REPAIR.CHECK_OBJECT to determine
whether there are any corrupt blocks
to be fixed.

24127 TABLESPACE parameter specified
with an ACTION other than CREATE_
ACTION.

Do not specify TABLESPACE when
performing actions other than
CREATE_ACTION.

24128 A partition name was specified for an
object that is not partitioned.

Specify a partition name only if the
object is partitioned.

24129 An attempt was made to pass a table
name parameter without the
specified prefix.

Pass a valid table name parameter.

24130 An attempt was made to specify a
repair or orphan table that does not
exist.

Specify a valid table name parameter.

24131 An attempt was made to specify a
repair or orphan table that does not
have a correct definition.

Specify a table name that refers to a
properly created table.

24132 An attempt was made to specify a
table name is greater than 30
characters long.

Specify a valid table name parameter.

Table 52–2 DBMS_REPAIR Exceptions

Exception Description Action
DBMS_REPAIR 52-3

Summary of DBMS_REPAIR Subprograms
Summary of DBMS_REPAIR Subprograms

ADMIN_TABLES Procedure

This procedure provides administrative functions for the DBMS_REPAIR package
repair and orphan key tables.

Syntax
DBMS_REPAIR.ADMIN_TABLES (

table_name IN VARCHAR2,
table_type IN BINARY_INTEGER,
action IN BINARY_INTEGER,
tablespace IN VARCHAR2 DEFAULT NULL);

Table 52–3 DBMS_REPAIR Package Subprograms

Subprogram Description

ADMIN_TABLES Procedure on
page 52-4

Provides administrative functions for the DBMS_REPAIR
package repair and orphan key tables, including create,
purge, and drop functions.

CHECK_OBJECT Procedure on
page 52-5

Detects and reports corruptions in a table or index.

DUMP_ORPHAN_KEYS
Procedure on page 52-7

Reports on index entries that point to rows in corrupt data
blocks.

FIX_CORRUPT_BLOCKS
Procedure on page 52-8

Marks blocks software corrupt that have been previously
detected as corrupt by CHECK_OBJECT.

REBUILD_FREELISTS
Procedure on page 52-9

Rebuilds an object’s freelists.

SKIP_CORRUPT_BLOCKS
Procedure on page 52-10

Sets whether to ignore blocks marked corrupt during table
and index scans or to report ORA-1578 when blocks
marked corrupt are encountered.

SEGMENT_FIX_STATUS
Procedure on page 52-11

Fixes the corrupted state of a bitmap entry.
52-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPAIR Subprograms
Parameters

CHECK_OBJECT Procedure

This procedure checks the specified objects and populates the repair table with
information about corruptions and repair directives.

Validation consists of block checking all blocks in the object. You may optionally
specify a DBA range, partition name, or subpartition name when you want to check
a portion of an object.

Table 52–4 ADMIN_TABLES Procedure Parameters

Parameter Description

table_name Name of the table to be processed. Defaults to ORPHAN_KEY_
TABLE or REPAIR_TABLE based on the specified table_
type . When specified, the table name must have the
appropriate prefix: ORPHAN_ or REPAIR_.

table_type Type of table; must be either ORPHAN_TABLE or REPAIR_
TABLE.

See "Enumeration Types" on page 52-2.

action Indicates what administrative action to perform.

Must be either CREATE_ACTION, PURGE_ACTION, or DROP_
ACTION. If the table already exists, and if CREATE_ACTION is
specified, then an error is returned. PURGE_ACTION indicates
to delete all rows in the table that are associated with
non-existent objects. If the table does not exist, and if DROP_
ACTION is specified, then an error is returned.

When CREATE_ACTION and DROP_ACTION are specified, an
associated view named DBA_<table_name> is created and
dropped respectively. The view is defined so that rows
associated with non-existent objects are eliminated.

Created in the SYS schema.

See "Enumeration Types" on page 52-2.

tablespace Indicates the tablespace to use when creating a table.

By default, the SYS default tablespace is used. An error is
returned if the tablespace is specified and if the action is not
CREATE_ACTION.
DBMS_REPAIR 52-5

CHECK_OBJECT Procedure
Syntax
DBMS_REPAIR.CHECK_OBJECT (

schema_name IN VARCHAR2,
object_name IN VARCHAR2,
partition_name IN VARCHAR2 DEFAULT NULL,
object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
repair_table_name IN VARCHAR2 DEFAULT ’REPAIR_TABLE’,
flags IN BINARY_INTEGER DEFAULT NULL,
relative_fno IN BINARY_INTEGER DEFAULT NULL,
block_start IN BINARY_INTEGER DEFAULT NULL,
block_end IN BINARY_INTEGER DEFAULT NULL,
corrupt_count OUT BINARY_INTEGER);

Parameters

Table 52–5 CHECK_OBJECT Procedure Parameters

Parameter Description

schema_name Schema name of the object to be checked.

object_name Name of the table or index to be checked.

partition_name Partition or subpartition name to be checked.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are checked. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are checked.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See "Enumeration Types" on page 52-2.

repair_table_name Name of the repair table to be populated.

The table must exist in the SYS schema. Use the admin_
tables procedure to create a repair table. The default name is
REPAIR_TABLE.

flags Reserved for future use.

relative_fno Relative file number: Used when specifying a block range.

block_start First block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition.
52-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPAIR Subprograms
DUMP_ORPHAN_KEYS Procedure

This procedure reports on index entries that point to rows in corrupt data blocks.
For each such index entry encountered, a row is inserted into the specified orphan
table.

If the repair table is specified, then any corrupt blocks associated with the base table
are handled in addition to all data blocks that are marked software corrupt.
Otherwise, only blocks that are marked corrupt are handled.

This information may be useful for rebuilding lost rows in the table and for
diagnostic purposes.

Syntax
DBMS_REPAIR.DUMP_ORPHAN_KEYS (

schema_name IN VARCHAR2,
object_name IN VARCHAR2,
partition_name IN VARCHAR2 DEFAULT NULL,
object_type IN BINARY_INTEGER DEFAULT INDEX_OBJECT,
repair_table_name IN VARCHAR2 DEFAULT ’REPAIR_TABLE’,
orphan_table_name IN VARCHAR2 DEFAULT ’ORPHAN_KEYS_TABLE’,
flags IN BINARY_INTEGER DEFAULT NULL,
key_count OUT BINARY_INTEGER);

Parameters

block_end Last block to process if specifying a block range. May be
specified only if the object is a single table, partition, or
subpartition. If only one of block_start or block_end is
specified, then the other defaults to the first or last block in the
file respectively.

corrupt_count Number of corruptions reported.

Table 52–6 DUMP_ORPHAN_KEYS Procedure Parameters

Parameter Description

schema_name Schema name.

Table 52–5 CHECK_OBJECT Procedure Parameters

Parameter Description
DBMS_REPAIR 52-7

FIX_CORRUPT_BLOCKS Procedure
FIX_CORRUPT_BLOCKS Procedure

This procedure fixes the corrupt blocks in specified objects based on information in
the repair table that was previously generated by the check_object procedure.

Prior to effecting any change to a block, the block is checked to ensure the block is
still corrupt. Corrupt blocks are repaired by marking the block software corrupt.
When a repair is effected, the associated row in the repair table is updated with a fix
timestamp.

Syntax
DBMS_REPAIR.FIX_CORRUPT_BLOCKS (

schema_name IN VARCHAR2,
object_name IN VARCHAR2,

object_name Object name.

partition_name Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. The default is INDEX_
OBJECT

See "Enumeration Types" on page 52-2.

repair_table_name Name of the repair table that has information regarding
corrupt blocks in the base table.

The specified table must exist in the SYS schema. The admin_
tables procedure is used to create the table.

orphan_table_name Name of the orphan key table to populate with information
regarding each index entry that refers to a row in a corrupt
data block.

The specified table must exist in the SYS schema. The admin_
tables procedure is used to create the table.

flags Reserved for future use.

key_count Number of index entries processed.

Table 52–6 DUMP_ORPHAN_KEYS Procedure Parameters

Parameter Description
52-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPAIR Subprograms
partition_name IN VARCHAR2 DEFAULT NULL,
object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
repair_table_name IN VARCHAR2 DEFAULT ’REPAIR_TABLE’,
flags IN BINARY_INTEGER DEFAULT NULL,
fix_count OUT BINARY_INTEGER);

Parameters

REBUILD_FREELISTS Procedure

This procedure rebuilds the freelists for the specified object. All free blocks are
placed on the master freelist. All other freelists are zeroed.

If the object has multiple freelist groups, then the free blocks are distributed among
all freelists, allocating to the different groups in round-robin fashion.

Syntax
DBMS_REPAIR.REBUILD_FREELISTS (

schema_name IN VARCHAR2,
partition_name IN VARCHAR2 DEFAULT NULL,

Table 52–7 FIX_CORRUPT_BLOCKS Procedure Parameters

Parameter Description

schema_name Schema name.

object_name Name of the object with corrupt blocks to be fixed.

partition_name Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See "Enumeration Types" on page 52-2.

repair_table_name Name of the repair table with the repair directives.

Must exist in the SYS schema.

flags Reserved for future use.

fix_count Number of blocks fixed.
DBMS_REPAIR 52-9

SKIP_CORRUPT_BLOCKS Procedure
object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT);

Parameters

SKIP_CORRUPT_BLOCKS Procedure

This procedure enables or disables the skipping of corrupt blocks during index and
table scans of the specified object.

When the object is a table, skip applies to the table and its indexes. When the object
is a cluster, it applies to all of the tables in the cluster, and their respective indexes.

Syntax
DBMS_REPAIR.SKIP_CORRUPT_BLOCKS (

schema_name IN VARCHAR2,
object_name IN VARCHAR2,
object_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
flags IN BINARY_INTEGER DEFAULT SKIP_FLAG);

Table 52–8 REBUILD_FREELISTS Procedure Parameters

Parameter Description

schema_name Schema name.

object_name Name of the object whose freelists are to be rebuilt.

partition_name Partition or subpartition name whose freelists are to be rebuilt.

If this is a partitioned object, and partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and the specified partition contains
subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or INDEX_OBJECT.

See "Enumeration Types" on page 52-2.

Note: When Oracle performs an index range scan on a corrupt
index after DBMS_REPAIR.SKIP_CORRUPT_BLOCKS has been set
for the base table, corrupt branch blocks and root blocks are not
skipped. Only corrupt non-root leaf blocks are skipped.
52-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPAIR Subprograms
Parameters

SEGMENT_FIX_STATUS Procedure

With this procedure you can fix the corrupted state of a bitmap entry. The procedure
either recalculates the state based on the current contents of the corresponding
block or sets the state to a specific value.

Syntax
DBMS_REPAIR.SEGMENT_FIX_STATUS (

segment_owner IN VARCHAR2,
segment_name IN VARCHAR2,
segment_type IN BINARY_INTEGER DEFAULT TABLE_OBJECT,
file_number IN BINARY_INTEGER DEFAULT NULL,
block_number IN BINARY_INTEGER DEFAULT NULL,
status_value IN BINARY_INTEGER DEFAULT NULL,
partition_name IN VARCHAR2 DEFAULT NULL,);

Table 52–9 SKIP_CORRUPT_BLOCKS Procedure Parameters

Parameter Description

schema_name Schema name of the object to be processed.

object_name Name of the object.

partition_name
(optional)

Partition or subpartition name to be processed.

If this is a partitioned object, and if partition_name is not
specified, then all partitions and subpartitions are processed. If
this is a partitioned object, and if the specified partition
contains subpartitions, then all subpartitions are processed.

object_type Type of the object to be processed. This must be either TABLE_
OBJECT (default) or CLUSTER_OBJECT.

See "Enumeration Types" on page 52-2.

flags If SKIP_FLAG is specified, then it turns on the skip of software
corrupt blocks for the object during index and table scans. If
NOSKIP_FLAG is specified, then scans that encounter software
corrupt blocks return an ORA-1578 .

See "Enumeration Types" on page 52-2.
DBMS_REPAIR 52-11

SEGMENT_FIX_STATUS Procedure
Parameters

Examples
/* Fix the bitmap status for all the blocks in table mytab in schema sys */
execute dbms_repair.segment_fix_status('SYS', 'MYTAB');

/* Mark block number 45, filenumber 1 for table mytab in sys schema as FULL.*/
execute dbms_repair.segment_fix_status('SYS', 'MYTAB', 1,1, 45, 1);

Table 52–10 SEGMENT_FIX_STATUS Procedure Parameters

Parameter Description

schema_owner Schema name of the segment.

segment_name Segment name.

partition_name Optional. Name of an individual partition. NULL for
nonpartitioned objects. Default is NULL.

segment_type Optional Type of the segment (for example, TABLE or INDEX).
Default is NULL.

file_number (optional) The tablespace-relative file number of the data block
whose status has to be fixed. If omitted, all the blocks in the
segment will be checked for state correctness and fixed.

block_number (optional) The file-relative file number of the data block whose
status has to be fixed. If omitted, all the blocks in the segment
will be checked for state correctness and fixed.

status_value (optional) The value to which the block status described by the
file_number and block_number will be set. If omitted, the
status will be set based on the current state of the block. This is
almost always the case, but if there is a bug in the calculation
algorithm, the value can be set manually. Status values:

1 = block is full

2 = block is 0-25% free

3 = block is 25-50% free

4 = block is 50-75% free

5 = block is 75-100% free

The status for bitmap blocks, segment headers, and extent map
blocks cannot be altered. The status for blocks in a fixed hash
area cannot be altered. For index blocks, there are only two
possible states: 1 = block is full and 3 = block has free space.
52-12 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_R
53

DBMS_REPCAT

DBMS_REPCAT provides routines to administer and update the replication catalog
and environment.

This chapter discusses the following topics:

� Summary of DBMS_REPCAT Subprograms
EPCAT 53-1

Summary of DBMS_REPCAT Subprograms
Summary of DBMS_REPCAT Subprograms

Table 53–1 DBMS_REPCAT Subprograms

Subprogram Description

ADD_GROUPED_COLUMN Procedure
on page 53-6

Adds members to an existing column group.

ADD_MASTER_DATABASE Procedure
on page 53-8

Adds another master site to your replication
environment.

ADD_NEW_MASTERS Procedure on
page 53-10

Adds the master sites in the DBA_REPSITES_
NEW data dictionary view to the replication
catalog at all available master sites.

ADD_PRIORITY_datatype Procedure
on page 53-16

Adds a member to a priority group.

ADD_SITE_PRIORITY_SITE Procedure
on page 53-17

Adds a new site to a site priority group.

ADD_conflicttype_RESOLUTION
Procedure on page 53-19

Designates a method for resolving an update,
delete, or uniqueness conflict.

ALTER_CATCHUP_PARAMETERS
Procedure on page 53-24

Alters the values for parameters stored in the
DBA_REPEXTENSIONS data dictionary view.

ALTER_MASTER_PROPAGATION
Procedure on page 53-27

Alters the propagation method for a specified
replication group at a specified master site.

ALTER_MASTER_REPOBJECT
Procedure on page 53-28

Alters an object in your replication environment.

ALTER_MVIEW_PROPAGATION
Procedure on page 53-32

Alters the propagation method for a specified
replication group at the current materialized
view site.

ALTER_PRIORITY Procedure on
page 53-33

Alters the priority level associated with a
specified priority group member.

ALTER_PRIORITY_datatype Procedure
on page 53-35

Alters the value of a member in a priority group.

ALTER_SITE_PRIORITY Procedure on
page 53-36

Alters the priority level associated with a
specified site.

ALTER_SITE_PRIORITY_SITE
Procedure on page 53-37

Alters the site associated with a specified priority
level.

CANCEL_STATISTICS Procedure on
page 53-38

Stops collecting statistics about the successful
resolution of update, uniqueness, and delete
conflicts for a table.
53-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
COMMENT_ON_COLUMN_GROUP
Procedure on page 53-39

Updates the comment field in the ALL_
REPCOLUMN_GROUP view for a column group.

COMMENT_ON_conflicttype_
RESOLUTION Procedure on page 53-46

Updates the SCHEMA_COMMENT field in the ALL_
REPGROUP view for a materialized view site.

COMMENT_ON_PRIORITY_
GROUP/COMMENT_ON_SITE_
PRIORITY Procedures on page 53-41

Updates the comment field in the ALL_
REPPRIORITY_GROUP view for a (site) priority
group.

COMMENT_ON_REPGROUP
Procedure on page 53-42

Updates the comment field in the ALL_
REPGROUP view for a master group.

COMMENT_ON_REPOBJECT
Procedure on page 53-43

Updates the comment field in the ALL_
REPOBJECT view for a replicated object.

COMMENT_ON_REPSITES Procedure
on page 53-44

Updates the comment field in the ALL_REPSITE
view for a replicated site.

COMMENT_ON_conflicttype_
RESOLUTION Procedure on page 53-46

Updates the comment field in the ALL_
REPRESOLUTION view for a conflict resolution
routine.

COMPARE_OLD_VALUES Procedure
on page 53-47

Specifies whether to compare old column values
at each master site for each nonkey column of a
replicated table for updates and deletes.

CREATE_MASTER_REPGROUP
Procedure on page 53-50

Creates a new, empty, quiesced master group.

CREATE_MASTER_REPOBJECT
Procedure on page 53-51

Specifies that an object is a replicated object.

CREATE_MVIEW_REPGROUP
Procedure on page 53-55

Creates a new, empty materialized view group in
your local database.

CREATE_MVIEW_REPOBJECT
Procedure on page 53-56

Adds a replicated object to a materialized view
group.

DEFINE_COLUMN_GROUP Procedure
on page 53-59

Creates an empty column group.

DEFINE_PRIORITY_GROUP Procedure
on page 53-60

Creates a new priority group for a master group.

DEFINE_SITE_PRIORITY Procedure on
page 53-61

Creates a new site priority group for a master
group.

Table 53–1 DBMS_REPCAT Subprograms

Subprogram Description
DBMS_REPCAT 53-3

Summary of DBMS_REPCAT Subprograms
DO_DEFERRED_REPCAT_ADMIN
Procedure on page 53-62

Executes the local outstanding deferred
administrative procedures for the specified
master group at the current master site, or for all
master sites.

DROP_COLUMN_GROUP Procedure
on page 53-63

Drops a column group.

DROP_GROUPED_COLUMN
Procedure on page 53-64

Removes members from a column group.

DROP_MASTER_REPGROUP
Procedure on page 53-65

Drops a master group from your current site.

DROP_MASTER_REPOBJECT
Procedure on page 53-67

Drops a replicated object from a master group.

DROP_PRIORITY Procedure on
page 53-70

Drops a replicated object from a master group.

DROP_MVIEW_REPGROUP Procedure
on page 53-68

Drops a materialized view site from your
replication environment.

DROP_MVIEW_REPOBJECT Procedure
on page 53-69

Drops a replicated object from a materialized
view site.

DROP_PRIORITY Procedure on
page 53-70

Drops a member of a priority group by priority
level.

DROP_PRIORITY_GROUP Procedure
on page 53-71

Drops a priority group for a specified master
group.

DROP_PRIORITY_datatype Procedure
on page 53-72

Drops a member of a priority group by value.

DROP_SITE_PRIORITY Procedure on
page 53-73

Drops a site priority group for a specified master
group.

DROP_SITE_PRIORITY_SITE Procedure
on page 53-74

Drops a specified site, by name, from a site
priority group.

DROP_conflicttype_RESOLUTION
Procedure on page 53-75

Drops an update, delete, or uniqueness conflict
resolution method.

EXECUTE_DDL Procedure on
page 53-77

Supplies DDL that you want to have executed at
each master site.

GENERATE_MVIEW_SUPPORT
Procedure on page 53-78

Activates triggers and generate packages needed
to support the replication of updatable
materialized views or procedural replication.

Table 53–1 DBMS_REPCAT Subprograms

Subprogram Description
53-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
GENERATE_REPLICATION_SUPPORT
Procedure on page 53-80

Generates the triggers, packages, and procedures
needed to support replication for a specified
object.

MAKE_COLUMN_GROUP Procedure
on page 53-82

Creates a new column group with one or more
members.

PREPARE_INSTANTIATED_MASTER
Procedure on page 53-84

Changes the global name of the database you are
adding to a master group.

PURGE_MASTER_LOG Procedure on
page 53-85

Removes local messages in the DBA_REPCATLOG
associated with a specified identification number,
source, or master group.

PURGE_STATISTICS Procedure on
page 86

Removes information from the ALL_
REPRESOLUTION_STATISTICS view.

REFRESH_MVIEW_REPGROUP
Procedure on page 53-87

Refreshes a materialized view group with the
most recent data from its associated master site or
master materialized view site.

REGISTER_MVIEW_REPGROUP
Procedure on page 53-89

Facilitates the administration of materialized
views at their respective master sites or master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW_
GROUPS.

REGISTER_STATISTICS Procedure on
page 53-90

Collects information about the successful
resolution of update, delete, and uniqueness
conflicts for a table.

RELOCATE_MASTERDEF Procedure
on page 91

Changes your master definition site to another
master site in your replication environment.

REMOVE_MASTER_DATABASES
Procedure on page 53-93

Removes one or more master databases from a
replication environment.

RENAME_SHADOW_COLUMN_
GROUP Procedure on page 53-94

Renames the shadow column group of a
replicated table to make it a named column
group.

REPCAT_IMPORT_CHECK Procedure
on page 53-95

Ensures that the objects in the master group have
the appropriate object identifiers and status
values after you perform an export/import of a
replicated object or an object used by the
advanced replication facility.

RESUME_MASTER_ACTIVITY
Procedure on page 53-96

Resumes normal replication activity after
quiescing a replication environment.

Table 53–1 DBMS_REPCAT Subprograms

Subprogram Description
DBMS_REPCAT 53-5

ADD_GROUPED_COLUMN Procedure
ADD_GROUPED_COLUMN Procedure

This procedure adds members to an existing column group. You must call this
procedure from the master definition site.

RESUME_PROPAGATION_TO_MDEF
Procedure on page 53-97

Indicates that export is effectively finished and
propagation for both extended and unaffected
replication groups existing at master sites can be
enabled.

SEND_OLD_VALUES Procedure on
page 53-98

Specifies whether to send old column values for
each nonkey column of a replicated table for
updates and deletes.

SET_COLUMNS Procedure on
page 53-100

Specifies use of an alternate column or group of
columns, instead of the primary key, to determine
which columns of a table to compare when using
row-level replication.

SPECIFY_NEW_MASTERS Procedure
on page 53-102

Specifies the master sites you intend to add to an
existing replication group without quiescing the
group.

SUSPEND_MASTER_ACTIVITY
Procedure on page 53-105

Suspends replication activity for a master group.

SWITCH_MVIEW_MASTER Procedure
on page 53-105

Changes the master site of a materialized view
group to another master site.

UNDO_ADD_NEW_MASTERS_
REQUEST Procedure on page 53-107

Undoes all of the changes made by the
SPECIFY_NEW_MASTERS and ADD_NEW_
MASTERS procedures for a specified
extension_id .

UNREGISTER_MVIEW_REPGROUP
Procedure on page 53-109

Facilitates the administration of materialized
views at their respective master sites and master
materialized view sites by inserting, modifying,
or deleting from DBA_REGISTERED_MVIEW_
GROUPS.

VALIDATE Function on page 53-109 Validates the correctness of key conditions of a
multimaster replication environment.

WAIT_MASTER_LOG Procedure on
page 53-112

Determines whether changes that were
asynchronously propagated to a master site have
been applied.

Table 53–1 DBMS_REPCAT Subprograms

Subprogram Description
53-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.ADD_GROUPED_COLUMN (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Table 53–2 ADD_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table with which the column group is
associated. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding members.

list_of_column_
names

Names of the columns that you are adding to the designated
column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHAR2. Use the single
value ' *' to create a column group that contains all of the columns
in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.
DBMS_REPCAT 53-7

ADD_MASTER_DATABASE Procedure
ADD_MASTER_DATABASE Procedure

This procedure adds another master site to your replication environment. This
procedure regenerates all the triggers and their associated packages at existing
master sites. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ADD_MASTER_DATABASE (

gname IN VARCHAR2,
master IN VARCHAR2,
use_existing_objects IN BOOLEAN := true,
copy_rows IN BOOLEAN := true,
comment IN VARCHAR2 := ’’,
propagation_mode IN VARCHAR2 := ’ASYNCHRONOUS’,
fname IN VARCHAR2 := NULL);

Table 53–3 ADD_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

missingcolumn Specified column does not exist in the specified table.

duplicatecolumn Specified column is already a member of another column group.

missingschema Specified schema does not exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.
53-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

Table 53–4 ADD_MASTER_DATABASE Procedure Parameters

Parameter Description

gname Name of the replication group being replicated. This replication
group must already exist at the master definition site.

master Fully qualified database name of the new master database.

use_existing_
objects

Indicate true if you want to reuse any objects of the same type
and shape that already exist in the schema at the new master site.

copy_rows Indicate true if you want the initial contents of a table at the new
master site to match the contents of the table at the master
definition site.

comment This comment is added to the MASTER_COMMENT field of the DBA_
REPSITES view.

propagation_mode Method of forwarding changes to and receiving changes from new
master database. Accepted values are synchronous and
asynchronous .

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 53–5 ADD_MASTER_DATABASE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Replication has not been suspended for the master group.

missingrepgroup Replication group does not exist at the specified database site.

commfailure New master is not accessible.

typefailure An incorrect propagation mode was specified.

notcompat Compatibility mode must be 7.3.0.0 or greater.

duplrepgrp Master site already exists.
DBMS_REPCAT 53-9

ADD_NEW_MASTERS Procedure
ADD_NEW_MASTERS Procedure

This procedure adds the master sites in the DBA_REPSITES_NEW data dictionary
view to the master groups specified when the SPECIFY_NEW_MASTERS procedure
was run. Information about these new master sites are added to the replication
catalog at all available master sites.

All master sites instantiated with object-level export/import must be accessible at
this time. Their new replication groups are added in the quiesced state. Master sites
instantiated through full database export/import or through changed-based
recovery do not need to be accessible.

Run this procedure after you run the SPECIFY_NEW_MASTERS procedure.

Caution: After running this procedure, do not disable or enable
propagation of the deferred transactions queue until after the new
master sites are added. The DBA_REPEXTENSIONS data dictionary
view must be clear before you disable or enable propagation. You
can use the Replication Management tool or the SET_DISABLED
procedure in the DBMS_DEFER_SYS package to disable or enable
propagation.

See Also: "SPECIFY_NEW_MASTERS Procedure" on page 53-102
53-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.ADD_NEW_MASTERS (

export_required IN BOOLEAN,
{ available_master_list IN VARCHAR2,
| available_master_table IN DBMS_UTILITY.DBLINK_ARRAY,}

masterdef_flashback_scn OUT NUMBER,
extension_id OUT RAW,
break_trans_to_masterdef IN BOOLEAN := false,
break_trans_to_new_masters IN BOOLEAN := false,
percentage_for_catchup_mdef IN BINARY_INTEGER := 100,
cycle_seconds_mdef IN BINARY_INTEGER := 60,
percentage_for_catchup_new IN BINARY_INTEGER := 100,
cycle_seconds_new IN BINARY_INTEGER := 60);

Note: This procedure is overloaded. The available_master_
list and available_master_table parameters are mutually
exclusive.
DBMS_REPCAT 53-11

ADD_NEW_MASTERS Procedure
Parameters

Table 53–6 ADD_NEW_MASTERS Procedure Parameters

Parameter Description

export_required Set to true if either object-level or full database export is
required for at least one of the new master sites. Set to
false if you are using change-based recovery for all of
the new master sites.

available_master_list A comma-delimited list of the new master sites to be
instantiated using object-level export/import. The sites
listed must match the sites specified in the SPECIFY_
NEW_MASTERS procedure. List only the new master sites,
not the existing master sites. Do not put any spaces
between site names.

Specify NULL if all masters will be instantiated using full
database export/import or change-based recovery.

available_master_table A table that lists the new master sites to be instantiated
using object-level export/import. The sites in the table
must match the sites specified in the SPECIFY_NEW_
MASTERS procedure. Do not specify masters that will be
instantiated using full database export/import or
change-based recovery.

In the table that lists the master sites to be instantiated
using object-level export/import, list only the new
master sites for the master groups being extended. Do
not list the existing master sites in the master groups
being extended. The first master site should be at
position 1, the second at position 2, and so on.

masterdef_flashback_scn This OUT parameter returns a system change number
(SCN) that must be used during export or change-based
recovery. Use the value returned by this parameter for
the FLASHBACK_SCN export parameter when you
perform the export. You can find the flashback_scn
value by querying the DBA_REPEXTENSIONS data
dictionary view.

extension_id This OUT parameter returns an identifier for the current
pending request to add master databases without
quiesce. You can find the extension_id by querying
the DBA_REPSITES_NEW and DBA_REPEXTENSIONS
data dictionary views.
53-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
break_trans_to_masterdef This parameter is meaningful only if export_
required is set to true .

If break_trans_to_masterdef is set to true , then
existing masters may continue to propagate their
deferred transactions to the master definition site for
replication groups that are not adding master sites.
Deferred transactions for replication groups that are
adding master sites cannot be propagated until the
export completes.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to false and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_masterdef is set to false , then
existing masters cannot propagate their deferred
transactions to the master definition site.

break_trans_to_new_
masters

If break_trans_to_new_masters is set to true , then
existing master sites may continue to propagate deferred
transactions to the new master sites for replication
groups that are not adding master sites.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to true and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction may be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that may be
violated by this behavior until the new master sites are
added.

If break_trans_to_new_masters is set to false ,
then propagation of deferred transaction queues to the
new masters is disabled.

Table 53–6 ADD_NEW_MASTERS Procedure Parameters

Parameter Description
DBMS_REPCAT 53-13

ADD_NEW_MASTERS Procedure
percentage_for_catchup_
mdef

This parameter is meaningful only if export_
required and break_trans_to_masterdef are both
set to true .

The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

percentage_for_catchup_
new

This parameter is meaningful only if break_trans_
to_new_masters is set to true .

The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
a new master alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in
seconds.

Table 53–6 ADD_NEW_MASTERS Procedure Parameters

Parameter Description
53-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

Usage Notes
For a new master site to be instantiated using change-based recovery or full
database export/import, the following conditions apply:

� The new master sites cannot have any existing replication groups.

� The master definition site cannot have any materialized view groups.

� The master definition site must be the same for all of the master groups. If one
or more of these master groups have a different master definition site, then do
not use change-based recovery or full database export/import. Use object-level
export/import instead.

� The new master site must include all of the replication groups in the master
definition site when the extension process is complete. That is, you cannot add a
subset of the master groups at the master definition site to the new master site;
all of the groups must be added.

Table 53–7 ADD_NEW_MASTERS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

typefailure The parameter value specified for one of the parameters is not
appropriate.

novalidextreq No valid extension request. The extension_id is not valid.

nonewsites No new master sites to be added for the specified extension
request.

notanewsite Not a new site for extension request. A site was specified that was
not specified when you ran the SPECIFY_NEW_MASTERS
procedure.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.
DBMS_REPCAT 53-15

ADD_PRIORITY_datatype Procedure
For object-level export/import, before importing ensure that all the requests in the
DBA_REPCATLOG data dictionary view for the extended groups have been
processed without any error.

ADD_PRIORITY_datatype Procedure

This procedure adds a member to a priority group. You must call this procedure
from the master definition site. The procedure that you must call is determined by
the datatype of your priority column. You must call this procedure once for each
of the possible values of the priority column.

Syntax
DBMS_REPCAT.ADD_PRIORITY_datatype (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
value IN datatype ,
priority IN NUMBER);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

ADD_SITE_PRIORITY_SITE Procedure

This procedure adds a new site to a site priority group. You must call this procedure
from the master definition site.

Table 53–8 ADD_PRIORITY_datatype Procedure Par ameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group.

value Value of the priority group member. This is one of the possible
values of the associated priority column of a table using this
priority group.

priority Priority of this value. The higher the number, the higher the
priority.

Table 53–9 ADD_PRIORITY_datatype Procedure E xceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue Specified value already exists in the priority group.

duplicatepriority Specified priority already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

typefailure Specified value has the incorrect datatype for the priority
group.

notquiesced Specified master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-17

ADD_SITE_PRIORITY_SITE Procedure
Syntax
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (

gname IN VARCHAR2,
name IN VARCHAR2
site IN VARCHAR2,
priority IN NUMBER);

Parameters

Table 53–10 ADD_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group for which you are adding a site to a group.

name Name of the site priority group to which you are adding a
member.

site Global database name of the site that you are adding.

priority Priority level of the site that you are adding. A higher number
indicates a higher priority level.
53-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

ADD_conflicttype _RESOLUTION Procedure

These procedures designate a method for resolving an update, delete, or uniqueness
conflict. You must call these procedures from the master definition site. The
procedure that you need to call is determined by the type of conflict that the routine
resolves.

Table 53–11 ADD_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

duplicatepriority Specified priority level already exists for another site in the group.

duplicatevalue Specified site already exists in the site priority group.

notquiesced Master group is not quiesced.

Table 53–12 ADD_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update ADD_UPDATE_RESOLUTION

uniqueness ADD_UNIQUE_RESOLUTION

delete ADD_DELETE_RESOLUTION

See Also: Oracle9i Replication for more information about
designating methods to resolve update conflicts, selecting
uniqueness conflict resolution methods, and assigning delete
conflict resolution methods
DBMS_REPCAT 53-19

ADD_conflicttype_RESOLUTION Procedure
Syntax
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
sequence_no IN NUMBER,
method IN VARCHAR2,
parameter_column_name IN VARCHAR2

| DBMS_REPCAT.VARCHAR2s
| DBMS_UTILITY.LNAME_ARRAY,

priority_group IN VARCHAR2 := NULL,
function_name IN VARCHAR2 := NULL,
comment IN VARCHAR2 := NULL);

DBMS_REPCAT.ADD_DELETE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,
sequence_no IN NUMBER,
parameter_column_name IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s,
function_name IN VARCHAR2,
comment IN VARCHAR2 := NULL
method IN VARCHAR2 := 'USER FUNCTION');

DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(
sname IN VARCHAR2,
oname IN VARCHAR2,
constraint_name IN VARCHAR2,
sequence_no IN NUMBER,
method IN VARCHAR2,
parameter_column_name IN VARCHAR2

| DBMS_REPCAT.VARCHAR2s
| DBMS_UTILITY.LNAME_ARRAY,

function_name IN VARCHAR2 := NULL,
comment IN VARCHAR2 := NULL);
53-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 53–13 ADD_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema containing the table to be replicated.

oname Name of the table to which you are adding a conflict resolution
routine. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding a conflict
resolution routine. Column groups are required for update
conflict resolution routines only.

constraint_name Name of the unique constraint or unique index for which you
are adding a conflict resolution routine. Use the name of the
unique index if it differs from the name of the associated unique
constraint. Constraint names are required for uniqueness conflict
resolution routines only.

sequence_no Order in which the designated conflict resolution methods
should be applied.

method Type of conflict resolution routine that you want to create. This
can be the name of one of the standard routines provided with
advanced replication, or, if you have written your own routine,
you should choose user function , and provide the name of
your method as the function_name parameter.

The standard methods supported in this release for update
conflicts are:

� minimum

� maximum

� latest timestamp

� earliest timestamp

� additive , average

� priority group

� site priority

� overwrite

� discard

The standard methods supported in this release for uniqueness
conflicts are: append site name, append sequence , and
discard . There are no built-in (Oracle supplied) methods for
delete conflicts.
DBMS_REPCAT 53-21

ADD_conflicttype_RESOLUTION Procedure
parameter_column_
name

Name of the columns used to resolve the conflict. The standard
methods operate on a single column. For example, if you are
using the latest timestamp method for a column group,
then you should pass the name of the column containing the
timestamp value as this parameter. If your are using a user
function , then you can resolve the conflict using any number
of columns.

For update or unique conflicts, this parameter accepts either a
comma-delimited list of column names, or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2 or DBMS_
UTILITY .LNAME_ARRAY. Use DBMS_UTILITY.LNAME_ARRAY if
any column name is greater than or equal to 30 bytes, which
may occur when you specify the attributes of column objects.

For delete conflicts, this parameter accepts either a
comma-delimited list of column names or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2.

The single value ' *' indicates that you want to use all of the
columns in the table (or column group, for update conflicts) to
resolve the conflict. If you specify ' *' , then the columns are
passed to your function in alphabetical order.

LOB columns cannot be specified for this parameter.

See Also: "Usage Notes" on page 53-24 if you are using column
objects

priority_group If you are using the priority group or site priority
update conflict resolution method, then you must supply the
name of the priority group that you have created.

See Oracle9i Replication for more information. If you are using a
different method, you can use the default value for this
parameter, NULL. This parameter is applicable to update
conflicts only.

function_name If you selected the user function method, or if you are
adding a delete conflict resolution routine, then you must
supply the name of the conflict resolution routine that you have
written. If you are using one of the standard methods, then you
can use the default value for this parameter, NULL.

comment This user comment is added to the DBA_REPRESOLUTION view.

Table 53–13 ADD_conflicttype_RESOLUTION Procedure Parameters

Parameter Description
53-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

Table 53–14 ADD_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
using row-level replication.

missingschema Specified schema does not exist.

missingcolumn Column that you specified as part of the parameter_
column_name parameter does not exist.

missinggroup Specified column group does not exist.

missingprioritygroup The priority group that you specified does not exist for the
table.

invalidmethod Resolution method that you specified is not recognized.

invalidparameter Number of columns that you specified for the parameter_
column_name parameter is invalid. (The standard routines
take only one column name.)

missingfunction User function that you specified does not exist.

missingconstraint Constraint that you specified for a uniqueness conflict does not
exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

duplicateresolution Specified conflict resolution method is already registered.

duplicatesequence The specified sequence number already exists for the specified
object.

invalidprioritygroup The specified priority group does not exist.

paramtype Type is different from the type assigned to the priority group.
DBMS_REPCAT 53-23

ALTER_CATCHUP_PARAMETERS Procedure
Usage Notes
If you are using column objects, then whether you can specify the attributes of the
column objects for the parameter_column_name parameter depends on whether
the conflict resolution method is built-in (Oracle supplied) or user-created:

� If you are using a built-in conflict resolution method, then you can specify
attributes of objects for this parameter. For example, if a column object named
cust_address has street_address as an attribute, then you can specify
cust_address.street_address for this parameter.

� If you are using a built-in conflict resolution method, the following types of
columns cannot be specified for this parameter: LOB attribute of a column
object, collection or collection attribute of a column object, REF, or an entire
column object.

� If you are using a user-created conflict resolution method, then you must
specify an entire column object. You cannot specify the attributes of a column
object. For example, if a column object named cust_address has street_
address as an attribute (among other attributes), then you can specify only
cust_address for this parameter.

ALTER_CATCHUP_PARAMETERS Procedure

This procedure alters the values for the following parameters stored in the DBA_
REPEXTENSIONS data dictionary view:

� percentage_for_catchup_mdef

� cycle_seconds_mdef

� percentage_for_catchup_new

� cycle_seconds_new

These parameters were originally set by the ADD_NEW_MASTERS procedure. The
new values you specify for these parameters are used during the remaining steps in
the process of adding new master sites to a master group. These changes are only to
the site at which it is executed. Therefore, it must be executed at each master site,
including the master definition site, if you want to alter parameters at all sites.

See Also: "ADD_NEW_MASTERS Procedure" on page 53-10
53-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.ALTER_CATCHUP_PARAMETERS (

extension_id IN RAW,
percentage_for_catchup_mdef IN BINARY_INTEGER := NULL,
cycle_seconds_mdef IN BINARY_INTEGER := NULL,
percentage_for_catchup_new IN BINARY_INTEGER := NULL,
cycle_seconds_new IN BINARY_INTEGER := NULL);
DBMS_REPCAT 53-25

ALTER_CATCHUP_PARAMETERS Procedure
Parameters

Exceptions

Table 53–15 ALTER_CATCHUP_PARAMETERS Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add
master database without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW
and DBA_REPEXTENSIONS data dictionary views.

percentage_for_catchup_
mdef

The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when percentage_for_
catchup_mdef is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to
the masterdef alternates between replication groups that
are not being extended and replication groups that are
being extended, with one push to each during each cycle.
This parameter indicates the length of the cycle in seconds.

percentage_for_catchup_
new

The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when percentage_for_
catchup_new is both meaningful and set to a value
between 10 and 90, inclusive. In this case, propagation to a
new master alternates between replication groups that are
not being extended and replication groups that are being
extended, with one push to each during each cycle. This
parameter indicates the length of the cycle in seconds.

Table 53–16 ALTER_CATCHUP_PARAMETERS Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.
53-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
ALTER_MASTER_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at a
specified master site. This replication group must be quiesced. You must call this
procedure from the master definition site. If the master appears in the dblink_
list or dblink_table , then ALTER_MASTER_PROPAGATION ignores that
database link. You cannot change the propagation mode from a master to itself.

Syntax
DBMS_REPCAT.ALTER_MASTER_PROPAGATION (

gname IN VARCHAR2,
master IN VARCHAR2,
{ dblink_list IN VARCHAR2,
| dblink_table IN dbms_utility.dblink_array,}
propagation_mode IN VARCHAR2 : =’asynchronous’,
comment IN VARCHAR2 := ’’);

Note: This procedure is overloaded. The dblink_list and
dblink_table parameters are mutually exclusive.
DBMS_REPCAT 53-27

ALTER_MASTER_REPOBJECT Procedure
Parameters

Exceptions

ALTER_MASTER_REPOBJECT Procedure

This procedure alters an object in your replication environment. You must call this
procedure from the master definition site.

This procedure requires that you quiesce the master group of the object if either of
the following conditions is true:

� You are altering a table in a multimaster replication environment.

Table 53–17 ALTER_MASTER_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group to which to alter the propagation
mode.

master Name of the master site at which to alter the propagation mode.

dblink_list A comma-delimited list of database links for which to alter the
propagation method. If NULL, then all masters except the master
site being altered are used by default.

dblink_table A PL/SQL index-by table, indexed from position 1, of database
links for which to alter propagation.

propagation_mode Determines the manner in which changes from the specified
master site are propagated to the sites identified by the list of
database links. Appropriate values are synchronous and
asynchronous .

comment This comment is added to the DBA_REPPROP view.

Table 53–18 ALTER_MASTER_PROPAGATION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Invocation site is not quiesced.

typefailure Propagation mode specified was not recognized.

nonmaster List of database links includes a site that is not a master site.
53-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
� You are altering a table with the safe_table_change parameter set to false
in a single master replication environment.

You can use this procedure to alter nontable objects without quiescing the master
group.

Syntax
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
ddl_text IN VARCHAR2,
comment IN VARCHAR2 := ’’,
retry IN BOOLEAN := false
safe_table_change IN BOOLEAN := false);
DBMS_REPCAT 53-29

ALTER_MASTER_REPOBJECT Procedure
Parameters

Table 53–19 ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Schema containing the object that you want to alter.

oname Name of the object that you want to alter. The object cannot be a
storage table for a nested table.

type Type of the object that you are altering. The following types are
supported:

FUNCTION SYNONYM

INDEX TABLE

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE

ddl_text The DDL text that you want used to alter the object. Oracle does
not parse this DDL before applying it. Therefore, you must ensure
that your DDL text provides the appropriate schema and object
name for the object being altered.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.

comment If not NULL, then this comment is added to the COMMENT field of
the DBA_REPOBJECT view.

retry If retry is true , then ALTER_MASTER_REPOBJECT alters the
object only at masters whose object status is not VALID .
53-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
safe_table_change Specify true if the change to a table is safe. Specify false if the
change to a table is unsafe.

You can make safe changes to a master table in a single master
replication environment without quiescing the master group that
contains the table. To make unsafe changes, you must quiesce the
master group.

Only specify this parameter for tables in single master replication
environments. This parameter is ignored in multimaster
replication environments and when the object specified is not a
table. In multimaster replication environments, you must quiesce
the master group to run the ALTER_MASTER_REPOBJECT
procedure on a table.

The following are safe changes:

� Changing storage and extent information

� Making existing columns larger. For example, changing a
VARCHAR2(20) column to a VARCHAR2(50) column.

� Adding non primary key constraints

� Altering non primary key constraints

� Enabling and disabling non primary key constraints

The following are unsafe changes:

� Changing the primary key by adding or deleting columns in
the key

� Adding or deleting columns

� Making existing columns smaller. For example, changing a
VARCHAR2(50) column to a VARCHAR2(20) column.

� Disabling a primary key constraint

� Changing the datatype of an existing column

� Dropping an existing column

If you are unsure whether a change is safe or unsafe, then quiesce
the master group before you run the ALTER_MASTER_REPOBJECT
procedure.

Table 53–19 ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description
DBMS_REPCAT 53-31

ALTER_MVIEW_PROPAGATION Procedure
Exceptions

ALTER_MVIEW_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at
the current materialized view site. This procedure pushes the deferred transaction
queue at the materialized view site, locks the materialized view base tables, and
regenerates any triggers and their associated packages. You must call this procedure
from the materialized view site.

Syntax
DBMS_REPCAT.ALTER_MVIEW_PROPAGATION (

gname IN VARCHAR2,
propagation_mode IN VARCHAR2,
comment IN VARCHAR2 := ’’
gowner IN VARCHAR2 := ’PUBLIC’);

Table 53–20 ALTER_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Associated replication group has not been suspended.

missingobject Object identified by sname and oname does not exist.

typefailure Specified type parameter is not supported.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.
53-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

ALTER_PRIORITY Procedure

This procedure alters the priority level associated with a specified priority group
member. You must call this procedure from the master definition site.

Table 53–21 ALTER_MVIEW_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group for which to alter the propagation
method.

propagation_mode Manner in which changes from the current materialized view site
are propagated to its associated master site or master materialized
view site. Appropriate values are synchronous and
asynchronous .

comment This comment is added to the DBA_REPPROP view.

gowner Owner of the materialized view group.

Table 53–22 ALTER_MVIEW_PROPAGATION Procedure Exceptions

Exception Description

missingrepgroup Specified replication group does not exist.

typefailure Propagation mode was specified incorrectly.

nonmview Current site is not a materialized view site for the specified
replication group.

commfailure Cannot contact master site or master materialized view site.

notcompat Compatibility mode must be 7.3.0.0 or greater.

failaltermviewrop Materialized view group propagation can be altered only when
there are no other materialized view groups with the same master
site or master materialized view site sharing the materialized view
site.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-33

ALTER_PRIORITY Procedure
Syntax
DBMS_REPCAT.ALTER_PRIORITY (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
old_priority IN NUMBER,
new_priority IN NUMBER);

Parameters

Table 53–23 ALTER_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the priority that you want
to alter.

old_priority Current priority level of the priority group member.

new_priority New priority level that you want assigned to the priority group
member.
53-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

ALTER_PRIORITY_datatype Procedure

This procedure alters the value of a member in a priority group. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the datatype of your priority column.

Syntax
DBMS_REPCAT.ALTER_PRIORITY_datatype (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
old_value IN datatype ,
new_value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Table 53–24 ALTER_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatepriority New priority level already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingvalue Value was not registered by a call to DBMS_REPCAT.ADD_
PRIORITY_datatype .

missingprioritygroup Specified priority group does not exist.

notquiesced Specified master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-35

ALTER_SITE_PRIORITY Procedure
Parameters

Exceptions

ALTER_SITE_PRIORITY Procedure

This procedure alters the priority level associated with a specified site. You must
call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY (

Table 53–25 ALTER_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the value that you want to
alter.

old_value Current value of the priority group member.

new_value New value that you want assigned to the priority group member.

Table 53–26 ALTER_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue New value already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

missingvalue Old value does not exist.

paramtype New value has the incorrect datatype for the priority group.

typefailure Specified value has the incorrect datatype for the priority
group.

notquiesced Specified master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods:
53-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
gname IN VARCHAR2,
name IN VARCHAR2,
old_priority IN NUMBER,
new_priority IN NUMBER);

Parameters

Exceptions

ALTER_SITE_PRIORITY_SITE Procedure

This procedure alters the site associated with a specified priority level. You must
call this procedure from the master definition site.

Table 53–27 ALTER_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_priority Current priority level of the site whose priority level you want to
change.

new_priority New priority level for the site. A higher number indicates a higher
priority level.

Table 53–28 ALTER_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Old priority level is not associated with any group members.

duplicatepriority New priority level already exists for another site in the group.

missingvalue Old value does not already exist.

paramtype New value has the incorrect datatype for the priority group.

notquiesced Master group is not quiesced.
DBMS_REPCAT 53-37

CANCEL_STATISTICS Procedure
Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE (

gname IN VARCHAR2,
name IN VARCHAR2,
old_site IN VARCHAR2,
new_site IN VARCHAR2);

Parameters

Exceptions

CANCEL_STATISTICS Procedure

This procedure stops the collection of statistics about the successful resolution of
update, uniqueness, and delete conflicts for a table.

See Also: Oracle9i Replication for more information about conflict
resolution methods

Table 53–29 ALTER_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_site Current global database name of the site to disassociate from the priority
level.

new_site New global database name that you want to associate with the current
priority level.

Table 53–30 ALTER_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

missingvalue Old site is not a group member.

notquiesced Master group is not quiesced
53-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.CANCEL_STATISTICS (

sname IN VARCHAR2,
oname IN VARCHAR2);

Parameters

Exceptions

COMMENT_ON_COLUMN_GROUP Procedure

This procedure updates the comment field in the DBA_REPCOLUMN_GROUP view for
a column group. This comment is not added at all master sites until the next call to
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
comment IN VARCHAR2);

Table 53–31 CANCEL_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you do not want to gather conflict
resolution statistics.

Table 53–32 CANCEL_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Specified table is not currently registered to collect statistics.
DBMS_REPCAT 53-39

COMMENT_ON_MVIEW_REPSITES Procedure
Parameters

Exceptions

COMMENT_ON_MVIEW_REPSITES Procedure

This procedure updates the SCHEMA_COMMENT field in the DBA_REPGROUP data
dictionary view for the specified materialized view group. The group name must be
registered locally as a replicated materialized view group. This procedure must be
executed at the materialized view site.

Syntax
DBMS_REPCAT.COMMENT_ON_MVIEW_REPSITES (

gowner IN VARCHAR2,
gname IN VARCHAR2,
comment IN VARCHAR2);

Table 53–33 COMMENT_ON_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the replicated table with which the column group is
associated.

column_group Name of the column group.

comment Text of the updated comment that you want included in the
GROUP_COMMENT field of the DBA_REPCOLUMN_GROUP view.

Table 53–34 COMMENT_ON_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missinggroup Specified column group does not exist.

missingobj Object is missing.
53-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures

COMMENT_ON_PRIORITY_GROUP updates the comment field in the DBA_
REPPRIORITY_GROUP view for a priority group. This comment is not added at all
master sites until the next call to GENERATE_REPLICATION_SUPPORT.

COMMENT_ON_SITE_PRIORITY updates the comment field in the DBA_
REPPRIORITY_GROUP view for a site priority group. This procedure is a wrapper
for the COMMENT_ON_COLUMN_GROUP procedure and is provided as a convenience
only. This procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY (
gname IN VARCHAR2,
name IN VARCHAR2,
comment IN VARCHAR2);

Table 53–35 COMMENT_ON_MVIEW_REPSITES Procedure Parameters

Parameter Description

gowner Owner of the materialized view group.

gname Name of the materialized view group.

comment Updated comment to include in the SCHEMA_COMMENT field of the
DBA_REPGROUP view.

Table 53–36 COMMENT_ON_MVIEW_REPSITES Procedure Exceptions

Parameter Description

missingrepgroup The materialized view group does not exist.

nonmview The connected site is not a materialized view site.
DBMS_REPCAT 53-41

COMMENT_ON_REPGROUP Procedure
Parameters

Exceptions

COMMENT_ON_REPGROUP Procedure

This procedure updates the comment field in the DBA_REPGROUP view for a master
group. This procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPGROUP (

gname IN VARCHAR2,
comment IN VARCHAR2);

Table 53–37 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Parameters

Parameter Description

gname Name of the master group.

pgroup/name Name of the priority or site priority group.

comment Text of the updated comment that you want included in the
PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP
view.

Table 53–38 COMMENT_ON_PRIORITY_GROUP and COMMENT_ON_SITE_PRIORITY
Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.
53-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

COMMENT_ON_REPOBJECT Procedure

This procedure updates the comment field in the DBA_REPOBJECT view for a
replicated object in a master group. This procedure must be issued at the master
definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
comment IN VARCHAR2);

Table 53–39 COMMENT_ON_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to comment on.

comment Updated comment to include in the SCHEMA_COMMENT field of the
DBA_REPGROUP view.

Table 53–40 COMMENT_ON_REPGROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

commfailure At least one master site is not accessible.
DBMS_REPCAT 53-43

COMMENT_ON_REPSITES Procedure
Parameters

Exceptions

COMMENT_ON_REPSITES Procedure

If the replication group is a master group, then this procedure updates the MASTER_
COMMENT field in the DBA_REPSITES view for a master site. If the replication group
is a materialized view group, this procedure updates the SCHEMA_COMMENT field in
the DBA_REPGROUP view for a materialized view site.

Table 53–41 COMMENT_ON_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to comment on. The object
cannot be a storage table for a nested table.

type Type of the object. The following types are supported:

FUNCTION SYNONYM

INDEX TABLE

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE

comment Text of the updated comment that you want to include in the
OBJECT_COMMENT field of the DBA_REPOBJECT view.

Table 53–42 COMMENT_ON_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.
53-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
This procedure can be executed at either a master site or a materialized view site. If
you execute this procedure on a a materialized view site, then the materialized view
group owner must be PUBLIC.

Syntax
DBMS_REPCAT.COMMENT_ON_REPSITES (

gname IN VARCHAR2,
[master IN VARCHAR,]
comment IN VARCHAR2);

Parameters

Exceptions

See Also: "COMMENT_ON_conflicttype_RESOLUTION
Procedure" on page 53-46 for instructions on placing a comment in
the SCHEMA_COMMENT field of the DBA_REPGROUP view for a
materialized view site if the materialized view group owner is not
PUBLIC

Table 53–43 COMMENT_ON_REPSITES Procedure Parameters

Parameter Description

gname Name of the replication group. This avoids confusion if a database
is a master site in more than one replication environment.

master The fully qualified database name of the master site on which you
want to comment. If you are executing the procedure on a master
site, then this parameter is required. To update comments at a
materialized view site, omit this parameter. This parameter is
optional.

comment Text of the updated comment that you want to include in the
comment field of the appropriate dictionary view. If the site is a
master site, then this procedure updates the MASTER_COMMENT
field of the DBA_REPSITES view. If the site is a materialized view
site, then this procedure updates the SCHEMA_COMMENT field of
the DBA_REPGROUP view.

Table 53–44 COMMENT_ON_REPSITES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.
DBMS_REPCAT 53-45

COMMENT_ON_conflicttype_RESOLUTION Procedure
COMMENT_ON_conflicttype _RESOLUTION Procedure

This procedure updates the RESOLUTION_COMMENT field in the DBA_
REPRESOLUTION view for a conflict resolution routine. The procedure that you
need to call is determined by the type of conflict that the routine resolves. These
procedures must be issued at the master definition site.

The comment is not added at all master sites until the next call to GENERATE_
REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
sequence_no IN NUMBER,
comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,
constraint_name IN VARCHAR2,

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible.

missingrepgroup Replication group does not exist.

commfailure One or more master sites are not accessible.

corrupt There is an inconsistency in the replication catalog views.

Table 53–45 COMMENT_ON_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update COMMENT_ON_UPDATE_RESOLUTION

uniqueness COMMENT_ON_UNIQUE_RESOLUTION

delete COMMENT_ON_DELETE_RESOLUTION

Table 53–44 COMMENT_ON_REPSITES Procedure Exceptions

Exception Description
53-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
sequence_no IN NUMBER,
comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_DELETE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,
sequence_no IN NUMBER,
comment IN VARCHAR2);

Parameters

Exceptions

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare old column values during propagation
of deferred transactions at each master site for each nonkey column of a replicated

Table 53–46 COMMENT_ON_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema.

oname Name of the replicated table with which the conflict resolution
routine is associated.

column_group Name of the column group with which the update conflict
resolution routine is associated.

constraint_name Name of the unique constraint with which the uniqueness conflict
resolution routine is associated.

sequence_no Sequence number of the conflict resolution procedure.

comment The text of the updated comment that you want included in the
RESOLUTION_COMMENT field of the DBA_REPRESOLUTION view.

Table 53–47 COMMENT_ON_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

missingresolution Specified conflict resolution routine is not registered.
DBMS_REPCAT 53-47

COMPARE_OLD_VALUES Procedure
table for updates and deletes. The default is to compare old values for all columns.
You can change this behavior at all master sites and materialized view sites by
invoking DBMS_REPCAT.COMPARE_OLD_VALUES at the master definition site.

When you use user-defined types, you can specify leaf attributes of a column object,
or you can specify an entire column object. For example, if a column object named
cust_address has street_address as an attribute, then you can specify cust_
address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address .

When performing equality comparisons for conflict detection, Oracle treats objects
as equal only if one of the following conditions is true:

� Both objects are atomically NULL (the entire object is NULL)

� All of the corresponding attributes are equal in the objects

Given these conditions, if one object is atomically NULL while the other is not, then
Oracle does not consider the objects to be equal. Oracle does not consider MAP and
ORDER methods when performing equality comparisons.

Syntax
DBMS_REPCAT.COMPARE_OLD_VALUES(

sname IN VARCHAR2,
oname IN VARCHAR2,
{ column_list IN VARCHAR2,
| column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
operation IN VARCHAR2 := ‘UPDATE’,
compare IN BOOLEAN := true);

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.
53-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 53–48 COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of
a nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

operation Possible values are: update , delete , or the asterisk wildcard ' *' ,
which means update and delete.

compare If compare is true , the old values of the specified columns are
compared when sent. If compare is false , the old values of the
specified columns are not compared when sent. Unspecified
columns and unspecified operations are not affected. The specified
change takes effect at the master definition site as soon as min_
communication is true for the table. The change takes effect at
a master site or at a materialized view site the next time
replication support is generated at that site with min_
communication true .

Note: The operation parameter enables you to decide whether
or not to compare old values for nonkey columns when rows are
deleted or updated. If you do not compare the old value, then
Oracle assumes the old value is equal to the current value of the
column at the target side when the update or delete is applied.

See Oracle9i Replication for more information about reduced data
propagation using the COMPARE_OLD_VALUES procedure before
changing the default behavior of Oracle.
DBMS_REPCAT 53-49

CREATE_MASTER_REPGROUP Procedure
Exceptions

CREATE_MASTER_REPGROUP Procedure

This procedure creates a new, empty, quiesced master group.

Syntax
DBMS_REPCAT.CREATE_MASTER_REPGROUP (

gname IN VARCHAR2,
group_comment IN VARCHAR2 := ’’,
master_comment IN VARCHAR2 := ’’),
qualifier IN VARCHAR2 := ’’);

Table 53–49 COMPARE_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to compare the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.
53-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

CREATE_MASTER_REPOBJECT Procedure

This procedure makes an object a replicated object by adding the object to a master
group. This procedure preserves the object identifier for user-defined types and
object tables at all replication sites.

Replication of clustered tables is supported, but the use_existing_object
parameter cannot be set to false for clustered tables. In other words, you must
create the clustered table at all master sites participating in the master group before
you execute the CREATE_MASTER_REPOBJECT procedure. However, these tables
do not need to contain the table data. So, the copy_rows parameter can be set to
true for clustered tables.

Table 53–50 CREATE_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to create.

group_comment This comment is added to the DBA_REPGROUP view.

master_comment This comment is added to the DBA_REPSITES view.

qualifier Connection qualifier for master group. Be sure to use the @ sign.
See Oracle9i Replication and Oracle9i Database Administrator’s
Guide for more information about connection qualifiers.

Table 53–51 CREATE_MASTER_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Master group already exists.

norepopt Advanced replication option is not installed.

missingrepgroup Master group name was not specified.

qualifiertoolong Connection qualifier is too long.
DBMS_REPCAT 53-51

CREATE_MASTER_REPOBJECT Procedure
Syntax
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
use_existing_object IN BOOLEAN := true,
ddl_text IN VARCHAR2 := NULL,
comment IN VARCHAR2 := ’’,
retry IN BOOLEAN := false
copy_rows IN BOOLEAN := true,
gname IN VARCHAR2 := ’’);

Parameters
The following table describes the parameters for this procedure.

Table 53–52 CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters Description

sname Name of the schema in which the object that you want to replicate
is located.

oname Name of the object you are replicating. If ddl_text is NULL, then
this object must already exist in the specified schema. To ensure
uniqueness, table names should be a maximum of 27 bytes long,
and package names should be no more than 24 bytes. The object
cannot be a storage table for a nested table.

type Type of the object that you are replicating. The following types are
supported:

FUNCTION SYNONYM

INDEX TABLE

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE
53-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
use_existing_
object

Indicate true if you want to reuse any objects of the same type
and shape at the current master sites. See Table 53–54 for more
information.

Note: This parameter must be set to true for clustered tables.

ddl_text If the object does not already exist at the master definition site,
then you must supply the DDL text necessary to create this object.
PL/SQL packages, package bodies, procedures, and functions
must have a trailing semicolon. SQL statements do not end with
trailing semicolon. Oracle does not parse this DDL before
applying it; therefore, you must ensure that your DDL text
provides the appropriate schema and object name for the object
being created.

If the DDL is supplied without specifying a schema (sname
parameter), then the default schema is the replication
administrator’s schema. Be sure to specify the schema if it is other
than the replication administrator’s schema.

Note: Do not use the ddl_text parameter to add user-defined
types or object tables. Instead, create the object first and then add
the object.

comment This comment is added to the OBJECT_COMMENT field of the DBA_
REPOBJECT view.

retry Indicate true if you want Oracle to reattempt to create an object
that it was previously unable to create. Use this if the error was
transient or has since been rectified, or if you previously had
insufficient resources. If this is true , then Oracle creates the object
only at master sites whose object status is not VALID .

copy_rows Indicate true if you want the initial contents of a newly replicated
object to match the contents of the object at the master definition
site. See Table 53–54 for more information.

gname Name of the replication group in which you want to create the
replicated object. The schema name is used as the default
replication group name if none is specified, and a replication
group with the same name as the schema must exist for the
procedure to complete successfully in that case.

Table 53–52 CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters Description
DBMS_REPCAT 53-53

CREATE_MASTER_REPOBJECT Procedure
Object Creations

Table 53–53 CREATE_MASTER_REPOBJECT Procedure Exceptions

Exceptions Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiesced.

duplicateobject Specified object already exists in the master group and retry is
false , or if a name conflict occurs.

missingobject Object identified by sname and oname does not exist and
appropriate DDL has not been provided.

typefailure Objects of the specified type cannot be replicated.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

notcompat Not all remote masters in at least 7.3 compatibility mode.

Table 53–54 Object Creation at Master Sites

Object

Already

Exists? COPY_ROWS
USE_EXISTING_
OBJECTS Result

yes true true duplicatedobject message if objects do
not match. For tables, use data from master
definition site.

yes false true duplicatedobject message if objects do
not match. For tables, DBA must ensure
contents are identical.

yes true/false false duplicatedobject message.

no true true/false Object is created. Tables populated using
data from master definition site.

no false true/false Object is created. DBA must populate
tables and ensure consistency of tables at
all sites.
53-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
CREATE_MVIEW_REPGROUP Procedure

This procedure creates a new, empty materialized view group in your local
database. CREATE_MVIEW_REPGROUP automatically calls REGISTER_MIEW_
REPGROUP, but ignores any errors that may have happened during registration.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (

gname IN VARCHAR2,
master IN VARCHAR2,
comment IN VARCHAR2 := ’’,
propagation_mode IN VARCHAR2 := ’ASYNCHRONOUS’,
fname IN VARCHAR2 := NULL

 gowner IN VARCHAR2 := ’PUBLIC’);

Parameters

Table 53–55 CREATE_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group. This group must exist at the
specified master site or master materialized view site.

master Fully qualified database name of the database in the replication
environment to use as the master site or master materialized view
site. You can include a connection qualifier if necessary. See
Oracle9i Replication and Oracle9i Database Administrator’s Guide for
information about using connection qualifiers.

comment This comment is added to the DBA_REPGROUP view.

propagation_mode Method of propagation for all updatable materialized views in the
replication group. Acceptable values are synchronous and
asynchronous .

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.
DBMS_REPCAT 53-55

CREATE_MVIEW_REPOBJECT Procedure
Exceptions

CREATE_MVIEW_REPOBJECT Procedure

This procedure adds a replicated object to a materialized view group.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
ddl_text IN VARCHAR2 := ’’,
comment IN VARCHAR2 := ’’,
gname IN VARCHAR2 := ’’,
gen_objs_owner IN VARCHAR2 := ’’,
min_communication IN BOOLEAN := true,
generate_80_compatible IN BOOLEAN := true,

 gowner IN VARCHAR2 := ’PUBLIC’);

Table 53–56 CREATE_MVIEW_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Replication group already exists at the invocation site.

nonmaster Specified database is not a master site or master materialized view
site.

commfailure Specified database is not accessible.

norepopt Advanced replication option is not installed.

typefailure Propagation mode was specified incorrectly.

missingrepgroup Replication group does not exist at master site.

invalidqualifier Connection qualifier specified for the master site or master
materialized view site is not valid for the replication group.

alreadymastered At the local site, there is another materialized view group with the
same group name, but different master site or master materialized
view site.
53-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 53–57 CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located. The schema
must be same as the schema that owns the master table or
master materialized view on which this materialized view is
based.

oname Name of the object that you want to add to the replicated
materialized view group.

type Type of the object that you are replicating. The following types
are supported:

FUNCTION SNAPSHOT

INDEX SYNONYM

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE

ddl_text For objects of type SNAPSHOT, the DDL needed to create the
object. For other types, use the default:

’’ (an empty string)

If a materialized view with the same name already exists, then
Oracle ignores the DDL and registers the existing materialized
view as a replicated object. If the master table or master
materialized view for a materialized view does not exist in the
replication group of the master designated for this schema,
then Oracle raises a missingobject error.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be
sure to specify the schema if it is other than the replication
administrator’s schema.

If the object is not of type SNAPSHOT, then the materialized
view site connects to the master site or master materialized
view site and pulls down the DDL text to create the object. If
the object type is TYPE or TYPE BODY, then the object identifier
(OID) for the object at the materialized view site is the same as
the OID at the master site or master materialized view site.
DBMS_REPCAT 53-57

CREATE_MVIEW_REPOBJECT Procedure
comment This comment is added to the OBJECT_COMMENT field of the
DBA_REPOBJECT view.

gname Name of the replicated materialized view group to which you
are adding an object. The schema name is used as the default
group name if none is specified, and a materialized view group
with the same name as the schema must exist for the procedure
to complete successfully.

gen_objs_owner Name of the user you want to assign as owner of the
transaction.

min_communication Set to false if the materialized view’s master site is running
Oracle7 release 7.3. Set to true to minimize new and old
values of propagation. The default is true . For more
information about conflict resolution methods, see Oracle9i
Replication.

generate_80_
compatible

Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
greater.

gowner Owner of the materialized view group.

Table 53–57 CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter Description
53-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

DEFINE_COLUMN_GROUP Procedure

This procedure creates an empty column group. You must call this procedure from
the master definition site.

Syntax
DBMS_REPCAT.DEFINE_COLUMN_GROUP (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
comment IN VARCHAR2 := NULL);

Table 53–58 CREATE_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

missingobject Specified object does not exist in the master’s replication group.

duplicateobject Specified object already exists with a different shape.

typefailure Type is not an allowable type.

ddlfailure DDL did not succeed.

commfailure Master site or master materialized view site is not accessible.

missingschema Schema does not exist as a database schema.

badmviewddl DDL was executed but materialized view does not exist.

onlyonemview Only one materialized view for master table or master
materialized view can be created.

badmviewname Materialized view base table differs from master table or master
materialized view.

missingrepgroup Replication group at the master does not exist.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-59

DEFINE_PRIORITY_GROUP Procedure
Parameters

Exceptions

DEFINE_PRIORITY_GROUP Procedure

This procedure creates a new priority group for a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_PRIORITY_GROUP (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
datatype IN VARCHAR2,
fixed_length IN INTEGER := NULL,
comment IN VARCHAR2 := NULL);

Table 53–59 DEFINE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a column
group.

column_group Name of the column group that you want to create.

comment This user text is displayed in the DBA_REPCOLUMN_GROUP view.

Table 53–60 DEFINE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

duplicategroup Specified column group already exists for the table.

notquiesced Replication group to which the specified table belongs is not
quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DEFINE_SITE_PRIORITY Procedure

This procedure creates a new site priority group for a master group. You must call
this procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_SITE_PRIORITY (

gname IN VARCHAR2,

Table 53–61 DEFINE_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group that you are creating.

datatype Datatype of the priority group members. The datatypes supported
are: CHAR, VARCHAR2, NUMBER, DATE, RAW, NCHAR, and
NVARCHAR2.

fixed_length You must provide a column length for the CHAR datatype. All
other types can use the default, NULL.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 53–62 DEFINE_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicatepriority group Specified priority group already exists in the master
group.

typefailure Specified datatype is not supported.

notquiesced Master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-61

DO_DEFERRED_REPCAT_ADMIN Procedure
name IN VARCHAR2,
comment IN VARCHAR2 := NULL);

Parameters

Exceptions

DO_DEFERRED_REPCAT_ADMIN Procedure

This procedure executes the local outstanding deferred administrative procedures
for the specified master group at the current master site, or (with assistance from job
queues) for all master sites.

DO_DEFERRED_REPCAT_ADMIN executes only those administrative requests
submitted by the connected user who called DO_DEFERRED_REPCAT_ADMIN.
Requests submitted by other users are ignored.

Syntax
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (

gname IN VARCHAR2,
all_sites IN BOOLEAN := false);

Table 53–63 DEFINE_SITE_PRIORITY Procedure Parameters

Parameter Description

gname The master group for which you are creating a site priority group.

name Name of the site priority group that you are creating.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 53–64 DEFINE_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicate prioritygroup Specified site priority group already exists in the master
group.

notquiesced Master group is not quiesced.
53-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_COLUMN_GROUP Procedure

This procedure drops a column group. You must call this procedure from the master
definition site.

Syntax
DBMS_REPCAT.DROP_COLUMN_GROUP (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2);

Table 53–65 DO_DEFERRED_REPCAT_ADMIN Procedure Parameters

Parameter Description

gname Name of the master group.

all_sites If this is true , then use a job to execute the local administrative
procedures at each master site.

Table 53–66 DO_DEFERRED_REPCAT_ADMIN Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible and all_sites is true .

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-63

DROP_GROUPED_COLUMN Procedure
Parameters

Exceptions

DROP_GROUPED_COLUMN Procedure

This procedure removes members from a column group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_GROUPED_COLUMN (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Table 53–67 DROP_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table whose column group you are
dropping.

column_group Name of the column group that you want to drop.

Table 53–68 DROP_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

referenced Specified column group is being used in conflict detection and
resolution.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

notquiesced Master group to which the table belongs is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-64 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

DROP_MASTER_REPGROUP Procedure

This procedure drops a master group from your current site. To drop the master
group from all master sites, including the master definition site, you can call this
procedure at the master definition site, and set all_sites to true .

Table 53–69 DROP_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table in which the column group is located.
The table can be the storage table of a nested table.

column_group Name of the column group from which you are removing
members.

list_of_column_
names

Names of the columns that you are removing from the designated
column group. This can either be a comma-delimited list or a
PL/SQL index-by table of column names. The PL/SQL index-by
table must be of type DBMS_REPCAT.VARCHAR2.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.

Table 53–70 DROP_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

notquiesced Master group that the table belongs to is not quiesced.
DBMS_REPCAT 53-65

DROP_MASTER_REPGROUP Procedure
Syntax
DBMS_REPCAT.DROP_MASTER_REPGROUP (

gname IN VARCHAR2,
drop_contents IN BOOLEAN := false,
all_sites IN BOOLEAN := false);

Parameters

Exceptions

Table 53–71 DROP_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to drop from the current
master site.

drop_contents By default, when you drop the replication group at a master site,
all of the objects remain in the database. They simply are no longer
replicated. That is, the replicated objects in the replication group
no longer send changes to, or receive changes from, other master
sites. If you set this to true , then any replicated objects in the
master group are dropped from their associated schemas.

all_sites If this is true and if the invocation site is the master definition
site, then the procedure synchronously multicasts the request to all
masters. In this case, execution is immediate at the master
definition site and may be deferred at all other master sites.

Table 53–72 DROP_MASTER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

nonmasterdef Invocation site is not the master definition site and all_sites is
true .

commfailure At least one master site is not accessible and all_sites is true .

fullqueue Deferred remote procedure call (RPC) queue has entries for the
master group.

masternotremoved Master does not recognize the master definition site and all_
sites is true .
53-66 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
DROP_MASTER_REPOBJECT Procedure

This procedure drops a replicated object from a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_MASTER_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
drop_objects IN BOOLEAN := false);

Parameters

Table 53–73 DROP_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to remove from the master
group. The object cannot be a storage table for a nested table.

type Type of object that you want to drop. The following types are
supported:

FUNCTION SYNONYM

INDEX TABLE

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE

drop_objects By default, the object remains in the schema, but is dropped from
the master group. That is, any changes to the object are no longer
replicated to other master and materialized view sites. To
completely remove the object from the replication environment,
set this parameter to true . If the parameter is set to true , the
object is dropped from the database at each master site.
DBMS_REPCAT 53-67

DROP_MVIEW_REPGROUP Procedure
Exceptions

DROP_MVIEW_REPGROUP Procedure

This procedure drops a materialized view site from your replication environment.
DROP_MVIEW_REPGROUP automatically calls UNREGISTER_MVIEW_REPGROUP at
the master site or master materialized view site to unregister the materialized view,
but ignores any errors that may have occurred during unregistration. If DROP_
MVIEW_REPGROUP is unsuccessful, then connect to the master site or master
materialized view site and run UNREGISTER_MVIEW_REPGROUP.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPGROUP (

gname IN VARCHAR2,
drop_contents IN BOOLEAN := false
gowner IN VARCHAR2 := ’PUBLIC’);

Parameters

Table 53–74 DROP_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.

Table 53–75 DROP_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to drop from the
current materialized view site. All objects generated to support
replication, such as triggers and packages, are dropped.

drop_contents By default, when you drop the replication group at a materialized
view site, all of the objects remain in their associated schemas.
They simply are no longer replicated. If you set this to true , then
any replicated objects in the replication group are dropped from
their schemas.
53-68 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

DROP_MVIEW_REPOBJECT Procedure

This procedure drops a replicated object from a materialized view site.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPOBJECT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
drop_objects IN BOOLEAN := false);

gowner Owner of the materialized view group.

Table 53–76 DROP_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingrepgroup Specified replication group does not exist.

Table 53–75 DROP_MVIEW_REPGROUP Procedure Parameters

Parameter Description
DBMS_REPCAT 53-69

DROP_PRIORITY Procedure
Parameters

Exceptions

DROP_PRIORITY Procedure

This procedure drops a member of a priority group by priority level. You must call
this procedure from the master definition site.

Table 53–77 DROP_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to drop from the replication
group.

type Type of the object that you want to drop. The following types are
supported:

FUNCTION SNAPSHOT

INDEX SYNONYM

INDEXTYPE TRIGGER

OPERATOR TYPE

PACKAGE TYPE BODY

PACKAGE BODY VIEW

PROCEDURE

drop_objects By default, the object remains in its associated schema, but is
dropped from its associated replication group. To completely
remove the object from its schema at the current materialized view
site, set this parameter to true . If the parameter is set to true , the
object is dropped from the database at the materialized view site.

Table 53–78 DROP_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.
53-70 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.DROP_PRIORITY(

gname IN VARCHAR2,
pgroup IN VARCHAR2,
priority_num IN NUMBER);

Parameters

Exceptions

DROP_PRIORITY_GROUP Procedure

This procedure drops a priority group for a specified master group. You must call
this procedure from the master definition site.

See Also: Oracle9i Replication for more information about conflict
resolution methods

Table 53–79 DROP_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

priority_num Priority level of the priority group member that you want to
remove from the group.

Table 53–80 DROP_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

notquiesced Master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
DBMS_REPCAT 53-71

DROP_PRIORITY_datatype Procedure
Syntax
DBMS_REPCAT.DROP_PRIORITY_GROUP (

gname IN VARCHAR2,
pgroup IN VARCHAR2);

Parameters

Exceptions

DROP_PRIORITY_datatype Procedure

This procedure drops a member of a priority group by value. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the datatype of your priority column.

Syntax
DBMS_REPCAT.DROP_PRIORITY_datatype (

gname IN VARCHAR2,
pgroup IN VARCHAR2,
value IN datatype);

Table 53–81 DROP_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group that you want to drop.

Table 53–82 DROP_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced.

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-72 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Exceptions

DROP_SITE_PRIORITY Procedure

This procedure drops a site priority group for a specified master group. You must
call this procedure from the master definition site.

Table 53–83 DROP_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

value Value of the priority group member that you want to remove from
the group.

Table 53–84 DROP_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

paramtype, typefailure Value has the incorrect datatype for the priority group.

notquiesced Specified master group is not quiesced
DBMS_REPCAT 53-73

DROP_SITE_PRIORITY_SITE Procedure
Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY (

gname IN VARCHAR2,
name IN VARCHAR2);

Parameters

Exceptions

DROP_SITE_PRIORITY_SITE Procedure

This procedure drops a specified site, by name, from a site priority group. You must
call this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY_SITE (

gname IN VARCHAR2,

See Also: Oracle9i Replication for more information about conflict
resolution methods

Table 53–85 DROP_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group that you want to drop.

Table 53–86 DROP_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified site priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-74 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
name IN VARCHAR2,
site IN VARCHAR2);

Parameters

Exceptions

DROP_conflicttype _RESOLUTION Procedure

This procedure drops an update, delete, or uniqueness conflict resolution routine.
You must call these procedures from the master definition site. The procedure that
you must call is determined by the type of conflict that the routine resolves.

Conflict Resolution Routines
The following table shows the procedure name for each conflict resolution routine.

Table 53–87 DROP_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are dropping.

site Global database name of the site you are removing from the
group.

Table 53–88 DROP_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

notquiesced Specified master group is not quiesced.
DBMS_REPCAT 53-75

DROP_conflicttype_RESOLUTION Procedure
Syntax
DBMS_REPCAT.DROP_UPDATE_RESOLUTION (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
sequence_no IN NUMBER);

DBMS_REPCAT.DROP_DELETE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,
sequence_no IN NUMBER);

DBMS_REPCAT.DROP_UNIQUE_RESOLUTION (
sname IN VARCHAR2,
oname IN VARCHAR2,
constraint_name IN VARCHAR2,
sequence_no IN NUMBER);

Parameters

Table 53–89 Conflict Resolution Routines

Routine Procedure Name

update DROP_UPDATE_RESOLUTION

uniqueness DROP_UNIQUE_RESOLUTION

delete DROP_DELETE_RESOLUTION

Table 53–90 DROP_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table for which you want to drop a conflict resolution
routine.

column_group Name of the column group for which you want to drop an update
conflict resolution routine.

constraint_name Name of the unique constraint for which you want to drop a
unique conflict resolution routine.

sequence_no Sequence number assigned to the conflict resolution method that
you want to drop. This number uniquely identifies the routine.
53-76 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

EXECUTE_DDL Procedure

This procedure supplies DDL that you want to have executed at some or all master
sites. You can call this procedure only from the master definition site.

Syntax
DBMS_REPCAT.EXECUTE_DDL (

gname IN VARCHAR2,
{ master_list IN VARCHAR2 := NULL,
| master_table IN DBMS_UTILITY.DBLINK_ARRAY,}

DDL_TEXT IN VARCHAR2);

Table 53–91 DROP_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema, or
a conflict resolution routine with the specified sequence number is
not registered.

notquiesced Master group is not quiesced.

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.
DBMS_REPCAT 53-77

GENERATE_MVIEW_SUPPORT Procedure
Parameters

Exceptions

GENERATE_MVIEW_SUPPORT Procedure

This procedure activates triggers and generate packages needed to support the
replication of updatable materialized views or procedural replication.You must call
this procedure from the materialized view site.

Table 53–92 EXECUTE_DDL Procedure Parameters

Parameter Description

gname Name of the master group.

master_list A comma-delimited list of master sites at which you want to
execute the supplied DDL. Do not put any spaces between site
names. The default value, NULL, indicates that the DDL should be
executed at all sites, including the master definition site.

master_table A table that lists the master sites where you want to execute the
supplied DDL. The first master should be at position 1, the second
at position 2, and so on.

ddl_text The DDL that you want to execute at each of the specified master
sites. If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator’s schema. Be sure
to specify the schema if it is other than the replication
administrator’s schema.

Table 53–93 EXECUTE_DDL Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one site is not a master site.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

Note: CREATE_MVIEW_REPOBJECT automatically generates
materialized view support for updatable materialized views.
53-78 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.GENERATE_MVIEW_SUPPORT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
gen_objs_owner IN VARCHAR2 := ’’,
min_communication IN BOOLEAN := true,
generate_80_compatible IN BOOLEAN := true);

Parameters

Exceptions

Table 53–94 GENERATE_MVIEW_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname The name of the object for which you are generating support.

type Type of the object. The types supported are SNAPSHOT,
PACKAGE, and PACKAGE BODY.

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in SNAME.

min_communication If true , then the update trigger sends the new value of a
column only if the update statement modifies the column. The
update trigger sends the old value of the column only if it is a
key column or a column in a modified column group.

generate_80_
compatible

Set to true if the materialized view’s master site is running a
version of Oracle server prior to Oracle8i release 8.1.5. Set to
false if the materialized view’s master site or master
materialized view site is running Oracle8i release 8.1.5 or
higher.

Table 53–95 GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions

nonmview Invocation site is not a materialized view site.
DBMS_REPCAT 53-79

GENERATE_REPLICATION_SUPPORT Procedure
GENERATE_REPLICATION_SUPPORT Procedure

This procedure generates the triggers and packages needed to support replication
for a specified object. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (

sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
package_prefix IN VARCHAR2 := NULL,
procedure_prefix IN VARCHAR2 := NULL,
distributed IN BOOLEAN := true,
gen_objs_owner IN VARCHAR2 := NULL,
min_communication IN BOOLEAN := true,
generate_80_compatible IN BOOLEAN := true);

missingobject Specified object does not exist as a materialized view in the
replicated schema waiting for row/column-level replication
information or as a package (body) waiting for wrapper
generation.

typefailure Specified type parameter is not supported.

missingschema Specified owner of generated objects does not exist.

missingremoteobject Object at master site or master materialized view site has not
yet generated replication support.

commfailure Master site or master materialized view site is not accessible.

Table 53–95 GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions
53-80 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Table 53–96 GENERATE_REPLICATION_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname Name of the object for which you are generating replication
support.

type Type of the object. The types supported are: TABLE, PACKAGE,
and PACKAGE BODY.

package_prefix For objects of type PACKAGE or PACKAGE BODY this value is
prepended to the generated wrapper package name. The
default is DEFER_.

procedure_prefix For objects of type PACKAGE or PACKAGE BODY, this value is
prepended to the generated wrapper procedure names. By
default, no prefix is assigned.

distributed This must be set to true .

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in sname.

min_communication Set to false if any master site is running Oracle7 release 7.3.
Set to true when you want propagation of new and old values
to be minimized. The default is true . For more information,
see Oracle9i Replication.

generate_80_
compatible

Set to true if any master site is running a version of Oracle
server prior to Oracle8i release 8.1.5. Set to false if all master
sites are running Oracle8i release 8.1.5 or higher.
DBMS_REPCAT 53-81

MAKE_COLUMN_GROUP Procedure
Exceptions

MAKE_COLUMN_GROUP Procedure

This procedure creates a new column group with one or more members. You must
call this procedure from the master definition site.

Syntax
DBMS_REPCAT.MAKE_COLUMN_GROUP (

sname IN VARCHAR2,
oname IN VARCHAR2,
column_group IN VARCHAR2,
list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Table 53–97 GENERATE_REPLICATION_SUPPORT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information or as a package
(body) waiting for wrapper generation.

typefailure Specified type parameter is not supported.

notquiesced Replication group has not been quiesced.

commfailure At least one master site is not accessible.

missingschema Schema does not exist.

dbnotcompatible One of the master sites is not 7.3.0.0 compatible.

notcompat One of the master sites is not 7.3.0.0 compatible. (Equivalent to
dbnotcompatible .)

duplicateobject Object already exists.

See Also: Oracle9i Replication for more information about conflict
resolution methods
53-82 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

Table 53–98 MAKE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a new
column group. The table can be the storage table of a nested table.

column_group Name that you want assigned to the column group that you are
creating.

list_of_column_
names

Names of the columns that you are grouping. This can either be a
comma-delimited list or a PL/SQL index-by table of column
names. The PL/SQL index-by table must be of type DBMS_
REPCAT.VARCHAR2. Use the single value ' *' to create a column
group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object table, then you can specify SYS_NC_OID$
to add the object identifier column to the column group. This
column tracks the object identifier of each row object.

If the table is the storage table of a nested table, then you can
specify NESTED_TABLE_ID to add the column that tracks the
identifier for each row of the nested table.

Table 53–99 MAKE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the masterdef site.

duplicategroup Specified column group already exists for the table.

missingobject Specified table does not exist.

missingcolumn Specified column does not exist in the designated table.

duplicatecolumn Specified column is already a member of another column group.

notquiesced Master group is not quiesced.
DBMS_REPCAT 53-83

PREPARE_INSTANTIATED_MASTER Procedure
PREPARE_INSTANTIATED_MASTER Procedure

This procedure enables the propagation of deferred transactions from other
prepared new master sites and existing master sites to the invocation master site.
This procedure also enables the propagation of deferred transactions from the
invocation master site to the other prepared new master sites and existing master
sites.

If you performed a full database export/import or a change-based recovery, then
the new master site includes all of the deferred transactions that were in the
deferred transactions queue at the master definition site. Because these deferred
transactions should not exist at the new master site, this procedure deletes all
transactions in the deferred transactions queue and error queue if full database
export/import or change-based recovery was used.

For object-level export/import, ensure that all the requests in the DBA_REPCATLOG
data dictionary view for the extended groups have been processed without error
before running this procedure.

Caution:

� Do not invoke this procedure until instantiation (export/import
or change-based recovery) for the new master site is complete.

� Do not allow any data manipulation language (DML)
statements directly on the objects in the extended master group
in the new master site until execution of this procedure returns
successfully. These DML statements may not be replicated.

� Do not use the DBMS_DEFER package to create deferred
transactions until execution of this procedure returns
successfully. These deferred transactions may not be replicated.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.
53-84 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (

extension_id IN RAW);

Parameters

Exceptions

PURGE_MASTER_LOG Procedure

This procedure removes local messages in the DBA_REPCATLOG view associated
with a specified identification number, source, or master group.

To purge all of the administrative requests from a particular source, specify NULL
for the id parameter. To purge all administrative requests from all sources, specify
NULL for both the id parameter and the source parameter.

Syntax
DBMS_REPCAT.PURGE_MASTER_LOG (

id IN BINARY_INTEGER,
source IN VARCHAR2,
gname IN VARCHAR2);

Table 53–100 PREPARE_INSTANTIATED_MASTER Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

Table 53–101 PREPARE_INSTANTIATED_MASTER Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.
DBMS_REPCAT 53-85

PURGE_STATISTICS Procedure
Parameters

Exceptions

PURGE_STATISTICS Procedure

This procedure removes information from the DBA_REPRESOLUTION_
STATISTICS view.

Syntax
DBMS_REPCAT.PURGE_STATISTICS (

sname IN VARCHAR2,
oname IN VARCHAR2,
start_date IN DATE,
end_date IN DATE);

Table 53–102 PURGE_MASTER_LOG Procedure Parameters

Parameter Description

id Identification number of the request, as it appears in the DBA_
REPCATLOG view.

source Master site from which the request originated.

gname Name of the master group for which the request was made.

Table 53–103 PURGE_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster gname is not NULL, and the invocation site is not a master site.
53-86 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Exceptions

REFRESH_MVIEW_REPGROUP Procedure

This procedure refreshes a materialized view group with the most recent data from
its associated master site or master materialized view site.

Syntax
DBMS_REPCAT.REFRESH_MVIEW_REPGROUP (

gname IN VARCHAR2,
drop_missing_contents IN BOOLEAN := false,
refresh_mviews IN BOOLEAN := false,
refresh_other_objects IN BOOLEAN := false,
gowner IN VARCHAR2 := ’PUBLIC’);

Table 53–104 PURGE_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the replicated table is located.

oname Name of the table whose conflict resolution statistics you want to
purge.

start_date/end_
date

Range of dates for which you want to purge statistics. If start_
date is NULL, then purge all statistics up to the end_date . If
end_date is NULL, then purge all statistics after the start_
date .

Table 53–105 PURGE_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Table not registered to collect statistics.
DBMS_REPCAT 53-87

REFRESH_MVIEW_REPGROUP Procedure
Parameters

Exceptions

Table 53–106 REFRESH_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group.

drop_missing_
contents

If an object was dropped from the replication group at the
master site or master materialized view site, then it is not
automatically dropped from the schema at the materialized view
site. It is simply no longer replicated. That is, changes to this
object are no longer sent to its associated master site or master
materialized view site. Materialized views can continue to be
refreshed from their associated master tables or master
materialized views. However, any changes to an updatable
materialized view are lost. When an object is dropped from the
replication group, you can choose to have it dropped from the
schema entirely by setting this parameter to true .

refresh_mviews Set to true to refresh the contents of the materialized views in
the replication group.

refresh_other_
objects

Set this to true to refresh the contents of the nonmaterialized
view objects in the replication group. Nonmaterialized view
objects may include the following:

� Tables

� Views

� Indexes

� PL/SQL packages and package bodies

� PL/SQL procedures and functions

� Triggers

� Synonyms

gowner Owner of the materialized view group.

Table 53–107 REFRESH_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

commfailure Master site or master materialized view site is not accessible.
53-88 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
REGISTER_MVIEW_REPGROUP Procedure

This procedure facilitates the administration of materialized views at their
respective master sites or master materialized view sites by inserting or modifying a
materialized view group in DBA_REGISTERED_MVIEW_GROUPS.

Syntax
DBMS_REPCAT.REGISTER_MVIEW_REPGROUP (

gname IN VARCHAR2,
mviewsite IN VARCHAR2,
comment IN VARCHAR2 := NULL,
rep_type IN NUMBER := reg_unknown,
fname IN VARCHAR2 := NULL
gowner IN VARCHAR2 := ’PUBLIC’);

missingrepgroup Replication group name not specified.

Table 53–107 REFRESH_MVIEW_REPGROUP Procedure Exceptions

Exception Description
DBMS_REPCAT 53-89

REGISTER_STATISTICS Procedure
Parameters

Exceptions

REGISTER_STATISTICS Procedure

This procedure collects information about the successful resolution of update,
delete, and uniqueness conflicts for a table.

Table 53–108 REGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be registered.

mviewsite Global name of the materialized view site.

comment Comment for the materialized view site or update for an existing
comment.

rep_type Version of the materialized view group. Valid constants that can be
assigned include the following:

� dbms_repcat.reg_unknown (the default)

� dbms_repcat.reg_v7_group

� dbms_repcat.reg_v8_group

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

Table 53–109 REGISTER_MVIEW_REPGROUP Procedure Exceptions

Exception Description

failregmviewrepgroup Registration of materialized view group failed.

missingrepgroup Replication group name not specified.

nullsitename A materialized view site was not specified.

nonmaster Procedure must be executed at the materialized view’s master
site or master materialized view site.

duplicaterepgroup Replication group already exists.
53-90 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Syntax
DBMS_REPCAT.REGISTER_STATISTICS (

sname IN VARCHAR2,
oname IN VARCHAR2);

Parameters

Exceptions

RELOCATE_MASTERDEF Procedure

This procedure changes your master definition site to another master site in your
replication environment.

It is not necessary for either the old or new master definition site to be available
when you call RELOCATE_MASTERDEF. In a planned reconfiguration, you should
invoke RELOCATE_MASTERDEF with notify_masters set to true and
include_old_masterdef set to true .

Syntax
DBMS_REPCAT.RELOCATE_MASTERDEF (

gname IN VARCHAR2,
old_masterdef IN VARCHAR2,
new_masterdef IN VARCHAR2,
notify_masters IN BOOLEAN := true,
include_old_masterdef IN BOOLEAN := true,

Table 53–110 REGISTER_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you want to gather conflict resolution
statistics.

Table 53–111 REGISTER_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.
DBMS_REPCAT 53-91

RELOCATE_MASTERDEF Procedure
require_flavor_change IN BOOLEAN := false);

Parameters

Exceptions

Table 53–112 RELOCATE_MASTERDEF Procedure Parameters

Parameter Description

gname Name of the replication group whose master definition you
want to relocate.

old_masterdef Fully qualified database name of the current master definition
site.

new_masterdef Fully qualified database name of the existing master site that
you want to make the new master definition site.

notify_masters If this is true , then the procedure synchronously multicasts
the change to all masters (including old_masterdef only if
include_old_masterdef is true). If any master does not
make the change, then roll back the changes at all masters.

If just the master definition site fails, then you should invoke
RELOCATE_MASTERDEF with notify_masters set to true
and include_old_masterdef set to false . If several
master sites and the master definition site fail, then the
administrator should invoke RELOCATE_MASTERDEF at each
operational master with notify_masters set to false .

include_old_
masterdef

If notify_masters is true and if include_old_
masterdef is also true , then the old master definition site is
also notified of the change.

require_flavor_
change

This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Table 53–113 RELOCATE_MASTERDEF Procedure Exceptions

Exception Description

nonmaster new_masterdef is not a master site or the invocation site is not a
master site.

nonmasterdef old_masterdef is not the master definition site.

commfailure At least one master site is not accessible and notify_masters is
true .
53-92 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
REMOVE_MASTER_DATABASES Procedure

This procedure removes one or more master databases from a replication
environment. This procedure regenerates the triggers and their associated packages
at the remaining master sites. You must call this procedure from the master
definition site.

Syntax
DBMS_REPCAT.REMOVE_MASTER_DATABASES (

gname IN VARCHAR2,
master_list IN VARCHAR2 |
master_table IN DBMS_UTILITY.DBLINK_ARRAY);

Parameters

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

Table 53–114 REMOVE_MASTER_DATABASES Procedure Parameters

Parameter Description

gname Name of the replication group associated with the replication
environment. This prevents confusion if a master database is
involved in more than one replication environment.

master_list A comma-delimited list of fully qualified master database names
that you want to remove from the replication environment. There
must be no spaces between names in the list.

master_table In place of a list, you can specify the database names in a PL/SQL
index-by table of type DBMS_UTILITY.DBLINK_ARRAY.
DBMS_REPCAT 53-93

RENAME_SHADOW_COLUMN_GROUP Procedure
Exceptions

RENAME_SHADOW_COLUMN_GROUP Procedure

This procedure renames the shadow column group of a replicated table to make it a
named column group. The replicated table’s master group does not need to be
quiesced to run this procedure.

Syntax
DBMS_REPCAT.RENAME_SHADOW_COLUMN_GROUP (

sname IN VARCHAR2,
oname IN VARCHAR2,
new_col_group_name IN VARCHAR2)

Parameters

Table 53–115 REMOVE_MASTER_DATABASES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one of the specified databases is not a master site.

reconfigerror One of the specified databases is the master definition site.

commfailure At least one remaining master site is not accessible.

Table 53–116 RENAME_SHADOW_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table.

new_col_group_
name

Name of the new column group. The columns currently in the
shadow group are placed in a column group with the name you
specify.
53-94 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

REPCAT_IMPORT_CHECK Procedure

This procedure ensures that the objects in the master group have the appropriate
object identifiers and status values after you perform an export/import of a
replicated object or an object used by Oracle Replication.

Syntax
DBMS_REPCAT.REPCAT_IMPORT_CHECK (

gname IN VARCHAR2,
master IN BOOLEAN,
gowner IN VARCHAR2 := ’PUBLIC’);

Parameters

Table 53–117 RENAME_SHADOW_COLUMN_GROUP Procedure Exceptions

Exception Description

missmview The specified schema does not exist.

nonmasterdef Invocation site is not the master definition site.

missingobject The specified object does not exist.

duplicategroup The column group that was specified for creation already exists.

Table 53–118 REPCAT_IMPORT_CHECK Procedure Parameters

Parameter Description

gname Name of the master group. If you omit both parameters, then the
procedure checks all master groups at your current site.

master Set this to true if you are checking a master site and false if you
are checking a materialized view site.

gowner Owner of the master group.
DBMS_REPCAT 53-95

RESUME_MASTER_ACTIVITY Procedure
Exceptions

RESUME_MASTER_ACTIVITY Procedure

This procedure resumes normal replication activity after quiescing a replication
environment.

Syntax
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (

gname IN VARCHAR2,
override IN BOOLEAN := false);

Parameters

Table 53–119 REPCAT_IMPORT_CHECK Procedure Exceptions

Exception Description

nonmaster master is true and either the database is not a master site for the
replication group or the database is not the expected database.

nonmview master is false and the database is not a materialized view site
for the replication group.

missingobject A valid replicated object in the replication group does not exist.

missingrepgroup The specified replicated replication group does not exist.

missingschema The specified replicated replication group does not exist.

Table 53–120 RESUME_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group.

override If this is true , then it ignores any pending RepCat administrative
requests and restores normal replication activity at each master as
quickly as possible. This should be considered only in emergency
situations.

If this is false , then it restores normal replication activity at each
master only when there is no pending RepCat administrative
request for gname at that master.
53-96 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

RESUME_PROPAGATION_TO_MDEF Procedure

During the process of adding new master sites to a master group without quiesce,
this procedure indicates that export is effectively finished and propagation to the
master definition site for both extended and unaffected replication groups existing
at master sites can be enabled. Run this procedure after the export required to add
new master sites to a master group is complete.

Syntax
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (

extension_id IN RAW);

Parameters

Table 53–121 RESUME_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiescing or quiesced.

commfailure At least one master site is not accessible.

notallgenerated Generate replication support before resuming replication activity.

Table 53–122 RESUME_PROPAGATION_TO_MDEF Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.
DBMS_REPCAT 53-97

SEND_OLD_VALUES Procedure
Exceptions

SEND_OLD_VALUES Procedure

You have the option of sending old column values during propagation of deferred
transactions for each nonkey column of a replicated table when rows are updated or
deleted in the table. When min_communication is set to true , the default is the
following:

� For a deleted row, to send old values for all columns

� For an updated row, to send old values for key columns and the modified
columns in a column group

You can change this behavior at all master sites and materialized view sites by
invoking DBMS_REPCAT.SEND_OLD_VALUES at the master definition site. Then,
generate replication support at all master sites and at each materialized view site.

When you use user-defined types, you can specify the leaf attributes of a column
object, or an entire column object. For example, if a column object named cust_
address has street_address as an attribute, then you can specify cust_
address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address .

Syntax
DBMS_REPCAT.SEND_OLD_VALUES(

sname IN VARCHAR2,
oname IN VARCHAR2,
{ column_list IN VARCHAR2,
| column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
operation IN VARCHAR2 := ‘UPDATE’,
send IN BOOLEAN := true);

Table 53–123 RESUME_PROPAGATION_TO_MDEF Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

extstinapp Extension status is inappropriate. The extension status should be
EXPORTING when you run this procedure. To check the extension
status, query the DBA_REPEXTENSIONS data dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.
53-98 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Parameters

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

Table 53–124 SEND_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of
a nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

operation Possible values are: update , delete , or the asterisk wildcard ' *' ,
which means update and delete.

send If true , then the old values of the specified columns are sent. If
false , then the old values of the specified columns are not sent.
Unspecified columns and unspecified operations are not affected.

The specified change takes effect at the master definition site as
soon as min_communication is true for the table. The change
takes effect at a master site or at a materialized view site the next
time replication support is generated at that site with min_
communication true .
DBMS_REPCAT 53-99

SET_COLUMNS Procedure
Exceptions

SET_COLUMNS Procedure

This procedure enables you to use an alternate column or group of columns, instead
of the primary key, to determine which columns of a table to compare when using
row-level replication. You must call this procedure from the master definition site.

When you use column objects, if an attribute of a column object can be used as a
primary key or part of a primary key, then the attribute can be part of an alternate
key column. For example, if a column object named cust_address has street_
address as a VARCHAR2 attribute, then you can specify cust_address.street_

Note: The operation parameter enables you to specify whether
or not to transmit old values for nonkey columns when rows are
deleted or updated. If you do not send the old value, then Oracle
sends a NULL in place of the old value and assumes the old value is
equal to the current value of the column at the target side when the
update or delete is applied.

See Oracle9i Replication for information about reduced data
propagation using the SEND_OLD_VALUES procedure before
changing the default behavior of Oracle.

Table 53–125 SEND_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to send the attributes of
column objects. In this case, all databases must be at 9.0.1 or
higher compatibility level.
53-100 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
address for the column_list parameter or as part of the column_table
parameter. However, the entire column object, cust_address , cannot be specified.

For the storage table of a nested table column, this procedure accepts the NESTED_
TABLE_ID as an alternate key column.

When you use object tables, you cannot specify alternate key columns. If the object
identifier (OID) is system-generated for an object table, then Oracle uses the OID
column in the object table as the key for the object table. If the OID is user-defined
for an object table, then Oracle uses the primary key in the object table as the key.

The following types of columns cannot be alternate key columns:

� LOB or LOB attribute of a column object

� Collection or collection attribute of a column object

� REF

� An entire column object

Syntax
DBMS_REPCAT.SET_COLUMNS (

sname IN VARCHAR2,
oname IN VARCHAR2,
{ column_list IN VARCHAR2
| column_table IN DBMS_UTILITY.NAME_ARRAY | DBMS_UTILITY.LNAME_ARRAY });

See Also: The constraint_clause in Oracle9i SQL Reference for more
information about restrictions on primary key columns

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.
DBMS_REPCAT 53-101

SPECIFY_NEW_MASTERS Procedure
Parameters

Exceptions

SPECIFY_NEW_MASTERS Procedure

This procedure specifies the master sites you intend to add to an existing replication
group without quiescing the group. This procedure must be run at the master
definition site of the specified master group.

If necessary, this procedure creates an extension_id that tracks the process of
adding new master sites to a master group. You use this extension_id in the
other procedures that you run at various stages in the process. You can view

Table 53–126 SET_COLUMNS Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table.

column_list A comma-delimited list of the columns in the table that you want
to use as a primary key. There must be no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAY or DBMS_UTILITY.LNAME_ARRAY
to contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which may occur when you specify the
attributes of column objects.

Table 53–127 SET_COLUMNS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Replication group is not quiescing or quiesced.
53-102 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
information about the extension_id in the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

This procedure adds the new master sites to the DBA_REPSITES_NEW data
dictionary view for the specified replication group. This procedure can be run any
number of times for a given replication group. If it is run more than once, then it
replaces any masters in the local DBA_REPSITES_NEW data dictionary view for the
specified replication group with the masters specified in the master_
list /master_table parameters.

You must run this procedure before you run the ADD_NEW_MASTERS procedure. No
new master sites are added to the master group until you run the ADD_NEW_
MASTERS procedure.

Syntax
DBMS_REPCAT.SPECIFY_NEW_MASTERS (

gname IN VARCHAR2,
{ master_list IN VARCHAR2
| master_table IN DBMS_UTILITY.DBLINK_ARRAY});

See Also: "ADD_NEW_MASTERS Procedure" on page 53-10

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.
DBMS_REPCAT 53-103

SPECIFY_NEW_MASTERS Procedure
Parameters

Exceptions

Table 53–128 SPECIFY_NEW_MASTERS Procedure Parameters

Parameter Description

gname Master group to which you are adding new master sites.

master_list A comma-delimited list of new master sites that you want to add to the
master group. List only the new master sites, not the existing master sites.
Do not put any spaces between site names.

If master_list is NULL, all master sites for the given replication group
are removed from the DBA_REPSITES_NEW data dictionary view. Specify
NULL to indicate that the master group is not being extended.

master_table A table that lists the new master sites that you want to add to the master
group. In the table, list only the new master sites, not the existing master
sites. The first master site should be at position 1, the second at position 2,
and so on.

If the table is empty, then all master sites for the specified replication
group are removed from the DBA_REPSITES_NEW data dictionary view.
Use an empty table to indicate that the master group is not being
extended.

Table 53–129 SPECIFY_NEW_MASTERS Procedure Exceptions

Exception Description

duplicaterepgroup A master site that you are attempting to add is already part of
the master group.

nonmasterdef Invocation site is not the master definition site.

propmodenotallowed Synchronous propagation mode not allowed for this operation.
Only asynchronous propagation mode is allowed.

extstinapp Extension request with status not allowed. There must either be
no extension_id for the master group or the extension_id
status must be READY. You can view the status for each
extension_id at a master site in the DBA_REPEXTENSIONS
data dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases
must be at 9.0.1 or higher compatibility level.

notsamecq Master groups do not have the same connection qualifier.
53-104 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
SUSPEND_MASTER_ACTIVITY Procedure

This procedure suspends replication activity for a master group. You use this
procedure to quiesce the master group. You must call this procedure from the
master definition site.

Syntax
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (

gname IN VARCHAR2);

Parameters

Exceptions

SWITCH_MVIEW_MASTER Procedure

This procedure changes the master site of a materialized view group to another
master site. This procedure does a full refresh of the affected materialized views and
regenerates the triggers and their associated packages as needed. This procedure
does not push the queue to the old master site before changing master sites.

If min_communication is true for the materialized view and the new master site
is an Oracle7 master site, then regenerate replication support for the materialized
view with min_communication set to false .

Table 53–130 SUSPEND_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group for which you want to suspend activity.

Table 53–131 SUSPEND_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notnormal Master group is not in normal operation.

commfailure At least one master site is not accessible.
DBMS_REPCAT 53-105

SWITCH_MVIEW_MASTER Procedure
If generate_80_compatible is false for the materialized view and the new
master site is a release lower than Oracle8i (Oracle7 or Oracle8), then regenerate
replication support for the materialized view with generate_80_compatible set
to true .

You can set both parameters for a materialized view in one call to DBMS_
REPCAT.GENERATE_MVIEW_SUPPORT.

Syntax
DBMS_REPCAT.SWITCH_MVIEW_MASTER (

gname IN VARCHAR2,
master IN VARCHAR2,
gowner IN VARCHAR2 := ’PUBLIC’);

Parameters

Note: You cannot switch the master of materialized views that are
based on other materialized views (level 2 and greater materialized
views). Such a materialized view must be dropped and re-created if
you want to base it on a different master.

See Also: "GENERATE_MVIEW_SUPPORT Procedure" on
page 53-78

Table 53–132 SWITCH_MVIEW_MASTER Procedure Parameters

Parameter Description

gname Name of the materialized view group for which you want to
change the master site.

master Fully qualified database name of the new master site to use for the
materialized view group.

gowner Owner of the materialized view group.
53-106 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

UNDO_ADD_NEW_MASTERS_REQUEST Procedure

This procedure undoes all of the changes made by the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTERS procedures for a specified extension_id .

This procedure is executed at one master site, which may be the master definition
site, and it only affects that master site. If you run this procedure at one master site
affected by the request, you must run it at all new and existing master sites affected
by the request. You can query the DBA_REPSITES_NEW data dictionary view to see
the new master sites affected by the extension_id . This data dictionary view also
lists the replication group name, and you must run this procedure at all existing
master sites in the replication group.

Table 53–133 SWITCH_MVIEW_MASTER Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Specified database is not a master site.

commfailure Specified database is not accessible.

missingrepgroup Materialized view group does not exist.

qrytoolong Materialized view definition query is greater 32 KB.

alreadymastered At the local site, there is another materialized view group with the
same group name mastered at the old master site.

Caution: This procedure is not normally called. Use this
procedure only if the adding new masters without quiesce
operation cannot proceed at one or more master sites. Run this
procedure after you have already run the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTERS procedures, but before you have run the
RESUME_PROPAGATION_TO_MDEF and PREPARE_
INSTANTIATED_MASTER procedures.

Do not run this procedure after you have run either RESUME_
PROPAGATION_TO_MDEF or PREPARE_INSTANTIATED_MASTER
for a particular extension_id .
DBMS_REPCAT 53-107

UNDO_ADD_NEW_MASTERS_REQUEST Procedure
Syntax
DBMS_REPCAT.UNDO_ADD_NEW_MASTERS_REQUEST (

extension_id IN RAW,
drop_contents IN BOOLEAN := TRUE);

Parameters

Exceptions

See Also:

� "SPECIFY_NEW_MASTERS Procedure" on page 53-102

� "ADD_NEW_MASTERS Procedure" on page 53-10

� "RESUME_PROPAGATION_TO_MDEF Procedure" on
page 53-97

� "PREPARE_INSTANTIATED_MASTER Procedure" on
page 53-84

Table 53–134 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and DBA_
REPEXTENSIONS data dictionary views.

drop_contents Specify true , the default, to drop the contents of objects in new
replication groups being extended at the local site. Specify false
to retain the contents.

Table 53–135 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Exceptions

Exception Description

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.0.1 or higher compatibility level.

typefail A parameter value that you specified is not appropriate.
53-108 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
UNREGISTER_MVIEW_REPGROUP Procedure

This procedure facilitates the administration of materialized views at their
respective master sites or master materialized view sites by deleting a materialized
view group from DBA_REGISTERED_MVIEW_GROUPS. Run this procedure at the
master site or master materialized view site.

Syntax
DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (

gname IN VARCHAR2,
mviewsite IN VARCHAR2
gowner IN VARCHAR2 := ’PUBLIC’);

Parameters

VALIDATE Function

This function validates the correctness of key conditions of a multimaster
replication environment.

Syntax
DBMS_REPCAT.VALIDATE (

gname IN VARCHAR2,
check_genflags IN BOOLEAN := false,
check_valid_objs IN BOOLEAN := false,
check_links_sched IN BOOLEAN := false,
check_links IN BOOLEAN := false,
error_table OUT DBMS_REPCAT.VALIDATE_ERR_TABLE)

RETURN BINARY_INTEGER;

Table 53–136 UNREGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be unregistered.

mviewsite Global name of the materialized view site.

gowner Owner of the materialized view group.
DBMS_REPCAT 53-109

VALIDATE Function
DBMS_REPCAT.VALIDATE (
gname IN VARCHAR2,
check_genflags IN BOOLEAN := false,
check_valid_objs IN BOOLEAN := false,
check_links_sched IN BOOLEAN := false,
check_links IN BOOLEAN := false,
error_msg_table OUT DBMS_UTILITY.UNCL_ARRAY,
error_num_table OUT DBMS_UTILITY.NUMBER_ARRAY)

RETURN BINARY_INTEGER;

Parameters

Note: This function is overloaded. The return value of VALIDATE
is the number of errors found. The function’s OUT parameter
returns any errors that are found. In the first interface function
shown under "Syntax" on page 53-109, the error_table consists
of an array of records. Each record has a VARCHAR2 and a NUMBER
in it. The string field contains the error message, and the number
field contains the Oracle error number.

The second interface function shown under "Syntax" on
page 53-109 is similar except that there are two OUT arrays: a
VARCHAR2 array with the error messages and a NUMBER array with
the error numbers.

Table 53–137 VALIDATE Function Parameters

Parameter Description

gname Name of the master group to validate.

check_genflags Check whether all the objects in the group are generated. This
must be done at the master definition site only.

check_valid_objs Check that the underlying objects for objects in the group valid.
This must be done at the master definition site only. The master
definition site goes to all other sites and checks that the underlying
objects are valid. The validity of the objects is checked within the
schema of the connected user.

check_links_sched Check whether the links are scheduled for execution. This should
be invoked at each master site.
53-110 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

check_links Check whether the connected user (repadmin), as well as the
propagator, have correct links for replication to work properly.
Checks that the links exist in the database and are accessible. This
should be invoked at each master site.

error_table Returns the messages and numbers of all errors that are found.

error_msg_table Returns the messages of all errors that are found.

error_num_table Returns the numbers of all errors that are found.

Table 53–138 VALIDATE Function Exceptions

Exception Description

missingdblink Database link does not exist in the schema of the replication
propagator or has not been scheduled. Ensure that the
database link exists in the database, is accessible, and is
scheduled for execution.

dblinkmismatch Database link name at the local node does not match the global
name of the database that the link accesses. Ensure that the
GLOBAL_NAMES initialization parameter is set to true and the
link name matches the global name.

dblinkuidmismatch User name of the replication administration user at the local
node and the user name at the node corresponding to the
database link are not the same. Oracle Replication expects the
two users to be the same. Ensure that the user identification of
the replication administration user at the local node and the
user identification at the node corresponding to the database
link are the same.

objectnotgenerated Object has not been generated at other master sites or is still
being generated. Ensure that the object is generated by calling
GENERATE_REPLICATION_SUPPORT and DO_DEFERRED_
REPCAT_ADMIN for the object at the master definition site.

opnotsupported Operation is not supported if the replication group is
replicated at a pre-Oracle8 node. Ensure that all nodes of the
master group are running Oracle8 and higher.

Table 53–137 VALIDATE Function Parameters

Parameter Description
DBMS_REPCAT 53-111

WAIT_MASTER_LOG Procedure
Usage Notes
The return value of VALIDATE is the number of errors found. The function’s OUT
parameter returns any errors that are found. In the first interface function, the
error_table consists of an array of records. Each record has a VARCHAR2 and a
NUMBER in it. The string field contains the error message and the number field
contains the Oracle error number.

The second interface is similar except that there are two OUT arrays. A VARCHAR2
array with the error messages and a NUMBER array with the error numbers.

WAIT_MASTER_LOG Procedure

This procedure determines whether changes that were asynchronously propagated
to a master site have been applied.

Syntax
DBMS_REPCAT.WAIT_MASTER_LOG (

gname IN VARCHAR2,
record_count IN NATURAL,
timeout IN NATURAL,
true_count OUT NATURAL);

Parameters

Table 53–139 WAIT_MASTER_LOG Procedure Parameters

Parameter Description

gname Name of the master group.

record_count Procedure returns whenever the number of incomplete activities is
at or below this threshold.

timeout Maximum number of seconds to wait before the procedure
returns.

true_count

(out parameter)

Returns the number of incomplete activities.
53-112 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT Subprograms
Exceptions

Table 53–140 WAIT_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.
DBMS_REPCAT 53-113

WAIT_MASTER_LOG Procedure
53-114 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_REPCAT_
54

DBMS_REPCAT_ADMIN

DBMS_REPCAT_ADMIN enables you to create users with the privileges needed by
the symmetric replication facility.

This chapter discusses the following topics:

� Summary of DBMS_REPCAT_ADMIN Subprograms
ADMIN 54-1

Summary of DBMS_REPCAT_ADMIN Subprograms
Summary of DBMS_REPCAT_ADMIN Subprograms

GRANT_ADMIN_ANY_SCHEMA Procedure

This procedure grants the necessary privileges to the replication administrator to
administer any replication groups at the current site.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (

username IN VARCHAR2);

Table 54–1 DBMS_REPCAT_ADMIN Package Subprograms

Subprogram Description

GRANT_ADMIN_ANY_
SCHEMA Procedure on
page 54-2

Grants the necessary privileges to the replication
administrator to administer any replication group at the
current site.

GRANT_ADMIN_SCHEMA
Procedure on page 54-3

Grants the necessary privileges to the replication
administrator to administer a schema at the current site.

REGISTER_USER_
REPGROUP Procedure on
page 4

Assigns proxy materialized view administrator or receiver
privileges at the master site or master materialized view site
for use with remote sites.

REVOKE_ADMIN_ANY_
SCHEMA Procedure on
page 54-6

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_ANY_
SCHEMA.

REVOKE_ADMIN_SCHEMA
Procedure on page 54-6

Revokes the privileges and roles from the replication
administrator that were granted by GRANT_ADMIN_
SCHEMA.

UNREGISTER_USER_
REPGROUP Procedure on
page 54-7

Revokes the privileges and roles from the proxy
materialized view administrator or receiver that were
granted by the REGISTER_USER_REPGROUP procedure.
54-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
Parameters

Exceptions

GRANT_ADMIN_SCHEMA Procedure

This procedure grants the necessary privileges to the replication administrator to
administer a schema at the current site. This procedure is most useful if your
replication group does not span schemas.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA (

username IN VARCHAR2);

Parameters

Table 54–2 GRANT_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator to whom you want to grant
the necessary privileges and roles to administer any replication
groups at the current site.

Table 54–3 GRANT_ADMIN_ANY_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Table 54–4 GRANT_ADMIN_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator. This user is then granted
the necessary privileges and roles to administer the schema of the
same name within a replication group at the current site.
DBMS_REPCAT_ADMIN 54-3

REGISTER_USER_REPGROUP Procedure
Exceptions

REGISTER_USER_REPGROUP Procedure

This procedure assigns proxy materialized view administrator or receiver privileges
at the master site or master materialized view site for use with remote sites. This
procedure grants only the necessary privileges to the proxy materialized view
administrator or receiver. It does not grant the powerful privileges granted by the
GRANT_ADMIN_SCHEMA or GRANT_ADMIN_ANY_SCHEMA procedures.

Syntax
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (

username IN VARCHAR2,
privilege_type IN VARCHAR2,
{list_of_gnames IN VARCHAR2 |
table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Table 54–5 GRANT_ADMIN_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Note: This procedure is overloaded. The list_of_gnames and
table_of_gnames parameters are mutually exclusive.
54-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
Parameters

Exceptions

Table 54–6 REGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user to whom you are giving either proxy
materialized view administrator or receiver privileges.

privilege_type Specifies the privilege type you are assigning. Use the following
values for to define your privilege_type :

� receiver for receiver privileges

� proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-separated list of replication groups you want a user
registered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is registered for all replication groups, even
replication groups that are not yet known when this procedure is
called. You must use named notation in order to set list_of_
gnames to NULL. An invalid replication group in the list causes
registration to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
registered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY. This table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULL to register the user for all replication groups. An
invalid replication group in the table causes registration to fail for
the entire table.

Table 54–7 REGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.
DBMS_REPCAT_ADMIN 54-5

REVOKE_ADMIN_ANY_SCHEMA Procedure
REVOKE_ADMIN_ANY_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator
that were granted by GRANT_ADMIN_ANY_SCHEMA.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_SCHEMA (

username IN VARCHAR2);

Parameters

Exceptions

REVOKE_ADMIN_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator
that were granted by GRANT_ADMIN_SCHEMA.

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_ANY_SCHEMA are also revoked.

Table 54–8 REVOKE_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 54–9 REVOKE_ADMIN_ANY_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_SCHEMA are also revoked.
54-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_ADMIN Subprograms
Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_SCHEMA (

username IN VARCHAR2);

Parameters

Exceptions

UNREGISTER_USER_REPGROUP Procedure

This procedure revokes the privileges and roles from the proxy materialized view
administrator or receiver that were granted by the REGISTER_USER_REPGROUP
procedure.

Syntax
DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (

username IN VARCHAR2,
privilege_type IN VARCHAR2,
{list_of_gnames IN VARCHAR2 |
table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Table 54–10 REVOKE_ADMIN_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 54–11 REVOKE_ADMIN_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Note: This procedure is overloaded. The list_of_gnames and
table_of_gnames parameters are mutually exclusive.
DBMS_REPCAT_ADMIN 54-7

UNREGISTER_USER_REPGROUP Procedure
Parameters

Exceptions

Table 54–12 UNREGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user you are unregistering.

privilege_type Specifies the privilege type you are revoking. Use the following
values for to define your privilege_type :

� receiver for receiver privileges

� proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-separated list of replication groups you want a user
unregistered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is unregistered for all replication groups registered.
You must use named notation in order to set list_of_gnames to
NULL. An invalid replication group in the list causes
unregistration to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
unregistered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY. This table is
1-based (the positions start at 1 and increment by 1). Use the single
value NULL to unregister the user for all replication groups
registered. An invalid replication group in the table causes
unregistration to fail for the entire table.

Table 54–13 UNREGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.
54-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_REPCAT_INSTAN
55

DBMS_REPCAT_INSTANTIATE

The DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

This chapter discusses the following topics:

� Summary of DBMS_REPCAT_INSTANTIATE Subprograms
TIATE 55-1

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at a target site. This procedure
removes all related metadata at the master site and disables the specified site from
refreshing its materialized views. You must execute this procedure as the user who
originally instantiated the template. To see who instantiated the template, query the
ALL_REPCAT_TEMPLATE_SITES view.

Syntax
DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(

refresh_template_name IN VARCHAR2,
site_name IN VARCHAR2);

Table 55–1 DBMS_REPCAT_INSTANTIATE Package Subprograms

Subprogram Description

DROP_SITE_
INSTANTIATION Procedure
on page 55-2

Removes the target site from the DBA_REPCAT_TEMPLATE_
SITES view.

INSTANTIATE_OFFLINE
Function on page 55-3

Generates a script at the master site that is used to create the
materialized view environment at the remote materialized
view site while offline.

INSTANTIATE_ONLINE
Function on page 55-5

Generates a script at the master site that is used to create the
materialized view environment at the remote materialized
view site while online.

Table 55–2 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_
name

The name of the deployment template to be dropped.

site_name Identifies the master site where you want to drop the specified
template instantiation.
55-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
INSTANTIATE_OFFLINE Function

This function generates a file at the master site that is used to create the materialized
view environment at the remote materialized view site while offline. This generated
file is an offline instantiation file and should be used at remote materialized view
sites that are not able to remain connected to the master site for an extended amount
of time.

This is an ideal solution when the remote materialized view site is a laptop. Use the
packaging interface in the Replication Management tool to package the generated
file and data into a single file that can be posted on an FTP site or loaded to a
CD-ROM, floppy disk, and so on.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication
Management tool, during the distribution of deployment templates. The number
returned by this function is used to retrieve the appropriate information from the
USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the
instantiated template at the specified site.

Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE(

refresh_template_name IN VARCHAR2,

Note: This function is used in performing an offline instantiation
of a deployment template.

This function should not be confused with the procedures in the
DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS_
OFFLINE_SNAPSHOT package (used for performing an offline
instantiation of a materialized view). See these respective packages
for more information on their usage.

See Also:

� Oracle9i Replication

� The Replication Management tool’s online help
DBMS_REPCAT_INSTANTIATE 55-3

INSTANTIATE_OFFLINE Function
site_name IN VARCHAR2,
runtime_parm_id IN NUMBER := -1e-130,
next_date IN DATE := SYSDATE,
interval IN VARCHAR2 := ’SYSDATE + 1’,
use_default_gowner IN BOOLEAN := true)
return NUMBER;

Exceptions

Table 55–3 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_
name

The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date The next refresh date value to be used when creating the refresh
group.

interval The refresh interval to be used when creating the refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 55–4 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.
55-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms
Returns

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while online.
This generated script should be used at remote materialized view sites that are able
to remain connected to the master site for an extended amount of time, as the
instantiation process at the remote materialized view site may be lengthy
(depending on the amount of data that is populated to the new materialized views).

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Replication
Management tool, during the distribution of deployment templates. The number
returned by this function is used to retrieve the appropriate information from the
USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the
instantiated template at the specified site.

Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE(

refresh_template_name IN VARCHAR2,
site_name IN VARCHAR2,
runtime_parm_id IN NUMBER := -1e-130,
next_date IN DATE := SYSDATE,
interval IN VARCHAR2 := ’SYSDATE + 1’,
use_default_gowner IN BOOLEAN := true)
return NUMBER;

Table 55–5 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.

See Also:

� Oracle9i Replication

� The Replication Management tool’s online help
DBMS_REPCAT_INSTANTIATE 55-5

INSTANTIATE_ONLINE Function
Returns

Table 55–6 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_
name

The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the runtime parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 55–7 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist.

dupl_template_
site

The deployment template has already been instantiated at the
materialized view site. A deployment template can be instantiated
only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is not
authorized to do so.

Table 55–8 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.
55-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_REPCA
56

DBMS_REPCAT_RGT

DBMS_REPCAT_RGT controls the maintenance and definition of refresh group
templates.

This chapter discusses the following topics:

� Summary of DBMS_REPCAT_RGT Subprograms
T_RGT 56-1

Summary of DBMS_REPCAT_RGT Subprograms
Summary of DBMS_REPCAT_RGT Subprograms

Table 56–1 DBMS_REPCAT_RGT Package Subprograms

Subprogram Description

ALTER_REFRESH_TEMPLATE
Procedure on page 56-4

Allows the DBA to alter existing deployment templates.

ALTER_TEMPLATE_OBJECT
Procedure on page 56-6

Alters objects that have been added to a specified
deployment template.

ALTER_TEMPLATE_PARM
Procedure on page 56-9

Allows the DBA to alter the parameters for a specific
deployment template.

ALTER_USER_
AUTHORIZATION Procedure
on page 56-11

Alters the contents of the DBA_REPCAT_USER_
AUTHORIZATIONS view.

ALTER_USER_PARM_VALUE
Procedure on page 56-12

Changes existing parameter values that have been
defined for a specific user.

COMPARE_TEMPLATES
Function on page 56-15

Allows the DBA to compare the contents of two
deployment templates.

COPY_TEMPLATE Function on
page 56-16

Allows the DBA to copy a deployment template.

CREATE_OBJECT_FROM_
EXISTING Function on
page 56-18

Creates a template object definition from existing
database objects and adds it to a target deployment
template.

CREATE_REFRESH_
TEMPLATE Function on
page 56-20

Creates the deployment template, which allows the DBA
to define the template name, private/public status, and
target refresh group.

CREATE_TEMPLATE_OBJECT
Function on page 56-22

Adds object definitions to a target deployment template
container.

CREATE_TEMPLATE_PARM
Function on page 56-25

Creates parameters for a specific deployment template to
allow custom data sets to be created at the remote
materialized view site.

CREATE_USER_
AUTHORIZATION Function on
page 56-27

Authorizes specific users to instantiate private
deployment templates.

CREATE_USER_PARM_VALUE
Function on page 56-29

Predefines deployment template parameter values for
specific users.

DELETE_RUNTIME_PARMS
Procedure on page 56-31

Deletes a runtime parameter value that you defined
using the INSERT_RUNTIME_PARMS procedure.
56-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
DROP_ALL_OBJECTS
Procedure on page 56-32

Allows the DBA to drop all objects or specific object
types from a deployment template.

DROP_ALL_TEMPLATE_
PARMS Procedure on page 56-33

Allows the DBA to drop template parameters for a
specified deployment template.

DROP_ALL_TEMPLATE_SITES
Procedure on page 56-34

Removes all entries from the DBA_REPCAT_TEMPLATE_
SITES view.

DROP_ALL_TEMPLATES
Procedure on page 56-35

Removes all deployment templates at the site where the
procedure is called.

DROP_ALL_USER_
AUTHORIZATIONS Procedure
on page 56-35

Allows the DBA to drop all user authorizations for a
specified deployment template.

DROP_ALL_USER_PARM_
VALUES Procedure on
page 56-36

Drops user parameter values for a specific deployment
template.

DROP_REFRESH_TEMPLATE
Procedure on page 56-38

Drops a deployment template.

DROP_SITE_INSTANTIATION
Procedure on page 56-39

Removes the target site from the DBA_REPCAT_
TEMPLATE_SITES view.

DROP_TEMPLATE_OBJECT
Procedure on page 56-40

Removes a template object from a specific deployment
template.

DROP_TEMPLATE_PARM
Procedure on page 56-41

Removes an existing template parameter from the DBA_
REPCAT_TEMPLATE_PARMS view.

DROP_USER_
AUTHORIZATION Procedure
on page 56-42

Removes a user authorization entry from the DBA_
REPCAT_USER_AUTHORIZATIONS view.

DROP_USER_PARM_VALUE
Procedure on page 56-43

Removes a predefined user parameter value for a specific
deployment template.

GET_RUNTIME_PARM_ID
Function on page 56-44

Retrieves an identification to be used when defining a
runtime parameter value.

INSERT_RUNTIME_PARMS
Procedure on page 56-45

Defines runtime parameter values prior to instantiating a
template.

INSTANTIATE_OFFLINE
Function on page 56-47

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while offline.

Table 56–1 DBMS_REPCAT_RGT Package Subprograms

Subprogram Description
DBMS_REPCAT_RGT 56-3

ALTER_REFRESH_TEMPLATE Procedure
ALTER_REFRESH_TEMPLATE Procedure

This procedure allows the DBA to alter existing deployment templates. Alterations
may include defining a new deployment template name, a new refresh group, or a
new owner and changing the public/private status.

Syntax
DBMS_REPCAT_RGT.ALTER_REFRESH_TEMPLATE (

refresh_template_name IN VARCHAR2,
new_owner IN VARCHAR2 := ’-’,
new_refresh_group_name IN VARCHAR2 := ’-’,
new_refresh_template_name IN VARCHAR2 := ’-’,
new_template_comment IN VARCHAR2 := ’-’,
new_public_template IN VARCHAR2 := ’-’,
new_last_modified IN DATE := to_date(’1’, ’J’),
new_modified_by IN NUMBER := -1e-130);

INSTANTIATE_ONLINE
Function on page 56-50

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while online.

LOCK_TEMPLATE_
EXCLUSIVE Procedure on
page 52

Prevents users from reading or instantiating the template
when a deployment template is being updated or
modified.

LOCK_TEMPLATE_SHARED
Procedure on page 56-53

Makes a specified deployment template read-only.

Table 56–1 DBMS_REPCAT_RGT Package Subprograms

Subprogram Description
56-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Table 56–2 ALTER_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name The name of the deployment template that you want to
alter.

new_owner The name of the new deployment template owner. Do not
specify a value to keep the current owner.

new_refresh_group_name If necessary, use this parameter to specify a new refresh
group name to which the template objects will be added. Do
not specify a value to keep the current refresh group.

new_refresh_template_
name

Use this parameter to specify a new deployment template
name. Do not specify a value to keep the current
deployment template name.

new_template_comment New deployment template comments. Do not specify a
value to keep the current template comment.

new_public_template Determines whether the deployment template is public or
private. Only acceptable values are 'Y' and 'N' ('Y' =
public and 'N' = private). Do not specify a value to keep
the current value.

new_last_modified Contains the date of the last modification made to this
deployment template. If a value is not specified, then the
current date is automatically used.

new_modified_by Contains the name of the user who last modified this
deployment template. If a value is not specified, then the
current user is automatically used.

Table 56–3 ALTER_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_
template

Deployment template name specified is invalid or does not exist.

bad_public_
template

The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

dupl_refresh_
template

A template with the specified name already exists.
DBMS_REPCAT_RGT 56-5

ALTER_TEMPLATE_OBJECT Procedure
ALTER_TEMPLATE_OBJECT Procedure

This procedure alters objects that have been added to a specified deployment
template. The most common changes are altering the object DDL and assigning the
object to a different deployment template.

Changes made to the template are reflected only at new sites instantiating the
deployment template. Remote sites that have already instantiated the template
must re-instantiate the deployment template to apply the changes.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT (

refresh_template_name IN VARCHAR2,
object_name IN VARCHAR2,
object_type IN VARCHAR2,
new_refresh_template_name IN VARCHAR2 := ’-’,
new_object_name IN VARCHAR2 := ’-’,
new_object_type IN VARCHAR2 := ’-’,
new_ddl_text IN CLOB := ’-’,
new_master_rollback_seg IN VARCHAR2 := ’-’,
new_flavor_id IN NUMBER := -1e-130);
56-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Table 56–4 ALTER_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the object that
you want to alter.

object_name Name of the template object that you want to alter.

object_type Type of object that you want to alter.

new_refresh_template_
name

Name of the new deployment template to which you want
to reassign this object. Do not specify a value to keep the
object assigned to the current deployment template.

new_object_name New name of the template object. Do not specify a value to
keep the current object name.

new_object_type If specified, then the new object type. Objects of the
following type may be specified:

SNAPSHOT PROCEDURE

INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY

SYNONYM TRIGGER

SEQUENCE DATABASE LINK

new_ddl_text New object DDL for specified object. Do not specify any
new DDL text to keep the current object DDL.

new_master_rollback_
seg

New master rollback segment for specified object. Do not
specify a value to keep the current rollback segment.

new_flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.
DBMS_REPCAT_RGT 56-7

ALTER_TEMPLATE_OBJECT Procedure
Exceptions

Usage Notes
Because the ALTER_TEMPLATE_OBJECT procedure utilizes a CLOB, you must use
the DBMS_LOB package when using the ALTER_TEMPLATE_OBJECT procedure. The
following example illustrates how to use the DBMS_LOB package with the ALTER_
TEMPLATE_OBJECT procedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *

FROM sales WHERE salesperson = :salesid and region_id = :region';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT(

refresh_template_name => 'rgt_personnel',
object_name => 'MVIEW_SALES',
object_type => 'SNAPSHOT',
new_ddl_text => templob);

DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 56–5 ALTER_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_
template

Deployment template name specified is invalid or does not exist.

miss_flavor_id If you receive this exception, contact Oracle Support Services.

bad_object_type Object type is specified incorrectly. See Table 56–4 for a list of
valid object types.

miss_template_
object

Template object name specified is invalid or does not exist.

dupl_template_
object

New template name specified in the new_refresh_
template_name parameter already exists.
56-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
ALTER_TEMPLATE_PARM Procedure

This procedure allows the DBA to alter the parameters for a specific deployment
template. Alterations include renaming the parameter and redefining the default
value and prompt string.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (

refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR2,
new_refresh_template_name IN VARCHAR2 := ’-’,
new_parameter_name IN VARCHAR2 := ’-’,
new_default_parm_value IN CLOB := NULL,
new_prompt_string IN VARCHAR2 := ’-’,
new_user_override IN VARCHAR2 := ’-’);
DBMS_REPCAT_RGT 56-9

ALTER_TEMPLATE_PARM Procedure
Parameters

Exceptions

Table 56–6 ALTER_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the
parameter that you want to alter.

parameter_name Name of the parameter that you want to alter.

new_refresh_template_
name

Name of the deployment template that the specified
parameter should be reassigned to (useful when you want
to move a parameter from one template to another). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name New name of the template parameter. Do not specify a
value to keep the current parameter name.

new_default_parm_value New default value for the specified parameter. Do not
specify a value to keep the current default value.

new_prompt_string New prompt text for the specified parameter. Do not specify
a value to keep the current prompt string.

new_user_override Determines whether the user can override the default value
if prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for
this parameter. Set this parameter to 'Y' to allow a user to
override the default value or set this parameter to 'N' to
prevent an override.

Table 56–7 ALTER_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_
template

Deployment template name specified is invalid or does not exist.

miss_template_parm Template parameter specified is invalid or does not exist.

dupl_template_parm Combination of new_refresh_template_name and new_
parameter_name already exists.
56-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the ALTER_TEMPLATE_PARM procedure utilizes a CLOB, you must use the
DBMS_LOB package when using the ALTER_TEMPLATE_PARM procedure. The
following example illustrates how to use the DBMS_LOB package with the ALTER_
TEMPLATE_PARM procedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'REGION 20';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM(

refresh_template_name => 'rgt_personnel',
parameter_name => 'region',
new_default_parm_value => templob);

DBMS_LOB.FREETEMPORARY(templob);
END;
/

ALTER_USER_AUTHORIZATION Procedure

This procedure alters the contents of the DBA_REPCAT_USER_AUTHORIZATIONS
view. Specifically, you can change user/deployment template authorization
assignments. This procedure is helpful, for example, if an employee is reassigned
and requires the materialized view environment of another deployment template.
The DBA simply assigns the employee the new deployment template and the user
is authorized to instantiate the target template.

Syntax
DBMS_REPCAT_RGT.ALTER_USER_AUTHORIZATION (

user_name IN VARCHAR2,
refresh_template_name IN VARCHAR2,
new_user_name IN VARCHAR2 := ’-’,
new_refresh_template_name IN VARCHAR2 := ’-’);
DBMS_REPCAT_RGT 56-11

ALTER_USER_PARM_VALUE Procedure
Parameters

Exceptions

ALTER_USER_PARM_VALUE Procedure

This procedure changes existing parameter values that have been defined for a
specific user. This procedure is especially helpful if your materialized view
environment uses assignment tables. Change a user parameter value to quickly and
securely change the data set of a remote materialized view site.

Table 56–8 ALTER_USER_AUTHORIZATION Procedure Parameters

Parameter Description

user_name Name of the user whose authorization you want to alter.

refresh_template_name Name of the deployment template that is currently assigned
to the specified user that you want to alter.

new_user_name Use this parameter to define a new user for this template
authorization. Do not specify a value to keep the current
user.

new_refresh_template_
name

The deployment template that the specified user (either the
existing or, if specified, the new user) is authorized to
instantiate. Do not specify a value to keep the current
deployment template.

Table 56–9 ALTER_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user_
authorization

The combination of user_name and refresh_template_
name values specified does not exist in the DBA_REPCAT_
USER_AUTHORIZATIONS view.

miss_user The user name specified for the new_user_name or user_
name parameter is invalid or does not exist.

miss_refresh_
template

The deployment template specified for the new_refresh_
template parameter is invalid or does not exist.

dupl_user_
authorization

A row already exists for the specified user name and
deployment template name.
56-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Syntax
DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(

refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR2,
user_name IN VARCHAR2,
new_refresh_template_name IN VARCHAR2 := ’-’,
new_parameter_name IN VARCHAR2 := ’-’,
new_user_name IN VARCHAR2 := ’-’,
new_parm_value IN CLOB := NULL);

Parameters

See Also: Oracle9i Replication for more information on using
assignment tables

Table 56–10 ALTER_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
parameter value that you want to alter.

parameter_name Name of the parameter that you want to alter.

user_name Name of the user whose parameter value you want to alter.

new_refresh_template_
name

Name of the deployment template that the specified user
parameter value should be reassigned to (useful when you
are authorizing a user for a different template). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name The new template parameter name. Do not specify a value
to keep the user value defined for the existing parameter.

new_user_name The new user name that this parameter value is for. Do not
specify a value to keep the parameter value assigned to the
current user.

new_parm_value The new parameter value for the specified user parameter.
Do not specify a value to keep the current parameter value.
DBMS_REPCAT_RGT 56-13

ALTER_USER_PARM_VALUE Procedure
Exceptions

Table 56–11 ALTER_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_template_parm Template parameter specified is invalid or does not exist.

miss_user User name specified for the user_name or new_user_
name parameters is invalid or does not exist.

miss_user_parm_values User parameter value specified does not exist.

dupl_user_parm_values New user parameter specified already exists.
56-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the ALTER_USER_PARM_VALUE procedure utilizes a CLOB, you must use
the DBMS_LOB package when using the ALTER_USER_PARM_VALUE procedure. The
following example illustrates how to use the DBMS_LOB package with the ALTER_
USER_PARM_VALUE procedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'REGION 20';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(

refresh_template_name => 'rgt_personnel',
parameter_name => 'region',
user_name => 'BOB',
new_parm_value => templob);

DBMS_LOB.FREETEMPORARY(templob);
END;
/

COMPARE_TEMPLATES Function

This function allows a DBA to compare the contents of two deployment templates.
Any discrepancies between the two deployment templates is stored in the USER_
REPCAT_TEMP_OUTPUT temporary view.

The COMPARE_TEMPLATES function returns a number that you specify in the
WHERE clause when querying the USER_REPCAT_TEMP_OUTPUT temporary view.
For example, if the COMPARE_TEMPLATES procedure returns the number 10, you
would execute the following SELECT statement to view all discrepancies between
two specified templates (your SELECT statement returns no rows if the templates
are identical):

SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT
WHERE OUTPUT_ID = 10 ORDER BY LINE;

The contents of the USER_REPCAT_TEMP_OUTPUT temporary view are lost after
you disconnect or a rollback has been performed.
DBMS_REPCAT_RGT 56-15

COPY_TEMPLATE Function
Syntax
DBMS_REPCAT_RGT.COMPARE_TEMPLATES (

source_template_name IN VARCHAR2,
compare_template_name IN VARCHAR2)

return NUMBER;

Parameters

Exceptions

Returns

COPY_TEMPLATE Function

This function enables you to copy a deployment template and is helpful when a
new deployment template uses many of the objects contained in an existing
deployment template. This function copies the deployment template, template
objects, template parameters, and user parameter values. The DBA can optionally

Table 56–12 COMPARE_TEMPLATES Function Parameters

Parameter Description

source_template_
name

Name of the first deployment template to be compared.

compare_template_
name

Name of the second deployment template to be compared.

Table 56–13 COMPARE_TEMPLATES Function Exceptions

Exception Description

miss_refresh_
template

The deployment template name to be compared is invalid or
does not exist.

Table 56–14 COMPARE_TEMPLATES Function Returns

Return Value Description

<system-generated
number>

Specifies the number returned for the output_id value when you
select from the USER_REPCAT_TEMP_OUTPUT temporary view
to view the discrepancies between the compared templates.
56-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
have the function copy the user authorizations for this template. The number
returned by this function is used internally by Oracle to manage deployment
templates.

This function also allows the DBA to copy a deployment template to another master
site, which is helpful for deployment template distribution and to split network
loads between multiple sites.

Syntax
DBMS_REPCAT_RGT.COPY_TEMPLATE (

old_refresh_template_name IN VARCHAR2,
new_refresh_template_name IN VARCHAR2,
copy_user_authorizations IN VARCHAR2,
dblink IN VARCHAR2 := NULL)

return NUMBER;

Parameters

Note: The values in the DBA_REPCAT_TEMPLATE_SITES view
are not copied.

Table 56–15 COPY_TEMPLATE Function Parameters

Parameter Description

old_refresh_template_
name

Name of the deployment template to be copied.

new_refresh_template_
name

Name of the new deployment template.

copy_user_
authorizations

Specifies whether the template authorizations for the
original template should be copied for the new deployment
template. Valid values for this parameter are Y, N, and NULL.

Note: All users must exist at the target database.

dblink Optionally defines where the deployment template should
be copied from (this is helpful to distribute deployment
templates to other master sites). If none is specified, then the
deployment template is copied from the local master site.
DBMS_REPCAT_RGT 56-17

CREATE_OBJECT_FROM_EXISTING Function
Exceptions

Returns

CREATE_OBJECT_FROM_EXISTING Function

This function creates a template object definition from existing database objects and
adds it to a target deployment template. The object DDL that created the original
database object is executed when the target deployment template is instantiated at
the remote materialized view site. This is ideal for adding existing triggers and
procedures to your template. The number returned by this function is used
internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_OBJECT_FROM_EXISTING(

refresh_template_name IN VARCHAR2,
object_name IN VARCHAR2,
sname IN VARCHAR2,
oname IN VARCHAR2,
otype IN VARCHAR2)
return NUMBER;

Table 56–16 COPY_TEMPLATE Function Exceptions

Exception Description

miss_refresh_
template

Deployment template name to be copied is invalid or does not
exist.

dupl_refresh_
template

Name of the new refresh template specified already exists.

bad_copy_auth Value specified for the copy_user_authorization
parameter is invalid. Valid values are Y, N, and NULL.

Table 56–17 COPY_TEMPLATE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
56-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Table 56–18 CREATE_OBJECT_FROM_EXISTING Function Parameters

Parameter Description

refresh_template_
name

Name of the deployment template to which you want to add
this object.

object_name Optionally, the new name of the existing object that you are
adding to your deployment template (enables you to define a
new name for an existing object).

sname The schema that contains the object that you are creating your
template object from.

oname Name of the object that you are creating your template object
from.

otype The type of database object that you are adding to the template
(that is, PROCEDURE, TRIGGER, and so on). The object type must
be specified using the following numerical identifiers
(DATABASE LINK, MATERIALIZED VIEW, and SNAPSHOT are
not a valid object types for this function):

SEQUENCE PROCEDURE

INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY

SYNONYM TRIGGER

Table 56–19 CREATE_OBJECT_FROM_EXISTING Function Exceptions

Exception Description

miss_refresh_
template

The specified refresh template name is invalid or missing. Query
the DBA_REPCAT_REFRESH_TEMPLATES view for a list of
existing deployment templates.

bad_object_type The object type is specified incorrectly.

dupl_template_
object

An object of the same name and type has already been added to
the specified deployment template.

objectmissing The object specified does not exist.
DBMS_REPCAT_RGT 56-19

CREATE_REFRESH_TEMPLATE Function
Returns

CREATE_REFRESH_TEMPLATE Function

This function creates the deployment template, which enables you to define the
template name, private/public status, and target refresh group. Each time that you
create a template object, user authorization, or template parameter, you reference
the deployment template created with this function. This function adds a row to the
DBA_REPCAT_REFRESH_TEMPLATES view. The number returned by this function
is used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE (

owner IN VARCHAR2,
refresh_group_name IN VARCHAR2,
refresh_template_name IN VARCHAR2,
template_comment IN VARCHAR2 := NULL,
public_template IN VARCHAR2 := NULL,
last_modified IN DATE := SYSDATE,
modified_by IN VARCHAR2 := USER,
creation_date IN DATE := SYSDATE,
created_by IN VARCHAR2 := USER)

return NUMBER;

Table 56–20 CREATE_OBJECT_FROM_EXISTING Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
56-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Table 56–21 CREATE_REFRESH_TEMPLATE Function Parameters

Parameter Description

owner User name of the deployment template owner is specified with
this parameter. If an owner is not specified, then the name of the
user creating the template is automatically used.

refresh_group_name Name of the refresh group that is created when this template is
instantiated. All objects created by this template are assigned to
the specified refresh group.

refresh_template_
name

Name of the deployment template that you are creating. This
name is referenced in all activities that involve this deployment
template.

template_comment User comments defined with this parameter are listed in the
DBA_REPCAT_REFRESH_TEMPLATES view.

public_template Specifies whether the deployment template is public or private.
Only acceptable values are 'Y' and 'N' ('Y' = public and 'N' =
private).

last_modified The date of the last modification made to this deployment
template. If a value is not specified, then the current date is
automatically used.

modified_by Name of the user who last modified this deployment template.
If a value is not specified, then the current user is automatically
used.

creation_date The date that this deployment template was created. If a value is
not specified, then the current date is automatically used.

created_by Name of the user who created this deployment template. If a
value is not specified, then the current user is automatically
used.
DBMS_REPCAT_RGT 56-21

CREATE_TEMPLATE_OBJECT Function
Exceptions

Returns

CREATE_TEMPLATE_OBJECT Function

This function adds object definitions to a target deployment template container. The
specified object DDL is executed when the target deployment template is
instantiated at the remote materialized view site. In addition to adding materialized
views, this function can add tables, procedures, and other objects to your template.
The number returned by this function is used internally by Oracle to manage
deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (

refresh_template_name IN VARCHAR2,
object_name IN VARCHAR2,
object_type IN VARCHAR2,
ddl_text IN CLOB,
master_rollback_seg IN VARCHAR2 := NULL,
flavor_id IN NUMBER := -1e-130)

return NUMBER;

Table 56–22 CREATE_REFRESH_TEMPLATE Function Exceptions

Exception Description

dupl_refresh_
template

A template with the specified name already exists.

bad_public_
template

The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

Table 56–23 CREATE_REFRESH_TEMPLATE Function Returns

Return Value Description

<system-generated
number >

System-generated number used internally by Oracle.
56-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Table 56–24 CREATE_TEMPLATE_OBJECT Function Parameters

Parameter Description

refresh_template_
name

Name of the deployment template to which you want to add
this object.

object_name Name of the template object that you are creating.

object_type The type of database object that you are adding to the template
(that is, SNAPSHOT, TRIGGER, PROCEDURE, and so on). Objects
of the following type may be specified:

SNAPSHOT PROCEDURE

INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY

SYNONYM TRIGGER

SEQUENCE DATABASE LINK

ddl_text Contains the DDL that creates the object that you are adding to
the template. Be sure to end your DDL with a semi-colon. You
can use a colon (:) to create a template parameter for your
template object.

When you add a materialized view (snapshot) with a CREATE
MATERIALIZED VIEW statement, make sure you specify the
schema name of the owner of the master table in the
materialized view query.

master_rollback_
seg

Specifies the name of the rollback segment to use when
executing the defined object DDL at the remote materialized
view site.

flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.
DBMS_REPCAT_RGT 56-23

CREATE_TEMPLATE_OBJECT Function
Exceptions

Returns

Table 56–25 CREATE_TEMPLATE_OBJECT Function Exceptions

Exception Description

miss_refresh_
template

Specified refresh template name is invalid or missing. Query the
DBA_REPCAT_REFRESH_TEMPLATES view for a list of existing
deployment templates.

bad_object_type Object type is specified incorrectly. See Table 56–24 for a list of
valid object types.

dupl_template_
object

An object of the same name and type has already been added to
the specified deployment template.

Table 56–26 CREATE_TEMPLATE_OBJECT Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
56-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because CREATE_TEMPLATE_OBJECT utilizes a CLOB, you must use the DBMS_LOB
package when using the CREATE_TEMPLATE_OBJECT function. The following
example illustrates how to use the DBMS_LOB package with the CREATE_
TEMPLATE_OBJECT function:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
a NUMBER;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *

FROM sales WHERE salesperson = :salesid';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT(

refresh_template_name => 'rgt_personnel',
object_name => 'mview_sales',
object_type => 'SNAPSHOT',
ddl_text => templob,
master_rollback_seg => 'RBS');

DBMS_LOB.FREETEMPORARY(templob);
END;
/

CREATE_TEMPLATE_PARM Function

This function creates parameters for a specific deployment template to allow
custom data sets to be created at the remote materialized view site. This function is
only required when the DBA wants to define a set of template variables before
adding any template objects. When objects are added to the template using the
CREATE_TEMPLATE_OBJECT function, any variables in the object DDL are
automatically added to the DBA_REPCAT_TEMPLATE_PARMS view.

The DBA typically uses the ALTER_TEMPLATE_PARM function to modify the
default parameter values or prompt strings (see "ALTER_TEMPLATE_PARM
Procedure" on page 56-9 for more information). The number returned by this
function is used internally by Oracle to manage deployment templates.
DBMS_REPCAT_RGT 56-25

CREATE_TEMPLATE_PARM Function
Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM (

refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR2,
default_parm_value IN CLOB := NULL,
prompt_string IN VARCHAR2 := NULL,
user_override IN VARCHAR2 := NULL)
return NUMBER;

Parameters

Exceptions

Table 56–27 CREATE_TEMPLATE_PARM Function Parameters

Parameter Description

refresh_template_
name

Name of the deployment template for which you want to create
the parameter.

parameter_name Name of the parameter you are creating.

default_parm_value Default values for this parameter are defined using this
parameter. If a user parameter value or runtime parameter value
is not present, then this default value is used during the
instantiation process.

prompt_string The descriptive prompt text that is displayed for this template
parameter during the instantiation process.

user_override Determines whether the user can override the default value if
prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for this
parameter. Set this parameter to 'Y' to allow a user to override
the default value or set this parameter to 'N' to not allow an
override.

Table 56–28 CREATE_TEMPLATE_PARM Function Exceptions

Exception Description

miss_refresh_
template

The specified refresh template name is invalid or missing.

dupl_template_parm A parameter of the same name has already been defined for the
specified deployment template.
56-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

Usage Notes
Because the CREATE_TEMPLATE_PARM function utilizes a CLOB, you must use the
DBMS_LOB package when using the CREATE_TEMPLATE_PARM function. The
following example illustrates how to use the DBMS_LOB package with the CREATE_
TEMPLATE_PARM function:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
a NUMBER;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'REGION 20';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM(

refresh_template_name => 'rgt_personnel',
parameter_name => 'region',
default_parm_value => templob,
prompt_string => ’Enter your region ID:’,
user_override => 'Y');

DBMS_LOB.FREETEMPORARY(templob);
END;
/

CREATE_USER_AUTHORIZATION Function

This function authorizes specific users to instantiate private deployment templates.
Users not authorized for a private deployment template are not able to instantiate
the private template. This function adds a row to the DBA_REPCAT_USER_
AUTHORIZATIONS view.

Before you authorize a user, verify that the user exists at the master site where the
user will instantiate the deployment template. The number returned by this
function is used internally by Oracle to manage deployment templates.

Table 56–29 CREATE_TEMPLATE_PARM Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
DBMS_REPCAT_RGT 56-27

CREATE_USER_AUTHORIZATION Function
Syntax
DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (

user_name IN VARCHAR2,
refresh_template_name IN VARCHAR2)
return NUMBER;

Parameters

Exceptions

Returns

Table 56–30 CREATE_USER_AUTHORIZATION Function Parameters

Parameter Description

user_name Name of the user that you want to authorize to instantiate the
specified template. Specify multiple users by separating user
names with a comma (for example, 'john, mike, bob')

refresh_template_
name

Name of the template that you want to authorize the specified
user to instantiate.

Table 56–31 CREATE_USER_AUTHORIZATION Function Exceptions

Exception Description

miss_user User name supplied is invalid or does not exist.

miss_refresh_
template

Refresh template name supplied is invalid or does not exist.

dupl_user_
authorization

An authorization has already been created for the specified
user and deployment template.

Table 56–32 CREATE_USER_AUTHORIZATION Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
56-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
CREATE_USER_PARM_VALUE Function

This function predefines deployment template parameter values for specific users.
For example, if you want to predefine the region parameter as west for user 33456 ,
then you would use the this function.

Any values specified with this function take precedence over default values
specified for the template parameter. The number returned by this function is used
internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (

refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR2,
user_name IN VARCHAR2,
parm_value IN CLOB := NULL)

return NUMBER;

Parameters

Table 56–33 CREATE_USER_PARM_VALUE Function Parameters

Parameter Description

refresh_template_
name

Specifies the name of the deployment template that contains the
parameter you are creating a user parameter value for.

parameter_name Name of the template parameter that you are defining a user
parameter value for.

user_name Specifies the name of the user that you are predefining a user
parameter value for.

parm_value The predefined parameter value that will be used during the
instantiation process initiated by the specified user.
DBMS_REPCAT_RGT 56-29

CREATE_USER_PARM_VALUE Function
Exceptions

Returns

Table 56–34 CREATE_USER_PARM_VALUE Function Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or missing.

dupl_user_parm_
values

A parameter value for the specified user, parameter, and
deployment template has already been defined. Query the DBA_
REPCAT_USER_PARM_VALUES view for a listing of existing user
parameter values.

miss_template_parm Specified deployment template parameter name is invalid or
missing.

miss_user Specified user name is invalid or missing.

Table 56–35 CREATE_USER_PARM_VALUE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.
56-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the CREATE_USER_PARM_VALUE function utilizes a CLOB, you must use
the DBMS_LOB package when using the this function. The following example
illustrates how to use the DBMS_LOB package with the CREATE_USER_PARM_
VALUE function:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;
a NUMBER;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'REGION 20';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE(

refresh_template_name => 'rgt_personnel',
parameter_name => 'region',
user_name => ’BOB’,
user_parm_value => templob);

DBMS_LOB.FREETEMPORARY(templob);
END;
/

DELETE_RUNTIME_PARMS Procedure

Use this procedure before instantiating a deployment template to delete a runtime
parameter value that you defined using the INSERT_RUNTIME_PARMS procedure.

Syntax
DBMS_REPCAT_RGT.DELETE_RUNTIME_PARMS(

runtime_parm_id IN NUMBER,
parameter_name IN VARCHAR2);
DBMS_REPCAT_RGT 56-31

DROP_ALL_OBJECTS Procedure
Parameters

Exceptions

DROP_ALL_OBJECTS Procedure

This procedure allows the DBA to drop all objects or specific object types from a
deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_OBJECTS (

refresh_template_name IN VARCHAR2,
object_type IN VARCHAR2 := NULL);

Table 56–36 DELETE_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id Specifies the identification that you previously assigned the
runtime parameter value to (this value was retrieved using the
GET_RUNTIME_PARM_ID function).

parameter_name Specifies the name of the parameter value that you want to drop
(query the DBA_REPCAT_TEMPLATE_PARMS view for a list of
deployment template parameters).

Table 56–37 DELETE_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_template_
parm

The specified deployment template parameter name is invalid or
missing.

Caution: This is a dangerous procedure that cannot be undone.
56-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_ALL_TEMPLATE_PARMS Procedure

This procedure lets you drop template parameters for a specified deployment
template. You can use this procedure to drop all parameters that are not referenced
by a template object or to drop from the template all objects that reference any
parameter, along with all of the parameters themselves.

Table 56–38 DROP_ALL_OBJECTS Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template that contains the objects that
you want to drop.

object_type If NULL, then all objects in the template are dropped. If an object
type is specified, then only objects of that type are dropped.
Objects of the following type may be specified:

SNAPSHOT PROCEDURE

INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY

SYNONYM TRIGGER

SEQUENCE DATABASE LINK

Table 56–39 DROP_ALL_OBJECTS Procedure Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or does not exist.

bad_object_type Object type is specified incorrectly. See Table 56–38 for a list of
valid object types.

Caution: This is a dangerous procedure that cannot be undone.
DBMS_REPCAT_RGT 56-33

DROP_ALL_TEMPLATE_SITES Procedure
Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_PARMS (

refresh_template_name IN VARCHAR2,
drop_objects IN VARCHAR2 := ’n’);

Parameters

Exceptions

DROP_ALL_TEMPLATE_SITES Procedure

This procedure removes all entries from the DBA_REPCAT_TEMPLATE_SITES view,
which keeps a record of sites that have instantiated a particular deployment
template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_SITES (

refresh_template_name IN VARCHAR2);

Table 56–40 DROP_ALL_TEMPLATE_PARMS Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template that contains the parameters
and objects that you want to drop.

drop_objects If no value is specified, then this parameter defaults to N, which
drops all parameters not referenced by a template object.

If Y is specified, then all objects that reference any template
parameter and the template parameters themselves are dropped.
The objects are dropped from the template, not from the
database.

Table 56–41 DROP_ALL_TEMPLATE_PARMS Procedure Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or does not exist.

Caution: This is a dangerous procedure that cannot be undone.
56-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_ALL_TEMPLATES Procedure

This procedure removes all deployment templates at the site where the procedure is
called.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATES;

DROP_ALL_USER_AUTHORIZATIONS Procedure

This procedure enables the DBA to drop all user authorizations for a specified
deployment template. Executing this procedure removes rows from the DBA_
REPCAT_USER_AUTHORIZATIONS view.

This procedure might be implemented after converting a private template to a
public template and the user authorizations are no longer required.

Table 56–42 DROP_ALL_TEMPLATE_SITES Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template that contains the sites that
you want to drop.

Table 56–43 DROP_ALL_TEMPLATE_SITES Procedure Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or does not exist.

Caution: This is a dangerous procedure that cannot be undone.
DBMS_REPCAT_RGT 56-35

DROP_ALL_USER_PARM_VALUES Procedure
Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_AUTHORIZATIONS (

refresh_template_name IN VARCHAR2);

Parameters

Exceptions

DROP_ALL_USER_PARM_VALUES Procedure

This procedure drops user parameter values for a specific deployment template.
This procedure is very flexible and enables you to define a set of user parameter
values to be deleted. For example, defining the following parameters has the effect
described in Table 56–46.

Table 56–44 DROP_ALL_USER_AUTHORIZATIONS Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template that contains the user
authorizations that you want to drop.

Table 56–45 DROP_ALL_USER_AUTHORIZATIONS Procedure Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or does not exist.

Table 56–46 DROP_ALL_USER_PARM_VALUES Procedure

Parameter Effect

refresh_template_
name

Drops all user parameters for the specified deployment
template

refresh_template_
name and user_name

Drops all of the specified user parameters for the specified
deployment template

refresh_template_
name and parameter_
name

Drops all user parameter values for the specified deployment
template parameter
56-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_PARMS (

refresh_template_name IN VARCHAR2,
user_name IN VARCHAR2,
parameter_name IN VARCHAR2);

refresh_template_
name, parameter_name ,
and user_name

Drops the specified user’s value for the specified deployment
template parameter (equivalent to drop_user_parm)

Table 56–46 DROP_ALL_USER_PARM_VALUES Procedure

Parameter Effect
DBMS_REPCAT_RGT 56-37

DROP_REFRESH_TEMPLATE Procedure
Parameters

Exceptions

DROP_REFRESH_TEMPLATE Procedure

This procedure drops a deployment template. Dropping a deployment template has
a cascading effect, removing all related template parameters, user authorizations,
template objects, and user parameters (this procedure does not drop template sites).

Syntax
DBMS_REPCAT_RGT.DROP_REFRESH_TEMPLATE (

refresh_template_name IN VARCHAR2);

Table 56–47 DROP_ALL_USER_PARMS Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template that contains the parameter
values that you want to drop.

user_name Name of the user whose parameter values you want to drop.

parameter_name Template parameter that contains the values that you want to
drop.

Table 56–48 DROP_ALL_USER_PARMS Procedure Exceptions

Exception Description

miss_refresh_
template

Deployment template name specified is invalid or does not exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_
values

Deployment template, user, and parameter combination does
not exist in the DBA_REPCAT_USER_PARM_VALUES view.
56-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at any target site. This procedure
removes all related metadata at the master site and disables the specified site from
refreshing its materialized views.

Syntax
DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (

refresh_template_name IN VARCHAR2,
user_name IN VARCHAR2,
site_name IN VARCHAR2);

Table 56–49 DROP_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template to be dropped.

Table 56–50 DROP_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist. Query the DBA_REPCAT_REFRESH_TEMPLATES view for
a list of deployment templates.

Table 56–51 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_
name

The name of the deployment template to be dropped.

user_name The name of the user who originally instantiated the template
at the remote materialized view site. Query the ALL_REPCAT_
TEMPLATE_SITES view to see the users that instantiated
templates.
DBMS_REPCAT_RGT 56-39

DROP_TEMPLATE_OBJECT Procedure
Exceptions

DROP_TEMPLATE_OBJECT Procedure

This procedure removes a template object from a specific deployment template. For
example, a DBA would use this procedure to remove an outdated materialized view
from a deployment template. Changes made to the template are reflected at new
sites instantiating the deployment template. Remote sites that have already
instantiated the template must re-instantiate the deployment template to apply the
changes.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_OBJECT (

refresh_template_name IN VARCHAR2,
object_name IN VARCHAR2,
object_type IN VARCHAR2);

site_name Identifies the master site where you want to drop the specified
template instantiation.

Table 56–52 DROP_SITE_INSTANTIATION Procedure Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist.

miss_user The username specified does not exist.

miss_template_site The deployment template has not been instantiated for user and
site.

Table 56–51 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description
56-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_TEMPLATE_PARM Procedure

This procedure removes an existing template parameter from the DBA_REPCAT_
TEMPLATE_PARMS view. This procedure is useful when you have dropped a
template object and a particular parameter is no longer needed.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_PARM (

refresh_template_name IN VARCHAR2,

Table 56–53 DROP_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template from which you are dropping
the object.

object_name Name of the template object to be dropped.

object_type The type of object that is to be dropped. Objects of the following
type may be specified:

SNAPSHOT PROCEDURE

INDEX FUNCTION

TABLE PACKAGE

VIEW PACKAGE BODY

SYNONYM TRIGGER

SEQUENCE DATABASE LINK

Table 56–54 DROP_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist.

miss_template_
object

The template object specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_OBJECTS view to see a list of
deployment template objects.
DBMS_REPCAT_RGT 56-41

DROP_USER_AUTHORIZATION Procedure
parameter_name IN VARCHAR2);

Parameters

Exceptions

DROP_USER_AUTHORIZATION Procedure

This procedure removes a user authorization entry from the DBA_REPCAT_USER_
AUTHORIZATIONS view. This procedure is used when removing a user’s template
authorization. If a user’s authorization is removed, then the user is no longer able to
instantiate the target deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_USER_AUTHORIZATION (

refresh_template_name IN VARCHAR2,
user_name IN VARCHAR2);

Table 56–55 DROP_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_
name

The deployment template name that has the parameter that you
want to drop

parameter_name Name of the parameter that you want to drop.

Table 56–56 DROP_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_
template

The deployment template name specified is invalid or does not
exist.

miss_template_parm The parameter name specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_PARMS view to see a list of
template parameters.

See Also: "DROP_ALL_USER_AUTHORIZATIONS Procedure"
on page 56-35
56-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

DROP_USER_PARM_VALUE Procedure

This procedure removes a predefined user parameter value for a specific
deployment template. This procedure is often executed after a user’s template
authorization has been removed.

Syntax
DBMS_REPCAT_RGT.DROP_USER_PARM_VALUE (

refresh_template_name IN VARCHAR2,
parameter_name IN VARCHAR2,
user_name IN VARCHAR2);

Table 56–57 DROP_USER_AUTHORIZATION Procedure Parameters

Parameter Description

refresh_template_
name

Name of the deployment template from which the user’s
authorization is being removed.

user_name Name of the user whose authorization is being removed.

Table 56–58 DROP_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user Specified user name is invalid or does not exist.

miss_user_
authorization

Specified user and deployment template combination does
not exist. Query the DBA_REPCAT_USER_
AUTHORIZATIONS view to see a list of user/deployment
template authorizations.

miss_refresh_template Specified deployment template name is invalid or does not
exist.
DBMS_REPCAT_RGT 56-43

GET_RUNTIME_PARM_ID Function
Parameters

Exceptions

GET_RUNTIME_PARM_ID Function

This function retrieves an identification to be used when defining a runtime
parameter value. All runtime parameter values are assigned to this identification
and are also used during the instantiation process.

Syntax
DBMS_REPCAT_RGT.GET_RUNTIME_PARM_ID

RETURN NUMBER;

Table 56–59 DROP_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_
name

Deployment template name that contains the parameter value
that you want to drop.

parameter_name Parameter name that contains the predefined value that you
want to drop.

user_name Name of the user whose parameter value you want to drop.

Table 56–60 DROP_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.
56-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Returns

INSERT_RUNTIME_PARMS Procedure

This procedure defines runtime parameter values prior to instantiating a template.
This procedure should be used to define parameter values when no user parameter
values have been defined and you do not want to accept the default parameter
values.

Before using the this procedure, be sure to execute the GET_RUNTIME_PARM_ID
function to retrieve a parameter identification to use when inserting a runtime
parameter. This identification is used for defining runtime parameter values and
instantiating deployment templates.

Syntax
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS (

runtime_parm_id IN NUMBER,
parameter_name IN VARCHAR2,
parameter_value IN CLOB);

Parameters

Table 56–61 GET_RUNTIME_PARM_ID Function Returns

Return Value Corresponding Datatype

<system-generated
number>

Runtime parameter values are assigned to the system-generated
number and are also used during the instantiation process.

Table 56–62 INSERT_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id The identification retrieved by the GET_RUNTIME_PARM_ID
function. This identification is also used when instantiating the
deployment template. Be sure to use the same identification for all
parameter values for a deployment template.

parameter_name Name of the template parameter for which you are defining a
runtime parameter value. Query the DBA_REPCAT_TEMPLATE_
PARMS view for a list of template parameters.
DBMS_REPCAT_RGT 56-45

INSERT_RUNTIME_PARMS Procedure
Exceptions

parameter_value The runtime parameter value that you want to use during the
deployment template instantiation process.

Table 56–63 INSERT_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does
not exist.

miss_user The user name specified is invalid or does not exist.

miss_user_parm_values The deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

Table 56–62 INSERT_RUNTIME_PARMS Procedure Parameters

Parameter Description
56-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Usage Notes
Because the this procedure utilizes a CLOB, you must use the DBMS_LOB package
when using the INSERT_RUNTIME_PARMS procedure. The following example
illustrates how to use the DBMS_LOB package with the INSERT_RUNTIME_PARMS
procedure:

DECLARE
tempstring VARCHAR2(100);
templob CLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
tempstring := 'REGION 20';
DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS(

runtime_parm_id => 20,
parameter_name => 'region',
parameter_value => templob);

DBMS_LOB.FREETEMPORARY(templob);
END;
/

INSTANTIATE_OFFLINE Function

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while the
materialized view site disconnected from the master (that is, while the materialized
view site is offline). This generated script should be used at remote materialized
view sites that are not able to remain connected to the master site for an extended
amount of time, as the instantiation process at the remote materialized view site
may be lengthy (depending on the amount of data that is populated to the new
materialized views). This function must be executed separately for each user
instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,
during the distribution of deployment templates. The number returned by this
function is used to retrieve the appropriate information from the USER_REPCAT_
TEMP_OUTPUT temporary view.
DBMS_REPCAT_RGT 56-47

INSTANTIATE_OFFLINE Function
Syntax
DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(

refresh_template_name IN VARCHAR2,
site_name IN VARCHAR2,
user_name IN VARCHAR2 := NULL,
runtime_parm_id IN NUMBER := -1e-130,
next_date IN DATE := SYSDATE,
interval IN VARCHAR2 := ’SYSDATE + 1’,
use_default_gowner IN BOOLEAN := true)
return NUMBER;

Note: This function is used to perform an offline instantiation of a
deployment template. Additionally, this function is for replication
administrators who are instantiating for another user. Users
wanting to perform their own instantiation should use the public
version of the INSTANTIATE_OFFLINE function. See the
"INSTANTIATE_OFFLINE Function" on page 56-47 for more
information.

This function should not be confused with the procedures in the
DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table) or with the procedures in the DBMS_
OFFLINE_SNAPSHOT package (used for performing an offline
instantiation of a materialized view). See these respective packages
for more information on their usage.
56-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Parameters

Exceptions

Table 56–64 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_
name

Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.

Table 56–65 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_
template

Deployment template name specified is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONS view. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.
DBMS_REPCAT_RGT 56-49

INSTANTIATE_ONLINE Function
Returns

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the
materialized view environment at the remote materialized view site while the
materialized view site is connected to the master (that is, while the materialized
view site is online). This generated script should be used at remote materialized
view sites that are able to remain connected to the master site for an extended
amount of time, as the instantiation process at the remote materialized view site
may be lengthy (depending on the amount of data that is populated to the new
materialized views). This function must be executed separately for each user
instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including Replication Manager,
during the distribution of deployment templates. The number returned by this
function is used to retrieve the appropriate information from the USER_REPCAT_
TEMP_OUTPUT temporary view.

Table 56–66 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT temporary
view to retrieve the generated instantiation script.

Note: This function is for replication administrators who are
instantiating for another user. Users wanting to perform their own
instantiation should use the public version of the INSTANTIATE_
OFFLINE function, described in "INSTANTIATE_OFFLINE
Function" on page 56-47 section.
56-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Syntax
DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(

refresh_template_name IN VARCHAR2,
site_name IN VARCHAR2 := NULL,
user_name IN VARCHAR2 := NULL,
runtime_parm_id IN NUMBER := -1e-130,
next_date IN DATE := SYSDATE,
interval IN VARCHAR2 := ’SYSDATE + 1’,
use_default_gowner IN BOOLEAN := true)
return NUMBER;

Parameters

Table 56–67 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_
name

Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined runtime parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the runtime parameters (the
identification was retrieved by using the GET_RUNTIME_PARM_
ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If true , then any materialized view groups created are owned
by the default user PUBLIC. If false , then any materialized
view groups created are owned by the user performing the
instantiation.
DBMS_REPCAT_RGT 56-51

LOCK_TEMPLATE_EXCLUSIVE Procedure
Exceptions

Returns

LOCK_TEMPLATE_EXCLUSIVE Procedure

When a deployment template is being updated or modified, you should use the
LOCK_TEMPLATE_EXCLUSIVE procedure to prevent users from reading or
instantiating the template.

The lock is released when a ROLLBACK or COMMIT is performed.

Table 56–68 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_
template

Specified deployment template name is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the DBA_REPCAT_USER_
AUTHORIZATIONS view. If user is not listed, then the specified
user is not authorized to instantiate the target deployment
template.

bad_parms Not all of the template parameters were populated by the
defined user parameter values or template default values. The
number of predefined values may not have matched the number
of template parameters or a predefined value was invalid for the
target parameter (that is, type mismatch).

Table 56–69 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the system-generated number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT temporary
view to retrieve the generated instantiation script.

Note: This procedure should be executed before you make any
modifications to your deployment template.
56-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPCAT_RGT Subprograms
Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_EXCLUSIVE();

LOCK_TEMPLATE_SHARED Procedure

The LOCK_TEMPLATE_SHARED procedure is used to make a specified deployment
template "read-only." This procedure should be called before instantiating a
template, as this ensures that nobody can change the deployment template while it
is being instantiated.

The lock is released when a ROLLBACK or COMMIT is performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_SHARED();
DBMS_REPCAT_RGT 56-53

LOCK_TEMPLATE_SHARED Procedure
56-54 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RE
57

DBMS_REPUTIL

DBMS_REPUTIL contains subprograms to generate shadow tables, triggers, and
packages for table replication, as well as subprograms to generate wrappers for
replication of standalone procedure invocations and packaged procedure
invocations. This package is referenced only by the generated code.

This chapter discusses the following topics:

� Summary of DBMS_REPUTIL Subprograms
PUTIL 57-1

Summary of DBMS_REPUTIL Subprograms
Summary of DBMS_REPUTIL Subprograms

REPLICATION_OFF Procedure

This procedure enables you to modify tables without replicating the modifications
to any other sites in the replication environment. It also disables row-level
replication when using procedural replication. In general, you should suspend
replication activity for all master groups in your replication environment before
setting this flag.

Syntax
DBMS_REPUTIL.REPLICATION_OFF();

Table 57–1 DBMS_REPUTIL Package Subprograms

Subprogram Description

REPLICATION_OFF
Procedure on page 57-2

Modifies tables without replicating the modifications to any other
sites in the replication environment, or disables row-level
replication when using procedural replication.

REPLICATION_ON
Procedure on page 57-3

Re-enables replication of changes after replication has been
temporarily suspended.

REPLICATION_IS_ON
Function on page 57-3

Determines whether or not replication is running.

FROM_REMOTE
Function on page 57-3

Returns TRUE at the beginning of procedures in the internal
replication packages, and returns FALSE at the end of these
procedures.

GLOBAL_NAME
Function on page 57-4

Determines the global database name of the local database (the
global name is the returned value).

MAKE_INTERNAL_
PKG Procedure on
page 57-4

Synchronizes internal packages and tables in the replication
catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

SYNC_UP_REP
Procedure on page 57-5

Synchronizes internal triggers and tables/materialized views in
the replication catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.
57-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPUTIL Subprograms
REPLICATION_ON Procedure

This procedure re-enables replication of changes after replication has been
temporarily suspended.

Syntax
DBMS_REPUTIL.REPLICATION_ON();

REPLICATION_IS_ON Function

This function determines whether or not replication is running. A returned value of
TRUE indicates that the generated replication triggers are enabled. A return value of
FALSE indicates that replication is disabled at the current site for the replication
group.

The returning value of this function is set by calling the REPLICATION_ON or
REPLICATION_OFF procedures in the DBMS_REPUTIL package.

Syntax
DBMS_REPUTIL.REPLICATION_IS_ON()

return BOOLEAN;

FROM_REMOTE Function

This function returns TRUE at the beginning of procedures in the internal replication
packages, and returns FALSE at the end of these procedures. You may need to check
this function if you have any triggers that could be fired as the result of an update
by an internal package.

Syntax
DBMS_REPUTIL.FROM_REMOTE()

return BOOLEAN;
DBMS_REPUTIL 57-3

GLOBAL_NAME Function
GLOBAL_NAME Function

This function determines the global database name of the local database (the global
name is the returned value).

Syntax
DBMS_REPUTIL.GLOBAL_NAME()

return VARCHAR2;

MAKE_INTERNAL_PKG Procedure

This procedure synchronizes the existence of an internal package with a table or
materialized view in the replication catalog. If the table has replication support,
then execute this procedure to create the internal package. If replication support
does not exist, then this procedure destroys any related internal package. This
procedure does not accept the storage table of a nested table.

Syntax
DBMS_REPUTIL.MAKE_INTERNAL_PKG (

canon_sname IN VARCHAR2,
canon_oname IN VARCHAR2);

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.
57-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_REPUTIL Subprograms
Parameters

SYNC_UP_REP Procedure

This procedure synchronizes the existence of an internal trigger with a table or
materialized view in the replication catalog. If the table or materialized view has
replication support, then execute this procedure to create the internal replication
trigger. If replication support does not exist, then this procedure destroys any
related internal trigger. This procedure does not accept the storage table of a nested
table.

Syntax
DBMS_REPUTIL.SYNC_UP_REP (

canon_sname IN VARCHAR2,
canon_oname IN VARCHAR2);

Table 57–2 MAKE_INTERNAL_PKG Procedure Parameters

Parameter Description

canon_sname Schema containing the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.
DBMS_REPUTIL 57-5

SYNC_UP_REP Procedure
Parameters

Table 57–3 SYNC_UP_REP Procedure Parameters

Parameter Description

canon_sname Schema containing the table or materialized view to be
synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table or materialized view to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).
57-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RESOURCE_MAN
58

DBMS_RESOURCE_MANAGER

The DBMS_RESOURCE_MANAGER package maintains plans, consumer groups, and
plan directives. It also provides semantics so that you may group together changes
to the plan schema.

This chapter discusses the following topics:

� Summary of DBMS_RESOURE_MANAGER Subprograms

See Also: For more information on using the Database Resource
Manager, see Oracle9i Database Administrator’s Guide.
AGER 58-1

Requirements
Requirements
The invoker must have the ADMINISTER_RESOURCE_MANAGER system privilege to
execute these procedures. The procedures to grant and revoke this privilege are in
the package DBMS_RESOURCE_MANAGER_PRIVS.

Summary of DBMS_RESOURE_MANAGER Subprograms

Table 58–1 DBMS_RESOURCE_MANAGER Package Subprograms

Subprogram Description

CREATE_PLAN Procedure on
page 58-3

Creates entries which define resource plans.

CREATE_SIMPLE_PLAN
Procedure on page 58-4

Creates a single-level resource plan containing up to
eight consumer groups in one step.

UPDATE_PLAN Procedure on
page 58-5

Updates entries which define resource plans.

DELETE_PLAN Procedure on
page 58-6

Deletes the specified plan as well as all the plan directives
it refers to.

DELETE_PLAN_CASCADE
Procedure on page 58-6

Deletes the specified plan as well as all its descendants
(plan directives, subplans, consumer groups).

CREATE_CONSUMER_
GROUP Procedure on
page 58-7

Creates entries which define resource consumer groups.

UPDATE_CONSUMER_
GROUP Procedure on
page 58-8

Updates entries which define resource consumer groups.

DELETE_CONSUMER_
GROUP Procedure on
page 58-8

Deletes entries which define resource consumer groups.

CREATE_PLAN_DIRECTIVE
Procedure on page 58-9

Creates resource plan directives.

UPDATE_PLAN_DIRECTIVE
Procedure on page 58-11

Updates resource plan directives.

DELETE_PLAN_DIRECTIVE
Procedure on page 58-12

Deletes resource plan directives.

CREATE_PENDING_AREA
Procedure on page 58-13

Creates a work area for changes to resource manager
objects.
58-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
CREATE_PLAN Procedure

This procedure creates entries which define resource plans. For release 8.2, max_
active_sess_target_mth was renamed active_sess_pool_mth and new_queueing_
mth was added.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PLAN (

plan IN VARCHAR2,
comment IN VARCHAR2,
cpu_mth IN VARCHAR2 DEFAULT ’EMPHASIS’,
active_sess_pool_mth IN VARCHAR2 DEFAULT ’ACTIVE_SESS_POOL_ABSOLUTE’,
parallel_degree_limit_mth IN VARCHAR2 DEFAULT

’PARALLEL_DEGREE_LIMIT_ABSOLUTE’,
queueing_mth IN VARCHAR2 DEFAULT ’FIFO_TIMEOUT’,);

VALIDATE_PENDING_AREA
Procedure on page 58-14

Validates pending changes for the resource manager.

CLEAR_PENDING_AREA
Procedure on page 58-14

Clears the work area for the resource manager.

SUBMIT_PENDING_AREA
Procedure on page 58-15

Submits pending changes for the resource manager.

SET_INITIAL_CONSUMER_
GROUP Procedure on
page 58-18

Assigns the initial resource consumer group for a user.

SWITCH_CONSUMER_
GROUP_FOR_SESS Procedure
on page 58-19

Changes the resource consumer group of a specific
session.

SWITCH_CONSUMER_
GROUP_FOR_USER Procedure
on page 58-20

Changes the resource consumer group for all sessions with
a given user name.

Table 58–1 DBMS_RESOURCE_MANAGER Package Subprograms

Subprogram Description
DBMS_RESOURCE_MANAGER 58-3

CREATE_SIMPLE_PLAN Procedure
Parameters

CREATE_SIMPLE_PLAN Procedure

This procedure creates a single-level resource plan containing up to eight consumer
groups in one step. You do not need to create a pending area manually before
creating a resource plan, or use the CREATE_CONSUMER_GROUP and CREATE_
RESOURCE_PLAN_DIRECTIVES procedures separately.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN (

SIMPLE_PLAN IN VARCHAR2 DEFAULT,
CONSUMER_GROUP1 IN VARCHAR2 DEFAULT,
GROUP1_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP2 IN VARCHAR2 DEFAULT,
GROUP2_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP3 IN VARCHAR2 DEFAULT,
GROUP3_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP4 IN VARCHAR2 DEFAULT,
GROUP4_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP5 IN VARCHAR2 DEFAULT,
GROUP5_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP6 IN VARCHAR2 DEFAULT,
GROUP6_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP7 IN VARCHAR2 DEFAULT,
GROUP7_CPU IN NUMBER DEFAULT,
CONSUMER_GROUP8 IN VARCHAR2 DEFAULT,

Table 58–2 CREATE_PLAN Procedure Parameters

Parameter Description

plan Name of resource plan.

comment User’s comment.

cpu_mth Allocation method for CPU resources.

active_sess_pool_mth Allocation method for maximum active sessions.

parallel_degree_limit_
mth

Allocation method for degree of parallelism.

new_queueing_mth Specifies type of queuing policy to use with active session
pool feature.
58-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
GROUP8_CPU IN NUMBER DEFAULT);

UPDATE_PLAN Procedure

This procedure updates entries which define resource plans.For release 8.2 new_
max_active_sess_target_mth was renamed new_active_sess_pool_mth and new_
queueing_mth was added.

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_PLAN (

plan IN VARCHAR2,
new_comment IN VARCHAR2 DEFAULT NULL,
new_cpu_mth IN VARCHAR2 DEFAULT NULL,
new_active_sess_pool_mth IN VARCHAR2 DEFAULT NULL,
new_parallel_degree_limit_mth IN VARCHAR2 DEFAULT NULL,
new_queueing_mth IN VARCHAR2 DEFAULT NULL,
new_group_switch_mth IN VARCHAR2 DEFAULT NULL);

Parameters

Usage Notes
If the parameters to UPDATE_PLAN are not specified, then they remain unchanged
in the data dictionary.

Table 58–3 UPDATE_PLAN Procedure Parameters

Parameter Description

plan Name of resource plan.

new_comment New user’s comment.

new_cpu_mth Name of new allocation method for CPU resources.

new_active_sess_
pool_mth

Name of new method for maximum active sessions.

new_parallel_degree_
limit_mth

Name of new method for degree of parallelism.

new_queueing_mth Specifies type of queuing policy to use with active seesion pool
feature.
DBMS_RESOURCE_MANAGER 58-5

DELETE_PLAN Procedure
DELETE_PLAN Procedure

This procedure deletes the specified plan as well as all the plan directives to which
it refers.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN (

plan IN VARCHAR2);

Parameters

DELETE_PLAN_CASCADE Procedure

This procedure deletes the specified plan and all of its descendants (plan directives,
subplans, consumer groups). Mandatory objects and directives are not deleted.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN_CASCADE (

plan IN VARCHAR2);

Parameters

Errors
If DELETE_PLAN_CASCADE encounters any error, then it rolls back, and nothing is
deleted.

Table 58–4 DELETE_PLAN Procedure Parameters

Parameter Description

plan Name of resource plan to delete.

Table 58–5 DELETE_PLAN_CASCADE Procedure Parameters

Parameters Description

plan Name of plan.
58-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
Usage Notes
Defaults are:

� cpu_method = EMPHASIS

� parallel_degree_limit_mth = PARALLEL_DEGREE_LIMIT_ABSOLUTE

� active_sess_pool_mth = MAX_ACTIVE_SESS_ABSOLUTE

CREATE_CONSUMER_GROUP Procedure

This procedure lets you create entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (

consumer_group IN VARCHAR2,
comment IN VARCHAR2,
cpu_mth IN VARCHAR2 DEFAULT ’ROUND-ROBIN’);

Parameters

Note: If you want to use any default resource allocation method,
then you do not need not specify it when creating or updating a
plan.

Note: The parameter max_active_sess_target_mth is
undocumented in this release: It is reserved for future use.

Table 58–6 CREATE_CONSUMER_GROUP Procedure Parameters

Parameter Description

consumer_group Name of consumer group.

comment User’s comment.

cpu_mth Name of CPU resource allocation method.
DBMS_RESOURCE_MANAGER 58-7

UPDATE_CONSUMER_GROUP Procedure
UPDATE_CONSUMER_GROUP Procedure

This procedure lets you update entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_CONSUMER_GROUP (

consumer_group IN VARCHAR2,
new_comment IN VARCHAR2 DEFAULT NULL,
new_cpu_mth IN VARCHAR2 DEFAULT NULL);

Parameters

If the parameters to the UPDATE_CONSUMER_GROUP procedure are not specified,
then they remain unchanged in the data dictionary.

DELETE_CONSUMER_GROUP Procedure

This procedure lets you delete entries which define resource consumer groups.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_CONSUMER_GROUP (

consumer_group IN VARCHAR2);

Parameters

Table 58–7 UPDATE_CONSUMER_GROUP Procedure Parameter

Parameter Description

consumer_group Name of consumer group.

new_comment New user’s comment.

new_cpu_mth Name of new method for CPU resource allocation.

Table 58–8 DELETE_CONSUMER_GROUP Procedure Parameters

Parameters Description

consumer_group Name of consumer group to be deleted.
58-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
CREATE_PLAN_DIRECTIVE Procedure

This procedure lets you create resource plan directives.For release 8.2 new_max_
active_sess_target_mth was renamed new_active_sess_pool_mth and several new
parameters added.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (

plan IN VARCHAR2,
group_or_subplan IN VARCHAR2,
comment IN VARCHAR2,
cpu_p1 IN NUMBER DEFAULT NULL,
cpu_p2 IN NUMBER DEFAULT NULL,
cpu_p3 IN NUMBER DEFAULT NULL,
cpu_p4 IN NUMBER DEFAULT NULL,
cpu_p5 IN NUMBER DEFAULT NULL,
cpu_p6 IN NUMBER DEFAULT NULL,
cpu_p7 IN NUMBER DEFAULT NULL,
cpu_p8 IN NUMBER DEFAULT NULL,
active_sess_pool_p1 IN NUMBER DEFAULT UNLIMITED,
queueing_p1 IN NUMBER DEFAULT UNLIMITED,
switch_group IN VARCHAR2 DEFAULT NULL,
switch_time IN NUMBER DEFAULT UNLIMITED,
switch_estimate IN BOOLEAN DEFAULT FALSE,
max_est_exec_time IN NUMBER DEFAULT UNLIMITED,
undo_pool IN NUMBER DEFAULT UNLIMITED,
parallel_degree_limit_p1 IN NUMBER DEFAULT UNLIMITED);

Parameters

Table 58–9 CREATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan Name of resource plan.

group_or_subplan Name of consumer group or subplan.

comment Comment for the plan directive.

cpu_p1 First parameter for the CPU resource allocation method.

cpu_p2 Second parameter for the CPU resource allocation method.

cpu_p3 Third parameter for the CPU resource allocation method.
DBMS_RESOURCE_MANAGER 58-9

CREATE_PLAN_DIRECTIVE Procedure
All parameters default to NULL. However, for the EMPHASIS CPU resource
allocation method, this case would starve all the users.

cpu_p4 Fourth parameter for the CPU resource allocation method.

cpu_p5 Fifth parameter for the CPU resource allocation method.

cpu_p6 Sixth parameter for the CPU resource allocation method.

cpu_p7 Seventh parameter for the CPU resource allocation method.

cpu_p8 Eighth parameter for the CPU resource allocation method.

active_sess_pool_p1 First parameter for the maximum active sessions allocation
method (Reserved for future use).

queueing_p1 queue timeout in seconds

switch_group group to switch into once switch time is reached

switch_time switch time

switch_estimate If TRUE, tells Oracle to use its execution time estimate to
automatically switch the consumer group of an operation
before beginning its execution. Default is FALSE.

max_est_exec_time maximum estimated execution time in seconds

undo_pool undo pool size for the consumer group, in Kbytes

parallel_degree_
limit_p1

First parameter for the degree of parallelism allocation method.

Table 58–9 CREATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description
58-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
UPDATE_PLAN_DIRECTIVE Procedure

This procedure lets you update resource plan directives. For release 8.2 new_max_
active_sess_target_mth was renamed new_active_sess_pool_mth and several new
parameters added

Syntax
DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE (

plan IN VARCHAR2,
group_or_subplan IN VARCHAR2,
new_comment IN VARCHAR2 DEFAULT NULL,
new_cpu_p1 IN NUMBER DEFAULT NULL,
new_cpu_p2 IN NUMBER DEFAULT NULL,
new_cpu_p3 IN NUMBER DEFAULT NULL,
new_cpu_p4 IN NUMBER DEFAULT NULL,
new_cpu_p5 IN NUMBER DEFAULT NULL,
new_cpu_p6 IN NUMBER DEFAULT NULL,
new_cpu_p7 IN NUMBER DEFAULT NULL,
new_cpu_p8 IN NUMBER DEFAULT NULL,
new_active_sess_pool_p1 IN NUMBER DEFAULT NULL,
new_queueing_p1 IN NUMBER DEFAULT NULL,
new_parallel_degree_limit_p1 IN NUMBER DEFAULT NULL
new_switch_group IN VARCHAR2 DEFAULT NULL,
new_switch_time IN NUMBER DEFAULT NULL,
new_switch_estimate IN BOOLEAN DEFAULT FALSE,
new_max_est_exec_time IN NUMBER DEFAULT NULL,
new_undo_pool IN NUMBER DEFAULT UNLIMITED);

Parameters

Table 58–10 UPDATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan Name of resource plan.

group_or_subplan Name of consumer group or subplan.

new_comment Comment for the plan directive.

new_cpu_p1 First parameter for the CPU resource allocation method.

new_cpu_p2 Second parameter for the CPU resource allocation method.

new_cpu_p3 Third parameter for the CPU resource allocation method.
DBMS_RESOURCE_MANAGER 58-11

DELETE_PLAN_DIRECTIVE Procedure
If the parameters for UPDATE_PLAN_DIRECTIVE are left unspecified, then they
remain unchanged in the data dictionary.

DELETE_PLAN_DIRECTIVE Procedure

This procedure lets you delete resource plan directives.

Syntax
DBMS_RESOURCE_MANAGER.DELETE_PLAN_DIRECTIVE (

plan IN VARCHAR2,
group_or_subplan IN VARCHAR2);

new_cpu_p4 Fourth parameter for the CPU resource allocation method.

new_cpu_p5 Fifth parameter for the CPU resource allocation method.

new_cpu_p6 Sixth parameter for the CPU resource allocation method.

new_cpu_p7 Seventh parameter for the CPU resource allocation method.

new_cpu_p8 Eighth parameter for the CPU resource allocation method.

new_active_sess_
pool_p1

First parameter for the maximum active sessions allocation
method (Reserved for future use).

new_queueing_p1 queue timeout in seconds

new_switch_group group to switch into once switch time is reached

new_switch_time switch time

new_switch_estimate If TRUE, tells Oracle to use its execution time estimate to
automatically switch the consumer group of an operation
before beginning its execution. Default is FALSE.

new_max_est_exec_
time

maximum estimated execution time in seconds

new_undo_pool undo pool size for the consumer group, in Kbytes

new_parallel_degree_
limit_p1

First parameter for the degree of parallelism allocation method.

Table 58–10 UPDATE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description
58-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
Parameters

CREATE_PENDING_AREA Procedure

This procedure lets you make changes to resource manager objects.

All changes to the plan schema must be done within a pending area. The pending
area can be thought of as a "scratch" area for plan schema changes. The
administrator creates this pending area, makes changes as necessary, possibly
validates these changes, and only when the submit is completed do these changes
become active.

You may, at any time while the pending area is active, view the current plan schema
with your changes by selecting from the appropriate user views.

At any time, you may clear the pending area if you want to stop the current
changes. You may also call the VALIDATE procedure to confirm whether the
changes you has made are valid. You do not have to do your changes in a given
order to maintain a consistent group of entries. These checks are also implicitly
done when the pending area is submitted.

Syntax
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA;

Usage Notes
The following rules must be adhered to, and they are checked whenever the
validate or submit procedures are executed:

Table 58–11 DELETE_PLAN_DIRECTIVE Procedure Parameters

Parameter Description

plan Name of resource plan.

group_or_subplan Name of group or subplan.

Note: Oracle allows "orphan" consumer groups (in other words,
consumer groups that have no plan directives that refer to them).
This is in anticipation that an administrator may want to create a
consumer group that is not currently being used, but will be used
in the future.
DBMS_RESOURCE_MANAGER 58-13

VALIDATE_PENDING_AREA Procedure
1. No plan schema may contain any loops.

2. All plans and consumer groups referred to by plan directives must exist.

3. All plans must have plan directives that refer to either plans or consumer
groups.

4. All percentages in any given level must not add up to greater than 100 for the
emphasis resource allocation method.

5. No plan may be deleted that is currently being used as a top plan by an active
instance.

6. For Oracle8i, the plan directive parameter, parallel_degree_limit_p1 ,
may only appear in plan directives that refer to consumer groups (that is, not at
subplans).

7. There cannot be more than 32 plan directives coming from any given plan (that
is, no plan can have more than 32 children).

8. There cannot be more than 32 consumer groups in any active plan schema.

9. Plans and consumer groups use the same namespace; therefore, no plan can
have the same name as any consumer group.

10. There must be a plan directive for OTHER_GROUPS somewhere in any active
plan schema.This ensures that a session not covered by the currently active plan
is allocated resources as specified by the OTHER_GROUPS directive.

If any of the preceding rules are broken when checked by the VALIDATE or SUBMIT
procedures, then an informative error message is returned. You may then make
changes to fix the problem(s) and reissue the validate or submit procedures.

VALIDATE_PENDING_AREA Procedure

This procedure lets you validate pending changes for the resource manager.

Syntax
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA;

CLEAR_PENDING_AREA Procedure

This procedure lets you clear pending changes for the resource manager.
58-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
Syntax
DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA;

SUBMIT_PENDING_AREA Procedure

This procedure lets you submit pending changes for the resource manager: It clears
the pending area after validating and committing the changes (if valid).

Syntax
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA;

Example
One of the advantages of plans is that they can refer to each other. The entries in a
plan can either be consumer groups or subplans. For example, the following is also
a set of valid CPU plan directives:

If these plan directives were in effect and there were an infinite number of runnable
sessions in all consumer groups, then the MAILDB plan would be assigned 30% of
the available CPU resources, while the BUGDB plan would be assigned 70% of the
available CPU resources. Breaking this further down, sessions in the "Postman"
consumer group would be run 12% (40% of 30%) of the time, while sessions in the
"Online" consumer group would be run 56% (80% of 70%) of the time. Figure 58–1
diagram depicts this scenario:

Note: A call to SUBMIT_PENDING_AREA may fail even if
VALIDATE_PENDING_AREA succeeds. This may happen if a plan
being deleted is loaded by an instance after a call to VALIDATE_
PENDING_AREA, but before a call to SUBMIT_PENDING_AREA.

Table 58–12 MYDB PLAN CPU Plan Directives

Subplan/Group CPU_Level 1

MAILDB Plan 30%

BUGDB Plan 70%
DBMS_RESOURCE_MANAGER 58-15

SUBMIT_PENDING_AREA Procedure
Figure 58–1 Resource Manager Scenario

Conceptually below the consumer groups are the active sessions. In other words, a
session belongs to a resource consumer group, and this consumer group is used by
a plan to determine allocation of processing resources.

A multiplan (plan with one or more subplans) definition of CPU plan directives
cannot be collapsed into a single plan with one set of plan directives, because each
plan is its own entity. The CPU quanta that is allotted to a plan or subplan gets used
only within that plan, unless that plan contains no consumer groups with active
sessions. Therefore, in this example, if the Bug Maintenance Group did not use any
of its quanta, then it would get recycled within that plan, thus going back to level 1
within the BUGDB PLAN. If the multiplan definition in the preceding example got
collapsed into a single plan with multiple consumer groups, then there would be no
way to explicitly recycle the Bug Maintenance Group’s unused quanta. It would
have to be recycled globally, thus giving the mail sessions an opportunity to use it.

The resources for a database can be partitioned at a high level among multiple
applications and then repartitioned within an application. If a given group within
an application does not need all the resources it is assigned, then the resource is
only repartitioned within the same application.

The following example uses the default plan and consumer group allocation
methods:

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' bugdb_plan ' ,

COMMENT =>' Resource plan/method for bug users sessions ');

100% @
Level 2

20% @
Level 1

80% @
Level 1

100% @
Level 3

40% @
Level 1

20% @
Level 2

80% @
Level 2

70% @
Level 1

MAIL MAINT
GROUP

ONLINE
GROUP

BATCH
GROUP

BUG MAINT
GROUP

USERS
GROUP

POSTMAN
GROUP

30% @
Level 1

OTHER
GROUPS

MYDB
PLAN

BUGDB
PLAN

MAILDB
PLAN
58-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' maildb_plan ' ,
COMMENT =>' Resource plan/method for mail users sessions ');

DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN =>' mydb_plan ' ,
COMMENT =>' Resource plan/method for bug and mail users sessions ');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Online_group ' ,
COMMENT =>' Resource consumer group/method for online bug users sessions ');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Batch_group ' ,
COMMENT =>' Resource consumer group/method for bug users sessions who run batch jobs ');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Bug_Maintenance_group ' ,

COMMENT =>' Resource consumer group/method for users sessions who maintain
the bug db ');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_users_group ' ,
COMMENT =>' Resource consumer group/method for mail users sessions ');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_Postman_group ' ,
COMMENT =>' Resource consumer group/method for mail postman ');

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP =>' Mail_Maintenance_group ' ,
COMMENT =>' Resource consumer group/method for users sessions who maintain the mail
db');

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' , GROUP_OR_SUBPLAN =>
' Bug_Online_group ' ,

COMMENT =>' online bug users sessions at level 1 ' , CPU_P1 => 80, CPU_P2=> 0,
PARALLEL_DEGREE_LIMIT_P1 => 8);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' , GROUP_OR_SUBPLAN =>
' Bug_Batch_group ' ,

COMMENT =>' batch bug users sessions at level 1 ' , CPU_P1 => 20, CPU_P2 => 0,
PARALLEL_DEGREE_LIMIT_P1 => 2);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' , GROUP_OR_SUBPLAN =>
' Bug_Maintenance_group ' ,

COMMENT =>' bug maintenance users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 100,
PARALLEL_DEGREE_LIMIT_P1 => 3);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' bugdb_plan ' , GROUP_OR_SUBPLAN =>
' OTHER_GROUPS' ,

COMMENT =>' all other users sessions at level 3 ' , CPU_P1 => 0, CPU_P2 => 0, CPU_P3 =>
100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' , GROUP_OR_SUBPLAN =>
' Mail_Postman_group ' ,

COMMENT =>' mail postman at level 1 ' , CPU_P1 => 40, CPU_P2 => 0,
PARALLEL_DEGREE_LIMIT_P1 => 4);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' , GROUP_OR_SUBPLAN =>
' Mail_users_group ' ,

COMMENT =>' mail users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 80,
PARALLEL_DEGREE_LIMIT_P1 => 4);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' , GROUP_OR_SUBPLAN =>
' Mail_Maintenance_group ' ,

COMMENT =>' mail maintenance users sessions at level 2 ' , CPU_P1 => 0, CPU_P2 => 20,
PARALLEL_DEGREE_LIMIT_P1 => 2);

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' maildb_plan ' , GROUP_OR_SUBPLAN =>
' OTHER_GROUPS' ,

COMMENT =>' all other users sessions at level 3 ' , CPU_P1 => 0, CPU_P2 => 0, CPU_P3 =>
DBMS_RESOURCE_MANAGER 58-17

SET_INITIAL_CONSUMER_GROUP Procedure
100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' mydb_plan ' , GROUP_OR_SUBPLAN =>
' maildb_plan ' ,

COMMENT=>' all mail users sessions at level 1 ' , CPU_P1 => 30);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN =>' mydb_plan ' , GROUP_OR_SUBPLAN =>
' bugdb_plan ' ,

COMMENT =>' all bug users sessions at level 1 ' , CPU_P1 => 70);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
end;

The preceding call to VALIDATE_PENDING_AREA is optional, because the
validation is implicitly done in SUBMIT_PENDING_AREA.

SET_INITIAL_CONSUMER_GROUP Procedure

The initial consumer group of a user is the consumer group to which any session
created by that user initially belongs. This procedure sets the initial resource
consumer group for a user.

Syntax
DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP (

user IN VARCHAR2,
consumer_group IN VARCHAR2);

Parameters

Usage Notes
The ADMINISTER_RESOURCE_MANAGER or the ALTER USER system privilege are
required to be able to execute this procedure. The user, or PUBLIC, must be directly
granted switch privilege to a consumer group before it can be set to be the user’s
initial consumer group. Switch privilege for the initial consumer group cannot come
from a role granted to that user.

Table 58–13 SET_INITIAL_CONSUMER_GROUP Procedure Parameters

Parameters Description

user Name of the user.

consumer_group The user’s initial consumer group.
58-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURE_MANAGER Subprograms
If the initial consumer group for a user has never been set, then the user’s initial
consumer group is automatically the consumer group: DEFAULT_CONSUMER_
GROUP.

DEFAULT_CONSUMER_GROUP has switch privileges granted to PUBLIC; therefore,
all users are automatically granted switch privilege for this consumer group. Upon
deletion of a consumer group, all users having the deleted group as their initial
consumer group now have DEFAULT_CONSUMER_GROUP as their initial consumer
group. All currently active sessions belonging to a deleted consumer group are
switched to DEFAULT_CONSUMER_GROUP.

SWITCH_CONSUMER_GROUP_FOR_SESS Procedure

This procedure lets you change the resource consumer group of a specific session. It
also changes the consumer group of any (PQ) slave sessions that are related to the
top user session.

Syntax
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS (

session_id IN NUMBER,
session_serial IN NUMBER,
consumer_group IN VARCHAR2);

Parameters

Note: These semantics are similar to those for ALTER USER
DEFAULT ROLE.

Table 58–14 SWITCH_CONSUMER_GROUP_FOR_SESS Procedure Parameters

Parameter Description

session_id SID column from the view V$SESSION.

session_serial SERIAL# column from view V$SESSION.

consumer_group Name of the consumer group to switch to.
DBMS_RESOURCE_MANAGER 58-19

SWITCH_CONSUMER_GROUP_FOR_USER Procedure
SWITCH_CONSUMER_GROUP_FOR_USER Procedure

This procedure lets you change the resource consumer group for all sessions with a
given user ID. It also change the consumer group of any (PQ) slave sessions that are
related to the top user session.

Syntax
DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER (

user IN VARCHAR2,
consumer_group IN VARCHAR2);

Parameters

Usage Notes
The SWITCH_CONSUMER_GROUP_FOR_SESS and SWITCH_CONSUMER_GROUP_
FOR_USER procedures let you to raise or lower the allocation of CPU resources of
certain sessions or users. This provides a functionality similar to the nice
command on UNIX.

These procedures cause the session to be moved into the newly specified consumer
group immediately.

Table 58–15 SWITCH_CONSUMER_GROUP_FOR_USER Procedure Parameters

Parameter Description

user Name of the user.

consumer_group Name of the consumer group to switch to.
58-20 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RESOURCE_MANAGER
59

DBMS_RESOURCE_MANAGER_PRIVS

The DBMS_RESOURCE_MANAGER_PRIVS package maintains privileges associated
with the Resource Manager.

This chapter discusses the following topics:

� Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

See Also: For more information on using the Database Resource
Manager, see Oracle9i Database Administrator’s Guide.
_PRIVS 59-1

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure performs a grant of a system privilege to a user or role.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (

grantee_name IN VARCHAR2,
privilege_name IN VARCHAR2 DEFAULT ’ADMINISTER_RESOURCE_MANAGER’,
admin_option IN BOOLEAN);

Parameters

Currently, Oracle provides only one system privilege for the Resource Manager:
ADMINISTER_RESOURCE_MANAGER. Database administrators have this system
privilege with the admin option. The grantee and the revokee can either be a user or

Table 59–1 DBMS_RESOURCE_MANAGER_PRIVS Subprograms

Subprogram Description

GRANT_SYSTEM_PRIVILEGE
Procedure on page 59-2

Performs a grant of a system privilege.

REVOKE_SYSTEM_PRIVILEGE
Procedure on page 59-3

Performs a revoke of a system privilege.

GRANT_SWITCH_
CONSUMER_GROUP
Procedure on page 59-3

Grants the privilege to switch to resource consumer
groups.

REVOKE_SWITCH_
CONSUMER_GROUP
Procedure on page 59-5

Revokes the privilege to switch to resource consumer
groups.

Table 59–2 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

grantee_name Name of the user or role to whom privilege is to be granted.

privilege_name Name of the privilege to be granted.

admin_option TRUE if the grant is with admin_option , FALSE otherwise.
59-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
a role. Users that have been granted the system privilege with the admin option can
also grant this privilege to others.

Example
The following call grants this privilege to a user called scott without the admin
option:

DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
grantee_name => ’scott’,
admin_option => FALSE);

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure performs a revoke of a system privilege from a user or role.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE (

revokee_name IN VARCHAR2,
privilege_name IN VARCHAR2 DEFAULT ’ADMINISTER_RESOURCE_MANAGER’);

Parameters

Example
The following call revokes the ADMINISTER_RESOURCE_MANAGER from user scott:

DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE (’scott’);

GRANT_SWITCH_CONSUMER_GROUP Procedure

This procedure grants the privilege to switch to a resource consumer group.

Table 59–3 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

revokee_name Name of the user or role from whom privilege is to be revoked.

privilege_name Name of the privilege to be revoked.
DBMS_RESOURCE_MANAGER_PRIVS 59-3

GRANT_SWITCH_CONSUMER_GROUP Procedure
Syntax
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (

grantee_name IN VARCHAR2,
consumer_group IN VARCHAR2,
grant_option IN BOOLEAN);

Parameters

Usage Notes
If you grant permission to switch to a particular consumer group to a user, then that
user can immediately switch their current consumer group to the new consumer
group.

If you grant permission to switch to a particular consumer group to a role, then any
users who have been granted that role and have enabled that role can immediately
switch their current consumer group to the new consumer group.

If you grant permission to switch to a particular consumer group to PUBLIC, then
any user can switch to that consumer group.

If the grant_option parameter is TRUE, then users granted switch privilege for
the consumer group may also grant switch privileges for that consumer group to
others.

In order to set the initial consumer group of a user, you must grant the switch
privilege for that group to the user.

Example
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_COMSUMER_GROUP (

’scott’, ’mail_maintenance_group’, true);

Table 59–4 GRANT_SWITCH_CONSUMER_GROUP Procedure Parameters

Parameter Description

grantee_name Name of the user or role to whom privilege is to be granted.

consumer_group Name of consumer group.

grant_option TRUE if grantee should be allowed to grant access, FALSE
otherwise.

See Also: Chapter 58, "DBMS_RESOURCE_MANAGER"
59-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP (
’scott’, ’mail_maintenance_group’);

REVOKE_SWITCH_CONSUMER_GROUP Procedure

This procedure revokes the privilege to switch to a resource consumer group.

Syntax
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (

revokee_name IN VARCHAR2,
consumer_group IN VARCHAR2);

Parameters

Usage Notes
If you revoke a user’s switch privilege for a particular consumer group, then any
subsequent attempts by that user to switch to that consumer group will fail.

If you revoke the initial consumer group from a user, then that user will
automatically be part of the DEFAULT_CONSUMER_GROUP consumer group when
logging in.

If you revoke the switch privilege for a consumer group from a role, then any users
who only had switch privilege for the consumer group through that role will not be
able to switch to that consumer group.

If you revoke the switch privilege for a consumer group from PUBLIC, then any
users who could previously only use the consumer group through PUBLIC will not
be able to switch to that consumer group.

Example
The following example revokes the privileges to switch to mail_maintenance_
group from Scott:

Table 59–5 REVOKE_SWITCH_CONSUMER_GROUP Procedure Parameter

Parameter Description

revokee_name Name of user/role from which to revoke access.

consumer_group Name of consumer group.
DBMS_RESOURCE_MANAGER_PRIVS 59-5

REVOKE_SWITCH_CONSUMER_GROUP Procedure
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
’scott’, ’mail_maintenance_group’);
59-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RESUM
60

DBMS_RESUMABLE

With DBMS_RESUMABLE, you can suspend large operations that run out of space or
reach space limits after executing for a long time, fix the problem, and make the
statement resume execution. Thus, you can write applications without worrying
about running into space-related errors.

When you suspend a statement, you should log the suspension in the alert log. You
should also register a procedure to be executed when the statement is suspended.
Using a view, you can monitor the progress of the statement and indicate whether
the statement is currently executing or suspended.

Suspending a statement automatically results in suspending the transaction. Thus
all transactional resources are held during a statement suspend and resume. When
the error condition disappears, the suspended statement automatically resumes
execution. A resumable space allocation can be suspended and resumed multiple
times during execution.

A suspension timeout interval is associated with resumable space allocations. A
resumable space allocation that is suspended for the timeout interval (the default is
two hours) wakes up and returns an exception to the user. A suspended statement
may be forced to throw an exception using the DMBS_RESUMABLE.ABORT()
procedure.

This chapter discusses the following topics:

� Summary of DBMS_RESUMABLE Subprograms
ABLE 60-1

Summary of DBMS_RESUMABLE Subprograms
Summary of DBMS_RESUMABLE Subprograms

ABORT Procedure

This procedure aborts a suspended resumable space allocation. The parameter
session_id is the session ID in which the statement is executed. For a parallel
DML/DDL, session_id is any session ID that participates in the parallel
DML/DDL. This operation is guaranteed to succeed. The procedure can be called
either inside or outside of the AFTER SUSPEND trigger.

To call an ABORT procedure, you must be the owner of the session with session_
id, have ALTER SYSTEM privileges, or be a DBA.

Syntax
DBMS_RESUMABLE.ABORT (

session_id IN NUMBER);

Table 60–1 DBMS_RESUMABLE Subprograms

Subprogram Description

ABORT Procedure on
page 60-2

Aborts a suspended resumable space allocation.

GET_SESSION_TIMEOUT
Function on page 60-3

Returns the current timeout value of the resumable space
allocations for a session with session_id.

SET_SESSION_TIMEOUT
Procedure on page 60-3

Sets the timeout of resumable space allocations for a session
with session_id.

GET_TIMEOUT Function
on page 60-4

Returns the current timeout value of resumable space
allocations for the current session.

SET_TIMEOUT Procedure
on page 60-4

Sets the timeout of resumable space allocations for the current
session.

SPACE_ERROR_INFO
Function on page 60-5

Looks for space-related errors in the error stack. If it cannot
find a space-related error, it will return FALSE.
60-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESUMABLE Subprograms
Parameters

GET_SESSION_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for a
session with session_id. The timeout is returned in seconds. If session_id
does not exist, the GET_SESSION_TIMEOUT function returns -1.

Syntax
DBMS_RESUMABLE.GET_SESSION_TIMEOUT (

session_id IN NUMBER);

Parameters

SET_SESSION_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for a session with
session_id. The timeout is returned in seconds. The new timeout setting applies
to the session immediately. If session_id does not exist, no operation occurs.

Syntax
DBMS_RESUMABLE.SET_SESSION_TIMEOUT (

session_id IN NUMBER,
timeout IN NUMBER);

Table 60–2 ABORT Procedure Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.

Table 60–3 GET_SESSION_TIMEOUT Function Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.
DBMS_RESUMABLE 60-3

GET_TIMEOUT Function
Parameters

GET_TIMEOUT Function

This function returns the current timeout value of resumable space allocations for
the current session. The returned value is in seconds. If session_id does not exist,
the GET_TIMEOUT function returns -1.

Syntax
DBMS_RESUMABLE.GET_TIMEOUT;

SET_TIMEOUT Procedure

This procedure sets the timeout of resumable space allocations for the current
session. The timeout is returned in seconds. The new timeout setting applies to the
session immediately. If session_id does not exist, no operation occurs.

Syntax
DBMS_RESUMABLE.SET_TIMEOUT (

timeout IN NUMBER);

Parameters

Table 60–4 SET_SESSION_TIMEOUT Procedure Parameters

Parameter Description

session_id The session identifier of the resumable space allocation.

timeout The timeout of the resumable space allocation.

Table 60–5 SET_TIMEOUT Procedure Parameters

Parameter Description

timeout The timeout of the resumable space allocation.
60-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RESUMABLE Subprograms
SPACE_ERROR_INFO Function

This function looks for space-related errors in the error stack. If it cannot find a
space related error, it will return FALSE. Otherwise, TRUE is returned and
information about the particular object that causes the space error is returned.

Syntax
DBMS_RESUMABLE.SPACE_ERROR_INFO

error_type OUT VARCHAR2,
object_type OUT VARCHAR2,
object_owner OUT VARCHAR2,
table_space_name OUT VARCHAR2,
object_name OUT VARCHAR2,
sub_object_name OUT VARCHAR2)

return boolean;

Parameters

Table 60–6 SPACE_ERROR_INFO Function Parameters

Parameter Description

error_type The space error type. It will be one of the following:

� NO MORE SPACE

� MAX EXTENTS REACHED

� SPACE QUOTA EXCEEDED
DBMS_RESUMABLE 60-5

SPACE_ERROR_INFO Function
object_type The object type. It will be one of the following:

� TABLE SPACE

� ROLLBACK SEGMENT

� UNDO SEGMENT

� TABLE

� INDEX

� CLUSTER

� TEMP SEGMENT

� INDEX PARTITION

� TABLE PARTITION

� LOB SEGMENT

� TABLE SUBPARTITION

� INDEX SUBPARTITION

� LOB SUBPARTITION

object_owner The owner of the object. NULL if it cannot be determined.

table_space_name The table space where the object resides. NULL if it cannot be
determined.

object_name The name of rollback segment, temp segment, table, index, or
cluster.

sub_object_name The partition name or sub-partition name of LOB, TABLE, or
INDEX. NULL if it cannot be determined.

Table 60–6 SPACE_ERROR_INFO Function Parameters

Parameter Description
60-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DB
61

DBMS_RLS

The DBMS_RLS package contains the fine-grained access control administrative
interface. DBMS_RLS is available with the Enterprise Edition only.

This chapter discusses the following topics:

� Dynamic Predicates

� Security

� Usage Notes

� Summary of DBMS_RLS Subprograms

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
a detailed example and more usage information on DBMS_RLS.
MS_RLS 61-1

Dynamic Predicates
Dynamic Predicates
The functionality to support fine-grained access control is based on dynamic
predicates, where security rules are not embedded in views, but are acquired at the
statement parse time, when the base table or view is referenced in a DML statement.

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL
function, which is associated with a security policy through a PL/SQL interface. For
example:

DBMS_RLS.ADD_POLICY (
’hr’, ’employees’, ’emp_policy’, ’hr’, ’emp_sec’, ’select’);

Whenever the EMPLOYEES table, under the HR schema, is referenced in a query or
subquery (SELECT), the server calls the EMP_SEC function (under the HR schema).
This returns a predicate specific to the current user for the EMP_POLICY policy. The
policy function may generate the predicates based on the session environment
variables available during the function call. These variables usually appear in the
form of application contexts.

The server then produces a transient view with the text:

SELECT * FROM hr.employees WHERE P1

Here, P1 (for example, where SAL > 10000, or even a subquery) is the predicate
returned from the EMP_SEC function. The server treats the EMPLOYEES table as a
view and does the view expansion just like the ordinary view, except that the view
text is taken from the transient view instead of the data dictionary.

If the predicate contains subqueries, then the owner (definer) of the policy function
is used to resolve objects within the subqueries and checks security for those
objects. In other words, users who have access privilege to the policy-protected
objects do not need to know anything about the policy. They do not need to be
granted object privileges for any underlying security policy. Furthermore, the users
do not require EXECUTE privilege on the policy function, because the server makes
the call with the function definer’s right.

Note: The transient view can preserve the updatability of the
parent object because it is derived from a single table or view with
predicate only; that is, no JOIN , ORDER BY, GROUP BY, and so on.
61-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
DBMS_RLS also provides the interface to drop, enable, and disable security policies.
For example, you can drop or disable the EMP_POLICY with the following PL/SQL
statements:

DBMS_RLS.DROP_POLICY(’hr’, ’employees’, ’emp_policy’);
DBMS_RLS.ENABLE_POLICY(’hr’, ’employees’, ’emp_policy’, FALSE)

Security
A security check is performed when the transient view is created with a subquery.
The schema owning the policy function, which generates the dynamic predicate, is
the transient view’s definer for security check and object lookup.

Usage Notes
The DBMS_RLS procedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_RLS procedures are
part of the DDL transaction.

For example, you may create a trigger for CREATE TABLE. Inside the trigger, you
may add a column through ALTER TABLE, and you can add a policy through
DBMS_RLS. All these operations are in the same transaction as CREATE TABLE, even
though each one is a DDL statement. The CREATE TABLE succeeds only if the
trigger is completed successfully.

Views of current cursors and corresponding predicates are available from v$vpd_
policies .

A synonym can reference only a view or a table.

Summary of DBMS_RLS Subprograms

Table 61–1 DBMS_RLS Subprograms

Subprogram Description

ADD_POLICY Procedure on
page 61-4

Adds a fine-grained access control policy to a table,
view, or synonym..

DROP_POLICY Procedure on
page 61-7

Drops a fine-grained access control policy from a table,
view, or synonym..
DBMS_RLS 61-3

ADD_POLICY Procedure
ADD_POLICY Procedure

This procedure adds a fine-grained access control policy to a table , view, or
synonym.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A COMMIT is also performed at the end of the operation.

REFRESH_POLICY Procedure on
page 61-7

Causes all the cached statements associated with the
policy to be reparsed.

ENABLE_POLICY Procedure on
page 61-8

Enables or disables a fine-grained access control policy.

CREATE_POLICY_GROUP
Procedure on page 61-9

Creates a policy group.

ADD_GROUPED_POLICY
Procedure on page 61-10

Adds a policy associated with a policy group.

ADD_POLICY_CONTEXT
Procedure on page 61-11

Adds the context for the active application.

DELETE_POLICY_GROUP
Procedure on page 61-13

Deletes a policy group.

DROP_GROUPED_POLICY
Procedure on page 61-13

Drops a policy associated with a policy group.

DROP_POLICY_CONTEXT
Procedure on page 61-14

Drops a driving context from the object so that it will
have one less driving context.

ENABLE__GROUPED_POLICY
Procedure on page 61-15

Enables or disables a row-level group security policy.

REFRESH_GROUPED_POLICY
Procedure on page 61-15

Reparses the SQL statements associated with a
refreshed policy.

See Also: "Usage Notes" on page 61-3

Table 61–1 DBMS_RLS Subprograms

Subprogram Description
61-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
Syntax
DBMS_RLS.ADD_POLICY (

object_schema IN VARCHAR2 NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
function_schema IN VARCHAR2 NULL,
policy_function IN VARCHAR2,
statement_types IN VARCHAR2 NULL,
update_check IN BOOLEAN FALSE,
enable IN BOOLEAN TRUE,
static_policy IN BOOLEAN FALSE);

Parameters

Table 61–2 ADD_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table,view, or synonym (current default
schema, if NULL).

object_name Name of table, view, or synonym to which the policy is added.

policy_name Name of policy to be added. It must be unique for the same table or
view.

function_schema Schema of the policy function (current default schema, if NULL).

policy_function Name of a function which generates a predicate for the policy. If the
function is defined within a package, then the name of the package
must be present.

statement_types Statement types to which the policy applies. It can be any
combination of SELECT, INSERT, UPDATE, and DELETE. The
default is to apply to all of these types.

update_check Optional argument for INSERT or UPDATE statement types. The
default is FALSE. Setting update_check to TRUE causes the server
to also check the policy against the value after insert or update.

enable Indicates if the policy is enabled when it is added. The default is
TRUE

static_policy The default is FALSE. If it is set to TRUE, the server assumes that the
policy function for the static policy produces the same predicate
string for anyone accessing the object, except for SYS or the
privilege user who has the EXEMPT ACCESS POLICY privilege.
DBMS_RLS 61-5

ADD_POLICY Procedure
Usage Notes
� The server invokes the policy function once for each cursor and will therefore

improve performance for statement parsing and execution. Declaring a policy
function DETERMINISTIC does not affect performance.

� SYS is free of any security policy.

� The policy functions which generate dynamic predicates are called by the
server. Following is the interface for the function:

FUNCTION policy_function (object_schema IN VARCHAR2, object_name VARCHAR2)
RETURN VARCHAR2

--- object_schema is the schema owning the table of view.
--- object_name is the name of table, view, or synonym to which the policy

applies.

The maximum length of the predicate that the policy function can return is 32K.

� The policy functions must have the purity level of WNDS (write no database
state).

� Dynamic predicates generated out of different policies for the same object have
the combined effect of a conjunction (ANDed) of all the predicates.

� The security check and object lookup are performed against the owner of the
policy function for objects in the subqueries of the dynamic predicates.

� If the function returns a zero length predicate, then it is interpreted as no
restriction being applied to the current user for the policy.

� When a table alias is required (for example, parent object is a type table) in the
predicate, the name of the table or view itself must be used as the name of the
alias. The server constructs the transient view as something like "select c1, c2, ...
from tab where <predicate>".

� The checking of the validity of the function is done at runtime for ease of
installation and other dependency issues during import/export.

See Also: The Oracle9i Application Developer’s Guide - Fundamentals
has more details about the RESTRICT_REFERENCES pragma.
61-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
DROP_POLICY Procedure

This procedure drops a fine-grained access control policy from a table, view, or
synonym.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A commit is also performed at the end of the operation.

Syntax
DBMS_RLS.DROP_POLICY (

object_schema IN VARCHAR2 NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2);

Parameters

REFRESH_POLICY Procedure

This procedure causes all the cached statements associated with the policy to be
reparsed. This guarantees that the latest change to this policy will have immediate
effect after the procedure is executed.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

See Also: "Usage Notes" on page 61-3

Table 61–3 DROP_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table, view or synonym (current default
schema if NULL).

object_name Name of table, view, or synonym.

policy_name Name of policy to be dropped from table, view, or synonym..
DBMS_RLS 61-7

ENABLE_POLICY Procedure
A commit is also performed at the end of the operation.

Syntax
DBMS_RLS.REFRESH_POLICY (

object_schema IN VARCHAR2 NULL,
object_name IN VARCHAR2 NULL,
policy_name IN VARCHAR2 NULL);

Parameters

Errors
The procedure returns an error if it tries to refresh a disabled policy.

ENABLE_POLICY Procedure

This procedure enables or disables a fine-grained access control policy. A policy is
enabled when it is created.

The procedure causes the current transaction, if any, to commit before the operation
is carried out. However, this does not cause a commit first if it is inside a DDL event
trigger.

A commit is also performed at the end of the operation.

Syntax
DBMS_RLS.ENABLE_POLICY (

See Also: "Usage Notes" on page 61-3

Table 61–4 REFRESH_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing the table, view, or synonym.

object_name Name of table, view, or synonym with which the policy is
associated.

policy_name Name of policy to be refreshed.

See Also: "Usage Notes" on page 61-3
61-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
object_schema IN VARCHAR2 NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
enable IN BOOLEAN);

Parameters

CREATE_POLICY_GROUP Procedure

This procedure creates a policy group.

Syntax
DBMS_RLS.CREATE_POLICY_GROUP (

object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2);

Parameters

Table 61–5 ENABLE_POLICY Procedure Parameters

Parameter Description

object_schema Schema containing table, view, or synonym (current default schema
if NULL).

object_name Name of table, view, or synonym with which the policy is
associated.

policy_name Name of policy to be enabled or disabled.

enable TRUE to enable the policy, FALSE to disable the policy.

Table 61–6 CREATE_POLICY_GROUP Procedure Parameters

Parameter Description

object_schema Schema containing the table, view, or synonym.

object_name Name of the table, view, or synonym to which the policy is added.

policy_group Name of the policy group that the policy belongs to.
DBMS_RLS 61-9

ADD_GROUPED_POLICY Procedure
Usage Notes
The group must be unique for each table or view.

ADD_GROUPED_POLICY Procedure

This procedure adds a policy associated with a policy group.

Syntax
DBMS_RLS.ADD_GROUPED_POLICY(

object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2,
policy_name VARCHAR2,
function_schema VARCHAR2,
policy_function VARCHAR2,
statement_types VARCHAR2,
update_check BOOLEAN,
enabled BOOLEAN,
static_policy BOOLEAN FALSE);

Parameters

Table 61–7 ADD_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

policy_group The name of the policy group that the policy belongs to.

policy_name The name of the policy; must be unique for the same table or view.

function_schema The schema owning the policy function.

policy_function The name of the function that generates a predicate for the policy. If
the function is defined within a package, the name of the package
must be present.

statement_types The list of statement types to which the policy can apply. It can be
any combination of SELECT, INSERT, UPDATE, or DELETE.
Optional.
61-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
Usage Notes

� The server invokes the policy function once for each cursor and will therefore
improve performance for statement parsing and execution. Declaring a policy
function DETERMINISTIC does not affect performance.

� This procedure adds a policy to the specified table, view, or synonym and
associates the policy with the specified policy group.

� The policy group must have been created using the CREATE_POLICY_GROUP
interface.

� The policy name must be unique within a policy group for a specific object.

� Policies from the default policy group, SYS_DEFAULT, are always executed
regardless of the active policy group; however, fine-grained access control
policies do not apply to users with EXEMPT ACCESS POLICY system privilege.

ADD_POLICY_CONTEXT Procedure

This procedure adds the context for the active application.

Syntax
DBMS_RLS.ADD_POLICY_CONTEXT (

object_schema VARCHAR2,
object_name VARCHAR2,
namespace VARCHAR2,
attribute VARCHAR2);

update_check For INSERT and UPDATE statements only, setting update_check to
TRUE causes the server to check the policy against the value after
INSERT or UPDATE.

enable Indicates if the policy is enable when it is added. The default is
TRUE.

static_policy The default is FALSE. If it is set to TRUE, the server assumes that the
policy function for the static policy produces the same predicate
string for anyone accessing the object, except for SYS or the
privilege user who has the EXEMPT ACCESS POLICY privilege.

Table 61–7 ADD_GROUPED_POLICY Procedure Parameters

Parameter Description
DBMS_RLS 61-11

ADD_POLICY_CONTEXT Procedure
Parameters

Usage Notes
Note the following:

� This procedure indicates the application context that drives the enforcement of
policies; this is the context that determines which application is running.

� The driving context can be session or global.

� At execution time, the server retrieves the name of the active policy group from
the value of this context.

� There must be at least one driving context defined for each object that has fine-
grained access control policies; otherwise, all policies for the object will be
executed.

� Adding multiple context to the same object will cause policies from multiple
policy groups to be enforced.

� If the driving context is NULL, policies from all policy groups are used.

� If the driving context is a policy group with policies, all enabled policies from
that policy group will be applied, along with all policies from the SYS_
DEFAULT policy group.

� To add a policy to table hr.employees in group access_control_group,
the following command is issued:

DBMS_RLS.ADD_GROUPED_POLICY(’hr’,’employees’,’access_control_
group’,’policy1’,’SYS’, ’HR.ACCESS’);

Table 61–8 ADD_POLICY_CONTEXT Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

namespace The namespace of the driving context

attribute The attribute of the driving context.
61-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
DELETE_POLICY_GROUP Procedure

This procedure deletes a policy group.

Syntax
DBMS_RLS.DELETE_POLICY_GROUP (

object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2);

Parameters

Usage Notes
Note the following:

� This procedure deletes a policy group for the specified table, view, or synonym.

� No policy can be in the policy group.

DROP_GROUPED_POLICY Procedure

This procedure drops a policy associated with a policy group.

Syntax
DBMS_RLS.DROP_GROUPED_POLICY (

object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2,
policy_name VARCHAR2);

Table 61–9 DELETE_POLICY_GROUP Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
added.

policy_group The name of the policy group that the policy belongs to
DBMS_RLS 61-13

DROP_POLICY_CONTEXT Procedure
Parameters

DROP_POLICY_CONTEXT Procedure

This procedure drops a driving context from the object so that it will have one less
driving context.

Syntax
DBMS_RLS.DROP_POLICY_CONTEXT (

object_schema VARCHAR2,
object_name VARCHAR2,
namespace VARCHAR2,
attribute VARCHAR2);

Parameters

Table 61–10 DROP_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym to which the policy is
dropped.

policy_group The name of the policy group that the policy belongs to.

policy_name The name of the policy.

Table 61–11 DROP_POLICY_CONTEXT Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym..

object_name The name of the table, view, or synonym to which the policy is
dropped.

namespace The namespace of the driving context.

attribute The attribute of the driving context.
61-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RLS Subprograms
ENABLE__GROUPED_POLICY Procedure

This procedure enables or disables a row-level group security policy.

Syntax
DBMS_RLS.ENABLE_GROUPED_POLICY (

object_schema VARCHAR2,
object_name VARCHAR2,
group_name VARCHAR2,
policy_name VARCHAR2,
enable BOOLEAN);

Parameters

Usage Notes
� The procedure causes the current transaction, if any, to commit before the

operation is carried out.

� A commit is performed at the end of the operation.

� A policy is enabled when it is created.

REFRESH_GROUPED_POLICY Procedure

This procedure reparses the SQL statements associated with a refreshed policy.

Table 61–12 ENABLE_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym.

object_name The name of the table, view, or synonym with which the policy is
associated.

group_name The name of the group of the policy.

policy_name The name of the policy to be enabled or disabled.

enable TRUE enables the policy; FALSE disables the policy.
DBMS_RLS 61-15

REFRESH_GROUPED_POLICY Procedure
Syntax
DBMS_RLS.REFRESH_GROUPED_POLICY (

object_schema VARCHAR2,
object_name VARCHAR2,
group_name VARCHAR2,
policy_name VARCHAR2);

Parameters

Usage Notes
� This procedure causes all the cached statements associated with the policy to be

reparsed. This guarantees that the latest change to the policy has immediate
effect after the procedure is executed.

� The procedure causes the current transaction, if any, to commit before the
operation is carried out.

� A commit is performed at the end of the operation.

� The procedure returns an error if it tries to refresh a disabled policy.

Table 61–13 REFRESH_GROUPED_POLICY Procedure Parameters

Parameter Description

object_schema The schema containing the table, view, or synonym..

object_name The name of the table, view, or synonym with which the policy is
associated.

group_name The name of the group of the policy.

policy_name The name of the policy.
61-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
62

DBMS_ROWID

The DBMS_ROWID package lets you create ROWIDs and obtain information about
ROWIDs from PL/SQL programs and SQL statements. You can find the data block
number, the object number, and other ROWID components without writing code to
interpret the base-64 character external ROWID.

This chapter discusses the following topics:

� Usage Notes

� Requirements

� ROWID Types

� Exceptions

� Summary of DBMS_ROWID Subprograms

Note: DBMS_ROWID is not to be used with universal ROWIDs
(UROWIDs).
_ROWID 62-1

Usage Notes
Usage Notes
Some of the functions in this package take a single parameter, such as a ROWID. This
can be a character or a PL/SLQ ROWID, either restricted or extended, as required.

You can call the DBMS_ROWID functions and procedures from PL/SQL code, and
you can also use the functions in SQL statements.

You can use functions from the DBMS_ROWID package just like built-in SQL
functions; in other words, you can use them wherever you can use an expression. In
this example, the ROWID_BLOCK_NUMBER function is used to return just the block
number of a single row in the EMP table:

SELECT dbms_rowid.rowid_block_number(rowid)
FROM emp
WHERE ename = ’KING’;

Troubleshooting Use of the RESTRICT_REFERENCES Pragma
If Oracle returns the error "ORA:452, 0, ’Subprogram ’%s’ violates its associated
pragma’ for pragma restrict_references", it could mean the violation is due to:

� A problem with the current procedure or function

� Calling a procedure or function without a pragma or due to calling one with a
less restrictive pragma

� Calling a package procedure or function that touches the initialization code in a
package or that sets the default values

PL/SQL Example
This example returns the ROWID for a row in the EMP table, extracts the data object
number from the ROWID, using the ROWID_OBJECT function in the DBMS_ROWID
package, then displays the object number:

DECLARE
object_no INTEGER;
row_id ROWID;
...

BEGIN
SELECT ROWID INTO row_id FROM emp

Note: ROWID_INFO is a procedure. It can only be used in PL/SQL
code.
62-2 Oracle9i Supplied PL/SQL Packages and Types Reference

ROWID Types
WHERE empno = 7499;
object_no := dbms_rowid.rowid_object(row_id);
dbms_output.put_line(’The obj. # is ’|| object_no);
...

Requirements
This package runs with the privileges of calling user, rather than the package owner
(’sys’).

ROWID Types
The types are as follows:

� RESTRICTED—restricted ROWID

� EXTENDED—extended ROWID

For example:

rowid_type_restricted constant integer := 0;
rowid_type_extended constant integer := 1;

ROWID Verification Results

For example:

rowid_is_valid constant integer := 0;
rowid_is_invalid constant integer := 1;

Note: Extended ROWIDs are only used in Oracle8i and higher.

Result Description

VALID Valid ROWID

INVALID Invalid ROWID
DBMS_ROWID 62-3

Exceptions
Object Types

For example:

rowid_object_undefined constant integer := 0;

ROWID Conversion Types

For example:

rowid_convert_internal constant integer := 0;
rowid_convert_external constant integer := 1;

Exceptions

For example:

ROWID_INVALID exception;
pragma exception_init(ROWID_INVALID, -1410);

ROWID_BAD_BLOCK exception;
pragma exception_init(ROWID_BAD_BLOCK, -28516);

Summary of DBMS_ROWID Subprograms

Result Description

UNDEFINED Object Number not defined (for restricted ROWIDs)

Result Description

INTERNAL Convert to/from column of ROWID type

EXTERNAL Convert to/from string format

Exception Description

ROWID_INVALID Invalid rowid format

ROWID_BAD_BLOCK Block is beyond end of file
62-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
ROWID_CREATE Function

This function lets you create a ROWID, given the component parts as parameters.

This is useful for testing ROWID operations, because only the Oracle Server can
create a valid ROWID that points to data in a database.

Syntax
DBMS_ROWID.ROWID_CREATE (

rowid_type IN NUMBER,
object_number IN NUMBER,
relative_fno IN NUMBER,

Table 62–1 DBMS_ROWID Subprograms

Subprogram Description

ROWID_CREATE Function on
page 62-5

Creates a ROWID, for testing only.

ROWID_INFO Procedure on
page 62-7

Returns the type and components of a ROWID.

ROWID_TYPE Function on
page 62-8

Returns the ROWID type: 0 is restricted, 1 is extended.

ROWID_OBJECT Function on
page 62-8

Returns the object number of the extended ROWID.

ROWID_RELATIVE_FNO
Function on page 62-9

Returns the file number of a ROWID.

ROWID_BLOCK_NUMBER
Function on page 62-10

Returns the block number of a ROWID.

ROWID_ROW_NUMBER
Function on page 62-11

Returns the row number.

ROWID_TO_ABSOLUTE_FNO
Function on page 62-11

Returns the absolute file number associated with the
ROWID for a row in a specific table.

ROWID_TO_EXTENDED
Function on page 62-13

Converts a ROWID from restricted format to extended.

ROWID_TO_RESTRICTED
Function on page 62-14

Converts an extended ROWID to restricted format.

ROWID_VERIFY Function on
page 62-15

Checks if a ROWID can be correctly extended by the
ROWID_TO_EXTENDED function.
DBMS_ROWID 62-5

ROWID_CREATE Function
block_number IN NUMBER,
row_number IN NUMBER)

RETURN ROWID;

Pragmas
pragma RESTRICT_REFERENCES(rowid_create,WNDS,RNDS,WNPS,RNPS);

Parameters

Example
Create a dummy extended ROWID:

my_rowid := DBMS_ROWID.ROWID_CREATE(1, 9999, 12, 1000, 13);

Find out what the rowid_object function returns:

obj_number := DBMS_ROWID.ROWID_OBJECT(my_rowid);

The variable obj_number now contains 9999.

Table 62–2 ROWID_CREATE Function Parameters

Parameter Description

rowid_type Type (restricted or extended).

Set the rowid_type parameter to 0 for a restricted ROWID. Set
it to 1 to create an extended ROWID.

If you specify rowid_type as 0, then the required object_
number parameter is ignored, and ROWID_CREATE returns a
restricted ROWID.

object_number Data object number (rowid_object_undefined for
restricted).

relative_fno Relative file number.

block_number Block number in this file.

file_number File number in this block.
62-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
ROWID_INFO Procedure

This procedure returns information about a ROWID, including its type (restricted or
extended), and the components of the ROWID. This is a procedure, and it cannot be
used in a SQL statement.

Syntax
DBMS_ROWID.ROWID_INFO (

rowid_in IN ROWID,
rowid_type OUT NUMBER,
object_number OUT NUMBER,
relative_fno OUT NUMBER,
block_number OUT NUMBER,
row_number OUT NUMBER);

Pragmas
pragma RESTRICT_REFERENCES(rowid_info,WNDS,RNDS,WNPS,RNPS);

Parameters

Example
This example reads back the values for the ROWID that you created in the ROWID_
CREATE:

Table 62–3 ROWID_INFO Procedure Parameters

Parameter Description

rowid_in ROWID to be interpreted. This determines if the ROWID is a
restricted (0) or extended (1) ROWID.

rowid_type Returns type (restricted/extended).

object_number Returns data object number (rowid_object_undefined for
restricted).

relative_fno Returns relative file number.

block_number Returns block number in this file.

file_number Returns file number in this block.

See Also: "ROWID_TYPE Function" on page 62-8
DBMS_ROWID 62-7

ROWID_TYPE Function
DBMS_ROWID.ROWID_INFO(my_rowid, rid_type, obj_num,
file_num, block_num, row_num);

DBMS_OUTPUT.PUT_LINE(’The type is ’ || rid_type);
DBMS_OUTPUT.PUT_LINE(’Data object number is ’ || obj_num);
-- and so on...

ROWID_TYPE Function

This function returns 0 if the ROWID is a restricted ROWID, and 1 if it is extended.

Syntax
DBMS_ROWID.ROWID_TYPE (

rowid_id IN ROWID)
RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_type,WNDS,RNDS,WNPS,RNPS);

Parameters

Example
IF DBMS_ROWID.ROWID_TYPE(my_rowid) = 1 THEN

my_obj_num := DBMS_ROWID.ROWID_OBJECT(my_rowid);

ROWID_OBJECT Function

This function returns the data object number for an extended ROWID. The function
returns zero if the input ROWID is a restricted ROWID.

Syntax
DBMS_ROWID.ROWID_OBJECT (

Table 62–4 ROWID_TYPE Function Parameters

Parameter Description

row_id ROWID to be interpreted.
62-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
rowid_id IN ROWID)
RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_object,WNDS,RNDS,WNPS,RNPS);

Parameters

Example
SELECT dbms_rowid.rowid_object(ROWID)

FROM emp
WHERE empno = 7499;

ROWID_RELATIVE_FNO Function

This function returns the relative file number of the ROWID specified as the IN
parameter. (The file number is relative to the tablespace.)

Syntax
DBMS_ROWID.ROWID_RELATIVE_FNO (

rowid_id IN ROWID)
RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_relative_fno,WNDS,RNDS,WNPS,RNPS);

Table 62–5 ROWID_OBJECT Function Parameters

Parameter Description

row_id ROWID to be interpreted.

Note: The ROWID_OBJECT_UNDEFINED constant is returned for
restricted ROWIDs.
DBMS_ROWID 62-9

ROWID_BLOCK_NUMBER Function
Parameters

Example
The example PL/SQL code fragment returns the relative file number:

DECLARE
file_number INTEGER;
rowid_val ROWID;

BEGIN
SELECT ROWID INTO rowid_val

FROM dept
WHERE loc = ’Boston’;

file_number :=
dbms_rowid.rowid_relative_fno(rowid_val);

...

ROWID_BLOCK_NUMBER Function

This function returns the database block number for the input ROWID.

Syntax
DBMS_ROWID.ROWID_BLOCK_NUMBER (

row_id IN ROWID)
RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_block_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Table 62–6 ROWID_RELATIVE_FNO Function Parameters

Parameter Description

row_id ROWID to be interpreted.

Table 62–7 ROWID_BLOCK_NUMBER Function Parameters

Parameter Description

row_id ROWID to be interpreted.
62-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
Example
The example SQL statement selects the block number from a ROWID and inserts it
into another table:

INSERT INTO T2 (SELECT dbms_rowid.rowid_block_number(ROWID)
FROM some_table
WHERE key_value = 42);

ROWID_ROW_NUMBER Function

This function extracts the row number from the ROWID IN parameter.

Syntax
DBMS_ROWID.ROWID_ROW_NUMBER (

row_id IN ROWID)
RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_row_number,WNDS,RNDS,WNPS,RNPS);

Parameters

Example
Select a row number:

SELECT dbms_rowid.rowid_row_number(ROWID)
FROM emp
WHERE ename = ’ALLEN’;

ROWID_TO_ABSOLUTE_FNO Function

This function extracts the absolute file number from a ROWID, where the file number
is absolute for a row in a given schema and table. The schema name and the name

Table 62–8 ROWID_ROW_NUMBER Function Parameters

Parameter Description

row_id ROWID to be interpreted.
DBMS_ROWID 62-11

ROWID_TO_ABSOLUTE_FNO Function
of the schema object (such as a table name) are provided as IN parameters for this
function.

Syntax
DBMS_ROWID.ROWID_TO_ABSOLUTE_FNO (

row_id IN ROWID,
schema_name IN VARCHAR2,
object_name IN VARCHAR2)

RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_to_absolute_fno,WNDS,WNPS,RNPS);

Parameters

Example
DECLARE

abs_fno INTEGER;
rowid_val CHAR(18);
object_name VARCHAR2(20) := ’EMP’;

BEGIN
SELECT ROWID INTO rowid_val

FROM emp
WHERE empno = 9999;
abs_fno := dbms_rowid.rowid_to_absolute_fno(
rowid_val, ’SCOTT’, object_name);

Table 62–9 ROWID_TO_ABSOLUTE_FNO Function Parameters

Parameter Description

row_id ROWID to be interpreted.

schema_name Name of the schema which contains the table.

object_name Table name.

Note: For partitioned objects, the name must be a table name, not
a partition or a sub/partition name.
62-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
ROWID_TO_EXTENDED Function

This function translates a restricted ROWID that addresses a row in a schema and
table that you specify to the extended ROWID format. Later, it may be removed from
this package into a different place.

Syntax
DBMS_ROWID.ROWID_TO_EXTENDED (

old_rowid IN ROWID,
schema_name IN VARCHAR2,
object_name IN VARCHAR2,
conversion_type IN INTEGER)

RETURN ROWID;

Pragmas
pragma RESTRICT_REFERENCES(rowid_to_extended,WNDS,WNPS,RNPS);

Parameters

Returns
ROWID_TO_EXTENDED returns the ROWID in the extended character format. If the
input ROWID is NULL, then the function returns NULL. If a zero-valued ROWID is
supplied (00000000.0000.0000), then a zero-valued restricted ROWID is returned.

Example
Assume that there is a table called RIDS in the schema SCOTT, and that the table
contains a column ROWID_COL that holds ROWIDs (restricted), and a column

Table 62–10 ROWID_TO_EXTENDED Function Parameters

Parameter Description

old_rowid ROWID to be converted.

schema_name Name of the schema which contains the table (optional).

object_name Table name (optional).

conversion_type rowid_convert_internal /external_convert_
external (whether old_rowid was stored in a column of
ROWID type, or the character string).
DBMS_ROWID 62-13

ROWID_TO_RESTRICTED Function
TABLE_COL that point to other tables in the SCOTT schema. You can convert the
ROWIDs to extended format with the statement:

UPDATE SCOTT.RIDS
SET rowid_col =
dbms_rowid.rowid_to_extended (

rowid_col, ’SCOTT", TABLE_COL, 0);

Usage Notes
If the schema and object names are provided as IN parameters, then this function
verifies SELECT authority on the table named, and converts the restricted ROWID
provided to an extended ROWID, using the data object number of the table. That
ROWID_TO_EXTENDED returns a value, however, does not guarantee that the
converted ROWID actually references a valid row in the table, either at the time that
the function is called, or when the extended ROWID is actually used.

If the schema and object name are not provided (are passed as NULL), then this
function attempts to fetch the page specified by the restricted ROWID provided. It
treats the file number stored in this ROWID as the absolute file number. This can
cause problems if the file has been dropped, and its number has been reused prior
to the migration. If the fetched page belongs to a valid table, then the data object
number of this table is used in converting to an extended ROWID value. This is very
inefficient, and Oracle recommends doing this only as a last resort, when the target
table is not known. The user must still know the correct table name at the time of
using the converted value.

If an extended ROWID value is supplied, the data object number in the input
extended ROWID is verified against the data object number computed from the table
name parameter. If the two numbers do not match, the INVALID_ROWID exception
is raised. If they do match, the input ROWID is returned.

ROWID_TO_RESTRICTED Function

This function converts an extended ROWID into restricted ROWID format.

Syntax
DBMS_ROWID.ROWID_TO_RESTRICTED (

See Also: The ROWID_VERIFY Function has a method to
determine if a given ROWID can be converted to the extended
format.
62-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ROWID Subprograms
old_rowid IN ROWID,
conversion_type IN INTEGER)

RETURN ROWID;

Pragmas
pragma RESTRICT_REFERENCES(rowid_to_restricted,WNDS,RNDS,WNPS,RNPS);

Parameters

ROWID_VERIFY Function

This function verifies the ROWID. It returns 0 if the input restricted ROWID can be
converted to extended format, given the input schema name and table name, and it
returns 1 if the conversion is not possible.

Syntax
DBMS_ROWID.ROWID_VERIFY (

rowid_in IN ROWID,
schema_name IN VARCHAR2,
object_name IN VARCHAR2,
conversion_type IN INTEGER

RETURN NUMBER;

Pragmas
pragma RESTRICT_REFERENCES(rowid_verify,WNDS,WNPS,RNPS);

Table 62–11 ROWID_TO_RESTRICTED Function Parameters

Parameter Description

old_rowid ROWID to be converted.

conversion_type Internal or external - format of returned ROWID.

rowid_convert_internal /external_convert_
external (whether returned ROWID will be stored in a
column of ROWID type or the character string)

Note: You can use this function in a WHERE clause of a SQL
statement, as shown in the example.
DBMS_ROWID 62-15

ROWID_VERIFY Function
Parameters

Example
Considering the schema in the example for the ROWID_TO_EXTENDED function, you
can use the following statement to find bad ROWIDs prior to conversion. This
enables you to fix them beforehand.

SELECT ROWID, rowid_col
FROM SCOTT.RIDS
WHERE dbms_rowid.rowid_verify(rowid_col, NULL, NULL, 0) =1;

Table 62–12 ROWID_VERIFY Function Parameters

Parameter Description

rowid_in ROWID to be verified.

schema_name Name of the schema which contains the table.

object_name Table name.

conversion_type rowid_convert_internal /external_convert_
external (whether old_rowid was stored in a column of
ROWID type or the character string).

See Also: Chapter 98, "UTL_RAW", Chapter 99, "UTL_REF"
62-16 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
63

DBMS_RULE

The DBMS_RULE package contains the EVALUATE procedure.

This chapter contains the following topic:

� Summary of DBMS_RULE Subprograms

Note: PUBLIC is granted execute privilege on this package.

See Also:

� Chapter 109, "Rule Types" for more information about the types
used with the DBMS_RULE package

� Chapter 64, "DBMS_RULE_ADM" and Oracle9i Streams for
more information about rules
_RULE 63-1

Summary of DBMS_RULE Subprograms
Summary of DBMS_RULE Subprograms

Table 63–1 DBMS_RULE Subprogram

Subprogram Description

"EVALUATE Procedure" on
page 63-3

Evaluates the rules in the specified rule set that use the
evaluation context specified
63-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE Subprograms
EVALUATE Procedure

Evaluates the rules in the specified rule set that use the evaluation context specified.

The rules in the rule set are evaluated using the data specified for table_values ,
column_values , variable_values , and attribute_values . These values
must refer to tables and variables in the specified evaluation context. Otherwise,
they are ignored.

The caller may specify, using stop_on_first_hit , if evaluation must stop as
soon as the first TRUE rule or the first MAYBE rule (if there are no TRUE rules) is
found.

The caller may also specify, using simple_rules_only , if only rules that are
simple enough to be evaluated fast (which means without SQL) should be
considered for evaluation. This makes evaluation faster, but causes rules that cannot
be evaluated without SQL to be returned as MAYBE rules.

Partial evaluation is supported. The EVALUATE procedure can be called with data
for only some of the tables, columns, variables, or attributes. In such a case, rules
that cannot be evaluated because of a lack of data are returned as MAYBE rules,
unless they can be determined to be TRUE or FALSE based on the values of one or
more simple expressions within the rule. For example, given a value of 1 for
attribute "a.b" of variable "x" , a rule with the following rule condition can be
returned as TRUE, without a value for table "tab" :

(:x.a.b = 1) or (tab.c > 10)

Note: Rules in the rule set that use an evaluation context different
from the one specified are not considered for evaluation.
DBMS_RULE 63-3

EVALUATE Procedure
The results of an evaluation are the following:

� TRUE rules, which is the list of rules that evaluate to TRUE based on the given
data. These rules are returned in the OUT parameter true_rules .

� MAYBE rules, which is the list of rules that could not be evaluated for one of the
following reasons:

– The rule refers to data that was unavailable. For example, a variable
attribute "x.a.b" is specified, but no value is specified for the variable
"x" , the attribute "a" , or the attribute "a.b" .

– The rule is not simple enough to be evaluated fast (without SQL) and
simple_rules_only is specified as TRUE.

MAYBE rules are returned in the OUT parameter maybe_rules .

To run this procedure, a user must meet at least one of the following requirements:

� Have EXECUTE_ON_RULE_SET privilege on the rule set

� Have EXECUTE_ANY_RULE_SET system privilege

� Be the rule set owner

Note: The rules engine does not invoke any actions. An action
context can be returned with each returned rule, but the client of
the rules engine must invoke any necessary actions.

See Also: Chapter 109, "Rule Types" for more information about
the types used with the DBMS_RULE package
63-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE Subprograms
Syntax
DBMS_RULE.EVALUATE(

rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2,
event_context IN SYS.RE$NV_LIST DEFAULT NULL,
table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
column_values IN SYS.RE$COLUMN_VALUE_LIST,
variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST,
stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
simple_rules_only IN BOOLEAN DEFAULT FALSE,
true_rules OUT SYS.RE$RULE_HIT_LIST,
maybe_rules OUT SYS.RE$RULE_HIT_LIST);

Note: This procedure is overloaded. One version of this procedure
has the column_values and attribute_values parameters,
and the other does not.
DBMS_RULE 63-5

EVALUATE Procedure
Parameters

Table 63–2 EVALUATE Procedure Parameters (Page 1 of 2)

Parameter Description

rule_set_name Name of the rule set in the form
[schema_name.] rule_set_name . For example, to evaluate
all of the rules in a rule set named hr_rules in the hr
schema, enter hr.hr_rules for this parameter. If the schema
is not specified, then the schema of the current user is used.

evaluation_context An evaluation context name in the form
[schema_name.] evaluation_context_name . If the
schema is not specified, then the name of the current user is
used.

Only rules that use the specified evaluation context are
evaluated.

event_context A list of name-value pairs that identify events that cause
evaluation

table_values Contains the data for table rows using the table aliases
specified when the evaluation context was created

column_values Contains the partial data for table rows. It must not contain
column values for tables, whose values are already specified in
table_values .

variable_values A list containing the data for variables.

The only way for an explicit variable value to be known is to
specify its value in this list.

If an implicit variable value is not specified in the list, then the
function used to obtain the value of the implicit variable is
invoked. If an implicit variable value is specified in the list,
then this value is used and the function is not invoked.

attribute_values Contains the partial data for variables. It must not contain
attribute values for variables whose values are already
specified in variable_values .

stop_on_first_hit If TRUE, then the rules engine stops evaluation as soon as it
finds a TRUE rule.

If TRUE and there are no TRUE rules, then the rules engine
stops evaluation as soon as it finds a rule that may evaluate to
TRUE given more data.

If FALSE, then the rules engine continues to evaluate rules
even after it finds a TRUE rule.
63-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE Subprograms
simple_rules_only If TRUE, then only those rules that are simple enough to be
evaluated fast (without issuing SQL) are considered for
evaluation.

If FALSE, then evaluates all rules.

true_rules Receives the output of the EVALUATE procedure into a varray
of RE$RULE_HIT_LIST type.

If no rules evaluate to TRUE, then true_rules is empty.

If at least one rule evaluates to TRUE and
stop_on_first_hit is TRUE, then true_rules contains
one rule that evaluates to TRUE.

If stop_on_first_hit is FALSE, then true_rules contains
all rules that evaluate to TRUE.

maybe_rules If all rules can be evaluated completely, without requiring any
additional data, then maybe_rules is empty.

If stop_on_first_hit is TRUE, then if there is at least one
rule that may evaluate to TRUE given more data, and no rules
evaluate to TRUE, then maybe_rules contains one rule that
may evaluate to TRUE.

If stop_on_first_hit is FALSE, then maybe_rules
contains all rules that may evaluate to TRUE given more data.

Table 63–2 EVALUATE Procedure Parameters (Page 2 of 2)

Parameter Description
DBMS_RULE 63-7

EVALUATE Procedure
63-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_RULE
64

DBMS_RULE_ADM

The DBMS_RULE_ADM package provides the administrative interface for creating
and managing rules, rule sets, and rule evaluation contexts.

This chapter contains the following topic:

� Summary of DBMS_RULE_ADM Subprograms

Note: PUBLIC is granted execute privilege on this package.

See Also:

� Chapter 109, "Rule Types" for more information about the types
used with the DBMS_RULE_ADM package

� Chapter 63, "DBMS_RULE" and Oracle9i Streams for more
information about rules
_ADM 64-1

Summary of DBMS_RULE_ADM Subprograms
Summary of DBMS_RULE_ADM Subprograms

Table 64–1 DBMS_RULE_ADM Subprograms

Subprogram Description

"ADD_RULE Procedure" on page 64-3 Adds the specified rule to the specified rule set

"ALTER_RULE Procedure" on
page 64-5

Changes one or more aspects of the specified rule

"CREATE_EVALUATION_CONTEXT
Procedure" on page 64-8

Creates a rule evaluation context

"CREATE_RULE Procedure" on
page 64-11

Creates a rule with the specified name

"CREATE_RULE_SET Procedure" on
page 64-13

Creates a rule set with the specified name

"DROP_EVALUATION_CONTEXT
Procedure" on page 64-14

Drops the rule evaluation context with the
specified name

"DROP_RULE Procedure" on
page 64-15

Drops the rule with the specified name

"DROP_RULE_SET Procedure" on
page 64-16

Drops the rule set with the specified name

"GRANT_OBJECT_PRIVILEGE
Procedure" on page 64-17

Grants the specified object privilege on the
specified object to the specified user or role

"GRANT_SYSTEM_PRIVILEGE
Procedure" on page 64-20

Grants the specified system privilege to the
specified user or role

"REMOVE_RULE Procedure" on
page 64-23

Removes the specified rule from the specified rule
set

"REVOKE_OBJECT_PRIVILEGE
Procedure" on page 64-25

Revokes the specified object privilege on the
specified object from the specified user or role

"REVOKE_SYSTEM_PRIVILEGE
Procedure" on page 64-26

Revokes the specified system privilege from the
specified user or role

Note: All procedures commit unless specified otherwise.
64-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
ADD_RULE Procedure

Adds the specified rule to the specified rule set.

To run this procedure, a user must meet at least one of the following requirements:

� Have ALTER_ON_RULE_SET privilege on the rule set

� Have ALTER_ANY_RULE_SET system privilege

� Be the owner of the rule set

Also, the rule set owner must meet at least one of the following requirements:

� Have EXECUTE_ON_RULE privilege on the rule

� Have EXECUTE_ANY_RULE system privilege

� Be the rule owner

If the rule has no evaluation context and no evaluation context is specified when
you run this procedure, then rule uses the evaluation context associated with the
rule set. In such a case, the rule owner must have the necessary privileges on all the
base objects accessed by the rule using the evaluation context.

If an evaluation context is specified, then the rule set owner must meet at least one
of the following requirements:

� Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

� Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

� Be the evaluation context owner

If the evaluation context owner is different than the rule owner, then the rule owner
must have the necessary privileges on all the base objects accessed by the rule using
the evaluation context.
DBMS_RULE_ADM 64-3

ADD_RULE Procedure
Syntax
DBMS_RULE_ADM.ADD_RULE(

rule_name IN VARCHAR2,
rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 64–2 ADD_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are adding to the rule set, specified as
[schema_name.] rule_name . For example, to add a rule
named all_a in the hr schema, enter hr.all_a for this
parameter. If the schema is not specified, then the current user
is the default.

rule_set_name The name of the rule set to which you are adding the rule,
specified as [schema_name.] rule_set_name . For example,
to add the rule to a rule set named apply_rules in the hr
schema, enter hr.apply_rules for this parameter. If the
schema is not specified, then the current user is the default.

evaluation_context An evaluation context name in the form
[schema_name.] evaluation_context_name . If the
schema is not specified, then the current user is the default.

Only specify an evaluation context if the rule itself does not
have an evaluation context and you do not want to use the rule
set’s evaluation context for the rule.

rule_comment Optional description, which may contain the reason for adding
the rule to the rule set
64-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
ALTER_RULE Procedure

Changes one or more aspects of the specified rule.

To run this procedure, a user must meet at least one of the following requirements:

� Have ALTER_ON_RULE privilege on the rule

� Have ALTER_ANY_RULE system privilege

� Be the owner of the rule being altered

If an evaluation context is specified, then the rule owner must meet at least one of
the following requirements:

� Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

� Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

� Be the evaluation context owner

If the evaluation context owner is different than the rule owner, then the rule owner
must have the necessary privileges on all the base objects accessed by the rule using
the evaluation context.

Syntax
DBMS_RULE_ADM.ALTER_RULE(

rule_name IN VARCHAR2,
condition IN VARCHAR2 DEFAULT NULL,
evaluation_context IN VARCHAR2 DEFAULT NULL,
remove_evaluation_context IN BOOLEAN DEFAULT FALSE,
action_context IN SYS.RE$NV_LIST DEFAULT NULL,
remove_action_context IN BOOLEAN DEFAULT FALSE,
rule_comment IN VARCHAR2 DEFAULT NULL,
remove_rule_comment IN BOOLEAN DEFAULT FALSE);

See Also: Chapter 109, "Rule Types" for more information about
the types used with the DBMS_RULE_ADM package
DBMS_RULE_ADM 64-5

ALTER_RULE Procedure
Parameters

Table 64–3 ALTER_RULE Procedure Parameters (Page 1 of 2)

Parameter Description

rule_name The name of the rule you are altering, specified as
[schema_name.] rule_name . For example, to alter a
rule named all_a in the hr schema, enter hr.all_a
for this parameter. If the schema is not specified, then
the current user is the default.

condition The Boolean condition to be associated with the rule.

If non-NULL, then the rule’s condition is changed.

evaluation_context An evaluation context name in the form
[schema_name.] evaluation_context_name . If
the schema is not specified, then the current user is the
default.

If non-NULL, then the rule’s evaluation context is
changed.

remove_evaluation_context If true , then sets the evaluation context for the rule to
NULL, which effectively removes the evaluation context
from the rule.

If false , then retains any evaluation context for the
specified rule.

If the evaluation_context parameter is non-NULL,
then this parameter should be set to false .

action_context If non-NULL, then changes the action context associated
with the rule. A rule action context is information
associated with a rule that is interpreted by the client of
the rules engine when the rule is evaluated.

remove_action_context If true , then sets the action context for the rule to NULL,
which effectively removes the action context from the
rule.

If false , then retains any action context for the
specified rule.

If the action_context parameter is non-NULL, then
this parameter should be set to false .
64-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
rule_comment If non-NULL, then changes the description of the rule

remove_rule_comment If true , then sets the comment for the rule to NULL,
which effectively removes the comment from the rule.

If false , then retains any comment for the specified
rule.

If the rule_comment parameter is non-NULL, then this
parameter should be set to false .

Table 64–3 ALTER_RULE Procedure Parameters (Page 2 of 2)

Parameter Description
DBMS_RULE_ADM 64-7

CREATE_EVALUATION_CONTEXT Procedure
CREATE_EVALUATION_CONTEXT Procedure

Creates a rule evaluation context. A rule evaluation context defines external data
that can be referenced in rule conditions. The external data can either exist as
variables or as table data.

To run this procedure, a user must meet at least one of the following requirements:

� Be the owner of the evaluation context being created and have
CREATE_EVALUATION_CONTEXT_OBJ system privilege

� Have CREATE_ANY_EVALUATION_CONTEXT system privilege

Syntax
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(

evaluation_context_name IN VARCHAR2,
table_aliases IN SYS.RE$TABLE_ALIAS_LIST DEFAULT NULL,
variable_types IN SYS.RE$VARIABLE_TYPE_LIST DEFAULT NULL,
evaluation_function IN VARCHAR2 DEFAULT NULL,
evaluation_context_comment IN VARCHAR2 DEFAULT NULL);

See Also: Chapter 109, "Rule Types" for more information about
the types used with the DBMS_RULE_ADM package
64-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
Parameters

Table 64–4 CREATE_EVALUATION_CONTEXT Procedure Parameters

Parameter Description

evaluation_context_name The name of the evaluation context you are creating,
specified as
[schema_name.] evaluation_context_name .

For example, to create an evaluation context named
dept_eval_context in the hr schema, enter
hr.dept_eval_context for this parameter. If the
schema is not specified, then the current user is the
default.

table_aliases Table aliases that specify the tables in an evaluation
context. The table aliases can be used to reference
tables in rule conditions.

variable_types A list of variables containing the explicit and implicit
variables for the evaluation context

evaluation_function An optional function that will be called to evaluate
rules using the evaluation context. It must have the
same form as the DBMS_RULE.EVALUATE procedure.
If the schema is not specified, then the current user is
the default.

See "Usage Notes" for more information about the
evaluation function.

evaluation_context_comment An optional description of the rule evaluation context.
DBMS_RULE_ADM 64-9

CREATE_EVALUATION_CONTEXT Procedure
Usage Notes
The evaluation function must have the following signature:

FUNCTIONevaluation_function_name(
rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2,
event_context IN SYS.RE$NV_LIST DEFAULT NULL,
table_values IN SYS.RE$TABLE_VALUE_LIST DEFAULT NULL,
column_values IN SYS.RE$COLUMN_VALUE_LIST DEFAULT NULL,
variable_values IN SYS.RE$VARIABLE_VALUE_LIST DEFAULT NULL,
attribute_values IN SYS.RE$ATTRIBUTE_VALUE_LIST DEFAULT NULL,
stop_on_first_hit IN BOOLEAN DEFAULT FALSE,
simple_rules_only IN BOOLEAN DEFAULT FALSE,
true_rules OUT SYS.RE$RULE_HIT_LIST,
maybe_rules OUT SYS.RE$RULE_HIT_LIST);

RETURN BINARY_INTEGER;

The return value of the function must be one of the following:

� DBMS_RULE_ADM.EVALUATION_SUCCESS

� DBMS_RULE_ADM.EVALUATION_FAILURE

� DBMS_RULE_ADM.EVALUATION_CONTINUE

Note: Each parameter is required and must have the specified
datatype. However, you can change the names of the parameters.
64-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
CREATE_RULE Procedure

Creates a rule.

To run this procedure, a user must meet at least one of the following requirements:

� The user must be the owner of the rule being created and the
CREATE_RULE_OBJ system privilege.

� The user must have CREATE_ANY_RULE system privilege.

If an evaluation context is specified, then the rule owner must meet at least one of
the following requirements:

� Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

� Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS.

� Be the evaluation context owner

If the evaluation context owner is different than the rule owner, then the rule owner
must have the necessary privileges on all the base objects accessed by the rule using
the evaluation context.

See Also: Chapter 109, "Rule Types" for more information about
the types used with the DBMS_RULE_ADM package
DBMS_RULE_ADM 64-11

CREATE_RULE Procedure
Syntax
DBMS_RULE_ADM.CREATE_RULE(

rule_name IN VARCHAR2,
condition IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
action_context IN SYS.RE$NV_LIST DEFAULT NULL,
rule_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 64–5 CREATE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are creating, specified as
[schema_name.] rule_name . For example, to create a rule
named all_a in the hr schema, enter hr.all_a for this
parameter. If the schema is not specified, then the current user
is the default.

condition The Boolean condition to be associated with the rule. A
Boolean condition evaluates to TRUE or FALSE and can be any
condition allowed in the WHERE clause of a SELECT statement.
For example, the following is a valid rule condition:

department_id = 30

Note: Do not include the word "WHERE" in the condition.

evaluation_context An optional evaluation context name in the form
[schema_name.] evaluation_context_name , which is
associated with the rule. If the schema is not specified, then the
current user is the default.

If evaluation_context is not specified, then the rule
inherits the evaluation context from its rule set.

action_context The action context associated with the rule. A rule action
context is information associated with a rule that is interpreted
by the client of the rules engine when the rule is evaluated.

rule_comment An optional description of the rule
64-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
CREATE_RULE_SET Procedure

Creates a rule set.

To run this procedure, a user must meet at least one of the following requirements:

� Be the owner of the rule set being created and have CREATE_RULE_SET_OBJ
system privilege

� Have CREATE_ANY_RULE_SET system privilege

If an evaluation context is specified, then the rule set owner must meet at least one
of the following requirements:

� Have EXECUTE_ON_EVALUATION_CONTEXT privilege on the evaluation
context

� Have EXECUTE_ANY_EVALUATION_CONTEXT system privilege, and the owner
of the evaluation context must not be SYS

� Be the evaluation context owner

Syntax
DBMS_RULE_ADM.CREATE_RULE_SET(

rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
rule_set_comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 64–6 CREATE_RULE_SET Procedure Parameters

Parameter Description

rule_set_name The name of the rule set you are creating, specified as
[schema_name.] rule_set_name . For example, to create a
rule set named apply_rules in the hr schema, enter
hr.apply_rules for this parameter. If the schema is not
specified, then the current user is the default.

evaluation_context An optional evaluation context name in the form
[schema_name.] evaluation_context_name , which applies
to all rules in the rule set that are not associated with an
evaluation context explicitly. If the schema is not specified, then
the current user is the default.

rule_set_comment An optional description of the rule set
DBMS_RULE_ADM 64-13

DROP_EVALUATION_CONTEXT Procedure
DROP_EVALUATION_CONTEXT Procedure

Drops a rule evaluation context.

To run this procedure, a user must meet at least one of the following requirements:

� Be the owner of the evaluation context

� Have DROP_ANY_EVALUATION_CONTEXT system privilege

Syntax
DBMS_RULE_ADM.DROP_EVALUATION_CONTEXT(

evaluation_context_name IN VARCHAR2,
force IN BOOLEAN DEFAULT false);

Parameters

Table 64–7 DROP_EVALUATION_CONTEXT Procedure Parameters

Parameter Description

evaluation_context_name The name of the evaluation context you are dropping,
specified as
[schema_name.] evaluation_context_name .

For example, to drop an evaluation context named
dept_eval_context in the hr schema, enter
hr.dept_eval_context for this parameter. If the
schema is not specified, then the current user is the
default.

force If true , then removes the rule evaluation context from all
rules and rule sets that use it.

If false and no rules or rule sets use the rule evaluation
context, then drops the rule evaluation context.

If false and one or more rules or rule sets use the rule
evaluation context, then raises an exception.

Caution: Setting force to true can result in rules and
rule sets that do not have an evaluation context. If neither
a rule nor the rule set it is in has an evaluation context,
and no evaluation context was specified for the rule by the
ADD_RULE procedure, then the rule cannot be evaluated.
64-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
DROP_RULE Procedure

Drops a rule.

To run this procedure, a user must meet at least one of the following requirements:

� Be the owner of the rule

� Have DROP_ANY_RULE system privilege

Syntax
DBMS_RULE_ADM.DROP_RULE(

rule_name IN VARCHAR2,
force IN BOOLEAN DEFAULT false);

Parameters

Note:

� To remove a rule from a rule set without dropping the rule
from the database, use the REMOVE_RULE procedure.

� The rule evaluation context associated with the rule, if any, is
not dropped when you run this procedure.

Table 64–8 DROP_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are dropping, specified as
[schema_name.] rule_name . For example, to drop a rule
named all_a in the hr schema, enter hr.all_a for this
parameter. If the schema is not specified, then the current user
is the default.

force If TRUE, then removes the rule from all rule sets that contain it.

If FALSE and no rule sets contain the rule, then drops the rule.

If FALSE and one or more rule sets contain the rule, then raises
an exception.
DBMS_RULE_ADM 64-15

DROP_RULE_SET Procedure
DROP_RULE_SET Procedure

Drops a rule set.

To run this procedure, a user must meet at least one of the following requirements:

� Have DROP_ANY_RULE_SET system privilege

� Be the owner of the rule set

Syntax
DBMS_RULE_ADM.DROP_RULE_SET(

rule_set_name IN VARCHAR2,
delete_rules IN BOOLEAN DEFAULT false);

Parameters

Note: The rule evaluation context associated with the rule set, if
any, is not dropped when you run this procedure.

Table 64–9 DROP_RULE_SET Procedure Parameters

Parameter Description

rule_set_name The name of the rule set you are dropping, specified as
[schema_name.] rule_set_name . For example, to drop a
rule set named apply_rules in the hr schema, enter
hr.apply_rules for this parameter. If the schema is not
specified, then the current user is the default.

delete_rules If TRUE, then also drops any rules that are in the rule set. If any
of the rules in the rule set are also in another rule set, then
these rules are not dropped.

If FALSE, then the rules in the rule set are retained.
64-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
GRANT_OBJECT_PRIVILEGE Procedure

Grants the specified object privilege on the specified object to the specified user or
role. If a user owns the object, then the user automatically is granted all privileges
on the object, with grant option.

To run this procedure, a user must meet at least one of the following requirements:

� Be the owner of the object on which the privilege is granted

� Have the same privilege as the privilege being granted with the grant option

In addition, if the object is a rule set, then the user must have EXECUTE privilege on
all the rules in the rule set with grant option or must own the rules in the rule set.

Syntax
DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(

privilege IN BINARY_INTEGER,
object_name IN VARCHAR2,
grantee IN VARCHAR2,
grant_option IN BOOLEAN DEFAULT false);
DBMS_RULE_ADM 64-17

GRANT_OBJECT_PRIVILEGE Procedure
Parameters

Table 64–10 GRANT_OBJECT_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the object privilege to grant to the grantee on the
object. See "Usage Notes" on page 64-19 for the available object
privileges.

object_name The name of the object for which you are granting the privilege
to the grantee, specified as [schema_name.] object_name .
For example, to grant the privilege on a rule set named
apply_rules in the hr schema, enter hr.apply_rules for
this parameter. If the schema is not specified, then the current
user is the default. The object must be an existing rule, rule set,
or evaluation context.

grantee The name of the user or role for which the privilege is granted.
The specified user cannot be the owner of the object.

grant_option If true , then the specified user or users granted the specified
privilege can grant this privilege to others.

If false , then the specified user or users granted the specified
privilege cannot grant this privilege to others.
64-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
Usage Notes
Table 64–11 lists the object privileges.

For example, to grant the hr user the privilege to alter a rule named hr_dml in the
strmadmin schema, enter the following:

BEGIN
DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(

privilege => SYS.DBMS_RULE_ADM.ALTER_ON_RULE,
object_name => 'strmadmin.hr_dml',
grantee => 'hr',
grant_option => false);

END;
/

Table 64–11 Object Privileges for Evaluation Contexts, Rules, and Rule Sets

Privilege Description

SYS.DBMS_RULE_ADM.ALL_ON_EVALUATION_CONTEXT Alter and execute a particular evaluation
context in another user’s schema

SYS.DBMS_RULE_ADM.ALL_ON_RULE Alter and execute a particular rule in another
user’s schema

SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET Alter and execute a particular rule set in
another user’s schema

SYS.DBMS_RULE_ADM.ALTER_ON_EVALUATION_CONTEXTAlter a particular evaluation context in
another user’s schema

SYS.DBMS_RULE_ADM.ALTER_ON_RULE Alter a particular rule in another user’s
schema

SYS.DBMS_RULE_ADM.ALTER_ON_RULE_SET Alter a particular rule set in another user’s
schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_EVALUATION_CONTEXTExecute a particular evaluation context in
another user’s schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE Execute a particular rule in another user’s
schema

SYS.DBMS_RULE_ADM.EXECUTE_ON_RULE_SET Execute a particular rule set in another user’s
schema
DBMS_RULE_ADM 64-19

GRANT_SYSTEM_PRIVILEGE Procedure
GRANT_SYSTEM_PRIVILEGE Procedure

Grants the specified system privilege to the specified user or role.

Syntax
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(

privilege IN BINARY_INTEGER,
grantee IN VARCHAR2,
grant_option IN BOOLEAN DEFAULT false);

Parameters

Table 64–12 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the system privilege to grant to the grantee. See
"Usage Notes" on page 64-21 for the available system
privileges.

grantee The name of the user or role for which the privilege is granted

grant_option If true , then the specified user or users granted the specified
privilege can grant the system privilege to others.

If false , then the specified user or users granted the specified
privilege cannot grant the system privilege to others.
64-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
Usage Notes
Table 64–13 lists the system privileges.

Table 64–13 System Privileges for Evaluation Contexts, Rules, and Rule Sets

Privilege Description

SYS.DBMS_RULE_ADM.ALTER_ANY_EVALUATION_CONTEXT Alter any evaluation context owned by any
user

SYS.DBMS_RULE_ADM.ALTER_ANY_RULE Alter any rule owned by any user

SYS.DBMS_RULE_ADM.ALTER_ANY_RULE_SET Alter any rule set owned by any user

SYS.DBMS_RULE_ADM.CREATE_ANY_EVALUATION_CONTEXTCreate a new evaluation context in any
schema

SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJCreate a new evaluation context in the
grantee’s schema

SYS.DBMS_RULE_ADM.CREATE_ANY_RULE Create a new rule in any schema

SYS.DBMS_RULE_ADM.CREATE_RULE_OBJ Create a new rule in the grantee’s schema

SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET Create a new rule set in any schema

SYS.DBMS_RULE_ADM.CREATE_RULE_SET_OBJ Create a new rule set in the grantee’s
schema

SYS.DBMS_RULE_ADM.DROP_ANY_EVALUATION_CONTEXT Drop any evaluation context in any schema

SYS.DBMS_RULE_ADM.DROP_ANY_RULE Drop any rule in any schema

SYS.DBMS_RULE_ADM.DROP_ANY_RULE_SET Drop any rule set in any schema

SYS.DBMS_RULE_ADM.EXECUTE_ANY_EVALUATION_CONTEXTExecute any evaluation context owned by
any user

SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE Execute any rule owned by any user

SYS.DBMS_RULE_ADM.EXECUTE_ANY_RULE_SET Execute any rule set owned by any user
DBMS_RULE_ADM 64-21

GRANT_SYSTEM_PRIVILEGE Procedure
For example, to grant the strmadmin user the privilege to create a rule set in any
schema, enter the following:

BEGIN
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(

privilege => SYS.DBMS_RULE_ADM.CREATE_ANY_RULE_SET,
grantee => 'strmadmin',
grant_option => false);

END;
/

Note: When you grant a privilege on "ANY" object (for example,
ALTER_ANY_RULE), and the initialization parameter
O7_DICTIONARY_ACCESSIBILITY is set to FALSE, you give the
user access to that type of object in all schemas, except the SYS
schema. By default, the initialization parameter
O7_DICTIONARY_ACCESSIBILITY is set to FALSE.

If you want to grant access to an object in the SYS schema, then you
can grant object privileges explicitly on the object. Alternatively,
you can set the O7_DICTIONARY_ACCESSIBILITY initialization
parameter to TRUE. Then privileges granted on "ANY" object will
allow access to any schema, including SYS.
64-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
REMOVE_RULE Procedure

Removes the specified rule from the specified rule set.

To run this procedure, a user must meet at least one of the following requirements:

� Have ALTER_ON_RULE_SET privilege on the rule set

� Have ALTER_ANY_RULE_SET system privilege

� Be the owner of the rule set

Syntax
DBMS_RULE_ADM.REMOVE_RULE(

rule_name IN VARCHAR2,
rule_set_name IN VARCHAR2,
evaluation_context IN VARCHAR2 DEFAULT NULL,
all_evaluation_contexts IN BOOLEAN DEFAULT false);

Note: This procedure does not drop a rule from the database. To
drop a rule from the database, use the DROP_RULE procedure.
DBMS_RULE_ADM 64-23

REMOVE_RULE Procedure
Parameters

Table 64–14 REMOVE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule you are removing from the rule set,
specified as [schema_name.] rule_name . For example,
to remove a rule named all_a in the hr schema, enter
hr.all_a for this parameter. If the schema is not
specified, then the current user is the default.

rule_set_name The name of the rule set from which you are removing the
rule, specified as [schema_name.] rule_set_name . For
example, to remove the rule from a rule set named
apply_rules in the hr schema, enter hr.apply_rules
for this parameter. If the schema is not specified, then the
current user is the default.

evaluation_context_name The name of the evaluation context associated with the
rule you are removing, specified as
[schema_name.] evaluation_context_name . For
example, to specify an evaluation context named
dept_eval_context in the hr schema, enter
hr.dept_eval_context for this parameter. If the
schema is not specified, then the current user is the
default.

If an evaluation context was specified for the rule you are
removing when you added the rule to the rule set using
the ADD_RULE procedure, then specify the same
evaluation context. If you added the same rule more than
once with different evaluation contexts, then specify the
rule with the evaluation context you want to remove. If
you specify an evaluation context that is not associated
with the rule, then an error is raised.

Specify NULL if you did not specify an evaluation context
when you added the rule to the rule set. If you specify
NULL and there are one or more evaluation contexts
associated with the rule, then an error is raised.

all_evaluation_contexts If true , then the rule is removed from the rule set with all
of its associated evaluation contexts.

If false , then only the rule with the specified evaluation
context is removed.

This parameter is relevant only if the same rule is added
more than once to the rule set with different evaluation
contexts.
64-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_RULE_ADM Subprograms
REVOKE_OBJECT_PRIVILEGE Procedure

Revokes the specified object privilege on the specified object from the specified user
or role.

Syntax
DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(

privilege IN BINARY_INTEGER,
object_name IN VARCHAR2,
revokee IN VARCHAR2);

Parameters

Table 64–15 REVOKE_OBJECT_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the object privilege on the object to revoke from
the revokee. See "GRANT_OBJECT_PRIVILEGE Procedure" on
page 64-17 for a list of the object privileges.

object_name The name of the object for which you are revoking the
privilege from the revokee, specified as
[schema_name.] object_name . For example, to revoke an
object privilege on a rule set named apply_rules in the hr
schema, enter hr.apply_rules for this parameter. If the
schema is not specified, then the current user is the default.
The object must be an existing rule, rule set, or evaluation
context.

revokee The name of the user or role from which the privilege is
revoked. The user who owns the object cannot be specified.
DBMS_RULE_ADM 64-25

REVOKE_SYSTEM_PRIVILEGE Procedure
REVOKE_SYSTEM_PRIVILEGE Procedure

Revokes the specified system privilege from the specified user or role.

Syntax
DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(

privilege IN BINARY_INTEGER,
revokee IN VARCHAR2);

Parameters

Table 64–16 REVOKEE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The name of the system privilege to revoke from the revokee.
See "GRANT_SYSTEM_PRIVILEGE Procedure" on page 64-20
for a list of the system privileges.

revokee The name of the user or role from which the privilege is
revoked
64-26 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_S
65

DBMS_SESSION

This package provides access to SQL ALTER SESSION and SET ROLE statements,
and other session information, from PL/SQL. You can use this to set preferences
and security levels.

This chapter discusses the following topics:

� Requirements

� Summary of DBMS_SESSION Subprograms
ESSION 65-1

Requirements
Requirements
This package runs with the privileges of the calling user, rather than the package
owner SYS.

Summary of DBMS_SESSION Subprograms

Table 65–1 DBMS_SESSION Subprograms

Subprogram Description

SET_IDENTIFIER on page 65-3 Sets the identifier.

SET_CONTEXT on page 65-4 and
on page 65-4

Sets the context.

CLEAR_CONTEXT on page 65-5 Clears the context.

CLEAR_IDENTIFIER on page 65-6 Clears the identifier.

SET_ROLE Procedure on page 65-7 Sets role.

SET_SQL_TRACE Procedure on
page 65-7

Turns tracing on or off.

SET_NLS Procedure on
page 65-8

Sets national language support (NLS).

CLOSE_DATABASE_LINK
Procedure on page 65-8

Closes database link.

RESET_PACKAGE Procedure on
page 65-9

Deinstantiates all packages in the session.

MODIFY_PACKAGE_STATE
Procedure on page 65-10

Performs actions on the session state of PL/SQL
program units that are active in the session.

UNIQUE_SESSION_ID Function
on page 65-14

Returns an identifier that is unique for all sessions
currently connected to this database.

IS_ROLE_ENABLED Function on
page 65-14

Determines if the named role is enabled for the
session.

IS_SESSION_ALIVE Function on
page 65-15

Determines if the specified session is active.

SET_CLOSE_CACHED_OPEN_
CURSORS Procedure on
page 65-16

Turns close_cached_open_cursors on or off.

FREE_UNUSED_USER_MEMORY
Procedure on page 65-16

Lets you reclaim unused memory after performing
operations requiring large amounts of memory.
65-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
SET_IDENTIFIER

This procedure sets the client ID in the session.

Syntax
DBMS_SESSION.SET_IDENTIFIER (

client_id VARCHAR2);

Parameters

Usage Notes
Note the following:

� SET_IDENTIFIER initializes the current session with a client identifier to
identify the associated global application context

� client_id is case sensitive; it must match the client_id parameter in the
set_context

� This procedure is executable by public

SET_CONTEXT Procedure on
page 65-19

Sets or resets the value of a context attribute.

LIST_CONTEXT Procedure on
page 65-19

Returns a list of active namespace and context for the
current session.

SWITCH_CURRENT_
CONSUMER_GROUP Procedure
on page 65-20

Facilitates changing the current resource consumer
group of a user’s current session.

Table 65–2 SET_IDENTIFIER Procedure Parameters

Parameter Description

client_id The application-specific identifier of the current database session.

Table 65–1 DBMS_SESSION Subprograms

Subprogram Description
DBMS_SESSION 65-3

SET_CONTEXT
SET_CONTEXT

This procedure sets the context.

Syntax
DBMS_SESSION.SET_CONTEXT (

namespace VARCHAR2,
attribute VARCHAR2,
value VARCHAR2);

Parameters

Usage Notes
Note the following:

� This interface is maintained for 8i compatibility

� If the namespace is a global context namespace, then username is assigned the
current user name, and client_id will be assigned the current client_id in
the session; NULL if not set.

� This procedure must be invoked directly or indirectly by the trusted package

SET_CONTEXT Procedure

This procedure sets the context.

Syntax
DBMS_SESSION.SET_CONTEXT (

namespace VARCHAR2,
attribute VARCHAR2,

Table 65–3 SET_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace of the application context to be set

attribute The attribute of the application context to be set

value The value of the application context to be set
65-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
value VARCHAR2,
username VARCHAR2,
client_id VARCHAR2);

Parameters

Usage Notes
Note the following:

� Sets the application context and associates it with the client_id

� Username must be a valid SQL identifier

� client_id is a string of at most 64 bytes

� client_id is case sensitive; it must match the argument to set_identifier

� Must be invoked directly or indirectly by the trusted package

� Can only be used on global namespaces

CLEAR_CONTEXT

Syntax
DBMS_SESSION.CLEAR_CONTEXT

namespace VARCHAR2,
client_identifier VARCHAR2
attribute VARCHAR2);

Table 65–4 SET_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace of the application context to be set

attribute The attribute of the application context to be set

value The value of the application context to be set

username The username attribute of the application context

client_id The client_id attribute of the application context (64-byte
maximum)
DBMS_SESSION 65-5

CLEAR_IDENTIFIER
Parameters

Usage Notes
This procedure must be invoked directly or indirectly by the trusted package.

CLEAR_IDENTIFIER

This procedure removes the set_client_id in the session.

Syntax
DBMS_SESSION.CLEAR_IDENTIFIER();

Usage Notes
This procedure is executable by public.

Table 65–5 CLEAR_CONTEXT Procedure Parameters

Parameter Description

namespace The namespace in which the application context is to be cleared.
Required.

For a session-local context, namespace must be specified. If
namespace is defined as Session Local Context , then
client_identifier is optional since it is only associated with a
globally accessed context.

For a globally accessed context, namespace must be specified.
NULL is a valid value for client_identifier because a session
with no identifier set can see a context that looks like the
(namespace,attribute,value,username,null) set using
SET_CONTEXT.

client_
identifier

Applies to a global context and is optional for other types of
contexts; 64-byte maximum.

attribute The specific attribute in the namespace to be cleared. Optional. the
default is NULL. If you specify attribute as NULL, then
(namespace,attribute,value) for that namespace are cleared
from the session. If attribute is not specified, then all context
information that has the namespace and client_identifier
arguments is cleared.
65-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
SET_ROLE Procedure

This procedure enables and disables roles. It is equivalent to the SET ROLE SQL
statement.

Syntax
DBMS_SESSION.SET_ROLE (

role_cmd VARCHAR2);

Parameters

SET_SQL_TRACE Procedure

This procedure turns tracing on or off. It is equivalent to the following SQL
statement:

ALTER SESSION SET SQL_TRACE ...

Syntax
DBMS_SESSION.SET_SQL_TRACE (

sql_trace boolean);

Parameters

Table 65–6 SET_ROLE Procedure Parameters

Parameter Description

role_cmd This text is appended to "set role" and then run as SQL.

Table 65–7 SET_SQL_TRACE Procedure Parameters

Parameter Description

sql_trace TRUE turns tracing on, FALSE turns tracing off.
DBMS_SESSION 65-7

SET_NLS Procedure
SET_NLS Procedure

This procedure sets up your national language support (NLS). It is equivalent to the
following SQL statement:

ALTER SESSION SET <nls_parameter> = <value>

Syntax
DBMS_SESSION.SET_NLS (

param VARCHAR2,
value VARCHAR2);

Parameters

CLOSE_DATABASE_LINK Procedure

This procedure closes an open database link. It is equivalent to the following SQL
statement:

ALTER SESSION CLOSE DATABASE LINK <name>

Syntax
DBMS_SESSION.CLOSE_DATABASE_LINK (

dblink VARCHAR2);

Table 65–8 SET_NLS Procedure Parameters

Parameter Description

param NLS parameter. The parameter name must begin with ’NLS’.

value Parameter value.

If the parameter is a text literal, then it needs embedded
single-quotes. For example, "set_nls (’nls_date_
format ’,’’’DD-MON-YY’’’)"
65-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
Parameters

RESET_PACKAGE Procedure

This procedure deinstantiates all packages in this session: It frees all package states.
See "MODIFY_PACKAGE_STATE Procedure" on page 65-10.

Memory used for caching execution state is associated with all PL/SQL functions,
procedures, and packages that have been run in a session.

For packages, this collection of memory holds the current values of package
variables and controls the cache of cursors opened by the respective PL/SQL
programs. A call to RESET_PACKAGE frees the memory associated with each of the
previously run PL/SQL programs from the session, and, consequently, clears the
current values of any package globals and closes any cached cursors.

RESET_PACKAGE can also be used to reliably restart a failed program in a session. If
a program containing package variables fails, then it is hard to determine which
variables need to be reinitialized. RESET_PACKAGE guarantees that all package
variables are reset to their initial values.

Syntax
DBMS_SESSION.RESET_PACKAGE;

Usage Notes
Because the amount of memory consumed by all executed PL/SQL can become
large, you might use RESET_PACKAGE to trim down the session memory footprint
at certain points in your database application. However, make sure that resetting
package variable values will not affect the application. Also, remember that later
execution of programs that have lost their cached memory and cursors will perform
slower, because they need to re-create the freed memory and cursors.

RESET_PACKAGE does not free the memory, cursors, and package variables
immediately when called.

Table 65–9 CLOSE_DATABASE_LINK Procedure Parameters

Parameter Description

dblink Name of the database link to close.
DBMS_SESSION 65-9

MODIFY_PACKAGE_STATE Procedure
For example, PL/SQL procedure P1 calls PL/SQL procedure P2, and P2 calls
RESET_PACKAGE. The RESET_PACKAGE effects do not occur until procedure P1
finishes execution (the PL/SQL call ends).

Example
This SQL*Plus script runs a large program with many PL/SQL program units that
may or may not use global variables, but it doesn’t need them beyond this
execution:

EXCECUTE large_plsql_program1;

To free up PL/SQL cached session memory:

EXECUTE DBMS_SESSION.RESET_PACKAGE;

To run another large program:

EXECUTE large_plsql_program2;

MODIFY_PACKAGE_STATE Procedure

This procedure performs actions on the session state of PL/SQL program units that
are active in the session. The procedure uses the DBMS_SESSION constants shown
in Table 65–10.

Because the client-side PL/SQL code cannot reference remote package variables or
constants, you must explicitly use the values of the constants. For example, the
following code does not compile on the client because it uses the constant DBMS_
SESSION.REINITIALIZE :

DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_SESSION.REINITIALIZE);

Instead, use the following code on the client, because the argument is explicitly
provided:

DBMS_SESSION.MODIFY_PACKAGE_STATE(2) -- compiles on the client

Note: RESET_PACKAGE only frees the memory, cursors, and
package variables after the PL/SQL call that made the invocation
finishes running.
65-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_SESSION.FREE_ALL_
RESOURCES)behaves identically to DBMS_SESSION.RESET_PACKAGE. You
should use DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_SESSION.FREE_
ALL_RESOURCES) instead of DBMS_SESSION.RESET_PACKAGE.

Syntax
DBMS_SESSION.MODIFY_PACKAGE_STATE(

action_flags IN PLS_INTEGER);

Constants
See "Usage Notes" on page 65-12 for differences between the flags and why DBMS_
SESSION.REINITIALIZE should exhibit better performance than DBMS_
SESSION.FREE_ALL_RESOURCES.

Parameters

Table 65–10 action_flags Constants for MODIFY_PACKAGE_STATE

Constant Description

FREE_ALL_
RESOURCES

PLS_INTEGER := 1

REINITIALIZE PLS_INTEGER := 2

Table 65–11 MODIFY_PACKAGE_STATE Procedure Parameters

Parameter Description

action_flags Bit flags that determine the action taken on PL/SQL
program units:

� FREE_ALL_RESOURCES (or 1)—frees all memory
associated with each of the previously run PL/SQL
programs from the session. Clears the current
values of any package globals and closes cached
cursors. On subsequent use, the PL/SQL program
units are reinstantiated and package globals are
reinitialized.

� REINITIALIZE (or 2)—reinitializes packages
without actually being freed and re-created from
scratch. Instead the package memory is reused.
DBMS_SESSION 65-11

MODIFY_PACKAGE_STATE Procedure
Usage Notes
� For both FREE_ALL_RESOURCES and REINITIALIZE , reinitialization takes

effect after the PL/SQL call that made the current invocation finishes running.

� Reinitialization occurs only if the package is actually referenced. Packages are
reinitialized in the order in which they are referenced.

� REINITIALIZE differs from FREE_ALL_RESOURCES in that any open cursors
are closed, semantically speaking. However, the cursor resource is not actually
freed. It is returned to the PL/SQL cursor cache. The cursor cache is not
flushed. Hence, cursors corresponding to frequently accessed static SQL in
PL/SQL will remain cached in the PL/SQL cursor cache and the application
will not incur the overhead of opening, parsing, and closing a new cursor for
those statements on subsequent use.

� The session memory for PL/SQL modules without a global state (such as types
or stored procedures) is not freed and re-created.

� When using FREE_ALL_RESOURCES or REINITIALIZE , make sure that
resetting package variable values does not affect the application.

� Because DBMS_SESSION.REINITIALIZE does not actually cause all the
package state to be freed, in some situations, the application could use
significantly more session memory than if the FREE_ALL_RESOURCES flag or
the RESET_PACKAGE procedure had been used. For instance, after performing
DBMS_SESSION.MODIFY_PACKAGE_STATE(DBMS_
SESSION.REINITIALIZE) , if the application does not refer to many of the
packages that were previously referenced, then the session memory for those
packages will remain until the end of the session (or until DBMS_
SESSION.RESET_PACKAGE is called).

Using DBMS_SESSION.MODIFY_PACKAGE_STATE: Example
This example illustrates the use of DBMS_SESSION.MODIFY_PACKAGE_STATE.
Consider a package P with some global state (a cursor c and a number cnt). When
the package is first initialized, the package variable cnt is 0 and the cursor c is
CLOSED. Then, in the session, change the value of cnt to 111 and also execute an
OPEN operation on the cursor. If you call print_status to display the state of the
package, you see that cnt is 111 and that the cursor is OPEN. Next, call DBMS_
SESSION.MODIFY_PACKAGE_STATE. If you print the status of the package P again
using print_status , you see that cnt is 0 again and the cursor is CLOSED. If the
call to DBMS_SESSION.MODIFY_PACKAGE_STATE had not been made, then the
second print_status would have printed 111 and OPEN.
65-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
create or replace package P is
cnt number := 0;
cursor c is select * from emp;
procedure print_status;

end P;
/
show errors;

create or replace package body P is
procedure print_status is
begin

dbms_output.put_line('P.cnt = ' || cnt);
if c%ISOPEN then

dbms_output.put_line('P.c is OPEN');
else

dbms_output.put_line('P.c is CLOSED');
end if;

end;
end P;
/
show errors;

SQL> set serveroutput on;
SQL> begin

2 P.cnt := 111;
3 open p.c;
4 P.print_status;
5 end;
6 /

P.cnt = 111
P.c is OPEN

PL/SQL procedure successfully completed.

SQL> begin
2 dbms_session.modify_package_state(dbms_session.reinitialize);
3 end;
4 /

PL/SQL procedure successfully completed.

SQL> set serveroutput on;
SQL>
SQL> begin

2 P.print_status;
DBMS_SESSION 65-13

UNIQUE_SESSION_ID Function
3 end;
4 /

P.cnt = 0
P.c is CLOSED

PL/SQL procedure successfully completed.

UNIQUE_SESSION_ID Function

This function returns an identifier that is unique for all sessions currently connected
to this database. Multiple calls to this function during the same session always
return the same result.

Syntax
DBMS_SESSION.UNIQUE_SESSION_ID

RETURN VARCHAR2;

Pragmas
pragma restrict_references(unique_session_id,WNDS,RNDS,WNPS);

Returns

IS_ROLE_ENABLED Function

This function determines if the named role is enabled for this session.

Syntax
DBMS_SESSION.IS_ROLE_ENABLED (

rolename VARCHAR2)
RETURN BOOLEAN;

Table 65–12 UNIQUE_SESSION_ID Function Returns

Return Description

unique_session_
id

Returns up to 24 bytes.
65-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
Parameters

Returns

IS_SESSION_ALIVE Function

This function determines if the specified session is active.

Syntax
DBMS_SESSION.IS_SESSION_ALIVE (

uniqueid VARCHAR2)
RETURN BOOLEAN;

Parameters

Returns

Table 65–13 IS_ROLE_ENABLED Function Parameters

Parameter Description

rolename Name of the role.

Table 65–14 IS_ROLE_ENABLED Function Returns

Return Description

is_role_enabled TRUE or FALSE, depending on whether the role is enabled.

Table 65–15 IS_SESSION_ALIVE Function Parameters

Parameter Description

uniqueid Unique ID of the session: This is the same one as returned by
UNIQUE_SESSION_ID.

Table 65–16 IS_SESSION_ALIVE Function Returns

Return Description

is_session_alive TRUE or FALSE, depending on whether the session is active.
DBMS_SESSION 65-15

SET_CLOSE_CACHED_OPEN_CURSORS Procedure
SET_CLOSE_CACHED_OPEN_CURSORS Procedure

This procedure turns close_cached_open_cursors on or off. It is equivalent to
the following SQL statement:

ALTER SESSION SET CLOSE_CACHED_OPEN_CURSORS ...

Syntax
DBMS_SESSION.SET_CLOSE_CACHED_OPEN_CURSORS (

close_cursors BOOLEAN);

Parameters

FREE_UNUSED_USER_MEMORY Procedure

This procedure reclaims unused memory after performing operations requiring
large amounts of memory (more than 100K).

Examples of operations that use large amounts of memory include:

� Large sorting where entire sort_area_size is used and sort_area_size is
hundreds of KB.

� Compiling large PL/SQL packages, procedures, or functions.

� Storing hundreds of KB of data within PL/SQL indexed tables.

You can monitor user memory by tracking the statistics "session uga memory" and
"session pga memory" in the v$sesstat or v$statname fixed views. Monitoring
these statistics also shows how much memory this procedure has freed.

Table 65–17 SET_CLOSE_CACHED_OPEN_CURSORS Procedure Parameters

Parameter Description

close_cursors TRUE or FALSE

Note: This procedure should only be used in cases where memory
is at a premium. It should be used infrequently and judiciously.
65-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
Syntax
DBMS_SESSION.FREE_UNUSED_USER_MEMORY;

Returns
The behavior of this procedure depends upon the configuration of the server
operating on behalf of the client:

� Dedicated server: This returns unused PGA memory and session memory to
the operating system. Session memory is allocated from the PGA in this
configuration.

� Shared server: This returns unused session memory to the shared_pool .
Session memory is allocated from the shared_pool in this configuration.

Usage Notes
In order to free memory using this procedure, the memory must not be in use.

After an operation allocates memory, only the same type of operation can reuse the
allocated memory. For example, after memory is allocated for sort, even if the sort is
complete and the memory is no longer in use, only another sort can reuse the
sort-allocated memory. For both sort and compilation, after the operation is
complete, the memory is no longer in use, and the user can call this procedure to
free the unused memory.

An indexed table implicitly allocates memory to store values assigned to the
indexed table’s elements. Thus, the more elements in an indexed table, the more
memory the RDBMS allocates to the indexed table. As long as there are elements
within the indexed table, the memory associated with an indexed table is in use.

The scope of indexed tables determines how long their memory is in use. Indexed
tables declared globally are indexed tables declared in packages or package bodies.
They allocate memory from session memory. For an indexed table declared
globally, the memory remains in use for the lifetime of a user’s login (lifetime of a
user’s session), and is freed after the user disconnects from ORACLE.

Indexed tables declared locally are indexed tables declared within functions,
procedures, or anonymous blocks. These indexed tables allocate memory from PGA
memory. For an indexed table declared locally, the memory remains in use for as
long as the user is still running the procedure, function, or anonymous block in
which the indexed table is declared.After the procedure, function, or anonymous
block is finished running, the memory is then available for other locally declared
indexed tables to use (in other words, the memory is no longer in use).
DBMS_SESSION 65-17

FREE_UNUSED_USER_MEMORY Procedure
Assigning an uninitialized, "empty" indexed table to an existing index table is a
method to explicitly re-initialize the indexed table and the memory associated with
the indexed table. After this operation, the memory associated with the indexed
table is no longer in use, making it available to be freed by calling this procedure.
This method is particularly useful on indexed tables declared globally which can
grow during the lifetime of a user’s session, as long as the user no longer needs the
contents of the indexed table.

The memory rules associated with an indexed table’s scope still apply; this method
and this procedure, however, allow users to intervene and to explicitly free the
memory associated with an indexed table.

Example
The following PL/SQL illustrates the method and the use of procedure FREE_
UNUSED_USER_MEMORY.

CREATE PACKAGE foobar
type number_idx_tbl is table of number indexed by binary_integer;

store1_table number_idx_tbl; -- PL/SQL indexed table
store2_table number_idx_tbl; -- PL/SQL indexed table
store3_table number_idx_tbl; -- PL/SQL indexed table
...

END; -- end of foobar

DECLARE
...
empty_table number_idx_tbl; -- uninitialized ("empty") version

BEGIN
FOR i in 1..1000000 loop

store1_table(i) := i; -- load data
END LOOP;
...
store1_table := empty_table; -- "truncate" the indexed table
...
-
dbms_session.free_unused_user_memory; -- give memory back to system

store1_table(1) := 100; -- index tables still declared;
store2_table(2) := 200; -- but truncated.
...

END;
65-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
SET_CONTEXT Procedure

This procedure sets or resets the value of a context attribute.

Syntax
DBMS_SESSION.SET_CONTEXT (

namespace VARCHAR2,
attribute VARCHAR2,
value VARCHAR2,
username VARCHAR2,
client_id VARCHAR2);

Parameters

Usage Notes
The caller of this function must be in the calling stack of a procedure which has
been associated to the context namespace through a CREATE CONTEXT statement.
The checking of the calling stack does not cross DBMS boundary.

There is no limit on the number of attributes that can be set in a namespace. An
attribute value remains for user session, or until it is reset by the user.

LIST_CONTEXT Procedure

This procedure returns a list of active namespaces and contexts for the current
session.

Table 65–18 SET_CONTEXT Procedure Parameters

Parameter Description

namespace Name of the namespace to use for the application context (limited
to 30 bytes).

attribute Name of the attribute to be set (limited to 30 bytes).

value Value to be set (limited to 4 kilobytes).

username The username attribute of the application context

client_id The application-specific identifier of the current database session.
DBMS_SESSION 65-19

SWITCH_CURRENT_CONSUMER_GROUP Procedure
Syntax
TYPE AppCtxRecTyp IS RECORD (

namespace VARCHAR2(30),
attribute VARCHAR2(30),
value VARCHAR2(256));

TYPE AppCtxTabTyp IS TABLE OF AppCtxRecTyp INDEX BY BINARY_INTEGER;

DBMS_SESSION.LIST_CONTEXT (
list OUT AppCtxTabTyp,
size OUT NUMBER);

Parameters

Returns

Usage Notes
The context information in the list appears as a series of <namespace >
<attribute > <value >. Because list is a table type variable, its size is
dynamically adjusted to the size of returned list.

SWITCH_CURRENT_CONSUMER_GROUP Procedure

This procedure changes the current resource consumer group of a user’s current
session.

This lets you switch to a consumer group if you have the switch privilege for that
particular group. If the caller is another procedure, then this enables the user to

Table 65–19 LIST_CONTEXT Procedure Parameters

Parameter Description

list Buffer to store a list of application context set in the current session.

Table 65–20 LIST_CONTEXT Procedure Returns

Return Description

list A list of (namespace, attribute, values) set in current session

size Returns the number of entries in the buffer returned
65-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
switch to a consumer group for which the owner of that procedure has switch
privilege.

Syntax
DBMS_SESSION.switch_current_consumer_group (

new_consumer_group IN VARCHAR2,
old_consumer_group OUT VARCHAR2,
initial_group_on_error IN BOOLEAN);

Parameters

Returns
This procedure outputs the old consumer group of the user in the parameter old_
consumer_group .

Exceptions

Table 65–21 SWITCH_CURRENT_CONSUMER_GROUP Procedure Parameters

Parameter Description

new_consumer_group Name of consumer group to which you want to switch.

old_consumer_group Name of the consumer group from which you just switched
out.

initial_group_on_
error

If TRUE, then sets the current consumer group of the caller to
his/her initial consumer group in the event of an error.

Note: You can switch back to the old consumer group later using
the value returned in old_consumer_group .

Table 65–22 SWITCH_CURRENT_CONSUMER_GROUP Procedure Exceptions

Exception Description

29368 Non-existent consumer group.

1031 Insufficient privileges.

29396 Cannot switch to OTHER_GROUPS consumer group.
DBMS_SESSION 65-21

SWITCH_CURRENT_CONSUMER_GROUP Procedure
Usage Notes
The owner of a procedure must have privileges on the group from which a user was
switched (old_consumer_group) in order to switch them back. There is one
exception: The procedure can always switch the user back to his/her initial
consumer group (skipping the privilege check).

By setting initial_group_on_error to TRUE, SWITCH_CURRENT_CONSUMER_
GROUP puts the current session into the default group, if it can’t put it into the
group designated by new_consumer_group . The error associated with the
attempt to move a session into new_consumer_group is raised, even though the
current consumer group has been changed to the initial consumer group.

Example
CREATE OR REPLACE PROCEDURE high_priority_task is

old_group varchar2(30);
prev_group varchar2(30);
curr_user varchar2(30);

BEGIN
-- switch invoker to privileged consumer group. If we fail to do so, an
-- error will be thrown, but the consumer group will not change
-- because ’initial_group_on_error’ is set to FALSE

dbms_session.switch_current_consumer_group(’tkrogrp1’, old_group, FALSE);
-- set up exception handler (in the event of an error, we do not want to
-- return to caller while leaving the session still in the privileged
-- group)

BEGIN
-- perform some operations while under privileged group

EXCEPTION
WHEN OTHERS THEN

-- It is possible that the procedure owner does not have privileges
-- on old_group. ’initial_group_on_error’ is set to TRUE to make sure
-- that the user is moved out of the privileged group in such a
-- situation

dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
RAISE;

END;

-- we’ve succeeded. Now switch to old_group, or if cannot do so, switch
-- to caller’s initial consumer group
65-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SESSION Subprograms
dbms_session.switch_current_consumer_group(old_group,prev_group,TRUE);
END high_priority_task;
/

DBMS_SESSION 65-23

SWITCH_CURRENT_CONSUMER_GROUP Procedure
65-24 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_SHARE
66

DBMS_SHARED_POOL

DBMS_SHARED_POOL provides access to the shared pool, which is the shared
memory area where cursors and PL/SQL objects are stored. DBMS_SHARED_POOL
enables you to display the sizes of objects in the shared pool, and mark them for
keeping or unkeeping in order to reduce memory fragmentation.

This chapter discusses the following topics:

� Installation Notes

� Usage Notes

� Summary of DBMS_SHARED_POOL Subprograms
D_POOL 66-1

Installation Notes
Installation Notes
To create DBMS_SHARED_POOL, run the DBMSPOOL.SQL script. The PRVTPOOL.PLB
script is automatically executed after DBMSPOOL.SQL runs. These scripts are not run
by CATPROC.SQL.

Usage Notes
The procedures provided here may be useful when loading large PL/SQL objects.
When large PL/SQL objects are loaded, users response time is affected because of
the large number of smaller objects that need to be aged out from the shared pool to
make room (due to memory fragmentation). In some cases, there may be
insufficient memory to load the large objects.

DBMS_SHARED_POOL is also useful for frequently executed triggers. You may want
to keep compiled triggers on frequently used tables in the shared pool.
Additionally, DBMS_SHARED_POOL supports sequences. Sequence numbers are lost
when a sequence is aged out of the shared pool. DBMS_SHARED_POOL is useful for
keeping sequences in the shared pool and thus preventing the loss of sequence
numbers.

Summary of DBMS_SHARED_POOL Subprograms

Table 66–1 DBMS_SHARED_POOL Subprograms

Subprogram Description

SIZES Procedure on page 66-3 Shows objects in the shared pool that are larger than the
specified size

KEEP Procedure on page 66-3 Keeps an object in the shared pool

UNKEEP Procedure on
page 66-5

Unkeeps the named object

ABORTED_REQUEST_
THRESHOLD Procedure on
page 66-5

Sets the aborted request threshold for the shared pool
66-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SHARED_POOL Subprograms
SIZES Procedure

This procedure shows objects in the shared_pool that are larger than the specified
size. The name of the object is also given, which can be used as an argument to
either the KEEP or UNKEEP calls.

Syntax
DBMS_SHARED_POOL.SIZES (

minsize NUMBER);

Parameters

Usage Notes
Issue the SQLDBA or SQLPLUS ’SET SERVEROUTPUT ON SIZE XXXXX’ command
prior to using this procedure so that the results are displayed.

KEEP Procedure

This procedure keeps an object in the shared pool. Once an object has been kept in
the shared pool, it is not subject to aging out of the pool. This may be useful for
frequently used large objects. When large objects are brought into the shared pool,
several objects may need to be aged out to create a contiguous area large enough.

Syntax
DBMS_SHARED_POOL.KEEP (

name VARCHAR2,
flag CHAR DEFAULT ’P’);

Table 66–2 SIZES Procedure Parameters

Parameter Description

minsize Size, in kilobytes, over which an object must be occupying in
the shared pool, in order for it to be displayed.

Note: This procedure may not be supported in the future if
automatic mechanisms are implemented to make this unnecessary.
DBMS_SHARED_POOL 66-3

KEEP Procedure
Parameters

Exceptions
An exception is raised if the named object cannot be found.

Usage Notes
There are two kinds of objects:

� PL/SQL objects, triggers, sequences, and types which are specified by name

� SQL cursor objects which are specified by a two-part number (indicating a
location in the shared pool).

For example:

DBMS_SHARED_POOL.KEEP(’scott.hispackage’)

This keeps package HISPACKAGE, owned by SCOTT. The names for PL/SQL objects
follow SQL rules for naming objects (for example, delimited identifiers and
multibyte names are allowed). A cursor can be kept by DBMS_SHARED_

Table 66–3 KEEP Procedure Parameters

Parameter Description

name Name of the object to keep.

The value for this identifier is the concatenation of the address
and hash_value columns from the v$sqlarea view. This is
displayed by the SIZES procedure.

Currently, TABLE and VIEW objects may not be kept.

flag (Optional) If this is not specified, then the package assumes
that the first parameter is the name of a
package/procedure/function and resolves the name.

Set to ’P’ or ’p’ to fully specify that the input is the name of a
package/procedure/function.

Set to ’T’ or ’t’ to specify that the input is the name of a type.

Set to ’R’ or ’r’ to specify that the input is the name of a trigger.

Set to ’Q’ or ’q’ to specify that the input is the name of a
sequence.

In case the first argument is a cursor address and hash-value,
the parameter should be set to any character except ’P’ or ’p’ or
’Q’ or ’q’ or ’R’ or ’r’ or ’T’ or ’t’.
66-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SHARED_POOL Subprograms
POOL.KEEP(’0034CDFF, 20348871 ’). The complete hexadecimal address must be in
the first 8 characters.

UNKEEP Procedure

This procedure unkeeps the named object.

Syntax
DBMS_SHARED_POOL.UNKEEP (

name VARCHAR2,
flag CHAR DEFAULT ’P’);

Parameters

Exceptions
An exception is raised if the named object cannot be found.

ABORTED_REQUEST_THRESHOLD Procedure

This procedure sets the aborted request threshold for the shared pool.

Syntax
DBMS_SHARED_POOL.ABORTED_REQUEST_THRESHOLD (

threshold_size NUMBER);

Caution: This procedure may not be supported in the future if
automatic mechanisms are implemented to make this unnecessary.

Table 66–4 UNKEEP Procedure Parameters

Parameter Description

name Name of the object to unkeep. See description of the name
object for the KEEP procedure.

flag See description of the flag parameter for the KEEP procedure.
DBMS_SHARED_POOL 66-5

ABORTED_REQUEST_THRESHOLD Procedure
Parameters

Exceptions
An exception is raised if the threshold is not in the valid range.

Usage Notes
Usually, if a request cannot be satisfied on the free list, then the RDBMS tries to
reclaim memory by freeing objects from the LRU list and checking periodically to
see if the request can be fulfilled. After finishing this step, the RDBMS has
performed a near equivalent of an ’ALTER SYSTEM FLUSH SHARED_POOL’.

Because this impacts all users on the system, this procedure "localizes" the impact to
the process failing to find a piece of shared pool memory of size greater than
thresh_hold size. This user gets the ’out of memory’ error without attempting to
search the LRU list.

Table 66–5 ABORTED_REQUEST_THRESHOLD Procedure Parameters

Parameter Description

threshold_size Size, in bytes, of a request which does not try to free unpinned
(not "unkeep-ed") memory within the shared pool. The range
of threshold_size is 5000 to ~2 GB inclusive.
66-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
67

DBMS_SPACE

The DBMS_SPACE package enables you to analyze segment growth and space
requirements.

This chapter discusses the following topics:

� Security

� Requirements

� Summary of DBMS_SPACE Subprograms
_SPACE 67-1

Security
Security
This package runs with SYS privileges.

Requirements
The execution privilege is granted to PUBLIC. Subprograms in this package run
under the caller security. The user must have ANALYZE privilege on the object.

Summary of DBMS_SPACE Subprograms

UNUSED_SPACE Procedure

This procedure returns information about unused space in an object (table, index, or
cluster).

Syntax
DBMS_SPACE.UNUSED_SPACE (

segment_owner IN VARCHAR2,
segment_name IN VARCHAR2,
segment_type IN VARCHAR2,
total_blocks OUT NUMBER,
total_bytes OUT NUMBER,
unused_blocks OUT NUMBER,
unused_bytes OUT NUMBER,
last_used_extent_file_id OUT NUMBER,
last_used_extent_block_id OUT NUMBER,
last_used_block OUT NUMBER,
partition_name IN VARCHAR2 DEFAULT NULL);

Table 67–1 DBMS_SPACE Subprograms

Subprogram Description

UNUSED_SPACE Procedure
on page 67-2

Returns information about unused space in an object (table,
index, or cluster).

FREE_BLOCKS Procedure on
page 67-3

Returns information about free blocks in an object (table,
index, or cluster).

SPACE_USAGE Procedure on
page 67-5

Returns information about free blocks in a bitmapped
segment.
67-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE Subprograms
Parameters

FREE_BLOCKS Procedure

This procedure returns information about free blocks in an object (table, index, or
cluster). See "SPACE_USAGE Procedure" for returning free block information in a
bitmapped segment.

Table 67–2 UNUSED_SPACE Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed.

segment_name Segment name of the segment to be analyzed.

segment_type Type of the segment to be analyzed:

TABLE

TABLE PARTITION

TABLE SUBPARTITION

INDEX

INDEX PARTITION

INDEX SUBPARTITION

CLUSTER

LOB

total_blocks Returns total number of blocks in the segment.

total_bytes Returns total number of blocks in the segment, in bytes.

unused_blocks Returns number of blocks which are not used.

unused_bytes Returns, in bytes, number of blocks which are not used.

last_used_extent_
file_id

Returns the file ID of the last extent which contains data.

last_used_extent_
block_id

Returns the block ID of the last extent which contains data.

last_used_block Returns the last block within this extent which contains data.

partition_name Partition name of the segment to be analyzed.

This is only used for partitioned tables; the name of
subpartition should be used when partitioning is compose.
DBMS_SPACE 67-3

FREE_BLOCKS Procedure
Syntax
DBMS_SPACE.FREE_BLOCKS (

segment_owner IN VARCHAR2,
segment_name IN VARCHAR2,
segment_type IN VARCHAR2,
freelist_group_id IN NUMBER,
free_blks OUT NUMBER,
scan_limit IN NUMBER DEFAULT NULL,
partition_name IN VARCHAR2 DEFAULT NULL);

Pragmas
pragma restrict_references(free_blocks,WNDS);

Parameters

Table 67–3 FREE_BLOCKS Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed.

segment_name Segment name of the segment to be analyzed.

segment_type Type of the segment to be analyzed:

TABLE

TABLE PARTITION

TABLE SUBPARTITION

INDEX

INDEX PARTITION

INDEX SUBPARTITION

CLUSTER

LOB

freelist_group_id Freelist group (instance) whose free list size is to be computed.

free_blks Returns count of free blocks for the specified group.

scan_limit Maximum number of free list blocks to read (optional).

Use a scan limit of X you are interested only in the question,
"Do I have X blocks on the free list?"
67-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE Subprograms
Example 1
The following declares the necessary bind variables and executes.

DBMS_SPACE.UNUSED_SPACE(’SCOTT’, ’EMP’, ’TABLE’, :total_blocks,
:total_bytes,:unused_blocks, :unused_bytes, :lastextf,
:last_extb, :lastusedblock);

This fills the unused space information for bind variables in EMP table in SCOTT
schema.

Example 2
The following uses the CLUS cluster in SCOTT schema with 4 freelist groups. It
returns the number of blocks in freelist group 3 in CLUS.

DBMS_SPACE.FREE_BLOCKS(’SCOTT’, ’CLUS’, ’CLUSTER’, 3, :free_blocks);

SPACE_USAGE Procedure

This procedure shows the space usage of data blocks under the segment High Water
Mark. The bitmap blocks, segment header, and extent map blocks are not accounted
for by this procedure. This procedure can only be used on tablespaces that are
created with auto segment space management.

Syntax
DBMS_SPACE.SPACE_USAGE(

segment_owner IN varchar2,
segment_name IN varchar2,
segment_type IN varchar2,
unformatted_blocks OUT number,
unformatted_bytes OUT number,

partition_name Partition name of the segment to be analyzed.

This is only used for partitioned tables; the name of
subpartition should be used when partitioning is compose.

Note: An error is raised if scan_limit is not a positive number.

Table 67–3 FREE_BLOCKS Procedure Parameters

Parameter Description
DBMS_SPACE 67-5

SPACE_USAGE Procedure
fs1_blocks OUT number,
fs1_bytes OUT number,
fs2_blocks OUT number,
fs2_bytes OUT number,
fs3_blocks OUT number,
fs3_bytes OUT number,
fs4_blocks OUT number,
fs4_bytes OUT number,
full_blocks OUT number,
full_bytes OUT number,
partition_name IN varchar2 DEFAULT NULL);

Parameters

Table 67–4 SPACE_USAGE Procedure Parameters

Parameter Description

segment_owner Schema name of the segment to be analyzed

segment_name Name of the segment to be analyzed

partition_name Partition name of the segment to be analyzed

segment_type Type of the segment to be analyzed (TABLE, INDEX, or
CLUSTER)

OUTPUT ARGUMENTS

unformatted_blocks Total number of blocks that are unformatted

unformatted bytes Total number of bytes that are unformatted

fs1_blocks Number of blocks that has at least 0 to 25% free space

fs1_bytes Number of bytes that has at least 0 to 25% free space

fs2_blocks Number of blocks that has at least 25 to 50% free space

fs2_bytes Number of bytes that has at least 25 to 50% free space

fs3_blocks Number of blocks that has at least 50 to 75% free space

fs3_bytes Number of bytes that has at least 50 to 75% free space

fs4_blocks Number of blocks that has at least 75 to 100% free space

fs4_bytes Number of bytes that has at least 75 to 100% free space

ful1_blocks Total number of blocks that are full in the segment

full_bytes Total number of bytes that are full in the segment
67-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE Subprograms
Example
variable unf number;
variable unfb number;
variable fs1 number;
variable fs1b number;
variable fs2 number;
variable fs2b number;
variable fs3 number;
variable fs3b number;
variable fs4 number;
variable fs4b number;
variable full number;
variable fullb number;

begin
dbms_space.space_usage('U1','T',

'TABLE',
:unf, :unfb,
:fs1, :fs1b,
:fs2, :fs2b,
:fs3, :fs3b,
:fs4, :fs4b,
:full, :fullb);

end;
/
print unf ;
print unfb ;
print fs4 ;
print fs4b;
print fs3 ;
print fs3b;
print fs2 ;
print fs2b;
print fs1 ;
print fs1b;
print full;
print fullb;
DBMS_SPACE 67-7

SPACE_USAGE Procedure
67-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_SPACE
68

DBMS_SPACE_ADMIN

The DBMS_SPACE_ADMIN package provides functionality for locally managed
tablespaces.

This chapter discusses the following topics:

� Security

� SYSTEM Tablespace Migration: Conditions

� Constants for DBMS_SPACE_ADMIN Constants

� Summary of DBMS_SPACE_ADMIN Subprograms

See Also: Oracle9i Database Administrator’s Guide for an example
and description of using DBMS_SPACE_ADMIN.
_ADMIN 68-1

Security
Security
This package runs with SYS privileges; therefore, any user who has privilege to
execute the package can manipulate the bitmaps.

SYSTEM Tablespace Migration: Conditions
Before you migrate the SYSTEM tablespace, you should migrate any
dictionary-managed tablespaces that you may want to use in read/write mode to
locally managed. After the SYSTEM tablespace is migrated, you cannot change
dictionary-managed tablespaces to read/write.

Before migrating the SYSTEM tablespace, the following conditions must be met.
These conditions are enforced by the TABLESPACE_MIGRATE_TO_LOCAL
procedure, except for the cold backup.

� The database must have a default temporary tablespace that is not SYSTEM.

� Dictionary-managed tablespaces cannot have any rollback segments.

� A locally managed tablespace must have at least one online rollback segment. If
you are using automatic undo management, an undo tablespace must be online.

� All tablespaces—except the tablespace containing the rollback segment or the
undo tablespace—must be read-only.

� You must have a cold backup of the database.

� The system must be in restricted mode.

Constants for DBMS_SPACE_ADMIN Constants

See Also:

� Oracle9i Database Administrator’s Guide

� "TABLESPACE_MIGRATE_TO_LOCAL Procedure" on
page 68-11

Table 68–1 DBMS_SPACE_ADMIN Constants

Constant Description

SEGMENT_VERIFY_
EXTENTS

Verifies that the space owned by segment is
appropriately reflected in the bitmap as used.
68-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
Summary of DBMS_SPACE_ADMIN Subprograms

SEGMENT_VERIFY_
EXTENTS_GLOBAL

Verifies that the space owned by segment is
appropriately reflected in the bitmap as used and that no
other segment claims any of this space to be used by it.

SEGMENT_MARK_CORRUPTMarks a temporary segment as corrupt whereby
facilitating its elimination from the dictionary (without
space reclamation).

SEGMENT_MARK_VALID Marks a corrupt temporary segment as valid. It is useful
when the corruption in the segment extent map or
elsewhere has been resolved and the segment can be
dropped normally.

SEGMENT_DUMP_EXTENT_
MAP

Dumps the extent map for a given segment.

TABLESPACE_VERIFY_
BITMAP

Verifies the bitmap of the tablespace with extent maps of
the segments in that tablespace to make sure everything
is consistent.

TABLESPACE_EXTENT_
MAKE_FREE

Makes this range (extent) of space free in the bitmaps.

TABLESPACE_EXTENT_
MAKE_USED

Makes this range (extent) of space used in the bitmaps.

Table 68–2 DBMS_SPACE_ADMIN Subprograms

Subprogram Description

SEGMENT_VERIFY Procedure
on page 68-4

Verifies the consistency of the extent map of the
segment.

SEGMENT_CORRUPT Procedure
on page 68-5

Marks the segment corrupt or valid so that appropriate
error recovery can be done.

SEGMENT_DROP_CORRUPT
Procedure on page 68-6

Drops a segment currently marked corrupt (without
reclaiming space).

SEGMENT_DUMP Procedure on
page 68-7

Dumps the segment header and extent maps of a given
segment.

Table 68–1 DBMS_SPACE_ADMIN Constants

Constant Description
DBMS_SPACE_ADMIN 68-3

SEGMENT_VERIFY Procedure
SEGMENT_VERIFY Procedure

This procedure verifies that the extent map of the segment is consistent with the
bitmap.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_VERIFY (

tablespace_name IN VARCHAR2,
header_relative_file IN POSITIVE,
header_block IN POSITIVE,
verify_option IN POSITIVE DEFAULT SEGMENT_VERIFY_EXTENTS);

TABLESPACE_VERIFY Procedure
on page 68-8

Verifies that the bitmaps and extent maps for the
segments in the tablespace are in sync.

TABLESPACE_FIX_BITMAPS
Procedure on page 68-8

Marks the appropriate DBA range (extent) as free or
used in bitmap.

TABLESPACE_REBUILD_
BITMAPS Procedure on page 68-9

Rebuilds the appropriate bitmaps.

TABLESPACE_REBUILD_
QUOTAS Procedure on page 68-10

Rebuilds quotas for given tablespace.

TABLESPACE_MIGRATE_
FROM_LOCAL Procedure on
page 68-11

Migrates a locally-managed tablespace to
dictionary-managed tablespace.

TABLESPACE_MIGRATE_TO_
LOCAL Procedure on page 68-11

Migrates a tablespace from dictionary managed format
to locally managed format.

TABLESPACE_RELOCATE_
BITMAPS Procedure on
page 68-13

Relocates the bitmaps to the destination specified.

TABLESPACE_FIX_SEGMENT_
STATES Procedure on page 68-14

Fixes the state of the segments in a tablespace in which
migration was aborted.

Table 68–2 DBMS_SPACE_ADMIN Subprograms

Subprogram Description
68-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
Parameters

Usage Notes
Anomalies are output as dba-range, bitmap-block, bitmap-block-range,
anomaly-information, in the trace file for all dba-ranges found to have incorrect
space representation. The kinds of problems which would be reported are free space
not considered free, used space considered free, and the same space considered
used by multiple segments.

Example
The following example verifies that the segment with segment header at relative file
number 4, block number 33, has its extent maps and bitmaps in sync.

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_VERIFY(’USERS’, 4, 33, 1);

SEGMENT_CORRUPT Procedure

This procedure marks the segment corrupt or valid so that appropriate error
recovery can be done. It cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_CORRUPT (

tablespace_name IN VARCHAR2,
header_relative_file IN POSITIVE,
header_block IN POSITIVE,

Table 68–3 SEGMENT_VERIFY Procedure Parameters

Parameters Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

verify_option What kind of check to do: SEGMENT_VERIFY_EXTENTS or
SEGMENT_VERIFY_EXTENTS_GLOBAL.

Note: All DBMS_SPACE_ADMIN package examples use the
tablespace USERS which contains SCOTT.EMP.
DBMS_SPACE_ADMIN 68-5

SEGMENT_DROP_CORRUPT Procedure
corrupt_option IN POSITIVE DEFAULT SEGMENT_MARK_CORRUPT);

Parameters

Example
The following example marks the segment as corrupt:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT(’USERS’, 4, 33, 3);

Alternately, the next example marks a corrupt segment valid:

EXECUTE DBMS_SPACE_ADMIN.SEGMENT_CORRUPT(’USERS’, 4, 33, 4);

SEGMENT_DROP_CORRUPT Procedure

This procedure drops a segment currently marked corrupt (without reclaiming
space). For this to work, the segment should have been marked temporary. To mark a
corrupt segment as temporary, issue a DROP command on the segment.

The procedure cannot be used on the SYSTEM tablespace.

The space for the segment is not released, and it must be fixed by using the
TABLESPACE_FIX_BITMAPS Procedure or the TABLESPACE_REBUILD_BITMAPS
Procedure.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT (

tablespace_name IN VARCHAR2,
header_relative_file IN POSITIVE,
header_block IN POSITIVE);

Table 68–4 SEGMENT_CORRUPT Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

corrupt_option SEGMENT_MARK_CORRUPT (default) or SEGMENT_MARK_
VALID .
68-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
Parameters

Example
EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DROP_CORRUPT(’USERS’, 4, 33);

SEGMENT_DUMP Procedure

This procedure dumps the segment header and extent map blocks of the given
segment.

Syntax
DBMS_SPACE_ADMIN.SEGMENT_DUMP (

tablespace_name IN VARCHAR2,
header_relative_file IN POSITIVE,
header_block IN POSITIVE,
dump_option IN POSITIVE DEFAULT SEGMENT_DUMP_EXTENT_MAP);

Parameters

Example
EXECUTE DBMS_SPACE_ADMIN.SEGMENT_DUMP(’USERS’, 4, 33);

Table 68–5 SEGMENT_DROP_CORRUPT Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

Table 68–6 SEGMENT_DUMP Procedure Parameters

Parameter Description

tablespace_name Name of tablespace in which segment resides.

header_relative_file Relative file number of segment header.

header_block Block number of segment header.

dump_option SEGMENT_DUMP_EXTENT_MAP
DBMS_SPACE_ADMIN 68-7

TABLESPACE_VERIFY Procedure
TABLESPACE_VERIFY Procedure

This procedure verifies that the bitmaps and extent maps for the segments in the
tablespace are in sync.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_VERIFY (

tablespace_name IN VARCHAR2,
verify_option IN POSITIVE DEFAULT TABLESPACE_VERIFY_BITMAP);

Parameters

Example
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_VERIFY(’USERS’);

TABLESPACE_FIX_BITMAPS Procedure

This procedure marks the appropriate DBA range (extent) as free or used in bitmap.
It cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS (

tablespace_name IN VARCHAR2,
dbarange_relative_file IN POSITIVE,
dbarange_begin_block IN POSITIVE,
dbarange_end_block IN POSITIVE,
fix_option IN POSITIVE);

Table 68–7 TABLESPACE_VERIFY Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

verify_option TABLESPACE_VERIFY_BITMAP
68-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
Parameters

Example
The following example marks bits for 50 blocks for relative file number 4, beginning
at block number 33 and ending at 83, as USED in bitmaps.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_FIX_BITMAPS(’USERS’, 4, 33, 83, 7);

Alternately, specifying an option of 8 marks the bits FREE in bitmaps. The BEGIN
and END blocks should be in extent boundary and should be extent multiple.
Otherwise, an error is raised.

TABLESPACE_REBUILD_BITMAPS Procedure

This procedure rebuilds the appropriate bitmaps. If no bitmap block DBA is
specified, then it rebuilds all bitmaps for the given tablespace.

The procedure cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS (

tablespace_name IN VARCHAR2,
bitmap_relative_file IN POSITIVE DEFAULT NULL,
bitmap_block IN POSITIVE DEFAULT NULL);

Table 68–8 TABLESPACE_FIX_BITMAPS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

dbarange_relative_
file

Relative file number of DBA range (extent).

dbarange_begin_block Block number of beginning of extent.

dbarange_end_block Block number (inclusive) of end of extent.

fix_option TABLESPACE_EXTENT_MAKE_FREE or TABLESPACE_
EXTENT_MAKE_USED.
DBMS_SPACE_ADMIN 68-9

TABLESPACE_REBUILD_QUOTAS Procedure
Parameters

Example
The following example rebuilds bitmaps for all the files in the USERS tablespace.

EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS(’USERS’);

TABLESPACE_REBUILD_QUOTAS Procedure

This procedure rebuilds quotas for the given tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS (

tablespace_name IN VARCHAR2);

Parameters

Example
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_QUOTAS(’USERS’);

Table 68–9 TABLESPACE_REBUILD_BITMAPS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace.

bitmap_relative_file Relative file number of bitmap block to rebuild.

bitmap_block Block number of bitmap block to rebuild.

Note: Only full rebuild is supported.

Table 68–10 TABLESPACE_REBUILD_QUOTAS Procedure Parameters

Parameter Description

tablespace_name Name of tablespace
68-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
TABLESPACE_MIGRATE_FROM_LOCAL Procedure

This procedure migrates a locally-managed tablespace to a dictionary-managed
tablespace. You cannot use this procedure for SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL (

tablespace_name IN VARCHAR2);

Parameter

Usage Notes
The tablespace must be kept online and read/write during migration. Migration of
temporary tablespaces and migration of SYSTEM tablespaces are not supported.

Example
EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL(’USERS’);

TABLESPACE_MIGRATE_TO_LOCAL Procedure

Use this procedure to migrate the tablespace from a dictionary-managed format to a
locally managed format. Tablespaces migrated to locally managed format are user
managed.

Table 68–11 TABLESPACE_MIGRATE_FROM_LOCAL Procedure Parameter

Parameter Description

tablespace_
name

Name of tablespace

Caution: Do not migrate the SYSTEM tablespace without a clear
understanding of the conditions that must be met. Refer to
"SYSTEM Tablespace Migration: Conditions" on page 68-2.
DBMS_SPACE_ADMIN 68-11

TABLESPACE_MIGRATE_TO_LOCAL Procedure
Syntax
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL (

tablespace_name
allocation_unit
relative_fno)

Parameters

Usage Notes
The tablespace must be kept online and read/write during migration. Note that
temporary tablespaces cannot be migrated.

Allocation Unit may be specified optionally. The default is calculated by the system
based on the highest common divisor of all extents (used or free) for the tablespace.
This number is further trimmed based on the MINIMUM EXTENT for the tablespace
(5 if MINIMUM EXTENTT is not specified). Thus, the calculated value will not be
larger than the MINIMUM EXTENT for the tablespace. The last free extent in every
file will be ignored for GCD calculation. If you specify the unit size, it has to be a
factor of the UNIT size calculated by the system, otherwise an error message is
returned.

The Relative File Number parameter is used to place the bitmaps in a desired file. If
space is not found in the file, an error is issued. The datafile specified should be part
of the tablespace being migrated. If the datafile is not specified then the system will
choose a datafile in which to place the initial bitmap blocks. If space is not found for
the initial bitmaps, an error will be raised.

Table 68–12 Parameters for TABLESPACE_MIGRATE_TO_LOCAL

Parameter Name Purpose Datatype
Parameter
Type

tablespace_name Name of the tablespace to be
migrated.

VARCHAR IN

allocation_unit Unit size (which is the size of the
smallest possible chunk of space
that can be allocated) in the
tablespace.

INTEGER IN

relative_fno Relative File Number of the file
where the bitmap blocks should
be placed (optional)

INTEGER IN
68-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SPACE_ADMIN Subprograms
Example
To migrate a tablespace ’TS1’ with minimum extent size 1m, use

execute dbms_space_admin.tablespace_migrate_to_local(’TS1’, 512, 2);

The bitmaps will be placed in file with relative file number 2.

TABLESPACE_RELOCATE_BITMAPS Procedure

Use this procedure to relocate the bitmaps to the destination specified. Migration of
a tablespace from dictionary managed to locally managed format could result in the
creation of SPACE HEADER segment that contains the bitmap blocks. The SPACE
HEADER segment is treated as user data. If the user wishes to explicitly resize a file
at or below the space header segment, an error is issued. Use the tablespace_
relocate_bitmaps command to move the control information to a different
destination and then resize the file.

This procedure cannot be used on the SYSTEM tablespace.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_RELOCATE_BITMAPS (

tablespace_name
relative_fno
block_number)

Parameters

Usage Notes
The tablespace must be kept online and read/write during relocation of bitmaps.
Can be done only on migrated locally managed tablespaces.

Table 68–13 Parameters for TABLESPACE_RELOCATE_BITMAPS

Parameter Name Purpose Datatype
Parameter
Type

tablespace_name Name of Tablespace. VARCHAR IN

relative_fno Relative File Number of
the destination file.

NUMBER IN

block_number Block Number of the
destination dba.

NUMBER IN
DBMS_SPACE_ADMIN 68-13

TABLESPACE_FIX_SEGMENT_STATES Procedure
Example
execute dbms_space_admin.tablespace_relocate_bitmaps(’TS1’, 3, 4);

Moves the bitmaps to file 3, block 4.

TABLESPACE_FIX_SEGMENT_STATES Procedure

Use this procedure to fix the state of the segments in a tablespace in which
migration was aborted. During tablespace migration to or from local, the segments
are put in a transient state. If migration is aborted, the segment states are corrected
by SMON when event 10906 is set. Database with segments is such a transient state
cannot be downgraded. The procedure can be used to fix the state of such segments.

Syntax
DBMS_SPACE_ADMIN.TABLESPACE_FIX_SEGMENT_STATES (

tablespace_name);

Parameters

Usage Notes
The tablespace must be kept online and read/write when this procedure is called.

Example
execute dbms_space_admin.tablespace_fix_segment_states(’TS1’);

Note: The source and the destination addresses should not
overlap. The destination block number is rounded down to the unit
boundary. If there is user data in that location an error is raised.

Table 68–14 Parameter for TABLESPACE_FIX_SEGMENT_STATES

Parameter Name Purpose Datatype
Parameter
Type

tablespace_name Name of the tablespace whose
segments need to be fixed.

VARCHAR IN
68-14 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
69

DBMS_SQL

Oracle lets you to write stored procedures and anonymous PL/SQL blocks that use
dynamic SQL. Dynamic SQL statements are not embedded in your source program;
rather, they are stored in character strings that are input to, or built by, the program
at runtime. This enables you to create more general-purpose procedures. For
example, dynamic SQL lets you create a procedure that operates on a table whose
name is not known until runtime.

Additionally, DBMS_SQL enables you to parse any data manipulation language
(DML) or data definition language (DDL) statement. Therefore, you can parse DDL
statements directly using PL/SQL. For example, you might now choose to enter a
DROP TABLE statement from within a stored procedure by using the PARSE
procedure supplied with the DBMS_SQL package.

This chapter discusses the following topics:

Note: Oracle8i introduces native dynamic SQL, an alternative to
DBMS_SQL. Using native dynamic SQL, you can place dynamic
SQL statements directly into PL/SQL blocks.

In most situations, native dynamic SQL can replace DBMS_SQL.
Native dynamic SQL is easier to use and performs better than
DBMS_SQL.

See Also: For more information on native dynamic SQL, see
PL/SQL User’s Guide and Reference.

For a comparison of DBMS_SQL and native dynamic SQL, see
Oracle9i Application Developer’s Guide - Fundamentals.
S_SQL 69-1

� Using DBMS_SQL

� Constants, Types, and Exceptions for DBMS_SQL

� Security

� Processing Queries

� Examples

� Processing Updates, Inserts, and Deletes

� Locating Errors

� Summary of DBMS_SQL Subprograms
69-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_SQL
Using DBMS_SQL
The ability to use dynamic SQL from within stored procedures generally follows the
model of the Oracle Call Interface (OCI).

PL/SQL differs somewhat from other common programming languages, such as C.
For example, addresses (also called pointers) are not user-visible in PL/SQL. As a
result, there are some differences between the Oracle Call Interface and the DBMS_
SQL package. These differences include the following:

� The OCI uses bind by address, while the DBMS_SQL package uses bind by
value.

� With DBMS_SQL you must call VARIABLE_VALUE to retrieve the value of an
OUT parameter for an anonymous block, and you must call COLUMN_VALUE
after fetching rows to actually retrieve the values of the columns in the rows
into your program.

� The current release of the DBMS_SQL package does not provide CANCEL cursor
procedures.

� Indicator variables are not required, because NULLs are fully supported as
values of a PL/SQL variable.

A sample usage of the DBMS_SQL package follows. For users of the Oracle Call
Interfaces, this code should seem fairly straightforward.

Example
This example does not actually require the use of dynamic SQL, because the text of
the statement is known at compile time. It does, however, illustrate the concepts of
this package.

The DEMO procedure deletes all of the employees from the EMP table whose salaries
are greater than the salary that you specify when you run DEMO.

CREATE OR REPLACE PROCEDURE demo(salary IN NUMBER) AS
cursor_name INTEGER;
rows_processed INTEGER;

BEGIN
cursor_name := dbms_sql.open_cursor;
DBMS_SQL.PARSE(cursor_name, ’DELETE FROM emp WHERE sal > :x’,

dbms_sql.native);
DBMS_SQL.BIND_VARIABLE(cursor_name, ’:x’, salary);

See Also: Oracle Call Interface Programmer’s Guide
DBMS_SQL 69-3

Constants, Types, and Exceptions for DBMS_SQL
rows_processed := dbms_sql.execute(cursor_name);
DBMS_SQL.close_cursor(cursor_name);

EXCEPTION
WHEN OTHERS THEN

DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Constants, Types, and Exceptions for DBMS_SQL

Constants
v6 constant INTEGER := 0;
native constant INTEGER := 1;
v7 constant INTEGER := 2;

Types
TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;
TYPE desc_rec IS RECORD (

col_type BINARY_INTEGER := 0,
col_max_len BINARY_INTEGER := 0,
col_name VARCHAR2(32) := ’’,
col_name_len BINARY_INTEGER := 0,
col_schema_name VARCHAR2(32) := ’’,
col_schema_name_len BINARY_INTEGER := 0,
col_precision BINARY_INTEGER := 0,
col_scale BINARY_INTEGER := 0,
col_charsetid BINARY_INTEGER := 0,
col_charsetform BINARY_INTEGER := 0,
col_null_ok BOOLEAN := TRUE);

TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

Bulk SQL Types
type Number_Table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
type Varchar2_Table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
type Date_Table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
type Blob_Table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
type Clob_Table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
type Bfile_Table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
type Urowid_Table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;

Exceptions
inconsistent_type exception;
69-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Execution Flow
pragma exception_init(inconsistent_type, -6562);

This exception is raised by procedure COLUMN_VALUE or VARIABLE_VALUE when
the type of the given OUT parameter (for where to put the requested value) is
different from the type of the value.

Execution Flow

OPEN_CURSOR
To process a SQL statement, you must have an open cursor. When you call
the OPEN_CURSOR function, you receive a cursor ID number for the data structure
representing a valid cursor maintained by Oracle. These cursors are distinct from
cursors defined at the precompiler, OCI, or PL/SQL level, and are used only by the
DBMS_SQL package.

PARSE
Every SQL statement must be parsed by calling the PARSE procedure. Parsing the
statement checks the statement’s syntax and associates it with the cursor in your
program.

You can parse any DML or DDL statement. DDL statements are run on the parse,
which performs the implied commit.

The execution flow of DBMS_SQL is shown in Figure 69–1.

Note: When parsing a DDL statement to drop a package or a
procedure, a deadlock can occur if you’re still using a procedure in
the package. After a call to a procedure, that procedure is
considered to be in use until execution has returned to the user
side. Any such deadlock timeouts after five minutes.
DBMS_SQL 69-5

Execution Flow
Figure 69–1 DBMS_SQL Execution Flow

bind_variable

EXECUTE

variable_value

close_cursor

no

yes

yes

no

yes

no

open_cursor

PARSE

define_column

EXECUTE

fetch_rows

column_value

variable_value

query?

PL/SQL
block?

Use bind
variables?
69-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Execution Flow
BIND_VARIABLE or BIND_ARRAY
Many DML statements require that data in your program be input to Oracle. When
you define a SQL statement that contains input data to be supplied at runtime, you
must use placeholders in the SQL statement to mark where data must be supplied.

For each placeholder in the SQL statement, you must call one of the bind
procedures, BIND_VARIABLE or BIND_ARRAY, to supply the value of a variable in
your program (or the values of an array) to the placeholder. When the SQL
statement is subsequently run, Oracle uses the data that your program has placed in
the output and input, or bind, variables.

DBMS_SQL can run a DML statement multiple times — each time with a different
bind variable. The BIND_ARRAY procedure lets you bind a collection of scalars, each
value of which is used as an input variable once for each EXECUTE. This is similar to
the array interface supported by the OCI.

DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY
The columns of the row being selected in a SELECT statement are identified by their
relative positions as they appear in the select list, from left to right. For a query, you
must call one of the define procedures (DEFINE_COLUMN, DEFINE_COLUMN_LONG,
or DEFINE_ARRAY) to specify the variables that are to receive the SELECT values,
much the way an INTO clause does for a static query.

Use the DEFINE_COLUMN_LONG procedure to define LONG columns, in the same
way that DEFINE_COLUMN is used to define non-LONG columns. You must call
DEFINE_COLUMN_LONG before using the COLUMN_VALUE_LONG procedure to fetch
from the LONG column.

Use the DEFINE_ARRAY procedure to define a PL/SQL collection into which you
want to fetch rows in a single SELECT statement. DEFINE_ARRAY provides an
interface to fetch multiple rows at one fetch. You must call DEFINE_ARRAY before
using the COLUMN_VALUE procedure to fetch the rows.

EXECUTE
Call the EXECUTE function to run your SQL statement.

FETCH_ROWS or EXECUTE_AND_FETCH
The FETCH_ROWS function retrieves the rows that satisfy the query. Each successive
fetch retrieves another set of rows, until the fetch is unable to retrieve anymore
rows. Instead of calling EXECUTE and then FETCH_ROWS, you may find it more
efficient to call EXECUTE_AND_FETCH if you are calling EXECUTE for a single
execution.
DBMS_SQL 69-7

Security
VARIABLE_VALUE, COLUMN_VALUE, or COLUMN_VALUE_LONG
For queries, call COLUMN_VALUE to determine the value of a column retrieved by
the FETCH_ROWS call. For anonymous blocks containing calls to PL/SQL
procedures or DML statements with returning clause, call VARIABLE_VALUE to
retrieve the values assigned to the output variables when statements were run.

To fetch just part of a LONG database column (which can be up to two gigabytes in
size), use the COLUMN_VALUE_LONG procedure. You can specify the offset (in bytes)
into the column value, and the number of bytes to fetch.

CLOSE_CURSOR
When you no longer need a cursor for a session, close the cursor by calling CLOSE_
CURSOR. If you are using an Oracle Open Gateway, then you may need to close
cursors at other times as well. Consult your Oracle Open Gateway documentation for
additional information.

If you neglect to close a cursor, then the memory used by that cursor remains
allocated even though it is no longer needed.

Security

Definer Rights Modules
Definer rights modules run under the privileges of the owner of the module. DBMS_
SQL subprograms called from definer rights modules run with respect to the
schema in which the module is defined.

Invoker Rights Modules
Invoker rights modules run under the privileges of the invoker of the module.
Therefore, DBMS_SQL subprograms called from invoker rights modules run under
the privileges of the invoker of the module.

When a module has AUTHID set to current_user , the unqualified names are
resolved with respect to the invoker’s schema.

Note: Prior to Oracle 8i, all PL/SQL stored procedures and
packages were definer rights modules.
69-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Processing Queries
Example:
income is an invoker rights stored procedure in USER1’s schema, and USER2 has
been granted EXECUTE privilege on it.

CREATE PROCEDURE income(amount number)
AUTHID current_user IS
c number;
n number;

BEGIN
c:= dbms_sql.open_cursor;
dbms_sql.parse(c, ’insert into accts(’’income’’, :1)’, dbms_sql.native);
dbms_sql.bind_variable(c, ’1’, amount);
n := dbms_sql.execute(c);
dbms_sql.close_cursor(c);

END;

If USER1 calls USER1.income , then USER1’s privileges are used, and name
resolution of unqualified names is done with respect to USER1’s schema.

If USER2 calls USER1.income , then USER2’s privileges are used, and name
resolution of unqualified names (such as accts) is done with respect to USER2’s
schema.

Anonymous Blocks
Any DBMS_SQL subprograms called from an anonymous PL/SQL block are run
using the privileges of the current user.

Processing Queries
If you are using dynamic SQL to process a query, then you must perform the
following steps:

1. Specify the variables that are to receive the values returned by the SELECT
statement by calling DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_
ARRAY.

2. Run your SELECT statement by calling EXECUTE.

3. Call FETCH_ROWS (or EXECUTE_AND_FETCH) to retrieve the rows that satisfied
your query.

See Also: PL/SQL User’s Guide and Reference
DBMS_SQL 69-9

Examples
4. Call COLUMN_VALUE or COLUMN_VALUE_LONG to determine the value of a
column retrieved by the FETCH_ROWS call for your query. If you used
anonymous blocks containing calls to PL/SQL procedures, then you must call
VARIABLE_VALUE to retrieve the values assigned to the output variables of
these procedures.

Examples
This section provides example procedures that make use of the DBMS_SQL package.

Example 1
The following sample procedure is passed a SQL statement, which it then parses
and runs:

CREATE OR REPLACE PROCEDURE exec(STRING IN varchar2) AS
cursor_name INTEGER;
ret INTEGER;

BEGIN
cursor_name := DBMS_SQL.OPEN_CURSOR;

DDL statements are run by the parse call, which performs the implied commit.

DBMS_SQL.PARSE(cursor_name, string, DBMS_SQL.native);
ret := DBMS_SQL.EXECUTE(cursor_name);
DBMS_SQL.CLOSE_CURSOR(cursor_name);

END;

Creating such a procedure enables you to perform the following operations:

� The SQL statement can be dynamically generated at runtime by the calling
program.

� The SQL statement can be a DDL statement or a DML without binds.

For example, after creating this procedure, you could make the following call:

exec(’create table acct(c1 integer)’);

You could even call this procedure remotely, as shown in the following example.
This lets you perform remote DDL.

exec@hq.com(’CREATE TABLE acct(c1 INTEGER)’);
69-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
Example 2
The following sample procedure is passed the names of a source and a destination
table, and copies the rows from the source table to the destination table. This sample
procedure assumes that both the source and destination tables have the following
columns:

id of type NUMBER
name of type VARCHAR2(30)
birthdate of type DATE

This procedure does not specifically require the use of dynamic SQL; however, it
illustrates the concepts of this package.

CREATE OR REPLACE PROCEDURE copy (
source IN VARCHAR2,
destination IN VARCHAR2) IS
id_var NUMBER;
name_var VARCHAR2(30);
birthdate_var DATE;
source_cursor INTEGER;
destination_cursor INTEGER;
ignore INTEGER;

BEGIN

-- Prepare a cursor to select from the source table:
source_cursor := dbms_sql.open_cursor;
DBMS_SQL.PARSE(source_cursor,

’SELECT id, name, birthdate FROM ’ || source,
DBMS_SQL.native);

DBMS_SQL.DEFINE_COLUMN(source_cursor, 1, id_var);
DBMS_SQL.DEFINE_COLUMN(source_cursor, 2, name_var, 30);
DBMS_SQL.DEFINE_COLUMN(source_cursor, 3, birthdate_var);
ignore := DBMS_SQL.EXECUTE(source_cursor);

-- Prepare a cursor to insert into the destination table:
destination_cursor := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(destination_cursor,

’INSERT INTO ’ || destination ||
’ VALUES (:id_bind, :name_bind, :birthdate_bind)’,

DBMS_SQL.native);

-- Fetch a row from the source table and insert it into the destination table:
LOOP

IF DBMS_SQL.FETCH_ROWS(source_cursor)>0 THEN
-- get column values of the row
DBMS_SQL 69-11

Examples
DBMS_SQL.COLUMN_VALUE(source_cursor, 1, id_var);
DBMS_SQL.COLUMN_VALUE(source_cursor, 2, name_var);
DBMS_SQL.COLUMN_VALUE(source_cursor, 3, birthdate_var);

-- Bind the row into the cursor that inserts into the destination table. You
-- could alter this example to require the use of dynamic SQL by inserting an
-- if condition before the bind.

DBMS_SQL.BIND_VARIABLE(destination_cursor, ’:id_bind’, id_var);
DBMS_SQL.BIND_VARIABLE(destination_cursor, ’:name_bind’, name_var);
DBMS_SQL.BIND_VARIABLE(destination_cursor, ’:birthdate_bind’,

birthdate_var);
ignore := DBMS_SQL.EXECUTE(destination_cursor);

ELSE

-- No more rows to copy:
EXIT;

END IF;
END LOOP;

-- Commit and close all cursors:
COMMIT;
DBMS_SQL.CLOSE_CURSOR(source_cursor);
DBMS_SQL.CLOSE_CURSOR(destination_cursor);

EXCEPTION
WHEN OTHERS THEN

IF DBMS_SQL.IS_OPEN(source_cursor) THEN
DBMS_SQL.CLOSE_CURSOR(source_cursor);

END IF;
IF DBMS_SQL.IS_OPEN(destination_cursor) THEN

DBMS_SQL.CLOSE_CURSOR(destination_cursor);
END IF;
RAISE;

END;
/

Examples 3, 4, and 5: Bulk DML
This series of examples shows how to use bulk array binds (table items) in the SQL
DML statements DELETE, INSERT, and UPDATE.

In a DELETE statement, for example, you could bind in an array in the WHERE clause
and have the statement be run for each element in the array:

declare
stmt varchar2(200);
dept_no_array dbms_sql.Number_Table;
69-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
c number;
dummy number;

begin
dept_no_array(1) := 10; dept_no_array(2) := 20;
dept_no_array(3) := 30; dept_no_array(4) := 40;
dept_no_array(5) := 30; dept_no_array(6) := 40;
stmt := 'delete from emp where deptno = :dept_array';
c := dbms_sql.open_cursor;
dbms_sql.parse(c, stmt, dbms_sql.native);
dbms_sql.bind_array(c, ':dept_array', dept_no_array, 1, 4);
dummy := dbms_sql.execute(c);
dbms_sql.close_cursor(c);

exception when others then
if dbms_sql.is_open(c) then

dbms_sql.close_cursor(c);
end if;
raise;

end;
/

In the preceding example, only elements 1 through 4 are used as specified by the
bind_array call. Each element of the array potentially deletes a large number of
employees from the database.

Here is an example of a bulk INSERT statement:

declare
stmt varchar2(200);
empno_array dbms_sql.Number_Table;
empname_array dbms_sql.Varchar2_Table;
c number;
dummy number;

begin
for i in 0..9 loop

empno_array(i) := 1000 + i;
empname_array(I) := get_name(i);

end loop;
stmt := 'insert into emp values(:num_array, :name_array)';
c := dbms_sql.open_cursor;
dbms_sql.parse(c, stmt, dbms_sql.native);
dbms_sql.bind_array(c, ':num_array', empno_array);
dbms_sql.bind_array(c, ':name_array', empname_array);
dummy := dbms_sql.execute(c);
dbms_sql.close_cursor(c);
DBMS_SQL 69-13

Examples
exception when others then
if dbms_sql.is_open(c) then

dbms_sql.close_cursor(c);
end if;
raise;

end;
/

When the execute takes place, all 10 of the employees are inserted into the table.

Finally, here is an example of an bulk UPDATE statement.

declare
stmt varchar2(200);
emp_no_array dbms_sql.Number_Table;
emp_addr_array dbms_sql.Varchar2_Table;
c number;
dummy number;

begin
for i in 0..9 loop

emp_no_array(i) := 1000 + i;
emp_addr_array(I) := get_new_addr(i);

end loop;
stmt := 'update emp set ename = :name_array

where empno = :num_array';
c := dbms_sql.open_cursor;
dbms_sql.parse(c, stmt, dbms_sql.native);
dbms_sql.bind_array(c, ':num_array', empno_array);
dbms_sql.bind_array(c, ':name_array', empname_array);
dummy := dbms_sql.execute(c);
dbms_sql.close_cursor(c);

exception when others then
if dbms_sql.is_open(c) then

dbms_sql.close_cursor(c);
end if;
raise;

end;
/

When the EXECUTE call happens, the addresses of all employees are updated at
once. The two collections are always stepped in unison. If the WHERE clause returns
more than one row, then all those employees get the address the addr_array
happens to be pointing to at that time.
69-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
Examples 6 and 7: Defining an Array
The following examples show how to use the DEFINE_ARRAY procedure:

declare
c number;
d number;
n_tab dbms_sql.Number_Table;
indx number := -10;

begin
c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'select n from t order by 1', dbms_sql);

dbms_sql.define_array(c, 1, n_tab, 10, indx);

d := dbms_sql.execute(c);
loop

d := dbms_sql.fetch_rows(c);

dbms_sql.column_value(c, 1, n_tab);

exit when d != 10;
end loop;

dbms_sql.close_cursor(c);

exception when others then
if dbms_sql.is_open(c) then

dbms_sql.close_cursor(c);
end if;
raise;

end;
/

Each time the preceding example does a FETCH_ROWS call, it fetches 10 rows that
are kept in DBMS_SQL buffers. When the COLUMN_VALUE call is run, those rows
move into the PL/SQL table specified (in this case n_tab), at positions -10 to -1, as
specified in the DEFINE statements. When the second batch is fetched in the loop,
the rows go to positions 0 to 9; and so on.

A current index into each array is maintained automatically. This index is initialized
to "indx" at EXECUTE and keeps getting updated every time a COLUMN_VALUE call
is made. If you reexecute at any point, then the current index for each DEFINE is
re-initialized to "indx".
DBMS_SQL 69-15

Examples
In this way the entire result of the query is fetched into the table. When FETCH_
ROWS cannot fetch 10 rows, it returns the number of rows actually fetched (if no
rows could be fetched, then it returns zero) and exits the loop.

Here is another example of using the DEFINE_ARRAY procedure:

Consider a table MULTI_TAB defined as:

create table multi_tab (num number,
dat1 date,
var varchar2(24),
dat2 date)

To select everything from this table and move it into four PL/SQL tables, you could
use the following simple program:

declare
c number;
d number;
n_tab dbms_sql.Number_Table;
d_tab1 dbms_sql.Date_Table;
v_tab dbms_sql.Varchar2_Table;
d_tab2 dbms_sql.Date_Table;
indx number := 10;

begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, 'select * from multi_tab order by 1', dbms_sql);

dbms_sql.define_array(c, 1, n_tab, 5, indx);
dbms_sql.define_array(c, 2, d_tab1, 5, indx);
dbms_sql.define_array(c, 3, v_tab, 5, indx);
dbms_sql.define_array(c, 4, d_tab2, 5, indx);

d := dbms_sql.execute(c);

loop
d := dbms_sql.fetch_rows(c);

dbms_sql.column_value(c, 1, n_tab);
dbms_sql.column_value(c, 2, d_tab1);
dbms_sql.column_value(c, 3, v_tab);
dbms_sql.column_value(c, 4, d_tab2);

exit when d != 5;
end loop;
69-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
dbms_sql.close_cursor(c);

/*

The four tables can be used for anything. One usage might be to use BIND_ARRAY
to move the rows to another table by using a query such as 'INSERT into SOME_T
values (:a, :b, :c, :d);

*/

exception when others then
if dbms_sql.is_open(c) then

dbms_sql.close_cursor(c);
end if;
raise;

end;
/

Example 8: Describe Columns
This can be used as a substitute to the SQL*Plus DESCRIBE call by using a SELECT
* query on the table that you want to describe.

declare
c number;
d number;
col_cnt integer;
f boolean;
rec_tab dbms_sql.desc_tab;
col_num number;
procedure print_rec(rec in dbms_sql.desc_rec) is
begin

dbms_output.new_line;
dbms_output.put_line('col_type = '

|| rec.col_type);
dbms_output.put_line('col_maxlen = '

|| rec.col_max_len);
dbms_output.put_line('col_name = '

|| rec.col_name);
dbms_output.put_line('col_name_len = '

|| rec.col_name_len);
dbms_output.put_line('col_schema_name = '

|| rec.col_schema_name);
dbms_output.put_line('col_schema_name_len = '

|| rec.col_schema_name_len);
DBMS_SQL 69-17

Examples
dbms_output.put_line('col_precision = '
|| rec.col_precision);

dbms_output.put_line('col_scale = '
|| rec.col_scale);

dbms_output.put('col_null_ok = ');
if (rec.col_null_ok) then

dbms_output.put_line('true');
else

dbms_output.put_line('false');
end if;

end;
begin

c := dbms_sql.open_cursor;

dbms_sql.parse(c, 'select * from scott.bonus', dbms_sql);

d := dbms_sql.execute(c);

dbms_sql.describe_columns(c, col_cnt, rec_tab);

/*
* Following loop could simply be for j in 1..col_cnt loop.
* Here we are simply illustrating some of the PL/SQL table
* features.
*/

col_num := rec_tab.first;
if (col_num is not null) then

loop
print_rec(rec_tab(col_num));
col_num := rec_tab.next(col_num);
exit when (col_num is null);

end loop;
end if;

dbms_sql.close_cursor(c);
end;
/

Example 9: RETURNING clause The RETURNING clause was added to DML statements
in Oracle 8.0.3. With this clause, INSERT, UPDATE, and DELETE statements can
return values of expressions. These values are returned in bind variables.

DBMS_SQL.BIND_VARIABLE is used to bind these outbinds if a single row is
inserted, updated, or deleted. If multiple rows are inserted, updated, or deleted,
69-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
then DBMS_SQL.BIND_ARRAY is used. DBMS_SQL.VARIABLE_VALUE must be called
to get the values in these bind variables.

i) Single row insert

create or replace procedure single_Row_insert
(c1 number, c2 number, r out number) is

c number;
n number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’insert into tab values (:bnd1, :bnd2) ’ ||

’returning c1*c2 into :bnd3’, 2);
dbms_sql.bind_variable(c, ’bnd1’, c1);

dbms_sql.bind_variable(c, ’bnd2’, c2);
dbms_sql.bind_variable(c, ’bnd3’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd3’, r); -- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;
/

ii) Single row update

create or replace procedure single_Row_update
(c1 number, c2 number, r out number) is

c number;
n number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’update tab set c1 = :bnd1, c2 = :bnd2 ’ ||

’where rownum < 2’ ||
’returning c1*c2 into :bnd3’, 2);

dbms_sql.bind_variable(c, ’bnd1’, c1);
dbms_sql.bind_variable(c, ’bnd2’, c2);
dbms_sql.bind_variable(c, ’bnd3’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd3’, r);-- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;

Note: This is similar to DBMS_SQL.VARIABLE_VALUE, which
must be called after running a PL/SQL block with an out-bind
inside DBMS_SQL.
DBMS_SQL 69-19

Examples
/

iii) Single row delete

create or replace procedure single_Row_Delete
(c1 number, c2 number, r out number) is

c number;
n number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’delete from tab ’ ||

’where rownum < 2 ’ ||
’returning c1*c2 into :bnd3’, 2);

dbms_sql.bind_variable(c, ’bnd1’, c1);
dbms_sql.bind_variable(c, ’bnd2’, c2);
dbms_sql.bind_variable(c, ’bnd3’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd3’, r);-- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;
/

iv) Multi-row insert

create or replace procedure multi_Row_insert
(c1 dbms_sql.number_table, c2 dbms_sql.number_table,

r out dbms_sql.number_table) is
c number;
n number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’insert into tab values (:bnd1, :bnd2) ’ ||

’returning c1*c2 into :bnd3’, 2);
dbms_sql.bind_array(c, ’bnd1’, c1);
dbms_sql.bind_array(c, ’bnd2’, c2);
dbms_sql.bind_array(c, ’bnd3’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd3’, r);-- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;
/

v) Multi row Update.

create or replace procedure multi_Row_update
(c1 number, c2 number, r out dbms_Sql.number_table) is
69-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Examples
c number;
n number;

begin
c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’update tab set c1 = :bnd1 where c2 = :bnd2 ’ ||

’returning c1*c2 into :bnd3’, 2);
dbms_sql.bind_variable(c, ’bnd1’, c1);
dbms_sql.bind_variable(c, ’bnd2’, c2);
dbms_sql.bind_array(c, ’bnd3’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd3’, r);-- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;
/

vi) Multi-row delete

create or replace procedure multi_row_delete
(c1 dbms_Sql.number_table,

r out dbms_sql.number_table) is
c number;
n number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’delete from tab where c1 = :bnd1’ ||

’returning c1*c2 into :bnd2’, 2);
dbms_sql.bind_array(c, ’bnd1’, c1);
dbms_sql.bind_array(c, ’bnd2’, r);
n := dbms_sql.execute(c);
dbms_sql.variable_value(c, ’bnd2’, r);-- get value of outbind variable
dbms_Sql.close_Cursor(c);

end;
/

vii) Out-bind in bulk PL/SQL

create or replace foo (n number, square out number) is
begin square := n * n; end;/

Note: bnd1 and bnd2 can be array as well. The value of the
expression for all the rows updated will be in bnd3. There is no way
of differentiating which rows got updated of each value of bnd1
and bnd2.
DBMS_SQL 69-21

Processing Updates, Inserts, and Deletes
create or replace procedure bulk_plsql
(n dbms_sql.number_Table, square out dbms_sql.number_table) is

c number;
r number;
begin

c := dbms_sql.open_cursor;
dbms_sql.parse(c, ’begin foo(:bnd1, :bnd2); end;’, 2);
dbms_sql.bind_array(c, ’bnd1’, n);
dbms_Sql.bind_Array(c, ’bnd2’, square);
r := dbms_sql.execute(c);
dbms_Sql.variable_Value(c, ’bnd2’, square);

end;
/

Processing Updates, Inserts, and Deletes
If you are using dynamic SQL to process an INSERT, UPDATE, or DELETE, then you
must perform the following steps:

1. You must first run your INSERT, UPDATE, or DELETE statement by calling
EXECUTE.

2. If statements have the returning clause, then you must call VARIABLE_
VALUE to retrieve the values assigned to the output variables.

Locating Errors
There are additional functions in the DBMS_SQL package for obtaining information
about the last referenced cursor in the session. The values returned by these
functions are only meaningful immediately after a SQL statement is run. In
addition, some error-locating functions are only meaningful after certain DBMS_
SQL calls. For example, you call LAST_ERROR_POSITION immediately after a
PARSE.

Note: DBMS_SQL.BIND_ARRAY of number_Table internally
binds a number. The number of times statement is run depends on
the number of elements in an inbind array.
69-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Summary of DBMS_SQL Subprograms

Table 69–1 DBMS_SQL Subprograms

Subprogram Description

OPEN_CURSOR Function on
page 69-24

Returns cursor ID number of new cursor.

PARSE Procedure on page 69-24 Parses given statement.

BIND_VARIABLE and BIND_
ARRAY Procedures on page 69-27

Binds a given value to a given variable.

BIND_VARIABLE and BIND_
ARRAY Procedures on page 69-27

Binds a given value to a given collection.

DEFINE_COLUMN Procedure on
page 69-31

Defines a column to be selected from the given cursor,
used only with SELECT statements.

DEFINE_ARRAY Procedure on
page 69-33

Defines a collection to be selected from the given
cursor, used only with SELECT statements.

DEFINE_COLUMN_LONG
Procedure on page 69-35

Defines a LONG column to be selected from the given
cursor, used only with SELECT statements.

EXECUTE Function on page 69-36 Executes a given cursor.

EXECUTE_AND_FETCH
Function on page 69-36

Executes a given cursor and fetch rows.

FETCH_ROWS Function on
page 69-37

Fetches a row from a given cursor.

COLUMN_VALUE Procedure on
page 69-38

Returns value of the cursor element for a given position
in a cursor.

COLUMN_VALUE_LONG
Procedure on page 69-40

Returns a selected part of a LONG column, that has been
defined using DEFINE_COLUMN_LONG.

VARIABLE_VALUE Procedure on
page 69-41

Returns value of named variable for given cursor.

IS_OPEN Function on page 69-43 Returns TRUE if given cursor is open.

DESCRIBE_COLUMNS Procedure
on page 69-44

Describes the columns for a cursor opened and parsed
through DBMS_SQL.

CLOSE_CURSOR Procedure on
page 69-46

Closes given cursor and frees memory.

LAST_ERROR_POSITION
Function on page 69-47

Returns byte offset in the SQL statement text where the
error occurred.
DBMS_SQL 69-23

OPEN_CURSOR Function
OPEN_CURSOR Function

This procedure opens a new cursor. When you no longer need this cursor, you must
close it explicitly by calling CLOSE_CURSOR.

You can use cursors to run the same SQL statement repeatedly or to run a new SQL
statement. When a cursor is reused, the contents of the corresponding cursor data
area are reset when the new SQL statement is parsed. It is never necessary to close
and reopen a cursor before reusing it.

Syntax
DBMS_SQL.OPEN_CURSOR

RETURN INTEGER;

Pragmas
pragma restrict_references(open_cursor,RNDS,WNDS);

Returns
This function returns the cursor ID number of the new cursor.

PARSE Procedure

This procedure parses the given statement in the given cursor. All statements are
parsed immediately. In addition, DDL statements are run immediately when
parsed.

There are two versions of the PARSE procedure: one uses a VARCHAR2 statement as
an argument, and the other uses a VARCHAR2S (table of VARCHAR2) as an argument.

LAST_ROW_COUNT Function on
page 69-47

Returns cumulative count of the number of rows
fetched.

LAST_ROW_ID Function on
page 69-47

Returns ROWID of last row processed.

LAST_SQL_FUNCTION_CODE
Function on page 69-48

Returns SQL function code for statement.

Table 69–1 DBMS_SQL Subprograms

Subprogram Description
69-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
The size limit for parsing SQL statements with the preceding syntax is 32KB.

Syntax
DBMS_SQL.PARSE (

c IN INTEGER,
statement IN VARCHAR2,
language_flag IN INTEGER);

The PARSE procedure also supports the following syntax for large SQL statements:

DBMS_SQL.PARSE (
c IN INTEGER,
statement IN VARCHAR2S,
lb IN INTEGER,
ub IN INTEGER,
lfflg IN BOOLEAN,
language_flag IN INTEGER);

Caution: Using DBMS_SQL to dynamically run DDL statements
can result in the program hanging. For example, a call to a
procedure in a package results in the package being locked until the
execution returns to the user side. Any operation that results in a
conflicting lock, such as dynamically trying to drop the package
before the first lock is released, results in a hang.

Note: The procedure concatenates elements of a PL/SQL table
statement and parses the resulting string. You can use this
procedure to parse a statement that is longer than the limit for a
single VARCHAR2 variable by splitting up the statement.
DBMS_SQL 69-25

PARSE Procedure
Parameters

Table 69–2 PARSE Procedure Parameters

Parameter Description

c ID number of the cursor in which to parse the statement.

statement SQL statement to be parsed.

Unlike PL/SQL statements, your SQL statement should not include
a final semicolon. For example:

DBMS_SQL.PARSE(cursor1, ’BEGIN proc; END;’, 2);

DBMS_SQL.PARSE(cursor1, ’INSERT INTO tab
values(1)’, 2);

lb Lower bound for elements in the statement.

ub Upper bound for elements in the statement.

lfflg If TRUE, then insert a linefeed after each element on concatenation.

language_flag Determines how Oracle handles the SQL statement. The following
options are recognized:

� V6 (or 0) specifies version 6 behavior.

� NATIVE (or 1) specifies normal behavior for the database to
which the program is connected.

� V7 (or 2) specifies Oracle7 behavior.

Note: Because client-side code cannot reference remote package
variables or constants, you must explicitly use the values of the
constants.

For example, the following code does not compile on the client:

DBMS_SQL.PARSE(cur_hdl, stmt_str, dbms_sql.V7); -- uses
constant dbms_sql.V7

The following code works on the client, because the argument is
explicitly provided:

DBMS_SQL.PARSE(cur_hdl, stmt_str, 2); -- compiles on
the client
69-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Example 9: VARCHAR2S Datatype for Parsing Large SQL Strings
To parse SQL statements larger than 32 KB, DBMS_SQL makes use of PL/SQL tables
to pass a table of strings to the PARSE procedure. These strings are concatenated
and then passed on to the Oracle server.

You can declare a local variable as the VARCHAR2S table-item type, and then use the
PARSE procedure to parse a large SQL statement as VARCHAR2S.

The definition of the VARCHAR2S datatype is:

TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;

Exceptions
If you create a type/procedure/function/package using DBMS_SQL that has
compilation warnings, an ORA-24344 exception is raised, and the procedure is still
created.

BIND_VARIABLE and BIND_ARRAY Procedures

These two procedures bind a given value or set of values to a given variable in a
cursor, based on the name of the variable in the statement. If the variable is an IN or
IN /OUT variable or an IN collection, then the given bind value must be valid for the
variable or array type. Bind values for OUT variables are ignored.

The bind variables or collections of a SQL statement are identified by their names.
When binding a value to a bind variable or bind array, the string identifying it in
the statement must contain a leading colon, as shown in the following example:

SELECT emp_name FROM emp WHERE SAL > :X;

For this example, the corresponding bind call would look similar to

BIND_VARIABLE(cursor_name, ’:X’, 3500);

or

BIND_VARIABLE (cursor_name, ’X’, 3500);

Syntax
DBMS_SQL.BIND_VARIABLE (

c IN INTEGER,
name IN VARCHAR2,
DBMS_SQL 69-27

BIND_VARIABLE and BIND_ARRAY Procedures
value IN <datatype>)

Where <datatype> can be any one of the following types:

NUMBER
DATE
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE
UROWID

Notice that BIND_VARIABLE is overloaded to accept different datatypes.

Pragmas
pragma restrict_references(bind_variable,WNDS);

Usage Notes
The following syntax is also supported for BIND_VARIABLE. The square brackets []
indicate an optional parameter for the BIND_VARIABLE function.

DBMS_SQL.BIND_VARIABLE (
c IN INTEGER,
name IN VARCHAR2,
value IN VARCHAR2 CHARACTER SET ANY_CS [,out_value_size IN

INTEGER]);

To bind CHAR, RAW, and ROWID data, you can use the following variations on the
syntax:

DBMS_SQL.BIND_VARIABLE_CHAR (
c IN INTEGER,
name IN VARCHAR2,
value IN CHAR CHARACTER SET ANY_CS [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_RAW (
c IN INTEGER,
name IN VARCHAR2,
value IN RAW [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_ROWID (

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)
69-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
c IN INTEGER,
name IN VARCHAR2,
value IN ROWID);

Parameters

Bulk Array Binds
Bulk selects, inserts, updates, and deletes can enhance the performance of
applications by bundling many calls into one. The DBMS_SQL package lets you
work on collections of data using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are
like other relational tables and have no intrinsic ordering. But when a table item is
brought into the workspace (either by querying or by navigational access of
persistent data), or when it is created as the value of a PL/SQL variable or
parameter, its elements are given subscripts that can be used with array-style syntax
to get and set the values of elements.

The subscripts of these elements need not be dense, and can be any number
including negative numbers. For example, a table item can contain elements at
locations -10, 2, and 7 only.

When a table item is moved from transient workspace to persistent storage, the
subscripts are not stored; the table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL
buffers (the same as for all scalar types) and then the table is manipulated from the

Table 69–3 BIND_VARIABLE Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind a value.

name Name of the variable in the statement.

value Value that you want to bind to the variable in the cursor.

For IN and IN /OUT variables, the value has the same type as the type
of the value being passed in for this parameter.

out_value_size Maximum expected OUT value size, in bytes, for the VARCHAR2, RAW,
CHAR OUT or IN /OUT variable.

If no size is given, then the length of the current value is used. This
parameter must be specified if the value parameter is not initialized.
DBMS_SQL 69-29

BIND_VARIABLE and BIND_ARRAY Procedures
local DBMS_SQL buffers. Therefore, if you change the table after the bind call, then
that change does not affect the way the execute acts.

Types for Scalar and LOB Collections
You can declare a local variable as one of the following table-item types, which are
defined as public types in DBMS_SQL.

type Number_Table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
type Varchar2_Table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
type Date_Table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
type Blob_Table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
type Clob_Table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
type Bfile_Table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
type Urowid_Table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;

Syntax
DBMS_SQL.BIND_ARRAY (

c IN INTEGER,
name IN VARCHAR2,
<table_variable> IN <datatype>

[,index1 IN INTEGER,
index2 IN INTEGER)]);

Where the <table_variable > and its corresponding <datatype> can be any one
of the following matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table
<urowid_tab> Urowid_Table

Notice that the BIND_ARRAY procedure is overloaded to accept different datatypes.
69-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Parameters

Usage Notes
For binding a range, the table must contain the elements that specify the range —
tab(index1) and tab(index2) — but the range does not have to be dense. Index1
must be less than or equal to index2. All elements between tab(index1) and
tab(index2) are used in the bind.

If you do not specify indexes in the bind call, and two different binds in a statement
specify tables that contain a different number of elements, then the number of
elements actually used is the minimum number between all tables. This is also the
case if you specify indexes — the minimum range is selected between the two
indexes for all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds
and the same value are used for each element of the collections in expression
evaluations (and so forth).

DEFINE_COLUMN Procedure

This procedure defines a column to be selected from the given cursor. This
procedure is only used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of
the statement in the given cursor. The type of the COLUMN value determines the type
of the column being defined.

Table 69–4 BIND_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind a value.

name Name of the collection in the statement.

table_variable Local variable that has been declared as <datatype >.

index1 Index for the table element that marks the lower bound of the range.

index2 Index for the table element that marks the upper bound of the range.

See Also: "Examples 3, 4, and 5: Bulk DML" on page 69-12 for
examples of how to bind collections.
DBMS_SQL 69-31

DEFINE_COLUMN Procedure
Syntax
DBMS_SQL.DEFINE_COLUMN (

c IN INTEGER,
position IN INTEGER,
column IN <datatype>)

Where <datatype > can be any one of the following types:

NUMBER
DATE
BLOB
CLOB CHARACTER SET ANY_CS
BFILE
UROWID

Notice that DEFINE_COLUMN is overloaded to accept different datatypes.

Pragmas
pragma restrict_references(define_column,RNDS,WNDS);

The following syntax is also supported for the DEFINE_COLUMN procedure:

DBMS_SQL.DEFINE_COLUMN (
c IN INTEGER,
position IN INTEGER,
column IN VARCHAR2 CHARACTER SET ANY_CS,
column_size IN INTEGER),
urowid IN INTEGER;

To define columns with CHAR, RAW, and ROWID data, you can use the following
variations on the procedure syntax:

DBMS_SQL.DEFINE_COLUMN_CHAR (
c IN INTEGER,
position IN INTEGER,
column IN CHAR CHARACTER SET ANY_CS,
column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_RAW (
c IN INTEGER,
position IN INTEGER,

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)
69-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
column IN RAW,
column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_ROWID (
c IN INTEGER,
position IN INTEGER,
column IN ROWID);

Parameters

DEFINE_ARRAY Procedure

This procedure defines the collection for column into which you want to fetch rows
(with a FETCH_ROWS call). This procedure lets you do batch fetching of rows from a
single SELECT statement. A single fetch call brings over a number of rows into the
PL/SQL aggregate object.

When you fetch the rows, they are copied into DBMS_SQL buffers until you run a
COLUMN_VALUE call, at which time the rows are copied into the table that was
passed as an argument to the COLUMN_VALUE call.

Scalar and LOB Types for Collections
You can declare a local variable as one of the following table-item types, and then
fetch any number of rows into it using DBMS_SQL. (These are the same types as you
can specify for the BIND_ARRAY procedure.)

type Number_Table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Table 69–5 DEFINE_COLUMN Procedure Parameters

Parameter Description

c ID number of the cursor for the row being defined to be selected.

position Relative position of the column in the row being defined.

The first column in a statement has position 1.

column Value of the column being defined.

The type of this value determines the type for the column being
defined.

column_size Maximum expected size of the column value, in bytes, for columns of
type VARCHAR2, CHAR, and RAW.
DBMS_SQL 69-33

DEFINE_ARRAY Procedure
type Varchar2_Table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
type Date_Table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
type Blob_Table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
type Clob_Table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
type Bfile_Table IS TABLE OF BFILE INDEX BY BINARY_INTEGER;
type Urowid_Table IS TABLE OF UROWID INDEX BY BINARY_INTEGER;

Syntax
DBMS_SQL.DEFINE_ARRAY (

c IN INTEGER,
position IN INTEGER,
<table_variable> IN <datatype>
cnt IN INTEGER,
lower_bnd IN INTEGER);

Where <table_variable > and its corresponding <datatype> can be any one of
the following matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table
<urowid_tab> Urowid_Table

Notice that DEFINE_ARRAY is overloaded to accept different datatypes.

Pragmas
pragma restrict_references(define_array,RNDS,WNDS);

The subsequent FETCH_ROWS call fetch "count" rows. When the COLUMN_VALUE
call is made, these rows are placed in positions indx, indx+1, indx+2, and so on.
While there are still rows coming, the user keeps issuing FETCH_ROWS/COLUMN_
VALUE calls. The rows keep accumulating in the table specified as an argument in
the COLUMN_VALUE call.
69-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Parameters
<

The count (cnt) must be an integer greater than zero; otherwise an exception is
raised. The indx can be positive, negative, or zero. A query on which a DEFINE_
ARRAY call was issued cannot contain array binds.

DEFINE_COLUMN_LONG Procedure

This procedure defines a LONG column for a SELECT cursor. The column being
defined is identified by its relative position in the SELECT list of the statement for
the given cursor. The type of the COLUMN value determines the type of the column
being defined.

Syntax
DBMS_SQL.DEFINE_COLUMN_LONG (

c IN INTEGER,
position IN INTEGER);

Table 69–6 DEFINE_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor to which you want to bind an array.

position Relative position of the column in the array being defined.

The first column in a statement has position 1.

table_variable Local variable that has been declared as <datatype >.

cnt Number of rows that must be fetched.

lower_bnd Results are copied into the collection, starting at this lower bound
index.

See Also: "Examples 6 and 7: Defining an Array" on page 69-15
for examples of how to define collections.
DBMS_SQL 69-35

EXECUTE Function
Parameters

EXECUTE Function

This function executes a given cursor. This function accepts the ID number of the
cursor and returns the number of rows processed. The return value is only valid for
INSERT, UPDATE, and DELETE statements; for other types of statements, including
DDL, the return value is undefined and should be ignored.

Syntax
DBMS_SQL.EXECUTE (

c IN INTEGER)
RETURN INTEGER;

Parameters

EXECUTE_AND_FETCH Function

This function executes the given cursor and fetches rows. This function provides the
same functionality as calling EXECUTE and then calling FETCH_ROWS. Calling
EXECUTE_AND_FETCH instead, however, may reduce the number of network
round-trips when used against a remote database.

The EXECUTE_AND_FETCH function returns the number of rows actually fetched.

Table 69–7 DEFINE_COLUMN_LONG Procedure Parameters

Parameter Description

c ID number of the cursor for the row being defined to be selected.

position Relative position of the column in the row being defined.

The first column in a statement has position 1.

Table 69–8 EXECUTE Function Parameters

Parameter Description

c Cursor ID number of the cursor to execute.
69-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Syntax
DBMS_SQL.EXECUTE_AND_FETCH (

c IN INTEGER,
exact IN BOOLEAN DEFAULT FALSE)

RETURN INTEGER;

Pragmas
pragma restrict_references(execute_and_fetch,WNDS);

Parameters

FETCH_ROWS Function

This function fetches a row from a given cursor. You can call FETCH_ROWS
repeatedly as long as there are rows remaining to be fetched. These rows are
retrieved into a buffer, and must be read by calling COLUMN_VALUE, for each
column, after each call to FETCH_ROWS.

The FETCH_ROWS function accepts the ID number of the cursor to fetch, and returns
the number of rows actually fetched.

Syntax
DBMS_SQL.FETCH_ROWS (

c IN INTEGER)
RETURN INTEGER;

Table 69–9 EXECUTE_AND_FETCH Function Parameters

Parameter Description

c ID number of the cursor to execute and fetch.

exact Set to TRUE to raise an exception if the number of rows actually
matching the query differs from one.

Note: Oracle does not support the exact fetch TRUE option with
LONG columns.

Even if an exception is raised, the rows are still fetched and
available.
DBMS_SQL 69-37

COLUMN_VALUE Procedure
Parameters

Pragmas
pragma restrict_references(fetch_rows,WNDS);

COLUMN_VALUE Procedure

This procedure returns the value of the cursor element for a given position in a
given cursor. This procedure is used to access the data fetched by calling FETCH_
ROWS.

Syntax
DBMS_SQL.COLUMN_VALUE (

c IN INTEGER,
position IN INTEGER,
value OUT <datatype>

[,column_error OUT NUMBER]
[,actual_length OUT INTEGER]);

Where <datatype> can be any one of the following types:

NUMBER
DATE
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE
UROWID

Table 69–10 FETCH_ROWS Function Parameters

Parameter Description

c ID number.

Note: The square brackets [] indicate optional parameters.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)
69-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Pragmas
pragma restrict_references(column_value,RNDS,WNDS);

The following syntax is also supported for the COLUMN_VALUE procedure:

DBMS_SQL.COLUMN_VALUE(
c IN INTEGER,
position IN INTEGER,
<table_variable> IN <datatype>);

Where the <table_variable > and its corresponding <datatype> can be any one
of these matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table
<urowid_tab> Urowid_Table

For columns containing CHAR, RAW, and ROWID data, you can use the following
variations on the syntax:

DBMS_SQL.COLUMN_VALUE_CHAR (
c IN INTEGER,
position IN INTEGER,
value OUT CHAR CHARACTER SET ANY_CS

[,column_error OUT NUMBER]
[,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_RAW (
c IN INTEGER,
position IN INTEGER,
value OUT RAW

[,column_error OUT NUMBER]
[,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_ROWID (
c IN INTEGER,
position IN INTEGER,
value OUT ROWID

[,column_error OUT NUMBER]
[,actual_length OUT INTEGER]);
DBMS_SQL 69-39

COLUMN_VALUE_LONG Procedure
Parameters

Exceptions:
inconsistent_type (ORA-06562) is raised if the type of the given OUT
parameter value is different from the actual type of the value. This type was the
given type when the column was defined by calling procedure DEFINE_COLUMN.

COLUMN_VALUE_LONG Procedure

This procedure gets part of the value of a long column.

Syntax
DBMS_SQL.COLUMN_VALUE_LONG (

c IN INTEGER,
position IN INTEGER,
length IN INTEGER,
offset IN INTEGER,
value OUT VARCHAR2,
value_length OUT INTEGER);

Table 69–11 COLUMN_VALUE Procedure Parameters

Parameter Description

c ID number of the cursor from which you are fetching the values.

position Relative position of the column in the cursor.

The first column in a statement has position 1.

value Returns the value at the specified column and row.

If the row number specified is greater than the total number of rows
fetched, then you receive an error message.

Oracle raises exception ORA-06562 , inconsistent_type , if the type
of this output parameter differs from the actual type of the value, as
defined by the call to DEFINE_COLUMN.

table_
variable

Local variable that has been declared <datatype >.

column_error Returns any error code for the specified column value.

actual_length The actual length, before any truncation, of the value in the specified
column.
69-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Pragmas
pragma restrict_references(column_value_long,RNDS,WNDS);

Parameters

VARIABLE_VALUE Procedure

This procedure returns the value of the named variable for a given cursor. It is used
to return the values of bind variables inside PL/SQL blocks or DML statements
with returning clause.

Syntax
DBMS_SQL.VARIABLE_VALUE (

c IN INTEGER,
name IN VARCHAR2,
value OUT <datatype>);

Where <datatype> can be any one of the following types:

NUMBER
DATE
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE
UROWID

Table 69–12 COLUMN_VALUE_LONG Procedure Parameters

Parameter Description

c Cursor ID number of the cursor from which to get the value.

position Position of the column of which to get the value.

length Number of bytes of the long value to fetch.

offset Offset into the long field for start of fetch.

value Value of the column as a VARCHAR2.

value_length Number of bytes actually returned in value.
DBMS_SQL 69-41

VARIABLE_VALUE Procedure
Pragmas
pragma restrict_references(variable_value,RNDS,WNDS);

The following syntax is also supported for the VARIABLE_VALUE procedure:

DBMS_SQL.VARIABLE_VALUE (
c IN INTEGER,
name IN VARCHAR2,
<table_variable> IN <datatype>);

Where the <table_variable > and its corresponding <datatype> can be any one
of these matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table
<urowid_tab> Urowid_Table

For variables containing CHAR, RAW, and ROWID data, you can use the following
variations on the syntax:

DBMS_SQL.VARIABLE_VALUE_CHAR (
c IN INTEGER,
name IN VARCHAR2,
value OUT CHAR CHARACTER SET ANY_CS);

DBMS_SQL.VARIABLE_VALUE_RAW (
c IN INTEGER,
name IN VARCHAR2,
value OUT RAW);

DBMS_SQL.VARIABLE_VALUE_ROWID (
c IN INTEGER,
name IN VARCHAR2,
value OUT ROWID);
69-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Parameters

IS_OPEN Function

This function checks to see if the given cursor is currently open.

Syntax
DBMS_SQL.IS_OPEN (

c IN INTEGER)
RETURN BOOLEAN;

Pragmas
pragma restrict_references(is_open,RNDS,WNDS);

Parameters

Table 69–13 VARIABLE_VALUE Procedure Parameters

Parameter Description

c ID number of the cursor from which to get the values.

name Name of the variable for which you are retrieving the value.

value Returns the value of the variable for the specified position.

Oracle raises exception ORA-06562 , inconsistent_type , if the
type of this output parameter differs from the actual type of the value,
as defined by the call to BIND_VARIABLE.

position Relative position of the column in the cursor.

The first column in a statement has position 1.

Table 69–14 IS_OPEN Function Parameters

Parameter Description

c Cursor ID number of the cursor to check.
DBMS_SQL 69-43

DESCRIBE_COLUMNS Procedure
Returns

DESCRIBE_COLUMNS Procedure

This procedure describes the columns for a cursor opened and parsed through
DBMS_SQL.

The DESC_REC Type
The DBMS_SQL package declares the DESC_REC record type as follows:

type desc_rec is record (
col_type BINARY_INTEGER := 0,
col_max_len BINARY_INTEGER := 0,
col_name VARCHAR2(32) := '',
col_name_len BINARY_INTEGER := 0,
col_schema_name VARCHAR2(32) := '',
col_schema_name_len BINARY_INTEGER := 0,
col_precision BINARY_INTEGER := 0,
col_scale BINARY_INTEGER := 0,
col_charsetid BINARY_INTEGER := 0,
col_charsetform BINARY_INTEGER := 0,
col_null_ok BOOLEAN := TRUE);

Table 69–15 IS_OPEN Function Return Values

Return Value Description

TRUE Given cursor is currently open.

FALSE Given cursor is currently not open.
69-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
Parameters

The DESC_TAB Type
The DESC_TAB type is a PL/SQL table of DESC_REC records:

type desc_tab is table of desc_rec index by BINARY_INTEGER;

You can declare a local variable as the PL/SQL table type DESC_TAB, and then call
the DESCRIBE_COLUMNS procedure to fill in the table with the description of each
column. All columns are described; you cannot describe a single column.

Syntax
DBMS_SQL.DESCRIBE_COLUMNS (

c IN INTEGER,
col_cnt OUT INTEGER,
desc_t OUT DESC_TAB);

Table 69–16 DESC_REC Type Parameters

Parameter Description

col_type Type of the column being described.

col_max_len Maximum length of the column.

col_name Name of the column.

col_name_len Length of the column name.

col_schema_name Name of the schema the column type was defined in, if an
object type.

col_schema_name_len Length of the schema.

col_precision Column precision, if a number.

col_scale Column scale, if a number.

col_charsetid Column character set identifier.

col_charsetform Column character set form.

col_null_ok True if column can be null.
DBMS_SQL 69-45

CLOSE_CURSOR Procedure
Parameters

CLOSE_CURSOR Procedure

This procedure closes a given cursor.

Syntax
DBMS_SQL.CLOSE_CURSOR (

c IN OUT INTEGER);

Pragmas
pragma restrict_references(close_cursor,RNDS,WNDS);

Parameters

Table 69–17 DBMS_SQL.DESCRIBE_COLUMNS Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described.

col_cnt Number of columns in the select list of the query.

desc_t Table of DESC_REC, each DESC_REC describing a column in the query.

See Also: "Example 8: Describe Columns" on page 69-17
illustrates how to use DESCRIBE_COLUMNS.

Table 69–18 CLOSE_CURSOR Procedure Parameters

Parameter Mode Description

c IN ID number of the cursor that you want to close.

c OUT Cursor is set to null.

After you call CLOSE_CURSOR, the memory allocated to
the cursor is released and you can no longer fetch from
that cursor.
69-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_SQL Subprograms
LAST_ERROR_POSITION Function

This function returns the byte offset in the SQL statement text where the error
occurred. The first character in the SQL statement is at position 0.

Syntax
DBMS_SQL.LAST_ERROR_POSITION

RETURN INTEGER;

Pragmas
pragma restrict_references(last_error_position,RNDS,WNDS);

Usage Notes
Call this function after a PARSE call, before any other DBMS_SQL procedures or
functions are called.

LAST_ROW_COUNT Function

This function returns the cumulative count of the number of rows fetched.

Syntax
DBMS_SQL.LAST_ROW_COUNT

RETURN INTEGER;

Pragmas
pragma restrict_references(last_row_count,RNDS,WNDS);

Usage Notes
Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call. If called
after an EXECUTE call, then the value returned is zero.

LAST_ROW_ID Function

This function returns the ROWID of the last row processed.
DBMS_SQL 69-47

LAST_SQL_FUNCTION_CODE Function
Syntax
DBMS_SQL.LAST_ROW_ID

RETURN ROWID;

Pragmas
pragma restrict_references(last_row_id,RNDS,WNDS);

Usage Notes
Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call.

LAST_SQL_FUNCTION_CODE Function

This function returns the SQL function code for the statement. These codes are
listed in the Oracle Call Interface Programmer’s Guide.

Syntax
DBMS_SQL.LAST_SQL_FUNCTION_CODE

RETURN INTEGER;

Pragmas
pragma restrict_references(last_sql_function_code,RNDS,WNDS);

Usage Notes
You should call this function immediately after the SQL statement is run; otherwise,
the return value is undefined.
69-48 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
70

DBMS_STATS

With DBMS_STATS you can view and modify optimizer statistics gathered for
database objects. The statistics can reside in the dictionary or in a table created in
the user’s schema for this purpose. You can also collect and manage user-defined
statistics for tables and domain indexes using this package. For example, if the
DELETE_COLUMN_STATS procedure is invoked on a column for which an
association is defined, user-defined statistics for that column are deleted in addition
to deletion of the standard statistics.

Only statistics stored in the dictionary have an impact on the cost-based optimizer.
You can also use DBMS_STATS to gather statistics in parallel.

This chapter contains the following topics:

� Using DBMS_STATS

� Setting or Getting Statistics

� Transferring Statistics

� Gathering Optimizer Statistics

� Summary of DBMS_STATS Subprograms
_STATS 70-1

Using DBMS_STATS
Using DBMS_STATS
The DBMS_STATS subprograms perform the following general functions:

� Set or get statistics

� Transfer statistics

� Gather optimizer statistics

Most of the DBMS_STATS procedures include the three parameters statown ,
stattab , and statid . These parameters allow you to store statistics in your own
tables (outside of the dictionary), which does not affect the optimizer. Therefore,
you can maintain and experiment with sets of statistics.

The stattab parameter specifies the name of a table in which to hold statistics,
and it is assumed that it resides in the same schema as the object for which statistics
are collected (unless the statown parameter is specified). You can create multiple
tables with different stattab identifiers to hold separate sets of statistics.

Additionally, you can maintain different sets of statistics within a single stattab
by using the statid parameter, which avoids cluttering the user’s schema.

For the SET and GET procedures, if stattab is not provided (that is, NULL), then
the operation works directly on the dictionary statistics; therefore, you do not need
to create these statistics tables if they only plan to modify the dictionary directly.
However, if stattab is not NULL, then the SET or GET operation works on the
specified user statistics table, and not the dictionary.

When a DBMS_STATS subprogram modifies or deletes the statistics for an object, all
the dependent cursors are invalidated by default and corresponding statements are
subject to recompilation next time so that the new statistics have immediate effects.
This behavior can be altered with the no_invalidate argument.

User-Defined Statistics
DBMS_STATS supports operations on user-defined statistics. When a domain index
or column is associated with a statistics type (using the associate statement),
operations on the index or column manipulate user-defined statistics. For example,
gathering statistics for a domain index (for which an association with a statistics
type exists) using the GATHER_INDEX_STATS interface invokes the user-defined
statistics collection method of the associated statistics type. Similarly, delete,
transfer, import, and export operations manipulate user-defined statistics.

SET and GET operations for user-defined statistics are also supported using a
special version of the SET and GET interfaces for columns and indexes.
70-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_STATS
The following procedures in this package commit the current transaction, perform
the operation, and then commit again:

� SET_*

� DELETE_*

� EXPORT_*

� IMPORT_*

� GATHER_*

� *_STAT_TABLE

Types
Types for the minimum and maximum values and histogram endpoints include:

TYPE numarray IS VARRAY(256) OF NUMBER;
TYPE datearray IS VARRAY(256) OF DATE;
TYPE chararray IS VARRAY(256) OF VARCHAR2(4000);
TYPE rawarray IS VARRAY(256) OF RAW(2000);

type StatRec is record (
epc NUMBER,
minval RAW(2000),
maxval RAW(2000),
bkvals NUMARRAY,
novals NUMARRAY);

Types for listing stale tables include:

type ObjectElem is record (
ownname VARCHAR2(30), -- owner
objtype VARCHAR2(6), -- ’TABLE’ or ’INDEX’
objname VARCHAR2(30), -- table/index
partname VARCHAR2(30), -- partition
subpartname VARCHAR2(30), -- subpartition
confidence NUMBER); -- not used

type ObjectTab is TABLE of ObjectElem;

Use the following constant to indicate that auto-sample size algorithms should be
used:

AUTO_SAMPLE_SIZE CONSTANT NUMBER;
DBMS_STATS 70-3

Setting or Getting Statistics
The constant used to determine the system default degree of parallelism, based on
the initialization parameters, is:

DEFAULT_DEGREE CONSTANT NUMBER;

Setting or Getting Statistics
Use the following procedures to store and retrieve individual column-related,
index-related, and table-related statistics:

PREPARE_COLUMN_VALUES
SET_COLUMN_STATS
SET_INDEX_STATS
SET_SYSTEM_STATS
SET_TABLE_STATS

In the special versions of the SET_*_STATS procedures for setting user-defined
statistics, the following, if provided, are stored in the dictionary or external statistics
table:

� User-defined statistics (extstats)

� The statistics type schema name (statsschema)

� The statistics type name (statsname)

The user-defined statistics and the corresponding statistics type are inserted into the
USTATS$ dictionary table. You can specify user-defined statistics without specifying
the statistics type name.

CONVERT_RAW_VALUE
GET_COLUMN_STATS
GET_INDEX_STATS
GET_SYSTEM_STATS
GET_TABLE_STATS

The special versions of the GET_*_STATS procedures return user-defined statistics
and the statistics type owner and name as OUT arguments corresponding to the
schema object specified. If user-defined statistics are not collected, NULL values are
returned.

DELETE_COLUMN_STATS
DELETE_INDEX_STATS
DELETE_SYSTEM_STATS
DELETE_TABLE_STATS
DELETE_SCHEMA_STATS
70-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Gathering Optimizer Statistics
DELETE_DATABASE_STATS

The DELETE_* procedures delete user-defined statistics and the standard statistics
for the given schema object.

Transferring Statistics
Use the following procedures to transfer statistics from the dictionary to a user stat
table (export_ *) and from a user stat table to the dictionary (import_ *):

CREATE_STAT_TABLE
DROP_STAT_TABLE

CREATE_STAT_TABLE can hold user-defined statistics and the statistics type object
number.

EXPORT_COLUMN_STATS
EXPORT_INDEX_STATS
EXPORT_SYSTEM_STATS
EXPORT_TABLE_STATS
EXPORT_SCHEMA_STATS
EXPORT_DATABASE_STATS

IMPORT_COLUMN_STATS
IMPORT_INDEX_STATS
IMPORT_SYSTEM_STATS
IMPORT_TABLE_STATS
IMPORT_SCHEMA_STATS
IMPORT_DATABASE_STATS

The IMPORT_* procedures retrieve statistics, including user-defined statistics, from
the stattab table and store them in the dictionary. Because the SET_*_STATS and
GET_*_STATS interfaces are supported for user-defined statistics, user-defined
statistics can be copied to another database using this interface.

Gathering Optimizer Statistics
Use the following procedures to gather certain classes of optimizer statistics, with
possible performance improvements over the ANALYZE command:

GATHER_INDEX_STATS
GATHER_TABLE_STATS
GATHER_SCHEMA_STATS
GATHER_DATABASE_STATS
DBMS_STATS 70-5

Summary of DBMS_STATS Subprograms
GATHER_SYSTEM_STATS

The GATHER_* procedures also collects user-defined statistics for columns and
domain indexes.

The statown , stattab , and statid parameters instruct the package to back up
current statistics in the specified table before gathering new statistics.

Oracle also provides the following procedure for generating statistics for derived
objects when you have sufficient statistics on related objects:

GENERATE_STATS

Summary of DBMS_STATS Subprograms

Table 70–1 DBMS_STATS Subprograms

Subprogram Description

PREPARE_COLUMN_VALUES
Procedure on page 70-9

Converts user-specified minimum, maximum, and
histogram endpoint datatype-specific values into
Oracle’s internal representation for future storage using
SET_COLUMN_STATS.

SET_COLUMN_STATS Procedure
on page 70-11

Sets column-related information.

SET_INDEX_STATS Procedure on
page 70-14

Sets index-related information.

SET_SYSTEM_STATS Procedure
on page 70-16

Sets system statistics.

SET_TABLE_STATS Procedure on
page 70-18

Sets table-related information.

CONVERT_RAW_VALUE
Procedure on page 70-19

Convert the internal representation of a minimum or
maximum value into a datatype-specific value.

GET_COLUMN_STATS Procedure
on page 70-20

Gets all column-related information.

GET_INDEX_STATS Procedure on
page 70-22

Gets all index-related information.

GET_SYSTEM_STATS Procedure
on page 70-24

Gets system statistics from stattab, or from the
dictionary if stattab is null.

GET_TABLE_STATS Procedure on
page 70-26

Gets all table-related information.
70-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
DELETE_COLUMN_STATS
Procedure on page 70-27

Deletes column-related statistics.

DELETE_INDEX_STATS
Procedure on page 70-28

Deletes index-related statistics.

DELETE_SYSTEM_STATS
Procedure on page 70-29

Deletes system statistics.

DELETE_TABLE_STATS
Procedure on page 70-30

Deletes table-related statistics.

DELETE_SCHEMA_STATS
Procedure on page 70-31

Deletes schema-related statistics.

DELETE_DATABASE_STATS
Procedure on page 70-32

Deletes statistics for the entire database.

CREATE_STAT_TABLE Procedure
on page 70-33

Creates a table with name stattab in ownname’s
schema which is capable of holding statistics.

DROP_STAT_TABLE Procedure
on page 70-34

Drops a user stat table created by CREATE_STAT_
TABLE.

EXPORT_COLUMN_STATS
Procedure on page 70-35

Retrieves statistics for a particular column and stores
them in the user stat table identified by stattab .

EXPORT_INDEX_STATS
Procedure on page 70-36

Retrieves statistics for a particular index and stores
them in the user stat table identified by stattab .

EXPORT_SYSTEM_STATS
Procedure on page 70-36

Retrieves system statistics and stores them in the user
stat table.

EXPORT_TABLE_STATS
Procedure on page 70-37

Retrieves statistics for a particular table and stores them
in the user stat table.

EXPORT_SCHEMA_STATS
Procedure on page 70-38

Retrieves statistics for all objects in the schema
identified by ownname and stores them in the user stat
table identified by stattab .

EXPORT_DATABASE_STATS
Procedure on page 70-39

Retrieves statistics for all objects in the database and
stores them in the user stat table identified by
statown .stattab .

IMPORT_COLUMN_STATS
Procedure on page 70-40

Retrieves statistics for a particular column from the
user stat table identified by stattab and stores them
in the dictionary.

Table 70–1 (Cont.) DBMS_STATS Subprograms

Subprogram Description
DBMS_STATS 70-7

Summary of DBMS_STATS Subprograms
IMPORT_INDEX_STATS
Procedure on page 70-41

Retrieves statistics for a particular index from the user
stat table identified by stattab and stores them in the
dictionary.

IMPORT_SYSTEM_STATS
Procedure on page 70-42

Retrieves system statistics from the user stat table and
stores them in the dictionary

IMPORT_TABLE_STATS
Procedure on page 70-43

Retrieves statistics for a particular table from the user
stat table identified by stattab and stores them in the
dictionary.

IMPORT_SCHEMA_STATS
Procedure on page 70-44

Retrieves statistics for all objects in the schema
identified by ownname from the user stat table and
stores them in the dictionary.

IMPORT_DATABASE_STATS
Procedure on page 70-45

Retrieves statistics for all objects in the database from
the user stat table and stores them in the dictionary.

GATHER_INDEX_STATS
Procedure on page 70-45

Gathers index statistics.

GATHER_TABLE_STATS
Procedure on page 70-47

Gathers table and column (and index) statistics.

GATHER_SCHEMA_STATS
Procedure on page 70-49

Gathers statistics for all objects in a schema.

GATHER_DATABASE_STATS
Procedure on page 70-53

Gathers statistics for all objects in the database.

GATHER_SYSTEM_STATS
Procedure on page 70-57

Gathers system statistics.

GENERATE_STATS Procedure on
page 70-58

Generates object statistics from previously collected
statistics of related objects.

FLUSH_SCHEMA_
MONITORING_INFO Procedure
on page 70-59

Flushes in-memory monitoring information for the
tables in the specified schema in the dictionary.

FLUSH_DATABASE_
MONITORING_INFO Procedure
on page 70-60

Flushes in-memory monitoring information for all the
tables to the dictionary.

ALTER_SCHEMA_TABLE_
MONITORING Procedure on
page 70-61

Enables or disables the DML monitoring feature of all
tables in the schema, except for snapshot logs and the
tables, which monitoring does not support.

Table 70–1 (Cont.) DBMS_STATS Subprograms

Subprogram Description
70-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
PREPARE_COLUMN_VALUES Procedure

This procedure converts user-specified minimum, maximum, and histogram
endpoint datatype-specific values into Oracle’s internal representation for future
storage using SET_COLUMN_STATS.

Syntax
DBMS_STATS.PREPARE_COLUMN_VALUES (

srec IN OUT StatRec,
charvals CHARARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
srec IN OUT StatRec,
datevals DATEARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
srec IN OUT StatRec,
numvals NUMARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES (
srec IN OUT StatRec,
rawvals RAWARRAY);

DBMS_STATS.PREPARE_COLUMN_VALUES_NVARCHAR (
srec IN OUT StatRec,
nvmin NVARCHAR2,
nvmax NVARCHAR2);

DBMS_STATS.PREPARE_COLUMN_VALUES_ROWID (
srec IN OUT StatRec,
rwmin ROWID,
rwmax ROWID);

ALTER_DATABASE_TABLE_
MONITORING Procedure on
page 70-61

Enables or disables the DML monitoring feature of all
tables in the database, except for snapshot logs and the
tables, which monitoring does not support.

Table 70–1 (Cont.) DBMS_STATS Subprograms

Subprogram Description
DBMS_STATS 70-9

PREPARE_COLUMN_VALUES Procedure
Pragmas
pragma restrict_references(prepare_column_values, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(prepare_column_values_nvarchar, WNDS, RNDS, WNPS,
RNPS);
pragma restrict_references(prepare_column_values_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

Datatype-specific input parameters (use one) are shown in Table 70–3.

Table 70–2 PREPARE_COLUMN_VALUES Procedure Parameters

Parameter Description

srec.epc Number of values specified in charvals , datevals ,
numvals , or rawvals . This value must be between 2 and 256,
inclusive, and it should be set to 2 for procedures which do not
allow histogram information (nvarchar and rowid).

The first corresponding array entry should hold the minimum
value for the column, and the last entry should hold the
maximum. If there are more than two entries, then all the
others hold the remaining height-balanced or frequency
histogram endpoint values (with in-between values ordered
from next-smallest to next-largest). This value may be adjusted
to account for compression, so the returned value should be
left as is for a call to SET_COLUMN_STATS.

srec.bkvals If you want a frequency distribution, then this array contains
the number of occurrences of each distinct value specified in
charvals , datevals , numvals , or rawvals . Otherwise, it is
merely an output parameter, and it must be set to NULL when
this procedure is called.

Table 70–3 Datatype-Specific Input Parameters

Type Description

charvals The array of values when the column type is
character-based. Up to the first 32 bytes of each string
should be provided. Arrays must have between 2 and
256 entries, inclusive. If the datatype is fixed CHAR, the
strings must be space-padded to 15 characters for correct
normalization.

datevals The array of values when the column type is date-based.
70-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Output Parameters

Exceptions
ORA-20001 : Invalid or inconsistent input values.

SET_COLUMN_STATS Procedure

This procedure sets column-related information. In the version of this procedure
that deals with user-defined statistics, the statistics type specified is the type to store

numvals The array of values when the column type is
numeric-based.

rawvals The array of values when the column type is RAW. Up to
the first 32 bytes of each strings should be provided.

nvmin, nvmax The minimum and maximum values when the column
type is national character set based (NLS). No histogram
information can be provided for a column of this type. If
the datatype is fixed CHAR, the strings must be
space-padded to 15 characters for correct normalization.

rwmin, rwmax The minimum and maximum values when the column
type is rowid . No histogram information is provided for
a column of this type.

Table 70–4 PREPARE_COLUMN_VALUES Procedure Output Parameters

Parameter Description

srec.minval Internal representation of the minimum suitable for use in a
call to SET_COLUMN_STATS.

srec.maxval Internal representation of the maximum suitable for use in a
call to SET_COLUMN_STATS.

srec.bkvals Array suitable for use in a call to SET_COLUMN_STATS.

srec.novals Array suitable for use in a call to SET_COLUMN_STATS.

Table 70–3 Datatype-Specific Input Parameters

Type Description
DBMS_STATS 70-11

SET_COLUMN_STATS Procedure
in the dictionary, in addition to the actual user-defined statistics. If this statistics
type is NULL, the statistics type associated with the index or column is stored.

Syntax
Use the following for standard statistics:

DBMS_STATS.SET_COLUMN_STATS (
ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
distcnt NUMBER DEFAULT NULL,
density NUMBER DEFAULT NULL,
nullcnt NUMBER DEFAULT NULL,
srec StatRec DEFAULT NULL,
avgclen NUMBER DEFAULT NULL,
flags NUMBER DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Use the following for user-defined statistics:

DBMS_STATS.SET_COLUMN_STATS (
ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
ext_stats RAW,
stattypown VARCHAR2 DEFAULT NULL,
stattypname VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–5 SET_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.
70-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent input values.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition in which to store the statistics. If
the table is partitioned and partname is NULL, then the
statistics are stored at the global table level.

stattab User stat table identifier describing where to store the statistics.
If stattab is NULL, then the statistics are stored directly in the
dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

distcnt Number of distinct values.

density Column density. If this value is NULL and if distcnt is not
NULL, then density is derived from distcnt .

nullcnt Number of NULLs.

srec StatRec structure filled in by a call to PREPARE_COLUMN_
VALUES or GET_COLUMN_STATS.

avgclen Average length for the column (in bytes).

flags For internal Oracle use (should be left as NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.

Table 70–5 SET_COLUMN_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-13

SET_INDEX_STATS Procedure
SET_INDEX_STATS Procedure

This procedure sets index-related information. In the version of this procedure that
deals with user-defined statistics, the statistics type specified is the type to store in
the dictionary, in addition to the actual user-defined statistics. If this statistics type
is NULL, the statistics type associated with the index or column is stored.

Syntax
Use the following for standard statistics:

DBMS_STATS.SET_INDEX_STATS (
ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
numrows NUMBER DEFAULT NULL,
numlblks NUMBER DEFAULT NULL,
numdist NUMBER DEFAULT NULL,
avglblk NUMBER DEFAULT NULL,
avgdblk NUMBER DEFAULT NULL,
clstfct NUMBER DEFAULT NULL,
indlevel NUMBER DEFAULT NULL,
flags NUMBER DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE,
guessq NUMBER DEFAULT NULL);

Use the following for user-defined statistics:

DBMS_STATS.SET_INDEX_STATS (
ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
ext_stats RAW,
stattypown VARCHAR2 DEFAULT NULL,
stattypname VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE,
70-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Table 70–6 SET_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition in which to store the statistics. If
the index is partitioned and if partname is NULL, then the
statistics are stored at the global index level.

stattab User stat table identifier describing where to store the statistics.
If stattab is NULL, then the statistics are stored directly in the
dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

numrows Number of rows in the index (partition).

numlblks Number of leaf blocks in the index (partition).

numdist Number of distinct keys in the index (partition).

avglblk Average integral number of leaf blocks in which each distinct
key appears for this index (partition). If not provided, then this
value is derived from numlblks and numdist .

avgdblk Average integral number of data blocks in the table pointed to
by a distinct key for this index (partition). If not provided, then
this value is derived from clstfct and numdist .

clstfct See clustering_factor column of the all_indexes view
for a description.

indlevel Height of the index (partition).

flags For internal Oracle use (should be left as NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-15

SET_SYSTEM_STATS Procedure
Exceptions
ORA-20000: Object does not exist or insufficient privileges.

ORA-20001: Invalid input value.

SET_SYSTEM_STATS Procedure

This procedure sets systems statistics.

Syntax
DBMS_STATS.SET_SYSTEM_STATS (

pname VARCHAR2,
pvalue NUMBER,
stattab IN VARCHAR2 DEFAULT NULL,
statid IN VARCHAR2 DEFAULT NULL,
statown IN VARCHAR2 DEFAULT NULL);

guessq Guess quality. See the pct_direct_access column of the
all_indexes view for a description.

Table 70–6 SET_INDEX_STATS Procedure Parameters

Parameter Description
70-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid input value.

ORA-20002 : Bad user statistics table; may need to be upgraded.

ORA-20003 : Unable to set system statistics.

ORA-20004 : Parameter does not exist.

Table 70–7 SET_SYSTEM_STATS Procedure Parameters

Parameter Description

pname The parameter name to get, which can have one of the
following values:

� sreadtim —average time to read single block (random
read), in milliseconds

� mreadtim —average time to read an mbrc block at once
(sequential read), in milliseconds

� cpuspeed —average number of CPU cycles per second, in
millions

� mbrc —average multiblock read count for sequential read,
in blocks

� maxthr —maximum I/O system throughput, in bytes/sec

� slavethr —average slave I/O throughput, in bytes/sec

pvalue Parameter value to get.

stattab Identifier of the user stat table where the statistics will be
obtained. If stattab is null, the statistics will be obtained from
the dictionary.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user’s
schema.
DBMS_STATS 70-17

SET_TABLE_STATS Procedure
SET_TABLE_STATS Procedure

This procedure sets table-related information.

Syntax
DBMS_STATS.SET_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
numrows NUMBER DEFAULT NULL,
numblks NUMBER DEFAULT NULL,
avgrlen NUMBER DEFAULT NULL,
flags NUMBER DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–8 SET_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition in which to store the statistics. If
the table is partitioned and partname is NULL, then the
statistics are stored at the global table level.

stattab User stat table identifier describing where to store the statistics.
If stattab is NULL, then the statistics are stored directly in the
dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

numrows Number of rows in the table (partition).

numblks Number of blocks the table (partition) occupies.

avgrlen Average row length for the table (partition).

flags For internal Oracle use (should be left as NULL).
70-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid input value.

CONVERT_RAW_VALUE Procedure

This procedure converts the internal representation of a minimum or maximum
value into a datatype-specific value. The minval and maxval fields of the StatRec
structure as filled in by GET_COLUMN_STATS or PREPARE_COLUMN_VALUES are
appropriate values for input.

Syntax
DBMS_STATS.CONVERT_RAW_VALUE (

rawval RAW,
resval OUT VARCHAR2);

DBMS_STATS.CONVERT_RAW_VALUE (
rawval RAW,
resval OUT DATE);

DBMS_STATS.CONVERT_RAW_VALUE (
rawval RAW,
resval OUT NUMBER);

DBMS_STATS.CONVERT_RAW_VALUE_NVARCHAR (
rawval RAW,
resval OUT NVARCHAR2);

DBMS_STATS.CONVERT_RAW_VALUE_ROWID (
rawval RAW,
resval OUT ROWID);

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.

Table 70–8 (Cont.) SET_TABLE_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-19

GET_COLUMN_STATS Procedure
Pragmas
pragma restrict_references(convert_raw_value, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(convert_raw_value_nvarchar, WNDS, RNDS, WNPS, RNPS);
pragma restrict_references(convert_raw_value_rowid, WNDS, RNDS, WNPS, RNPS);

Parameters

GET_COLUMN_STATS Procedure

This procedure gets all column-related information. In the version of this procedure
that deals with user-defined statistics, the statistics type returned is the type stored,
in addition to the user-defined statistics.

Syntax
Use the following for standard statistics:

DBMS_STATS.GET_COLUMN_STATS (
ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
distcnt OUT NUMBER,
density OUT NUMBER,
nullcnt OUT NUMBER,
srec OUT StatRec,
avgclen OUT NUMBER,
statown VARCHAR2 DEFAULT NULL);

Use the following for user-defined statistics:

DBMS_STATS.GET_COLUMN_STATS (
ownname VARCHAR2,

Table 70–9 CONVERT_RAW_VALUE Procedure Parameters

Parameter Description

rawval The raw representation of a column minimum or maximum
datatype-specific output parameters.

resval The converted, type-specific value.
70-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
ext_stats OUT RAW,
stattypown OUT VARCHAR2 DEFAULT NULL,
stattypname OUT VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Table 70–10 GET_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User stat table identifier describing from where to retrieve the
statistics. If stattab is NULL, then the statistics are retrieved
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

distcnt Number of distinct values.

density Column density.

nullcnt Number of NULLs.

srec Structure holding internal representation of column minimum,
maximum, and histogram values.

avgclen Average length of the column (in bytes).

statown Schema containing stattab (if different than ownname).
DBMS_STATS 70-21

GET_INDEX_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges or no statistics have
been stored for requested object.

GET_INDEX_STATS Procedure

This procedure gets all index-related information. In the version of this procedure
that deals with user-defined statistics, the statistics type returned is the type stored,
in addition to the user-defined statistics.

Syntax
Use the following for standard statistics:

DBMS_STATS.GET_INDEX_STATS (
ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
numrows OUT NUMBER,
numlblks OUT NUMBER,
numdist OUT NUMBER,
avglblk OUT NUMBER,
avgdblk OUT NUMBER,
clstfct OUT NUMBER,
indlevel OUT NUMBER,
statown VARCHAR2 DEFAULT NULL);

DBMS_STATS.GET_INDEX_STATS (
ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
numrows OUT NUMBER,
numlblks OUT NUMBER,
numdist OUT NUMBER,
avglblk OUT NUMBER,
avgdblk OUT NUMBER,
clstfct OUT NUMBER,
indlevel OUT NUMBER,
statown VARCHAR2 DEFAULT NULL,
70-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
guessq OUT NUMBER);

Use the following for user-defined statistics:

DBMS_STATS.GET_INDEX_STATS (
ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
ext_stats OUT RAW,
stattypown OUT VARCHAR2 DEFAULT NULL,
stattypname OUT VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,

Parameters

Table 70–11 GET_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition for which to get the statistics. If the
index is partitioned and if partname is NULL, then the
statistics are retrieved for the global index level.

stattab User stat table identifier describing from where to retrieve the
statistics. If stattab is NULL, then the statistics are retrieved
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

ext_stats The user-defined statistics.

stattypown Schema of the statistics type.

stattypname Name of the statistics type.

numrows Number of rows in the index (partition).

numlblks Number of leaf blocks in the index (partition).

numdist Number of distinct keys in the index (partition).

avglblk Average integral number of leaf blocks in which each distinct
key appears for this index (partition).
DBMS_STATS 70-23

GET_SYSTEM_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges or no statistics have
been stored for requested object.

GET_SYSTEM_STATS Procedure

This procedure gets system statistics from stattab, or from the dictionary if stattab is
null.

Syntax
DBMS_STATS.GET_SYSTEM_STATS (

status OUT VARCHAR2,
dstart OUT DATE,
dstop OUT DATE,
pname VARCHAR2,
pvalue OUT NUMBER,
stattab IN VARCHAR2 DEFAULT NULL,
statid IN VARCHAR2 DEFAULT NULL,
statown IN VARCHAR2 DEFAULT NULL);

avgdblk Average integral number of data blocks in the table pointed to
by a distinct key for this index (partition).

clstfct Clustering factor for the index (partition).

indlevel Height of the index (partition).

statown Schema containing stattab (if different than ownname).

guessq Guess quality for the index (partition).

Table 70–11 (Cont.) GET_INDEX_STATS Procedure Parameters

Parameter Description
70-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Table 70–12 GET_SYSTEM_STATS Procedure Parameters

Parameter Description

status (OUT) Output is one of the following:

COMPLETED:

AUTOGATHERING:

MANUALGATHERING:

BADSTATS:

dstart (OUT) Date when statistics gathering started.

If status = MANUALGATHERING, the start date is returned.

dstop (OUT) Date when statistics gathering stopped.

If status = COMPLETE, the finish date is returned.
If status = AUTOGATHERING, the future finish date is
returned.
If status = BADSTATS, the must-finished-by date is returned.

pname The parameter name to get, which can have one of the
following values:

� sreadtim —average time to read single block (random
read), in milliseconds

� mreadtim —average time to read an mbrc block at once
(sequential read), in milliseconds

� cpuspeed —average number of CPU cycles per second, in
millions

� mbrc —average multiblock read count for sequential read,
in blocks

� maxthr —maximum I/O system throughput, in bytes/sec

� slavethr —average slave I/O throughput, in bytes/sec

pvalue The parameter value to get.

stattab Identifier of the user stat table where the statistics will be
obtained. If stattab is null, the statistics will be obtained from
the dictionary.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user’s
schema.
DBMS_STATS 70-25

GET_TABLE_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20002 : Bad user statistics table; may need to be upgraded.

ORA-20003 : Unable to gather system statistics.

ORA-20004 : Parameter does not exist.

GET_TABLE_STATS Procedure

This procedure gets all table-related information.

Syntax
DBMS_STATS.GET_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
numrows OUT NUMBER,
numblks OUT NUMBER,
avgrlen OUT NUMBER,
statown VARCHAR2 DEFAULT NULL);

Parameters

Table 70–13 GET_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User stat table identifier describing from where to retrieve the
statistics. If stattab is NULL, then the statistics are retrieved
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).
70-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Object does not exist or insufficient privileges or no statistics have
been stored for requested object

DELETE_COLUMN_STATS Procedure

This procedure deletes column-related statistics.

Syntax
DBMS_STATS.DELETE_COLUMN_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
cascade_parts BOOLEAN DEFAULT TRUE,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

numrows Number of rows in the table (partition).

numblks Number of blocks the table (partition) occupies.

avgrlen Average row length for the table (partition).

statown Schema containing stattab (if different than ownname).

Table 70–14 DELETE_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

Table 70–13 (Cont.) GET_TABLE_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-27

DELETE_INDEX_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges

DELETE_INDEX_STATS Procedure

This procedure deletes index-related statistics.

Syntax
DBMS_STATS.DELETE_INDEX_STATS (

ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
cascade_parts BOOLEAN DEFAULT TRUE,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

partname Name of the table partition for which to delete the statistics. If
the table is partitioned and if partname is NULL, then global
column statistics are deleted.

stattab User stat table identifier describing from where to delete the
statistics. If stattab is NULL, then the statistics are deleted
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the table is partitioned and if partname is NULL, then
setting this to true causes the deletion of statistics for this
column for all underlying partitions as well.

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.

Table 70–14 (Cont.) DELETE_COLUMN_STATS Procedure Parameters

Parameter Description
70-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

DELETE_SYSTEM_STATS Procedure

This procedure deletes system statistics.

Syntax
DBMS_STATS.DELETE_INDEX_STATS (

stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Table 70–15 DELETE_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition for which to delete the statistics. If
the index is partitioned and if partname is NULL, then index
statistics are deleted at the global level.

stattab User stat table identifier describing from where to delete the
statistics. If stattab is NULL, then the statistics are deleted
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the index is partitioned and if partname is NULL, then
setting this to TRUE causes the deletion of statistics for this
index for all underlying partitions as well.

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-29

DELETE_TABLE_STATS Procedure
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20002 : Bad user statistics table; may need to be upgraded.

DELETE_TABLE_STATS Procedure

This procedure deletes table-related statistics.

Syntax
DBMS_STATS.DELETE_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
cascade_parts BOOLEAN DEFAULT TRUE,
cascade_columns BOOLEAN DEFAULT TRUE,
cascade_indexes BOOLEAN DEFAULT TRUE,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Table 70–16 DELETE_INDEX_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user stat table where the statistics will be
saved.

statid Optional identifier associated with the statistics saved in the
stattab.

statown The schema containing stattab, if different from the user’s
schema.
70-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

DELETE_SCHEMA_STATS Procedure

This procedure deletes statistics for an entire schema.

Syntax
DBMS_STATS.DELETE_SCHEMA_STATS (

Table 70–17 DELETE_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition from which to get the statistics. If
the table is partitioned and if partname is NULL, then the
statistics are retrieved from the global table level.

stattab User stat table identifier describing from where to retrieve the
statistics. If stattab is NULL, then the statistics are retrieved
directly from the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

cascade_parts If the table is partitioned and if partname is NULL, then
setting this to TRUE causes the deletion of statistics for this
table for all underlying partitions as well.

cascade_columns Indicates that DELETE_COLUMN_STATS should be called for all
underlying columns (passing the cascade_parts parameter).

cascade_indexes Indicates that DELETE_INDEX_STATS should be called for all
underlying indexes (passing the cascade_parts parameter).

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-31

DELETE_DATABASE_STATS Procedure
ownname VARCHAR2,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges

DELETE_DATABASE_STATS Procedure

This procedure deletes statistics for an entire database.

Syntax
DBMS_STATS.DELETE_DATABASE_STATS (

stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Table 70–18 DELETE_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User stat table identifier describing from where to delete the
statistics. If stattab is NULL, then the statistics are deleted
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
70-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

CREATE_STAT_TABLE Procedure

This procedure creates a table with name stattab in ownname’s schema which is
capable of holding statistics. The columns and types that compose this table are not
relevant as it should be accessed solely through the procedures in this package.

Syntax
DBMS_STATS.CREATE_STAT_TABLE (

ownname VARCHAR2,
stattab VARCHAR2,
tblspace VARCHAR2 DEFAULT NULL);

Parameters

Table 70–19 DELETE_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User stat table identifier describing from where to delete the
statistics. If stattab is NULL, then the statistics are deleted
directly in the dictionary.

statid Identifier (optional) to associate with these statistics within
stattab (Only pertinent if stattab is not NULL).

statown Schema containing stattab . If stattab is not NULL and if
statown is NULL, then it is assumed that every schema in the
database contains a user statistics table with the name
stattab .

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.

Table 70–20 CREATE_STAT_TABLE Procedure Parameters

Parameter Description

ownname Name of the schema.
DBMS_STATS 70-33

DROP_STAT_TABLE Procedure
Exceptions
ORA-20000 : Table already exists or insufficient privileges.

ORA-20001 : Tablespace does not exist.

DROP_STAT_TABLE Procedure

This procedure drops a user stat table.

Syntax
DBMS_STATS.DROP_STAT_TABLE (

ownname VARCHAR2,
stattab VARCHAR2);

Parameters

Exceptions
ORA-20000 : Table does not exists or insufficient privileges.

stattab Name of the table to create. This value should be passed as the
stattab parameter to other procedures when the user does
not want to modify the dictionary statistics directly.

tblspace Tablespace in which to create the stat tables. If none is
specified, then they are created in the user’s default tablespace.

Table 70–21 DROP_STAT_TABLE Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User stat table identifier.

Table 70–20 (Cont.) CREATE_STAT_TABLE Procedure Parameters

Parameter Description
70-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
EXPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column and stores them in the
user stat table identified by stattab .

Syntax
DBMS_STATS.EXPORT_COLUMN_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

Table 70–22 EXPORT_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition column statistics
are exported.

stattab User stat table identifier describing where to store the statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).
DBMS_STATS 70-35

EXPORT_INDEX_STATS Procedure
EXPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index and stores them in the user
stat table identified by stattab .

Syntax
DBMS_STATS.EXPORT_INDEX_STATS (

ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

EXPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics and stores them in the user stat table,
identified by stattab.

Table 70–23 EXPORT_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition. If the index is partitioned and if
partname is NULL, then global and partition index statistics
are exported.

stattab User stat table identifier describing where to store the statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).
70-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Syntax
DBMS_STATS.EXPORT_SYSTEM_STATS (

stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20002 : Bad user statistics table; may need to be upgraded.

ORA-20003 : Unable to export system statistics.

EXPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table and stores them in the user
stat table. Cascade results in all index and column stats associated with the specified
table being exported as well.

Syntax
DBMS_STATS.EXPORT_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
cascade BOOLEAN DEFAULT TRUE,

Table 70–24 EXPORT_SYSTEM_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user stat table that describes where the
statistics will be stored.

statid Optional identifier associated with the statistics stored from the
stattab.

statown The schema containing stattab, if different from the user’s
schema.
DBMS_STATS 70-37

EXPORT_SCHEMA_STATS Procedure
statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

EXPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by
ownname and stores them in the user stat tables identified by stattab .

Syntax
DBMS_STATS.EXPORT_SCHEMA_STATS (

ownname VARCHAR2,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Table 70–25 EXPORT_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition table statistics are
exported.

stattab User stat table identifier describing where to store the statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

cascade If true, then column and index statistics for this table are also
exported.

statown Schema containing stattab (if different than ownname).
70-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

EXPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database and stores them in
the user stat tables identified by statown .stattab

Syntax
DBMS_STATS.EXPORT_DATABASE_STATS (

stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Table 70–26 EXPORT_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User stat table identifier describing where to store the statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

Table 70–27 EXPORT_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User stat table identifier describing where to store the statistics

statid Identifier (optional) to associate with these statistics within
stattab

statown Schema containing stattab . If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab .
DBMS_STATS 70-39

IMPORT_COLUMN_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

IMPORT_COLUMN_STATS Procedure

This procedure retrieves statistics for a particular column from the user stat table
identified by stattab and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_COLUMN_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
colname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–28 IMPORT_COLUMN_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table to which this column belongs.

colname Name of the column.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition column statistics
are imported.

stattab User stat table identifier describing from where to retrieve the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
70-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

IMPORT_INDEX_STATS Procedure

This procedure retrieves statistics for a particular index from the user stat table
identified by stattab and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_INDEX_STATS (

ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–29 IMPORT_INDEX_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

indname Name of the index.

partname Name of the index partition. If the index is partitioned and if
partname is NULL, then global and partition index statistics
are imported.

stattab User stat table identifier describing from where to retrieve the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-41

IMPORT_SYSTEM_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

IMPORT_SYSTEM_STATS Procedure

This procedure retrieves system statistics from the user stat table, identified by
stattab, and stores the statistics in the dictionary.

Syntax
DBMS_STATS.IMPORT_SYSTEM_STATS (

stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

ORA-20002 : Bad user statistics table; may need to be upgraded.

ORA-20003 : Unable to import system statistics.

Table 70–30 IMPORT_SYSTEM_STATS Procedure Parameters

Parameter Description

stattab Identifier of the user stat table where the statistics will be
retrieved.

statid Optional identifier associated with the statistics retrieved from
the stattab.

statown The schema containing stattab, if different from the user’s
schema.
70-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
IMPORT_TABLE_STATS Procedure

This procedure retrieves statistics for a particular table from the user stat table
identified by stattab and stores them in the dictionary. Cascade results in all
index and column stats associated with the specified table being imported as well.

Syntax
DBMS_STATS.IMPORT_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
cascade BOOLEAN DEFAULT TRUE,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–31 IMPORT_TABLE_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

tabname Name of the table.

partname Name of the table partition. If the table is partitioned and if
partname is NULL, then global and partition table statistics are
imported.

stattab User stat table identifier describing from where to retrieve the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

cascade If true, then column and index statistics for this table are also
imported.

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-43

IMPORT_SCHEMA_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

IMPORT_SCHEMA_STATS Procedure

This procedure retrieves statistics for all objects in the schema identified by
ownname from the user stat table and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_SCHEMA_STATS (

ownname VARCHAR2,
stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

Table 70–32 IMPORT_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Name of the schema.

stattab User stat table identifier describing from where to retrieve the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
70-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
IMPORT_DATABASE_STATS Procedure

This procedure retrieves statistics for all objects in the database from the user stat
table(s) and stores them in the dictionary.

Syntax
DBMS_STATS.IMPORT_DATABASE_STATS (

stattab VARCHAR2,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid or inconsistent values in the user stat table.

GATHER_INDEX_STATS Procedure

This procedure gathers index statistics. It attempts to parallelize as much of the
work as possible. Restrictions are described in the individual parameters. This
operation will not parallelize with certain types of indexes, including cluster

Table 70–33 IMPORT_DATABASE_STATS Procedure Parameters

Parameter Description

stattab User stat table identifier describing from where to retrieve the
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab . If statown is NULL, then it is
assumed that every schema in the database contains a user
statistics table with the name stattab .

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.
DBMS_STATS 70-45

GATHER_INDEX_STATS Procedure
indexes, domain indexes, and bitmap join indexes. The granularity and no_
invalidate arguments are not relevant to these types of indexes.

Syntax
DBMS_STATS.GATHER_INDEX_STATS (

ownname VARCHAR2,
indname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
estimate_percent NUMBER DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–34 GATHER_INDEX_STATS Procedure Parameters

Parameter Description

ownname Schema of index to analyze.

indname Name of index.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means compute). The
valid range is [0.000001,100] . Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
best sample size for good statistics.

stattab User stat table identifier describing where to save the current
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

degree Degree of parallelism (NULL means use of table default value
that was specified by the DEGREE clause in the CREATE/ALTER
INDEX statement). Use the constant DBMS_STATS.DEFAULT_
DEGREE for the default value based on the initialization
parameters.
70-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Index does not exist or insufficient privileges.

ORA-20001 : Bad input value.

GATHER_TABLE_STATS Procedure

This procedure gathers table and column (and index) statistics. It attempts to
parallelize as much of the work as possible, but there are some restrictions as
described in the individual parameters. This operation does not parallelize if the
user does not have select privilege on the table being analyzed.

Syntax
DBMS_STATS.GATHER_TABLE_STATS (

ownname VARCHAR2,
tabname VARCHAR2,
partname VARCHAR2 DEFAULT NULL,
estimate_percent NUMBER DEFAULT NULL,
block_sample BOOLEAN DEFAULT FALSE,
method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,
cascade BOOLEAN DEFAULT FALSE,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,

granularity The granularity of statistics to collect (only pertinent if the
index is partitioned):

’DEFAULT’ - gathers global and partition-level statistics

’SUBPARTITION’ - gathers subpartition-level statistics

’PARTITION ’- gathers partition-level statistics

’GLOBAL’ - gathers global statistics

’ALL’ - gathers all (subpartition, partition, and global)
statistics

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE.

Table 70–34 (Cont.) GATHER_INDEX_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-47

GATHER_TABLE_STATS Procedure
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE);

Parameters

Table 70–35 GATHER_TABLE_STATS Procedure Parameters

Parameter Description

ownname Schema of table to analyze.

tabname Name of table.

partname Name of partition.

estimate_percent Percentage of rows to estimate (NULL means compute) The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
best sample size for good statistics.

block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...] , where size_clause is defined as: size_
clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

integer —Number of histogram buckets. Must be in the
range [1,254].

REPEAT—Collects histograms only on the columns that
already have histograms.

AUTO—Oracle determines the columns to collect histograms
based on data distribution and the workload of the columns.

SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.
70-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Table does not exist or insufficient privileges.

ORA-20001 : Bad input value.

GATHER_SCHEMA_STATS Procedure

This procedure gathers statistics for all objects in a schema.

degree Degree of parallelism. NULL means use the table default value
specified by the DEGREE clause in the CREATE TABLE or
ALTER TABLE statement. Use the constant DBMS_
STATS.DEFAULT_DEGREE to specify the default value based
on the initialization parameters.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

DEFAULT: Gather global- and partition-level statistics.

SUBPARTITION: Gather subpartition-level statistics.

PARTITION: Gather partition-level statistics.

GLOBAL: Gather global statistics.

ALL: Gather all (subpartition, partition, and global) statistics.

cascade Gather statistics on the indexes for this table. Index statistics
gathering is not parallelized. Using this option is equivalent to
running the GATHER_INDEX_STATS procedure on each of the
table’s indexes.

stattab User stat table identifier describing where to save the current
statistics.

statid Identifier (optional) to associate with these statistics within
stattab .

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE. When the ’cascade’ argument is specified, this
parameter is not relevant with certain types of indexes, as
described in "GATHER_INDEX_STATS Procedure" on
page 70-45.

Table 70–35 (Cont.) GATHER_TABLE_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-49

GATHER_SCHEMA_STATS Procedure
Syntax
DBMS_STATS.GATHER_SCHEMA_STATS (

ownname VARCHAR2,
estimate_percent NUMBER DEFAULT NULL,
block_sample BOOLEAN DEFAULT FALSE,
method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,
cascade BOOLEAN DEFAULT FALSE,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
options VARCHAR2 DEFAULT 'GATHER',
objlist OUT ObjectTab,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE,
gather_temp BOOLEAN DEFAULT FALSE);

DBMS_STATS.GATHER_SCHEMA_STATS (
ownname VARCHAR2,
estimate_percent NUMBER DEFAULT NULL,
block_sample BOOLEAN DEFAULT FALSE,
method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,
cascade BOOLEAN DEFAULT FALSE,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
options VARCHAR2 DEFAULT ’GATHER’,
statown VARCHAR2 DEFAULT NULL,
no_invalidate BOOLEAN DEFAULT FALSE,
gather_temp BOOLEAN DEFAULT FALSE);

Parameters

Table 70–36 GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description

ownname Schema to analyze (NULL means current schema).

estimate_percent Percentage of rows to estimate (NULL means compute): The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
best sample size for good statistics.
70-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...], where size_clause is defined as
size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

integer —Number of histogram buckets. Must be in the
range [1,254].

REPEAT—Collects histograms only on the columns that
already have histograms.

AUTO—Oracle determines the columns to collect histograms
based on data distribution and the workload of the columns.

SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.

degree Degree of parallelism. NULL means use the table default value
specified by the DEGREE clause in the CREATE TABLE or
ALTER TABLE statement. Use the constant DBMS_
STATS.DEFAULT_DEGREE to specify the default value based
on the initialization parameters.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

DEFAULT: Gather global- and partition-level statistics.

SUBPARTITION: Gather subpartition-level statistics.

PARTITION: Gather partition-level statistics.

GLOBAL: Gather global statistics.

ALL: Gather all (subpartition, partition, and global) statistics.

Table 70–36 (Cont.) GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-51

GATHER_SCHEMA_STATS Procedure
cascade Gather statistics on the indexes as well.

Index statistics gathering is not parallelized. Using this option
is equivalent to running the gather_index_stats
procedure on each of the indexes in the schema in addition to
gathering table and column statistics.

stattab User stat table identifier describing where to save the current
statistics.

statid Identifier (optional) to associate with these statistics within
stattab.

options Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically.
Oracle implicitly determines which objects need new statistics,
and determines how to gather those statistics. When GATHER
AUTO is specified, the only additional valid parameters are
ownname, stattab , statid , objlist and statown ; all
other parameter settings are ignored. Returns a list of
processed objects.

GATHER STALE: Gathers statistics on stale objects as
determined by looking at the *_tab_modifications views.
Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently
have no statistics. also, return a list of objects found to have no
statistics.

LIST AUTO: Returns a list of objects to be processed with
GATHER AUTO.

LIST STALE: Returns list of stale objects as determined by
looking at the *_tab_modifications views.

LIST EMPTY: Returns list of objects which currently have no
statistics.

objlist List of objects found to be stale or empty.

statown Schema containing stattab (if different than ownname).

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE. When the ’cascade’ argument is specified, this
parameter is not relevant with certain types of indexes, as
described in "GATHER_INDEX_STATS Procedure" on
page 70-45.

Table 70–36 (Cont.) GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description
70-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000 : Schema does not exist or insufficient privileges.

ORA-20001 : Bad input value.

GATHER_DATABASE_STATS Procedure

This procedure gathers statistics for all objects in the database.

Syntax
DBMS_STATS.GATHER_DATABASE_STATS (

estimate_percent NUMBER DEFAULT NULL,
block_sample BOOLEAN DEFAULT FALSE,
method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,
cascade BOOLEAN DEFAULT FALSE,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
options VARCHAR2 DEFAULT 'GATHER',
objlist OUT ObjectTab,
statown VARCHAR2 DEFAULT NULL,
gather_sys BOOLEAN DEFAULT FALSE,
no_invalidate BOOLEAN DEFAULT FALSE,
gather_temp BOOLEAN DEFAULT FALSE);

DBMS_STATS.GATHER_DATABASE_STATS (
estimate_percent NUMBER DEFAULT NULL,
block_sample BOOLEAN DEFAULT FALSE,
method_opt VARCHAR2 DEFAULT ’FOR ALL COLUMNS SIZE 1’,
degree NUMBER DEFAULT NULL,
granularity VARCHAR2 DEFAULT ’DEFAULT’,

gather_temp Gathers statistics on global temporary tables. The temporary
table must be created with the "on commit preserve
rows" clause. The statistics being collected are based on the
data in the session in which this procedure is run, but shared
across all sessions.

Table 70–36 (Cont.) GATHER_SCHEMA_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-53

GATHER_DATABASE_STATS Procedure
cascade BOOLEAN DEFAULT FALSE,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
options VARCHAR2 DEFAULT ’GATHER’,
statown VARCHAR2 DEFAULT NULL,
gather_sys BOOLEAN DEFAULT FALSE,
no_invalidate BOOLEAN DEFAULT FALSE,
gather_temp BOOLEAN DEFAULT FALSE);

Parameters

Table 70–37 GATHER_DATABASE_STATS Procedure Parameters

Parameter Description

estimate_percent Percentage of rows to estimate (NULL means compute): The
valid range is [0.000001,100]. Use the constant DBMS_
STATS.AUTO_SAMPLE_SIZE to have Oracle determine the
best sample size for good statistics.

block_sample Whether or not to use random block sampling instead of
random row sampling. Random block sampling is more
efficient, but if the data is not randomly distributed on disk,
then the sample values may be somewhat correlated. Only
pertinent when doing an estimate statistics.

method_opt Accepts:

FOR ALL [INDEXED | HIDDEN] COLUMNS [size_
clause]

FOR COLUMNS [size clause] column|attribute
[size_clause] [,column|attribute [size_
clause]...], where size_clause is defined as
size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}

integer —Number of histogram buckets. Must be in the
range [1,254].

REPEAT—Collects histograms only on the columns that
already have histograms.

AUTO—Oracle determines the columns to collect histograms
based on data distribution and the workload of the columns.

SKEWONLY—Oracle determines the columns to collect
histograms based on the data distribution of the columns.
70-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
degree Degree of parallelism. NULL means use the table default value
specified by the DEGREE clause in the CREATE TABLE or
ALTER TABLE statement. Use the constant DBMS_
STATS.DEFAULT_DEGREEto specify the default value based
on the initialization parameters.

granularity Granularity of statistics to collect (only pertinent if the table is
partitioned).

DEFAULT: Gather global- and partition-level statistics.

SUBPARTITION: Gather subpartition-level statistics.

PARTITION: Gather partition-level statistics.

GLOBAL: Gather global statistics.

ALL: Gather all (subpartition, partition, and global) statistics.

cascade Gather statistics on the indexes as well. Index statistics
gathering is not parallelized. Using this option is equivalent to
running the gather_index_stats procedure on each of the
indexes in the database in addition to gathering table and
column statistics.

stattab User stat table identifier describing where to save the current
statistics.

The statistics table is assumed to reside in the same schema as
the object being analyzed, so there must be one such table in
each schema to use this option.

statid Identifier (optional) to associate with these statistics within
stattab .

Table 70–37 (Cont.) GATHER_DATABASE_STATS Procedure Parameters

Parameter Description
DBMS_STATS 70-55

GATHER_DATABASE_STATS Procedure
Exceptions
ORA-20000 : Insufficient privileges.

options Further specification of which objects to gather statistics for:

GATHER: Gathers statistics on all objects in the schema.

GATHER AUTO: Gathers all necessary statistics automatically.
Oracle implicitly determines which objects need new statistics,
and determines how to gather those statistics. When GATHER
AUTO is specified, the only additional valid parameters are
stattab , statid , objlist and statown ; all other
parameter settings are ignored. Returns a list of processed
objects.

GATHER STALE: Gathers statistics on stale objects as
determined by looking at the *_tab_modifications views.
Also, return a list of objects found to be stale.

GATHER EMPTY: Gathers statistics on objects which currently
have no statistics. Return a list of objects found to have no
statistics.

LIST AUTO: Returns a list of objects to be processed with
GATHER AUTO.

LIST STALE: Returns a list of stale objects as determined by
looking at the *_tab_modifications views.

LIST EMPTY: Returns a list of objects which currently have no
statistics.

objlist List of objects found to be stale or empty.

statown Schema containing stattab (if different than ownname).

gather_sys Gathers statistics on the objects owned by the 'SYS' user.

no_invalidate Dependent cursors are not invalidated if this parameter is set
to TRUE. When the 'cascade' option is specified, this
parameter is not relevant with certain types of indexes, as
described in "GATHER_INDEX_STATS Procedure" on
page 70-45.

gather_temp Gathers statistics on global temporary tables. The temporary
table must be created with the "on commit preserve
rows" clause. The statistics being collected are based on the
data in the session in which this procedure is run, but shared
across all sessions.

Table 70–37 (Cont.) GATHER_DATABASE_STATS Procedure Parameters

Parameter Description
70-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
ORA-20001 : Bad input value.

GATHER_SYSTEM_STATS Procedure

This procedure gathers system statistics.

Syntax
DBMS_STATS.GATHER_SYSTEM_STATS (

gathering_mode VARCHAR2 DEFAULT ’NOWORKLOAD’,
interval INTEGER DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Parameters

Table 70–38 GATHER_SYSTEM_STATS Procedure Parameters

Parameter Description

gathering_mode Mode values are:

NOWORKLOAD: No workload is required to capture system
activity. Oracle generates system statistics using internal
defaults. This mode can be used when suitable workload
cannot be submitted (during the development process, for
example). For system statistics values to be based on real
system activity, use the INTERVAL or START|STOP modes
instead.

INTERVAL: Captures system activity during a specified
interval. This works in combination with the interval
parameter. You should provide an interval value in minutes,
after which system statistics are created or updated in the
dictionary or stattab . You can use gather_system_
stats(gathering_mode=>'STOP') to stop gathering earlier
when scheduled.

START | STOP: Captures system activity during specified start
and stop times and refreshes the dictionary or stattab with
statistics for the elapsed period. Interval value is ignored.

interval Time, in minutes, to gather statistics. This parameter applies
only when gathering_mode=’INTERVAL’ .
DBMS_STATS 70-57

GENERATE_STATS Procedure
Exceptions
ORA-20000 : Object does not exist or insufficient privileges.

ORA-20001 : Invalid input value.

ORA-20002 : Bad user statistics table; may need to be upgraded.

ORA-20003 : Unable to gather system statistics.

ORA-20004 : Error in the INTERVAL mode: system parameter job_queue_processes
must be >0.

GENERATE_STATS Procedure

This procedure generates object statistics from previously collected statistics of
related objects. For fully populated schemas, the gather procedures should be used
instead when more accurate statistics are desired.The currently supported objects
are b-tree and bitmap indexes.

Syntax
DBMS_STATS.GENERATE_STATS (

ownname VARCHAR2,
objname VARCHAR2,
organized NUMBER DEFAULT 7);

stattab Identifier of the user stat table where the statistics will be
saved.

statid Optional identifier associated with the statistics saved in the
stattab .

statown The schema containing stattab , if different from the user’s
schema.

Table 70–38 (Cont.) GATHER_SYSTEM_STATS Procedure Parameters

Parameter Description
70-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Parameters

Exceptions
ORA-20000 : Unsupported object type of object does not exist.

ORA-20001 : Invalid option or invalid statistics.

FLUSH_SCHEMA_MONITORING_INFO Procedure

This procedure flushes in-memory monitoring information for the tables in the
specified schema to the dictionary.

Syntax
DBMS_STATS.FLUSH_SCHEMA_MONITORING_INFO (

ownname VARCHAR2 DEFAULT NULL);

Parameters

Table 70–39 GENERATE_STATS Procedure Parameters

Parameter Description

ownname Schema of object.

objname Name of object.

organized Amount of ordering associated between the index and its
underlying table. A heavily organized index would have
consecutive index keys referring to consecutive rows on disk
for the table (the same block). A heavily disorganized index
would have consecutive keys referencing different table blocks
on disk.

This parameter is only used for b-tree indexes. The number can
be in the range of 0-10, with 0 representing a completely
organized index and 10 a completely disorganized one.

Table 70–40 FLUSH_SCHEMA_MONITORING_INFO Procedure Parameters

Parameter Description

ownname The name of the schema. (NULL means the current schema.)
DBMS_STATS 70-59

FLUSH_DATABASE_MONITORING_INFO Procedure
Exceptions
ORA-20000: The object does not exist or it contains insufficient privileges.

FLUSH_DATABASE_MONITORING_INFO Procedure

This procedure flushes in-memory monitoring information for all the tables to the
dictionary.

Syntax
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO;

Exceptions
ORA-20000: Insufficient privileges.

ALTER_SCHEMA_TABLE_MONITORING Procedure

This procedure enable or disables the DML monitoring feature of all the tables in
the schema, except for snapshot logs and the tables, which monitoring does not
support. Using this procedure is equivalent to issuing ALTER
TABLE...MONITORING (or NOMONITORING) individually. You should enable
monitoring if you use GATHER_DATABASE_STATS or GATHER_SCHEMA_STATS
with the GATHER AUTO or GATHER STALE options.

Syntax
DBMS_STATS.ALTER_SCHEMA_TABLE_MONITORING (

ownname VARCHAR2 DEFAULT NULL,
monitoring BOOLEAN DEFAULT TRUE);

Parameters

Table 70–41 ALTER_SCHEMA_TABLE_MONITORING Procedure Parameters

Parameter Description

ownname The name of the schema. (NULL means the current schema.)

monitoring Enables monitoring if true, and disables monitoring if false.
70-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
Exceptions
ORA-20000: Insufficient privileges.

ALTER_DATABASE_TABLE_MONITORING Procedure

This procedure enables or disables the DML monitoring feature of all the tables in
the schema, except for snapshot logs and the tables, which monitoring does not
support. Using this procedure is equivalent to issuing ALTER
TABLE...MONITORING (or NOMONITORING) individually. You should enable
monitoring if you use GATHER_DATABASE_STATS or GATHER_SCHEMA_STATS
with the GATHER AUTO or GATHER STALE options.

Syntax
DBMS_STATS.ALTER_DATABASE_TABLE_MONITORING (

monitoring BOOLEAN DEFAULT TRUE,
sysobjs BOOLEAN DEFAULT FALSE);

Parameters

Exceptions

ORA-20000: Insufficient privileges.

Saving Original Statistics and Gathering New Statistics: Example
Assume many modifications have been made to the employees table since the last
time statistics were gathered. To ensure that the cost-based optimizer is still picking
the best plan, statistics should be gathered once again; however, the user is
concerned that new statistics will cause the optimizer to choose bad plans when the
current ones are acceptable. The user can do the following:

BEGIN
DBMS_STATS.CREATE_STAT_TABLE (’hr’, ’savestats’);

Table 70–42 ALTER_DATABASE_TABLE_MONITORING Procedure Parameters

Parameter Description

monitoring Enables monitoring if true, and disables monitoring if false.

sysobjs If true, changes monitoring on the dictionary objects.
DBMS_STATS 70-61

ALTER_DATABASE_TABLE_MONITORING Procedure
DBMS_STATS.GATHER_TABLE_STATS (’hr’, ’employees’, stattab => ’savestats’);
END;

This operation gathers new statistics on the employees table, but first saves the
original statistics in a user stat table: hr.savestats .

If the user believes that the new statistics are causing the optimizer to generate poor
plans, then the original stats can be restored as follows:

BEGIN
DBMS_STATS.DELETE_TABLE_STATS (’hr’, ’employees’);
DBMS_STATS.IMPORT_TABLE_STATS (’hr’, ’employees’, stattab => ’savestats’);

END;

Gathering Daytime System Statistics: Example
Assume that you want to perform database application processing OLTP
transactions during the day and run reports at night.

To collect daytime system statistics, gather statistics for 720 minutes. Store the
statistics in the MYSTATS table.

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS (

interval => 720,
stattab => ’mystats’,
statid => ’OLTP’);

END;

To collect nighttime system statistics, gather statistics for 720 minutes. Store the
statistics in the MYSTATS table.

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS (

interval => 720,
stattab => ’mystats’,
statid => ’OLAP’);

END;

Update the dictionary with the gathered statistics.

VARIABLE jobno number;
BEGIN

DBMS_JOB.SUBMIT (:jobno, ’DBMS_STATS.IMPORT_SYSTEM_STATS
(’’mystats’’,’’OLTP’’);’
sysdate, ’sysdate + 1’);
COMMIT;
70-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STATS Subprograms
END;

BEGIN
DBMS_JOB.SUBMIT (:jobno, ’DBMS_STATS.IMPORT_SYSTEM_STATS
(’’mystats’’,’’OLAP’’);’
sysdate + 0.5, ’sysdate + 1’);
COMMIT;

END;
DBMS_STATS 70-63

ALTER_DATABASE_TABLE_MONITORING Procedure
70-64 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_STORA
71

DBMS_STORAGE_MAP

With DBMS_STORAGE_MAP, you can communicate with the Oracle background
process FMON to invoke mapping operations that populate mapping views. FMON
communicates with operating and storage system vendor-supplied mapping
libraries.

This chapter discusses the following topics:

� Mapping Terminology

� Summary of DBMS_STORAGE_MAP Subprograms

� Usage Notes for DBMS_STORAGE_MAP Subprograms
GE_MAP 71-1

Mapping Terminology
Mapping Terminology
The following terminology and descriptions will help you understand the DBMS_
STORAGE_MAP API:

� Mapping libraries

Mapping libraries help you map the components of I/O processing stack
elements. Examples of I/O processing components include files, logical
volumes, and storage array I/O targets. The mapping libraries are identified in
filemap.ora .

� Mapping files

A mapping file is a mapping structure that describes a file. It provides a set of
attributes, including file size, number of extents that the file is composed of, and
file type.

� Mapping elements and subelements

A mapping element is the abstract mapping structure that describes a storage
component within the I/O stack. Examples of elements include mirrors, stripes,
partitions, raid5, concatenated elements, and disks—structures that are the
mapping building blocks. A mapping subelement describes the link between an
element and the next elements in the I/O mapping stack

� Mapping file extents

A mapping file extent describes a contiguous chunk of blocks residing on one
element. This includes the device offset, the extent size, the file offset, the type
(data or parity), and the name of the element where the extent resides. In the
case of a raw device or volume, the file is composed of only one file extent
component. A mapping file extent is different from Oracle extents.

See Also:

� Oracle9i Database Administrator’s Guide for more information

� Oracle9i Database Reference for V$MAP views, including V$MAP_
FILE , V$MAP_ELEMENT, V$MAP_SUBELEMENT, V$MAP_FILE_
EXTENT
71-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STORAGE_MAP Subprograms
Summary of DBMS_STORAGE_MAP Subprograms

MAP_ELEMENT Function
This function builds mapping information for the element identified by elemname .
It may not obtain the latest mapping information if the element being mapped, or
any one of the elements within its I/O stack (if cascade is TRUE), is owned by a
library that must be explicitly synchronized.

Syntax
DBMS_STORAGE_MAP.MAP_ELEMENT(

Table 71–1 DBMS_STORAGE_MAP Package Subprograms

Subprogram Description

MAP_ELEMENT Function
on page 71-4

Builds mapping information for the element identified by
elemname

MAP_FILE Function on
page 71-5

Builds mapping information for the file identified by
filename

MAP_OBJECT Function
on page 71-5

Builds the mapping information for the Oracle object identified
by the object name, owner, and type

MAP_ALL Function on
page 71-5

Builds the entire mapping information for all types of Oracle
files (except archive logs), including all directed acyclic graph
(DAG) elements

DROP_ELEMENT
Function on page 71-6

Drops the mapping information for the element defined by
elemname

DROP_FILE Function on
page 71-6

Drops the file mapping information defined by filename

DROP_ALL Function on
page 71-7

Drops all mapping information in the shared memory of the
instance

SAVE Function on
page 71-7

Saves information needed to regenerate the entire mapping
into the data dictionary

RESTORE Function on
page 71-7

Loads the entire mapping information from the data dictionary
into the shared memory of the instance

LOCK_MAP Procedure on
page 71-8

Locks the mapping information in the shared memory of the
instance

UNLOCK_MAP
Procedure on page 71-8

Unlocks the mapping information in the shared memory of the
instance.
DBMS_STORAGE_MAP 71-3

MAP_FILE Function
elemname IN VARCHAR2,
cascade IN BOOLEAN,
dictionary_update IN BOOLEAN DEFAULT TRUE);

MAP_FILE Function
This function builds mapping information for the file identified by filename . Use
this function if the mapping of one particular file has changed. The Oracle database
server does not have to rebuild the entire mapping.

This function may not obtain the latest mapping information if the file being
mapped, or any one of the elements within its I/O stack (if cascade is TRUE), is
owned by a library that must be explicitly synchronized.

Syntax
DBMS_STORAGE_MAP.MAP_FILE(

filename IN VARCHAR2,
filetype IN VARCHAR2,
cascade IN BOOLEAN,
max_num_fileextent IN NUMBER DEFAULT 100,
dictionary_update IN BOOLEAN DEFAULT TRUE);

Table 71–2 MAP_ELEMENT Function Parameters

Parameter Description

elemname The element for which mapping information is built.

cascade If TRUE, all elements within the elemname I/O stack DAG are
mapped.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Table 71–3 MAP_FILE Function Parameters

Parameter Description

filename The file for which mapping information is built.

filetype Defines the type of the file to be mapped. It can be
"DATAFILE", "SPFILE", "TEMPFILE",
"CONTROLFILE", "LOGFILE", or "ARCHIVEFILE" .
71-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STORAGE_MAP Subprograms
MAP_OBJECT Function
This function builds the mapping information for the Oracle object identified by the
object name, owner, and type.

Syntax
DBMS_STORAGE_MAP.MAP_OBJECT(

objname IN VARCHAR2,
owner IN VARCHAR2,
objtype IN VARCHAR2);

MAP_ALL Function
This function builds the entire mapping information for all types of Oracle files
(except archive logs), including all directed acyclic graph (DAG) elements. It obtains
the latest mapping information because it explicitly synchronizes all mapping
libraries. You must explicitly call MAP_ALL in a cold startup scenario.

Syntax
DBMS_STORAGE_MAP.MAP_ALL(

max_num_fileext IN NUMBER DEFAULT 100,
dictionary_update IN BOOLEAN DEFAULT TRUE);

cascade Should be TRUE only if a storage reconfiguration occurred. For
all other instances, such as file resizing (either through an
ALTER SYSTEM command or DML operations on extended
files), cascade can be set to FALSE because the mapping
changes are limited to the file extents only.

If TRUE, mapping DAGs are also built for the elements where
the file resides.

max_num_fileextent Defines the maximum number of file extents to be mapped.
This limits the amount of memory used when mapping file
extents. The default value is 100 ; max_num_fileextent is an
overloaded argument.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Table 71–3 MAP_FILE Function Parameters

Parameter Description
DBMS_STORAGE_MAP 71-5

DROP_ELEMENT Function
DROP_ELEMENT Function
This function drops the mapping information for the element defined by
elemname .

Syntax
DBMS_STORAGE_MAP.DROP_ELEMENT(

elemname IN VARCHAR2,
cascade IN BOOLEAN,
dictionary_update IN BOOLEAN DEFAULT TRUE);

DROP_FILE Function
This function drops the file mapping information defined by filename .

Syntax
DBMS_STORAGE_MAP.DROP_FILE(

filename IN VARCHAR2,
cascade IN BOOLEAN,
dictionary_update IN BOOLEAN DEFAULT TRUE);

Table 71–4 MAP_ALL Function Parameters

Parameter Description

max_num_fileext Defines the maximum number of file extents to be mapped.
This limits the amount of memory used when mapping file
extents. The default value is 100 ; max_num_fileextent is an
overloaded argument.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Table 71–5 DROP_ELEMENT Function Parameters

Parameter Description

elemname The element for which mapping information is dropped.

cascade If TRUE, then DROP_ELEMENT is invoked recursively on all
elements of the DAG defined by elemname, if possible.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.
71-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STORAGE_MAP Subprograms
DROP_ALL Function
This function drops all mapping information in the shared memory of the instance.

Syntax
DBMS_STORAGE_MAP.DROP_ALL(

dictionary_update IN BOOLEAN DEFAULT TRUE);

SAVE Function
This function saves information needed to regenerate the entire mapping into the
data dictionary.

Syntax
DBMS_STORAGE_MAP.SAVE();

RESTORE Function
This function loads the entire mapping information from the data dictionary into
the shared memory of the instance. You can invoke RESTORE only after a SAVE
operation. You must explicitly call RESTORE in a warm startup scenario.

Table 71–6 DROP_FILE Function Parameters

Parameter Description

filename The file for which file mapping information is dropped.

cascade If TRUE, then the mapping DAGs for the elements where the
file resides are also dropped, if possible.

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.

Table 71–7 DROP_ALL Function Parameters

Parameter Description

dictionary_update If TRUE, mapping information in the data dictionary is
updated to reflect the changes. The default value is TRUE;
dictionary_update is an overloaded argument.
DBMS_STORAGE_MAP 71-7

LOCK_MAP Procedure
Syntax
DBMS_STORAGE_MAP.RESTORE();

LOCK_MAP Procedure
This procedure locks the mapping information in the shared memory of the
instance. This is useful when you need a consistent snapshot of the V$MAP tables.
Without locking the mapping information, V$MAP_ELEMENT and V$MAP_
SUBELEMENT, for example, may be inconsistent.

Syntax
DBMS_STORAGE_MAP.LOCK_MAP();

UNLOCK_MAP Procedure
This procedure unlocks the mapping information in the shared memory of the
instance.

Syntax
DBMS_STORAGE_MAP.LOCK_MAP();

Usage Notes for DBMS_STORAGE_MAP Subprograms
For MAP_ELEMENT, MAP_FILE, and MAP_ALL: Invoking these functions when
mapping information already exists will refresh the mapping if configuration IDs
are supported. If configuration IDs are not supported, then invoking these functions
again will rebuild the mapping.

See Also: Oracle9i Database Administrator’s Guide for a discussion
of the configuration ID, an attribute of the element or file that is
changed.
71-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_STR
72

DBMS_STREAMS

The DBMS_STREAMS package provides interfaces to convert SYS.AnyData objects
into logical change record (LCR) objects, to return information about Streams
attributes, and to annotate redo entries generated by a session with a binary tag.
This tag affects the behavior of a capture process, a propagation job, or an apply
process whose rules include specifications for these binary tags in redo entries or
LCRs.

This chapter contains the following topic:

� Summary of DBMS_STREAMS Subprograms

Note: PUBLIC is granted execute privilege on this package.

See Also: Oracle9i Streams for more information about Streams
EAMS 72-1

Summary of DBMS_STREAMS Subprograms
Summary of DBMS_STREAMS Subprograms

Table 72–1 DBMS_STREAMS Subprograms

Subprogram Description

"CONVERT_ANYDATA_TO_LCR_DDL
Function" on page 72-3

Converts a SYS.AnyData object to a
SYS.LCR$_DDL_RECORD object

"CONVERT_ANYDATA_TO_LCR_ROW
Function" on page 72-4

Converts a SYS.AnyData object to a
SYS.LCR$_ROW_RECORD object

"GET_INFORMATION Function" on
page 72-5

Returns information about various Streams
attributes

"GET_TAG Function" on page 72-6 Gets the binary tag for all redo entries
generated by the current session

"SET_TAG Procedure" on page 72-7 Sets the binary tag for all redo entries
subsequently generated by the current session
72-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS Subprograms
CONVERT_ANYDATA_TO_LCR_DDL Function

Converts a SYS.AnyData object into a SYS.LCR$_DDL_RECORD object. You can
specify this function in a rule-based transformation when propagating data
definition language (DDL) LCRs from a SYS.AnyData queue to a
SYS.LCR$_DDL_RECORD typed queue.

Alternatively, you can use this function in a transformation created by the
CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Then,
use the transformation you create when you add a subscriber for propagation of
DDL LCRs from a SYS.AnyData queue to a SYS.LCR$_DDL_RECORD typed
queue.

Syntax
DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_DDL(

source IN SYS.AnyData)
RETURN SYS.LCR$_DDL_RECORD;

Parameter

See Also: Oracle9i Streams for more information about this
function

Table 72–2 CONVERT_ANYDATA_TO_LCR_DDL Function Parameter

Parameter Description

source The SYS.AnyData object to be converted. If this object is not a
DDL LCR, then an exception is raised.
DBMS_STREAMS 72-3

CONVERT_ANYDATA_TO_LCR_ROW Function
CONVERT_ANYDATA_TO_LCR_ROW Function

Converts a SYS.AnyData object into a SYS.LCR$_ROW_RECORD object. You can
use this function in a rule-based transformation when propagating row LCRs from
a SYS.AnyData queue to a SYS.LCR$_ROW_RECORD typed queue.

Alternatively, you can use this function in a transformation created by the
CREATE_TRANSFORMATION procedure in the DBMS_TRANSFORM package. Then,
use the transformation you create when you add a subscriber for propagation of
row LCRs from a SYS.AnyData queue to a SYS.LCR$_ROW_RECORD typed queue.

Syntax
DBMS_STREAMS.CONVERT_ANYDATA_TO_LCR_ROW(

source IN SYS.AnyData)
RETURN SYS.LCR$_ROW_RECORD;

Parameter

See Also: Oracle9i Streams for more information about this
function

Table 72–3 CONVERT_ANYDATA_TO_LCR_ROW Function Parameter

Parameter Description

source The SYS.AnyData object to be converted. If this object is not a
row LCR, then an exception is raised.
72-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS Subprograms
GET_INFORMATION Function

Returns information about various Streams attributes.

Syntax
DBMS_STREAMS.GET_INFORMATION(

name IN VARCHAR2)
RETURN SYS.AnyData;

Parameter

Table 72–4 GET_INFORMATION Function Parameter

Parameter Description

name The type of information you want to retrieve. Currently, the following names
are available:

� SENDER: Returns the name of the sender for the current LCR (from its
AQ message properties). This function is called inside an apply handler.
An apply handler is a DML handler, a DDL handler, an error handler, or a
message handler. Returns NULL if called outside of an apply handler. The
return value is to be interpreted as a VARCHAR2.

� CONSTRAINT_NAME: Returns the name of the constraint that was
violated for an LCR that raised an error. This function is called inside a
DML handler or error handler for an apply process. Returns NULL if
called outside of a DML handler or error handler. The return value is to
be interpreted as a VARCHAR2.
DBMS_STREAMS 72-5

GET_TAG Function
GET_TAG Function

Gets the binary tag for all redo entries generated by the current session.

Syntax
DBMS_STREAMS.GET_TAG()
RETURN RAW;

Usage Notes
The following example illustrates how to display the current LCR tag as output:

SET SERVEROUTPUT ON
DECLARE

raw_tag RAW(2000);
BEGIN

raw_tag := DBMS_STREAMS.GET_TAG();
DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));

END;
/

You can also display the value by querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

See Also: Oracle9i Streams for more information about tags
72-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS Subprograms
SET_TAG Procedure

Sets the binary tag for all redo entries subsequently generated by the current
session. Each redo entry generated by DML or DDL statements in the current
session will have this tag. This procedure affects only the current session.

Syntax
DBMS_STREAMS.SET_TAG(

tag IN RAW DEFAULT NULL);

Parameter

Usage Notes
To set the tag to the hexadecimal value of '17' in the current session, run the
following procedure:

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

Note: This procedure is not transactional. That is, the effects of
SET_TAG cannot be rolled back.

See Also: Oracle9i Streams for more information about tags

Table 72–5 SET_TAG Procedure Parameter

Parameter Description

tag The binary tag for all subsequent redo entries generated by the
current session. A raw value is a sequence of bytes, and a byte
is a sequence of bits.

By default, the tag for a session is NULL.

The size limit for a tag value is 2000 bytes.
DBMS_STREAMS 72-7

SET_TAG Procedure
72-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_STREAMS
73

DBMS_STREAMS_ADM

The DBMS_STREAMS_ADM package provides administrative procedures for adding
and removing simple rules, without transformations, for capture, propagation, and
apply at the table, schema, and database level. These rules support logical change
records (LCRs), which include row LCRs and data definition language (DDL) LCRs.
This package also contains procedures for creating queues and for managing
Streams metadata, such as data dictionary information.

This chapter contains the following topic:

� Summary of DBMS_STREAMS_ADM Subprograms

If you require more sophisticated rules or rules involving non-LCR events, then you
can use the DBMS_RULE_ADM package.

If you require transformations on simple rules, then you can use the
DBMS_RULE_ADM package to add, update, or remove transformations on rules
created by the DBMS_STREAMS_ADM package.

See Also:

� Oracle9i Streams for more information about Streams

� Chapter 64, "DBMS_RULE_ADM"
_ADM 73-1

Summary of DBMS_STREAMS_ADM Subprograms
Summary of DBMS_STREAMS_ADM Subprograms

Table 73–1 DBMS_STREAMS_ADM Subprograms

Subprogram Description

"ADD_GLOBAL_PROPAGATION_RULES
Procedure" on page 73-3

Adds propagation rules that propagate all the
LCRs in a source queue to a destination queue

"ADD_GLOBAL_RULES Procedure" on
page 73-7

Adds capture rules for an entire database or
apply rules for all LCRs in a queue

"ADD_SCHEMA_PROPAGATION_RULES
Procedure" on page 73-11

Adds propagation rules that propagate the
LCRs related to the specified schema in a
source queue to a destination queue

"ADD_SCHEMA_RULES Procedure" on
page 73-15

Adds capture or apply rules for a schema

"ADD_SUBSET_RULES Procedure" on
page 73-19

Adds apply rules for a subset of the rows in a
table

"ADD_TABLE_PROPAGATION_RULES
Procedure" on page 73-24

Adds propagation rules that propagate the
LCRs related to the specified table in a source
queue to a destination queue

"ADD_TABLE_RULES Procedure" on
page 73-28

Adds capture or apply rules for a table

"PURGE_SOURCE_CATALOG Procedure"
on page 73-32

Removes all Streams data dictionary
information at the local database for the
specified object

"REMOVE_RULE Procedure" on
page 73-34

Removes the specified rule or all rules from
the rule set associated with the specified
capture process, apply process, or propagation
job

"SET_UP_QUEUE Procedure" on
page 73-35

Creates a queue table and a queue for use with
the capture, propagate, and apply
functionality of Streams

Note: All procedures commit unless specified otherwise.
73-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
ADD_GLOBAL_PROPAGATION_RULES Procedure

Adds propagation rules that propagate all the LCRs in a source queue to a
destination queue. This procedure also configures propagation using the current
user, if necessary, and establishes a default propagation schedule. This procedure
enables propagation of all LCRs in the source queue, subject to filtering conditions,
to the destination queue. Only one propagation job is allowed between the source
queue and destination queue.

If propagation rules are added, then the propagation job propagates DML changes,
or DDL changes, or both from the specified source queue to the specified
destination queue. This procedure creates DML and DDL rules automatically based
on include_dml and include_ddl parameter values, respectively. A
system-generated rule name is the database name with a sequence number
appended to it. The sequence number is used to avoid naming conflicts. If the
database name plus the sequence number is too long, then the database name is
truncated. For the overloaded ADD_GLOBAL_PROPAGATION_RULES procedure, the
system-generated rule names for DML and DDL changes are returned.

A propagation job uses the rules created for filtering. If the propagation job does not
have a rule set, then a rule set is created automatically, and the rules for propagating
changes to the database are added to the rule set. Other rules in an existing rule set
for the propagation job are not affected. You can add additional rules using the
DBMS_RULE_ADM package.

The following is an example of a global rule condition that may be created for
propagating DML changes with a propagation job:

:dml.get_source_database_name() = 'DBS1.NET' AND :dml.is_null_tag() = 'Y'

For a propagation to work properly, the owner of the source queue must have the
necessary privileges to propagate events.

Note: The quotation marks in the preceding example are all single
quotation marks.
DBMS_STREAMS_ADM 73-3

ADD_GLOBAL_PROPAGATION_RULES Procedure
Syntax
DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(

streams_name IN VARCHAR2,
source_queue_name IN VARCHAR2,
destination_queue_name IN VARCHAR2,
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Note:

� Currently, a single propagation job propagates all events that
use a particular database link, even if the database link
propagates events to multiple destination queues.

� The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

See Also: "CREATE_PROPAGATION Procedure" on page 47-4
for more information about the required privileges

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.
73-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Parameters

Table 73–2 ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters

Parameter Description

streams_name The name of the propagation job.

If the specified propagation job does not exist, then it is
created automatically.

If NULL and a propagation job exists for the same source
queue and destination queue (including database link), then
this propagation job is used.

If NULL and no propagation job exists for the same source
queue and destination queue (including database link), then
a propagation job is created automatically with a
system-generated name.

source_queue_name The name of the source queue. The current database must
contain the source queue.

destination_queue_name The name of the destination queue, including any database
link, such as STREAMS_QUEUE@DBS2.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If TRUE, then creates a rule for DML changes. If FALSE, then
does not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a rule for DDL changes. If FALSE, then
does not create a DDL rule. NULL is not permitted.

include_tagged_lcr If TRUE, then an LCR is always considered for propagation,
regardless of whether it has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a
database.

If FALSE, then an LCR is considered for propagation only
when the LCR contains a NULL tag. A setting of false is
often specified in update-anywhere configurations to avoid
sending a change back to its source database.

See Also: Oracle9i Streams for more information about tags
DBMS_STREAMS_ADM 73-5

ADD_GLOBAL_PROPAGATION_RULES Procedure
source_database The global name of the source database. The source
database is where the changes originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle Corporation recommends that you specify a source
database for propagation rules.

dml_rule_name If include_dml is TRUE, then contains the DML rule
name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–2 ADD_GLOBAL_PROPAGATION_RULES Procedure Parameters (Cont.)

Parameter Description
73-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
ADD_GLOBAL_RULES Procedure

Adds capture rules for an entire database or apply rules for all LCRs in a queue.

If capture rules are added, then captures DML changes, or DDL changes, or both in
the current database and enqueues these changes into the specified queue. For
capture rules, you should execute this procedure at the source database. This
procedure automatically invokes the PREPARE_GLOBAL_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package.

If apply rules are added, then the apply process receives and applies captured
events that contain DML changes, or DDL changes, or both that originated at the
source database matching the source_database parameter. For apply rules, you
should execute this procedure at the destination database.

An apply process created by this procedure can apply events only at the local
database and can apply only captured events. To create an apply process that
applies events at a remote database or an apply process that applies user-enqueued
events, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

Changes applied by an apply process created by this procedure generate tags in the
redo log at the destination database with a value of '00' (double zero). You can use
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag
value after the apply process is created, if necessary.

You have the option of creating an apply process using the
DBMS_APPLY_ADM.CREATE_APPLY procedure and specifying nondefault values
for the apply_captured , apply_database_link , and apply_tag parameters
when you run that procedure. Then you can use this ADD_GLOBAL_RULES
procedure to add rules to the rule set used by the apply process.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the database name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the database name plus the sequence number is
too long, then the database name is truncated.

For the overloaded ADD_GLOBAL_RULES procedure, the system-generated rule
names for DML and DDL changes are returned.
DBMS_STREAMS_ADM 73-7

ADD_GLOBAL_RULES Procedure
A capture process or an apply process uses the rules created for filtering. If the
generated process does not have a rule set, then a rule set is created automatically,
and the rules are added to the rule set. Other rules in an existing rule set for the
process are not affected. You can add additional rules using the DBMS_RULE_ADM
package.

The following is an example of a global rule condition that may be created for
capturing DML changes with a capture process:

:dml.is_null_tag() = 'Y'

The following is an example of a global rule condition that may be created for
applying DML changes with an apply process:

:dml.get_source_database_name() = 'DBS1.NET' AND :dml.is_null_tag() = 'Y'

If this procedure creates a capture process or an apply process, then the user who
runs this procedure is the user who captures or applies changes. The specified user
must have the necessary privileges to perform these actions.

Note: The quotation marks in the preceding example are all single
quotation marks.

See Also:

� Chapter 64, "DBMS_RULE_ADM"

� "CREATE_CAPTURE Procedure" on page 8-6 for information
about the privileges required to capture changes

� "CREATE_APPLY Procedure" on page 4-9 for information
about the privileges required to apply changes (refer to the
apply_user parameter)
73-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Syntax
DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(

streams_type IN VARCHAR2,
streams_name IN VARCHAR2 DEFAULT NULL,
queue_name IN VARCHAR2 DEFAULT 'streams_queue',
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

Table 73–3 ADD_GLOBAL_RULES Procedure Parameters (Page 1 of 2)

Parameter Description

streams_type The type of process, either capture or apply

streams_name The name of the capture or apply process.

If the specified process does not exist, then it is created
automatically.

If NULL and one relevant capture or apply process for the queue
exists, then the relevant process is used. If no relevant process
exists for the queue, then a capture process or an apply process is
created automatically with a system-generated name. If NULL
and multiple processes of the specified streams_type for the
queue exist, then an error is raised.

queue_name The name of the local queue. For capture rules, the queue into
which the changes will be enqueued. For apply rules, the queue
from which changes will be dequeued.

include_dml If TRUE, then creates a rule for DML changes. If FALSE, then does
not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a rule for DDL changes. If FALSE, then does
not create a DDL rule. NULL is not permitted.
DBMS_STREAMS_ADM 73-9

ADD_GLOBAL_RULES Procedure
include_tagged_lcr If TRUE, then a redo entry is always considered for capture and
an LCR is always considered for apply, regardless of whether the
redo entry or LCR has a non-NULL tag. This setting is appropriate
for a full (for example, standby) copy of a database.

If FALSE, then a redo entry is considered for capture and an LCR
is considered for apply only when the redo entry or the LCR
contains a NULL tag. A setting of false is often specified in
update-anywhere configurations to avoid sending a change back
to its source database.

See Also: Oracle9i Streams for more information about tags

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture rules, you can specify NULL, because currently the
capture database must be the same as the source database.

For apply rules, specify the source database of the changes that
will be applied by the apply process. The source database is the
database where the changes originated. If an apply process
applies captured events, then the apply process can apply events
from only one capture process at one source database.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is TRUE, then contains the DML rule name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–3 ADD_GLOBAL_RULES Procedure Parameters (Page 2 of 2)

Parameter Description
73-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
ADD_SCHEMA_PROPAGATION_RULES Procedure

Adds propagation rules that propagate the LCRs related to the specified schema in
a source queue to a destination queue. This procedure also configures propagation
using the current user, if necessary, and establishes a default propagation schedule.
This procedure enables propagation of LCRs for the specified schema, subject to
filtering conditions. Only one propagation job is allowed between the source queue
and the destination queue.

If propagation rules are added, then the propagation job propagates DML changes,
or DDL changes, or both that are related to the specified schema from the specified
source queue to the specified destination queue. This procedure creates DML and
DDL rules automatically based on include_dml and include_ddl parameter
values, respectively. A system-generated rule name is the schema name with a
sequence number appended to it. The sequence number is used to avoid naming
conflicts. If the schema name plus the sequence number is too long, then the schema
name is truncated. For the overloaded ADD_SCHEMA_PROPAGATION_RULES
procedure, the system-generated rule names for DML and DDL changes are
returned.

A propagation job uses the rules created for filtering. If the propagation job does not
have a rule set, then a rule set is created automatically, and the rules for propagating
changes to the schema are added to the rule set. Other rules in an existing rule set
for the propagation job are not affected. Additional rules can be added using the
DBMS_RULE_ADM package.

The following is an example of a schema rule condition that may be created for
propagating DML changes with a propagation job:

:dml.get_object_owner() = 'HR' AND :dml.is_null_tag() = 'Y'
AND :dml.get_source_database_name() = 'DBS1.NET'

For a propagation to work properly, the owner of the source queue must have the
necessary privileges to propagate events.

Note: The quotation marks in the preceding example are all single
quotation marks.
DBMS_STREAMS_ADM 73-11

ADD_SCHEMA_PROPAGATION_RULES Procedure
Syntax
DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(

schema_name IN VARCHAR2,
streams_name IN VARCHAR2,
source_queue_name IN VARCHAR2,
destination_queue_name IN VARCHAR2,
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Note:

� Currently, a single propagation job propagates all events that
use a particular database link, even if the database link
propagates events to multiple destination queues.

� The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

See Also: "CREATE_PROPAGATION Procedure" on page 47-4
for more information about the required privileges

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.
73-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Parameters

Table 73–4 ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters

Parameter Description

schema_name The name of the schema. For example, hr .

streams_name The name of the propagation job.

If the specified propagation job does not exist, then it is
created automatically.

If NULL and a propagation job exists for the same source
queue and destination queue (including database link), then
this propagation job is used.

If NULL and no propagation job exists for the same source
queue and destination queue (including database link), then
a propagation job is created automatically with a
system-generated name.

source_queue_name The name of the source queue. The current database must
contain the source queue.

destination_queue_name The name of the destination queue, including database link,
for example STREAMS_QUEUE@DBS2.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If TRUE, then creates a rule for DML changes. If FALSE, then
does not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a rule for DDL changes. If FALSE, then
does not create a DDL rule. NULL is not permitted.

include_tagged_lcr If TRUE, then an LCR is always considered for propagation,
regardless of whether it has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a
database.

If FALSE, then an LCR is considered for propagation only
when the LCR contains a NULL tag. A setting of false is
often specified in update-anywhere configurations to avoid
sending a change back to its source database.

See Also: Oracle9i Streams for more information about tags
DBMS_STREAMS_ADM 73-13

ADD_SCHEMA_PROPAGATION_RULES Procedure
source_database The global name of the source database. The source
database is where the change originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle Corporation recommends that you specify a source
database for propagation rules.

dml_rule_name If include_dml is TRUE, then contains the DML rule
name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–4 ADD_SCHEMA_PROPAGATION_RULES Procedure Parameters (Cont.)

Parameter Description
73-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
ADD_SCHEMA_RULES Procedure

Adds capture or apply rules for a schema.

If capture rules are added, then the capture process captures DML changes, or DDL
changes, or both in the specified schema and enqueues these changes into the
specified queue. For capture rules, you should execute this procedure at the source
database. This procedure automatically invokes the
PREPARE_SCHEMA_INSTANTIATION procedure in the DBMS_CAPTURE_ADM
package for the specified schema.

If apply rules are added, then the apply process receives and applies captured
events that contain DML changes, or DDL changes, or both for the specified
schema. For apply rules, you should execute this procedure at the destination
database.

An apply process created by this procedure can apply events only at the local
database and can apply only captured events. To create an apply process that
applies events at a remote database or an apply process that applies user-enqueued
events, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

Changes applied by an apply process created by this procedure generate tags in the
redo log at the destination database with a value of '00' (double zero). You can use
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag
value after the apply process is created, if necessary.

You have the option of creating an apply process using the
DBMS_APPLY_ADM.CREATE_APPLY procedure and specifying nondefault values
for the apply_captured , apply_database_link , and apply_tag parameters
when you run that procedure. Then you can use this ADD_SCHEMA_RULES
procedure to add rules to the rule set used by the apply process.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the schema name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the schema name plus the sequence number is too
long, then the schema name is truncated.
DBMS_STREAMS_ADM 73-15

ADD_SCHEMA_RULES Procedure
The following is an example of a schema rule condition that may be created for
filtering DML statements:

:dml.get_object_owner() = 'HR' AND :dml.is_null_tag() = 'Y'

For the overloaded ADD_SCHEMA_RULES procedure, the system-generated rule
names for DML and DDL changes are returned.

A capture process or an apply process uses the rules created for filtering. If the
process does not have a rule set, then a rule set is created automatically, and the
rules for the schema are added to the rule set. Other rules in an existing rule set for
the process are not affected. Additional rules can be added using the
DBMS_RULE_ADM package.

If this procedure creates a capture process or an apply process, then the user who
runs this procedure is the user who captures or applies changes. The specified user
must have the necessary privileges to perform these actions.

Note: The quotation marks in the preceding example are all single
quotation marks.

See Also:

� Chapter 64, "DBMS_RULE_ADM"

� "CREATE_CAPTURE Procedure" on page 8-6 for information
about the privileges required to capture changes

� "CREATE_APPLY Procedure" on page 4-9 for information
about the privileges required to apply changes (refer to the
apply_user parameter)
73-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Syntax
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(

schema_name IN VARCHAR2,
streams_type IN VARCHAR2,
streams_name IN VARCHAR2 DEFAULT NULL,
queue_name IN VARCHAR2 DEFAULT 'streams_queue',
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Parameters

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.

Table 73–5 ADD_SCHEMA_RULES Procedure Parameters (Page 1 of 2)

Parameter Description

schema_name The name of the schema. For example, hr .

You can specify a schema that does not yet exist, because Streams
does not validate the existence of the schema.

streams_type The type of process, either capture or apply

streams_name The name of the process.

If the specified process does not exist, then it is created
automatically.

If NULL and one relevant capture or apply process for the queue
exists, then the relevant process is used. If no relevant capture or
apply process exists for the queue, then a capture process or an
apply process is created automatically with a system-generated
name. If NULL and multiple processes of the specified
streams_type for the queue exist, then an error is raised.

queue_name The name of the local queue. For capture rules, the queue into
which the changes will be enqueued. For apply rules, the queue
from which changes will be dequeued.
DBMS_STREAMS_ADM 73-17

ADD_SCHEMA_RULES Procedure
include_dml If TRUE, then creates a rule for DML changes. If FALSE, then does
not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a rule for DDL changes. If FALSE, then does
not create a DDL rule. NULL is not permitted.

include_tagged_lcr If TRUE, then a redo entry is always considered for capture and
an LCR is always considered for apply, regardless of whether the
redo entry or LCR has a non-NULL tag. This setting is appropriate
for a full (for example, standby) copy of a database.

If FALSE, then a redo entry is considered for capture and an LCR
is considered for apply only when the redo entry or the LCR
contains a NULL tag. A setting of false is often specified in
update-anywhere configurations to avoid sending a change back
to its source database.

See Also: Oracle9i Streams for more information about tags

source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture rules, you can specify NULL, because currently the
capture database must be the same as the source database.

For apply rules, specify the source database of the changes that
will be applied by the apply process. The source database is the
database where the changes originated. If an apply process
applies captured events, then the apply process can apply events
from only one capture process at one source database.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is TRUE, then contains the DML rule name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–5 ADD_SCHEMA_RULES Procedure Parameters (Page 2 of 2)

Parameter Description
73-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
ADD_SUBSET_RULES Procedure

Adds apply rules for a subset of the rows in a table.

The apply process receives and applies captured events that contain DML changes
for the specified subset of rows in the table. You should execute this procedure at
the destination database.

Running this procedure generates three rules for the specified apply process: one
for INSERT statements, one for UPDATE statements, and one for DELETE
statements. For INSERT and DELETE statements, only row LCRs that satisfy the
condition specified for the dml_condition parameter are applied. For UPDATE
statements, the following variations are possible:

� If both the new and old values in a row LCR satisfy the specified
dml_condition , then the LCR is applied without any changes.

� If neither the new or old values in a row LCR satisfy the specified
dml_condition , then the row LCR is not applied.

� If the old values for a row LCR satisfy the specified dml_condition , but the
new values do not, then the row LCR is converted into a delete.

� If the new values for a row LCR satisfy the specified dml_condition , but the
old values do not, then the row LCR is converted to an insert.

The following is an example of a rule condition that may be created for filtering
LCRs containing an update operation when the dml_condition is
region_id = 2 and the table_name is hr.regions :

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'REGIONS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() = 'UPDATE' AND
(:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) AND
(:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) AND
(:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) AND
(:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

Note: The quotation marks in the preceding example are all single
quotation marks.
DBMS_STREAMS_ADM 73-19

ADD_SUBSET_RULES Procedure
An apply process uses the generated rules for filtering LCRs. If the apply process
does not have a rule set, then one is created automatically, and the rules for the table
are added to the rule set. Other rules in an existing rule set for the apply process are
not affected. Additional rules can be added using the DBMS_RULE_ADM package.

Rules for INSERT, UPDATE, and DELETE statements are created automatically when
you run this procedure, and these rules are given a system-generated rule name.
The system-generated rule name is the table name with a sequence number
appended to it. The sequence number is used to avoid naming conflicts. If the table
name plus the sequence number is too long, then the table name is truncated. The
ADD_SUBSET_RULES procedure is overloaded, and the system-generated rule
names for INSERT, UPDATE, and DELETE statements are returned.

An apply process created by this procedure can apply events only at the local
database and can apply only captured events. To create an apply process that
applies events at a remote database or an apply process that applies user-enqueued
events, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

Changes applied by an apply process created by this procedure generate tags in the
redo log at the destination database with a value of '00' (double zero). You can use
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag
value after the apply process is created, if necessary.

You have the option of creating an apply process using the
DBMS_APPLY_ADM.CREATE_APPLY procedure and specifying nondefault values
for the apply_captured , apply_database_link , and apply_tag parameters
when you run that procedure. Then you can use this ADD_SUBSET_RULES
procedure to add rules to the rule set used by the apply process.

When you create a subset rule for a table, you should create an unconditional
supplemental log group at the source database with all the columns in the table.
Supplemental logging is required if an update must be converted to an insert. The
apply process must have all the column values to be able to perform the insert
correctly.

If this procedure creates an apply process, then the user who runs this procedure is
the user who applies changes. The specified user must have the necessary privileges
to apply events.
73-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Syntax
DBMS_STREAMS_ADM.ADD_SUBSET_RULES(

table_name IN VARCHAR2,
dml_condition IN VARCHAR2,
streams_type IN VARCHAR2 DEFAULT 'apply',
streams_name IN VARCHAR2 DEFAULT NULL,
queue_name IN VARCHAR2 DEFAULT 'streams_queue',
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
insert_rule_name OUT VARCHAR2,
update_rule_name OUT VARCHAR2,
delete_rule_name OUT VARCHAR2);

See Also:

� Chapter 64, "DBMS_RULE_ADM"

� "CREATE_CAPTURE Procedure" on page 8-6 for information
about the privileges required to capture changes

� "CREATE_APPLY Procedure" on page 4-9 for information
about the privileges required to apply changes (refer to the
apply_user parameter)

Note: This procedure is overloaded. One version of this procedure
contains three OUT parameters, and the other does not.
DBMS_STREAMS_ADM 73-21

ADD_SUBSET_RULES Procedure
Parameters

Table 73–6 ADD_SUBSET_RULES Procedure Parameters (Page 1 of 2)

Parameter Description

table_name The name of the table specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default.

You can specify a table that does not yet exist, because Streams
does not validate the existence of the table.

dml_condition The subset condition. You specify this condition similar to the
way you specify conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table where
the salary is greater than 4000 and the job_id is SA_MAN,
enter the following as the condition:

' salary > 4000 and job_id = ''SA_MAN'' '

Note: The quotation marks in the preceding example are all
single quotation marks.

streams_type The type of process. Currently, the only valid type is apply.

streams_name The name of the apply process. If the specified apply process
does not exist, then it is created automatically.

If NULL, then the apply process for the queue is used. If no apply
process exists for the queue, then one is created automatically
with a system-generated name. If multiple apply processes exist,
then an error is raised.

queue_name The name of the local queue from which changes will be
dequeued.

include_tagged_lcr If TRUE, then an LCR is always considered for apply, regardless
of whether the LCR has a non-NULL tag.

If FALSE, then an LCR is considered for apply only when the
LCR contains a NULL tag. A setting of false is often specified in
update-anywhere configurations to avoid sending a change back
to its source database.

See Also: Oracle9i Streams for more information about tags
73-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

Specify the source database for the changes that will be applied
by the apply process. The source database is the database where
the changes originated. If an apply process applies captured
events, then the apply process can apply events from only one
capture process at one source database.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

insert_rule_name Contains the system-generated INSERT rule name. This rule
handles insert LCRs and update LCRs that must be converted
into insert LCRs.

update_rule_name Contains the system-generated UPDATE rule name. This rule
handles update LCRs that remain update LCRs.

delete_rule_name Contains the system-generated DELETE rule name. This rule
handles delete LCRs and update LCRs that must be converted
into delete LCRs

Table 73–6 ADD_SUBSET_RULES Procedure Parameters (Page 2 of 2)

Parameter Description
DBMS_STREAMS_ADM 73-23

ADD_TABLE_PROPAGATION_RULES Procedure
ADD_TABLE_PROPAGATION_RULES Procedure

Adds propagation rules that propagate the LCRs related to the specified table in a
source queue to a destination queue. This procedure also configures propagation
using the current user, if necessary, and establishes a default propagation schedule.
This procedure enables propagation of LCRs for the specified table, subject to
filtering conditions. Only one propagation job is allowed between the source queue
and the destination queue.

If propagation rules are added, then the propagation job propagates DML changes,
or DDL changes, or both related to the specified table from the specified source
queue to the specified destination queue. This procedure creates DML and DDL
rules automatically based on include_dml and include_ddl parameter values,
respectively. A system-generated rule name is the table name with a sequence
number appended to it. The sequence number is used to avoid naming conflicts. If
the table name plus the sequence number is too long, then the table name is
truncated. For the overloaded ADD_TABLE_PROPAGATION_RULES procedure, the
system-generated rule names for For the overloaded ADD_SCHEMA_RULES
procedure, the system-generated rule names for DML and DDL changes are
returned.

A propagation job uses the rules created for filtering. If the propagation job does not
have a rule set, then a rule set is created automatically, and the rules for propagating
changes to the table are added to the rule set. Other rules in an existing rule set for
the propagation job are not affected. Additional rules can be added using the
DBMS_RULE_ADM package.

The following is an example of a table rule condition that may be created for
propagating DML changes with a propagation job:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'LOCATIONS'
AND :dml.is_null_tag() = 'Y' AND :dml.get_source_database_name() = 'DBS1.NET'

For a propagation to work properly, the owner of the source queue must have the
necessary privileges to propagate events.

Note: The quotation marks in the preceding example are all single
quotation marks.
73-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Syntax
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(

table_name IN VARCHAR2,
streams_name IN VARCHAR2,
source_queue_name IN VARCHAR2,
destination_queue_name IN VARCHAR2,
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Note:

� Currently, a single propagation job propagates all events that
use a particular database link, even if the database link
propagates events to multiple destination queues.

� The source queue owner performs the propagation, but the
propagation job is owned by the user who creates it. These two
users may or may not be the same.

See Also: "CREATE_PROPAGATION Procedure" on page 47-4
for more information about the required privileges

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.
DBMS_STREAMS_ADM 73-25

ADD_TABLE_PROPAGATION_RULES Procedure
Parameters

Table 73–7 ADD_TABLE_PROPAGATION_RULES Procedure Parameters

Parameter Description

table_name The name of the table specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the
current user is the default.

streams_name The name of the propagation job.

If the specified propagation job does not exist, then it is
created automatically.

If NULL and a propagation job exists for the same source
queue and destination queue (including database link), then
this propagation job is used.

If NULL and no propagation job exists for the same source
queue and destination queue (including database link), then
a propagation job is created automatically with a
system-generated name.

source_queue_name The name of the source queue. The current database must
contain the source queue.

destination_queue_name The name of the destination queue, including database link,
for example STREAMS_QUEUE@DBS2.

If the database link is omitted, then the global name of the
current database is used, and the source queue and
destination queue must be in the same database.

Note: Connection qualifiers are not allowed.

include_dml If TRUE, then creates a rule for DML changes. If FALSE, then
does not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a rule for DDL changes. If FALSE, then
does not create a DDL rule. NULL is not permitted.

include_tagged_lcr If TRUE, then an LCR is always considered for propagation,
regardless of whether it has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a
database.

If FALSE, then an LCR is considered for propagation only
when the LCR contains a NULL tag. A setting of false is
often specified in update-anywhere configurations to avoid
sending a change back to its source database.

See Also: Oracle9i Streams for more information about tags
73-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
source_database The global name of the source database. The source
database is where the change originated. If NULL, then no
condition regarding the source database is added to the
generated rules.

If you do not include the domain name, then it is appended
to the database name automatically. For example, if you
specify DBS1 and the domain is .NET, then DBS1.NET is
specified automatically.

Oracle Corporation recommends that you specify a source
database for propagation rules.

dml_rule_name If include_dml is TRUE, then contains the DML rule
name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–7 ADD_TABLE_PROPAGATION_RULES Procedure Parameters (Cont.)

Parameter Description
DBMS_STREAMS_ADM 73-27

ADD_TABLE_RULES Procedure
ADD_TABLE_RULES Procedure

Adds capture or apply rules for a table.

If capture rules are added, then the capture process captures DML changes, or DDL
changes, or both in the specified table and enqueues these changes into the specified
queue. For capture rules, you should execute this procedure at the source database.
This procedure automatically invokes the PREPARE_TABLE_INSTANTIATION
procedure in the DBMS_CAPTURE_ADM package for the specified table.

If apply rules are added, then the apply process receives and applies captured
events that contain DML changes, or DDL changes, or both for the specified table.
For apply rules, you should execute this procedure at the destination database.

An apply process created by this procedure can apply events only at the local
database and can apply only captured events. To create an apply process that
applies events at a remote database or an apply process that applies user-enqueued
events, use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package.

Changes applied by an apply process created by this procedure generate tags in the
redo log at the destination database with a value of '00' (double zero). You can use
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to alter the tag
value after the apply process is created, if necessary.

You have the option of creating an apply process using the
DBMS_APPLY_ADM.CREATE_APPLY procedure and specifying nondefault values
for the apply_captured , apply_database_link , and apply_tag parameters
when you run that procedure. Then you can use this ADD_TABLE_RULES procedure
to add rules to the rule set used by the apply process.

This procedure creates DML and DDL rules automatically based on include_dml
and include_ddl parameter values, respectively. A system-generated rule name is
the table name with a sequence number appended to it. The sequence number is
used to avoid naming conflicts. If the table name plus the sequence number is too
long, then the table name is truncated.

For example, the following is an example of a rule condition that may be created for
filtering DML statements:

:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'EMPLOYEES'
AND :dml.is_null_tag() = 'Y' AND :dml.get_source_database_name() = 'DBS1.NET'
73-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
For the overloaded ADD_TABLE_RULES procedure, the system-generated rule
names for DML and DDL changes are returned.

A capture process or an apply process uses the rules created for filtering. If the
process does not have a rule set, then a rule set is created automatically, and the
rules for the table are added to the rule set. Other rules in an existing rule set for the
process are not affected. Additional rules can be added using the DBMS_RULE_ADM
package.

If this procedure creates a capture process or an apply process, then the user who
runs this procedure is the user who captures or applies changes. The specified user
must have the necessary privileges to perform these actions.

Syntax
DBMS_STREAMS_ADM.ADD_TABLE_RULES(

table_name IN VARCHAR2,
streams_type IN VARCHAR2,
streams_name IN VARCHAR2 DEFAULT NULL,
queue_name IN VARCHAR2 DEFAULT 'streams_queue',
include_dml IN BOOLEAN DEFAULT true,
include_ddl IN BOOLEAN DEFAULT false,
include_tagged_lcr IN BOOLEAN DEFAULT false,
source_database IN VARCHAR2 DEFAULT NULL,
dml_rule_name OUT VARCHAR2,
ddl_rule_name OUT VARCHAR2);

Note: The quotation marks in the preceding example are all single
quotation marks.

See Also:

� Chapter 64, "DBMS_RULE_ADM"

� "CREATE_CAPTURE Procedure" on page 8-6 for information
about the privileges required to capture changes

� "CREATE_APPLY Procedure" on page 4-9 for information
about the privileges required to apply changes (refer to the
apply_user parameter)

Note: This procedure is overloaded. One version of this procedure
contains two OUT parameters, and the other does not.
DBMS_STREAMS_ADM 73-29

ADD_TABLE_RULES Procedure
Parameters

Table 73–8 ADD_TABLE_RULES Procedure Parameters (Page 1 of 2)

Parameter Description

table_name The name of the table specified as
[schema_name.] object_name . For example,
hr.employees . If the schema is not specified, then the current
user is the default.

You can specify a table that does not yet exist, because Streams
does not validate the existence of the table.

streams_type The type of process, either capture or apply

streams_name The name of the process.

If the specified process does not exist, then it is created
automatically.

If NULL and one relevant capture or apply process for the queue
exists, then the relevant capture or apply process is used. If no
relevant process exists for the queue, then a capture process or
an apply process is created automatically with a
system-generated name. If NULL and multiple processes of the
specified streams_type for the queue exist, then an error is
raised.

queue_name The name of the local queue. For capture rules, the queue into
which the changes will be enqueued. For apply rules, the queue
from which changes will be dequeued.

include_dml If TRUE, then creates a DML rule for DML changes. If FALSE,
then does not create a DML rule. NULL is not permitted.

include_ddl If TRUE, then creates a DDL rule for DDL changes. If FALSE,
then does not create a DDL rule. NULL is not permitted.

include_tagged_lcr If TRUE, then a redo entry is always considered for capture and
an LCR is always considered for apply, regardless of whether
redo entry or LCR has a non-NULL tag. This setting is
appropriate for a full (for example, standby) copy of a database.

If FALSE, then a redo entry is considered for capture and an
LCR is considered for apply only when the redo entry or the
LCR contains a NULL tag. A setting of false is often specified in
update-anywhere configurations to avoid sending a change back
to its source database.

See Also: Oracle9i Streams for more information about tags
73-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
source_database The global name of the source database. If NULL, then no
condition regarding the source database is added to the
generated rules.

For capture rules, you can specify NULL, because currently the
capture database must be the same as the source database.

For apply rules, specify the source database of the changes that
will be applied by the apply process. The source database is the
database where the changes originated. If an apply process
applies captured events, then the apply process can apply events
from only one capture process at one source database.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

dml_rule_name If include_dml is TRUE, then contains the DML rule name.

If include_dml is FALSE, then contains a NULL.

ddl_rule_name If include_ddl is TRUE, then contains the DDL rule name.

If include_ddl is FALSE, then contains a NULL.

Table 73–8 ADD_TABLE_RULES Procedure Parameters (Page 2 of 2)

Parameter Description
DBMS_STREAMS_ADM 73-31

PURGE_SOURCE_CATALOG Procedure
PURGE_SOURCE_CATALOG Procedure

Removes all Streams data dictionary information at the local database for the
specified object. You can use this procedure to remove Streams metadata that is not
needed currently and will not be needed in the future.

The global name of the source database containing the object must be specified for
the source_database parameter. If the current database is not the source
database for the object, then data dictionary information about the object is
removed at the current database, not the source database.

For example, suppose changes to the hr.employees table at the dbs1.net source
database are being applied to the hr.employees table at the dbs2.net
destination database. Also, suppose hr.employees at dbs2.net is not a source at
all. In this case, specifying dbs2.net as the source_database for this table
results in an error. However, specifying dbs1.net as the source_database for
this table while running the PURGE_SOURCE_CATALOG procedure at the dbs2.net
database removes data dictionary information about the table at dbs2.net .

Do not run this procedure at a database if either of the following conditions are
true:

� LCRs captured by the capture process for the object are or may be applied
locally without reinstantiating the object.

� LCRs captured by the capture process for the object are or may be forwarded by
the database without reinstantiating the object.

Syntax
DBMS_STREAMS_ADM.PURGE_SOURCE_CATALOG(

source_database IN VARCHAR2,
source_object_name IN VARCHAR2,
source_object_type IN VARCHAR2);

Note: These conditions do not apply to LCRs that were not
created by the capture process. That is, these conditions do not
apply to user-created LCRs.
73-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Parameters

Table 73–9 PURGE_SOURCE_CATALOG Procedure Parameters

Parameter Description

source_database The global name of the source database containing the object.

If you do not include the domain name, then it is appended to
the database name automatically. For example, if you specify
DBS1 and the domain is .NET, then DBS1.NET is specified
automatically.

source_object_name The name of the object specified as
[schema_name.] object_name . For example, hr.employees .
If the schema is not specified, then the current user is the default.

source_object_type Type of the object. Currently, TABLE is the only possible object
type.
DBMS_STREAMS_ADM 73-33

REMOVE_RULE Procedure
REMOVE_RULE Procedure

Removes the specified rule or all rules from the rule set associated with the
specified capture process, apply process, or propagation job.

Syntax
DBMS_STREAMS_ADM.REMOVE_RULE(

rule_name IN VARCHAR2,
streams_type IN VARCHAR2,
streams_name IN VARCHAR2,
drop_unused_rule IN BOOLEAN DEFAULT true);

Parameters

Note: If a rule was automatically created by the system, then you
should use this procedure to remove the rule instead of the
DBMS_RULE_ADM.REMOVE_RULE procedure. If you use the
DBMS_RULE_ADM.REMOVE_RULE procedure, then some metadata
about the rule may remain.

Table 73–10 REMOVE_RULE Procedure Parameters

Parameter Description

rule_name The name of the rule to remove. If NULL, then removes all rules for
the specified capture process, apply process, or propagation job rule
set.

streams_type The type of Streams rule, either capture , apply , or propagate

streams_name The name of the capture process, apply process, or propagation job

drop_unused_rule If false , then the rule is not dropped from the database.

If true and the rule is not in any rule set, then the rule is dropped
from the database.

If true and the rule exists in any rule set, then the rule is not
dropped from the database.
73-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
SET_UP_QUEUE Procedure

Creates a queue table and a Streams queue for use with the capture, propagate, and
apply functionality of Streams.

Set up includes the following actions:

� If the specified queue table does not exist, then this procedure runs the
CREATE_QUEUE_TABLE procedure in the DBMS_AQADM package to create the
queue table with the specified storage clause.

� If the specified queue name does not exist, then this procedure runs the
CREATE_QUEUE procedure in the DBMS_AQADM package to create the queue.

� This procedure starts the queue.

� If a queue user is specified, then this procedure configures this user as a secure
queue user of the queue and grants ENQUEUE and DEQUEUE privileges on the
queue to the specified queue user.

To configure the queue user as a secure queue user, this procedure creates an
Advanced Queuing agent with the same name as the user name, if one does not
already exist. If an agent with this name already exists and is associated with
the queue user only, then it is used. SET_UP_QUEUE then runs the
ENABLE_DB_ACCESS procedure in the DBMS_AQADM package, specifying the
agent and the user.

This procedure creates a SYS.AnyData queue that is both a secure queue and a
transactional queue.
DBMS_STREAMS_ADM 73-35

SET_UP_QUEUE Procedure
Syntax
DBMS_STREAMS_ADM.SET_UP_QUEUE(

queue_table IN VARCHAR2 DEFAULT 'streams_queue_table',
storage_clause IN VARCHAR2 DEFAULT NULL,
queue_name IN VARCHAR2 DEFAULT 'streams_queue',
queue_user IN VARCHAR2 DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);

Note:

� To enqueue events into and dequeue events from a queue, a
queue user must have EXECUTE privilege on the DBMS_AQ
package. The SET_UP_QUEUE procedure does not grant this
privilege.

� If the agent that SET_UP_QUEUE tries to create already exists
and is associated with a user other than the user specified by
queue_user , then an error is raised. In this case, rename or
remove the existing agent, and retry SET_UP_QUEUE.

See Also: The GRANT_QUEUE_PRIVILEGE procedure in the
chapter describing the DBMS_AQADM package for more information
about these privileges
73-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_STREAMS_ADM Subprograms
Parameters

Table 73–11 SET_UP_QUEUE Procedure Parameters

Parameter Description

queue_table The name of the queue table specified as
[schema_name.] queue_table_name . For example,
strmadmin.streams_queue_table . If the schema is not
specified, then the current user is the default.

If the queue table owner is not specified, then the user who
runs this procedure is automatically specified as the queue table
owner.

storage_clause The storage clause for queue table

The storage parameter is included in the CREATE TABLE
statement when the queue table is created. You can specify any
valid table storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace of
the user who runs this procedure. If a tablespace is specified
here, then the queue table and all its related objects are created
in the tablespace specified in the storage clause.

If NULL, then Oracle uses the storage characteristics of the
tablespace in which the queue table is created.

See Also: Oracle9i SQL Reference for more information about
storage clauses

queue_name The name of the queue that will function as the Streams queue,
specified as [schema_name.] queue_name . For example,
strmadmin.streams_queue . If the schema is not specified,
then the current user is the default.

If the queue owner is not specified, then it defaults to the queue
table owner. The owner of the queue table must also be the
owner of the queue. The queue owner automatically has
privileges to perform all queue operations on the queue.

queue_user The name of the user who requires ENQUEUE and DEQUEUE
privileges for the queue. This user is also configured as a secure
queue user of the queue. The queue user cannot grant these
privileges to other users because they are not granted with the
GRANT option.

If NULL, then no privileges are granted. You can also grant
queue privileges to the appropriate users using the
DBMS_AQADM package.

comment The comment for the queue
DBMS_STREAMS_ADM 73-37

SET_UP_QUEUE Procedure
73-38 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
74

DBMS_TRACE

Oracle8i PL/SQL provides an API for tracing the execution of PL/SQL programs on
the server. You can use the trace API, implemented on the server as the
DBMS_TRACE package, to trace PL/SQL functions, procedures, and exceptions.

DBMS_TRACE provides subprograms to start and stop PL/SQL tracing in a session.
Oracle collects the trace data as the program executes and writes it to database
tables.

A typical session involves:

� Starting PL/SQL tracing in session (DBMS_TRACE.SET_PLSQL_TRACE).

� Running an application to be traced.

� Stopping PL/SQL tracing in session (DBMS_TRACE.CLEAR_PLSQL_TRACE).

This chapter discusses the following topics:

� Requirements, Restrictions, and Constants for DBMS_TRACE

� Using DBMS_TRACE

� Summary of DBMS_TRACE Subprograms
_TRACE 74-1

Requirements, Restrictions, and Constants for DBMS_TRACE
Requirements, Restrictions, and Constants for DBMS_TRACE

Requirements
This package must be created under SYS.

Restrictions
You cannot use PL/SQL tracing in a shared server environment.

Constants
DBMS_TRACE uses these constants:

trace_all_calls constant INTEGER := 1;
trace_enabled_calls constant INTEGER := 2;
trace_all_exceptions constant INTEGER := 4;
trace_enabled_exceptions constant INTEGER := 8;
trace_all_sql constant INTEGER := 32;
trace_enabled_sql constant INTEGER := 64;
trace_all_lines constant INTEGER := 128;
trace_enabled_lines constant INTEGER := 256;
trace_stop constant INTEGER := 16384;
trace_pause constant INTEGER := 4096;
trace_resume constant INTEGER := 8192;
trace_limit constant INTEGER := 16;
trace_major_version constant BINARY_INTEGER := 1;
trace_minor_version constant BINARY_INTEGER := 0;

Oracle recommends using the symbolic form for all these constants.

Using DBMS_TRACE

Controlling Data Volume
Profiling large applications may produce a large volume of data. You can control the
volume of data collected by enabling specific program units for trace data
collection.

You can enable a program unit by compiling it debug. This can be done in one of
two ways:

alter session set plsql_debug=true;
create or replace ... /* create the library units - debug information will be
74-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_TRACE
generated */

or:

/* recompile specific library unit with debug option */
alter [PROCEDURE | FUNCTION | PACKAGE BODY] <libunit-name> compile debug;

PL

You can limit the amount of storage used in the database by retaining only the most
recent 8,192 records (approximately) by including TRACE_LIMIT in the
TRACE_LEVEL parameter of the SET_PLSQL_TRACE procedure.

Creating Database Tables to Collect DBMS_TRACE Output
You must create database tables into which the DBMS_TRACE package writes
output. Otherwise, the data is not collected. To create these tables, run the script
TRACETAB.SQL. The tables this script creates are owned by SYS.

Collecting Trace Data
The PL/SQL features you can trace are described in the script DBMSPBT.SQL. Some
of the key tracing features are:

� Tracing Calls

� Tracing Exceptions

� Tracing SQL

� Tracing Lines

Additional features of DBMS_TRACE also allow pausing and resuming trace, and
limiting the output.

Tracing Calls
Two levels of call tracing are available:

� Level 1: Trace all calls. This corresponds to the constant trace_all_calls .

� Level 2: Trace calls to enabled program units only. This corresponds to the
constant trace_enabled_calls .

Enabling cannot be detected for remote procedure calls (RPCs); hence, RPCs are
only traced with level 1.

Note: You cannot use the second method for anonymous blocks.
DBMS_TRACE 74-3

Using DBMS_TRACE
Tracing Exceptions
Two levels of exception tracing are available:

� Level 1: Trace all exceptions. This corresponds to trace_all_exceptions .

� Level 2: Trace exceptions raised in enabled program units only. This
corresponds to trace_enabled_exceptions .

Tracing SQL
Two levels of SQL tracing are available:

� Level 1: Trace all SQL. This corresponds to the constant trace_all_sql .

� Level 2: Trace SQL in enabled program units only. This corresponds to the
constant trace_enabled_sql .

Tracing Lines
Two levels of line tracing are available:

� Level 1: Trace all lines. This corresponds to the constant trace_all_lines .

� Level 2: Trace lines in enabled program units only. This corresponds to the
constant trace_enabled_lines .

When tracing lines, Oracle adds a record to the database each time the line number
changes. This includes line number changes due to procedure calls and returns.

Collected Data
If tracing is requested only for enabled program units, and if the current program
unit is not enabled, then no trace data is written.

When tracing calls, both the call and return are traced. The check for whether
tracing is "enabled" passes if either the called routine or the calling routine is
"enabled".

Call tracing will always output the program unit type, program unit name, and line
number for both the caller and the callee. It will output the caller’s stack depth. If
the caller’s unit is enabled, the calling procedure name will also be output. If the
callee’s unit is enabled, the called procedure name will be output

Note: For both all types of tracing, level 1 overrides level 2. For
example, if both level 1 and level 2 are enabled, then level 1 takes
precedence.
74-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRACE Subprograms
Exception tracing writes out the line number. Raising the exception shows
information on whether the exception is user-defined or pre-defined. It also shows
the exception number in the case of pre-defined exceptions. Both the place where
the exceptions are raised and their handler is traced. The check for tracing being
"enabled" is done independently for the place where the exception is raised and the
place where the exception is handled.

All calls to DBMS_TRACE.SET_PLSQL_TRACE and DBMS_TRACE.CLEAR_PLSQL_
TRACE place a special trace record in the database. Therefore, it is always possible to
determine when trace settings were changed.

Trace Control
As well as determining which items are collected, you can pause and resume the
trace process. No information is gathered between the time that tracing is paused
and the time that it is resumed. The constants TRACE_PAUSE and TRACE_RESUME
are used to accomplish this. Trace records are generated to indicate that the trace
was paused/resumed.

It is also possible to retain only the last 8,192 trace events of a run by using the
constant TRACE_LIMIT. This allows tracing to be turned on without filling up the
database. When tracing stops, the last 8,192 records are saved. The limit is
approximate, since it is not checked on every trace record. At least the requested
number of trace records will be generated; up to 1,000 additional records may be
generated.

Summary of DBMS_TRACE Subprograms

Table 74–1 DBMS_TRACE Subprograms

Subprogram Description

SET_PLSQL_TRACE
Procedure on page 74-6

Starts tracing in the current session.

CLEAR_PLSQL_TRACE
Procedure on page 74-6

Stops trace data dumping in session.

PLSQL_TRACE_VERSION
Procedure on page 74-6

Gets the version number of the trace package.
DBMS_TRACE 74-5

SET_PLSQL_TRACE Procedure
SET_PLSQL_TRACE Procedure

This procedure enables PL/SQL trace data collection.

Syntax
DBMS_TRACE.SET_PLSQL_TRACE (

trace_level INTEGER);

Parameters

CLEAR_PLSQL_TRACE Procedure

This procedure disables trace data collection.

Syntax
DBMS_TRACE.CLEAR_PLSQL_TRACE;

PLSQL_TRACE_VERSION Procedure

This procedure gets the version number of the trace package. It returns the major
and minor version number of the DBMS_TRACE package.

Syntax
DBMS_TRACE.PLSQL_TRACE_VERSION (

major OUT BINARY_INTEGER,
minor OUT BINARY_INTEGER);

Table 74–2 SET_PLSQL_TRACE Procedure Parameters

Parameter Description

trace_level You must supply one or more of the constants as listed on
page 74-2. By summing the constants, you can enable tracing of
multiple PL/SQL language features simultaneously. The
control constants "trace_pause", "trace_resume" and "trace_
stop" should not be used in combination with other constants

Also see "Collecting Trace Data" on page 74-3 for more
information.
74-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRACE Subprograms
Parameters

Table 74–3 PLSQL_TRACE_VERSION Procedure Parameters

Parameter Description

major Major version number of DBMS_TRACE.

minor Minor version number of DBMS_TRACE.
DBMS_TRACE 74-7

PLSQL_TRACE_VERSION Procedure
74-8 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_TRANSA
75

DBMS_TRANSACTION

This package provides access to SQL transaction statements from stored
procedures.

This chapter discusses the following topics:

� Requirements

� Summary of DBMS_TRANSACTION Subprograms

See Also: Oracle9i SQL Reference
CTION 75-1

Requirements
Requirements
This package runs with the privileges of calling user, rather than the package owner
SYS.

Summary of DBMS_TRANSACTION Subprograms

READ_ONLY Procedure

This procedure is equivalent to following SQL statement:

Table 75–1 DBMS_TRANSACTION Subprograms

Subprogram

READ_ONLY Procedure on page 75-2

READ_WRITE Procedure on page 75-3

ADVISE_ROLLBACK Procedure on page 75-3

ADVISE_NOTHING Procedure on page 75-3

ADVISE_COMMIT Procedure on page 75-3

USE_ROLLBACK_SEGMENT Procedure on page 75-4

COMMIT_COMMENT Procedure on page 75-4

COMMIT_FORCE Procedure on page 75-5

COMMIT Procedure on page 75-5

SAVEPOINT Procedure on page 75-5

ROLLBACK Procedure on page 75-6

ROLLBACK_SAVEPOINT Procedure on page 75-6

ROLLBACK_FORCE Procedure on page 75-7

BEGIN_DISCRETE_TRANSACTION Procedure on page 75-7

PURGE_MIXED Procedure on page 75-8

PURGE_LOST_DB_ENTRY Procedure on page 75-9

LOCAL_TRANSACTION_ID Function on page 75-11

STEP_ID Function on page 75-11
75-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSACTION Subprograms
SET TRANSACTION READ ONLY

Syntax
DBMS_TRANSACTION.READ_ONLY;

READ_WRITE Procedure

This procedure is equivalent to following SQL statement:

SET TRANSACTION READ WRITE

Syntax
DBMS_TRANSACTION.READ_WRITE;

ADVISE_ROLLBACK Procedure

This procedure is equivalent to following SQL statement:

ALTER SESSION ADVISE ROLLBACK

Syntax
DBMS_TRANSACTION.ADVISE_ROLLBACK;

ADVISE_NOTHING Procedure

This procedure is equivalent to following SQL statement:

ALTER SESSION ADVISE NOTHING

Syntax
DBMS_TRANSACTION.ADVISE_NOTHING;

ADVISE_COMMIT Procedure

This procedure is equivalent to following SQL statement:
DBMS_TRANSACTION 75-3

USE_ROLLBACK_SEGMENT Procedure
ALTER SESSION ADVISE COMMIT

Syntax
DBMS_TRANSACTION.ADVISE_COMMIT;

USE_ROLLBACK_SEGMENT Procedure

This procedure is equivalent to following SQL statement:

SET TRANSACTION USE ROLLBACK SEGMENT <rb_seg_name>

Syntax
DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT (

rb_name VARCHAR2);

Parameters

COMMIT_COMMENT Procedure

This procedure is equivalent to following SQL statement:

COMMIT COMMENT <text>

Syntax
DBMS_TRANSACTION.COMMIT_COMMENT (

cmnt VARCHAR2);

Parameters

Table 75–2 USE_ROLLBACK_SEGMENT Procedure Parameters

Parameter Description

rb_name Name of rollback segment to use.

Table 75–3 COMMIT_COMMENT Procedure Parameters

Parameter Description

cmnt Comment to associate with this commit.
75-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSACTION Subprograms
COMMIT_FORCE Procedure

This procedure is equivalent to following SQL statement:

COMMIT FORCE <text>, <number>"

Syntax
DBMS_TRANSACTION.COMMIT_FORCE (

xid VARCHAR2,
scn VARCHAR2 DEFAULT NULL);

Parameters

COMMIT Procedure

This procedure is equivalent to following SQL statement:

COMMIT

Here for completeness. This is already implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.COMMIT;

SAVEPOINT Procedure

This procedure is equivalent to following SQL statement:

SAVEPOINT <savepoint_name>

Here for completeness. This is already implemented as part of PL/SQL.

Table 75–4 COMMIT_FORCE Procedure Parameters

Parameter Description

xid Local or global transaction ID.

scn System change number.
DBMS_TRANSACTION 75-5

ROLLBACK Procedure
Syntax
DBMS_TRANSACTION.SAVEPOINT (

savept VARCHAR2);

Parameters

ROLLBACK Procedure

This procedure is equivalent to following SQL statement:

ROLLBACK

Here for completeness. This is already implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.ROLLBACK;

ROLLBACK_SAVEPOINT Procedure

This procedure is equivalent to following SQL statement:

ROLLBACK TO SAVEPOINT <savepoint_name>

Here for completeness. This is already implemented as part of PL/SQL.

Syntax
DBMS_TRANSACTION.ROLLBACK_SAVEPOINT (

savept VARCHAR2);

Table 75–5 SAVEPOINT Procedure Parameters

Parameter Description

savept Savepoint identifier.
75-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSACTION Subprograms
Parameters

ROLLBACK_FORCE Procedure

This procedure is equivalent to following SQL statement:

ROLLBACK FORCE <text>

Syntax
DBMS_TRANSACTION.ROLLBACK_FORCE (

xid VARCHAR2);

Parameters

BEGIN_DISCRETE_TRANSACTION Procedure

This procedure sets "discrete transaction mode" for this transaction.

Syntax
DBMS_TRANSACTION.BEGIN_DISCRETE_TRANSACTION;

Table 75–6 ROLLBACK_SAVEPOINT Procedure Parameters

Parameter Description

savept Savepoint identifier.

Table 75–7 ROLLBACK_FORCE Procedure Parameters

Parameter Description

xid Local or global transaction ID.
DBMS_TRANSACTION 75-7

PURGE_MIXED Procedure
Exceptions

Example
DISCRETE_TRANSACTION_FAILED exception;

pragma exception_init(DISCRETE_TRANSACTION_FAILED, -8175);
CONSISTENT_READ_FAILURE exception;

pragma exception_init(CONSISTENT_READ_FAILURE, -8176);

PURGE_MIXED Procedure

When in-doubt transactions are forced to commit or rollback (instead of letting
automatic recovery resolve their outcomes), there is a possibility that a transaction
can have a mixed outcome: Some sites commit, and others rollback. Such
inconsistency cannot be resolved automatically by Oracle; however, Oracle flags
entries in DBA_2PC_PENDING by setting the MIXED column to a value of ’yes’.

Oracle never automatically deletes information about a mixed outcome transaction.
When the application or DBA is certain that all inconsistencies that might have
arisen as a result of the mixed transaction have been resolved, this procedure can be
used to delete the information about a given mixed outcome transaction.

Syntax
DBMS_TRANSACTION.PURGE_MIXED (

xid VARCHAR2);

Table 75–8 BEGIN_DISCRETE_TRANSACTION Procedure Exceptions

Exception Description

ORA-08175 A transaction attempted an operation which cannot be performed
as a discrete transaction.

If this exception is encountered, then rollback and retry the
transaction

ORA-08176 A transaction encountered data changed by an operation that does
not generate rollback data: create index, direct load or discrete
transaction.

If this exception is encountered, then retry the operation that
received the exception.
75-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSACTION Subprograms
Parameters

PURGE_LOST_DB_ENTRY Procedure

When a failure occurs during commit processing, automatic recovery consistently
resolves the results at all sites involved in the transaction. However, if the remote
database is destroyed or re-created before recovery completes, then the entries used
to control recovery in DBA_2PC_PENDING and associated tables are never removed,
and recovery will periodically retry. Procedure PURGE_LOST_DB_ENTRY enables
removal of such transactions from the local site.

Syntax
DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY (

xid VARCHAR2);

Before automatic recovery runs, the transaction may show up in DBA_2PC_
PENDING as state "collecting", "committed", or "prepared". If the DBA has forced an
in-doubt transaction to have a particular result by using "commit force" or "rollback
force", then states "forced commit" or "forced rollback" may also appear. Automatic
recovery normally deletes entries in any of these states. The only exception is when
recovery finds a forced transaction which is in a state inconsistent with other sites in
the transaction; in this case, the entry is left in the table and the MIXED column has
the value ’yes’.

However, under certain conditions, it may not be possible for automatic recovery to
run. For example, a remote database may have been permanently lost. Even if it is
re-created, it gets a new database ID, so that recovery cannot identify it (a possible
symptom is ORA-02062). In this case, the DBA may use the procedure PURGE_

Table 75–9 PURGE_MIXED Procedure Parameters

Parameter Description

xid Must be set to the value of the LOCAL_TRAN_ID column in the
DBA_2PC_PENDING table.

WARNING: PURGE_LOST_DB_ENTRY should only be used
when the other database is lost or has been re-created. Any other
use may leave the other database in an unrecoverable or
inconsistent state.
DBMS_TRANSACTION 75-9

PURGE_LOST_DB_ENTRY Procedure
LOST_DB_ENTRY to clean up the entries in any state other than "prepared". The
DBA does not need to be in any particular hurry to resolve these entries, because
they are not holding any database resources.

The following table indicates what the various states indicate about the transaction
and what the DBA actions should be:

Table 75–10 PURGE_LOST_DB_ENTRY Procedure States

State of
Column

State of
Global
Transaction

State of
Local
Transaction

Normal
DBA
Action Alternative DBA Action

Collecting Rolled back Rolled back None PURGE_LOST_DB_ENTRY
(See Note 1)

Committed Committed Committed None PURGE_LOST_DB_ENTRY
(See Note 1)

Prepared Unknown Prepared None FORCE COMMIT or
ROLLBACK

Forced
commit

Unknown Committed None PURGE_LOST_DB_ENTRY
(See Note 1)

Forced
rollback

Unknown Rolled back None PURGE_LOST_DB_ENTRY
(See Note 1)

Forced
commit
(mixed)

Mixed Committed (See Note 2)

Forced
rollback
(mixed)

Mixed Rolled back (See Note 2)

NOTE 1: Use only if significant reconfiguration has occurred so
that automatic recovery cannot resolve the transaction. Examples
are total loss of the remote database, reconfiguration in software
resulting in loss of two-phase commit capability, or loss of
information from an external transaction coordinator such as a TP
monitor.

NOTE 2: Examine and take any manual action to remove
inconsistencies; then use the procedure PURGE_MIXED.
75-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSACTION Subprograms
Parameters

LOCAL_TRANSACTION_ID Function

This function returns the local (to instance) unique identifier for current transaction.
It returns null if there is no current transaction.

Syntax
DBMS_TRANSACTION.LOCAL_TRANSACTION_ID (

create_transaction BOOLEAN := FALSE)
RETURN VARCHAR2;

Parameters

STEP_ID Function

This function returns local (to local transaction) unique positive integer that orders
the DML operations of a transaction.

Syntax
DBMS_TRANSACTION.STEP_ID

RETURN NUMBER;

Table 75–11 PURGE_LOST_DB_ENTRY Procedure Parameters

Parameter Description

xid Must be set to the value of the LOCAL_TRAN_ID column in the
DBA_2PC_PENDING table.

Table 75–12 LOCAL_TRANSACTION_ID Function Parameters

Parameter Description

create_
transaction

If true, then start a transaction if one is not currently active.
DBMS_TRANSACTION 75-11

STEP_ID Function
75-12 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_TRANS
76

DBMS_TRANSFORM

The DBMS_TRANSFORM package provides an interface to the message format
transformation features of Oracle Advanced Queuing.

This chapter discusses the following topics:

� Summary of DBMS_TRANSFORM Subprograms

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for more on message format transformations.
FORM 76-1

Summary of DBMS_TRANSFORM Subprograms
Summary of DBMS_TRANSFORM Subprograms

CREATE_TRANSFORMATION Procedure

This procedure creates a transformation that maps an object of the source type to an
object of the target type. The transformation expression can be a SQL expression or
a PL/SQL function. It must return an object of the target type.

Syntax
DBMS_TRANSFORM.CREATE_TRANSFORMATION (

schema VARCHAR2(30),
name VARCHAR2(30),
from_schema VARCHAR2(30),
from_type VARCHAR2(30),
to_schema VARCHAR2(30),
to_type VARCHAR2(30),
transformation VARCHAR2(4000));

Parameters

Table 76–1 DBMS_TRANSFORM Subprograms

Subprograms Description

CREATE_
TRANSFORMATION
Procedure on page 76-2

Creates a transformation that maps an object of the
source type to an object of the destination type

MODIFY_
TRANSFORMATION
Procedure on page 76-3

Modifies an existing transformation

DROP_
TRANSFORMATION
Procedure on page 76-4

Drops the given transformation

Table 76–2 CREATE_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation

name Specifies the name of the transformation

from_schema Specifies the schema of the source type
76-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TRANSFORM Subprograms
MODIFY_TRANSFORMATION Procedure

This procedure modifies (or creates) the mapping for the specified attribute of the
target type. The transformation expression must be a SQL expression or a PL/SQL function
returning the type of the specified attribute of the target type. An attribute number zero
must be specified for a scalar target type. If the target type is an ADT, and the
attribute_number is zero, then the expression must be a PL/SQL function
returning an object of the target type or a constructor expression for the target type.

Syntax
DBMS_TRANSFORM.MODIFY_TRANSFORMATION (

schema VARCHAR2(30)
name VARCHAR2(30),
attribute_number INTEGER,
transformation VARCHAR2(4000));

Parameters

from_type Specifies the source type

to_schema Specifies the target type schema

to_type Specifies the target type

transformation Specifies the transformation expression, returning an object
of the target type. If the target type is an ADT, the
expression must be a function returning an object of the
target type or a constructor expression for the target type.
You can choose not to specify a transformation expression
and instead specify transformations for attributes of the
target type using MODIFY_TRANSFORMATION.

Table 76–3 MODIFY_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation

name Specifies the name of the transformation

attribute_number Must be zero for a scalar target type

Table 76–2 CREATE_TRANSFORMATION Procedure Parameters

Parameter Description
DBMS_TRANSFORM 76-3

DROP_TRANSFORMATION Procedure
DROP_TRANSFORMATION Procedure

This procedure drops the given transformation.

Syntax
DBMS_TRANSFORM.DROP_TRANSFORMATION (

schema VARCHAR2(30),
name VARCHAR2(30));

Parameters

transformation The transformation expression must be a SQL expression or
a PL/SQL function returning the type of the specified
attribute of the target type

Table 76–4 DROP_TRANSFORMATION Procedure Parameters

Parameter Description

schema Specifies the schema of the transformation

name Specifies the name of the transformation

Table 76–3 MODIFY_TRANSFORMATION Procedure Parameters

Parameter Description
76-4 Oracle9i Supplied PL/SQL Packages and Types Reference

D

77

DBMS_TTS

This package checks if the transportable set is self-contained. All violations are
inserted into a temporary table that can be selected from the view TRANSPORT_
SET_VIOLATIONS.

Only users having the execute_catalog_role can execute this procedure. This
role is initially only assigned to user SYS.

This chapter discusses the following topics:

� Exceptions

� Summary of DBMS_TTS Subprograms

See Also: Oracle9i Database Administrator’s Guide and Oracle9i
Database Migration
BMS_TTS 77-1

Exceptions
Exceptions
ts_not_found EXCEPTION;
PRAGMA exception_init(ts_not_found, -29304);
ts_not_found_num NUMBER := -29304;

invalid_ts_list EXCEPTION;
PRAGMA exception_init(invalid_ts_list, -29346);
invalid_ts_list_num NUMBER := -29346;

sys_or_tmp_ts EXCEPTION;
PRAGMA exception_init(sys_or_tmp_ts, -29351);
sys_or_tmp_ts_num NUMBER := -29351;

Summary of DBMS_TTS Subprograms
These two procedures are designed to be called by database administrators.

TRANSPORT_SET_CHECK Procedure

This procedure checks if a set of tablespaces (to be transported) is self-contained.
After calling this procedure, the user may select from a view to see a list of
violations, if there are any. If the view does not return any rows, then the set of
tablespaces is self-contained. For example,

SQLPLUS> EXECUTE TRANSPORT_SET_CHECK(’foo,bar’, TRUE);
SQLPLUS> SELECT * FROM TRANSPORT_SET_VIOLATIONS;

Syntax
DBMS_TTS.TRANSPORT_SET_CHECK (

ts_list IN VARCHAR2,
incl_constraints IN BOOLEAN DEFAULT,
full_closure IN BOOLEAN DEFAULT FALSE);

Table 77–1 DBMS_TTS Subprograms

Subprogram Description

TRANSPORT_SET_CHECK
Procedure on page 77-2

Checks if a set of tablespaces (to be transported) is
self-contained.

DOWNGRADE Procedure on
page 77-3

Downgrades transportable tablespace related data.
77-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_TTS Subprograms
Parameters

DOWNGRADE Procedure

This procedure downgrades transportable tablespace related data.

Syntax
DBMS_TTS.DOWNGRADE;

Table 77–2 TRANSPORT_SET_CHECK Procedure Parameters

Parameter Description

ts_list List of tablespace, separated by comma.

incl_constraints TRUE if you want to count in referential integrity constraints when
examining if the set of tablespaces is self-contained. (The incl_
constraints parameter is a default so that TRANSPORT_SET_
CHECK will work if it is called with only the ts_list argument.)

full_closure Indicates whether a full or partial dependency check is required. If
TRUE, treats all IN and OUT pointers (dependencies) and captures
them as violations if they are not self-contained in the transportable
set. The parameter should be set to TRUE for TSPITR or if a strict
version of transportable is desired. By default the parameter is set
to false. It will only consider OUT pointers as violations.
DBMS_TTS 77-3

DOWNGRADE Procedure
77-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_
78

DBMS_TYPES

The DBMS_TYPES package consists of constants, which represent the built-in and
user-defined types. See Oracle interMedia User’s Guide and Reference for a complete
discussion of types.

This chapter discusses the following topics:

� Constants for DBMS_TYPES
TYPES 78-1

Constants for DBMS_TYPES
Constants for DBMS_TYPES
The following table lists the constants in the DBMS_TYPES package.

Table 78–1 DBMS_TYPES Constants

Constant Description

TYPECODE_DATE A DATE type

TYPECODE_NUMBER A NUMBER type

TYPECODE_RAW A RAW type

TYPECODE_CHAR A CHAR type

TYPECODE_VARCHAR2 A VARCHAR2 type

TYPECODE_VARCHAR A VARCHAR type

TYPECODE_MLSLABEL An MLSLABEL type

TYPECODE_BLOB A BLOB type

TYPECODE_BFILE A BFILE type

TYPECODE_CLOB A CLOB type

TYPECODE_CFILE A CFILE type

TYPECODE_TIMESTAMP A TIMESTAMP type

TYPECODE_TIMESTAMP_TZ A TIMESTAMP_TZ type

TYPECODE_TIMESTAMP_LTZ A TIMESTAMP_LTZ type

TYPECODE_INTERVAL_YM A INTERVAL_YM type

TYPECODE_INTERVAL_DS An INTERVAL_DS type

TYPECODE_REF A REF type

TYPECODE_OBJECT An OBJECT type

TYPECODE_VARRAY A VARRAY collection type

TYPECODE_TABLE A nested table collection type

TYPECODE_NAMEDCOLLECTION

TYPECODE_OPAQUE An OPAQUE type

SUCCESS
78-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Constants for DBMS_TYPES
Exceptions
� INVALID_PARAMETERS

� INCORRECT_USAGE

� TYPE_MISMATCH

NO_DATA

Table 78–1 DBMS_TYPES Constants

Constant Description
DBMS_TYPES 78-3

Constants for DBMS_TYPES
78-4 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_
79

DBMS_UTILITY

This package provides various utility subprograms.

DBMS_UTILITY submits a job for each partition. It is the users responsibility to
control the number of concurrent jobs by setting the INIT .ORA parameter JOB_
QUEUE_PROCESSES correctly.There is minimal error checking for correct syntax.
Any error is reported in SNP trace files.

This chapter discusses the following topics:

� Requirements and Types for DBMS_UTILITY

� Summary of DBMS_UTILITY Subprograms
UTILITY 79-1

Requirements and Types for DBMS_UTILITY
Requirements and Types for DBMS_UTILITY

Requirements
DBMS_UTILITY runs with the privileges of the calling user for the NAME_RESOLVE,
COMPILE_SCHEMA, and ANALYZE_SCHEMA procedures. This is necessary so that the
SQL works correctly.

This does not run as SYS. The privileges are checked using DBMS_DDL.

Types
type uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;
Lists of "USER"."NAME"."COLUMN"@LINK should be stored here.

type name_array IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
Lists of NAME should be stored here.

type dblink_array IS TABLE OF VARCHAR2(128) INDEX BY BINARY_INTEGER;
Lists of database links should be stored here.

TYPE index_table_type IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;
The order in which objects should be generated is returned here.

TYPE number_array IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
The order in which objects should be generated is returned here for users.

TYPE instance_record IS RECORD (
inst_number NUMBER,
inst_name VARCHAR2(60));

TYPE instance_table IS TABLE OF instance_record INDEX BY BINARY_INTEGER;
The list of active instance number and instance name.

The starting index of instance_table is 1; instance_table is dense.

Summary of DBMS_UTILITY Subprograms

Table 79–1 DBMS_UTILITY Subprograms

Subprogram Description

COMPILE_SCHEMA Procedure
on page 79-4

Compiles all procedures, functions, packages, and
triggers in the specified schema.

ANALYZE_SCHEMA Procedure
on page 79-5

Analyzes all the tables, clusters, and indexes in a
schema.
79-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
ANALYZE_DATABASE
Procedure on page 79-6

Analyzes all the tables, clusters, and indexes in a
database.

FORMAT_ERROR_STACK
Function on page 79-7

Formats the current error stack.

FORMAT_CALL_STACK
Function on page 79-7

Formats the current call stack.

IS_CLUSTER_DATABASE
Function on page 79-7

Finds out if this database is running in cluster database
mode.

GET_TIME Function on page 79-8 Finds out the current time in 100th’s of a second.

GET_PARAMETER_VALUE
Function on page 79-8

Gets the value of specified init.ora parameter.

NAME_RESOLVE Procedure on
page 79-9

Resolves the given name.

NAME_TOKENIZE Procedure on
page 79-11

Calls the parser to parse the given name.

COMMA_TO_TABLE Procedure
on page 79-12

Converts a comma-delimited list of names into a
PL/SQL table of names.

TABLE_TO_COMMA Procedure
on page 79-12

Converts a PL/SQL table of names into a
comma-delimited list of names.

PORT_STRING Function on
page 79-13

Returns a string that uniquely identifies the version of
Oracle and the operating system.

DB_VERSION Procedure on
page 79-13

Returns version information for the database.

MAKE_DATA_BLOCK_
ADDRESS Function on page 79-14

Creates a data block address given a file number and a
block number.

DATA_BLOCK_ADDRESS_FILE
Function on page 79-15

Gets the file number part of a data block address.

DATA_BLOCK_ADDRESS_
BLOCK Function on page 79-15

Gets the block number part of a data block address.

GET_HASH_VALUE Function on
page 79-16

Computes a hash value for the given string.

ANALYZE_PART_OBJECT
Procedure on page 79-17

Table 79–1 DBMS_UTILITY Subprograms

Subprogram Description
DBMS_UTILITY 79-3

COMPILE_SCHEMA Procedure
COMPILE_SCHEMA Procedure
This procedure compiles all procedures, functions, packages, and triggers in the
specified schema. After calling this procedure, you should select from view ALL_
OBJECTS for items with status of INVALID to see if all objects were successfully
compiled.

To see the errors associated with INVALID objects, you may use the Enterprise
Manager command:

SHOW ERRORS <type> <schema>.<name>

Syntax
DBMS_UTILITY.COMPILE_SCHEMA (

schema VARCHAR2);

Parameters

Exceptions

EXEC_DDL_STATEMENT
Procedure on page 79-18

Executes the DDL statement in parse_string .

CURRENT_INSTANCE Function
on page 79-18

Returns the current connected instance number.

ACTIVE_INSTANCES Procedure
on page 79-19

Table 79–2 COMPILE_SCHEMA Procedure Parameters

Parameter Description

schema Name of the schema.

Table 79–3 COMPILE_SCHEMA Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this schema.

Table 79–1 DBMS_UTILITY Subprograms

Subprogram Description
79-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
ANALYZE_SCHEMA Procedure
This procedure runs the ANALYZE command on all the tables, clusters, and indexes
in a schema. Use this procedure to collect nonoptimizer statistics. For optimizer
statistics, use the DBMS_STATS.GATHER_SCHEMA_STATS procedure.

Syntax
DBMS_UTILITY.ANALYZE_SCHEMA (

schema VARCHAR2,
method VARCHAR2,
estimate_rows NUMBER DEFAULT NULL,
estimate_percent NUMBER DEFAULT NULL,
method_opt VARCHAR2 DEFAULT NULL);

Parameters

Exceptions

Table 79–4 ANALYZE_SCHEMA Procedure Parameters

Parameter Description

schema Name of the schema.

method One of ESTIMATE, COMPUTE or DELETE.

If ESTIMATE, then either estimate_rows or estimate_
percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.

If estimate_rows is specified, then ignore this parameter.

method_opt Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Table 79–5 ANALYZE_SCHEMA Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this schema.
DBMS_UTILITY 79-5

ANALYZE_DATABASE Procedure
ANALYZE_DATABASE Procedure
This procedure runs the ANALYZE command on all the tables, clusters, and indexes
in a database. Use this procedure to collect nonoptimizer statistics. For optimizer
statistics, use the DBMS_STATS.GATHER_DATABASE_STATSprocedure.

Syntax
DBMS_UTILITY.ANALYZE_DATABASE (

method VARCHAR2,
estimate_rows NUMBER DEFAULT NULL,
estimate_percent NUMBER DEFAULT NULL,
method_opt VARCHAR2 DEFAULT NULL);

Parameters

Exceptions

Table 79–6 ANALYZE_DATABASE Procedure Parameters

Parameter Description

method One of ESTIMATE, COMPUTE or DELETE.

If ESTIMATE, then either estimate_rows or estimate_
percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.

If estimate_rows is specified, then ignore this parameter.

method_opt Method options of the following format:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

Table 79–7 ANALYZE_DATABASE Procedure Exceptions

Exception Description

ORA-20000 Insufficient privileges for some object in this database.
79-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
FORMAT_ERROR_STACK Function
This function formats the current error stack. This can be used in exception handlers
to look at the full error stack.

Syntax
DBMS_UTILITY.FORMAT_ERROR_STACK

RETURN VARCHAR2;

Returns
This returns the error stack, up to 2000 bytes.

FORMAT_CALL_STACK Function
This function formats the current call stack. This can be used on any stored
procedure or trigger to access the call stack. This can be useful for debugging.

Syntax
DBMS_UTILITY.FORMAT_CALL_STACK

RETURN VARCHAR2;

Pragmas
pragma restrict_references(format_call_stack,WNDS);

Returns
This returns the call stack, up to 2000 bytes.

IS_CLUSTER_DATABASE Function
This function finds out if this database is running in cluster database mode.

Syntax
DBMS_UTILITY.IS_CLUSTER_DATABASE

RETURN BOOLEAN;

Returns
This function returns TRUE if this instance was started in cluster database mode;
FALSE otherwise.
DBMS_UTILITY 79-7

GET_TIME Function
GET_TIME Function
This function finds out the current time in 100th’s of a second. It is primarily useful
for determining elapsed time.

Syntax
DBMS_UTILITY.GET_TIME

RETURN NUMBER;

Returns
Time is the number of 100th’s of a second from some arbitrary epoch.

GET_PARAMETER_VALUE Function
This function gets the value of specified init.ora parameter.

Syntax
DBMS_UTILITY.GET_PARAMETER_VALUE (

parnam IN VARCHAR2,
intval IN OUT BINARY_INTEGER,
strval IN OUT VARCHAR2)

RETURN BINARY_INTEGER;

Parameters

Table 79–8 GET_PARAMETER_VALUE Function Parameters

Parameter Description

parnam Parameter name.

intval Value of an integer parameter or the value length of a string
parameter.

strval Value of a string parameter.
79-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
Returns

Example
DECLARE

parnam VARCHAR2(256);
intval BINARY_INTEGER;
strval VARCHAR2(256);
partyp BINARY_INTEGER;

BEGIN
partyp := dbms_utility.get_parameter_value(’max_dump_file_size’,

intval, strval);
dbms_output.put(’parameter value is: ’);
IF partyp = 1 THEN

dbms_output.put_line(strval);
ELSE

dbms_output.put_line(intval);
END IF;
IF partyp = 1 THEN

dbms_output.put(’parameter value length is: ’);
dbms_output.put_line(intval);

END IF;
dbms_output.put(’parameter type is: ’);
IF partyp = 1 THEN

dbms_output.put_line(’string’);
ELSE

dbms_output.put_line(’integer’);
END IF;

END;

NAME_RESOLVE Procedure
This procedure resolves the given name, including synonym translation and
authorization checking as necessary.

Table 79–9 GET_PARAMETER_VALUE Function Returns

Return Description

partyp Parameter type:

0 if parameter is an integer/boolean parameter

1 if parameter is a string/file parameter
DBMS_UTILITY 79-9

NAME_RESOLVE Procedure
Syntax
DBMS_UTILITY.NAME_RESOLVE (

name IN VARCHAR2,
context IN NUMBER,
schema OUT VARCHAR2,
part1 OUT VARCHAR2,
part2 OUT VARCHAR2,
dblink OUT VARCHAR2,
part1_type OUT NUMBER,
object_number OUT NUMBER);

Parameters

Table 79–10 NAME_RESOLVE Procedure Parameters

Parameter Description

name Name of the object.

This can be of the form [[a.]b.]c[@d], where a, b, c are SQL identifier
and d is a dblink. No syntax checking is performed on the dblink. If
a dblink is specified, or if the name resolves to something with a
dblink, then object is not resolved, but the schema , part1 , part2
and dblink OUT parameters are filled in.

a, b and c may be delimited identifiers, and may contain NLS
characters (single and multibyte).

context Must be an integer between 0 and 8.

schema Schema of the object: c. If no schema is specified in name, then the
schema is determined by resolving the name.

part1 First part of the name. The type of this name is specified part1_
type (synonym, procedure or package).

part2 If this is non-NULL, then this is a procedure name within the
package indicated by part1 .

dblink If this is non-NULL, then a database link was either specified as part
of name or name was a synonym which resolved to something with
a database link. In this later case, part1_type indicates a
synonym.
79-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
Exceptions
All errors are handled by raising exceptions. A wide variety of exceptions are
possible, based on the various syntax error that are possible when specifying object
names.

NAME_TOKENIZE Procedure
This procedure calls the parser to parse the given name as "a [. b [. c]][@ dblink]". It
strips double quotes, or converts to uppercase if there are no quotes. It ignores
comments of all sorts, and does no semantic analysis. Missing values are left as
NULL.

Syntax
DBMS_UTILITY.NAME_TOKENIZE (

name IN VARCHAR2,
a OUT VARCHAR2,
b OUT VARCHAR2,
c OUT VARCHAR2,
dblink OUT VARCHAR2,
nextpos OUT BINARY_INTEGER);

Parameters
For each of a, b, c , dblink , tell where the following token starts in anext , bnext ,
cnext , dnext respectively.

part1_type Type of part1 is:

5 - synonym

7 - procedure (top level)

8 - function (top level)

9 - package

If a synonym, then it means that name is a synonym that translates
to something with a database link. In this case, if further name
translation is desired, then you must call the DBMS_
UTILITY .NAME_RESOLVE procedure on this remote node.

object_number Object identifier

Table 79–10 NAME_RESOLVE Procedure Parameters

Parameter Description
DBMS_UTILITY 79-11

COMMA_TO_TABLE Procedure
COMMA_TO_TABLE Procedure
This procedure converts a comma-delimited list of names into a PL/SQL table of
names. This uses NAME_TOKENIZE to figure out what are names and what are
commas.

Syntax
DBMS_UTILITY.COMMA_TO_TABLE (

list IN VARCHAR2,
tablen OUT BINARY_INTEGER,
tab OUT UNCL_ARRAY);

Parameters

Returns
A PL/SQL table is returned, with values 1..n and n+1 is null .

Usage Notes
The list must be a non-empty comma-delimited list: Anything other than a
comma-delimited list is rejected. Commas inside double quotes do not count.

Entries in the comma-delimited list cannot include multibyte characters such as
hyphens (-).

The values in tab are cut from the original list, with no transformations.

TABLE_TO_COMMA Procedure
This procedure converts a PL/SQL table of names into a comma-delimited list of
names. This takes a PL/SQL table, 1..n , terminated with n+1 null .

Syntax
DBMS_UTILITY.TABLE_TO_COMMA (

Table 79–11 COMMA_TO_TABLE Procedure Parameters

Parameter Description

list Comma separated list of tables.

tablen Number of tables in the PL/SQL table.

tab PL/SQL table which contains list of table names.
79-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
tab IN UNCL_ARRAY,
tablen OUT BINARY_INTEGER,
list OUT VARCHAR2);

Parameters

Returns
Returns a comma-delimited list and the number of elements found in the table.

PORT_STRING Function
This function returns a string that identifies the operating system and the TWO TASK
PROTOCOL version of the database. For example, "VAX/VMX-7.1.0.0"

The maximum length is port-specific.

Syntax
DBMS_UTILITY.PORT_STRING

RETURN VARCHAR2;

Pragmas
pragma restrict_references(port_string, WNDS, RNDS, WNPS, RNPS);

DB_VERSION Procedure
This procedure returns version information for the database.

Syntax
DBMS_UTILITY.DB_VERSION (

version OUT VARCHAR2,
compatibility OUT VARCHAR2);

Table 79–12 TABLE_TO_COMMA Procedure Parameters

Parameter Description

tab PL/SQL table which contains list of table names.

tablen Number of tables in the PL/SQL table.

list Comma separated list of tables.
DBMS_UTILITY 79-13

MAKE_DATA_BLOCK_ADDRESS Function
Parameters

MAKE_DATA_BLOCK_ADDRESS Function
This function creates a data block address given a file number and a block number.
A data block address is the internal structure used to identify a block in the
database. This function is useful when accessing certain fixed tables that contain
data block addresses.

Syntax
DBMS_UTILITY.MAKE_DATA_BLOCK_ADDRESS (

file NUMBER,
block NUMBER)

RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references(make_data_block_address, WNDS, RNDS, WNPS, RNPS);

Table 79–13 DB_VERSION Procedure Parameters

Parameter Description

version A string which represents the internal software version of the
database (for example, 7.1.0.0.0).

The length of this string is variable and is determined by the
database version.

compatibility The compatibility setting of the database determined by the
"compatible" init .ora parameter.

If the parameter is not specified in the init.ora file, then
NULL is returned.

Table 79–14 MAKE_DATA_BLOCK_ADDRESS Function Parameters

Parameter Description

file File that contains the block.

block Offset of the block within the file in terms of block increments.
79-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
Returns

DATA_BLOCK_ADDRESS_FILE Function
This function gets the file number part of a data block address.

Syntax
DBMS_UTILITY.DATA_BLOCK_ADDRESS_FILE (

dba NUMBER)
RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references(data_block_address_file, WNDS, RNDS, WNPS, RNPS);

Returns

DATA_BLOCK_ADDRESS_BLOCK Function
This function gets the block number part of a data block address.

Syntax
DBMS_UTILITY.DATA_BLOCK_ADDRESS_BLOCK (

dba NUMBER)

Table 79–15 MAKE_DATA_BLOCK_ADDRESS Function Returns

Returns Description

dba Data block address.

Table 79–16 DATA_BLOCK_ADDRESS_FILE Function Parameters

Parameter Description

dba Data block address.

Table 79–17 DATA_BLOCK_ADDRESS_FILE Function Returns

Returns Description

file File that contains the block.
DBMS_UTILITY 79-15

GET_HASH_VALUE Function
RETURN NUMBER;

Parameters

Pragmas
pragma restrict_references(data_block_address_block, WNDS, RNDS, WNPS, RNPS);

Returns

GET_HASH_VALUE Function
This function computes a hash value for the given string.

Syntax
DBMS_UTILITY.GET_HASH_VALUE (

name VARCHAR2,
base NUMBER,
hash_size NUMBER)

RETURN NUMBER;

Parameters

Table 79–18 DATA_BLOCK_ADDRESS_BLOCK Function Parameters

Parameter Description

dba Data block address.

Table 79–19 DATA_BLOCK_ADDRESS_BLOCK Function Returns

Returns Description

block Block offset of the block.

Table 79–20 GET_HASH_VALUE Function Parameters

Parameter Description

name String to be hashed.

base Base value for the returned hash value to start at.

hash_size Desired size of the hash table.
79-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
Pragmas
pragma restrict_references(get_hash_value, WNDS, RNDS, WNPS, RNPS);

Returns
A hash value based on the input string. For example, to get a hash value on a string
where the hash value should be between 1000 and 3047, use 1000 as the base value
and 2048 as the hash_size value. Using a power of 2 for the hash_size
parameter works best.

ANALYZE_PART_OBJECT Procedure
This procedure is equivalent to SQL:

"ANALYZE TABLE|INDEX [<schema>.]<object_name> PARTITION <pname> [<command_type>]
[<command_opt>] [<sample_clause>]

For each partition of the object, run in parallel using job queues.

Syntax
DBMS_UTILITY.ANALYZE_PART_OBJECT (

schema IN VARCHAR2 DEFAULT NULL,
object_name IN VARCHAR2 DEFAULT NULL,
object_type IN CHAR DEFAULT ’T’,
command_type IN CHAR DEFAULT ’E’,
command_opt IN VARCHAR2 DEFAULT NULL,
sample_clause IN VARCHAR2 DEFAULT ’SAMPLE 5 PERCENT’);

Parameters

Table 79–21 ANALYZE_PART_OBJECT Procedure Parameters

Parameter Description

schema Schema of the object_name .

object_name Name of object to be analyzed, must be partitioned.

object_type Type of object, must be T (table) or I (index).
DBMS_UTILITY 79-17

EXEC_DDL_STATEMENT Procedure
EXEC_DDL_STATEMENT Procedure
This procedure executes the DDL statement in parse_string .

Syntax
DBMS_UTILITY.EXEC_DDL_STATEMENT (

parse_string IN VARCHAR2);

Parameters

CURRENT_INSTANCE Function
This function returns the current connected instance number. It returns NULL when
connected instance is down.

Syntax
DBMS_UTILITY.CURRENT_INSTANCE

RETURN NUMBER;

command_type Must be one of the following:

C (compute statistics)

E (estimate statistics)

D (delete statistics)

V (validate structure)

command_opt Other options for the command type.

For C, E it can be FOR table, FOR all LOCAL indexes, FOR all columns
or combination of some of the ’for’ options of analyze statistics
(table). For V, it can be CASCADE when object_type is T.

sample_clause The sample clause to use when command_type is ’E’.

Table 79–22 EXEC_DDL_STATEMENT Procedure Parameters

Parameter Description

parse_string DDL statement to be executed.

Table 79–21 ANALYZE_PART_OBJECT Procedure Parameters

Parameter Description
79-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_UTILITY Subprograms
ACTIVE_INSTANCES Procedure

Syntax
DBMS_UTILITY.ACTIVE_INSTANCE (

instance_table OUT INSTANCE_TABLE,
instance_count OUT NUMBER);

Parameters

Table 79–23 ACTIVE_INSTANCES Procedure Parameters

Procedure Description

instance_table Contains a list of the active instance numbers and names.
When no instance is up, the list is empty.

instance_count Number of active instances.
DBMS_UTILITY 79-19

ACTIVE_INSTANCES Procedure
79-20 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
80

DBMS_WM

This chapter describes how to use the DBMS_WM package, the programming
interface to Oracle Database Workspace Manager (often referred to as Workspace
Manager) to work with long transactions.

Workspace management refers to the ability of the database to hold different
versions of the same record (that is, row) in one or more workspaces. Users of the
database can then change these versions independently.

This chapter discusses the following topics:

� Summary of DBMS_WM Subprograms

See Also: Oracle9i Application Developer’s Guide - Workspace
Manager for detailed conceptual and usage information about
Workspace Manager. That manual also includes the reference
information found in this chapter.
S_WM 80-1

Summary of DBMS_WM Subprograms
Summary of DBMS_WM Subprograms

Table 80–1 DBMS_WM Subprograms

Subprogram Description

AlterSavepoint Procedure
on page 80-6

Modifies the description of a savepoint.

AlterWorkspace Procedure
on page 80-7

Modifies the description of a workspace.

BeginDDL Procedure on
page 80-8

Starts a DDL (data definition language) session for a specified
table.

BeginResolve Procedure on
page 80-9

Starts a conflict resolution session.

CommitDDL Procedure on
page 80-10

Commits DDL (data definition language) changes made
during a DDL session for a specified table, and ends the DDL
session.

CommitResolve Procedure
on page 80-12

Ends a conflict resolution session and saves (makes
permanent) any changes in the workspace since BeginResolve
was executed.

CompressWorkspace
Procedure on page 80-13

Deletes removable savepoints in a workspace and minimizes
the Workspace Manager metadata structures for the
workspace.

CompressWorkspaceTree
Procedure on page 80-16

Deletes removable savepoints in a workspace and all its
descendant workspaces. It also minimizes the Workspace
Manager metadata structures for the affected workspaces, and
eliminates any redundant data that might arise from the
deletion of the savepoints.

CopyForUpdate Procedure
on page 80-17

Allows LOB columns (BLOB, CLOB, or NCLOB) in
version-enabled tables to be modified.

CreateSavepoint Procedure
on page 80-19

Creates a savepoint for the current version.

CreateWorkspace Procedure
on page 80-20

Creates a new workspace in the database.

DeleteSavepoint Procedure
on page 80-22

Deletes a savepoint and associated rows in version-enabled
tables.

DisableVersioning
Procedure on page 80-24

Deletes all support structures that were created to enable the
table to support versioned rows.

DropReplicationSupport
Procedure on page 80-26

Deletes replication support objects that had been created by
the GenerateReplicationSupport procedure.
80-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
EnableVersioning Procedure
on page 80-27

Version-enables a table, creating the necessary structures to
enable the table to support multiple versions of rows.

FreezeWorkspace Procedure
on page 80-30

Restricts access to a workspace and the ability of users to
make changes in the workspace.

GenerateReplicationSupport
Procedure on page 80-32

Creates necessary structures for multimaster replication of
Workspace Manager objects, and starts the master activity for
the newly created master group.

GetConflictWorkspace
Function on page 80-34

Returns the name of the workspace on which the session has
performed the SetConflictWorkspace procedure.

GetDiffVersions Function on
page 80-35

Returns the names of the (workspace, savepoint) pairs on
which the session has performed the SetDiffVersions
operation.

GetLockMode Function on
page 80-35

Returns the locking mode for the current session, which
determines whether or not access is enabled to versioned
rows and corresponding rows in the previous version.

GetMultiWorkspaces
Function on page 80-36

Returns the names of workspaces visible in the
multiworkspace views for version-enabled tables.

GetOpContext Function on
page 80-37

Returns the context of the current operation for the current
session.

GetPrivs Function on
page 80-38

Returns a comma-delimited list of all privileges that the
current user has for the specified workspace.

GetSessionInfo Procedure
on page 80-38

Retrieves information about the current workspace and
session context.

GetWorkspace Function on
page 80-40

Returns the current workspace for the session.

GotoDate Procedure on
page 80-41

Goes to a point at or near the specified date and time in the
current workspace.

GotoSavepoint Procedure
on page 80-42

Goes to the specified savepoint in the current workspace.

GotoWorkspace Procedure
on page 80-43

Moves the current session to the specified workspace.

GrantSystemPriv Procedure
on page 80-44

Grants system-level privileges (not restricted to a particular
workspace) to users and roles. The grant_option parameter
enables the grantee to then grant the specified privileges to
other users and roles.

Table 80–1 DBMS_WM Subprograms (Cont.)

Subprogram Description
DBMS_WM 80-3

Summary of DBMS_WM Subprograms
GrantWorkspacePriv
Procedure on page 80-46

Grants workspace-level privileges to users and roles. The
grant_option parameter enables the grantee to then grant
the specified privileges to other users and roles.

IsWorkspaceOccupied
Function on page 80-48

Checks whether or not a workspace has any active sessions.

LockRows Procedure on
page 80-49

Controls access to versioned rows in a specified table and to
corresponding rows in the parent workspace.

MergeTable Procedure on
page 80-50

Applies changes to a table (all rows or as specified in the
WHERE clause) in a workspace to its parent workspace.

MergeWorkspace Procedure
on page 80-52

Applies all changes in a workspace to its parent workspace,
and optionally removes the workspace.

RecoverAllMigratingTables
Procedure on page 80-54

Attempts to complete the migration process on all tables that
were left in an inconsistent state after the Workspace Manager
migration procedure failed.

RecoverMigratingTable
Procedure on page 80-55

Attempts to complete the migration process on a table that
was left in an inconsistent state after the Workspace Manager
migration procedure failed.

RefreshTable Procedure on
page 80-57

Applies to a workspace all changes made to a table (all rows
or as specified in the WHERE clause) in its parent workspace.

RefreshWorkspace
Procedure on page 80-58

Applies to a workspace all changes made in its parent
workspace.

RelocateWriterSite
Procedure on page 80-59

Makes one of the nonwriter sites the new writer site in a
Workspace Manager replication environment. (The old writer
site becomes one of the nonwriter sites.)

RemoveWorkspace
Procedure on page 80-61

Discards all row versions associated with a workspace and
deletes the workspace.

RemoveWorkspaceTree
Procedure on page 80-62

Discards all row versions associated with a workspace and its
descendant workspaces, and deletes the affected workspaces.

ResolveConflicts Procedure
on page 80-63

Resolves conflicts between workspaces.

RevokeSystemPriv
Procedure on page 80-65

Revokes (removes) system-level privileges from users and
roles.

RevokeWorkspacePriv
Procedure on page 80-67

Revokes (removes) workspace-level privileges from users and
roles for a specified workspace.

Table 80–1 DBMS_WM Subprograms (Cont.)

Subprogram Description
80-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
RollbackDDL Procedure on
page 80-68

Rolls back (cancels) DDL changes made during a DDL session
for a specified table, and ends the DDL session.

RollbackResolve Procedure
on page 80-69

Quits a conflict resolution session and discards all changes in
the workspace since BeginResolve was executed.

RollbackTable Procedure on
page 80-70

Discards all changes made in the workspace to a specified
table (all rows or as specified in the WHERE clause).

RollbackToSP Procedure on
page 80-72

Discards all changes made in a workspace to version-enabled
tables since a specified savepoint.

RollbackWorkspace
Procedure on page 80-73

Discards all changes made in the workspace to
version-enabled tables.

SetConflictWorkspace
Procedure on page 80-74

Determine whether or not conflicts exist between a workspace
and its parent.

SetDiffVersions Procedure
on page 80-75

Finds differences in values in version-enabled tables for two
savepoints and their common ancestor (base). It modifies the
contents of the differences views that describe these
differences.

SetLockingOFF Procedure
on page 80-77

Disables Workspace Manager locking for the current session.

SetLockingON Procedure on
page 80-78

Enables Workspace Manager locking for the current session.

SetMultiWorkspaces
Procedure on page 80-79

Makes the specified workspace or workspaces visible in the
multiworkspace views for version-enabled tables.

SetWoOverwriteOFF
Procedure on page 80-80

Disables the VIEW_WO_OVERWRITE history option that had
been enabled by the EnableVersioning or
SetWoOverwriteON procedure, changing the option to
VIEW_W_OVERWRITE (with overwrite).

SetWoOverwriteON
Procedure on page 80-81

Enables the VIEW_WO_OVERWRITE history option that had
been disabled by the SetWoOverwriteOFF procedure.

SetWorkspaceLockModeOF
F Procedure on page 80-82

Disables Workspace Manager locking for the specified
workspace.

SetWorkspaceLockModeON
Procedure on page 80-83

Enables Workspace Manager locking for the specified
workspace.

SynchronizeSite Procedure
on page 80-85

Brings the local site (the old writer site) up to date in the
Workspace Manager replication environment after the writer
site was moved using the RelocateWriterSite procedure.

Table 80–1 DBMS_WM Subprograms (Cont.)

Subprogram Description
DBMS_WM 80-5

AlterSavepoint Procedure
AlterSavepoint Procedure
Modifies the description of a savepoint.

Syntax
DBMS_WM.AlterSavepoint(

workspace IN VARCHAR2,
sp_name IN VARCHAR2,
sp_description IN VARCHAR2);

Parameters

UnfreezeWorkspace
Procedure on page 80-86

Enables access and changes to a workspace, reversing the
effect of FreezeWorkspace.

UnlockRows Procedure on
page 80-87

Enables access to versioned rows in a specified table and to
corresponding rows in the parent workspace.

Note: Most Workspace Manager subprograms are procedures, but
a few are functions. Most functions have names starting with Get
(such as the GetConflictWorkspace Function and GetWorkspace
Function).

In this chapter, the term procedures is often used to refer generally to
both procedures and functions.

Table 80–2 AlterSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which the savepoint was created. The name is
case sensitive.

sp_name Name of the savepoint. The name is case sensitive.

sp_description Description of the savepoint.

Table 80–1 DBMS_WM Subprograms (Cont.)

Subprogram Description
80-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
To see the current description of the savepoint, examine the DESCRIPTION column
value for the savepoint in the ALL_WORKSPACE_SAVEPOINTS metadata view,
which is described in Oracle9i Application Developer’s Guide - Workspace Manager.

An exception is raised if the user is not the workspace owner or savepoint owner or
does not have the WM_ADMIN_ROLE role.

Examples
The following example modifies the description of savepoint SP1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.AlterSavepoint (‘NEWWORKSPACE’, ’SP1’, ’First set of changes for
scenario’);

AlterWorkspace Procedure
Modifies the description of a workspace.

Syntax
DBMS_WM.AlterWorkspace(

workspace IN VARCHAR2,
workspace_description IN VARCHAR2);

Parameters

Usage Notes
To see the current description of the workspace, examine the DESCRIPTION column
value for the savepoint in the ALL_WORKSPACES metadata view, which is described
in Oracle9i Application Developer’s Guide - Workspace Manager.

An exception is raised if the user is not the workspace owner or does not have the
WM_ADMIN_ROLE role.

Table 80–3 AlterWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

workspace_description Description of the workspace.
DBMS_WM 80-7

BeginDDL Procedure
Examples
The following example modifies the description of the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.AlterWorkspace (‘NEWWORKSPACE’, ’Testing proposed scenario B’);

BeginDDL Procedure
Starts a DDL (data definition language) session for a specified table.

Syntax
DBMS_WM.BeginDDL(

table_name IN VARCHAR2);

Parameters

Usage Notes
This procedure starts a DDL session, and it creates a special table whose name is the
same as table_name but with _LTS added to the table name. After calling this
procedure, you can perform one or more DDL operations on the table or any
indexes or triggers that are based on the table, and then call either the CommitDDL
Procedure or RollbackDDL Procedure.

In addition to creating the special <table-name>_LTS table, the procedure creates
other objects:

� The <table-name>_LTS table has the same triggers, columns, and indexes as the
<table-name> table.

� For each parent table with which the <table-name> table has a referential
integrity constraint, the same constraint is defined for the <table-name>_LTS
table.

� Triggers, columns, and referential integrity constraints on the <table-name>_LTS
table have the same names as the corresponding ones on the <table-name> table.

� For each index on the <table-name> table, the corresponding index on the
<table-name>_LTS table has a name in the form <index-name>_LTS.

Table 80–4 BeginDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.
80-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� The primary key constraint on the <table-name>_LTS table has a name in the
form <primary-key>_LTS.

For detailed information about performing DDL operations related to
version-enabled tables and about DDL operations on version-enabled tables in an
Oracle replication environment, see Oracle9i Application Developer’s Guide - Workspace
Manager.

An exception is raised if one or more of the following apply:

� table_name does not exist or is not version-enabled.

� The user does not have the CREATE TABLE privilege.

� An open DDL session exists for table_name . (That is, the BeginDDL
procedure has already been called specifying this table, and the CommitDDL
Procedure or RollbackDDL Procedure has not been called specifying this table.)

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by committing the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.CommitDDL('COLA_MARKETING_BUDGET');

BeginResolve Procedure
Starts a conflict resolution session.

Syntax
DBMS_WM.BeginResolve(

workspace IN VARCHAR2);

Parameters

Table 80–5 BeginResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
DBMS_WM 80-9

CommitDDL Procedure
Usage Notes
This procedure starts a conflict resolution session. While this procedure is
executing, the workspace is frozen in 1WRITER mode, as explained in Oracle9i
Application Developer’s Guide - Workspace Manager.

After calling this procedure, you can execute the ResolveConflicts Procedure as
needed for various tables that have conflicts, and then call either the
CommitResolve Procedure or RollbackResolve Procedure. For more information
about conflict resolution, see Oracle9i Application Developer’s Guide - Workspace
Manager.

An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace .

� The user executing the BeginResolve Procedure does not have the privilege to
access workspace and its parent workspace.

Examples
The following example starts a conflict resolution session in Workspace1 .

EXECUTE DBMS_WM.BeginResolve (’Workspace1’);

CommitDDL Procedure
Commits DDL (data definition language) changes made during a DDL session for a
specified table, and ends the DDL session.

Syntax
DBMS_WM.CommitDDL(

table_name IN VARCHAR2
[, ignore_last_error IN BOOLEAN DEFAULT FALSE]);

Parameters

Table 80–6 CommitDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.
80-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
This procedure commits changes that were made to a version-enabled table and to
any indexes, triggers, and referential integrity constraints based on the
version-enabled table during a DDL session. It also deletes the special <table-name>_
LTS table that had been created by the BeginDDL Procedure.

For detailed information about performing DDL operations related to
version-enabled tables and about DDL operations on version-enabled tables in an
Oracle replication environment, see Oracle9i Application Developer’s Guide - Workspace
Manager.

If a call to the CommitDDL procedure fails, the table is left in an inconsistent state.
If this occurs, you should try to fix the cause of the error. Examine the USER_WM_
VT_ERRORS and ALL_WM_VT_ERRORS metadata views to see the SQL statement
and error message. For example, the CommitDDL procedure might have failed
because the tablespace was not large enough to add a column. Fix the cause of the
error, and then call the CommitDDL procedure again with the default ignore_
last_error parameter value of FALSE. However, if the call still fails and you
cannot fix the cause of the error, and if you are sure that it is safe and appropriate to
ignore this error, then you have the option to ignore the error by calling the
CommitDDL procedure with the ignore_last_error parameter value of TRUE.
Note that you are responsible for ensuring that it is safe and appropriate to ignore
the error.

An exception is raised if one or more of the following apply:

� table_name does not exist or is not version-enabled.

� The user does not have the CREATE TABLE privilege.

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the previous call to the
CommitDDL procedure. Information about the last error is stored in the
USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata views, which are
described in Oracle9i Application Developer’s Guide - Workspace Manager. (See
the Usage Notes for more information.)

FALSE (the default) does not ignore the last error, if any, that occurred during
the previous call to the CommitDDL procedure.

Table 80–6 CommitDDL Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-11

CommitResolve Procedure
� An open DDL session does not exist for table_name . (That is, the BeginDDL
Procedure has not been called specifying this table, or the CommitDDL
Procedure or RollbackDDL Procedure was already called specifying this table.)

Some invalid DDL operations also cause an exception when CommitDDL
procedure is called. (See Oracle9i Application Developer’s Guide - Workspace Manager
for information about DDL operations that are supported.)

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by committing the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.CommitDDL('COLA_MARKETING_BUDGET');

CommitResolve Procedure
Ends a conflict resolution session and saves (makes permanent) any changes in the
workspace since the BeginResolve Procedure was executed.

Syntax
DBMS_WM.CommitResolve(

workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure ends the current conflict resolution session (started by the
BeginResolve Procedure), and saves all changes in the workspace since the start of
the conflict resolution session. Contrast this procedure with the RollbackResolve
Procedure, which discards all changes.

For more information about conflict resolution, see Oracle9i Application Developer’s
Guide - Workspace Manager.

Table 80–7 CommitResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace .

� The procedure was called by a user that does not have the WM_ADMIN_ROLE
role or that did not execute the BeginResolve Procedure on workspace .

Examples
The following example ends the conflict resolution session in Workspace1 and
saves all changes.

EXECUTE DBMS_WM.CommitResolve (’Workspace1’);

CompressWorkspace Procedure
Deletes removable savepoints in a workspace and minimizes the Workspace
Manager metadata structures for the workspace. (Removable savepoints are explained
in Oracle9i Application Developer’s Guide - Workspace Manager.)

Syntax
DBMS_WM.CompressWorkspace(

workspace IN VARCHAR2,
compress_view_wo_overwrite IN BOOLEAN
[, firstSP IN VARCHAR2 DEFAULT NULL
[, secondSP IN VARCHAR2 DEFAULT NULL]]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

or

DBMS_WM.CompressWorkspace(
workspace IN VARCHAR2
[, firstSP IN VARCHAR2 DEFAULT NULL
[, secondSP IN VARCHAR2 DEFAULT NULL]]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–8 CompressWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
DBMS_WM 80-13

CompressWorkspace Procedure
Usage Notes
You can compress a workspace when the explicit savepoints (all or some of them) in
the workspace are no longer needed. The compression operation is useful for the
following reasons:

compress_
view_wo_
overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information between the affected savepoints to be deleted
even if VIEW_WO_OVERWRITE was specified when versioning was enabled.

FALSE causes history information (between the affected savepoints) for a table
not to be deleted if VIEW_WO_OVERWRITE was specified when versioning was
enabled. (If VIEW_WO_OVERWRITE was not specified for a table, history
information for the table is deleted regardless of the parameter value.) FALSE
is assumed if the procedure format without this parameter is used.

firstSP First savepoint. Savepoint names are case sensitive.

If only workspace and firstSP are specified, all removable savepoints
between workspace creation and firstSP (but not including firstSP) are
deleted.

If workspace , firstSP , and secondSP are specified, all removable
savepoints from firstSP (and including firstSP if it is a removable
savepoint) to secondSP (but not including secondSP) are deleted.

If only workspace is specified (no savepoints), all removable savepoints in
the workspace are deleted.

secondSP Second savepoint. All removable savepoints from firstSP (and including
firstSP if it is a removable savepoint) to secondSP (but not including
secondSP) are deleted.

However, if secondSP is LATEST, all removable savepoints from firstSP
(and including firstSP if it is a removable savepoint) to the end of the
workspace are deleted.

Savepoint names are case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.

Table 80–8 CompressWorkspace Procedure Parameters (Cont.)

Parameter Description
80-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� You can reuse savepoint names after they are deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

A workspace cannot be compressed if there are any sessions in the workspace
(except for the LIVE workspace), or if any user has executed a GotoDate Procedure
operation or a GotoSavepoint Procedure operation specifying a savepoint in the
workspace.

If the procedure format without the compress_view_wo_overwrite parameter
is used, a value of FALSE is assumed for the parameter.

For information about VIEW_WO_OVERWRITE and other history options, see the
information about the EnableVersioning Procedure.

An exception is raised if the user does not have the privilege to access and merge
changes in workspace .

To compress a workspace and all its descendant workspaces, use the
CompressWorkspaceTree Procedure.

Examples
The following example compresses NEWWORKSPACE.

EXECUTE DBMS_WM.CompressWorkspace (‘NEWWORKSPACE’);

The following example compresses NEWWORKSPACE, deleting all explicit savepoints
between the creation of the workspace and the savepoint SP1.

EXECUTE DBMS_WM.CompressWorkspace (‘NEWWORKSPACE’, ’SP1’);

The following example compresses NEWWORKSPACE, deleting the explicit savepoint
SP1 and all explicit savepoints up to but not including SP2.

EXECUTE DBMS_WM.CompressWorkspace (‘NEWWORKSPACE’, ’SP1’, ’SP2’);

The following example compresses B_focus_1 , accepts the default values for the
firstSP and secondSP parameters (that is, deletes all explicit savepoints), and
specifies FALSE for the auto_commit parameter.

EXECUTE DBMS_WM.CompressWorkspace ('B_focus_1', auto_commit => FALSE);
DBMS_WM 80-15

CompressWorkspaceTree Procedure
CompressWorkspaceTree Procedure
Deletes removable savepoints in a workspace and all its descendant workspaces.
(Removable savepoints are explained in Oracle9i Application Developer’s Guide -
Workspace Manager.) It also minimizes the Workspace Manager metadata structures
for the affected workspaces, and eliminates any redundant data that might arise
from the deletion of the savepoints.

Syntax
DBMS_WM.CompressWorkspaceTree(

workspace IN VARCHAR2
[, compress_view_wo_overwrite IN BOOLEAN DEFAULT FALSE]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
You can compress a workspace and all its descendant workspaces when the explicit
savepoints in the affected workspaces are no longer needed (for example, if you will
not need to go to or roll back to any of these savepoints). For an explanation of

Table 80–9 CompressWorkspaceTree Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

compress_
view_wo_
overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information to be deleted even if VIEW_WO_OVERWRITE
was specified when versioning was enabled.

FALSE (the default) causes history information for a table not to be deleted if
VIEW_WO_OVERWRITE was specified when versioning was enabled. (If VIEW_
WO_OVERWRITE was not specified for a table, history information for the table
is deleted regardless of the parameter value.)

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
80-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
database workspace hierarchy, see Oracle9i Application Developer’s Guide - Workspace
Manager.

The compression operation is useful for the following reasons:

� You can reuse savepoint names after they are deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

A workspace cannot be compressed if there are any sessions in the workspace
(except for the LIVE workspace), or if any user has executed a GotoDate Procedure
operation or a GotoSavepoint Procedure operation specifying a savepoint in the
workspace.

An exception is raised if the user does not have the privilege to access and merge
changes in workspace .

If the CompressWorkspaceTree operation fails in any affected workspace, the entire
operation is rolled back, and no workspaces are compressed.

To compress a single workspace (deleting all explicit savepoints or just some of
them), use the CompressWorkspace Procedure.

Examples
The following example compresses NEWWORKSPACE and all its descendant
workspaces.

EXECUTE DBMS_WM.CompressWorkspaceTree (‘NEWWORKSPACE’);

The following example compresses NEWWORKSPACE and all its descendant
workspaces, accepts the default value for the compress_view_wo_overwrite
parameter, and specifies FALSE for the auto_commit parameter.

EXECUTE DBMS_WM.CompressWorkspaceTree ('B_focus_1', auto_commit => FALSE);

CopyForUpdate Procedure
Allows LOB columns (BLOB, CLOB, or NCLOB) in version-enabled tables to be
modified. Use this procedure only if a version-enabled table has any LOB columns.
DBMS_WM 80-17

CopyForUpdate Procedure
Syntax
DBMS_WM.CopyForUpdate(

table_name IN VARCHAR2,
[, where_clause IN VARCHAR2 DEFAULT ’’]);

Parameters

Usage Notes
This procedure is intended for use only with version-enabled tables containing one
or more large object (LOB) columns. The CopyForUpdate procedure must be used
because updates performed using the DBMS_LOB package do not fire INSTEAD OF
triggers on the versioning views. Workspace Manager creates INSTEAD OF triggers
on the versioning views to implement the copy-on-write semantics. (For non-LOB
columns, you can directly perform the update operation, and the triggers work.)

Examples
The following example updates the SOURCE_CLOB column of TABLE1 for the
document with DOC_ID = 1.

Declare
clob_var

Begin
/* This procedure copies the LOB columns if necessary, that is,

if the row with doc_id = 1 has not been versioned in the
current version */

dbms_wm.copyForUpdate('table1', 'doc_id = 1');

select source_clob into clob_var
from table1

Table 80–10 CopyForUpdate Procedure Parameters

Parameter Description

table_name Name of the table containing one or more LOB columns. The name is not
case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows
affected. Example: ’department_id = 20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are affected.
80-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
where doc_id = 1 for update;

dbms_lob.write(clob_var,<amount>, <offset>, buff);

End;

CreateSavepoint Procedure
Creates a savepoint for the current version.

Syntax
DBMS_WM.CreateSavepoint(

workspace IN VARCHAR2,
savepoint_name IN VARCHAR2
[, description IN VARCHAR2 DEFAULT NULL]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
There are no explicit privileges associated with savepoints; any user who can access
a workspace can create a savepoint in the workspace.

Table 80–11 CreateSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which to create the savepoint. The name is case
sensitive.

savepoint_name Name of the savepoint to be created. The name is case sensitive.

description Description of the savepoint to be created.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Oracle9i Application Developer’s Guide - Workspace
Manager.
DBMS_WM 80-19

CreateWorkspace Procedure
This procedure can be performed while there are users in the workspace; there can
be open database transactions.

While this procedure is executing, the current workspace is frozen in READ_ONLY
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

An exception is raised if one or more of the following apply:

� The user is not in the latest version in the workspace (for example, if the user
has called the GotoDate Procedure).

� workspace does not exist.

� savepoint_name already exists.

� The user does not have the privilege to go to the specified workspace.

Examples
The following example creates a savepoint named Savepoint1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.CreateSavepoint (’NEWWORKSPACE’, ’Savepoint1’);

CreateWorkspace Procedure
Creates a new workspace in the database.

Syntax
DBMS_WM.CreateWorkspace(

workspace IN VARCHAR2
[, description IN VARCHAR2 DEFAULT NULL]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

or

DBMS_WM.CreateWorkspace(
workspace IN VARCHAR2,
isrefreshed IN BOOLEAN
[, description IN VARCHAR2 DEFAULT NULL]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);
80-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
The new workspace is a child of the current workspace. If the session has not
explicitly entered a workspace, it is in the LIVE database workspace, and the new
workspace is a child of the LIVE workspace. For an explanation of database
workspace hierarchy, see Oracle9i Application Developer’s Guide - Workspace Manager.

An implicit savepoint is created in the current version of the current workspace.
(The current version does not have to be the latest version in the current
workspace.) For an explanation of savepoints (explicit and implicit), see Oracle9i
Application Developer’s Guide - Workspace Manager.

While this procedure is executing, the current workspace is frozen in READ_ONLY
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

Table 80–12 CreateWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive, and it must be unique
(no other workspace of the same name).

isrefreshed A Boolean value (TRUE or FALSE).

TRUE causes the workspace to be continually refreshed. In a continually
refreshed workspace, changes made in the parent workspace are
automatically applied to the workspace after a merge or rollback operation
in the parent workspace. That is, you do not need to call the
RefreshWorkspace Procedure to apply the changes. See the Usage Notes for
more information about continually refreshed workspaces.

FALSE causes the workspace not to be continually refreshed. To refresh the
workspace, you must call the RefreshWorkspace Procedure.

If you use the syntax without the isrefreshed parameter, the workspace is
not continually refreshed.

description Description of the workspace.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-21

DeleteSavepoint Procedure
This procedure does not implicitly go to the workspace created. To go to the
workspace, use the GotoWorkspace Procedure.

The following rules apply to continually refreshed workspaces (isrefreshed
value of TRUE):

� A continually refreshed workspace must be created as a child of the LIVE
workspace.

� A continually refreshed workspace must be a leaf workspace (that is, have no
child workspaces).

� The session must be on the latest version in order to create a continually
refreshed workspace.

� You cannot turn off locking using the SetLockingOFF Procedure or
SetWorkspaceLockModeOFF Procedure for a continually refreshed workspace.

An exception is raised if one or more of the following apply:

� workspace already exists.

� The user does not have the privilege to create a workspace.

Examples
The following example creates a workspace named NEWWORKSPACE in the database.

EXECUTE DBMS_WM.CreateWorkspace (’NEWWORKSPACE’);

DeleteSavepoint Procedure
Deletes a savepoint and associated rows in version-enabled tables.

Syntax
DBMS_WM.DeleteSavepoint(

workspace IN VARCHAR2,
savepoint_name IN VARCHAR2)
[, compress_view_wo_overwrite IN BOOLEAN DEFAULT FALSE]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);
80-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
You can delete a savepoint when it is no longer needed (for example, you will not
need to go to it or roll back to it).

Deleting a savepoint is useful for the following reasons:

� You can reuse a savepoint name after it is deleted. (You cannot create a
savepoint that has the same name as an existing savepoint.)

� Runtime performance for Workspace Manager operations is improved.

� Less disk storage is used for Workspace Manager structures.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

To delete a savepoint, you must have the WM_ADMIN_ROLE role or be the owner of
the workspace or the savepoint.

Table 80–13 DeleteSavepoint Procedure Parameters

Parameter Description

workspace Name of the workspace in which the savepoint was created. The name is
case sensitive.

savepoint_name Name of the savepoint to be deleted. The name is case sensitive.

compress_view_
wo_overwrite

A Boolean value (TRUE or FALSE).

TRUE causes history information to be deleted even if VIEW_WO_
OVERWRITE was specified when versioning was enabled.

FALSE (the default) causes history information for a table not to be
deleted if VIEW_WO_OVERWRITE was specified when versioning was
enabled. (If VIEW_WO_OVERWRITE was not specified for a table, history
information for the table is deleted regardless of the parameter value.)

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Oracle9i Application Developer’s Guide - Workspace
Manager.
DBMS_WM 80-23

DisableVersioning Procedure
This procedure cannot be executed if there are any sessions with an open database
transaction, or if any user has executed a GotoDate Procedure operation or a
GotoSavepoint Procedure operation specifying a savepoint in the workspace.

An exception is raised if one or more of the following apply:

� One or more sessions are already in workspace (unless the workspace is
LIVE).

� workspace does not exist.

� savepoint_name does not exist.

� savepoint_name is not a removable savepoint. (Removable savepoints are
explained in Oracle9i Application Developer’s Guide - Workspace Manager.)

� The user does not have the privilege to go to the specified workspace.

Examples
The following example deletes a savepoint named Savepoint1 in the
NEWWORKSPACE workspace.

EXECUTE DBMS_WM.DeleteSavepoint (’NEWWORKSPACE’, ’Savepoint1’);

DisableVersioning Procedure
Deletes all support structures that were created to enable the table to support
versioned rows.

Syntax
DBMS_WM.DisableVersioning(

table_name IN VARCHAR2
[, force IN BOOLEAN DEFAULT FALSE]
[, ignore_last_error IN BOOLEAN DEFAULT FALSE]);

Parameters

Table 80–14 DisableVersioning Procedure Parameters

Parameter Description

table_name Name of the table, or a comma-delimited list of names of tables related by
multilevel referential integrity constraints. (Multilevel referential integrity
constraints are explained in Oracle9i Application Developer’s Guide - Workspace
Manager.) Table names are not case sensitive.
80-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
This procedure is used to reverse the effect of the EnableVersioning Procedure. It
deletes the Workspace Manager infrastructure (support structures) for versioning of
rows, but does not affect any user data in the LIVE workspace. The workspace
hierarchy and any savepoints still exist, but all rows are the same as in the LIVE
workspace. (If there are multiple versions in the LIVE workspace of a row in the
table for which versioning is disabled, only the most recent version of the row is
kept.)

If a call to the DisableVersioning procedure fails, the table is left in an inconsistent
state. If this occurs, you should try to fix the cause of the error (examine the USER_
WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata views to see the SQL
statement and error message), and then call the DisableVersioning procedure again
with the default ignore_last_error parameter value of FALSE. However, if the
call still fails and you cannot fix the cause of the error, and if you are sure that it is
safe and appropriate to ignore this error, then you have the option to ignore the
error by calling the DisableVersioning procedure with the ignore_last_error
parameter value of TRUE. Note that you are responsible for ensuring that it is safe
and appropriate to ignore the error.

Some causes for the failure of the DisableVersioning procedure include the
following:

force A Boolean value (TRUE or FALSE).

TRUE forces all data in workspaces other than LIVE to be discarded before
versioning is disabled.

FALSE (the default) prevents versioning from being disabled if table_name
was modified in any workspace other than LIVE and if the workspace that
modified table_name still exists.

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the previous call to the
DisableVersioning procedure. Information about the last error is stored in the
USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS metadata views, which are
described in Oracle9i Application Developer’s Guide - Workspace Manager. (See
the Usage Notes for more information.)

FALSE (the default) does not ignore the last error, if any, that occurred during
the previous call to the DisableVersioning procedure.

Table 80–14 DisableVersioning Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-25

DropReplicationSupport Procedure
� The table contains much data in workspaces and the size of the undo tablespace
required for the DisableVersioning procedure is not sufficient.

� A compilation error occurred while transferring user-defined triggers from the
version-enabled table to the version-disabled table.

The DisableVersioning operation fails if the force value is FALSE and any of the
following apply:

� The table is being modified by any user in any workspace other than the LIVE
workspace.

� There are versioned rows of the table in any workspace other than the LIVE
workspace.

Only the owner of a table or a user with the WM_ADMIN_ROLE role can disable
versioning on the table.

Tables that are version-enabled and users that own version-enabled tables cannot be
deleted. You must first disable versioning on the relevant table or tables.

An exception is raised if the table is not version-enabled.

If you want to disable versioning on a table in an Oracle replication environment,
see Oracle9i Application Developer’s Guide - Workspace Manager for guidelines and
other information.

Examples
The following example disables the EMPLOYEE table for versioning.

EXECUTE DBMS_WM.DisableVersioning (’employee’);

The following example disables the EMPLOYEE table for versioning and ignores the
last error that occurred during the previous call to the DisableVersioning procedure.

EXECUTE DBMS_WM.DisableVersioning (’employee’, ignore_last_error => true);

The following example disables the EMPLOYEE, DEPARTMENT, and LOCATION tables
(which have multilevel referential integrity constraints) for versioning.

EXECUTE DBMS_WM.DisableVersioning(’employee,department,location’);

DropReplicationSupport Procedure
Deletes replication support objects that had been created by the
GenerateReplicationSupport Procedure.
80-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Syntax
DBMS_WM.DropReplicationSupport();

Parameters
None.

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Oracle9i Application Developer’s Guide - Workspace
Manager. You must also understand the major Oracle replication concepts and
techniques, which are documented in Oracle9i Replication and Oracle9i Replication
Management API Reference.

You must execute this procedure as the replication administrator user at the writer
site.

This procedure drops replication support for any version-enabled tables at the
nonwriter sites; however, it does not version-disable any version-enabled tables.

Examples
The following example drops replication support that had previously been enabled
using the GenerateReplicationSupport Procedure.

DBMS_WM.DropReplicationSupport();

EnableVersioning Procedure
Version-enables a table, creating the necessary structures to enable the table to
support multiple versions of rows.

Syntax
DBMS_WM.EnableVersioning(

table_name IN VARCHAR2
[, hist IN VARCHAR2 DEFAULT ’NONE’]);
DBMS_WM 80-27

EnableVersioning Procedure
Parameters

Usage Notes
The table that is being version-enabled must have a primary key defined.

Only the owner of a table or a user with the WM_ADMIN role can enable versioning
on the table.

Tables that are version-enabled and users that own version-enabled tables cannot be
deleted. You must first disable versioning on the relevant table or tables.

Tables owned by SYS cannot be version-enabled.

An exception is raised if one or more of the following apply:

� table_name is already version-enabled.

Table 80–15 EnableVersioning Procedure Parameters

Parameter Description

table_name Name of the table, or a comma-delimited list of names of tables related by
multilevel referential integrity constraints. (Multilevel referential integrity
constraints are explained in Oracle9i Application Developer’s Guide - Workspace
Manager.) The length of a table name must not exceed 25 characters. The name
is not case sensitive.

hist History option, for tracking modifications to table_name . Must be one of the
following values:

NONE: No modifications to the table are tracked. (This is the default.)

VIEW_W_OVERWRITE: The with overwrite (W_OVERWRITE) option. A view
named <table_name>_HIST (described in Oracle9i Application Developer’s
Guide - Workspace Manager) is created to contain history information, but it will
show only the most recent modifications to the same version of the table. A
history of modifications to the version is not maintained; that is, subsequent
changes to a row in the same version overwrite earlier changes. (The
CREATETIME column of the <table_name>_HIST view contains only the
time of the most recent update.)

VIEW_WO_OVERWRITE: The without overwrite (WO_OVERWRITE) option. A
view named <table_name>_HIST (described in Oracle9i Application
Developer’s Guide - Workspace Manager) is created to contain history
information, and it will show all modifications to the same version of the
table. A history of modifications to the version is maintained; that is,
subsequent changes to a row in the same version do not overwrite earlier
changes.
80-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� table_name contains a list of tables and any of the tables has a referential
integrity constraint with a table that is not in the list.

If the table is version-enabled with the VIEW_WO_OVERWRITE hist option specified,
this option can later be disabled and re-enabled by calling the SetWoOverwriteOFF
Procedure and SetWoOverwriteON Procedures.

The history option enables you to log and audit modifications.

The history option affects the behavior of the GotoDate Procedure. See the Usage
Notes for that procedure.

If you want to version-enable a table in an Oracle replication environment, see
Oracle9i Application Developer’s Guide - Workspace Manager for guidelines and other
information.

Current notes and restrictions include the following:

� If you have referential integrity constraints on version-enabled tables, note the
considerations and restrictions in Oracle9i Application Developer’s Guide -
Workspace Manager.

� If you have triggers defined on version-enabled tables, note the considerations
and restrictions in Oracle9i Application Developer’s Guide - Workspace Manager.

� Constraints and privileges defined on the table are carried over to the
version-enabled table.

� DDL operations on version-enabled tables are subject to the procedures and
restrictions described in Oracle9i Application Developer’s Guide - Workspace
Manager.

� Index-organized tables cannot be version-enabled.

� Object tables cannot be version-enabled.

� A table with one or more columns of LONG data type cannot be
version-enabled.

� A table with one or more nested table columns cannot be version-enabled.

Examples
The following example enables versioning on the EMPLOYEE table.

EXECUTE DBMS_WM.EnableVersioning(’employee’);

The following example enables versioning on the EMPLOYEE, DEPARTMENT, and
LOCATION tables, which have multilevel referential integrity constraints.
DBMS_WM 80-29

FreezeWorkspace Procedure
EXECUTE DBMS_WM.EnableVersioning(’employee,department,location’);

FreezeWorkspace Procedure
Restricts access to a workspace and the ability of users to make changes in the
workspace.

Syntax
DBMS_WM.FreezeWorkspace(

workspace IN VARCHAR2
[, freezemode IN VARCHAR2 DEFAULT ’NO_ACCESS’]
[, freezewriter IN VARCHAR2 DEFAULT NULL]
[, force IN BOOLEAN DEFAULT FALSE]);

or

DBMS_WM.FreezeWorkspace(
workspace IN VARCHAR2,
session_duration IN BOOLEAN
[, freezemode IN VARCHAR2 DEFAULT ’NO_ACCESS’]
[, freezewriter IN VARCHAR2 DEFAULT NULL]
[, force IN BOOLEAN DEFAULT FALSE]);

Parameters

Table 80–16 FreezeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

session_
duration

A Boolean value (TRUE or FALSE).

TRUE causes the workspace to be unfrozen when the session that called the
FreezeWorkspace procedure disconnects from the database. This value is
valid for all freeze modes.

FALSE causes the workspace not to be unfrozen when the session that
called the FreezeWorkspace procedure disconnects from the database.
80-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
If you specify the procedure syntax that does not include the session_duration
parameter, it is equivalent to specifying FALSE for that parameter: that is, the
workspace is not unfrozen when the session that called the FreezeWorkspace
procedure disconnects from the database.

The operation fails if one or more of the following apply:

� workspace is already frozen (unless force is TRUE).

freezemode Mode for the frozen workspace. Must be one of the following values:

NO_ACCESS: No sessions are allowed in the workspace. (This is the
default.)

READ_ONLY: Sessions are allowed in the workspace, but no write
operations (insert, update, delete) are allowed.

1WRITER: Sessions are allowed in the workspace, but only one user (see
the freezewriter parameter) is allowed to perform write operations
(insert, update, delete).

1WRITER_SESSION: Sessions are allowed in the workspace, but only the
database session (as opposed to the database user) that called the
FreezeWorkspace procedure is allowed to perform write operations (insert,
update, delete). The workspace is unfrozen after the session that called the
FreezeWorkspace procedure disconnects from the database.

WM_ONLY: Only Workspace Manager operations are permitted. No sessions
can directly modify data values or perform queries involving table data;
however, child workspaces can be merged into the workspace, and
savepoints can be created in the workspace.

freezewriter The user that is allowed to make changes in the workspace. Can be
specified only if freezemode is 1WRITER. The default is USER (the current
user).

force A Boolean value (TRUE or FALSE).

TRUE forces the workspace to be frozen even if it is already frozen. For
example, this value lets you freeze the workspace with a different
freezemode parameter value without having first to call the
UnfreezeWorkspace Procedure.

FALSE (the default) prevents the workspace from being frozen if it is
already frozen.

Table 80–16 FreezeWorkspace Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-31

GenerateReplicationSupport Procedure
� Any sessions are in workspace and freezemode is NO_ACCESS (specified or
defaulted).

� session_duration is FALSE and freezemode is 1WRITER_SESSION.

If freezemode is READ_ONLY or 1WRITER, the workspace cannot be frozen if there
is an active database transaction.

You can freeze a workspace only if one or more of the following apply:

� You are the owner of the specified workspace.

� You have the WM_ADMIN_ROLE, the FREEZE_ANY_WORKSPACE privilege, or the
FREEZE_WORKSPACE privilege for the specified workspace.

The LIVE workspace can be frozen only if freezemode is READ_ONLY or
1WRITER.

To reverse the effect of FreezeWorkspace, use the UnfreezeWorkspace Procedure.

Examples
The following example freezes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.FreezeWorkspace (’NEWWORKSPACE’);

GenerateReplicationSupport Procedure
Creates necessary structures for multimaster replication of Workspace Manager
objects, and starts the master activity for the newly created master group.

Syntax
DBMS_WM.GenerateReplicationSupport(

mastersites IN VARCHAR2,
groupname IN VARCHAR2
[, groupdescription IN VARCHAR2 DEFAULT ’Replication Group for OWM’]);

Parameters

Table 80–17 GenerateReplicationSupport Procedure Parameters

Parameter Description

mastersites Comma-delimited list of nonwriter site names (database links) to be
added to the Workspace Manager replication environment. Do not
include the local site (the writer site) in the list.
80-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Oracle9i Application Developer’s Guide - Workspace
Manager. You must also understand the major Oracle replication concepts and
techniques, which are documented in Oracle9i Replication and Oracle9i Replication
Management API Reference.

You must execute this procedure as the replication administrator user at the writer
site.

Before executing this procedure, ensure that the following are true:

� There are no workspaces, savepoints, or version-enabled tables on any of the
remote sites specified in the mastersites list

� All the remote sites and the local site have the same version of Workspace
Manager installed. You can check the Workspace Manager version number in
the WM_INSTALLATION metadata view.

� If there are version-enabled tables on the local site, these tables must exist and
must not be version-enabled on each of the remote sites.

This procedure performs the following operations:

� Verifies that the local site and all the sites specified in the mastersites list are
running the same version of Workspace Manager.

� Verifies that there are no workspaces, savepoints, or version-enabled tables on
any of the remote sites specified in the mastersites list.

� Creates a master group, having the name specified in the groupname
parameter, with the local site as the master definition site and the writer site.

� Adds the Workspace Manager metadata tables to this group.

� Disables Workspace Manager operations at all the nonwriter sites (the remote
sites specified in the mastersites list).

groupname Name of the master group to be created. This group will appear as a
regular replication master group, and it can be managed from all the
Oracle replication interfaces, including Oracle Enterprise Manager.

groupdescription Description of the new master group. The default is Replication
Group for OWM .

Table 80–17 GenerateReplicationSupport Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-33

GetConflictWorkspace Function
� If there are any version-enabled tables at the local site, version-enables these
tables at each of the remote sites specified in the mastersites list and sets
them up for replication.

� Starts the master activity for the newly created master group.

To drop replication support for the Workspace Manager environment, use the
DropReplicationSupport Procedure.

Examples
The following example generates replication support for the Workspace Manager
environment at a hypothetical company.

DBMS_WM.GenerateReplicationSupport(
mastersites => ‘BACKUP-SITE1.ACME.COM, BACKUP-SITE2.ACME.COM’);
groupname => ‘OWM-GROUP’,
groupdescription => ‘OWM Replication group for Acme Corp.’);

GetConflictWorkspace Function
Returns the name of the workspace on which the session has performed the
SetConflictWorkspace Procedure.

Format
DBMS_WM.GetConflictWorkspace() RETURN VARCHAR2;

Parameters
None.

Usage Notes
If the SetConflictWorkspace Procedure has not been executed, the name of the
current workspace is returned.

Examples
The following example displays the name of the workspace on which the session
has performed the SetConflictWorkspace Procedure.

SELECT DBMS_WM.GetConflictWorkspace FROM DUAL;

GETCONFLICTWORKSPACE

80-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
B_focus_2

GetDiffVersions Function
Returns the names of the (workspace, savepoint) pairs on which the session has
performed the SetDiffVersions Procedure operation.

Format
DBMS_WM.GetDiffVersions() RETURN VARCHAR2;

Parameters
None.

Usage Notes
The returned string is in the format '(WS1,SP1), (WS2,SP2)' . This format,
including the parentheses, is intended to help you if you later want to use parts of
the returned string in a call to the SetDiffVersions Procedure.

Examples
The following example displays the names of the (workspace, savepoint) pairs on
which the session has performed the SetDiffVersions Procedure operation.

SELECT DBMS_WM.GetDiffVersions FROM DUAL;

GETDIFFVERSIONS
--
(B_focus_1, LATEST), (B_focus_2, LATEST)

GetLockMode Function
Returns the locking mode for the current session, which determines whether or not
access is enabled to versioned rows and corresponding rows in the previous
version.

Format
DBMS_WM.GetLockMode() RETURN VARCHAR2;

Parameters
None.
DBMS_WM 80-35

GetMultiWorkspaces Function
Usage Notes
This function returns E, S, C, or NULL.

� For explanations of E (exclusive), S (shared), and C (carry-forward), see the
description of the lockmode parameter of the SetLockingON Procedure.

� NULL indicates that locking is not in effect. (Calling the SetLockingOFF
Procedure results in this setting.)

For an explanation of Workspace Manager locking, see Oracle9i Application
Developer’s Guide - Workspace Manager. See also the descriptions of the
SetLockingON Procedure and SetLockingOFF Procedure.

Examples
The following example displays the locking mode in effect for the session.

SELECT DBMS_WM.GetLockMode FROM DUAL;

GETLOCKMODE
--
C

GetMultiWorkspaces Function
Returns the names of workspaces visible in the multiworkspace views for
version-enabled tables.

Format
DBMS_WM.GetMultiWorkspaces() RETURN VARCHAR2;

Parameters
None.

Usage Notes
This procedure returns the names of workspaces visible in the multiworkspace
views, which are described in Oracle9i Application Developer’s Guide - Workspace
Manager.

If no workspaces are visible in the multiworkspace views, NULL is returned. If more
than one workspace name is returned, names are separated by a comma (for
example: workspace1,workspace2,workspace3).
80-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
To make a workspace visible in the multiworkspace views, use the
SetMultiWorkspaces Procedure.

Examples
The following example displays the names of workspaces visible in the
multiworkspace views.

SELECT DBMS_WM.GetMultiWorkspaces FROM DUAL;

GetOpContext Function
Returns the context of the current operation for the current session.

Format
DBMS_WM.GetOpContext() RETURN VARCHAR2;

Parameters
None.

Usage Notes
This function returns one of the following values:

� DML: The current operation is driven by data manipulation language (DML)
initiated by the user.

� MERGE_REMOVE: The current operation was initiated by a MergeWorkspace
Procedure call with the remove_workspace parameter set to TRUE or a
MergeTable Procedure call with the remove_data parameter set to TRUE.

� MERGE_NOREMOVE: The current operation was initiated by a MergeWorkspace
Procedure call with the remove_workspace parameter set to FALSE or a
MergeTable Procedure call with the remove_data parameter set to FALSE.

The returned value can be used in user-defined triggers to take appropriate action
based on the current operation.

Examples
The following example displays the context of the current operation.

SELECT DBMS_WM.GetOpContext FROM DUAL;
DBMS_WM 80-37

GetPrivs Function
GETOPCONTEXT
--
DML

GetPrivs Function
Returns a comma-delimited list of all privileges that the current user has for the
specified workspace.

Format
DBMS_WM.GetPrivs(

workspace IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage
For information about Workspace Manager privileges, see Oracle9i Application
Developer’s Guide - Workspace Manager.

Examples
The following example displays the privileges that the current user has for the B_
focus_2 workspace.

SELECT DBMS_WM.GetPrivs ('B_focus_2') FROM DUAL;

DBMS_WM.GETPRIVS('B_FOCUS_2')
--
ACCESS,MERGE,CREATE,REMOVE,ROLLBACK

GetSessionInfo Procedure
Retrieves information about the current workspace and session context.

Table 80–18 GetPrivs Function Parameters

Parameter Description

workspace Name of the workspace for which to return the list of privileges. The name is
case sensitive.
80-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Format
DBMS_WM.GetSessionInfo(

workspace OUT VARCHAR2,
context OUT VARCHAR2,
context_type OUT VARCHAR2);

Parameters

Usage Notes
This procedure is useful if you need to know where a session is (workspace and
context) -- for example, after you have performed a combination of GotoWorkspace
Procedure, GotoSavepoint Procedure, and GotoDate Procedure operations.

After the procedure successfully executes, the context parameter contains one of
the following values:

� LATEST: The session is currently on the LATEST logical savepoint (explained in
Oracle9i Application Developer’s Guide - Workspace Manager), and it can see
changes as they are made in the workspace. The context is automatically set to
LATEST when the session enters the workspace (using the GotoWorkspace
Procedure).

� A savepoint name: The session is currently on a savepoint in the workspace.
The session cannot see changes as they are made in the latest version of the
workspace, but instead sees a static view of the data as of the savepoint creation
time. The session context is set to the savepoint name after a call to the
GotoSavepoint Procedure.

� An instant (a point in time): The session is currently on a specific point in time.
The session cannot see changes as they are made in the latest version of the

Table 80–19 GetSessionInfo Procedure Parameters

Parameter Description

workspace Name of the workspace that the current session is in.

context The context of the current session in the workspace, expressed as one of the
following: LATEST, a savepoint name, or an instant (point in time) in
'DD-MON-YYYY HH24:MI:SS' date format. (See the Usage Notes for details.)

context_
type

The type of context for the current session in the workspace. Specifically, one
of the following values: LATEST (if context is LATEST), SAVEPOINT (if
context is a savepoint name), or INSTANT (if context is an instant).
DBMS_WM 80-39

GetWorkspace Function
workspace, but instead sees a static view of the data as of the specific time. The
session context is set to an instant after a call to the GotoDate Procedure.

For detailed information about the session context, see Oracle9i Application
Developer’s Guide - Workspace Manager.

Examples
The following example retrieves and displays information about the current
workspace and context in the session.

DECLARE
current_workspace VARCHAR2(30);
current_context VARCHAR2(30);
current_context_type VARCHAR2(30);

BEGIN
DBMS_WM.GetSessionInfo(current_workspace,

current_context,
current_context_type);

DBMS_OUTPUT.PUT_LINE('Session currently in workspace: ' ||current_workspace);
DBMS_OUTPUT.PUT_LINE('Session context is: ' ||current_context);
DBMS_OUTPUT.PUT_LINE('Session context is on: ' ||current_context_type);

END;
/
Session currently in workspace: B_focus_2
Session context is: LATEST
Session context is on: LATEST

PL/SQL procedure successfully completed.

GetWorkspace Function
Returns the current workspace for the session.

Format
DBMS_WM.GetWorkspace() RETURN VARCHAR2;

Parameters
None.

Usage Notes
None.
80-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Examples
The following example displays the current workspace for the session.

SELECT DBMS_WM.GetWorkspace FROM DUAL;

GETWORKSPACE
--
B_focus_2

GotoDate Procedure
Goes to a point at or near the specified date and time in the current workspace.

Syntax
DBMS_WM.GotoDate(

in_date IN DATE);

Parameters

Usage Notes
You are presented a read-only view of the current workspace at or near the specified
date and time. The exact time point depends on the history option for tracking
changes to data in version-enabled tables, as set by the EnableVersioning Procedure
or modified by the SetWoOverwriteOFF Procedure or SetWoOverwriteON
Procedure:

� NONE: The read-only view reflects the first savepoint after in_date .

� VIEW_W_OVERWRITE: The read-only view reflects the data values in effect at
in_date , except if in_date is between two savepoints and data was changed
between the two savepoints. In this case, data that had been changed between
the savepoints might be seen as empty or as having a previous value. To ensure
the most complete and accurate view of the data, specify the VIEW_WO_
OVERWRITE history option when version-enabling a table.

Table 80–20 GotoDate Procedure Parameters

Parameter Description

in_date Date and time for the read-only view of the workspace. (See the Usage Notes
for details.)
DBMS_WM 80-41

GotoSavepoint Procedure
� VIEW_WO_OVERWRITE: The read-only view reflects the data values in effect at
in_date .

For an explanation of the history options, see the description of the hist parameter
for the EnableVersioning Procedure.

The following example scenario shows the effect of the VIEW_WO_OVERWRITE
setting. Assume the following sequence of events:

1. The MANAGER_NAME value in a row is Adams.

2. Savepoint SP1 is created.

3. The MANAGER_NAME value is changed to Baxter .

4. The time point that will be specified as in_date (in step 7) occurs.

5. The MANAGER_NAME value is changed to Chang. (Thus, the value has been
changed both before and after in_date since the first savepoint and before the
second savepoint.)

6. Savepoint SP2 is created.

7. A GotoDate Procedure operation is executed, specifying the time point in step 4
as in_date .

In the preceding scenario, if the history option in effect is VIEW_WO_OVERWRITE,
the MANAGER_NAME value after step 7 is Baxter .

The GotoDate procedure should be executed while users exist in the workspace.
There are no explicit privileges associated with this procedure.

Examples
The following example goes to a point at or near midnight at the start of
29-Jun-2001, depending on the history option currently in effect.

EXECUTE DBMS_WM.GotoDate (’29-JUN-01’);

GotoSavepoint Procedure
Goes to the specified savepoint in the current workspace.

Syntax
DBMS_WM.GotoSavePoint(

[savepoint_name IN VARCHAR2 DEFAULT ’LATEST’]);
80-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
You are presented a read-only view of the workspace at the time of savepoint
creation. This procedure is useful for examining the workspace from different
savepoints before performing a rollback to a specific savepoint by calling the
RollbackToSP Procedure to delete all rows from that savepoint forward.

This operation can be executed while users exist in the workspace. There are no
explicit privileges associated with this operation.

If you do not want to roll back to the savepoint, you can call the GotoSavepoint
procedure with a null parameter to go to the currently active version in the
workspace. (This achieves the same result as calling the GotoWorkspace Procedure
and specifying the workspace.)

For more information about savepoints, including the LATEST savepoint, see
Oracle9i Application Developer’s Guide - Workspace Manager.

Examples
The following example goes to the savepoint named Savepoint1 .

EXECUTE DBMS_WM.GotoSavepoint (’Savepoint1’);

GotoWorkspace Procedure
Moves the current session to the specified workspace.

Syntax
DBMS_WM.GotoWorkspace(

workspace IN VARCHAR2);

Table 80–21 GotoSavepoint Procedure Parameters

Parameter Description

savepoint_name Name of the savepoint. The name is case sensitive. If savepoint_name
is not specified, the default is LATEST.
DBMS_WM 80-43

GrantSystemPriv Procedure
Parameters

Usage Notes
After a user goes to a workspace, modifications to data can be made there.

To go to the live database, specify workspace as LIVE . Because many operations
are prohibited when any users (including you) are in the workspace, it is often
convenient to go to the LIVE workspace before performing operations on created
workspaces.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� The user does not have ACCESS_WORKSPACE privilege for workspace .

� workspace has been frozen in NO_ACCESS mode (see the FreezeWorkspace
Procedure).

Examples
The following example includes the user in the NEWWORKSPACE workspace. The
user will begin to work in the latest version in that workspace.

EXECUTE DBMS_WM.GotoWorkspace (’NEWWORKSPACE’);

The following example includes the user in the LIVE database workspace. By
default, when users connect to a database, they are placed in this workspace.

EXECUTE DBMS_WM.GotoWorkspace (’LIVE’);

GrantSystemPriv Procedure
Grants system-level privileges (not restricted to a particular workspace) to users
and roles. The grant_option parameter enables the grantee to grant the specified
privileges to other users and roles.

Syntax
DBMS_WM.GrantSystemPriv(

Table 80–22 GotoWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
priv_types IN VARCHAR2,
grantee IN VARCHAR2
[, grant_option IN VARCHAR2 DEFAULT ’NO’]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
Contrast this procedure with GrantWorkspacePriv Procedure, which grants
workspace-level Workspace Manager privileges with keywords that do not contain
ANY and which has a workspace parameter.

If a user gets a privilege from more than one source and if any of those sources has
the grant option for that privilege, the user has the grant option for the privilege.
For example, assume that user SCOTT has been granted the ACCESS_ANY_
WORKSPACE privilege with grant_option as NO, but that the PUBLIC user group
has been granted the ACCESS_ANY_WORKSPACE privilege with grant_option as

Table 80–23 GrantSystemPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Oracle9i
Application Developer’s Guide - Workspace Manager discusses Workspace
Manager privileges.) Use commas to separate privilege keywords. The
available keywords are ACCESS_ANY_WORKSPACE, MERGE_ANY_
WORKSPACE, CREATE_ANY_WORKSPACE, REMOVE_ANY_WORKSPACE,
ROLLBACK_ANY_WORKSPACE, and FREEZE_ANY_WORKSPACE.

grantee Name of the user (can be the PUBLIC user group) or role to which to grant
priv_types .

grant_option Specify YES to enable the grant option for grantee, or NO (the default) to
disable the grant option for grantee. The grant option allows grantee to
grant the privileges specified in priv_types to other users and roles.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-45

GrantWorkspacePriv Procedure
YES. Because user SCOTT is a member of PUBLIC, user SCOTT has the ACCESS_
ANY_WORKSPACE privilege with the grant option.

The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. The WM_ADMIN_ROLE role is automatically given to the DBA role.

The ACCESS_WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed for all
other Workspace Manager privileges.

To revoke system-level privileges, use the RevokeSystemPriv Procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You do not have the privilege to grant priv_types .

Examples
The following example enables user Smith to access any workspace in the
database, but does not allow Smith to grant the ACCESS_ANY_WORKSPACE
privilege to other users.

EXECUTE DBMS_WM.GrantSystemPriv (’ACCESS_ANY_WORKSPACE’, ’Smith’, ’NO’);

GrantWorkspacePriv Procedure
Grants workspace-level privileges to users and roles. The grant_option
parameter enables the grantee to grant the specified privileges to other users and
roles.

Syntax
DBMS_WM.GrantWorkspacePriv(

priv_types IN VARCHAR2,
workspace IN VARCHAR2,
grantee IN VARCHAR2
[, grant_option IN VARCHAR2 DEFAULT ’NO’]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);
80-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
Contrast this procedure with the GrantSystemPriv Procedure, which grants
system-level Workspace Manager privileges with keywords in the form xxx_ANY_
WORKSPACE (ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, and so on).

If a user gets a privilege from more than one source and if any of those sources has
the grant option for that privilege, the user has the grant option for the privilege.
For example, assume that user SCOTT has been granted the ACCESS_WORKSPACE
privilege with grant_option as NO, but that the PUBLIC user group has been
granted the ACCESS_WORKSPACE privilege with grant_option as YES. Because
user SCOTT is a member of PUBLIC, user SCOTT has the ACCESS_WORKSPACE
privilege with the grant option.

Table 80–24 GrantWorkspacePriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Oracle9i
Application Developer’s Guide - Workspace Manager discusses Workspace
Manager privileges.) Use commas to separate privilege keywords. The
available keywords are ACCESS_WORKSPACE, MERGE_WORKSPACE,
CREATE_WORKSPACE, REMOVE_WORKSPACE, ROLLBACK_WORKSPACE, and
FREEZE_WORKSPACE.

workspace Name of the workspace. The name is case sensitive.

grantee Name of the user (can be the PUBLIC user group) or role to which to grant
priv_types .

grant_option Specify YES to enable the grant option for grantee, or NO (the default) to
disable the grant option for grantee. The grant option allows grantee to
grant the privileges specified in priv_types on the workspace specified
in workspace to other users and roles.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-47

IsWorkspaceOccupied Function
The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant
option. The WM_ADMIN_ROLE role is automatically given to the DBA role.

The ACCESS_WORKSPACE or ACCESS_ANY_WORKSPACE privilege is needed for all
other Workspace Manager privileges.

To revoke workspace-level privileges, use the RevokeWorkspacePriv Procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You do not have the privilege to grant priv_types .

Examples
The following example enables user Smith to access the NEWWORKSPACE
workspace and merge changes in that workspace, and allows Smith to grant the
two specified privileges on NEWWORKSPACE to other users.

DBMS_WM.GrantWorkspacePriv (’ACCESS_WORKSPACE, MERGE_WORKSPACE’, ’NEWWORKSPACE’,
’Smith’, ’YES’);

IsWorkspaceOccupied Function
Checks whether or not a workspace has any active sessions.

Syntax
DBMS_WM.IsWorkspaceOccupied(

workspace IN VARCHAR2) RETURN VARCHAR2;

Parameters

Usage Notes
This function returns YES if the workspace has any active sessions, and it returns NO
if the workspace has no active sessions.

An exception is raised if the LIVE workspace is specified or if the user does not
have the privilege to access the workspace.

Table 80–25 IsWorkspaceOccupied Function Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Examples
The following example checks if any sessions are in the B_focus_2 workspace.

SELECT DBMS_WM.IsWorkspaceOccupied('B_focus_2') FROM DUAL;

DBMS_WM.ISWORKSPACEOCCUPIED('B_FOCUS_2')
--
YES

LockRows Procedure
Controls access to versioned rows in a specified table and to corresponding rows in
the parent workspace.

Syntax
DBMS_WM.LockRows(

workspace IN VARCHAR2,
table_name IN VARCHAR2
[, where_clause IN VARCHAR2 DEFAULT ’’]
[, lock_mode IN VARCHAR2 DEFAULT ’E’]);

Parameters

Table 80–26 LockRows Procedure Parameters

Parameter Description

workspace Name of the workspace. The latest versions of rows visible from the
workspace are locked. If a row has not been modified in this workspace,
the locked version could be in an ancestor workspace. The name is case
sensitive.

table_name Name of the table in which rows are to be locked. The name is not case
sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be locked. Example: ’department_id = 20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are locked.

lock_mode Mode with which to set the locks: E (exclusive) or S (shared). The default is
E.
DBMS_WM 80-49

MergeTable Procedure
Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle server locking. For an explanation of Workspace Manager locking,
see Oracle9i Application Developer’s Guide - Workspace Manager.

This procedure does not affect whether Workspace Manager locking is set on or off
(determined by the SetLockingON Procedure and SetLockingOFF Procedure).

To unlock rows, use the UnlockRows Procedure.

Examples
The following example locks rows in the EMPLOYEES table where last_name =
’Smith’ in the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.LockRows (’NEWWORKSPACE’, ’employees’, ’last_name = ’’Smith’’’);

MergeTable Procedure
Applies changes to a table (all rows or as specified in the WHERE clause) in a
workspace to its parent workspace.

Syntax
DBMS_WM.MergeTable(

workspace IN VARCHAR2,
table_id IN VARCHAR2
[, where_clause IN VARCHAR2 DEFAULT ’’]
[, create_savepoint IN BOOLEAN DEFAULT FALSE]
[, remove_data IN BOOLEAN DEFAULT FALSE]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–27 MergeTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing rows to be merged into the parent
workspace. The name is not case sensitive.
80-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
All data that satisfies the where_clause in the version-enabled table table_name
in workspace is applied to the parent workspace of workspace .

Any locks that are held by rows being merged are released.

If there are conflicts between the workspace being merged and its parent
workspace, the merge operation fails and the user must manually resolve conflicts

where_clause The WHERE clause (excluding the WHERE keyword) identifying the
rows to be merged into the parent workspace. Example:
’department_id = 20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are
merged.

create_savepoint A Boolean value (TRUE or FALSE).

TRUE creates an implicit savepoint in the parent workspace before the
merge operation. (Implicit and explicit savepoints are described in
Oracle9i Application Developer’s Guide - Workspace Manager.)

FALSE (the default) does not create an implicit savepoint in the parent
workspace before the merge operation.

remove_data A Boolean value (TRUE or FALSE).

TRUE removes the data in the table (as specified by where_clause) in
the child workspace. This option is permitted only if workspace has
no child workspaces (that is, it is a leaf workspace).

FALSE (the default) does not remove the data in the table in the child
workspace.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Oracle9i Application Developer’s Guide - Workspace
Manager.

Table 80–27 MergeTable Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-51

MergeWorkspace Procedure
using the <table_name>_CONF view. (Conflict resolution is explained in Oracle9i
Application Developer’s Guide - Workspace Manager.)

A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace).

A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

An exception is raised if the user does not have access to table_id , or if the user
does not have the MERGE_WORKSPACE privilege for workspace or the MERGE_
ANY_WORKSPACE privilege.

Examples
The following example merges changes to the EMP table (in the USER3 schema)
where last_name = ’Smith’ in NEWWORKSPACE to its parent workspace.

EXECUTE DBMS_WM.MergeTable (’NEWWORKSPACE’, ’user3.emp’, ’last_name =
’’Smith’’’);

MergeWorkspace Procedure
Applies all changes in a workspace to its parent workspace, and optionally removes
the workspace.

Syntax
DBMS_WM.MergeWorkspace(

workspace IN VARCHAR2
[, create_savepoint IN BOOLEAN DEFAULT FALSE]
[, remove_workspace IN BOOLEAN DEFAULT FALSE]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–28 MergeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
All data in all version-enabled tables in workspace is merged to the parent
workspace of workspace , and workspace is removed if remove_workspace is
TRUE.

While this procedure is executing, the current workspace is frozen in NO_ACCESS
mode and the parent workspace is frozen in READ_ONLY mode, as explained in
Oracle9i Application Developer’s Guide - Workspace Manager.

If there are conflicts between the workspace being merged and its parent
workspace, the merge operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in Oracle9i
Application Developer’s Guide - Workspace Manager.)

If the remove_workspace parameter value is TRUE, the workspace to be merged
must be a leaf workspace, that is, a workspace with no descendant workspaces. (For

create_savepoint A Boolean value (TRUE or FALSE).

TRUE creates an implicit savepoint in the parent workspace before the
merge operation. (Implicit and explicit savepoints are described in
Oracle9i Application Developer’s Guide - Workspace Manager.)

FALSE (the default) does not create an implicit savepoint in the parent
workspace before the merge operation.

remove_workspace A Boolean value (TRUE or FALSE).

TRUE removes workspace after the merge operation.

FALSE (the default) does not remove workspace after the merge
operation; the workspace continues to exist.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an
autonomous database transaction that will be committed when it
finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Oracle9i Application Developer’s Guide - Workspace
Manager.

Table 80–28 MergeWorkspace Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-53

RecoverAllMigratingTables Procedure
an explanation of workspace hierarchy, see Oracle9i Application Developer’s Guide -
Workspace Manager.)

An exception is raised if the user does not have the MERGE_WORKSPACE privilege
for workspace or the MERGE_ANY_WORKSPACE privilege.

Examples
The following example merges changes in NEWWORKSPACE to its parent workspace
and removes (by default) NEWWORKSPACE.

EXECUTE DBMS_WM.MergeWorkspace (‘NEWWORKSPACE’);

RecoverAllMigratingTables Procedure
Attempts to complete the migration process on all tables that were left in an
inconsistent state after the Workspace Manager migration procedure failed.

Syntax
DBMS_WM.RecoverAllMigratingTables(

[, ignore_last_error IN BOOLEAN DEFAULT FALSE]);

Parameters

Usage Notes
If an error occurs while you are upgrading to the current Workspace Manager
release, one or more version-enabled tables can be left in an inconsistent state. (For
information about upgrading to the current release, see Oracle9i Application
Developer’s Guide - Workspace Manager.) If the upgrade procedure fails, you should
try to fix the cause of the error (examine the USER_WM_VT_ERRORS or ALL_WM_VT_

Table 80–29 RecoverAllMigratingTables Procedure Parameters

Parameter Description

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the migration process.
Information about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in Oracle9i
Application Developer’s Guide - Workspace Manager. (See the Usage Notes for
more information.)

FALSE (the default) does not ignore the last error, if any, that occurred during
the migration process.
80-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
ERRORS metadata view to see the SQL statement and error message), and then call
the RecoverMigratingTable Procedure (for a single table) or
RecoverAllMigratingTables Procedure (for all tables) with the default ignore_
last_error parameter value of FALSE, to try to complete the upgrade process.

However, if the call still fails and you cannot fix the cause of the error, and if you are
sure that it is safe and appropriate to ignore this error, then you have the option to
ignore the error by calling the RecoverMigratingTable Procedure or
RecoverAllMigratingTables Procedure with the ignore_last_error parameter
value of TRUE. Note that you are responsible for ensuring that it is safe and
appropriate to ignore the error.

Examples
The following example attempts to recover all version-enabled tables that were left
in an inconsistent state when the upgrade procedure failed.

EXECUTE DBMS_WM.RecoverAllMigratingTables;

The following example attempts to recover all version-enabled tables that were left
in an inconsistent state when the upgrade procedure failed, and it ignores the last
error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverAllMigratingTables(TRUE);

RecoverMigratingTable Procedure
Attempts to complete the migration process on a table that was left in an
inconsistent state after the Workspace Manager migration procedure failed.

Syntax
DBMS_WM.RecoverMigratingTable(

table_name IN VARCHAR2
[, ignore_last_error IN BOOLEAN DEFAULT FALSE]);

Parameters

Table 80–30 RecoverMigratingTable Procedure Parameters

Parameter Description

table_name Name of the version-enabled table to be recovered from the migration error.
The name is not case sensitive.
DBMS_WM 80-55

RecoverMigratingTable Procedure
Usage Notes
If an error occurs while you are upgrading to the current Workspace Manager
release, one or more version-enabled tables can be left in an inconsistent state. (For
information about upgrading to the current release, see Oracle9i Application
Developer’s Guide - Workspace Manager.) If the upgrade procedure fails, you should
try to fix the cause of the error (examine the USER_WM_VT_ERRORS or ALL_WM_VT_
ERRORS metadata view to see the SQL statement and error message), and then call
the RecoverMigratingTable Procedure (for a single table) or
RecoverAllMigratingTables Procedure (for all tables) with the default ignore_
last_error parameter value of FALSE, to try to complete the upgrade process.

However, if the call still fails and you cannot fix the cause of the error, and if you are
sure that it is safe and appropriate to ignore this error, then you have the option to
ignore the error by calling the RecoverMigratingTable Procedure or
RecoverAllMigratingTables Procedure with the ignore_last_error parameter
value of TRUE. Note that you are responsible for ensuring that it is safe and
appropriate to ignore the error.

An exception is raised if table_name does not exist or is not version-enabled.

Examples
The following example attempts to recover the COLA_MARKETING_BUDGET table
from the error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverMigratingTable('COLA_MARKETING_BUDGET');

The following example attempts to recover the COLA_MARKETING_BUDGET table
and ignores the last error that caused the upgrade procedure to fail.

EXECUTE DBMS_WM.RecoverMigratingTable('COLA_MARKETING_BUDGET', TRUE);

ignore_
last_error

A Boolean value (TRUE or FALSE).

TRUE ignores the last error, if any, that occurred during the migration process.
Information about the last error is stored in the USER_WM_VT_ERRORS and
ALL_WM_VT_ERRORS metadata views, which are described in Oracle9i
Application Developer’s Guide - Workspace Manager. (See the Usage Notes for
more information.)

FALSE (the default) does not ignore the last error, if any, that occurred during
the migration process.

Table 80–30 RecoverMigratingTable Procedure Parameters (Cont.)

Parameter Description
80-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
RefreshTable Procedure
Applies to a workspace all changes made to a table (all rows or as specified in the
WHERE clause) in its parent workspace.

Syntax
DBMS_WM.RefreshTable(

workspace IN VARCHAR2,
table_id IN VARCHAR2
[, where_clause IN VARCHAR2 DEFAULT ’’]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
This procedure applies to workspace all changes in rows that satisfy the where_
clause in the version-enabled table table_id in the parent workspace since the
time when workspace was created or last refreshed.

Table 80–31 RefreshTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing the rows to be refreshed using values from
the parent workspace. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be refreshed from the parent workspace. Example: ’department_id =
20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are refreshed.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-57

RefreshWorkspace Procedure
If there are conflicts between the workspace being refreshed and its parent
workspace, the refresh operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in Oracle9i
Application Developer’s Guide - Workspace Manager.)

A table cannot be refreshed in the LIVE workspace (because that workspace has no
parent workspace).

A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

An exception is raised if the user does not have access to table_id , or if the user
does not have the MERGE_WORKSPACE privilege for workspace or the MERGE_
ANY_WORKSPACE privilege.

Examples
The following example refreshes NEWWORKSPACE by applying changes made to the
EMPLOYEES table where last_name = ’Smith’ in its parent workspace.

EXECUTE DBMS_WM.RefreshTable (’NEWWORKSPACE’, ’employees’, ’last_name =
’’Smith’’’);

RefreshWorkspace Procedure
Applies to a workspace all changes made in its parent workspace.

Syntax
DBMS_WM.RefreshWorkspace(

workspace IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–32 RefreshWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
This procedure applies to workspace all changes made to version-enabled tables in
the parent workspace since the time when workspace was created or last
refreshed.

If there are conflicts between the workspace being refreshed and its parent
workspace, the refresh operation fails and the user must manually resolve conflicts
using the <table_name>_CONF view. (Conflict resolution is explained in Oracle9i
Application Developer’s Guide - Workspace Manager.)

The specified workspace and the parent workspace are frozen in READ_ONLY mode,
as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

The LIVE workspace cannot be refreshed (because it has no parent workspace).

An exception is raised if the user does not have the MERGE_WORKSPACE privilege
for workspace or the MERGE_ANY_WORKSPACE privilege.

Examples
The following example refreshes NEWWORKSPACE by applying changes made in its
parent workspace.

EXECUTE DBMS_WM.RefreshWorkspace (‘NEWWORKSPACE’);

RelocateWriterSite Procedure
Makes one of the nonwriter sites the new writer site in a Workspace Manager
replication environment. (The old writer site becomes one of the nonwriter sites.)

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.

Table 80–32 RefreshWorkspace Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-59

RelocateWriterSite Procedure
Syntax
DBMS_WM.RelocateWriterSite(

newwritersite IN VARCHAR2,
oldwritersiteavailable IN BOOLEAN);

Parameters

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Oracle9i Application Developer’s Guide - Workspace
Manager. You must also understand the major Oracle replication concepts and
techniques, which are documented in Oracle9i Replication and Oracle9i Replication
Management API Reference.

You must execute this procedure as the replication administrator user. You can
execute it at any master site.

You should specify the oldwritersiteavailable parameter as TRUE if the old
writer site is currently available. If you specify the oldwritersiteavailable
parameter as FALSE, you must execute the SynchronizeSite Procedure after the old
writer site becomes available, to bring that site up to date.

This procedure performs the following operations:

� If oldwritersiteavailable is TRUE, disables workspace operations and
DML and DDL operations for all version-enabled tables on the old writer site.

� Enables workspace operations and DML and DDL operations for all
version-enabled tables on the new writer site.

Table 80–33 RelocateWriterSite Procedure Parameters

Parameter Description

newwritersite Name of a current nonwriter site names (database link) to be
made the new writer site in the Workspace Manager
replication environment.

oldwritersiteavailable A Boolean value (TRUE or FALSE).

TRUE causes the old writer site to be updated to reflect the fact
that the writer site has changed.

FALSE causes the old writer site not to be updated to reflect the
fact that the writer site has changed. In this case, you must use
the SynchronizeSite Procedure when the old writer site
becomes available.
80-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� Invokes replication API procedures to relocate the master definition site to
newwritersite for the main master group and for the master groups for all
the version-enabled tables.

Examples
The following example relocates the writer site for the Workspace Manager
environment to BACKUP-SITE1 at a hypothetical company.

DBMS_WM.RelocateWriterSite(
newwritersite => ‘BACKUP-SITE1.ACME.COM’);
oldwritersiteavailable => TRUE);

RemoveWorkspace Procedure
Discards all row versions associated with a workspace and deletes the workspace.

Syntax
DBMS_WM.RemoveWorkspace(

workspace IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
The RemoveWorkspace operation can only be performed on leaf workspaces (the
bottom-most workspaces in a branch in the hierarchy). For an explanation of

Table 80–34 RemoveWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-61

RemoveWorkspaceTree Procedure
database workspace hierarchy, see Oracle9i Application Developer’s Guide - Workspace
Manager.

There must be no other users in the workspace being removed.

An exception is raised if the user does not have the REMOVE_WORKSPACE privilege
for workspace or the REMOVE_ANY_WORKSPACE privilege.

Examples
The following example removes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.RemoveWorkspace(’NEWWORKSPACE’);

RemoveWorkspaceTree Procedure
Discards all row versions associated with a workspace and its descendant
workspaces, and deletes the affected workspaces.

Syntax
DBMS_WM.RemoveWorkspaceTree(

workspace IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
The RemoveWorkspaceTree operation should be used with extreme caution,
because it removes support structures and rolls back changes in a workspace and all

Table 80–35 RemoveWorkspaceTree Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
80-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
its descendants down to the leaf workspace or workspaces. For an explanation of
database workspace hierarchy, see Oracle9i Application Developer’s Guide - Workspace
Manager.

There must be no other users in workspace or any of its descendant workspaces.

An exception is raised if the user does not have the REMOVE_WORKSPACE privilege
for workspace or any of its descendant workspaces.

Examples
The following example removes the NEWWORKSPACE workspace and all its
descendant workspaces.

EXECUTE DBMS_WM.RemoveWorkspaceTree(’NEWWORKSPACE’);

ResolveConflicts Procedure
Resolves conflicts between workspaces.

Syntax
DBMS_WM.ResolveConflicts(

workspace IN VARCHAR2,
table_name IN VARCHAR2,
where_clause IN VARCHAR2,
keep IN VARCHAR2);

Parameters

Table 80–36 ResolveConflicts Procedure Parameters

Parameter Description

workspace Name of the workspace to check for conflicts with other workspaces. The
name is case sensitive.

table_name Name of the table to check for conflicts. The name is not case sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be refreshed from the parent workspace. Example: ’department_id =
20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.
DBMS_WM 80-63

ResolveConflicts Procedure
Usage Notes
This procedure checks the condition identified by table_name and where_
clause , and it finds any conflicts between row values in workspace and its parent
workspace. This procedure resolves conflicts by using the row values in the parent
or child workspace, as specified in the keep parameter; however, the conflict
resolution is not actually merged until you commit the transaction (standard
database commit operation) and call the CommitResolve Procedure to end the
conflict resolution session. (For more information about conflict resolution,
including an overall view of the process, see Oracle9i Application Developer’s Guide -
Workspace Manager.)

For example, assume that for Department 20 (DEPARTMENT_ID = 20), the
MANAGER_NAME in the LIVE and Workspace1 workspaces is Tom. Then, the
following operations occur:

1. The manager_name for Department 20 is changed in the LIVE database
workspace from Tom to Mary.

2. The change is committed (a standard database commit operation).

3. The manager_name for Department 20 is changed in Workspace1 from Tom to
Franco .

4. The MergeWorkspace Procedure is called to merge Workspace1 changes to the
LIVE workspace.

keep Workspace in favor of which to resolve conflicts: PARENT, CHILD, or BASE.

PARENT causes the parent workspace rows to be copied to the child
workspace.

CHILD does not cause the child workspace rows to be copied immediately
to the parent workspace. However, the conflict is considered resolved, and
the child workspace rows are copied to the parent workspace when the
child workspace is merged.

BASE causes the base rows to be copied to the child workspace but not to
the parent workspace. However, the conflict is considered resolved; and
when the child workspace is merged, the base rows are copied to the
parent workspace. Note that BASE is ignored for insert-insert conflicts
where a base row does not exist; in this case the keep parameter value
must be PARENT or CHILD.

Table 80–36 ResolveConflicts Procedure Parameters (Cont.)

Parameter Description
80-64 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
At this point, however, a conflict exists with respect to MANAGER_NAME for
Department 20 in Workspace1 (Franco , which conflicts with Mary in the
LIVE workspace), and therefore the call to MergeWorkspace Procedure does
not succeed.

5. The ResolveConflicts procedure is called with the following parameters:
(’Workspace1’ , ’department’ , ’department_id = 20’ , ’child’).

After the MergeWorkspace Procedure operation in step 7, the MANAGER_NAME
value will be Franco in both the Workspace1 and LIVE workspaces.

6. The change is committed (a standard database commit operation).

7. The MergeWorkspace Procedure is called to merge Workspace1 changes to the
LIVE workspace.

For more information about conflict resolution, see Oracle9i Application Developer’s
Guide - Workspace Manager.

Examples
The following example resolves conflicts involving rows in the DEPARTMENT table
in Workspace1 where DEPARTMENT_ID is 20, and uses the values in the child
workspace to resolve all such conflicts. It then merges the results of the conflict
resolution by first committing the transaction (standard commit) and then calling
the MergeWorkspace Procedure.

EXECUTE DBMS_WM.BeginResolve (’Workspace1’);
EXECUTE DBMS_WM.ResolveConflicts (’Workspace1’, ’department’, ’department_id =
20’, ’child’);
COMMIT;
EXECUTE DBMS_WM.CommitResolve (’Workspace1’);

RevokeSystemPriv Procedure
Revokes (removes) system-level privileges from users and roles.

Syntax
DBMS_WM.RevokeSystemPriv(

priv_types IN VARCHAR2,
grantee IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);
DBMS_WM 80-65

RevokeSystemPriv Procedure
Parameters

Usage Notes
Contrast this procedure with the RevokeWorkspacePriv Procedure, which revokes
workspace-level Workspace Manager privileges with keywords in the form xxx_
WORKSPACE (ACCESS_WORKSPACE, MERGE_WORKSPACE, and so on).

To grant system-level privileges, use the GrantSystemPriv Procedure.

An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You were not the grantor of priv_types to grantee .

Examples
The following example disallows user Smith from accessing workspaces and
merging changes in workspaces.

EXECUTE DBMS_WM.RevokeSystemPriv (‘ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE’,
‘Smith’);

Table 80–37 RevokeSystemPriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Oracle9i Application
Developer’s Guide - Workspace Manager discusses Workspace Manager
privileges.) Use commas to separate privilege keywords. The available
keywords are ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE,
CREATE_ANY_WORKSPACE, REMOVE_ANY_WORKSPACE, and ROLLBACK_
ANY_WORKSPACE.

grantee Name of the user (can be the PUBLIC user group) or role from which to
revoke priv_types .

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
80-66 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
RevokeWorkspacePriv Procedure
Revokes (removes) workspace-level privileges from users and roles for a specified
workspace.

Syntax
DBMS_WM.RevokeWorkspacePriv(

priv_types IN VARCHAR2,
workspace IN VARCHAR2,
grantee IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
Contrast this procedure with the RevokeSystemPriv Procedure, which revokes
system-level Workspace Manager privileges with keywords in the form xxx_ANY_
WORKSPACE (ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, and so on).

To grant workspace-level privileges, use the GrantWorkspacePriv Procedure.

Table 80–38 RevokeWorkspacePriv Procedure Parameters

Parameter Description

priv_types A string of one or more keywords representing privileges. (Oracle9i Application
Developer’s Guide - Workspace Manager discusses Workspace Manager
privileges.) Use commas to separate privilege keywords. The available
keywords are ACCESS_WORKSPACE, MERGE_WORKSPACE, CREATE_
WORKSPACE, REMOVE_WORKSPACE, and ROLLBACK_WORKSPACE.

workspace Name of the workspace. The name is case sensitive.

grantee Name of the user (can be the PUBLIC user group) or role from which to
revoke priv_types .

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-67

RollbackDDL Procedure
An exception is raised if one or more of the following apply:

� grantee is not a valid user or role in the database.

� You were not the grantor of priv_types to grantee .

Examples
The following example disallows user Smith from accessing the NEWWORKSPACE
workspace and merging changes in that workspace.

EXECUTE DBMS_WM.RevokeWorkspacePriv (‘ACCESS_WORKSPACE, MERGE_WORKSPACE’,
‘NEWWORKSPACE’, ‘Smith’);

RollbackDDL Procedure
Rolls back (cancels) DDL (data definition language) changes made during a DDL
session for a specified table, and ends the DDL session.

Syntax
DBMS_WM.RollbackDDL(

table_name IN VARCHAR2);

Parameters

Usage Notes
This procedure rolls back (cancels) changes that were made to a version-enabled
table and to any indexes and triggers based on the version-enabled table during a
DDL session. It also deletes the special <table-name>_LTS table that had been created
by the BeginDDL Procedure.

For detailed information about performing DDL operations related to
version-enabled tables and about DDL operations on version-enabled tables in an
Oracle replication environment, see Oracle9i Application Developer’s Guide - Workspace
Manager.

An exception is raised if one or more of the following apply:

Table 80–39 RollbackDDL Procedure Parameters

Parameter Description

table_name Name of the version-enabled table. The name is not case sensitive.
80-68 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� table_name does not exist or is not version-enabled.

� An open DDL session does not exist for table_name . (That is, the BeginDDL
Procedure has not been called specifying this table, or the CommitDDL
Procedure or RollbackDDL Procedure was already called specifying this table.)

Examples
The following example begins a DDL session, adds a column named COMMENTS to
the COLA_MARKETING_BUDGET table by using the special table named COLA_
MARKETING_BUDGET_LTS, and ends the DDL session by canceling the change.

EXECUTE DBMS_WM.BeginDDL('COLA_MARKETING_BUDGET');
ALTER TABLE cola_marketing_budget_lts ADD (comments VARCHAR2(100));
EXECUTE DBMS_WM.RollbackDDL('COLA_MARKETING_BUDGET');

RollbackResolve Procedure
Quits a conflict resolution session and discards all changes in the workspace since
the BeginResolve Procedure was executed.

Syntax
DBMS_WM.RollbackResolve(

workspace IN VARCHAR2);

Parameters

Usage Notes
This procedure quits the current conflict resolution session (started by the
BeginResolve Procedure), and discards all changes in the workspace since the start
of the conflict resolution session. Contrast this procedure with the CommitResolve
Procedure, which saves all changes.

While the conflict resolution session is being rolled back, the workspace is frozen in
1WRITER mode, as explained in Oracle9i Application Developer’s Guide - Workspace
Manager.

Table 80–40 RollbackResolve Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
DBMS_WM 80-69

RollbackTable Procedure
For more information about conflict resolution, see Oracle9i Application Developer’s
Guide - Workspace Manager.

An exception is raised if one or more of the following apply:

� There are one or more open database transactions in workspace .

� The procedure was called by a user that does not have the WM_ADMIN_ROLE
role or that did not execute the BeginResolve Procedure on workspace .

Examples
The following example quits the conflict resolution session in Workspace1 and
discards all changes.

EXECUTE DBMS_WM.RollbackResolve (’Workspace1’);

RollbackTable Procedure
Discards all changes made in the workspace to a specified table (all rows or as
specified in the WHERE clause).

Syntax
DBMS_WM.RollbackTable(

workspace IN VARCHAR2,
table_id IN VARCHAR2,
[, sp_name IN VARCHAR2 DEFAULT ’’]
[, where_clause IN VARCHAR2 DEFAULT ’’]
[, remove_locks IN BOOLEAN DEFAULT TRUE]
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–41 RollbackTable Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

table_id Name of the table containing rows to be discarded. The name is not case
sensitive.

sp_name Name of the savepoint to which to roll back. The name is case sensitive.
The default is to discard all changes (that is, ignore any savepoints).
80-70 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Usage Notes
You cannot roll back to a savepoint if any implicit savepoints have been created
since the specified savepoint, unless you first merge or remove the descendant
workspaces that caused the implicit savepoints to be created.

An exception is raised if one or more of the following apply:

� workspace does not exist.

� You do not have the privilege to roll back workspace or any affected table.

� A database transaction affecting table_id is open in workspace .

Examples
The following example rolls back all changes made to the EMP table (in the USER3
schema) in the NEWWORKSPACE workspace since that workspace was created.

EXECUTE DBMS_WM.RollbackTable (’NEWWORKSPACE’, ’user3.emp’);

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be discarded. Example: ’department_id = 20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows that meet the criteria of the
other parameters are discarded.

remove_locks A Boolean value (TRUE or FALSE).

TRUE (the default) releases those locks on rows in the parent workspace
that satisfy the condition in where_clause and that were not versioned in
the child workspace. This option has no effect if a savepoint is specified
(sp_name parameter).

FALSE does not release any locks in the parent workspace.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information,
see Oracle9i Application Developer’s Guide - Workspace Manager.

Table 80–41 RollbackTable Procedure Parameters (Cont.)

Parameter Description
DBMS_WM 80-71

RollbackToSP Procedure
RollbackToSP Procedure
Discards all data changes made in the workspace to version-enabled tables since the
specified savepoint.

Syntax
DBMS_WM.RollbackToSP(

workspace IN VARCHAR2,
savepoint_name IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Usage Notes
While this procedure is executing, the workspace is frozen in NO_ACCESS mode.

Contrast this procedure with the RollbackWorkspace Procedure, which rolls back all
changes made since the creation of the workspace.

You cannot roll back to a savepoint if any implicit savepoints have been created
since the specified savepoint, unless you first merge or remove the descendant
workspaces that caused the implicit savepoints to be created.

An exception is raised if one or more of the following apply:

� workspace does not exist.

Table 80–42 RollbackToSP Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

savepoint_name Name of the savepoint to which to roll back changes. The name is case
sensitive.

auto_commit A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database
transaction, the operation is executed in a new database transaction. In
either case, the caller is responsible for committing the transaction. For
more information, see Oracle9i Application Developer’s Guide - Workspace
Manager.
80-72 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
� savepoint_name does not exist.

� One or more implicit savepoints have been created in workspace after
savepoint_name , and the descendant workspaces that caused the implicit
savepoints to be created still exist.

� You do not have the privilege to roll back workspace or any affected table.

� Any sessions are in workspace .

Examples
The following example rolls back any changes made in the NEWWORKSPACE
workspace to all tables since the creation of Savepoint1 .

EXECUTE DBMS_WM.RollbackToSP (’NEWWORKSPACE’, ’Savepoint1’);

RollbackWorkspace Procedure
Discards all data changes made in the workspace to version-enabled tables.

Syntax
DBMS_WM.RollbackWorkspace(

workspace IN VARCHAR2
[, auto_commit IN BOOLEAN DEFAULT TRUE]);

Parameters

Table 80–43 RollbackWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.

auto_
commit

A Boolean value (TRUE or FALSE).

TRUE (the default) causes the operation to be executed as an autonomous
database transaction that will be committed when it finishes.

FALSE causes the operation to be executed as part of the caller’s open
database transaction (if one exists). If there is no open database transaction,
the operation is executed in a new database transaction. In either case, the
caller is responsible for committing the transaction. For more information, see
Oracle9i Application Developer’s Guide - Workspace Manager.
DBMS_WM 80-73

SetConflictWorkspace Procedure
Usage Notes
Only leaf workspaces can be rolled back. That is, a workspace cannot be rolled back
if it has any descendant workspaces. (For an explanation of workspace hierarchy,
see Oracle9i Application Developer’s Guide - Workspace Manager.)

Contrast this procedure with the RollbackToSP Procedure, which rolls back changes
to a specified savepoint.

Like the RemoveWorkspace Procedure, RollbackWorkspace deletes the data in the
workspace; however, unlike the RemoveWorkspace Procedure, RollbackWorkspace
does not delete the Workspace Manager workspace structure.

While this procedure is executing, the specified workspace is frozen in NO_ACCESS
mode, as explained in Oracle9i Application Developer’s Guide - Workspace Manager.

An exception is raised if one or more of the following apply:

� workspace has any descendant workspaces.

� workspace does not exist.

� You do not have the privilege to roll back workspace or any affected table.

� Any sessions are in workspace .

Examples
The following example rolls back any changes made in the NEWWORKSPACE
workspace since that workspace was created.

EXECUTE DBMS_WM.RollbackWorkspace (’NEWWORKSPACE’);

SetConflictWorkspace Procedure
Determines whether or not conflicts exist between a workspace and its parent.

Syntax
DBMS_WM.SetConflictWorkspace(

workspace IN VARCHAR2);
80-74 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
This procedure checks for any conflicts between workspace and its parent
workspace, and it modifies the content of the <table_name>_CONF views
(explained in Oracle9i Application Developer’s Guide - Workspace Manager) as needed.

A SELECT operation from the <table_name>_CONF views for all tables modified in
a workspace displays all rows in the workspace that are in conflict with the parent
workspace. (To obtain a list of tables that have conflicts for the current conflict
workspace setting, use the SQL statement SELECT * FROM ALL_WM_
VERSIONED_TABLES WHERE conflict = ’YES’; . The SQL statement SELECT
* FROM <table_name>_CONF displays conflicts for <table_name> between the
current workspace and its parent workspace.)

Any conflicts must be resolved before a workspace can be merged or refreshed. To
resolve a conflict, you must use the ResolveConflicts Procedure (and then merge the
result of the resolution by using the MergeWorkspace Procedure).

Examples
The following example checks for any conflicts between B_focus_2 and its parent
workspace, and modifies the contents of the <table_name>_CONF views as needed.

EXECUTE DBMS_WM.SetConflictWorkspace ('B_focus_2');

SetDiffVersions Procedure
Finds differences in values in version-enabled tables for two savepoints and their
common ancestor (base). It modifies the contents of the differences views that
describe these differences.

Syntax
DBMS_WM.SetDiffVersions(

workspace1 IN VARCHAR2,
workspace2 IN VARCHAR2);

Table 80–44 SetConflictWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
DBMS_WM 80-75

SetDiffVersions Procedure
or

DBMS_WM.SetDiffVersions(
workspace1 IN VARCHAR2,
savepoint1 IN VARCHAR2,
workspace2 IN VARCHAR2,
savepoint2 IN VARCHAR2);

Parameters

Usage Notes
This procedure modifies the contents of the differences views (xxx_DIFF), which are
described in Oracle9i Application Developer’s Guide - Workspace Manager. Each call to
the procedure populates one or more sets of three rows, each set consisting of:

� Values for the common ancestor

� Values for workspace1 (savepoint1 or LATEST savepoint values)

� Values for workspace2 (savepoint2 or LATEST savepoint values)

You can then select rows from the appropriate xxx_DIFF view or views to check
comparable table values in the two savepoints and their common ancestor. The
common ancestor (or base) is identified as DiffBase in xxx_DIFF view rows.

Table 80–45 SetDiffVersions Procedure Parameters

Parameter Description

workspace1 Name of the first workspace to be checked for differences in version-enabled
tables. The name is case sensitive.

savepoint1 Name of the savepoint in workspace1 for which values are to be checked.
The name is case sensitive.

If savepoint1 and savepoint2 are not specified, the rows in
version-enabled tables for the LATEST savepoint in each workspace are
checked. (The LATEST savepoint is explained in Oracle9i Application
Developer’s Guide - Workspace Manager.)

workspace2 Name of the second workspace to be checked for differences in
version-enabled tables. The name is case sensitive.

savepoint2 Name of the savepoint in workspace2 for which values are to be checked.
The name is case sensitive.
80-76 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Examples
The following example checks the differences in version-enabled tables for the B_
focus_1 and B_focus_2 workspaces. (The output has been reformatted for
readability.)

SQL> -- Add rows to difference view: COLA_MARKETING_BUDGET_DIFF
SQL> EXECUTE DBMS_WM.SetDiffVersions ('B_focus_1', 'B_focus_2');

SQL> -- View the rows that were just added.
SQL> SELECT * from COLA_MARKETING_BUDGET_DIFF;

PRODUCT_ID PRODUCT_NAME MANAGER BUDGET WM_DIFFVER WMCODE
---------- ------------ ------- ------ ----------- --------

1 cola_a Alvarez 2 DiffBase NC
1 cola_a Alvarez 1.5 B_focus_1, LATEST U
1 cola_a Alvarez 2 B_focus_2, LATEST NC
2 cola_b Burton 2 DiffBase NC
2 cola_b Beasley 3 B_focus_1, LATEST U
2 cola_b Burton 2.5 B_focus_2, LATEST U
3 cola_c Chen 1.5 DiffBase NC
3 cola_c Chen 1 B_focus_1, LATEST U
3 cola_c Chen 1.5 B_focus_2, LATEST NC
4 cola_d Davis 3.5 DiffBase NC
4 cola_d Davis 3 B_focus_1, LATEST U
4 cola_d Davis 2.5 B_focus_2, LATEST U

12 rows selected.

 Oracle9i Application Developer’s Guide - Workspace Manager explains how to interpret
and use the information in the differences (xxx_DIFF) views.

SetLockingOFF Procedure
Disables Workspace Manager locking for the current session.

Syntax
DBMS_WM.SetLockingOFF();

Parameters
None.
DBMS_WM 80-77

SetLockingON Procedure
Usage Notes
This procedure turns off Workspace Manager locking that had been set on by the
SetLockingON Procedure. Existing locks applied by this session remain locked. All
new changes by this session are not locked.

Examples
The following example sets locking off for the session.

EXECUTE DBMS_WM.SetLockingOFF;

SetLockingON Procedure
Enables Workspace Manager locking for the current session.

Syntax
DBMS_WM.SetLockingON(

lockmode IN VARCHAR2);

Parameters

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle server locking. Workspace Manager locks can be used to prevent
conflicts. When a user locks a row, the corresponding row in the parent workspace

Table 80–46 SetLockingON Procedure Parameters

Parameter Description

lockmode Locking mode. Must be E, S, or C.

E (exclusive) mode locks the rows in the previous version and the
corresponding rows in the current version; no other users in the workspace for
either version can change any values.

S (shared) mode locks the rows in the previous version and the corresponding
rows in the current version; however, other users in the workspace for the
current version (but no users in the workspace for the previous version) can
change values in these rows.

C (carry-forward) mode locks rows in the current workspace with the same
locking mode as the corresponding rows in the previous version. (If a row is
not locked in the previous version, its corresponding row in the current
version is not locked.)
80-78 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
is also locked. Thus, when this workspace merges with the parent at merge time, it
is guaranteed that this row will not have a conflict.

Exclusive locking prevents the use of what-if scenarios in which different values for
one or more columns are tested. Thus, plan any testing of scenarios when exclusive
locking is not in effect.

Locking is enabled at the user session level, and the locking mode stays in effect
until any of the following occurs:

� The session goes to another workspace or connects to the database, in which
case the locking mode is set to C (carry-forward) unless another locking mode
has been specified using the SetWorkspaceLockModeON Procedure.

� The session executes the SetLockingOFF Procedure.

The locks remain in effect for the duration of the workspace, unless unlocked by the
UnlockRows Procedure. (Existing locks are not affected by the SetLockingOFF
Procedure.)

There are no specific privileges associated with locking. Any session that can go to a
workspace can set locking on.

Examples
The following example sets exclusive locking on for the session.

EXECUTE DBMS_WM.SetLockingON ('E');

All rows locked by this user remain locked until the workspace is merged or rolled
back.

SetMultiWorkspaces Procedure
Makes the specified workspace or workspaces visible in the multiworkspace views
for version-enabled tables.

Syntax
DBMS_WM.SetMultiWorkspaces(

workspaces IN VARCHAR2);
DBMS_WM 80-79

SetWoOverwriteOFF Procedure
Parameters

Usage Notes
This procedure adds rows to the multiworkspace views (xxx_MW). See Oracle9i
Application Developer’s Guide - Workspace Manager for information about the contents
and uses of these views.

To see the names of workspaces visible in the multiworkspace views, use the
GetMultiWorkspaces Function.

An exception is raised if one or more of the following apply:

� The user does not have the privilege to go to one or more of the workspaces
named in workspaces .

� A workspace named in workspaces is not valid.

Examples
The following example adds information to the multiworkspace views for
version-enabled tables in the B_focus_1 workspace.

SQL> EXECUTE DBMS_WM.SetMultiWorkspaces ('B_focus_1');

SetWoOverwriteOFF Procedure
Disables the VIEW_WO_OVERWRITE history option that had been enabled by the
EnableVersioning Procedure or SetWoOverwriteON Procedure, changing the option
to VIEW_W_OVERWRITE (with overwrite).

Syntax
DBMS_WM.SetWoOverwriteOFF();

Table 80–47 SetMultiWorkspaces Procedure Parameters

Parameter Description

workspaces The workspace or workspaces for which information is to be added to the
multiworkspace views (described in Oracle9i Application Developer’s Guide -
Workspace Manager). The workspace names are case sensitive.

To specify more than one workspace (but no more than eight), use a comma to
separate workspace names. For example: 'workspace1,workspace2'
80-80 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters
None.

Usage Notes
This procedure affects the recording of history information in the views named
<table_name>_HIST by changing the VIEW_WO_OVERWRITE option to VIEW_W_
OVERWRITE. That is, from this point forward, the views show only the most recent
modifications to the same version of the table. A history of modifications to the
version is not maintained; that is, subsequent changes to a row in the same version
overwrite earlier changes.

This procedure affects only tables that were version-enabled with the hist
parameter set to VIEW_WO_OVERWRITE in the call to the EnableVersioning
Procedure.

The <table_name>_HIST views are described in Oracle9i Application Developer’s
Guide - Workspace Manager. The VIEW_WO_OVERWRITE and VIEW_W_OVERWRITE
options are further described in the description of the EnableVersioning Procedure.

The history option affects the behavior of the GotoDate Procedure. See the Usage
Notes for that procedure.

The result of the SetWoOverwriteOFF procedure remains in effect only for the
duration of the current session. To reverse the effect of this procedure, use the
SetWoOverwriteON Procedure.

Examples
The following example disables the VIEW_WO_OVERWRITE history option.

EXECUTE DBMS_WM.SetWoOverwriteOFF;

SetWoOverwriteON Procedure
Enables the VIEW_WO_OVERWRITE history option that had been disabled by the
SetWoOverwriteOFF Procedure.

Syntax
DBMS_WM.SetWoOverwriteON();

Parameters
None.
DBMS_WM 80-81

SetWorkspaceLockModeOFF Procedure
Usage Notes
This procedure affects the recording of history information in the views named
<table_name>_HIST by changing the VIEW_W_OVERWRITE option to VIEW_WO_
OVERWRITE (without overwrite). That is, from this point forward, the views show all
modifications to the same version of the table. A history of modifications to the
version is maintained; that is, subsequent changes to a row in the same version do
not overwrite earlier changes.

This procedure affects only tables that were affected by a previous call to the
SetWoOverwriteOFF Procedure.

The <table_name>_HIST views are described in Oracle9i Application Developer’s
Guide - Workspace Manager. The VIEW_WO_OVERWRITE and VIEW_W_OVERWRITE
options are further described in the description of the EnableVersioning Procedure.

The VIEW_WO_OVERWRITE history option can be overridden when a workspace is
compressed by specifying the compress_view_wo_overwrite parameter as
TRUE with the CompressWorkspace Procedure or CompressWorkspaceTree
Procedure.

The history option affects the behavior of the GotoDate Procedure. See the Usage
Notes for that procedure.

To reverse the effect of this procedure, use the SetWoOverwriteOFF Procedure.

Examples
The following example enables the VIEW_WO_OVERWRITE history option.

EXECUTE DBMS_WM.SetWoOverwriteON;

SetWorkspaceLockModeOFF Procedure
Disables Workspace Manager locking for the specified workspace.

Syntax
DBMS_WM.SetWorkspaceLockModeOFF(

workspace IN VARCHAR2);
80-82 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
Parameters

Usage Notes
This procedure turns off Workspace Manager locking that had been set on by the
SetWorkspaceLockModeON Procedure. Existing locks applied by this session
remain locked. All new changes by this session or a subsequent session are not
locked, unless the session turns locking on by executing the SetLockingON
Procedure.

An exception is raised if any of the following occurs:

� The user does not have the WM_ADMIN_ROLE role or is not the owner of
workspace .

� There are any open database transactions in workspace .

� workspace is a continually refreshed workspace (see the description of the
isrefreshed parameter of the CreateWorkspace Procedure).

Examples
The following example sets locking off for the workspace named NEWWORKSPACE.

EXECUTE DBMS_WM.SetWorkspaceLockModeOFF(’NEWWORKSPACE’);

SetWorkspaceLockModeON Procedure
Enables Workspace Manager locking for the specified workspace.

Syntax
DBMS_WM.SetWorkspaceLockModeON(

workspace IN VARCHAR2,
lockmode IN VARCHAR2
[, override IN BOOLEAN DEFAULT FALSE]);

Table 80–48 SetWorkspaceLockModeOFF Procedure Parameters

Parameter Description

workspace Name of the workspace for which to set the locking mode off. The name is
case sensitive.
DBMS_WM 80-83

SetWorkspaceLockModeON Procedure
Parameters

Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle server locking. Workspace Manager locks can be used to prevent
conflicts. When a user locks a row, the corresponding row in the parent workspace
is also locked. Thus, when this workspace merges with the parent at merge time, it
is guaranteed that this row will not have a conflict.

Exclusive locking prevents the use of what-if scenarios in which different values for
one or more columns are tested. Thus, plan any testing of scenarios when exclusive
locking is not in effect.

If the override parameter value is TRUE, locking can also be enabled and disabled at
the user session level with the SetLockingON Procedure and SetLockingOFF
Procedure, respectively.

All new changes by this session or a subsequent session are locked, unless the
session turns locking off by executing the SetLockingOFF Procedure.

Table 80–49 SetWorkspaceLockModeON Procedure Parameters

Parameter Description

workspace Name of the workspace for which to enable Workspace Manager locking. The
name is case sensitive.

lockmode Default locking mode for row-level locking. Must be E, S, or C.

E (exclusive) mode locks the rows in the parent workspace and the
corresponding rows in the current workspace; no other users in either
workspace can change any values.

S (shared) mode locks the rows in the parent workspace and the
corresponding rows in the current workspace; however, other users in the
current workspace (but no users in the parent workspace) can change values
in these rows.

C (carry-forward) mode locks rows in the current workspace with the same
locking mode as the corresponding rows in the parent workspace. (If a row is
not locked in the parent workspace, its corresponding row in the child
workspace is not locked.)

override A Boolean value (TRUE or FALSE)

TRUE allows a session in the workspace to change the lockmode value by
using the SetLockingON Procedure and SetLockingOFF Procedure.

FALSE (the default) prevents a session in the workspace from changing the
lockmode value.
80-84 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
An exception is raised if any of the following occurs:

� The user does not have the WM_ADMIN_ROLE role or is not the owner of
workspace .

� There are any open database transactions in workspace .

� workspace is a continually refreshed workspace (see the description of the
isrefreshed parameter of the CreateWorkspace Procedure).

Examples
The following example sets exclusive locking on for the workspace named
NEWWORKSPACE.

EXECUTE DBMS_WM.SetWorkspaceLockModeON (’NEWWORKSPACE’, 'E');

All locked rows remain locked until the workspace is merged or rolled back.

SynchronizeSite Procedure
Brings the local site (the old writer site) up to date in the Workspace Manager
replication environment after the writer site was moved using the
RelocateWriterSite Procedure.

Syntax
DBMS_WM.SynchronizeSite(

newwritersite IN VARCHAR2);

Parameters

Usage Notes
To use this procedure, you must understand how replication applies to Workspace
Manager objects, as explained in Oracle9i Application Developer’s Guide - Workspace
Manager. You must also understand the major Oracle replication concepts and
techniques, which are documented in Oracle9i Replication and Oracle9i Replication
Management API Reference.

Table 80–50 SynchronizeSite Procedure Parameters

Parameter Description

newwritersite Name of the new writer site (database link) with which the local site
needs to be brought up to date.
DBMS_WM 80-85

UnfreezeWorkspace Procedure
You must execute this procedure as the replication administrator user.

You must execute this procedure on the old writer site if you specified the
oldwritersiteavailable parameter as FALSE when you executed the
RelocateWriterSite Procedure.

Examples
The following example brings the local system up to date with the new writer site
(BACKUP-SITE1.ACME.COM) in the Workspace Manager replication environment.

DBMS_WM.SynchronizeSite('BACKUP-SITE1.ACME.COM');

UnfreezeWorkspace Procedure
Enables access and changes to a workspace, reversing the effect of the
FreezeWorkspace Procedure.

Syntax
DBMS_WM.UnfreezeWorkspace(

workspace IN VARCHAR2);

Parameters

Usage Notes
The operation fails if any sessions are in workspace .

You can unfreeze a workspace only if one or more of the following apply:

� You are the owner of the specified workspace.

� You have the WM_ADMIN_ROLE, the FREEZE_ANY_WORKSPACE privilege, or the
FREEZE_WORKSPACE privilege for the specified workspace.

Examples
The following example unfreezes the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.UnfreezeWorkspace (’NEWWORKSPACE’);

Table 80–51 UnfreezeWorkspace Procedure Parameters

Parameter Description

workspace Name of the workspace. The name is case sensitive.
80-86 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_WM Subprograms
UnlockRows Procedure
Enables access to versioned rows in a specified table and to corresponding rows in
the parent workspace.

Syntax
DBMS_WM.UnlockRows(

workspace IN VARCHAR2,
table_name IN VARCHAR2
[, where_clause IN VARCHAR2 DEFAULT ’’]
[, all_or_user IN VARCHAR2 DEFAULT ’USER’]
[, lock_mode IN VARCHAR2 DEFAULT ’ES’]);

Parameters

Table 80–52 UnlockRows Procedure Parameters

Parameter Description

workspace Name of the workspace: locked rows in this workspace and corresponding
rows in the parent workspace will be unlocked, as specified in the
remaining parameters. The name is case sensitive.

table_name Name of the table in which rows are to be unlocked. The name is not case
sensitive.

where_clause The WHERE clause (excluding the WHERE keyword) identifying the rows to
be unlocked. Example: ’department_id = 20’

Only primary key columns can be specified in the WHERE clause. The
WHERE clause cannot contain a subquery.

If where_clause is not specified, all rows in table_name are made
accessible.

all_or_user Scope of the request: ALL or USER.

ALL: All locks accessible by the user in the specified workspace are
considered.

USER (default): Only locks owned by the user in the specified workspace
are considered.

lock_mode Locking mode: E, S, or ES.

E: Only exclusive mode locks are considered.

S: Only shared mode locks are considered.

ES (default): Both exclusive mode and shared mode locks are considered.
DBMS_WM 80-87

UnlockRows Procedure
Usage Notes
This procedure affects Workspace Manager locking, which occurs in addition to any
standard Oracle server locking. For an explanation of Workspace Manager locking,
see Oracle9i Application Developer’s Guide - Workspace Manager.

This procedure unlocks rows that had been previously locked (see the LockRows
Procedure). It does not affect whether Workspace Manager locking is set on or off
(determined by the SetLockingON Procedure and SetLockingOFF Procedure).

Examples
The following example unlocks the EMPLOYEES table where last_name =
’Smith’ in the NEWWORKSPACE workspace.

EXECUTE DBMS_WM.UnlockRows (’employees’, ’NEWWORKSPACE’, ’last_name =
’’Smith’’’);
80-88 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
81

DBMS_XDB

DBMS_XDB Package contains Resource Management and Access Control APIs for
PL/SQL.

This chapter details the following:

� Functions and Procedures of DBMS_XDB

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information
S_XDB 81-1

Description of DBMS_XDB
Description of DBMS_XDB
The DBMS_XDB package provides the PL/SQL application developer with APIs
that allow resource management in the Oracle XML DB Hierarchy, support for
Oracle XML DB's Access Control List (ACL) Security and Oracle XML DB
Configuration sessional management.

The Oracle XML DB Resource Management functionality provides Link() ,
LockResource() , GetLockToken() , UnlockResource() ,
CreateResource() , CreateFolder() , DeleteResource() , Link() and
functions. These methods complement the functionality provided by Resource
Views.

The ACL-based security mechanism can be used with either in-hierarchy ACLs
(ACLs stored via the Oracle XML DB resource API) or in-memory ACLs (that may
be stored by the user outside Oracle XML DB). Some of these methods can be used
for both Oracle XML DB resources and arbitrary database objects.

The Access Control Security functionality provides checkPrivileges() ,
getAclDocument() , changePrivileges() and getPrivileges() functions
for Oracle XML DB Resources. AclCheckPrivileges() function enables
database users access to Oracle XML DB's ACL-based Security mechanism without
having to have their objects stored in the Oracle XML DB Hierarchy.

Oracle XML DB Configuration session management provides CFG_Refresh() ,
CFG_Get() and CFG_Update() .

Functions and Procedures of DBMS_XDB

Table 81-1: Summary of Functions and Procedures of DBMS_XDB

Function/Procedure Description

getAclDocument() on page 81-3 Retrieves ACL document that protects resource given its
pathname.

getPrivileges() on page 81-4 Gets all privileges granted to the current user on the given
XDB resource.

changePrivileges() on page 81-4 Adds the given ACE to the given resource's ACL.

checkPrivileges() on page 81-5 Checks access privileges granted to the current user on the
specified XDB resource.

setacl() on page 81-6 Sets the ACL on the given XDB resource to be the ACL
specified.
81-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB
getAclDocument()
Retrieves ACL document that protects resource given its pathname; returns the
xmltype for ACL document.

Syntax
FUNCTION getAclDocument(abspath IN VARCHAR2)

RETURN sys.xmltype;

AclCheckPrivileges() on page 81-6 Checks access privileges granted to the current user by
specified ACL document on a resource whose owner is
specified by the 'owner' parameter.

LockResource() on page 81-7 Gets a WebDAV-style lock on that resource given a path to
that resource.

GetLockToken() on page 81-7 Returns that resource's lock token for the current user given a
path to a resource.

UnlockResource() on page 81-8 Unlocks the resource given a lock token and a path to the
resource.

CreateResource() on page 81-8 Creates a new resource.

CreateFolder() on page 81-9 Creates a new folder resource in the hierarchy.

DeleteResource() on page 81-10 Deletes a resource from the hierarchy.

Link() on page 81-10 Creates a link to an existing resource.

CFG_Refresh() on page 81-10 Refreshes the session's configuration information to the latest
configuration.

CFG_Get() on page 81-11 Retrieves the session's configuration information.

CFG_Update() on page 81-11 Updates the configuration information.

Parameter IN / OUT Description

abspath (IN) Pathname of the resource whose ACL doc is required.

Table 81-1: Summary of Functions and Procedures of DBMS_XDB (Cont.)

Function/Procedure Description
DBMS_XDB 81-3

getPrivileges()
getPrivileges()
Gets all privileges granted to the current user on the given XDB resource. Returns
an XMLType instance of <privilege> element, which contains the list of all leaf
privileges granted on this resource to the current user. For example,

<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd

http://xmlns.oracle.com/xdb/acl.xsd"
<read-contents/>
<read-properties/>
<resolve/>
<read-acl/>

</privilege>

Syntax
FUNCTION getPrivileges(res_path IN VARCHAR2) RETURN sys.xmltype;

changePrivileges()
Adds the given ACE to the given resource's ACL. Returns positive integer if ACL
was successfully modified. For example,

<ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dav="DAV:"
xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd

http://xmlns.oracle.com/xdb/acl.xsd
DAV:http://xmlns.oracle.com/xdb/dav.xsd"

<grant>true</grant>
<principal>SCOTT</principal>
<privilege>

<read-contents/>
<read-properties/>
<resolve/>
<dav:waste/>

</privilege>
</ace>

Parameter IN / OUT Description

res_path (IN) Absolute path in the Hierarchy of the XDB resource.
81-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB
Syntax
FUNCTION changePrivileges(res_path IN VARCHAR2,

ace IN xmltype)
RETURN pls_integer;

If no ACE with the same principal and the same operation (grant /deny) already
exists in the ACL, the new ACE is added at the end of the ACL.

checkPrivileges()
Checks access privileges granted to the current user on the specified XDB resource.
Returns positive integer if all requested privileges granted. For example, check for
<read.contents> , <read.properties> and <dav:waste> privileges using
the following <privilege> XMLType instance.

<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dav="DAV:"
xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd

http://xmlns.oracle.com/xdb/acl.xsd
DAV: http://xmlns.oracle.com/xdb/dav.xsd"

<read-contents/>
<read-properties/>
<resolve/>
<dav:waste/>

</privilege>

Syntax
FUNCTION checkPrivileges(res_path IN VARCHAR2,

privs IN xmltype)
RETURN pls_integer;

Parameter IN / OUT Description

res_path (IN) Pathname of the XDB resource for which privileges need to
be changed.

ace (IN) An XMLType instance of the <ace> element which specifies
the <principal> , the operation <grant> and the list of
privileges. See the above code example.
DBMS_XDB 81-5

setacl()
setacl()
Sets the ACL on the given XDB resource to be the ACL specified by path. The user
must have <write-acl> privileges on the resource.

Syntax
PROCEDURE setacl(res_path IN VARCHAR2,

acl_path IN VARCHAR2);

AclCheckPrivileges()
Checks access privileges granted to the current user by specified ACL document on
a resource whose owner is specified by the 'owner' parameter. Returns positive
integer if all requested privileges granted.

Syntax
FUNCTION AclCheckPrivileges(acl_path IN VARCHAR2,

owner IN VARCHAR2,
privs IN xmltype)
RETURN pls_integer;

Parameter IN / OUT Description

res_path (IN) Absolute path in the Hierarchy for XDB resource.

privs (IN) An XMLType instance of the privilege element specifying the
requested set of access privileges. See the above code
example.

Parameter IN / OUT Description

res_path (IN) Absolute path in the Hierarchy for XDB resource.

acl_path (IN) Absolute path in the Hierarchy for XDB ACL.

Parameter IN / OUT Description

acl_path (IN) Absolute path in the Hierarchy for ACL document.

owner (IN) Resource owner name; the pseudo user "DAV:owner" is
replaced by this user during ACL privilege resolution.
81-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB
LockResource()
Given a path to a resource, gets a WebDAV-style lock on that resource. Returns
TRUE if operation successful; FALSE, otherwise. The user must have UPDATE
privileges on the resource.

Syntax
FUNCTION LockResource(path IN VARCHAR2,

depthzero IN BOOLEAN,
shared IN boolean)
RETURN BOOLEAN;

GetLockToken()
Given a path to a resource, returns that resource's lock token for the current user.
The user must have READPROPERTIESprivilege on the resource.

Syntax
PROCEDURE GetLockToken(path IN VARCHAR2,

locktoken OUT VARCHAR2);

privs (IN) An XMLType instance of the privilege element specifying the
requested set of access privileges. See description for
checkPrivileges()checkPrivileges(). .

Parameter IN / OUT Description

path (IN) Path name of the resource to lock.

depthzero (IN) CURRENTLY UNSUPPORTED. At this time, only the given
resource is locked by this function. In a future release, passing
FALSE will obtain an infinite-depth lock.

shared (IN) Passing TRUE will obtain a shared write lock.

Parameter IN / OUT Description

path (IN) Path name to the resource.

Parameter IN / OUT Description
DBMS_XDB 81-7

UnlockResource()
UnlockResource()
Unlocks the resource given a lock token and a path to the resource. Returns TRUE if
operation successful; FALSE, otherwise. The user must have UPDATE privileges on
the resource.

Syntax
FUNCTION UnlockResource(path IN VARCHAR2,

deltoken IN VARCHAR2)
RETURN BOOLEAN;

CreateResource()
Creates a new resource. Returns TRUE if operation successful; FALSE, otherwise.The
options are described in the following table.

locktoken (OUT) Logged-in user’s lock token for the resource.

Parameter IN / OUT Description

path (IN) Path name to the resource.

deltoken (IN) Lock token to be removed.

Syntax Description

FUNCTION CreateResource(

 path IN VARCHAR2,

 data IN VARCHAR2)

 RETURN BOOLEAN;

Creates a new resource with the given string
as its contents.

FUNCTION CreateResource(

 path IN VARCHAR2,

 data IN SYS.XMLTYPE)

 RETURN BOOLEAN;

Creates a new resource with the given
XMLType data as its contents.

Parameter IN / OUT Description
81-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB
CreateFolder()
Creates a new folder resource in the hierarchy. Returns TRUE if operation successful;
FALSE, otherwise. The given path name's parent folder must already exist in the
hierarchy, i.e. if '/folder1/folder2' is passed as the path parameter, then
'/folder1' must already exist.

Syntax
FUNCTION CreateFolder(path IN VARCHAR2)

RETURN BOOLEAN;

FUNCTION CreateResource(

 path IN VARCHAR2,

 datarow IN REF SYS.XMLTYPE)

 RETURN BOOLEAN;

Given a REF to an existing XMLType row,
creates a resource whose contents point to
that row. That row should not already exist
inside another resource.

FUNCTION CreateResource(

 path IN VARCHAR2,

 data IN CLOB)

 RETURN BOOLEAN;

Creates a resource with the given CLOB as
its contents.

FUNCTION CreateResource(

 path IN VARCHAR2,

 data IN BFILE)

 RETURN BOOLEAN;

Creates a resource with the given BFILE as
its contents.

Parameter IN / OUT Description

path (IN) Path name of the resource to create. The path name's parent
folder must already exist in the hierarchy. In other words, if
'/foo/bar.txt' is passed in, then folder '/foo' must already
exist.

data (IN) The new resource’s contents. The data will be parsed to check
if it contains a schema-based XML document, and the
contents will be stored as schema-based in the schema's
default table. Otherwise, it will be saved as binary data.

datarow (IN) REF to an XMLType row to be used as the contents.

Syntax Description
DBMS_XDB 81-9

DeleteResource()
DeleteResource()
Deletes a resource from the hierarchy.

Syntax
PROCEDURE DeleteResource(path IN VARCHAR2);

Link()
Creates a link to an existing resource. This procedures is analogous to creating a
hard link in UNIX.

Syntax
PROCEDURE Link(srcpath IN VARCHAR2,

linkfolder IN VARCHAR2,
linkname IN VARCHAR2);

CFG_Refresh()
Refreshes the session's configuration information to the latest configuration.

Syntax
PROCEDURE CFG_Refresh;

Parameter IN / OUT Description

path (IN) Path name for the new folder.

Parameter IN / OUT Description

path (IN) Path name of the resource to delete.

Parameter IN / OUT Description

srcpath (IN) Path name of the resource to which a link is made

linkfolder (IN) Folder in which the new link is placed.

linkname (IN) Name of the new link.
81-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB
CFG_Get()
Retrieves the session's configuration information as an XMLType instance.

Syntax
FUNCTION CFG_Get RETURN SYS.XMLType;

CFG_Update()
Updates the configuration information and commits the change.

Syntax
PROCEDURE CFG_Update(xdbconfig IN SYS.XMLTYPE);

Parameter IN / OUT Description

xdbconfig (IN) The new configuration data.
DBMS_XDB 81-11

CFG_Update()
81-12 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
82

DBMS_XDBT

The DBMS_XDBT package enables an administrator to create a ConText index on
the XML DB hierarchy and configure it for automatic maintenance.

This chapterdetails the following:

� Functions and Procedures of BMS_XDBT

See Also: Oracle9i XML API Reference - XDK and XDB for more
information
_XDBT 82-1

Description of BMS_XDBT
Description of BMS_XDBT
The DBMS_XDBTpackage provides a convenient mechanism for administrators to
set up a ConText index on the Oracle XML DB Hierarchy. The package contains
procedures to create default preferences, create the index and set up automatic
synchronization of the context index

The DBMS_XDBT package also contains a set of package variables that describe the
configuration settings for the index. These are intended to cover the basic
customizations that installations may require, but is by no means a complete set.

The DBMS_XDBT package can be used in the following fashion:

� Customize the package to set up the appropriate configuration.

� Drop any existing index preferences using the dropPreferences()
procedure.

� Create new index preferences using the createPreferences() procedure.

� Create the ConText index using the createIndex() procedure.

� Set up automatic synchronization of the index using the
configureAutoSync() procedure.

Functions and Procedures of BMS_XDBT

Table 82-1: Summary of Functions and Procedures of DBMS_XDBT

Procedure/Function Description

dropPreferences() on page 82-3 Drops any existing preferences.

createPreferences() on page 82-3 Creates preferences required for the ConText index on the
XML DB hierarchy.

createDatastorePref() on page 82-3 Creates a USER datastore preference for the ConText index.

createFilterPref() on page 82-4 Creates a filter preference for the ConText index.

createLexerPref() on page 82-4 Creates a lexer preference for the ConText index.

createWordlistPref() on page 82-4 Creates a stoplist for the ConText index.

createStoplistPref() on page 82-5 Creates a section group for the ConText index.

createStoragePref() on page 82-5 Creates a wordlist preference for the ConText index.

createSectiongroupPref() on
page 82-6

Creates a storage preference for the ConText index.
82-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of BMS_XDBT
dropPreferences()
This procedure drops any previously created preferences for the ConText index on
the XML DB hierarchy.

Syntax
PROCEDURE dropPreferences;

createPreferences()
This procedure creates a set of default preferences based on the configuration
settings.

Syntax
PROCEDURE createPreferences;

createDatastorePref()
This procedure creates a USER datastore preference for the ConText index on the
XML DB hierarchy.

� The name of the datastore preference can be modified; see the DatastorePref
configuration setting.

� The default USER datastore procedure also filters the incoming document. The
DBMS_XDBTpackage provides a set of configuration settings that control the
filtering process.

� The SkipFilter_Types array contains a list of regular expressions.
Documents with a mime type that matches one of these expressions are not
indexed. Some of the properties of the document metadata, such as author,
remain unindexed.

� The NullFilter_Types array contains a list of regular expressions.
Documents with a mime type that matches one of these expressions are not

createIndex() on page 82-6 Creates the ConText index on the XML DB hierarchy.

configureAutoSync() on page 82-6 Configures the ConText index for automatic maintenance
(SYNC).

Table 82-1: Summary of Functions and Procedures of DBMS_XDBT (Cont.)

Procedure/Function Description
DBMS_XDBT 82-3

createFilterPref()
filtered; however, they are still indexed. This is intended to be used for
documents that are text-based, such as HTML, XML and plain-text.

� All other documents use the INSO filter through the IFILTER API.

Syntax
PROCEDURE createDatastorePref;

createFilterPref()
This procedure creates a NULL filter preference for the ConText index on the XML
DB hierarchy.

� The name of the filter preference can be modified; see FilterPref
configuration setting.

� The USER datastore procedure filters the incoming document; see
createDatastorePref for more details.

Syntax
PROCEDURE createFilterPref;

createLexerPref()
This procedure creates a BASIC lexer preference for the ConText index on the
XML DB hierarchy.

� The name of the lexer preference can be modified; see LexerPref
configuration setting. No other configuration settings are provided.

� MultiLexer preferences are not supported.

� Base letter translation is turned on by default.

Syntax
PROCEDURE createLexerPref;

createWordlistPref()
This procedure creates a wordlist preference for the ConText index on the XML DB
hierarchy.
82-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of BMS_XDBT
� The name of the wordlist preference can be modified; see the WordlistPref
configuration setting. No other configuration settings are provided.

� FUZZY_MATCH and STEMMER attributes are set to AUTO (auto-language
detection)

Syntax
PROCEDURE createWordlistPref;

createStoplistPref()
This procedure creates a stoplist for the ConText index on the XML DB hierarchy.

� The name of the stoplist can be modified; see the StoplistPref configuration
setting.

� Numbers are not indexed.

� The StopWords array is a configurable list of stopwords. These are meant to be
stopwords in addition to the set of stopwords in CTXSYS.DEFAULT_
STOPLIST.

Syntax
PROCEDURE createStoplistPref;

createStoragePref()
This procedure creates a BASIC_STORAGEpreference for the ConText index on
the XML DB hierarchy.

� The name of the storage preference can be modified; see the StoragePref
configuration setting.

� A tablespace can be specified for the tables and indexes comprising the
ConText index; see the IndexTablespace configuration setting.

� Prefix and Substring indexing are not turned on by default.

� The I_INDEX_CLAUSE uses key compression.

Syntax
PROCEDURE createStoragePref;
DBMS_XDBT 82-5

createSectiongroupPref()
createSectiongroupPref()
This procedure creates a section group for the ConText index on the XML DB
hierarchy.

� The name of the section group can be changed; see the SectiongroupPref
configuration setting.

� The HTML sectioner is used by default. No zone sections are created by default.
If the vast majority of documents are XML, consider using the AUTO_SECTION_
GROUPor the PATH_SECTION_GROUP; see the SectionGroup configuration
setting.

Syntax
PROCEDURE createSectiongroupPref;

createIndex()
This procedure creates the ConText index on the XML DB hierarchy.

� The name of the index can be changed; see the IndexName configuration
setting.

� Set the LogFile configuration parameter to enable ROWID logging during
index creation.

� Set the IndexMemory configuration parameter to determine the amount of
memory that index creation, and later SYNCs, will use.

Syntax
PROCEDURE createIndex;

configureAutoSync()
This procedure sets up jobs for automatic SYNCs of the ConText index.

� The system must be configured for job queues for automatic synchronization.
The jobs can be viewed using the USER_JOBS catalog views

� The configuration parameter AutoSyncPolicy can be set to choose an
appropriate synchronization policy.

The synchronization can be based on one of the following:
82-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Customizing the DBMS_XDBT package
Syntax
PROCEDURE configureAutoSync;

Customizing the DBMS_XDBT package
The DBMS_XDBT package can be customized in one of two ways.

� Using a PL/SQL procedure, or an anonymous block, to set the relevant package
variables (configuration settings), and then executing the procedures in this
package.

� The more general approach is to introduce the appropriate customizations by
modifying this package in place, or as a copy.

Please note that the system must be configured to use job queues, and that the jobs
can be viewed through the USER_JOBS catalog views.

This section describes the configuration settings, or package variables, available to
customize the DBMS_XDBT package.

General Indexing Settings
The following table lists configuration settings that are relevant to general indexing.

Sync Basis Description

SYNC_BY_PENDING_
COUNT

The SYNC is triggered when the number of documents in the pending queue is
greater than a threshold (See the MaxPendingCount configuration setting) The
pending queue is polled at regular intervals (See the CheckPendingCountInterval
configuration parameter) to determine if the number of documents exceeds the
threshold

SYNC_BY_TIME The SYNC is triggered at regular intervals. (See the SyncInterval configuration
parameter)

SYNC_BY_PENDING_
COUNT_AND_TIME

A combination of both of the above

Parameter Default Values Description

IndexName XDB$CI The name of the ConText index.

IndexTablespace XDB$RESINFO The tablespace used by tables and indexes comprising
the ConText index.
DBMS_XDBT 82-7

Filtering Settings
Filtering Settings
The following table lists configuration settings that control the filtering of
documents in the XML DB hierarchy.

Sectioning and Section Group Settings
The following table lists configuration settings relevant to the sectioner.

IndexMemory 128M Memory used by index creation and Sync. This must be
less than (or equal to) the MAX_INDEX_MEMORY system
parameter. The MAX_INDEX_MEMORY system
parameter (see the CTX_ADMIN package) must be
greater than or equal to the IndexMemory
setting.

LogFile ’XdbCtxLog’ The logfile used for ROWID logging during index
creation. The LOG_DIRECTORY system parameter must
be set already. Set this to NULL to turn off ROWID
logging. The LOG_DIRECTORYsystem parameter
(see the CTX_ADMIN package) must be set to
enable ROWID logging.

Parameter Default Value(s) Description

SkipFilter_Types image/%,

audio/%,

video/%,

model/%

List of mime types that should not be indexed.

NullFilter_Types text/plain,

text/html,

text/xml

List of mime types that do not need to use the INSO
filter. Use this for text-based documents.

FilterPref XDB$CI_FILTER Name of the filter preference.

Parameter Default Value Description

SectionGroup HTML_SECTION_GROUP Default sectioner to use. Consider using PATH_
SECTION_GROUP or AUTO_SECTION_GROUP if
the repository contains mainly XML documents.

SectiongroupPref XDB$CI_SECTIONGROUP Name of the section group.

Parameter Default Values Description
82-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Customizing the DBMS_XDBT package
Stoplist Settings
The following table lists stoplist configuration settings.

Other Preference Settings
The following table lists settings for other index preferences.

Index SYNC settings
The following table lists settings that control when and how the ConText index is
synchronized.

Parameter Default Value(s) Description

StoplistPref XDB$CI_STOPLIST Name of the stoplist.

StopWords 0..9

’a’..’z’

’A’..’Z’

List of stopwords, in addition to stopwords specified in
CTXSYS.DEFAULT_STOPLIST.

Parameter Default Value Description

DatastorePref XDB$CI_DATASTORE The name of the datastore preference.

StoragePref XDB$CI_STORAGE The name of the storage preference.

WordlistPref XDB$CI_WORDLIST The name of the wordlist preference.

DefaultLexerPref XDB$CI_DEFAULT_
LEXER

The name of the default lexer preference.

Parameter Default Value(s) Description

AutoSyncPolicy SYNC_BY_PENDING_COUNT Indicates when the index should be SYNCed.
Can be one of:

- SYNC_BY_PENDING_COUNT,

- SYNC_BY_TIME, or

- SYNC_BY_PENDING_COUNT_AND_TIME.
DBMS_XDBT 82-9

Index SYNC settings
MaxPendingCount 2 Maximum number of documents in the
CTX_USER_PENDING queue for this index
before an index SYNC is triggered. Applies
only if the AutoSyncPolicy is one of:

- SYNC_BY_PENDING_COUNT, or

- SYNC_BY_PENDING_COUNT_AND_TIME.

CheckPendingCoun
tInterval

10 minutes Indicates how often, in minutes, the pending
queue should be checked. Applies only if the
AutoSyncPolicy is one of:

- SYNC_BY_PENDING_COUNT, or

- SYNC_BY_PENDING_COUNT_AND_TIME.

SyncInterval 60 minutes Indicates how often, in minutes, the index
should be SYNCed. Applies only if the
AutoSyncPolicy is one of:

- SYNC_BY_TIME, or

- SYNC_BY_PENDING_COUNT_AND_TIME

Parameter Default Value(s) Description
82-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_XDB_VE
83

DBMS_XDB_VERSION

Oracle XML DB Versioning APIs are found in the DBMS_XBD_VERSION Package.

This chapter details the following:

� Functions and Procedures of DBMS_XDB_VERSION

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information
RSION 83-1

Description of DBMS_XDB_VERSION
Description of DBMS_XDB_VERSION
Functions and procedures of DBMS_XDB_VERSION help to create a VCR and
manage the versions in the version history.

Functions and Procedures of DBMS_XDB_VERSION

MakeVersioned()
Turns a regular resource whose path name is given into a version-controlled
resource. If two or more path names are bound with the same resource, a copy of
the resource will be created, and the given path name will be bound with the
newly-created copy. This new resource is then put under version control. All other
path names continue to refer to the original resource. This function returns the
resource ID of the first version, or root, of the VCR. This is not an auto-commit SQL
operation.

� It is legal to call MakeVersioned() for VCR, and neither exception nor
warning is raised.

Table 83-1: Summary of Functions and Procedures of DBMS_XDB_VERSION

Function/Procedure Description

MakeVersioned() on page 83-2 Turns a regular resource whose path name is given into a
version-controlled resource.

Checkout() on page 83-3 Checks out a VCR before updating or deleting it.

Checkin() on page 83-3 Checks in a checked-out VCR and returns the resource id of
the newly-created version.

Uncheckout() on page 83-4 Checks in a checked-out resource and returns the
resource id of the version before the resource is
checked out.

GetPredecessors() on page 83-4 Retrieves the list of predecessors by path name.

GetPredsByResId() on page 83-5 Retrieves the list of predecessors by resource id.

GetResourceByResId() on
page 83-5

Obtains the resource as an XMLType, given the
resource objectID.

GetSuccessors() on page 83-5 Retrieves the list of successors by path name.

GetSuccsByResId() on page 83-6 Retrieves the list of successors by resource id.
83-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB_VERSION
� It is illegal to call MakeVersioned() for folder, version history, version
resource, and ACL.

� No support for Schema-based resources is provided.

An exception is raised if the resource doesn’t exist.

Syntax
FUNCTION MakeVersioned(pathname VARCHAR2) RETURN dbms_xdb.resid_type;

Checkout()
Checks out a VCR before updating or deleting it. This is not an auto-commit SQL
operation. Two users of the same workspace cannot Checkout() the same VCR at
the same time. If this happens, one user must rollback. As a result, it is good
practice to commit the Checkout() operation before updating a resource and
avoid loss of the update if the transaction is rolled back. An exception is raised if the
given resource is not a VCR, if the VCR is already checked out, if the resource
doesn’t exist.

Syntax
PROCEDURE Checkout(pathname VARCHAR2);

Checkin()
Checks in a checked-out VCR and returns the resource id of the newly-created
version. This is not an auto-commit SQL operation. Checkin() doesn’t have to
take the same path name that was passed to Checkout() operation. However, the
Checkin() path name and the Checkout() path name must be of the same
resource for the operations to function correctly. If the resource has been renamed,
the new name must be used to Checkin() because the old name is either invalid
or is currently bound with a different resource. Exception is raised if the path name

Parameter Description

pathname The path name of the resource to be put under version control.

Parameter Description

pathname The path name of the VCR to be checked out.
DBMS_XDB_VERSION 83-3

Uncheckout()
does not exist. If the path name has been changed, the new path name must be used
to Checkin() the resource.

Syntax
FUNCTION Checkin(pathname VARCHAR2) RETURN dbms_xdb.resid_type;

Uncheckout()
Checks in a checked-out resource and returns the resource id of the version before
the resource is checked out. This is not an auto-commit SQL operation.
Uncheckout() doesn’t have to take the same path name that was passed to
Checkout() operation. However, the Uncheckout() path name and the
Checkout() path name must be of the same resource for the operations to function
correctly. If the resource has been renamed, the new name must be used to
uncheckout because the old name is either invalid or is currently bound with a
different resource. An exception is raised if the path name doesn’t exist. If the path
name has been changed, the new path name must be used to Checkin() the
resource.

Syntax
FUNCTION Uncheckout(pathname VARCHAR2) RETURN dbms_xdb.resid_type;

GetPredecessors()
Retrieves the list of predecessors by the path name. An exception is raised if pathname
is illegal.

Syntax
FUNCTION GetPredecessors(pathname VARCHAR2) RETURN resid_list_type;

Parameter Description

pathname The path name of the checked-out resource.

Parameter Description

pathname The path name of the checked-out resource.
83-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XDB_VERSION
GetPredsByResId()
Retrieves the list of predecessors by resource id. Getting predecessors by resid is
more efficient than by pathname . An exception is raised if the resid is illegal.

Syntax
FUNCTION GetPredsByResId(resid resid_type) RETURN resid_list_type;

GetResourceByResId()
Obtains the resource as an XMLType, given the resource objectID. Because the
system will not create a path name for versions, this function is useful for retrieving
the resource using its resource id.

Syntax
FUNCTION GetResourceByResId(resid resid_type) RETURN XMLType;

GetSuccessors()
Given a version resource or a VCR, retrieves the list of the successors of the resource
by the path name. Getting successors by resid is more efficient than by pathname .
An exception is raised if pathname is illegal.

Syntax
FUNCTION GetSuccessors(pathname VARCHAR2) RETURN resid_list_type;

Parameter Description

pathname The path name of the resource.

Parameter Description

resid The resource id.

Parameter Description

resid The resource id.
DBMS_XDB_VERSION 83-5

GetSuccsByResId()
GetSuccsByResId()
Given a version resource or a VCR, retrieves the list of the successors of the resource
by resource id. Getting successors by resid is more efficient than by path name. An
exception is raised if the resid is illegal.

Syntax
FUNCTION GetSuccsByResId(resid resid_type) RETURN resid_list_type;

Parameter Description

pathname The path name of the resource

Parameter Description

resid The resource id.
83-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_XM
84

DBMS_XMLDOM

Use DBMS_XMLDOM to access XMLType objects. You can access both schema-based
and nonschema-based documents. Before database startup, you must specify the
read-from and write-to directories in the initialization.ORA file; for example:

UTL_FILE_DIR=/mypath/insidemypath

The read-from and write-to files must be on the server file system.

This chapter details the following:

� Types of DBMS_XMLDOM

� Defined Constants of DBMS_XMLDOM

� Exceptions of DBMS_XMLDOM

� Functions and Procedures of DBMS_XMLDOM

See Also:

� Chapter 95, "UTL_FILE"

� Oracle9i XML Developer’s Kits (XDK) Guide

� Oracle9i XML API Reference - XDK and Oracle XML DB
LDOM 84-1

Description of DBMS_XMLDOM
Description of DBMS_XMLDOM
The Document Object Model (DOM) is an application programming interface (API)
for HTML and XML documents. It defines the logical structure of documents and
the way a document is accessed and manipulated. In the DOM specification, the
term "document" is used in the broad sense. XML is increasingly being used as a
way of representing many different kinds of information that may be stored in
diverse systems, and much of this would traditionally be seen as data rather than as
documents. Nevertheless, XML presents this data as documents, and the DOM may
be used to manage this data.

With the Document Object Model, programmers can build documents, navigate
their structure, and add, modify, or delete elements and content. Anything found in
an HTML or XML document can be accessed, changed, deleted, or added using the
Document Object Model, with a few exceptions. In particular, the DOM interfaces
for the XML internal and external subsets have not yet been specified.

One important objective of the W3C specification for the Document Object Model is
to provide a standard programming interface that can be used in a wide variety of
environments and applications. The DOM is designed to be used with any
programming language. Since the DOM standard is object-oriented, for this
PL/SQL adaptation, some changes had to be made:

� Various DOM interfaces such as Node, Element, etc. have equivalent PL/SQL
types DOMNode, DOMElement, etc. respectively.

� Various DOMException codes such as WRONG_DOCUMENT_ERR,
HIERARCHY_REQUEST_ERR, etc. have similarly named PL/SQL exceptions

� Various DOM Node type codes such as ELEMENT_NODE, ATTRIBUTE_
NODE, etc. have similarly named PL/SQL constants

� Methods defined on a DOM type become functions or procedures that accept it
as a parameter. For example, to perform appendChild on a DOM Node n, the
appendChild() PL/SQL function on page 84-24 is provided,

FUNCTION appendChild(n DOMNode,
newChild IN DOMNode)
RETURN DOMNode;

and to perform setAttribute on a DOM Element elem, the setAttribute()
PL/SQL procedure on page 84-48 is provided:

PROCEDURE setAttribute(elem DOMElement,
name IN VARCHAR2,
value IN VARCHAR2);
84-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Types of DBMS_XMLDOM
DOM defines an inheritance hierarchy. For example, Document, Element, and Attr
are defined to be subtypes of Node. Thus, a method defined in the Node interface
should be available in these as well. Since, such inheritance is not directly possible
in PL/SQL, the makeNode functions need to be invoked on different DOM types to
convert these into a DOMNode. The appropriate functions or procedures that
accept DOMNodes can then be called to operate on these types. If, subsequently,
type specific functionality is desired, the DOMNode can be converted back into the
type by using the make*() functions, where DOM* is the desired DOM type.

The implementation of this PL/SQL DOM interface followed the DOM standard of
revision REC-DOM-Level-1-19981001. The types and methods described in this
document are made available by the PL/SQL package DBMS_XMLDOM.

� Before database startup, the read-from and write-to directories in the
initialization.ORA file must be specified; for example:

UTL_FILE_DIR=/mypath/insidemypath

� The read-from and write-to files must be on the server file system.

Types of DBMS_XMLDOM
The following types for DBMS_XMLDOM.DOMTYPE are defined in Table 84-1:

Table 84-1: XDB_XMLDOM Types

Type Description

DOMNode Implements the DOM Node interface.

DOMNamedNodeMap Implements the DOM NamedNodeMap interface.

DOMNodeList Implements the DOM NodeList interface.

DOMAttr Implements the DOM Attribute interface.

DOMCDataSection Implements the DOM CDataSection interface.

DOMCharacterData Implements the DOM Character Data interface.

DOMComment Implements the DOM Comment interface.

DOMDocumentFragment Implements the DOM DocumentFragment interface.

DOMElement Implements the DOM Element interface.

DOMEntity Implements the DOM Entity interface.
DBMS_XMLDOM 84-3

Defined Constants of DBMS_XMLDOM
Defined Constants of DBMS_XMLDOM
The constants listed in Table 84-2 are defined for DBMS_XMLDOM. For example, when
a request such as getNodeType(myNode) is made, the returned type will be one
of the following constants.

DOMEntityReference Implements the DOM EntityReference interface.

DOMNotation Implements the DOM Notation interface.

DOMProcessingInstruction Implements the DOM Processing instruction interface.

DOMText Implements the DOM Text interface.

DOMImplementation Implements the DOM DOMImplementation interface.

DOMDocumentType Implements the DOM Document Type interface.

DOMDocument Implements the DOM Document interface.

Table 84-2: Defined Constants for DBMS_XMLDDOM

Constant Description

ELEMENT_NODE The Node is an Element.

ATTRIBUTE_NODE The Node is an Attribute.

TEXT_NODE The Node is a Text node.

CDATA_SECTION_NODE The Node is a CDataSection.

ENTITY_REFERENCE_NODE The Node is an Entity Reference.

ENTITY_NODE The Node is an Entity.

PROCESSING_INSTRUCTION_NODE The Node is a Processing Instruction.

COMMENT_NODE The Node is a Comment.

DOCUMENT_NODE The Node is a Document.

DOCUMENT_TYPE_NODE The Node is a Document Type Definition.

DOCUMENT_FRAGMENT_NODE The Node is a Document fragment.

NOTATION_NODE The Node is a Notation.

Table 84-1: XDB_XMLDOM Types (Cont.)

Type Description
84-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Exceptions of DBMS_XMLDOM
The exceptions listed in Table 84-3 are defined for DBMS_XMLDOM:

Functions and Procedures of DBMS_XMLDOM
DBMS_XMLDOM subprograms are divided into groups according to w3c Interfaces.

Table 84-3: Exceptions for DBMS_XMLDDOM

Exception Description

INDEX_SIZE_ERR If index or size is negative, or greater than the allowed
value.

DOMSTRING_SIZE_ERR If the specified range of text does not fit into a
DOMString.

HIERARCHY_REQUEST_ERR If any node is inserted somewhere it doesn’t belong.

WRONG_DOCUMENT_ERR If a node is used in a different document than the one
that created it (that doesn’t support it).

INVALID_CHARACTER_ERR If an invalid or illegal character is specified, such as in a
name. See production 2 in the XML specification for the
definition of a legal character, and production 5 for the
definition of a legal name character.

NO_DATA_ALLOWED_ERROR If data is specified for a node which does not support
data.

NO_MODIFICATION_ALLOWED_ERR If an attempt is made to modify an object where
modifications are not allowed.

NO_FOUND_ERR If an attempt is made to reference a node in a context
where it does not exist.

NOT_SUPPORTED_ERR If the implementation does not support the requested
type of object or operation.

INUSE_ATTRIBUTE_ERR If an attempt is made to add an attribute that is already
in use elsewhere.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description

DOM Node Methods

isNull() on page 84-12 Tests if the node is NULL.

makeAttr() on page 84-12 Casts the node to an Attribute.
DBMS_XMLDOM 84-5

Functions and Procedures of DBMS_XMLDOM
makeCDataSection() on page 84-13 Casts the node to a CDataSection.

makeCharacterData() on page 84-13 Casts the node to CharacterData.

makeComment() on page 84-13 Casts the node to a Comment.

makeDocumentFragment() on page 84-14 Casts the node to a DocumentFragment.

makeDocumentType() on page 84-14 Casts the node to a Document Type.

makeElement() on page 84-14 Casts the node to an Element.

makeEntity() on page 84-14 Casts the node to an Entity.

makeEntityReference() on page 84-15 Casts the node to an EntityReference.

makeNotation() on page 84-15 Casts the node to a Notation.

makeProcessingInstruction() on page 84-15 Casts the node to a DOMProcessingInstruction.

makeText() on page 84-16 Casts the node to a DOMText.

makeDocument() on page 84-16 Casts the node to a DOMDocument.

writeToFile() on page 84-16 Writes the contents of the node to a file.

writeToBuffer() on page 84-17 Writes the contents of the node to a buffer.

writeToClob() on page 84-17 Writes the contents of the node to a clob.

getNodeName() on page 84-18 Retrieves the Name of the Node.

getNodeValue() on page 84-18 Retrieves the Value of the Node.

setNodeValue() on page 84-19 Sets the Value of the Node.

getNodeType() on page 84-19 Retrieves the Type of the node.

getParentNode() on page 84-19 Retrieves the parent of the node.

getChildNodes() on page 84-20 Retrieves the children of the node.

getFirstChild() on page 84-20 Retrieves the first child of the node.

getLastChild() on page 84-20 Retrieves the last child of the node.

getPreviousSibling() on page 84-21 Retrieves the previous sibling of the node.

getNextSibling() on page 84-21 Retrieves the next sibling of the node.

getAttributes() on page 84-21 Retrieves the attributes of the node.

getOwnerDocument() on page 84-22 Retrieves the owner document of the node.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
84-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
insertBefore() on page 84-22 Inserts a child before the reference child.

replaceChild() on page 84-23 Replaces the old child with a new child.

removeChild() on page 84-23 Removes a specified child from a node.

appendChild() on page 84-24 Appends a new child to the node.

hasChildNodes() on page 84-24 Tests if the node has child nodes.

cloneNode() on page 84-24 Clones the node.

DOM Named Node Map methods

isNull() on page 84-25 Tests if the NamedNodeMap is NULL.

getNamedItem() on page 84-25 Retrieves the item specified by the name.

setNamedItem() on page 84-26 Sets the item in the map specified by the name.

removeNamedItem() on page 84-26 Removes the item specified by name.

item() on page 84-27 Retrieves the item given the index in the map.

getLength() on page 84-27 Retrieves the number of items in the map.

DOM Node List Methods

isNull() on page 84-28 Tests if the Nodelist is NULL.

item() on page 84-28 Retrieves the item given the index in the nodelist.

getLength() on page 84-28 Retrieves the number of items in the list.

DOM Attr Methods

isNull() on page 84-29 Tests if the Attribute Node is NULL.

makeNode() on page 84-29 Casts the Attribute to a node.

getQualifiedName() on page 84-29 Retrieves the Qualified Name of the attribute.

getNamespace() on page 84-30 Retrieves the NS URI of the attribute.

getLocalName() on page 84-30 Retrieves the local name of the attribute.

getExpandedName() on page 84-30 Retrieves the expanded name of the attribute.

getName() on page 84-31 Retrieves the name of the attribute.

getSpecified() on page 84-31 Tests if attribute was specified in the owning
element.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
DBMS_XMLDOM 84-7

Functions and Procedures of DBMS_XMLDOM
getValue() on page 84-31 Retrieves the value of the attribute.

setValue() on page 84-31 Sets the value of the attribute.

DOM C Data Section Methods

isNull() on page 84-32 Tests if the CDataSection is NULL.

makeNode() on page 84-32 Casts the CDatasection to a node.

DOM Character Data Methods

isNull() on page 84-33 Tests if the CharacterData is NULL.

makeNode() on page 84-33 Casts the CharacterData to a node.

getData() on page 84-33 Retrieves the data of the node.

setData() on page 84-34 Sets the data to the node.

getLength() on page 84-34 Retrieves the length of the data.

substringData() on page 84-34 Retrieves the substring of the data.

appendData() on page 84-35 Appends the given data to the node data.

insertData() on page 84-35 Inserts the data in the node at the given offSets.

deleteData() on page 84-36 Deletes the data from the given offSets.

replaceData() on page 84-36 Replaces the data from the given offSets.

DOM Comment Methods

isNull() on page 84-37 Tests if the comment is NULL.

makeNode() on page 84-37 Casts the Comment to a node.

DOM Implementation Methods

isNull() on page 84-37 Tests if the DOMImplementation node is NULL.

hasFeature() on page 84-38 Tests if the DOMImplementation implements a
given feature.

DOM Document Fragment Methods

isNull() on page 84-38 Tests if the DocumentFragment is NULL.

makeNode() on page 84-38 Casts the Document Fragment to a node.

DOM Document Type Methods

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
84-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
isNull() on page 84-39 Tests if the Document Type is NULL.

makeNode() on page 84-39 Casts the document type to a node.

findEntity() on page 84-39 Finds the specified entity in the document type.

findNotation() on page 84-40 Finds the specified notation in the document type.

getPublicId() on page 84-40 Retrieves the public ID of the document type.

getSystemId() on page 84-41 Retrieves the system ID of the document type.

writeExternalDTDToFile() on page 84-41 Writes the document type definition to a file.

writeExternalDTDToBuffer() on page 84-41 Writes the document type definition to a buffer.

writeExternalDTDToClob() on page 84-42 Writes the document type definition to a clob.

getName() on page 84-43 Retrieves the name of the Document type.

getEntities() on page 84-43 Retrieves the nodemap of entities in the Document
type.

getNotations() on page 84-43 Retrieves the nodemap of the notations in the
Document type.

DOM Element Methods

isNull() on page 84-44 Tests if the Element is NULL.

makeNode() on page 84-44 Casts the Element to a node.

getQualifiedName() on page 84-44 Retrieves the qualified name of the element.

getNamespace() on page 84-45 Retrieves the NS URI of the element.

getLocalName() on page 84-45 Retrieves the local name of the element.

getExpandedName() on page 84-45 Retrieves the expanded name of the element.

getChildrenByTagName() on page 84-45 Retrieves the children of the element by tag name.

getElementsByTagName() on page 84-46 Retrieves the elements in the subtree by tagname.

resolveNamespacePrefix() on page 84-47 Resolve the prefix to a namespace uri.

getTagName() on page 84-47 Retrieves the Tag name of the element.

getAttribute() on page 84-47 Retrieves the attribute node specified by the name.

setAttribute() on page 84-48 Sets the attribute specified by the name.

removeAttribute() on page 84-48 Removes the attribute specified by the name.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
DBMS_XMLDOM 84-9

Functions and Procedures of DBMS_XMLDOM
getAttributeNode() on page 84-49 Retrieves the attribute node specified by the name.

setAttributeNode() on page 84-49 Sets the attribute node in the element.

removeAttributeNode() on page 84-49 Removes the attribute node in the element.

normalize() on page 84-50 Normalizes the text children of the element.

DOM Entity Methods

isNull() on page 84-50 Tests if the Entity is NULL.

makeNode() on page 84-50 Casts the Entity to a node.

getPublicId() on page 84-51 Retrieves the public Id of the entity.

getSystemId() on page 84-51 Retrieves the system Id of the entity.

getNotationName() on page 84-51 Retrieves the notation name of the entity.

DOM Entity Reference Methods

isNull() on page 84-52 Tests if the Entity Reference is NULL.

makeNode() on page 84-52 Casts the Entity Reference to NULL.

DOM Notation Methods

isNull() on page 84-52 Tests if the Notation is NULL.

makeNode() on page 84-53 Casts the notation to a node.

getPublicId() on page 84-53 Retrieves the public Id of the notation.

getSystemId() on page 84-53 Retrieves the system Id of the notation.

DOM Processing Instruction Methods

isNull() on page 84-54 Tests if the Processing Instruction is NULL.

makeNode() on page 84-54 Casts the Processing Instruction to a node.

getData() on page 84-54 Retrieves the data of the processing instruction.

getTarget() on page 84-55 Retrieves the target of the processing instruction.

setData() on page 84-55 Sets the data of the processing instruction.

DOM Text Methods

isNull() on page 84-55 Tests if the text is NULL.

makeNode() on page 84-56 Casts the text to a node.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
84-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
splitText() on page 84-56 Splits the contents of the text node into 2 text nodes.

DOM Document Methods

isNull() on page 84-56 Tests if the document is NULL.

makeNode() on page 84-57 Casts the document to a node.

newDOMDocument() on page 84-57 Creates a new Document.

freeDocument() on page 84-57 Frees the document.

getVersion() on page 84-58 Retrieves the version of the document.

setVersion() on page 84-58 Sets the version of the document.

getCharset() on page 84-58 Retrieves the Character set of the document.

setCharset() on page 84-58 Sets the Character set of the document.

getStandalone() on page 84-59 Retrieves if the document is specified as standalone.

setStandalone() on page 84-59 Sets the document standalone.

writeToFile() on page 84-59 Writes the document to a file.

writeToBuffer() on page 84-60 Writes the document to a buffer.

writeToClob() on page 84-61 Writes the document to a clob.

writeExternalDTDToFile() on page 84-61 Writes the DTD of the document to a file.

writeExternalDTDToBuffer() on page 84-62 Writes the DTD of the document to a buffer.

writeExternalDTDToClob() on page 84-62 Writes the DTD of the document to a clob.

getDoctype() on page 84-63 Retrieves the DTD of the document.

getImplementation() on page 84-63 Retrieves the DOM implementation.

getDocumentElement() on page 84-63 Retrieves the root element of the document.

createElement() on page 84-64 Creates a new Element.

createDocumentFragment() on page 84-64 Creates a new Document Fragment.

createTextNode() on page 84-64 Creates a Text node.

createComment() on page 84-65 Creates a Comment node.

createCDATASection() on page 84-65 Creates a CDatasection node.

createProcessingInstruction() on page 84-65 Creates a Processing Instruction.

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
DBMS_XMLDOM 84-11

DOM Node Methods
DOM Node Methods

isNull()
Checks if the given DOMNode is NULL. Returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(n DOMNode) RETURN BOOLEAN;

makeAttr()
Casts a given DOMNode to a DOMAttr, and returns the DOMAttr.

Syntax
FUNCTION makeAttr(n DOMNode) RETURN DOMAttr;

createAttribute() on page 84-66 Creates an Attribute.

createEntityReference() on page 84-66 Creates an Entity reference.

getElementsByTagName() on page 84-67 Retrieves the elements in the by tag name.

Parameter IN / OUT Description

n (IN) DOMNode to check.

Parameter IN / OUT Description

n (IN) DOMNode to cast

Table 84-4: Summary of Functions and Procedures of DBMS_XMLDOM

Group/Method Description
84-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
makeCDataSection()
Casts a given DOMNode to a DOMCDataSection, and returns the
DOMCDataSection.

Syntax
FUNCTION makeCDataSection(n DOMNode) RETURN DOMCDataSection;

makeCharacterData()
Casts a given DOMNode to a DOMCharacterData, and returns the
DOMCharacterData.

Syntax
FUNCTION makeCharacterData(n DOMNode) RETURN DOMCharacterData;

makeComment()
Casts a given DOMNode to a DOMComment, and returns the DOMComment.

Syntax
FUNCTION makeComment(n DOMNode) RETURN DOMComment;

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast
DBMS_XMLDOM 84-13

makeDocumentFragment()
makeDocumentFragment()
Casts a given DOMNode to a DOMDocumentFragment, and returns the
DOMDocumentFragment.

Syntax
FUNCTION makeDocumentFragment(n DOMNode) RETURN DOMDocumentFragment;

makeDocumentType()
Casts a given DOMNode to a DOMDocumentType and returns the
DOMDocumentType.

Syntax
FUNCTION makeDocumentType(n DOMNode) RETURN DOMDocumentType;

makeElement()
Casts a given DOMNode to a DOMElement, and returns the DOMElement.

Syntax
FUNCTION makeElement(n DOMNode) RETURN DOMElement;

makeEntity()
Casts a given DOMNode to a DOMEntity, and returns the DOMEntity.

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast
84-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
FUNCTION makeEntity(n DOMNode) RETURN DOMEntity;

makeEntityReference()
Casts a given DOMNode to a DOMEntityReference, and returns the
DOMEntityReference.

Syntax
FUNCTION makeEntityReference(n DOMNode) RETURN DOMEntityReference;

makeNotation()
Casts a given DOMNode to a DOMNotation, and returns the DOMNotation.

Syntax
FUNCTION makeNotation(n DOMNode) RETURN DOMNotation;

makeProcessingInstruction()
Casts a given DOMNode to a DOMProcessingInstruction, and returns the
DOMProcessingInstruction.

Syntax
FUNCTION makeProcessingInstruction(n DOMNode)

RETURN DOMProcessingInstruction;

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast
DBMS_XMLDOM 84-15

makeText()
makeText()
Casts a given DOMNode to a DOMText, and returns the DOMText.

Syntax
FUNCTION makeText(n DOMNode) RETURN DOMText;

makeDocument()
Casts a given DOMNode to a DOMDocument, and returns the DOMDocument.

Syntax
FUNCTION makeDocument(n DOMNode) RETURN DOMDocument;

writeToFile()
Writes XML node to specified file. The options are given in the table below.

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast

Parameter IN / OUT Description

n (IN) DOMNode to cast

Syntax Description

PROCEDURE writeToFile(

 n DOMNode,

 fileName VARCHAR2);

Writes XML node to specified file using the database
character set.
84-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
writeToBuffer()
Writes XML node to specified buffer. The options are given in the table below.

writeToClob()
Writes XML node to specified clob. The options are given in the table below.

PROCEDURE writeToFile(

 n DOMNode,

 fileName VARCHAR2,

 charset VARCHAR2);

Writes XML node to specified file using the given
character set, which is passed in as a separate
parameter.

Parameter IN / OUT Description

n (IN) DOMNode.

fileName (IN) File to write to.

charset (IN) Given character set.

Syntax Description

PROCEDURE writeToBuffer(

 n DOMNode,

 buffer IN OUT VARCHAR2);

Writes XML node to specified buffer using the database
character set.

PROCEDURE writeToBuffer(

 n DOMNode,

 buffer IN OUT VARCHAR2,

 charset VARCHAR2);

Writes XML node to specified buffer using the given
character set, which is passed in as a separate parameter.

Parameter IN / OUT Description

n (IN) DOMNode.

buffer (IN/OUT) Buffer to write to.

charset (IN) Given character set.

Syntax Description
DBMS_XMLDOM 84-17

getNodeName()
getNodeName()
Get the name of the node depending on its type

Syntax
FUNCTION getNodeName(n DOMNode) RETURN VARCHAR2;

getNodeValue()
Get the value of this node, depending on its type.

Syntax
FUNCTION getNodeValue(n DOMNode) RETURN VARCHAR2;

Syntax Description

PROCEDURE writeToClob(

 n DOMNode,

 cl IN OUT CLOB);

Writes XML node to specified clob using the database
character set.

PROCEDURE writeToClob(

 n DOMNode,

 cl IN OUT CLOB,

 charset VARCHAR2);

Writes XML node to specified clob using the given
character set, which is passed in as a separate parameter.

Parameter IN / OUT Description

n (IN) DOMNode.

cl (IN/OUT) CLOB to write to.

charset (IN) Given character set.

Parameter IN / OUT Description

n IN DOMNode
84-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
setNodeValue()
Sets the value of this node, depending on its type. When it is defined to be null,
setting it has no effect.

Syntax
PROCEDURE setNodeValue(n DOMNode,

nodeValue IN VARCHAR2);

getNodeType()
Retrieves a code representing the type of the underlying object.

Syntax
FUNCTION getNodeType(n DOMNode) RETURN NUMBER;

getParentNode()
Retrieves the parent of this node. All nodes, except Attr, Document,
DocumentFragment, Entity, and Notation may have a parent. However, if a node
has just been created and not yet added to the tree, or if it has been removed from
the tree, this is null.

Syntax
FUNCTION getParentNode(n DOMNode) RETURN DOMNode;

Parameter IN / OUT Description

n IN DOMNode.

Parameter IN / OUT Description

n IN DOMNode.

nodeValue IN The value to which node is set.

Parameter IN / OUT Description

n IN DOMNode
DBMS_XMLDOM 84-19

getChildNodes()
getChildNodes()
Retrieves a NodeList that contains all children of this node. If there are no children,
this is a NodeList containing no nodes.

Syntax
FUNCTION getChildNodes(n DOMNode) RETURN DOMNodeList;

getFirstChild()
Retrieves the first child of this node. If there is no such node, this returns null.

Syntax
FUNCTION getFirstChild(n DOMNode) RETURN DOMNode;

getLastChild()
Retrieves the last child of this node. If there is no such node, this returns NULL.

Syntax
FUNCTION getLastChild(n DOMNode) RETURN DOMNode;

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode
84-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getPreviousSibling()
Retrieves the node immediately preceding this node. If there is no such node, this
returns NULL.

Syntax
FUNCTION getPreviousSibling(n DOMNode) RETURN DOMNode;

getNextSibling()
Retrieves the node immediately following this node. If there is no such node, this
returns NULL.

Syntax
FUNCTION getNextSibling(n DOMNode) RETURN DOMNode;

getAttributes()
Retrieves a NamedNodeMap containing the attributes of this node (if it is an
Element) or null otherwise.

Syntax
FUNCTION getAttributes(n DOMNode) RETURN DOMNamedNodeMap;

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode
DBMS_XMLDOM 84-21

getOwnerDocument()
getOwnerDocument()
Retrieves the Document object associated with this node. This is also the Document
object used to create new nodes. When this node is a Document or a DocumentType
which is not used with any Document yet, this is null.

Syntax
FUNCTION getOwnerDocument(n DOMNode) RETURN DOMDocument;

insertBefore()
Inserts the node newChild before the existing child node refChild . If refChild
is NULL, insert newChild at the end of the list of children.

If newChild is a DocumentFragment object, all of its children are inserted, in the
same order, before refChild. If the newChild is already in the tree, it is first
removed.

Syntax
FUNCTION insertBefore(n DOMNode,

newChild IN DOMNode,
refChild IN DOMNode)
RETURN DOMNode;

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode

Parameter IN / OUT Description

n IN DOMNode

newChild IN The child to be inserted in the DOMNode n

refChild IN The reference node before which the newChild is to be
inserted
84-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
replaceChild()
Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.

If newChild is a DocumentFragment object, oldChild is replaced by all of the
DocumentFragment children, which are inserted in the same order. If the newChild
is already in the tree, it is first removed.

Syntax
FUNCTION replaceChild(n DOMNode,

newChild IN DOMNode,
oldChild IN DOMNode)
RETURN DOMNode;

removeChild()
Removes the child node indicated by oldChild from the list of children, and returns
it.

Syntax
FUNCTION removeChild(n DOMNode,

oldChild IN DOMNode)
RETURN DOMNode;

Parameter IN / OUT Description

n IN DOMNode

newChild IN The new Child which is to replace the oldChild

oldChild IN The child of the Node n which is to be replaced

Parameter IN / OUT Description

n IN DOMNode

oldCHild IN The child of the node n to be removed
DBMS_XMLDOM 84-23

appendChild()
appendChild()
Adds the node newChild to the end of the list of children of this node. If the
newChild is already in the tree, it is first removed.

Syntax
FUNCTION appendChild(n DOMNode,

newChild IN DOMNode)
RETURN DOMNode;

hasChildNodes()
Returns whether this node has any children.

Syntax
FUNCTION hasChildNodes(n DOMNode) RETURN BOOLEAN;

cloneNode()
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes.
The duplicate node has no parent; its parentNode is NULL.

Cloning an Element copies all attributes and their values, including those generated
by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a
child Text node. Cloning an Attribute directly, as opposed to be cloned as part of an
Element cloning operation, returns a specified attribute (specified is true). Cloning
any other type of node simply returns a copy of this node.

Note that cloning an immutable subtree results in a mutable copy, but the children
of an EntityReference clone are read-only. In addition, clones of unspecified Attr

Parameter IN / OUT Description

n IN DOMNode

newChild IN The child to be appended to the list of children of Node n

Parameter IN / OUT Description

n IN DOMNode
84-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
nodes are specified. And, cloning Document, DocumentType, Entity, and Notation
nodes is implementation dependent.

Syntax
FUNCTION cloneNode(n DOMNode,

deep boolean)
RETURN DOMNode;

DOM Named Node Map Methods

isNull()
Checks that the given DOMNamedNodeMap is NULL; returns TRUE if it is NULL,
FALSE otherwise.

Syntax
FUNCTION isNull(nnm DOMNamedNodeMap) RETURN BOOLEAN;

getNamedItem()
Retrieves a node specified by name.

Syntax
FUNCTION getNamedItem(nnm DOMNamedNodeMap,

name IN VARCHAR2)
RETURN DOMNode;

Parameter IN / OUT Description

n IN DOMNode

deep IN boolean to determine if children are to be cloned or not

Parameter IN / OUT Description

nnm (IN) DOMNameNodeMap to check.
DBMS_XMLDOM 84-25

setNamedItem()
setNamedItem()
Adds a node using its nodeName attribute. If a node with that name is already
present in this map, it is replaced by the new one.

As the nodeName attribute is used to derive the name under which the node must
be stored, multiple nodes of certain types, those that have a "special" string value,
cannot be stored because the names would clash. This is seen as preferable to
allowing nodes to be aliased.

Syntax
FUNCTION setNamedItem(nnm DOMNamedNodeMap,

arg IN DOMNode)
RETURN DOMNode;

removeNamedItem()
Removes a node specified by name. When this map contains the attributes attached
to an element, if the removed attribute is known to have a default value, an
attribute immediately appears containing the default value as well as the
corresponding namespace URI, local name, and prefix when applicable.

Syntax
FUNCTION removeNamedItem(nnm DOMNamedNodeMap,

name IN VARCHAR2)
RETURN DOMNode;

Parameter IN / OUT Description

nnm IN DOMNamedNodeMap

name IN Name of the item to be retrieved

Parameter IN / OUT Description

nnm IN DOMNamedNodeMap

arg IN The Node to be added using its NodeName attribute.
84-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
item()
Returns the item in the map which corresponds to the index parameter. If index is
greater than or equal to the number of nodes in this map, this returns NULL.

Syntax
FUNCTION item(nnm DOMNamedNodeMap,

index IN NUMBER)
RETURN DOMNode;

getLength()
The number of nodes in this map. The range of valid child node indices is 0 to
length-1 inclusive.

Syntax
FUNCTION getLength(nnm DOMNamedNodeMap) RETURN NUMBER;

Parameter IN / OUT Description

nnm IN DOMNamedNodeMap

name IN The name of the item to be removed from the map

Parameter IN / OUT Description

nnm IN DOMNamedNodeMap

index IN The index in the node map at which the item is to be
retrieved

Parameter IN / OUT Description

nnm IN DOMNamedNodeMap
DBMS_XMLDOM 84-27

DOM Node List Methods
DOM Node List Methods

isNull()
Checks that the given DOMNodeList is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(nl DOMNodeList) RETURN BOOLEAN;

item()
Returns the item in the collection which corresponds to the index parameter. If
index is greater than or equal to the number of nodes in the list, this returns null.

Syntax
FUNCTION item(nl DOMNodeList,

index IN NUMBER)
RETURN DOMNode;

getLength()
The number of nodes in the list. The range of valid child node indices is 0 to
length-1 inclusive.

Syntax
FUNCTION getLength(nl DOMNodeList) RETURN NUMBER;

Parameter IN / OUT Description

nl (IN) DOMNodeList to check.

Parameter IN / OUT Description

nl IN DOMNodeList

index IN The index in the nodelist at which to retrieve the item from
84-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
DOM Attr Methods

isNull()
Checks that the given DOMAttr is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(a DOMAttr) RETURN BOOLEAN;

makeNode()
Casts given DOMAttr to a DOMNode, and returns the DOMNode.

Syntax
FUNCTION makeNode(a DOMAttr) RETURN DOMNode;

getQualifiedName()
Returns the qualified name of the DOMAttr.

Syntax
FUNCTION getQualifiedName(a DOMAttr) RETURN VARCHAR2;

Parameter IN / OUT Description

nl IN DOMNodeList

Parameter IN / OUT Description

a (IN) DOMAttr to check.

Parameter IN / OUT Description

a (IN) DOMAttr to cast.
DBMS_XMLDOM 84-29

getNamespace()
getNamespace()
Returns the namespace of the DOMAttr.

Syntax
FUNCTION getNamespace(a DOMAttr) RETURN VARCHAR2;

getLocalName()
Returns the local name of the DOMAttr.

Syntax
FUNCTION getLocalName(a DOMAttr) RETURN VARCHAR2;

getExpandedName()
Returns the expanded name of the DOMAttr.

Syntax
FUNCTION getExpandedName(a DOMAttr) RETURN VARCHAR2;

Parameter IN / OUT Description

a (IN) DOMAttr.

Parameter IN / OUT Description

a (IN) DOMAttr.

Parameter IN / OUT Description

a (IN) DOMAttr.

Parameter IN / OUT Description

a (IN) DOMAttr.
84-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getName()
Returns the name of this attribute.

Syntax
FUNCTION getName(a DOMAttr) RETURN VARCHAR2;

getSpecified()
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false.

Syntax
FUNCTION getSpecified(a DOMAttr) RETURN BOOLEAN;

getValue()
Retrieves the value of the attribute.

Syntax
FUNCTION getValue(a DOMAttr) RETURN VARCHAR2;

setValue()
Sets the value of the attribute.

Parameter IN / OUT Description

a IN DOMAttr

Parameter IN / OUT Description

a IN DOMAttr

Parameter IN / OUT Description

a IN DOMAttr
DBMS_XMLDOM 84-31

DOM C Data Section Methods
Syntax
PROCEDURE setValue(a DOMAttr,

value IN VARCHAR2);

DOM C Data Section Methods

isNull()
Checks that the given DOMCDataSection is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(cds DOMCDataSection) RETURN BOOLEAN;

makeNode()
Casts the DOMCDataSection to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(cds DOMCDataSection) RETURN DOMNode;

Parameter IN / OUT Description

a IN DOMAttr

value IN The value to set the attribute to

Parameter IN / OUT Description

cds (IN) DOMCDataSection to check.

Parameter IN / OUT Description

cds (IN) DOMCDataSection to cast.
84-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Character Data Methods

isNull()
Checks that the given DOMCharacterData is NULL; returns TRUE if it is NULL,
FALSE otherwise.

Syntax
FUNCTION isNull(cd DOMCharacterData) RETURN BOOLEAN;

makeNode()
Casts the given DOMCharacterData as a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(cd DOMCharacterData) RETURN DOMNode;

getData()
Gets the character data of the node that implements this interface.

Syntax
FUNCTION getData(cd DOMCharacterData) RETURN VARCHAR2;

Parameter IN / OUT Description

cd (IN) DOMCharacterData to check.

Parameter IN / OUT Description

cd (IN) DOMCharacterData to cast

Parameter IN / OUT Description

cd IN DOMCharacterData
DBMS_XMLDOM 84-33

setData()
setData()
Sets the character data of the node that implements this interface.

Syntax
PROCEDURE setData(cd DOMCharacterData,

data IN VARCHAR2);

getLength()
The number of 16-bit units that are available through data and the
substringData() method. This may have the value zero, i.e., CharacterData
nodes may be empty.

Syntax
FUNCTION getLength(cd DOMCharacterData) RETURN NUMBER;

substringData()
Extracts a range of data from the node.

Syntax
FUNCTION substringData(cd DOMCharacterData,

offset IN NUMBER,
cnt IN NUMBER)
RETURN VARCHAR2;

Parameter IN / OUT Description

cd IN DOMCharacterData

data IN The data to set the node to

Parameter IN / OUT Description

cd IN DOMCharacterData
84-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
appendData()
Appends the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the specified string argument.

Syntax
PROCEDURE appendData(cd DOMCharacterData,

arg IN VARCHAR2);

insertData()
Inserts a string at the specified 16-bit unit offset.

Syntax
PROCEDURE insertData(cd DOMCharacterData,

offset IN NUMBER,
arg IN VARCHAR2);

Parameter IN / OUT Description

cd IN DOMCharacterData.

offset IN The starting offset of the data from which to get the data.

cnt IN The number of characters (from the offset) of the data to get.

Parameter IN / OUT Description

cd IN DOMCharacterData.

arg IN The data to append to the existing data.

Parameter IN / OUT Description

cd IN DOMCharacterData.

offset IN The offset at which to insert the data.

arg IN The value to be inserted.
DBMS_XMLDOM 84-35

deleteData()
deleteData()
Removes a range of 16-bit units from the node. Upon success, data and length
reflect the change.

Syntax
PROCEDURE deleteData(cd DOMCharacterData,

offset IN NUMBER,
cnt IN NUMBER);

replaceData()
Remove a range of 16-bit units from the node. Upon success, data and length reflect
the change.

Syntax
PROCEDURE replaceData(cd DOMCharacterData,

offset IN NUMBER,
cnt IN NUMBER,
arg IN VARCHAR2);

Parameter IN / OUT Description

cd IN DOMCharacterData

offset IN The offset from which to delete the data

cnt IN The number of characters (starting from offset) to delete.

Parameter IN / OUT Description

cd IN DOMCharacterData.

offset IN The offset at which to replace.

cnt IN The no. of characters to replace.

arg IN The value to replace with.
84-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
DOM Comment Methods

isNull()
Checks that the given DOMComment is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(com DOMComment) RETURN BOOLEAN;

makeNode()
Casts the given DOMComment to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(com DOMComment) RETURN DOMNode;

DOM Implementation Methods

isNull()
Checks that the given DOMImplementation is NULL; returns TRUE if it is NULL,
FALSE otherwise.

Syntax
FUNCTION isNull(di DOMImplementation) RETURN BOOLEAN;

Parameter IN / OUT Description

com (IN) DOMComment to check.

Parameter IN / OUT Description

com (IN) DOMComment to cast.
DBMS_XMLDOM 84-37

hasFeature()
hasFeature()
Test if the DOM implementation implements a specific feature.

Syntax
FUNCTION hasFeature(di DOMImplementation,

feature IN VARCHAR2,
version IN VARCHAR2)
RETURN BOOLEAN;

DOM Document Fragment Methods

isNull()
Checks that the given DOMDocumentFragment is NULL; returns TRUE if it is NULL,
FALSE otherwise.

Syntax
FUNCTION isNull(df DOMDocumentFragment) RETURN BOOLEAN;

makeNode()
Casts the given DOMDocumentFragment to a DOMNode, and returns that
DOMNode.

Parameter IN / OUT Description

di (IN) DOMImplementation to check.

Parameter IN / OUT Description

di IN DOMImplementation

feature IN The feature to check for

version IN The version of the DOM to check in

Parameter IN / OUT Description

df (IN) DOMDocumentFragment to check.
84-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
FUNCTION makeNode(df DOMDocumentFragment) RETURN DOMNode;

DOM Document Type Methods

isNull()
Checks that the given DOMDocumentType is NULL; returns TRUE if it is NULL,
FALSE otherwise.

Syntax
FUNCTION isNull(dt DOMDocumentType) RETURN BOOLEAN;

makeNode()
Casts the given DOMDocumentType to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(dt DOMDocumentType) RETURN DOMNode;

findEntity()
Finds an entity in the given DTD; returns that entity if found.

Parameter IN / OUT Description

df (IN) DOMDocumentFragment to cast.

Parameter IN / OUT Description

dt (IN) DOMDocumentType to check.

Parameter IN / OUT Description

dt (IN) DOMDocumentType to cast.
DBMS_XMLDOM 84-39

findNotation()
Syntax
FUNCTION findEntity(dt DOMDocumentType,

name VARCHAR2,
par BOOLEAN)
RETURN DOMEntity;

findNotation()
Finds the notation in the given DTD; returns it, if found.

Syntax
FUNCTION findNotation(dt DOMDocumentType,

name VARCHAR2)
RETURN DOMNotation;

getPublicId()
Returns the public id of the given DTD.

Syntax
FUNCTION getPublicId(dt DOMDocumentType) RETURN VARCHAR2;

Parameter IN / OUT Description

dt (IN) The DTD.

name (IN) Entity to find.

par (IN) Flag to indicate type of entity; TRUE for parameter entity and
FALSE for normal entity.

Parameter IN / OUT Description

dt (IN) The DTD.

name (IN) The notation to find.

Parameter IN / OUT Description

dt (IN) The DTD.
84-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getSystemId()
Returns the system id of the given DTD.

Syntax
FUNCTION getSystemId(dt DOMDocumentType) RETURN VARCHAR2;

writeExternalDTDToFile()
Writes DTD to a specified file. The options are given in the table below.

writeExternalDTDToBuffer()
Writes DTD to a specified buffer. The options are given in the table below.

Parameter IN / OUT Description

dt (IN) The DTD.

Syntax Description

PROCEDURE writeExternalDTDToFile(

 dt DOMDocumentType,

 fileName VARCHAR2);

Writes the DTD to a specified file using the database
character set.

PROCEDURE writeExternalDTDToFile(

 dt DOMDocumentType,

 fileName VARCHAR2,

 charset VARCHAR2);

Writes the DTD to a specified file using the given
character set.

Parameter IN / OUT Description

dt (IN) The DTD.

fileName (IN) The file to write to.

charset (IN) Character set.
DBMS_XMLDOM 84-41

writeExternalDTDToClob()
writeExternalDTDToClob()
Writes DTD to a specified clob. The options are given in the table below.

Syntax Description

PROCEDURE writeExternalDTDToBuffer(

 dt DOMDocumentType,

 buffer IN OUT VARCHAR2);

Writes the DTD to a specified buffer using the database
character set.

PROCEDURE writeExternalDTDToBuffer(

 dt DOMDocumentType,

 buffer IN OUT VARCHAR2,

 charset VARCHAR2);

Writes the DTD to a specified buffer using the given
character set.

Parameter IN / OUT Description

dt (IN) The DTD.

buffer (IN/OUT) The buffer to write to.

charset (IN) Character set.

Syntax Description

PROCEDURE writeExternalDTDToClob(

 dt DOMDocumentType,

 cl IN OUT CLOB);

Writes the DTD to a specified clob using the database
character set.

PROCEDURE writeExternalDTDToClob(

 dt DOMDocumentType,

 cl IN OUT CLOB,

 charset VARCHAR2);

Writes the DTD to a specified clob using the given
character set.

Parameter IN / OUT Description

dt (IN) The DTD.

cl (IN/OUT) The clob to write to.

charset (IN) Character set.
84-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getName()
Retrieves the name of DTD, or the name immediately following the DOCTYPE
keyword.

Syntax
FUNCTION getName(dt DOMDocumentType) RETURN VARCHAR2;

getEntities()
Retrieves a NamedNodeMap containing the general entities, both external and
internal, declared in the DTD.

Syntax
FUNCTION getEntities(dt DOMDocumentType) RETURN DOMNamedNodeMap;

getNotations()
Retrieves a NamedNodeMap containing the notations declared in the DTD.

Syntax
FUNCTION getNotations(dt DOMDocumentType) RETURN DOMNamedNodeMap;

Parameter IN / OUT Description

dt IN DOMDocumentType

Parameter IN / OUT Description

dt IN DOMDocumentType

Parameter IN / OUT Description

dt IN DOMDocumentType
DBMS_XMLDOM 84-43

DOM Element Methods
DOM Element Methods

isNull()
Checks that the given DOMElement is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(elem DOMElement) RETURN BOOLEAN;

makeNode()
Casts the given DOMElement to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(elem DOMElement) RETURN DOMNode;

getQualifiedName()
Returns the qualified name of the DOMElement.

Syntax
FUNCTION getQualifiedName(elem DOMElement) RETURN VARCHAR2;

Parameter IN / OUT Description

elem (IN) DOMElement to check.

Parameter IN / OUT Description

elem (IN) DOMElement to cast.

Parameter IN / OUT Description

elem (IN) DOMElement.
84-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getNamespace()
Returns the namespace of the DOMElement.

Syntax
FUNCTION getNamespace(elem DOMElement) RETURN VARCHAR2;

getLocalName()
Returns the local name of the DOMElement.

Syntax
FUNCTION getLocalName(elem DOMElement) RETURN VARCHAR2;

getExpandedName()
Returns the expanded name of the DOMElement.

Syntax
FUNCTION getExpandedName(elem DOMElement) RETURN VARCHAR2;

getChildrenByTagName()
Returns the children of the DOMElement. The options are given in the table below.

Parameter IN / OUT Description

elem (IN) DOMElement.

Parameter IN / OUT Description

elem (IN) DOMElement.

Parameter IN / OUT Description

elem (IN) DOMElement.
DBMS_XMLDOM 84-45

getElementsByTagName()
getElementsByTagName()
Returns the element children of the DOMElement. The options are given in the table
below.

Syntax Description

FUNCTION getChildrenByTagName(

 elem DOMElement,

 name IN VARCHAR2)

 RETURN DOMNodeList;

Returns children of the DOMElement
given the tag name.

FUNCTION getChildrenByTagName(

 elem DOMElement,

 name IN VARCHAR2,

 ns VARCHAR2)

 RETURN DOMNodeList;

Returns children of the DOMElement
given the tag name and namespace.

Parameter IN / OUT Description

elem (IN) The DOMElement.

name (IN) Tag name; * matches any tag.

ns (IN) Namespace.

Syntax Description

FUNCTION getElementsByTagName(

 elem DOMElement,

 name IN VARCHAR2)

 RETURN DOMNodeList;

Returns the element children of the DOMElement
given the tag name.

FUNCTION getElementsByTagName(

 elem DOMElement,

 name IN VARCHAR2,

 ns VARCHAR2)

 RETURN DOMNodeList;

Returns the element children of the DOMElement
given the tag name and namespace.
84-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Parameters

resolveNamespacePrefix()
Resolves the given namespace prefix, and returns the resolved namespace.

Syntax
FUNCTION resolveNamespacePrefix(elem DOMElement,

prefix VARCHAR2)
RETURN VARCHAR2;

getTagName()
Returns the name of the DOMElement.

Syntax
FUNCTION getTagName(elem DOMElement) RETURN VARCHAR2;

getAttribute()
Returns the value of a DOMElement’s attribute by name.

Parameter IN / OUT Description

elem (IN) The DOMElement.

name (IN) Tag name; * matches any tag.

ns (IN) Namespace.

Parameter IN / OUT Description

elem (IN) The DOMElement.

prefix (IN) Namespace prefix.

Parameter IN / OUT Description

elem (IN) The DOMElement.
DBMS_XMLDOM 84-47

setAttribute()
Syntax
FUNCTION getAttribute(elem DOMElement,

name IN VARCHAR2)
RETURN VARCHAR2;

setAttribute()
Sets the value of a DOMElement’s attribute by name.

Syntax
PROCEDURE setAttribute(elem DOMElement,

name IN VARCHAR2,
value IN VARCHAR2);

removeAttribute()
Removes an attribute from the DOMElement by name.

Syntax
PROCEDURE removeAttribute(elem DOMElement,

name IN VARCHAR2);

Parameter IN / OUT Description

elem (IN) The DOMElement.

name (IN) Attribute name; * matches any attribute.

Parameter IN / OUT Description

elem (IN) The DOMElement.

name (IN) Attribute name; * matches any attribute.

value (IN) Attribute value

Parameter IN / OUT Description

elem (IN) The DOMElement.
84-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getAttributeNode()
Returns an attribute node from the DOMElement by name.

Syntax
FUNCTION getAttributeNode(elem DOMElement,

name IN VARCHAR2)
RETURN DOMAttr;

setAttributeNode()
Adds a new attribute node to the DOMElement.

Syntax
FUNCTION setAttributeNode(elem DOMElement,

newAttr IN DOMAttr)
RETURN DOMAttr;

removeAttributeNode()
Removes the specified attribute node from the DOMElement.

Syntax
FUNCTION removeAttributeNode(elem DOMElement,

name (IN) Attribute name; * matches any attribute.

Parameter IN / OUT Description

elem (IN) The DOMElement.

name (IN) Attribute name; * matches any attribute.

Parameter IN / OUT Description

elem (IN) The DOMElement.

newAttr (IN) The new DOMAttr.

Parameter IN / OUT Description
DBMS_XMLDOM 84-49

normalize()
oldAttr IN DOMAttr)
RETURN DOMAttr;

normalize()
Normalizes the text children of the DOMElement.

Syntax
PROCEDURE normalize(elem DOMElement);

DOM Entity Methods

isNull()
Checks that the given DOMEntity is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(ent DOMEntity) RETURN BOOLEAN;

makeNode()
Casts given DOMEntity to a DOMNode, and returns that DOMNode.

Parameter IN / OUT Description

elem (IN) The DOMElement.

oldAttr (IN) The old DOMAttr.

Parameter IN / OUT Description

elem (IN) The DOMElement.

Parameter IN / OUT Description

ent (IN) DOMEntity to check.
84-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
FUNCTION makeNode(ent DOMEntity) RETURN DOMNode;

getPublicId()
Returns the public identifier of the DOMEntity.

Syntax
FUNCTION getPublicId(ent DOMEntity) RETURN VARCHAR2;

getSystemId()
Returns the system identifier of the DOMEntity.

Syntax
FUNCTION getSystemId(ent DOMEntity) RETURN VARCHAR2;

getNotationName()
Returns the notation name of the DOMEntity.

Syntax
FUNCTION getNotationName(ent DOMEntity) RETURN VARCHAR2;

Parameter IN / OUT Description

ent (IN) DOMEntity to cast.

Parameter IN / OUT Description

ent (IN) DOMEntity.

Parameter IN / OUT Description

ent (IN) DOMEntity.
DBMS_XMLDOM 84-51

DOM Entity Reference Methods
DOM Entity Reference Methods

isNull()
Checks that the given DOMEntityRef is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(eref DOMEntityReference) RETURN BOOLEAN;

makeNode()
Casts the DOMEntityReference to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(eref DOMEntityReference) RETURN DOMNode;

DOM Notation Methods

isNull()
Checks that the given DOMNotation is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Parameter IN / OUT Description

ent (IN) DOMEntity.

Parameter IN / OUT Description

eref (IN) DOMEntityReference to check.

Parameter IN / OUT Description

eref (IN) DOMEntityReference to cast.
84-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
FUNCTION isNull(n DOMNotation) RETURN BOOLEAN;

makeNode()
Casts the DOMNotation to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(n DOMNotation) RETURN DOMNode;

getPublicId()
Returns the public identifier of the DOMNotation.

Syntax
FUNCTION getPublicId(n DOMNotation) RETURN VARCHAR2;

getSystemId()
Returns the system identifier of the DOMNotation.

Syntax
FUNCTION getSystemId(n DOMNotation) RETURN VARCHAR2;

Parameter IN / OUT Description

n (IN) DOMNotation to check.

Parameter IN / OUT Description

n (IN) DOMNotation to cast.

Parameter IN / OUT Description

n (IN) DOMNotation.
DBMS_XMLDOM 84-53

DOM Processing Instruction Methods
DOM Processing Instruction Methods

isNull()
Checks that the given DOMProcessingInstruction is NULL; returns TRUE if it is
NULL, FALSE otherwise.

Syntax
FUNCTION isNull(pi DOMProcessingInstruction) RETURN BOOLEAN;

makeNode()
Casts the DOMProcessingInstruction to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(pi DOMProcessingInstruction) RETURN DOMNode;

getData()
Returns the content data of the DOMProcessingInstruction.

Syntax
FUNCTION getData(pi DOMProcessingInstruction) RETURN VARCHAR2;

Parameter IN / OUT Description

n (IN) DOMNotation.

Parameter IN / OUT Description

pi (IN) DOMProcessingInstruction to check.

Parameter IN / OUT Description

pi (IN) DOMProcessingInstruction to cast.
84-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getTarget()
Returns the target of the DOMProcessingInstruction.

Syntax
FUNCTION getTarget(pi DOMProcessingInstruction) RETURN VARCHAR2;

setData()
Sets the content data of the DOMProcessingInstruction.

Syntax
PROCEDURE setData(pi DOMProcessingInstruction,

data IN VARCHAR2);

DOM Text Methods

isNull()
Checks that the given DOMText is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Syntax
FUNCTION isNull(t DOMText) RETURN BOOLEAN;

Parameter IN / OUT Description

pi (IN) DOMProcessingInstruction.

Parameter IN / OUT Description

pi (IN) DOMProcessingInstruction.

Parameter IN / OUT Description

pi (IN) DOMProcessingInstruction.

data (IN) New processing instruction content data.
DBMS_XMLDOM 84-55

makeNode()
makeNode()
Casts the DOMText to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(t DOMText) RETURN DOMNode;

splitText()
Breaks this DOMText node into two DOMText nodes at the specified offset.

Syntax
FUNCTION splitText(t DOMText,

offset IN NUMBER)
RETURN DOMText;

DOM Document Methods

isNull()
Checks that the given DOMDocument is NULL; returns TRUE if it is NULL, FALSE
otherwise.

Parameter IN / OUT Description

t (IN) DOMText to check.

Parameter IN / OUT Description

t (IN) DOMText to cast.

Parameter IN / OUT Description

t (IN) DOMText

offset (IN) Offset at which to split.
84-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
FUNCTION isNull(doc DOMDocument) RETURN BOOLEAN;

makeNode()
Casts the DOMDocument to a DOMNode, and returns that DOMNode.

Syntax
FUNCTION makeNode(doc DOMDocument) RETURN DOMNode;

newDOMDocument()
Returns a new DOMDocument instance.

Syntax
FUNCTION newDOMDocument RETURN DOMDocument;

freeDocument()
Frees DOMDocument object.

Syntax
PROCEDURE freeDocument(doc DOMDocument);

Parameter IN / OUT Description

doc (IN) DOMDocument to check.

Parameter IN / OUT Description

doc (IN) DOMDocument to cast.

Parameter IN / OUT Description

doc (IN) DOMDocument.
DBMS_XMLDOM 84-57

getVersion()
getVersion()
Returns the version information for the XML document.

Syntax
FUNCTION getVersion(doc DOMDocument) RETURN VARCHAR2;

setVersion()
Sets version information for the XML document.

Syntax
PROCEDURE setVersion(doc DOMDocument,

version VARCHAR2);

getCharset()
Retrieves the character set of the XML document.

Syntax
FUNCTION getCharset(doc DOMDocument) RETURN VARCHAR2;

setCharset()
Sets character set of the XML document.

Parameter IN / OUT Description

doc (IN) DOMDocument.

Parameter IN / OUT Description

doc (IN) DOMDocument.

version ((N) Version information.

Parameter IN / OUT Description

doc (IN) DOMDocument.
84-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
Syntax
PROCEDURE setCharset(doc DOMDocument,

charset VARCHAR2);

getStandalone()
Retrieves standalone information for the XML document.

Syntax
FUNCTION getStandalone(doc DOMDocument) RETURN VARCHAR2;

setStandalone()
Sets standalone information for the XML document.

Syntax
PROCEDURE setStandalone(doc DOMDocument,

value VARCHAR2);

writeToFile()
Writes XML document to a specified file. The options are given in the table below.

Parameter IN / OUT Description

doc (IN) DOMDocument.

charset ((N) Character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

Parameter IN / OUT Description

doc (IN) DOMDocument.

value ((N) Standalone information
DBMS_XMLDOM 84-59

writeToBuffer()
writeToBuffer()
Writes XML document to a specified buffer. The options are given in the table
below.

Syntax Description

PROCEDURE writeToFile(

 doc DOMDocument,

 fileName VARCHAR2);

Writes XML document to a specified file using database
character set.

PROCEDURE writeToFile(

 doc DOMDocument,

 fileName VARCHAR2,

 charset VARCHAR2);

Writes XML document to a specified file using given
character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

filename (N) File to write to.

charset (IN) Character set.

Syntax Description

PROCEDURE writeToBuffer(

 doc DOMDocument,

 buffer IN OUT VARCHAR2);

Writes XML document to a specified
buffer using database character set.

PROCEDURE writeToBuffer(

 doc DOMDocument,

 buffer IN OUT VARCHAR2,

 charset VARCHAR2);

Writes XML document to a specified
buffer using given character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

buffer (N/OUT) Buffer to write to.

charset (IN) Character set.
84-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
writeToClob()
Writes XML document to a specified clob. The options are given in the table below.

writeExternalDTDToFile()
Writes an external DTD to specified file. The options are given in the table below.

Syntax Description

PROCEDURE writeToClob(

 doc DOMDocument,

 cl IN OUT CLOB);

Writes XML document to a specified
clob using database character set.

PROCEDURE writeToClob(

 doc DOMDocument,

 cl IN OUT CLOB,

 charset VARCHAR2);

Writes XML document to a specified
clob using given character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

cl (N/OUT) Buffer to write to.

charset (IN) Character set.

Syntax Description

PROCEDURE writeExternalDTDToFile(

 doc DOMDocument,

 fileName VARCHAR2);

Writes an external DTD to specified file
using the database character set.

PROCEDURE writeExternalDTDToFile(

 doc DOMDocument,

 fileName VARCHAR2,

 charset VARCHAR2);

Writes an external DTD to specified file
using the given character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.
DBMS_XMLDOM 84-61

writeExternalDTDToBuffer()
writeExternalDTDToBuffer()
Writes an external DTD to specified buffer. The options are given in the table below.

writeExternalDTDToClob()
Writes an external DTD to specified clob. The options are given in the table below.

fileName (N) File to write to.

charset (IN) Character set.

Syntax Description

PROCEDURE writeExternalDTDToBuffer(

 doc DOMDocument,

 buffer IN OUT VARCHAR2);

Writes an external DTD to specified
buffer using the database character set.

PROCEDURE writeExternalDTDToBuffer(

 doc DOMDocument,

 buffer IN OUT VARCHAR2,

 charset VARCHAR2);

Writes an external DTD to specified
buffer using the given character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

buffer (N/OUT) Buffer to write to.

charset (IN) Character set.

Syntax Description

PROCEDURE writeExternalDTDToClob(

 doc DOMDocument,

 cl IN OUT CLOB);

Writes an external DTD to specified
clob using the database character set.

PROCEDURE writeExternalDTDToClob(

 doc DOMDocument,

 cl IN OUT CLOB,

 charset VARCHAR2);

Writes an external DTD to specified
clob using the given character set.

Parameter IN / OUT Description
84-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getDoctype()
Returns the DTD associated to the DOMDocument.

Syntax
FUNCTION getDoctype(doc DOMDocument) RETURN DOMDocumentType;

getImplementation()
Returns the DOMImplementation object that handles this DOMDocument.

Syntax
FUNCTION getImplementation(doc DOMDocument) RETURN DOMImplementation;

getDocumentElement()
Returns the child node -i.e. the document element- of the DOMDocument.

Syntax
FUNCTION getDocumentElement(doc DOMDocument) RETURN DOMElement;

Parameter IN / OUT Description

doc (IN) DOMDocument.

cl (N) Clob to write to.

charset (IN) Character set.

Parameter IN / OUT Description

doc (IN) DOMDocument.

Parameter IN / OUT Description

doc (IN) DOMDocument.
DBMS_XMLDOM 84-63

createElement()
createElement()
Creates a DOMElement.

Syntax
FUNCTION createElement(doc DOMDocument,

tagName IN VARCHAR2)
RETURN DOMElement;

createDocumentFragment()
Creates a DOMDocumentFragment.

Syntax
FUNCTION createDocumentFragment(doc DOMDocument) RETURN DOMDocumentFragment;

createTextNode()
Creates a DOMText node.

Syntax
FUNCTION createTextNode(doc DOMDocument,

data IN VARCHAR2)
RETURN DOMText;

Parameter IN / OUT Description

doc (IN) DOMDocument.

Parameter IN / OUT Description

doc (IN) DOMDocument.

tagName (IN) Tagname for new DOMElement.

Parameter IN / OUT Description

doc (IN) DOMDocument.
84-64 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
createComment()
Creates a DOMComment node.

Syntax
FUNCTION createComment(doc DOMDocument,

data IN VARCHAR2)
RETURN DOMComment;

createCDATASection()
Creates a DOMCDATASection node.

Syntax
FUNCTION createCDATASection(doc DOMDocument,

data IN VARCHAR2)
RETURN DOMCDATASection;

createProcessingInstruction()
Creates a DOMProcessingInstruction node.

Parameter IN / OUT Description

doc (IN) DOMDocument.

data (IN) Content of the DOMText node.

Parameter IN / OUT Description

doc (IN) DOMDocument.

data (IN) Content of the DOMComment node.

Parameter IN / OUT Description

doc (IN) DOMDocument.

data (IN) Content of the DOMCDATASection node.
DBMS_XMLDOM 84-65

createAttribute()
Syntax
FUNCTION createProcessingInstruction(doc DOMDocument,

target IN VARCHAR2,
data IN VARCHAR2)
RETURN DOMProcessingInstruction;

createAttribute()
Creates a DOMAttr node.

Syntax
FUNCTION createAttribute(doc DOMDocument,

name IN VARCHAR2)
RETURN DOMAttr;

createEntityReference()
Creates a DOMEntityReference node.

Syntax
FUNCTION createEntityReference(doc DOMDocument,

name IN VARCHAR2)
RETURN DOMEntityReference;

Parameter IN / OUT Description

doc (IN) DOMDocument.

target (IN) Target of the new processing instruction.

data (IN) Content data of the new processing instruction.

Parameter IN / OUT Description

doc (IN) DOMDocument.

name (IN) New attribute name.
84-66 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLDOM
getElementsByTagName()
Returns a DOMNodeList of all the elements with a given tagname.

Syntax
FUNCTION getElementsByTagName(doc DOMDocument,

tagname IN VARCHAR2)
RETURN DOMNodeList;

Parameter IN / OUT Description

doc (IN) DOMDocument.

name (IN) New entity reference name.

Parameter IN / OUT Description

doc (IN) DOMDocument.

tagname (IN) Name of the tag to match on.
DBMS_XMLDOM 84-67

getElementsByTagName()
84-68 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_X
85

DBMS_XMLGEN

DBMS_XMLGEN converts the results of a SQL query to a canonical XML format. The
package takes an arbitrary SQL query as input, converts it to XML format, and
returns the result as a CLOB.

This package is similar to the DBMS_XMLQUERY package, except that it is written in
C and compiled into the kernel. This package can only be run on the database.

This chapter details the following:

� Functions and Procedures of DBMS_XMLGEN

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information on XML support.

Oracle9i XML Database Developer’s Guide - XDB, for more information on
XML support and for an example of how to use DBMS_XMLGEN.
MLGEN 85-1

Description of DMS_XMLGEN
Description of DMS_XMLGEN
DBMS_XMLGEN converts the results of a SQL query to a canonical XML format. The
package takes an arbitrary SQL query as input, converts it to XML format, and
returns the result as a CLOB.

This package is similar to the DBMS_XMLQUERY package, except that it is written in
C and compiled into the kernel. This package can only be run in the database.

Functions and Procedures of DBMS_XMLGEN

Table 85-1: Summary of Functions and Procedures of DBMS_XMLGEN

Function/Procedure Description

newContext() on page 85-3 Creates a new context handle.

setRowTag() on page 85-3 Sets the name of the element enclosing each row of the
result. The default tag is ROW.

setRowSetTag () on page 85-4 Sets the name of the element enclosing the entire result. The
default tag is ROWSET.

getXML() on page 85-4 Gets the XML document.

getNumRowsProcessed() on
page 85-5

Gets the number of SQL rows that were processed in the last
call to getXML.

setMaxRows() on page 85-6 Sets the maximum number of rows to be fetched each time.

setSkipRows() on page 85-6 Sets the number of rows to skip every time before
generating the XML. The default is 0.

setConvertSpecialChars() on
page 85-7

Sets whether special characters such as $, which are
non-XML characters, should be converted or not to their
escaped representation. The default is to perform the
conversion.

convert() on page 85-7 Converts the XML into the escaped or unescaped XML
equivalent.

useItemTagsForColl() on page 85-8 Forces the use of the collection column name appended
with the tag _ITEM for collection elements. The default is
to set the underlying object type name for the base element
of the collection.

restartQUERY() on page 85-8 Restarts the query to start fetching from the beginning.

closeContext() on page 85-9 Closes the context and releases all resources.
85-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLGEN
newContext()
Generates and returns a new context handle; this context handle is used in
getXML() and other functions to get XML back from the result. The available
options are given in the table below.

setRowTag()
Sets the name of the element separating all the rows. The default name is ROW.
User can set this to NULL to suppress the ROW element itself. However, an error is
produced if both the row and the rowset are NULL and there is more than one
column or row in the output; this is because the generated XML would not have a
top-level enclosing tag, and so would be invalid.

Syntax
DBMS_XMLGEN.setRowTag (

ctx IN ctxHandle,
rowTag IN VARCHAR2);

Syntax Description

DBMS_XMLGEN.newContext (

 query IN VARCHAR2)

 RETURN ctxHandle;

Generates a new context handle from a
query.

DBMS_XMLGEN.newContext (

 queryString IN SYS_REFCURSOR)

 RETURN ctxHandle;

Generates a new context handle from a
query string in the form of a PL/SQL ref
cursor

Parameter IN / OUT Description

query (IN) The query, in the form of a VARCHAR, the result of which
must be converted to XML

queryString (IN) The query string in the form of a PL/SQL ref cursor, the
result of which must be converted to XML.

Parameter IN / OUT Description

ctx (IN) The context handle obtained from the newContext call.
DBMS_XMLGEN 85-3

setRowSetTag ()
setRowSetTag ()
Sets the name of the root element of the document. The default name is ROWSET.
User can set the rowSetTag NULL to suppress the printing of this element.
However, an error is produced if both the row and the rowset are NULL and there is
more than one column or row in the output; this is because the generated XML
would not have a top-level enclosing tag, and so would be invalid.

Syntax
DBMS_XMLGEN.setRowSetTag (

ctx IN ctxHandle,
rowSetTag IN VARCHAR2);

getXML()
Gets the XML document. When the rows indicated by the setSkipRows() call are
skipped, the maximum number of rows as specified by the setMaxRows() call (or the entire
result if not specified) is fetched and converted to XML. Use the getNumRowsProcessed()
to check if any rows were retrieved. The available options are given in the table below.

rowTag (IN) The name of the ROW element. Passing NULL indicates that
you do not want the ROW element present.

Parameter IN / OUT Description

ctx (IN) The context handle obtained from the newContext call.

rowSetTag (IN) The name of the document element. Passing NULL indicates
that you do not want the ROWSET element present.

Syntax Description

FUNCTION DBMS_XMLGEN.getXML (

 ctx IN ctxHandle,

 clobval IN OUT NCOPY clob,

 dtdOrSchema IN number := NONE)

RETURN boolean;

This procedure gets the XML document by fetching
the maximum number of rows specified. It
appends the XML document to the CLOB passed
in. Use this version of getXML() to avoid any extra
CLOB copies and to reuse the same CLOB for
subsequent calls. Because of the CLOB reuse, this
getXML() call is potentially more efficient.

Parameter IN / OUT Description
85-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLGEN
getNumRowsProcessed()
Retrieves the number of SQL rows processed when generating the XML using the
getXML call; this count does not include the number of rows skipped before
generating the XML. Used to determine the terminating condition if calling
getXML() in a loop. Note that getXML() always generates an XML document,
even if there are no rows present.

FUNCTION DBMS_XMLGEN.getXML (

 ctx IN ctxHandle,

 dtdOrSchema IN number := NONE)

RETURN clob;

Generates the XML document and returns it as a
temporary CLOB. The temporary CLOB obtained from
this function must be freed using the DBMS_
LOB.FREETEMPORARY call.

FUNCTION DBMS_XMLGEN.getXML (

 sqlQuery IN VARCHAR2,

 dtdOrSchema IN number := NONE)

RETURN clob;

Converts the results from the SQL query string to XML
format, and returns the XML as a temporary CLOB. This
temporary CLOB must be subsequently freed using the
DBMS_LOB.FREETEMPORARY call.

FUNCTION DBMS_
XMLGEN.getXMLType (

 ctx IN ctxhandle,

 dtdOrSchema IN number := NONE)

RETURN sys.XMLType;

Generates the XML document and returns it as a
sys.XMLType . XMLType operations can be performed
on the results, including ExistsNode and Extract .
This also provides a way of obtaining the results as a
string by using the getStringVal() function, if the
result size is less than 4K.

FUNCTION DBMS_
XMLGEN.getXMLType (

 sqlQuery IN VARCHAR2,

 dtdOrSchema IN number := NONE)

RETURN sys.XMLType

Converts the results from the SQL query string to XML
format, and returns the XML as a sys.XMLType .
XMLType operations can be performed on the results,
including ExistsNode and Extract . This also
provides a way of obtaining the results as a string by
using the getStringVal() function, if the result size is
less than 4K.

Parameter IN / OUT Description

ctx (IN) The context handle obtained from the newContext call.

clobval (IN/OUT) The clob to which the XML document is appended.

sqlQuery (IN) The SQL query string.

dtdOrSchema (IN) The Boolean to indicate generation of either a DTD or a
schema. NONE is the only option currently supported.

Syntax Description
DBMS_XMLGEN 85-5

setMaxRows()
Syntax
DBMS_XMLGEN.getNumRowsProcessed (

ctx IN ctxHandle)
RETURN NUMBER;

setMaxRows()
Sets the maximum number of rows to fetch from the SQL query result for every
invokation of the getXML call. Used when generating paginated results. For
example, when generating a page of XML or HTML data, restrict the number of
rows converted to XML or HTML by setting the maxRows parameter.

Syntax
DBMS_XMLGEN.setMaxRows (

ctx IN ctxHandle,
maxRows IN NUMBER);

setSkipRows()
Skips a given number of rows before generating the XML output for every call to
the getXML routine. Used when generating paginated results for stateless Web
pages using this utility. For example, when generating the first page of XML or
HTML data, set skipRows to zero. For the next set, set the skipRows to the
number of rows obtained in the first case. See getNumRowsProcessed() .

Syntax
DBMS_XMLGEN.setSkipRows (

ctx IN ctxHandle,
skipRows IN NUMBER);

Parameter IN / OUT Description

ctx (IN) The context handle obtained from the newContext call.

Parameter IN / OUT Description

ctx (IN) The context handle corresponding to the query executed.

maxRows (IN) The maximum number of rows to get per call to getXML.
85-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLGEN
setConvertSpecialChars()
Sets whether or not special characters in the XML data must be converted into their
escaped XML equivalent. For example, the < sign is converted to <. The default
is to perform conversions. Improves performance of XML processing when the
input data cannot contain any special characters such as <, >, ", ’ , which must be
escaped. It is expensive to scan the character data to replace the special characters,
particularly if it involves a lot of data. Syntax

DBMS_XMLGEN.setConvertSpecialChars (
ctx IN ctxHandle,
conv IN boolean);

convert()
Converts the XML data into the escaped or unescaped XML equivalent; returns
XML CLOB data in encoded or decoded format. Escapes the XML data if the
ENTITY_ENCODE is specified. For example, the escaped form of the character < is
< . Unescaping is the reverse transformation. The available options are given in
the table below.

Parameter IN / OUT Description

ctx (IN) The context handle corresponding to the query executed.

skipRows (IN) The number of rows to skip per call to getXML.

Parameter IN / OUT Description

ctx (IN) The context handle obtained from the newContext call.

conv (IN) TRUE indicates that conversion is needed.

Syntax Description

DBMS_XMLGEN.convert (

 xmlData IN VARCHAR2,

 flag IN NUMBER := ENTITY_ENCODE)

RETURN VARCHAR2;

Uses xmlData in string form (VARCHAR2).
DBMS_XMLGEN 85-7

useItemTagsForColl()
useItemTagsForColl()
Overrides the default name of the collection elements. The default name for
collection elements is the type name itself. Using this function, you can override the
default to use the name of the column with the _ITEM tag appended to it. If there is
a collection of NUMBER, the default tag name for the collection elements is NUMBER.
Using this procedure, the user can override this behavior and generate the
collection column name with the _ITEM tag appended to it.

Syntax
DBMS_XMLGEN.useItemTagsForColl (

ctx IN ctxHandle);

restartQUERY()
Restarts the query and generates the XML from the first row. Can be used to start
executing the query again, without having to create a new context.

Syntax
DBMS_XMLGEN.restartQUERY (ctx IN ctxHandle);

DBMS_XMLGEN.convert (

 xmlData IN CLOB,

 flag IN NUMBER := ENTITY_ENCODE)

RETURN CLOB;

Uses xmlData in Clob form.

Parameter IN / OUT Description

xmlData (IN) The XML CLOB data to be encoded or decoded.

flag (IN) The flag setting; ENTITY_ENCODE (default) for encode, and
ENTITY_DECODE for decode.

Parameter IN / OUT Description

ctx (IN) The context handle.

Syntax Description
85-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLGEN
closeContext()
Closes a given context and releases all resources associated with it, including the
SQL cursor and bind and define buffers. After this call, the handle cannot be used
for a subsequent DBMS_XMLGEN function call.

Syntax
DBMS_XMLGEN.closeContext (ctx IN ctxHandle);

Parameter IN / OUT Description

ctx (IN) The context handle corresponding to the current query.

Parameter IN / OUT Description

ctx (IN) The context handle to close.
DBMS_XMLGEN 85-9

closeContext()
85-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS
86

DBMS_XMLPARSER

Using DBMS_XMLPARSER, you can access the contents and structure of XML
documents.

This chapter details the following:

Functions and Procedures of DBMS_XMLPARSER

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information
_XMLPARSER 86-1

Description of DBMS_XMLPARSER
Description of DBMS_XMLPARSER
The Extensible Markup Language (XML) describes a class of data objects called
XML documents. It partially describes the behavior of computer programs which
process them. XML is an application profile or restricted form of the Standard
Generalized Markup Language (SGML). By construction, XML documents are
conforming SGML documents.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document's storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and
provide access to their content and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the application. This PL/SQL
implementation of the XML processor (or parser) followed the W3C XML
specification (rev. REC-xml-19980210) and included the required behavior of an
XML processor in terms of how it must read XML data and the information it must
provide to the application.

The following is the default behavior for this PL/SQL XML parser:

� A parse tree which can be accessed by DOM APIs is built

� The parser is validating if a DTD is found, otherwise, it is non-validating

� Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

Functions and Procedures of DBMS_XMLPARSER

Table 86-1: Summary of Functions and Procedures of DBMS_XMLPARSER

Subprogram Description

parse() on page 86-3 Parses XML stored in the given url/file.

newParser() on page 86-4 Returns a new parser instance

parseBuffer() on page 86-4 Parses XML stored in the given buffer

parseClob() on page 86-4 Parses XML stored in the given clob

parseDTD() on page 86-5 Parses DTD stored in the given url/file
86-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLPARSER
parse()
Parses XML stored in the given url/file. An application error is raised if parsing
fails. The options are described in the following table.

parseDTDBuffer() on page 86-5 Parses DTD stored in the given buffer

parseDTDClob() on page 86-6 Parses DTD stored in the given clob

setBaseDir() on page 86-6 Sets base directory used to resolve relative
URLs.

showWarnings() on page 86-6 Turns warnings on or off.

setErrorLog() on page 86-7 Sets errors to be sent to the specified file

setPreserveWhitespace() on page 86-7 Sets white space preserve mode

setValidationMode() on page 86-8 Sets validation mode.

getValidationMode() on page 86-8 Returns validation mode.

setDoctype() on page 86-8 Sets DTD.

getDoctype() on page 86-9 Gets DTD Parser.

getDocument() on page 86-9 Gets DOM document.

freeParser() on page 86-9 Frees a parser object.

getReleaseVersion() on page 86-10 Returns the release version of Oracle XML
Parser for PL/SQL.

Syntax Description

FUNCTION parse(

 url VARCHAR2)

 RETURN DOMDocument;

Returns the built DOM Document. This is meant to be used
when the default parser behavior is acceptable and just a url/file
needs to be parsed.

PROCEDURE parse(

 p Parser,

 url VARCHAR2);

Any changes to the default parser behavior should be effected
before calling this procedure.

Table 86-1: Summary of Functions and Procedures of DBMS_XMLPARSER

Subprogram Description
DBMS_XMLPARSER 86-3

newParser()
newParser()
Returns a new parser instance. This function must be called before the default
behavior of Parser can be changed and if other parse methods need to be used.

Syntax
FUNCTION newParser RETURN Parser;

parseBuffer()
Parses XML stored in the given buffer. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE parseBuffer(p Parser,

doc VARCHAR2);

parseClob()
Parses XML stored in the given clob. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE parseClob(p Parser,

doc CLOB);

Parameter IN / OUT Description

url (IN) Complete path of the url/file to be parsed.

p (IN) Parser instance.

Parameter IN / OUT Description

p (IN) Parser instance.

doc (IN) XML document buffer to parse.
86-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLPARSER
parseDTD()
Parses the DTD stored in the given url/file. Any changes to the default parser
behavior should be effected before calling this procedure. An application error is
raised if parsing fails.

Syntax
PROCEDURE parseDTD(p Parser,

url VARCHAR2,
root VARCHAR2);

parseDTDBuffer()
Parses the DTD stored in the given buffer. Any changes to the default parser
behavior should be effected before calling this procedure. An application error is
raised if parsing fails.

Syntax
PROCEDURE parseDTDBuffer(p Parser,

dtd VARCHAR2,
root VARCHAR2);

Parameter IN / OUT Description

p (IN) Parser instance.

doc (IN) XML document buffer to parse.

Parameter IN / OUT Description

p (IN) Parser instance.

url (IN) Complete path of the url/file to be parsed.

p (IN) Parser instance.

Parameter IN / OUT Description

p (IN) Parser instance.

dtd (IN) DTD buffer to parse.
DBMS_XMLPARSER 86-5

parseDTDClob()
parseDTDClob()
Parses the DTD stored in the given clob. Any changes to the default parser behavior
should be effected before calling this procedure. An application error is raised if
parsing fails.

Syntax
PROCEDURE parseDTDClob(p Parser,

dtd CLOB,
root VARCHAR2);

setBaseDir()
Sets base directory used to resolve relative URLs. An application error is raised if
parsing fails.

Syntax
PROCEDURE setBaseDir(p Parser,

dir VARCHAR2);

showWarnings()
Turns warnings on or off.

root (IN) Name of the root element.

Parameter IN / OUT Description

p (IN) Parser instance.

dtd (IN) DTD Clob to parse.

root (IN) Name of the root element.

Parameter IN / OUT Description

p (IN) Parser instance.

dir (IN) Directory used as a base directory.

Parameter IN / OUT Description
86-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLPARSER
Syntax
PROCEDURE showWarnings(p Parser,

yes BOOLEAN);

setErrorLog()
Sets errors to be sent to the specified file

Syntax
PROCEDURE setErrorLog(p Parser,

fileName VARCHAR2);

setPreserveWhitespace()
Sets whitespace preserving mode.

Syntax
PROCEDURE setPreserveWhitespace(p Parser,

yes BOOLEAN);

Parameter IN / OUT Description

p (IN) Parser instance.

yes (IN) Mode to set: TRUE - show warnings, FALSE - don't show
warnings.

Parameter IN / OUT Description

p (IN) Parser instance.

fileName (IN) Complete path of the file to use as the error log.

Parameter IN / OUT Description

p (IN) Parser instance.

yes (IN) Mode to set: TRUE - preserve, FALSE - don't preserve.
DBMS_XMLPARSER 86-7

setValidationMode()
setValidationMode()
Sets validation mode.

Syntax
PROCEDURE setValidationMode(p Parser,

yes BOOLEAN);

getValidationMode()
Retrieves validation mode; TRUE for validating, FALSE otherwise.

Syntax
FUNCTION getValidationMode(p Parser)

RETURN BOOLEAN;

setDoctype()
Sets a DTD to be used by the parser for validation. This call should be made before
the document is parsed.

Syntax
PROCEDURE setDoctype(p Parser,

dtd DOMDocumentType);

Parameter IN / OUT Description

p (IN) Parser instance.

yes (IN) Mode to set: TRUE - validate, FALSE - don't validate.

Parameter IN / OUT Description

p (IN) Parser instance.

Parameter IN / OUT Description

p (IN) Parser instance.
86-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLPARSER
getDoctype()
Returns the parsed DTD; this function MUST be called only after a DTD is parsed.

Syntax
FUNCTION getDoctype(p Parser)

RETURN DOMDocumentType;

getDocument()
Returns the root of the DOM tree document built by the parser; this function MUST
be called only after a document is parsed.

Syntax
FUNCTION getDocument(p Parser)

RETURN DOMDocument;

freeParser()
Frees a parser object.

Syntax
PROCEDURE freeParser(p Parser);

dtd (IN) DTD to set.

Parameter IN / OUT Description

p (IN) Parser instance.

Parameter IN / OUT Description

p (IN) Parser instance.

Parameter IN / OUT Description
DBMS_XMLPARSER 86-9

getReleaseVersion()
getReleaseVersion()
Returns the release version of the Oracle XML parser for PL/SQL.

Syntax
PROCEDURE getReleaseVersion RETURN VARCHAR2;

Parameter IN / OUT Description

p (IN) Parser instance.
86-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_XML
87

DBMS_XMLQUERY

DBMS_XMLGEN is a built-in package in C. In general, use DBMS_XMLGEN instead of
DBMS_XMLQUERY wherever possible. DBMS_XMLQUERY provides
database-to-XMLType functionality.

This chapter details the following:

� Types of DBMS_XMLQuery

� Constants of DBMS_XMLQuery

� Functions and Procedures of DBMS_XMLQuery

See Also: Oracle9i XML API Reference - XDK and Oracle DB for
XML for more information
QUERY 87-1

Description of DBMS_XMLQuery
Description of DBMS_XMLQuery
This API provides DB_to_XML type functionality.

Types of DBMS_XMLQuery

Constants of DBMS_XMLQuery

Table 87-1: Types of DBMS_XMLQuery

Type Description

ctxType The type of the query context handle. This is the return type of
newContext().

Table 87-2: Constants of DBMS_XMLQuery

Constant Description

DB_ENCODING Used to signal that the DB character encoding is to be used.

DEFAULT_ROWSETTAG The tag name for the element enclosing the XML generated from
the result set (that is, for most cases the root node tag name) --
ROWSET.

DEFAULT_ERRORTAG The default tag to enclose raised errors -- ERROR.

DEFAULT_ROWIDATTR The default name for the cardinality attribute of XML elements
corresponding to db. records. -- NUM

DEFAULT_ROWTAG The default tag name for the element corresponding to db. records.
-- ROW

DEFAULT_DATE_FORMAT Default date mask. -- ’MM/dd/yyyy HH:mm:ss’

ALL_ROWS The ALL_ROWS parameter is to indicate that all rows are needed in
the output.

NONE Used to specifies that the output should not contain any XML
metadata (for example, no DTD or Schema).

DTD Used to specify that the generation of the DTD is desired.

SCHEMA Used to specify that the generation of the XML SCHEMA is desired.

LOWER_CASE Use lower cased tag names.

UPPER_CASE Use upper case tag names.
87-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
Functions and Procedures of DBMS_XMLQuery

Table 87-3: Summary of Functions and Procedures of DBMS_XMLQuery

Functions/Procedures Description

newContext() on page 87-4 Creates a query context and it returns the context handle.

closeContext() on page 87-5 Closes/deallocates a particular query context.

setRowsetTag() on page 87-5 Sets the tag to be used to enclose the XML dataset.

setRowTag() on page 87-5 Sets the tag to be used to enclose the XML element
corresponding to a db.

setErrorTag() on page 87-6 Sets the tag to be used to enclose the XML error docs.

setRowIdAttrName() on page 87-6 Sets the name of the id attribute of the row enclosing tag.

setRowIdAttrValue() on page 87-6 Specifies the scalar column whose value is to be assigned to
the id attribute of the row enclosing tag.

setCollIdAttrName() on page 87-7 Sets the name of the id attribute of the collection element's
separator tag.

useNullAttributeIndicator() on
page 87-7

Specifies weather to use an XML attribute to indicate
NULLness.

useTypeForCollElemTag() on
page 87-8

Tells the XSU to use the collection element’s type name as
the collection element tag name.

setTagCase() on page 87-8 Specified the case of the generated XML tags.

setDateFormat() on page 87-8 Sets the format of the generated dates in the XML doc.

setMaxRows() on page 87-9 Sets the max number of rows to be converted to XML.

setSkipRows() on page 87-9 Sets the number of rows to skip.

setStylesheetHeader() on
page 87-10

Sets the stylesheet header.

setXSLT() on page 87-10 Registers a stylesheet to be applied to generated XML.

setXSLTParam() on page 87-11 Sets the value of a top-level stylesheet parameter.

removeXSLTParam() on page 87-11 Removes a particular top-level stylesheet parameter.

setBindValue() on page 87-12 Sets a value for a particular bind name.

setMetaHeader() on page 87-12 Sets the XML meta header.

setDataHeader() on page 87-12 Sets the XML data header.
DBMS_XMLQUERY 87-3

newContext()
newContext()
Creates a query context and it returns the context handle. The options are described
in the following table.

setEncodingTag() on page 87-13 Sets the encoding processing instruction in the XML
document.

setRaiseException() on page 87-13 Tells the XSU to throw the raised exceptions.

setRaiseNoRowsException() on
page 87-14

Tells the XSU to throw or not to throw an
OracleXMLNoRowsException in the case when for one
reason or another, the XML doc generated is empty.

setSQLToXMLNameEscaping() on
page 87-14

This turns on or off escaping of XML tags in the case that
the SQL object name, which is mapped to a XML identifier,
is not a valid XML identifier.

propagateOriginalException() on
page 87-15

Tells the XSU that if an exception is raised, and is being
thrown, the XSU should throw the very exception raised;
rather then, wrapping it with an OracleXMLSQLException.

getExceptionContent() on
page 87-15

Via its arguments, this method returns the thrown
exception's error code and error message.

getDTD() on page 87-15 Generates the DTD.

getNumRowsProcessed() on
page 87-16

Return the number of rows processed for the query.

getVersion() on page 87-16 Prints the version of the XSU in use.

getXML() on page 87-17 Generates the XML document.

Syntax Description

FUNCTION newContext(sqlQuery IN VARCHAR2)

 RETURN ctxType

Creates a query context from a string.

FUNCTION newContext(sqlQuery IN CLOB)

 RETURN ctxType

Creates a query context from a CLOB.

Parameter IN / OUT Description

sqlQuery (IN) SQL query, the results of which to convert to XML.

Table 87-3: Summary of Functions and Procedures of DBMS_XMLQuery

Functions/Procedures Description
87-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
closeContext()
Closes/deallocates a particular query context

Syntax
PROCEDURE closeContext(ctxHdl IN ctxType);

setRowsetTag()
Sets the tag to be used to enclose the XML dataset.

Syntax
PROCEDURE setRowsetTag(ctxHdl IN ctxType, tag IN VARCHAR2)

setRowTag()
Sets the tag to be used to enclose the XML element corresponding to a db. record.

Syntax
PROCEDURE setRowTag(ctxHdl IN ctxType, tag IN VARCHAR2)

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tag (IN) Tag name.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tag (IN) Tag name.
DBMS_XMLQUERY 87-5

setErrorTag()
setErrorTag()
Sets the tag to be used to enclose the XML error docs.

Syntax
PROCEDURE setErrorTag(ctxHdl IN ctxType,

tag IN VARCHAR2);

setRowIdAttrName()
Sets the name of the id attribute of the row enclosing tag. Passing null or an empty
string for the tag results the row id attribute to be omitted.

Syntax
PROCEDURE setRowIdAttrName(ctxHdl IN ctxType,

attrName IN VARCHAR2);

setRowIdAttrValue()
Specifies the scalar column whose value is to be assigned to the id attribute of the
row enclosing tag. Passing null or an empty string for the colName results the row
id attribute being assigned the row count value (that is, 0, 1, 2 and so on).

Syntax
PROCEDURE setRowIdAttrValue(ctxHdl IN ctxType,

colName IN VARCHAR2);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tag (IN) Tag name.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tag (IN) Tag name.
87-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
setCollIdAttrName()
Sets the name of the id attribute of the collection element's separator tag.

Syntax
PROCEDURE setCollIdAttrName(ctxHdl IN ctxType,

attrName IN VARCHAR2);

useNullAttributeIndicator()
Specified weather to use an XML attribute to indicate NULLness, or to do it by
omitting the inclusion of the particular entity in the XML document.

Syntax
PROCEDURE useNullAttributeIndicator(ctxHdl IN ctxType,

flag IN BOOLEAN);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

colName (IN) Column whose value is to be assigned to the row id
attribute.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

attrName (IN) AttributeName.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Use attribute to indicate NULL?
DBMS_XMLQUERY 87-7

useTypeForCollElemTag()
useTypeForCollElemTag()
By default the tag name for elements of a collection is the collection’s tag name
followed by "_item". This method, when called with argument of TRUE, tells the
XSU to use the collection element’s type name as the collection element tag name.

Syntax
PROCEDURE useTypeForCollElemTag(ctxHdl IN ctxType,

flag IN BOOLEAN := true);

setTagCase()
Specified the case of the generated XML tags.

Syntax
PROCEDURE setTagCase(ctxHdl IN ctxType,

tCase IN NUMBER);

setDateFormat()
Sets the format of the generated dates in the XML doc. The syntax of the date format
pattern (that is, the date mask), should conform to the requirements of the
java.text.SimpleDateFormat class. Setting the mask to null or an empty string,
results the use of the default mask -- DEFAULT_DATE_FORMAT.

Syntax
PROCEDURE setDateFormat(ctxHdl IN ctxType,

mask IN VARCHAR2);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

colName (IN) Turn on use of the type name?.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tCase (IN) The tag’s case; 0=asAre, 1=lower, 2=upper.
87-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
setMaxRows()
Sets the max number of rows to be converted to XML. By default there is no max
set.

Syntax
PROCEDURE setMaxRows (ctxHdl IN ctxType,

rows IN NUMBER);

setSkipRows()
Sets the number of rows to skip. By default 0 rows are skipped.

Syntax
PROCEDURE setSkipRows(ctxHdl IN ctxType,

rows IN NUMBER);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

mask (IN) The date mask.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

rows (IN) Maximum number of rows to generate.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

rows (IN) Maximum number of rows to skip.
DBMS_XMLQUERY 87-9

setStylesheetHeader()
setStylesheetHeader()
Sets the stylesheet header (that is, stylesheet processing instructions) in the
generated XML doc. Note: Passing null for the uri argument will unset the
stylesheet header and the stylesheet type.

Syntax
PROCEDURE setStylesheetHeader(ctxHdl IN ctxType,

uri IN VARCHAR2,
type IN VARCHAR2 := 'text/xsl');

setXSLT()
Registers a stylesheet to be applied to generated XML. If a stylesheet was already
registered, it gets replaced by the new one. The options are described in the
following table.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

uri (IN) Stylesheet URI.

type (IN) Stylesheet type; defaults to "text/xsl ".

Syntax Description

PROCEDURE setXSLT(

 ctxHdl IN ctxType,

 uri IN VARCHAR2,

 ref IN VARCHAR2 := null);

To un-register the stylesheet pass in a null for
the uri.

PROCEDURE setXSLT(

 ctxHdl IN ctxType,

 stylesheet CLOB,

 ref IN VARCHAR2 := null);

To un-register the stylesheet pass in a null or an
empty string for the stylesheet.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.
87-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
setXSLTParam()
Sets the value of a top-level stylesheet parameter. The parameter value is expected
to be a valid XPath expression (note that string literal values would therefore have
to be explicitly quoted). NOTE: if no stylesheet is registered, this method is a no op.

Syntax
PROCEDURE setXSLTParam(ctxHdl IN ctxType,

name IN VARCHAR2,
value IN VARCHAR2);

removeXSLTParam()
Removes the value of a top-level stylesheet parameter. NOTE: if no stylesheet is
registered, this method is a no op.

Syntax
PROCEDURE removeXSLTParam(ctxHdl IN ctxType,

name IN VARCHAR2);

uri (IN) Stylesheet URI.

stylesheet (IN) Stylesheet.

ref (IN) URL to include, import and external entities.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

name (IN) Name of the top level stylesheet parameter.

value (IN) Value to be assigned to the stylesheet parameter.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

name (IN) Name of the top level stylesheet parameter.

Parameter IN / OUT Description
DBMS_XMLQUERY 87-11

setBindValue()
setBindValue()
Sets a value for a particular bind name.

Syntax
PROCEDURE setBindValue(ctxHdl IN ctxType,

bindName IN VARCHAR2,
bindValue IN VARCHAR2);

setMetaHeader()
Sets the XML meta header. When set, the header is inserted at the beginning of the
metadata part (DTD or XMLSchema) of each XML document generated by this
object. Note that the last meta header specified is the one that is used; furthermore,
passing in null for the header, parameter unsets the meta header.

Syntax
PROCEDURE setMetaHeader(ctxHdl IN ctxType,

header IN CLOB := null);

setDataHeader()
Sets the XML data header. The data header is an XML entity which is appended at
the beginning of the query-generated XML entity (i.e. rowset). The two entities are
enclosed by the tag specified via the docTag argument. Note that the last data
header specified is the one that is used; furthermore, passing in null for the header,
parameter unsets the data header.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

bindName (IN) Bind name.

bindValue (IN) Bind value.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

Header (IN) Header.
87-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
Syntax
PROCEDURE setDataHeader(ctxHdl IN ctxType,

header IN CLOB := null,
tag IN VARCHAR2 := null);

setEncodingTag()
Sets the encoding processing instruction in the XML document.

Syntax
PROCEDURE setEncodingTag(ctxHdl IN ctxType,

enc IN VARCHAR2 := DB_ENCODING);

setRaiseException()
Tells the XSU to throw the raised exceptions. If this call isn't made or if false is
passed to the flag argument, the XSU catches the SQL exceptions and generates an
XML doc out of the exception's message.

Syntax
PROCEDURE setRaiseException(ctxHdl IN ctxType,

flag IN BOOLEAN);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

header (IN) Header.

tag (IN) Tag used to enclose the data header and the rowset.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

enc (IN) The encoding to use.
DBMS_XMLQUERY 87-13

setRaiseNoRowsException()
setRaiseNoRowsException()
Tells the XSU whether to throw an OracleXMLNoRowsException in the case when
for one reason or another, the XML doc generated is empty. By default, the
exception is not thrown.

Syntax
PROCEDURE setRaiseNoRowsException(ctxHdl IN ctxType,

flag IN BOOLEAN);

setSQLToXMLNameEscaping()
This turns on or off escaping of XML tags in the case that the SQL object name,
which is mapped to a XML identifier, is not a valid XML identifier.

Syntax
PROCEDURE setSQLToXMLNameEscaping(ctxHdl IN ctxType,

flag IN BOOLEAN := true);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Throw raised exceptions? TRUE for yes, otherwise FALSE.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Throw OracleXMLNoRowsException if no data? TRUE for
yes, otherwise FALSE.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Turn on escaping? TRUE for yes, otherwise FALSE.
87-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
propagateOriginalException()
Tells the XSU that if an exception is raised, and is being thrown, the XSU should
throw the very exception raised; rather then, wrapping it with an
OracleXMLSQLException.

Syntax
PROCEDURE propagateOriginalException(c txHdl IN ctxType,

flag IN BOOLEAN);

getExceptionContent()
Via its arguments, this method returns the thrown exception's error code and error
message (that is, SQL error code). This is to get around the fact that the JVM throws
an exception on top of whatever exception was raised; thus, rendering PL/SQL
unable to access the original exception.

Syntax
PROCEDURE getExceptionContent(ctxHdl IN ctxType,

errNo OUT NUMBER,
errMsg OUT VARCHAR2);

getDTD()
Generates and returns the DTD based on the SQL query used to initialize the
context. The options are described in the following table.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Propagate original exception? TRUE for yes, otherwise
FALSE.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

errNo (IN) Error number.

errMsg (IN Error message.
DBMS_XMLQUERY 87-15

getNumRowsProcessed()
getNumRowsProcessed()
Return the number of rows processed for the query.

Syntax
FUNCTION getNumRowsProcessed(ctx IN ctxType) RETURN NUMBER;

getVersion()
Prints the version of the XSU in use.

Syntax
PROCEDURE getVersion();

Syntax Description

FUNCTION getDTD(

 ctxHdl IN ctxType,

 withVer IN BOOLEAN := false)

 RETURN CLOB;

Function that generates the DTD based on the
SQL query used to initialize the context.

PROCEDURE getDTD(

 ctx IN ctxType,

 xDoc IN CLOB,

 withVer IN BOOLEAN := false);

Procedure that generates the DTD based on the
SQL query used to initialize the context and
xDOC in CLOB.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

withVer (IN) Generate the version info? TRUE for yes, otherwise FALSE.

xDoc (IN) Clob into which to write the generated XML doc.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.
87-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLQuery
getXML()
Creates the new context, executes the query, gets the XML back and closes the
context. This is a convenience function. The context doesn’t have to be explicitly
opened or closed. The options are described in the following table.

Syntax Description

FUNCTION getXML(

 sqlQuery IN VARCHAR2,

 metaType IN NUMBER := NONE)

 RETURN CLOB;

This function uses the sqlQuery in string form.

FUNCTION getXML(

 sqlQuery IN CLOB,

 metaType IN NUMBER := NONE)

 RETURN CLOB;

This function uses the sqlQuery in clob form.

FUNCTION getXML(

 ctxHdl IN ctxType,

 metaType IN NUMBER := NONE);

 RETURN CLOB

This function generates the XML doc. based on
the SQL query used to initialize the context.

PROCEDURE getXML(

 ctxHdl IN ctxType,

 xDoc IN CLOB,

 metaType IN NUMBER := NONE);

This procedure generates the XML doc. based on
the SQL query used to initialize the context.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

sqlQuery (IN) SQLQuery.

metaType (IN) XML metadata type (NONE, DTD, or SCHEMA).

sDoc (IN) Clob into which to write the generated XML doc.
DBMS_XMLQUERY 87-17

getXML()
87-18 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_X
88

DBMS_XMLSAVE

DBMS_XMLSAVE provides XML to database-type functionality.

This chapter details the following:

� Types of DBMS_XMLSave

� Constants of DBMS_XMLSave

� Functions and Procedures of DBMS_XMLSave

See Also: Oracle9i XML API Reference - XDK and Oracle DB for
XML for more information
MLSAVE 88-1

Description of DBMS_XMLSave
Description of DBMS_XMLSave
This API provides XML_to_DB type functionality.

Types of DBMS_XMLSave

Constants of DBMS_XMLSave

Functions and Procedures of DBMS_XMLSave

Table 88-1: Types of DBMS_XMLSave

Type Description

ctxType The type of the query context handle. The type of the query context
handle. This the return type of newContext().

Table 88-2: Constants of DBMS_XMLSave

Constant Description

DEFAULT_ROWTAG The default tag name for the element corresponding to db. records.
-- ROW

DEFAULT_DATE_FORMAT Default date mask. -- ’MM/dd/yyyy HH:mm:ss’

MATCH_CASE Used to specify that when mapping XML elements to DB. entities
the XSU should be case sensitive.

IGNORE_CASE Used to specify that when mapping XML elements to DB. entities
the XSU should be case insensitive.

Table 88-3: Summary of Functions and Procedures of DBMS_XMLSave

Functions/Procedures Description

newContext() on page 88-3 Creates a save context, and returns the context handle.

closeContext() on page 88-4 It closes/deallocates a particular save context.

setRowTag() on page 88-4 Names the tag used in the XML doc., to enclose the XML
elements corresponding to db.

setIgnoreCase() on page 88-4 The XSU does mapping of XML elements to db.
88-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
newContext()
Creates a save context, and returns the context handle.

setDateFormat() on page 88-5 Describes to the XSU the format of the dates in the XML
document.

setBatchSize() on page 88-5 Changes the batch size used during DML operations.

setCommitBatch() on page 88-6 Sets the commit batch size.

setSQLToXMLNameEscaping() on
page 88-6

This turns on or off escaping of XML tags in the case that
the SQL object name, which is mapped to a XML
identifier, is not a valid XML identifier.

setUpdateColumn() on page 88-7 Adds a column to the "update column list".

clearUpdateColumnList() on
page 88-7

Clears the update column list.

setPreserveWhitespace() on
page 88-7

Tells the XSU whether to preserve whitespace or not.

setKeyColumn() on page 88-8 This methods adds a column to the "key column list".

clearKeyColumnList() on page 88-8 Clears the key column list.

setXSLT() on page 88-8 Registers a XSL transform to be applied to the XML to be
saved.

setXSLTParam() on page 88-9 Sets the value of a top-level stylesheet parameter.

removeXSLTParam() on page 88-10 Removes the value of a top-level stylesheet parameter

insertXML() on page 88-10 Inserts the XML document into the table specified at the
context creation time.

updateXML() on page 88-11 Updates the table given the XML document.

deleteXML() on page 88-11 Deletes records specified by data from the XML document,
from the table specified at the context creation time.

propagateOriginalException() on
page 88-12

Tells the XSU that if an exception is raised, and is being
thrown, the XSU should throw the very exception raised;
rather then, wrapping it with an
OracleXMLSQLException.

getExceptionContent() on page 88-12 Via its arguments, this method returns the thrown
exception's error code and error message.

Table 88-3: Summary of Functions and Procedures of DBMS_XMLSave

Functions/Procedures Description
DBMS_XMLSAVE 88-3

closeContext()
Syntax
FUNCTION newContext(t argetTable IN VARCHAR2) RETURN ctxType;

closeContext()
Closes/deallocates a particular save context

Syntax
PROCEDURE closeContext(ctxHdl IN ctxType);

setRowTag()
Names the tag used in the XML doc., to enclose the XML elements corresponding to
db. records.

Syntax
PROCEDURE setRowTag(ctxHdl IN ctxType,

tag IN VARCHAR2);

setIgnoreCase()
The XSU does mapping of XML elements to db columns/attributes based on the
element names (XML tags). This function tells the XSU to do this match case
insensitive.

Parameter IN / OUT Description

targetTable (IN) The target table into which to load the XML doc.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

tag (IN) Tag name.
88-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
Syntax
PROCEDURE setIgnoreCase(ctxHdl IN ctxType,

flag IN NUMBER);

setDateFormat()
Describes to the XSU the format of the dates in the XML document. The syntax of
the date format pattern (that is, the date mask), should conform to the requirements
of the java.text.SimpleDateFormat class. Setting the mask to null or an empty string,
results the use of the default mask -- OracleXMLCore.DATE_FORMAT.

Syntax
PROCEDURE setDateFormat(ctxHdl IN ctxType,

mask IN VARCHAR2);

setBatchSize()
Changes the batch size used during DML operations. When performing inserts,
updates or deletes, it is better to batch the operations so that they get executed in
one shot rather than as separate statements. The flip side is that more memory is
needed to buffer all the bind values. Note that when batching is used, a commit
occurs only after a batch is executed. So if one of the statement inside a batch fails,
the whole batch is rolled back. This is a small price to pay considering the
performance gain; nevertheless, if this behavior is unacceptable, then set the batch
size to 1.

Syntax
PROCEDURE setBatchSize(ctxHdl IN ctxType,

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Ignore tag case in the XML doc? 0=FALSE, 1=TRUE.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

mask (IN) The date mask.
DBMS_XMLSAVE 88-5

setCommitBatch()
batchSize IN NUMBER);

setCommitBatch()
Sets the commit batch size. The commit batch size refers to the number or records
inserted after which a commit should follow. Note that if commitBatch is < 1 or the
session is in "auto-commit" mode then the XSU does not make any explicit
commit's. By default the commit-batch size is 0.

Syntax
PROCEDURE setCommitBatch(ctxHdl IN ctxType,

batchSize IN NUMBER);

setSQLToXMLNameEscaping()
Turns on or off escaping of XML tags in the case that the SQL object name, which is
mapped to a XML identifier, is not a valid XML identifier.

Syntax
PROCEDURE setSQLToXMLNameEscaping(ctxHdl IN ctxType,

flag IN BOOLEAN := true);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

batchSize (IN) Batch size.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

batchSize (IN) Commit batch size.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Turn on escaping?
88-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
setUpdateColumn()
Adds a column to the "update column list". In case of insert, the default is to insert
values to all the columns in the table; on the other hand, in case of updates, the
default is to only update the columns corresponding to the tags present in the ROW
element of the XML document. When the update column list is specified, the
columns making up this list alone will get updated or inserted into.

Syntax
PROCEDURE setUpdateColumn(ctxHdl IN ctxType,

colName IN VARCHAR2);

clearUpdateColumnList()
Clears the update column list.

Syntax
PROCEDURE clearUpdateColumnList(ctxHdl IN ctxType);

setPreserveWhitespace()
Tells the XSU whether or not to preserve whitespace.

Syntax
PROCEDURE setPreserveWhitespace(ctxHdl IN ctxType,

flag IN BOOLEAN := true);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

colName (IN) Column to be added to the update column list.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.
DBMS_XMLSAVE 88-7

setKeyColumn()
setKeyColumn()
This methods adds a column to the "key column list". In case of update or delete, it
is the columns in the key column list that make up the where clause of the
update/delete statement. The key columns list must be specified before updates can
be done; yet, it is only optional for delete operations.

Syntax
PROCEDURE setKeyColumn(ctxHdl IN ctxType,

colName IN VARCHAR2);

clearKeyColumnList()
Clears the key column list.

Syntax
PROCEDURE clearKeyColumnList(ctxHdl IN ctxType);

setXSLT()
Registers an XSL transform to be applied to the XML to be saved. If a stylesheet was
already registered, it gets replaced by the new one. To un-register the stylesheet,
pass in null for the URI. The options are described in the following table.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Should XSU preserve whitespace?

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

colName (IN) Column to be added to the key column list.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.
88-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
setXSLTParam()
Sets the value of a top-level stylesheet parameter. The parameter is expected to be a
valid XPath expression (not that string literal values would therefore have to be
explicitly quoted).

Syntax
PROCEDURE setXSLTParam(ctxHdl IN ctxType,

name IN VARCHAR2,
value IN VARCHAR2);

Syntax Description

PROCEDURE setXSLT(

 ctxHdl IN ctxType,

 uri IN VARCHAR2,

 ref IN VARCHAR2 := null);

Passes in the stylesheet through a URI.

PROCEDURE setXSLT(

 ctxHdl IN ctxType,

 stylesheet IN CLOB,

 ref IN VARCHAR2 := null);

Passes in the stylesheet through a CLOB.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

uri (IN) URI to the stylesheet to register.

ref (IN) URL for include, import, and external entities.

stylesheet (IN) CLOB containing the stylesheet to register.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

name (IN) Parameter name.

value (IN) Parameter value as an XPath expression
DBMS_XMLSAVE 88-9

removeXSLTParam()
removeXSLTParam()
Removes the value of a top-level stylesheet parameter.

Syntax
PROCEDURE removeXSLTParam(ctxHdl IN ctxType,

name IN VARCHAR2);

insertXML()
Inserts the XML document into the table specified at the context creation time, and
returns the number of rows inserted. The options are described in the following
table.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

name (IN) Parameter name.

Syntax Description

FUNCTION insertXML(

 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

 RETURN NUMBER;

Passes in the xDoc parameter as a VARCHAR2.

FUNCTION insertXML(

 ctxHdl IN ctxType,

 xDoc IN CLOB)

 RETURN NUMBER;

Passes in the xDoc parameter as a CLOB.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

xDoc (IN) String containing the XML document.
88-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
updateXML()
Updates the table specified at the context creation time with data from the XML
document, and returns the number of rows updated. The options are described in
the following table.

deleteXML()
Deletes records specified by data from the XML document from the table specified
at the context creation time, and returns the number of rows deleted. The options
are described in the following table.

Syntax Description

FUNCTION updateXML(

 ctxHdl IN ctxType,

 xDoc IN VARCHAR2)

 RETURN NUMBER;

Passes in the xDoc parameter as a VARCHAR2.

FUNCTION updateXML(

 ctxHdl IN ctxType,

 xDoc IN CLOB)

 RETURN NUMBER;

Passes in the xDoc parameter as a CLOB.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

xDoc (IN) String containing the XML document.

Syntax Description

FUNCTION deleteXML(

 ctxHdl IN ctxPType,

 xDoc IN VARCHAR2)

 RETURN NUMBER;

Uses a VARCHAR2 type for the xDoc parameter.

FUNCTION deleteXML(

 ctxHdl IN ctxType,

 xDoc IN CLOB)

 RETURN NUMBER;

Uses a CLOB type for the xDoc parameter.
DBMS_XMLSAVE 88-11

propagateOriginalException()
propagateOriginalException()
Tells the XSU that if an exception is raised, and is being thrown, the XSU should
throw the very exception raised; rather then, wrapping it with an
OracleXMLSQLException.

Syntax
PROCEDURE propagateOriginalException(ctxHdl IN ctxType,

flag IN BOOLEAN);

getExceptionContent()
Through its arguments, this method returns the thrown exception's error code and
error message (that is, SQL error code) This is to get around the fact that the JVM
throws an exception on top of whatever exception was raised; thus, rendering
PL/SQL unable to access the original exception.

Syntax
PROCEDURE getExceptionContent(ctxHdl IN ctxType,

errNo OUT NUMBER,
errMsg OUT VARCHAR2);

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

xDoc (IN) String containing the XML document.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

flag (IN) Propagate the original exception? 0=FALSE, 1=TRUE.

Parameter IN / OUT Description

ctxHdl (IN) Context handle.

errNo (IN) Error number.

errMsg (IN) Error message.
88-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Functions and Procedures of DBMS_XMLSave
DBMS_XMLSAVE 88-13

getExceptionContent()
88-14 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_XML
89

DBMS_XMLSchema

DBMS_XMLSchema Package provides procedures to register and delete XML
schemas.

This chapter details the following:

� Constants of DBMS_XMLSCHEMA

� Procedures and Functions of DBMS_XMLSCHEMA

See Also: Oracle9i XML API Reference - XDK and XDB for more
information
Schema 89-1

Description of DBMS_XMLSCHEMA
Description of DBMS_XMLSCHEMA
This package is created by script dbmsxsch.sql during XDB installation. It provides
procedures to register and delete XML schemas.

Constants of DBMS_XMLSCHEMA

Procedures and Functions of DBMS_XMLSCHEMA

registerSchema()
Registers the specified schema for use by the Oracle XML DB. The available options
are given in the table below.

Table 89-1: Constants of DBMS_XMLSCHEMA

Constant Description

DELETE_RESTRICT CONSTANT NUMBER := 1;

DELETE_INVALIDATE CONSTANT NUMBER := 2;

DELETE_CASCADE CONSTANT NUMBER := 3;

DELETE_CASCADE_FORCE CONSTANT NUMBER := 4;

Table 89-2: Summary of Functions and Procedures of DBMS_XMLSCHEMA

Constant Description

registerSchema() on page 89-2 Registers the specified schema for use by Oracle. This schema
can then be used to store documents conforming to this.

registerURI() on page 89-5 Registers an XMLSchema specified by a URI name.

deleteSchema() on page 89-6 Removes the schema from Oracle XML DB.

generateBean() on page 89-6 Generates the Java bean code corresponding to a registered
XML schema

compileSchema() on page 89-7 Used to re-compile an already registered XML schema. This is
useful for bringing a schema in an invalid state to a valid state.

generateSchema() on page 89-7 Generates XML schema(s) from an oracle type name.
89-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Procedures and Functions of DBMS_XMLSCHEMA
Syntax Description

procedure registerSchema(schemaURL IN varchar2,

 schemaDoc IN VARCHAR2,

 local IN BOOLEAN := TRUE,

 genTypes IN BOOLEAN := TRUE,

 genbean IN BOOLEAN := FALSE,

 genTables IN BOOLEAN := TRUE,

 force IN BOOLEAN := FALSE,

 owner IN VARCHAR2 := null);

Registers a schema specified as a
VARCHAR2.

 procedure registerSchema(schemaURL IN varchar2,

 schemaDoc IN CLOB,

 local IN BOOLEAN := TRUE,

 genTypes IN BOOLEAN := TRUE,

 genbean IN BOOLEAN := FASLE,

 force IN BOOLEAN := FALSE,

 owner IN VARCHAR2 := null);

Registers the schema specified as a CLOB.

procedure registerSchema(schemaURL IN varchar2,

 schemaDoc IN BFILE,

 local IN BOOLEAN := TRUE,

 genTypes IN BOOLEAN := TRUE,

 genbean IN BOOLEAN := FALSE,

 force IN BOOLEAN := FALSE,

 owner IN VARCHAR2 := null);

Registers the schema specified as a BFILE.

 procedure registerSchema(schemaURL IN varchar2,

 schemaDoc IN SYS.XMLType,

 local IN BOOLEAN := TRUE,

 genTypes IN BOOLEAN := TRUE,

 genbean IN BOOLEAN := FALSE,

 force IN BOOLEAN := FALSE,

 owner IN VARCHAR2 := null);

Registers the schema specified as an
XMLType.
DBMS_XMLSchema 89-3

registerSchema()
 procedure registerSchema(schemaURL IN varchar2,

 schemaDoc IN SYS.URIType,

 local IN BOOLEAN := TRUE,

 genTypes IN BOOLEAN := TRUE,

 genbean IN BOOLEAN := FALSE,

 force IN BOOLEAN := FALSE,

 owner IN VARCHAR2 := null);

Registers the schema specified as a
URIType.

Parameter IN / OUT Description

schemaURL (IN) URL that uniquely identifies the schema document. This
value is used to derive the path name of the schema
document within the XDB hierarchy.

schemaDoc (IN) a valid XML schema document

local (IN) Is this a local or global schema?
By default, all schemas are registered as local schemas i.e.
under /sys/schemas/<username/...
If a schema is registered as global, it is added under
/sys/schemas/PUBLIC/....
You need write privileges on the above directory to be able to
register a schema as global.

genTypes (IN) Should the schema compiler generate object types? By
default, TRUE

genbean (IN) Should the schema compiler generate Java beans? By default,
FALSE.

genTables (IN) Should the schema compiler generate default tables? By
default, TRUE

force (IN) If this parameter is set to TRUE, the schema registration will
not raise errors. Instead, it creates an invalid XML schema
object in case of any errors. By default, the value of this
parameter is FALSE.

owner (IN) This parameter specifies the name of the database user
owning the XML schema object. By default, the user
registering the schema owns the XML schema object. This
parameter can be used to register a XML schema to be owned
by a different database user.

Syntax Description
89-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Procedures and Functions of DBMS_XMLSCHEMA
registerURI()
Registers an XMLSchema specified by a URI name.

Syntax
procedure registerURI(schemaURL IN varchar2,

schemaDocURI IN varchar2,
local IN BOOLEAN := TRUE,
genTypes IN BOOLEAN := TRUE,
genbean IN BOOLEAN := FALSE,
genTables IN BOOLEAN := TRUE,
force IN BOOLEAN := FALSE,
owner IN VARCHAR2 := null);

Parameter IN / OUT Description

schemaURL (IN) A name that uniquely identifies the schema document.

schemaDocURI (IN) Pathname (URI) corresponding to the physical location of the
schema document. The URI path could be based on HTTP,
FTP, DB or XDB protocols. This function constructs a URIType
instance using the URIFactory - and invokes the
registerSchema() function.

local (IN) Is this a local or global schema?

By default, all schemas are registered as local schemas i.e.
under /sys/schemas/<username/...

If a schema is regsitered as global, it is added under
/sys/schemas/PUBLIC/....

User needs write privileges on the above directory to be able
to register a schema as global.

genTypes (IN) Should the schema compiler generate object types? By
default, TRUE

genbean (IN) Should the schema compiler generate Java beans? By default,
FALSE.

genTables (IN) Should the schema compiler generate default tables? By
default, TRUE

force (IN) If this parameter is set to TRUE, the schema registration will
not raise errors. Instead, it creates an invalid XML schema
object in case of any errors. By default, the value of this
parameter is FALSE.
DBMS_XMLSchema 89-5

deleteSchema()
deleteSchema()
Deletes the XMLSchema specified by the URL. Can result in a ORA-31001
exception: invalid resource handle or path name.

Syntax
procedure deleteSchema(schemaURL IN varchar2,

delete_option IN pls_integer := DELETE_RESTRICT);

Options for delete_option parameter

generateBean()
This procedure can be used to generate the Java bean code corresponding to a
registered XML schema. Note that there is also an option to generate the beans as

owner (IN) This parameter specifies the name of the database user
owning the XML schema object. By default, the user
registering the schema owns the XML schema object. This
parameter can be used to register a XML schema to be owned
by a different database user.

Parameter IN / OUT Description

schemaURL (IN) URL identifying the schema to be deleted.

delete_option (IN) Option for deleting schema.

Option Description

DELETE_RESTRICT Schema deletion fails if there are any tables or schemas that
depend on this schema.

DELETE_INVALIDATE Schema deletion does not fail if there are any dependencies.
Instead, it simply invalidates all dependent objects.

DELETE_CASCADE Schema deletion will also drop all default SQL types and default
tables. However the deletion fails if there are any stored
instances conforming to this schema.

DELETE_CASCADE_FORCE Similar to CASCADE except that it does not check for any stored
instances conforming to this schema. Also it ignores any errors.

Parameter IN / OUT Description
89-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Procedures and Functions of DBMS_XMLSCHEMA
part of the registration procedure itself. Can result in a ORA-31001 exception:
invalid resource handle or path name.

Syntax
procedure generateBean(schemaURL IN varchar2);

compileSchema()
This procedure can be used to re-compile an already registered XML schema. This is
useful for bringing a schema in an invalid state to a valid state. Can result in a
ORA-31001 exception: invalid resource handle or path name.

Syntax
procedure compileSchema(schemaURL IN varchar2);

generateSchema()
These functions generate XML schema(s) from an oracle type name. Can result in a
ORA-31001 exception: invalid resource handle or path name. The available
options are given in the table below.

Parameter IN / OUT Description

schemaURL (IN) Name identifying a registered XML schema.

Parameter IN / OUT Description

schemaURL (IN) URL identifying the schema.
DBMS_XMLSchema 89-7

generateSchema()
Syntax Description

function generateSchemas(

 schemaName IN varchar2,

 typeName IN varchar2,

 elementName IN varchar2 := NULL,

 schemaURL IN varchar2 := NULL,

 annotate IN BOOLEAN := TRUE,

 embedColl IN BOOLEAN := TRUE)

 return sys.XMLSequenceType;

Returns a collection of XMLTypes, one
XMLSchema document for each database
schema.

function generateSchema(

 schemaName IN varchar2,

 typeName IN varchar2,

 elementName IN varchar2 := NULL,

 recurse IN BOOLEAN := TRUE,

 annotate IN BOOLEAN := TRUE,

 embedColl IN BOOLEAN := TRUE)

 return sys.XMLType;

Inlines all in one schema (XMLType).

Parameter IN / OUT Description

schemaName (IN) Name of the database schema containing the type.

typeName (IN) Name of the oracle type.

elementName (IN) The name of the toplevel element in the XMLSchema defaults
to typeName.

schemaURL (IN) Dpecifies base URL where schemas will be stored, needed by
top level schema for import statement.

recurse (IN) Whether or not to also generate schema for all types referred
to by the type specified.

annotate (IN) Whether or not to put the SQL annotations in the
XMLSchema.

embedColl (IN) Should the collections be embedded in the type which refers
to them, or create a complexType? Cannot be FALSE if
annotations are turned on.
89-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Catalog Views
Catalog Views

USER_XML_SCHEMAS
Lists all schemas (local and global) belonging to the current user.

Table 89-3: Summary of Catalog View Schemas

Schema Description

USER_XML_SCHEMAS on page 89-9 All registered XML Schemas owned by the user.

ALL_XML_SCHEMAS on page 89-10 All registered XML Schemas usable by the current user.

DBA_XML_SCHEMAS on page 89-10 All registered XML Schemas in Oracle XML DB.

DBA_XML_TABLES on page 89-10 All XMLType tables in the system.

USER_XML_TABLES on page 89-10 All XMLType tables owned by the current user.

ALL_XML_TABLES on page 89-11 All XMLType tables usable by the current user.

DBA_XML_TAB_COLS on page 89-11 All XMLType table columns in the system.

USER_XML_TAB_COLS on page 89-11 All XMLType table columns in tables owned by the
current user.

ALL_XML_TAB_COLS on page 89-12 All XMLType table columns in tables usable by the
current user.

DBA_XML_VIEWS on page 89-12 All XMLType views in the system.

USER_XML_VIEWS on page 89-12 All XMlType views owned by the current user.

ALL_XML_VIEWS on page 89-13 All XMLType views usable by the current user.

DBA_XML_VIEW_COLS on page 89-13 All XMLType view columns in the system.

USER_XML_VIEW_COLS on page 89-13 All XMLType view columns in views owned by the
current user.

ALL_XML_VIEW_COLS on page 89-14 All XMLType view columns in views usable by the
current user.

Column Datatype Description

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document
DBMS_XMLSchema 89-9

ALL_XML_SCHEMAS
ALL_XML_SCHEMAS
Lists all local schemas belonging to the current user and all global schemas.

DBA_XML_SCHEMAS
Lists all registered local and global schemas in the system.

DBA_XML_TABLES
Lists all XMLType tables in the system.

USER_XML_TABLES
Lists all local XMLType tables belonging to the current user.

Column Datatype Description

OWNER VARCHAR2 Database user owning XML schema

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document

Column Datatype Description

OWNER VARCHAR2 Database user owning XML schema

SCHEMA_URL VARCHAR2 URL of XML schema

LOCAL VARCHAR2 Local schema (YES/NO)

SCHEMA XMLTYPE XML Schema document

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL
89-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Catalog Views
ALL_XML_TABLES
Lists all local XMLType tables belonging to the current user and all global tables
visible to the current user.

DBA_XML_TAB_COLS
Lists all XMLType columns in the system.

USER_XML_TAB_COLS
Lists all XMLType columns in tables belonging to the current user.

Column Datatype Description

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of XMLType table

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL
DBMS_XMLSchema 89-11

ALL_XML_TAB_COLS
ALL_XML_TAB_COLS
Lists all XMLType columns in tables belonging to the current user and all global
tables visible to the current user.

DBA_XML_VIEWS
Lists all XMLType views in the system.

USER_XML_VIEWS
Lists all local XMLType views belonging to the current user.

Column Datatype Description

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Column Datatype Description

OWNER VARCHAR2 Database user owning table

TABLE_NAME VARCHAR2 Name of table

COLUMN_NAME VARCHAR2 Name of XMLType column

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

STORAGE_TYPE VARCHAR2 Storage type: CLOB / OBJECT-RELATIONAL

Column Datatype Description

OWNER VARCHAR2 Database user owning view

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element
89-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Catalog Views
ALL_XML_VIEWS
Lists all local XMLType views belonging to the current user and all global views
visible to the current user.

DBA_XML_VIEW_COLS
Lists all XMLType columns in the system.

USER_XML_VIEW_COLS
Lists all XMLType columns in views belonging to the current user.

Column Datatype Description

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

Column Datatype Description

OWNER VARCHAR2 Database user owning view

VIEW_NAME VARCHAR2 Name of XMLType view

XMLSCHEMA VARCHAR2 XML Schema URL

ELEMENT_NAME VARCHAR2 XML Schema element

Column Datatype Description

OWNER VARCHAR2 Database user owning view.

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

Column Datatype Description

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.
DBMS_XMLSchema 89-13

ALL_XML_VIEW_COLS
ALL_XML_VIEW_COLS
Lists all XMLType columns in views belonging to the current user and all global
views visible to the current user.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

Column Datatype Description

OWNER VARCHAR2 Database user owning view.

VIEW_NAME VARCHAR2 Name of view.

COLUMN_NAME VARCHAR2 Name of XMLType column.

XMLSCHEMA VARCHAR2 XML Schema URL.

ELEMENT_NAME VARCHAR2 XML Schema element.

Column Datatype Description
89-14 Oracle9i Supplied PL/SQL Packages and Types Reference

DBM
90

DBMS_XPLAN

The DBMS_XPLAN package provides an easy way to format the output of the
EXPLAIN PLAN command. For more information on the EXPLAIN PLAN
command, see Oracle9i Database Performance Tuning Guide and Reference.

This package runs with the privileges of the calling user, not the package owner
(SYS).

This chapter discusses the following topics:

� Using DBMS_XPLAN

� Summary of DBMS_XPLAN Subprograms

� Usage Notes
S_XPLAN 90-1

Using DBMS_XPLAN
Using DBMS_XPLAN
The DBMS_XPLAN package supplies a table function, DISPLAY, to format and
display the contents of a plan table, as shown in the following example.

Displaying a Plan Table Using DBMS_XPLAN.DISPLAY: Example
Rem
Rem Execute an explain plan command on a SELECT statement
Rem
EXPLAIN PLAN FOR
SELECT *
FROM emp e, dept d
WHERE e.deptno = d.deptno

AND e.ename=’benoit’;

Rem
Rem Display the plan using the DBMS_XPLAN.DISPLAY() table function
Rem
SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);

This query produces the following output:

--
| Id | Operation | Name | Rows | Bytes | Cost |
--
0	SELECT STATEMENT		1	50	3
* 1	HASH JOIN		1	50	3
* 2	TABLE ACCESS FULL	EMP	1	32	1
3	TABLE ACCESS FULL	DEPT	4	72	1
--
Predicate Information (identified by operation id)
1 - access("E1"."DEPTNO"="D1"."DEPTNO")
2 - filter("E1"."ENAME"=’benoit’)

Summary of DBMS_XPLAN Subprograms

Table 90–1 DBMS_XPLAN Package Subprograms

Subprogram Description

DISPLAY Function on
page 90-3

Displays the contents of the plan table.
90-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_XPLAN Subprograms
DISPLAY Function
This function displays the contents of the plan table.

Syntax
DBMS_XPLAN.DISPLAY(

table_name IN VARCHAR2 DEFAULT ’PLAN_TABLE’,
statement_id IN VARCHAR2 DEFAULT NULL,
format IN VARCHAR2 DEFAULT ’TYPICAL’);

Parameters

Displaying Results: Examples
To display the result of the last EXPLAIN PLAN command stored in the plan table:

SELECT * FROM table(DBMS_XPLAN.DISPLAY);

To display from other than the default plan table, "my_plan_table":

SELECT * FROM table(DBMS_XPLAN.DISPLAY(’my_plan_table’));

Table 90–2 DISPLAY Function Parameters

Parameter Description

table_name Specifies the table name where the plan is stored. This parameter
defaults to PLAN_TABLE, which is the default plan table for the
EXPLAIN PLAN command.

statement_id Specifies the statement_id of the plan to be displayed. This
parameter defaults to NULL, which is the default when the
EXPLAIN PLAN command is executed without a set statement_
id clause.

format Controls the level of details for the plan. It accepts four values:

� BASIC: Displays the minimum information in the plan—the
operation ID, the object name, and the operation option.

� TYPICAL: This is the default. Displays the most relevant
information in the plan. Partition pruning, parallelism, and
predicates are displayed only when available.

� ALL: Maximum level. Includes information displayed with the
TYPICAL level and adds the SQL statements generated for
parallel execution servers (only if parallel).

� SERIAL: Like TYPICAL except that the parallel information is
not displayed, even if the plan executes in parallel.
DBMS_XPLAN 90-3

Usage Notes
To display the minimum plan information:

SELECT * FROM table(DBMS_XPLAN.DISPLAY(’plan_table’, null,
’basic’));

To display the plan for a statement identified by ’foo ’, such as statement_
id=’foo’ :

SELECT * FROM table(DBMS_XPLAN.DISPLAY(’plan_table’, ’foo’));

Usage Notes
By default, only relevant information is reported by the display table function. In
"Displaying a Plan Table Using DBMS_XPLAN.DISPLAY: Example" on page 90-2,
the query does not execute in parallel. Hence, information related to the
parallelization of the plan is not reported. As shown in the following example,
parallel information is reported only if the query executes in parallel.

Displaying a Plan Table with Parallel Information: Example
Rem
Rem Execute an explain plan command for a parallel query
Rem
ALTER TABLE emp PARALLEL;
EXPLAIN PLAN for
SELECT * FROM emp e, dept d

WHERE e.deptno = d.deptno
AND e.ename =’benoit’
ORDER BY e.empno;

Rem
Rem Display the plan using the dbms_xplan.display() table function
Rem
SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
90-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Usage Notes
The above EXPLAIN PLAN produces output as follows:

--
| Id | Operation |Name | Rows | Bytes | Cost | TQ |IN-OUT|PQ Distrib |
--
0	SELECT STATEMENT		1	50	3	67,60		
1	SORT ORDER BY		1	50	3	67,61	P->S	QC(ORDER)
2	MERGE JOIN		1	50	3	67,62	P->P	RANGE
3	SORT JOIN		4	72	3	67,63	PCWP	
4	TABLE ACCESS FULL	DEPT	4	72	2	67,64	S->P	BROADCAST
* 5	SORT JOIN		1	32	2	67,65	PCWP	
* 6	TABLE ACCESS FULL	EMP	1	32	2	67,66	PCWP	
--
Predicate Information (identified by operation id)

5 - access("E1"."DEPTNO"="D1"."DEPTNO")
filter("E1"."DEPTNO"="D1"."DEPTNO")

6 - filter("E1"."ENAME"’benoit’)

When the query is parallel, information related to parallelism is reported: table
queue number (TQ column), table queue type (IN-OUT) and table queue
distribution method (PQ Distrib).

By default, if several plans in the plan table match the statement_id parameter
passed to the display table function (default value is NULL), only the plan
corresponding to the last EXPLAIN PLAN command is displayed. Hence, there is no
need to purge the plan table after each EXPLAIN PLAN. However, you should purge
the plan table regularly (for example, by using the TRUNCATE TABLE command) to
ensure good performance in the execution of the DISPLAY table function.

For ease of use, you can define a view on top of the display table function and then
use that view to display the output of the EXPLAIN PLAN command, as shown
below:

Using a View to Display Output: Example
define plan view
create view plan as select * from table(dbms_xplan.display);

display the output of the last explain plan command
select * from plan;
DBMS_XPLAN 90-5

Usage Notes
90-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_XSLPROC
91

DBMS_XSLPROCESSOR

With DBMS_XSLPROCESSOR,you can access the contents and structure of XML
documents.

This chapter details the following:

� Subprograms of DBMS_XSLPROCESSOR

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information
ESSOR 91-1

Description of DBMS_XSLPROCESSOR
Description of DBMS_XSLPROCESSOR
The Extensible Stylesheet Language Transformation (XSLT), describes rules for
transforming a source tree into a result tree. A transformation expressed in XSLT is
called a stylesheet. The transformation specified is achieved by associating patterns
with templates defined in the stylesheet. A template is instantiated to create part of
the result tree. This PL/SQL implementation of the XSL processor followed the
W3C XSLT working draft (rev WD-xslt-19990813) and included the required
behavior of an XSL processor in terms of how it must read XSLT stylesheets and the
transformation it must effect.

The following is the default behavior for this PL/SQL XSL Processor:

� A result tree which can be accessed by DOM APIs is built

� Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

Subprograms of DBMS_XSLPROCESSOR

Table 91-1: Summary of Subprograms of DBMS_XSLPROCESSOR

Subprogram Description

newProcessor() on page 91-3 Returns a new processor instance.

processXSL() on page 91-3 Transforms an input XML document.

showWarnings() on page 91-5 Turns warnings on or off.

setErrorLog() on page 91-6 Sets errors to be sent to the specified file.

newStylesheet() on page 91-6 Creates a new stylesheet using the given input and
reference URLs.

transformNode() on page 91-7 Transforms a node in a DOM tree using the given stylesheet.

selectNodes() on page 91-7 Selects nodes from a DOM tree that match the given
pattern.

selectSingleNodes() on page 91-8 Selects the first node from the tree that matches the given
pattern.

valueOf() on page 91-8 Retrieves the value of the first node from the tree that
matches the given pattern

setParam() on page 91-8 Sets a top-level parameter in the stylesheet

removeParam() on page 91-9 Removes a top-level stylesheet parameter
91-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Subprograms of DBMS_XSLPROCESSOR
newProcessor()
Returns a new processor instance. This function must be called before the default
behavior of Processor can be changed and if other processor methods need to be
used.

Syntax
FUNCTION newProcessor RETURN Processor;

processXSL()
Transforms input XML document. Any changes to the default processor behavior
should be effected before calling this procedure. An application error is raised if
processing fails. The options are described in the following table.

resetParams() on page 91-9 Resets the top-level stylesheet parameters

freeStylesheet() on page 91-9 Frees a stylesheet object

freeProcessor() on page 91-10 Frees a processor object

Syntax Description

FUNCTION processXSL(

 p Processor,

 ss Stylesheet,

 xmldoc DOMDocument),

 RETURN DOMDocumentFragment;

Transforms input XML document using given
DOMDocument and stylesheet, and returns the
resultant document fragment.

FUNCTION processXSL(

 p Processor,

 ss Stylesheet,

 url VARCHAR2,

 RETURN DOMDocumentFragment;

Transforms input XML document using given
document as URL and the stylesheet, and returns
the resultant document fragment.

Table 91-1: Summary of Subprograms of DBMS_XSLPROCESSOR (Cont.)

Subprogram Description
DBMS_XSLPROCESSOR 91-3

processXSL()
FUNCTION processXSL(

 p Processor,

 ss Stylesheet,

 clb CLOB)

 RETURN DOMDocumentFragment;

Transforms input XML document using given
document as CLOB and the stylesheet, and returns
the resultant document fragment.

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 xmldoc DOMDocument,

 dir VARCHAR2,

 fileName VARCHAR2);

Transforms input XML document using given
DOMDocument and the stylesheet, and writes the
output to the specified file.

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 url VARCHAR2,

 dir VARCHAR2,

 fileName VARCHAR2);

Transforms input XML document using given URL
and the stylesheet, and writes the output to the
specified file in a specified directory.

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 xmldoc DOMDocument,

 cl IN OUT CLOB);

Transforms input XML document using given
DOMDocument and the stylesheet, and writes the
output to a CLOB.

FUNCTION processXSL(

 p Processor,

 ss Stylesheet,

 xmldf DOMDocumentFragment)

 RETURN DOMDocumentFragment;

Transforms input XML DocumentFragment using
given DOMDocumentFragment and the stylesheet,
and returns the resultant document fragment.

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 xmldf DOMDocumentFragment,

 dir VARCHAR2,

 fileName VARCHAR2);

Transforms input XML DocumentFragment using
given DOMDocumentFragment and the stylesheet,
and writes the output to the specified file in a
specified directory.

Syntax Description
91-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Subprograms of DBMS_XSLPROCESSOR
showWarnings()
Turns warnings on (TRUE) or off (FALSE) .

Syntax
PROCEDURE showWarnings(p Processor,

yes BOOLEAN);

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 xmldf DOMDocumentFragment,

 buf IN OUT VARCHAR2);

Transforms input XML DocumentFragment using
given DOMDocumentFragment and the stylesheet,
and writes the output to a buffer.

PROCEDURE processXSL(

 p Processor,

 ss Stylesheet,

 xmldf DOMDocumentFragment,

 cl IN OUT CLOB);

Transforms input XML DocumentFragment using
given DOMDocumentFragment and the stylesheet,
and writes the output to a CLOB.

Parameter IN / OUT Description

p (IN) Processor instance.

ss (IN) Stylesheet instance.

xmldoc (IN) XML document being transformed.

url (IN) URL for the information being transformed.

clb (IN) CLOB containing information to be transformed.

dir (IN) Directory where processing output file is saved.

fileName (IN) Processing output file.

cl (IN/OUT) CLOB to which the processing output is saved.

buf (IN/OUT) Buffer to which the processing output is saved.

xmldf (IN) XML document fragment being transformed.

Syntax Description
DBMS_XSLPROCESSOR 91-5

setErrorLog()
setErrorLog()
Sets errors to be sent to the specified file.

Syntax
PROCEDURE setErrorLog(p Processor,

fileName VARCHAR2);

newStylesheet()
Creates and returns a new stylesheet instance. The options are described in the
following table.

Parameter IN / OUT Description

p (IN) Processor instance.

yes (IN) Mode to set: TRUE to show warnings, FALSE otherwise

Parameter IN / OUT Description

p (IN) Processor instance.

fileName (IN) complete path of the file to use as the error log.

Syntax Description

FUNCTION newStylesheet(

 xmldoc DOMDocument,

ref VARCHAR2)

 RETURN Stylesheet;

Creates and returns a new stylesheet instance using the given
DOMDocument and reference URLs.

FUNCTION newStylesheet(

 inp VARCHAR2,

ref VARCHAR2)

 RETURN Stylesheet;

Creates and returns a new stylesheet instance using the given
input and reference URLs.

Parameter IN / OUT Description

xmldoc (IN) DOMDocument to use for construction.
91-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Subprograms of DBMS_XSLPROCESSOR
transformNode()
Transforms a node in a DOM tree using the given stylesheet, and returns the result
of the transformation as a DOMDocumentFragment.

Syntax
FUNCTION transformNode(n DOMNode,

ss Stylesheet)
RETURN DOMDocumentFragment;

selectNodes()
Selects nodes which match the given pattern from a DOM tree, and returns the
result of the selection.

Syntax
FUNCTION selectNodes(n DOMNode,

pattern VARCHAR2)
RETURN DOMNodeList;

inp (IN) Input URL to use for construction.

ref (IN) Reference URL

Parameter IN / OUT Description

n (IN) DOMNode to transform.

ss (IN) Stylesheet to use.

Parameter IN / OUT Description

n (IN) Root DOMNode of the tree.

pattern (IN) Pattern to use.

Parameter IN / OUT Description
DBMS_XSLPROCESSOR 91-7

selectSingleNodes()
selectSingleNodes()
Selects the first node from the tree that matches the given pattern, and returns that
node.

Syntax
FUNCTION selectSingleNodes(n DOMNode,

pattern VARCHAR2)
RETURN DOMNode;

valueOf()
Retrieves the value of the first node from the tree that matches the given pattern.

Syntax
PROCEDURE valueOf(n DOMNode,

pattern VARCHAR2,
val OUT VARCHAR2);

setParam()
Sets a top level parameter in the stylesheet. The parameter value must be a valid
XPath expression. Literal string values must be quoted.

Syntax
PROCEDURE setParam(ss Stylesheet,

name VARCHAR2,

Parameter IN / OUT Description

n (IN) Root DOMNode of the tree.

pattern (IN) Pattern to use.

Parameter IN / OUT Description

n (IN) Root DOMNode of the tree.

pattern (IN) Pattern to use.

val (OUT) Retrieved value.
91-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Subprograms of DBMS_XSLPROCESSOR
value VARCHAR2);

removeParam()
Removes a top level stylesheet parameter.

Syntax
PROCEDURE removeParam(ss Stylesheet,

name VARCHAR2);

resetParams()
Resets the top-level stylesheet parameters.

Syntax
PROCEDURE resetParams(ss Stylesheet);

freeStylesheet()
Frees a Stylesheet object.

Parameter IN / OUT Description

ss (IN) Stylesheet.

name (IN) Name of the parameter.

value (IN) Value of the parameter.

Parameter IN / OUT Description

ss (IN) Stylesheet.

name (IN) Name of the parameter.

Parameter IN / OUT Description

ss (IN) Stylesheet.
DBMS_XSLPROCESSOR 91-9

freeProcessor()
Syntax
PROCEDURE freestylesheet(ss Stylesheet);

freeProcessor()
Frees a Processor object.

Syntax
PROCEDURE freeProccessor(p Processor);

Parameter IN / OUT Description

ss (IN) Stylesheet.

Parameter IN / OUT Description

p (IN) Processor.
91-10 Oracle9i Supplied PL/SQL Packages and Types Reference

DEBUG_
92

DEBUG_EXTPROC

The DEBUG_EXTPROC package enables you to start up the extproc agent within a
session. This utility package can help you debug external procedures.

This chapter discusses the following topics:

� Requirements and Installation Notes for DEBUG_EXTPROC

� Using DEBUG_EXTPROC

� Summary of DBMS_EXTPROC Subprograms
EXTPROC 92-1

Requirements and Installation Notes for DEBUG_EXTPROC
Requirements and Installation Notes for DEBUG_EXTPROC

Requirements
Your Oracle account must have EXECUTE privileges on the package and CREATE
LIBRARY privileges.

Installation Notes
To install the package, run the script DBGEXTP.SQL.

� Install/load this package in the Oracle USER where you want to debug the
’extproc’ process.

� Ensure that you have execute privileges on package DEBUG_EXTPROC

SELECT SUBSTR(OBJECT_NAME, 1, 20)
FROM USER_OBJECTS
WHERE OBJECT_NAME = ’DEBUG_EXTPROC’;

� You can install this package as any other user, as long as you have EXECUTE
privileges on the package.

Using DEBUG_EXTPROC

Usage Assumptions
This assumes that the Listener has been appropriately configured to startup an
external procedures ’extproc’ agent.

This also assumes that you built your shared library with debug symbols to aid in
the debugging process. Please check the C compiler manual pages for the
appropriate C compiler switches to build the shared library with debug symbols.

Usage Notes
� Start a brand new oracle session through SQL*Plus or OCI program by

connecting to ORACLE.

� Execute procedure DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT to startup the
extproc agent in this session; for example, execute DEBUG_EXTPROC.STARTUP_

Note: DEBUG_EXTPROC works only on platforms with debuggers
that can attach to a running process.
92-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_EXTPROC Subprograms
EXTPROC_AGENT; Do not exit this session, because that terminates the extproc
agent.

� Determine the PID of the extproc agent that was started up for this session.

� Using a debugger (for example, gdb, dbx, or the native system debugger), load
the extproc executable and attach to the running process.

� Set a breakpoint on function ’pextproc’ and let the debugger continue with its
execution.

� Now execute your external procedure in the same session where you first
executed DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT

� Your debugger should now break in function ’pextproc’. At this point in time,
the shared library referenced by your PL/SQL external function would have
been loaded and the function resolved. Now set a breakpoint in your C function
and let the debugger continue its execution.

Because PL/SQL loads the shared library at runtime, the debugger you use may or
may not automatically be able to track the new symbols from the shared library. You
may have to issue some debugger command to load the symbols (for example,
’share’ in gdb)

� The debugger should now break in your C function. Its assumed that you had
built the shared library with debugging symbols.

� Now proceed with your debugging.

Summary of DBMS_EXTPROC Subprograms
DEBUG_EXTPROC contains one subprogram: STARTUP_EXTPROC_AGENT
procedure. This starts up the extproc agent process in the session

STARTUP_EXTPROC_AGENT Procedure
This procedure starts up the extproc agent process in the session.This enables you to
get the PID of the executing process. This PID is needed to be able to attach to the
running process using a debugger.

Syntax
DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT;
DEBUG_EXTPROC 92-3

STARTUP_EXTPROC_AGENT Procedure
92-4 Oracle9i Supplied PL/SQL Packages and Types Reference

UT
93

UTL_COLL

The UTL_COLL package lets PL/SQL programs use collection locators to query and
update.

This chapter discusses the following topics:

� Summary of UTL_COLL Subprograms
L_COLL 93-1

Summary of UTL_COLL Subprograms
Summary of UTL_COLL Subprograms
There is currently only one function supported in this package:IS_LOCATOR.

IS_LOCATOR Function
This function determines whether a collection item is actually a locator or not.

Syntax
UTL_COLL.IS_LOCATOR (

collection IN ANY)
RETURNS BOOLEAN;

Parameters

Returns

Pragmas
Asserts WNDS, WNPS and RNPS pragmas

Example
CREATE OR REPLACE TYPE list_t as TABLE OF VARCHAR2(20);
/

CREATE OR REPLACE TYPE phone_book_t AS OBJECT (
pno number,
ph list_t);

/

Table 93–1 IS_LOCATOR Function Parameters

Parameter Description

collection Nested table or varray item.

Table 93–2 IS_LOCATOR Function Returns

Return Value Description

1 Collection item is indeed a locator.

0 Collection item is not a locator.
93-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_COLL Subprograms
CREATE TABLE phone_book OF phone_book_t
NESTED TABLE ph STORE AS nt_ph;

CREATE TABLE phone_book1 OF phone_book_t
NESTED TABLE ph STORE AS nt_ph_1 RETURN LOCATOR;

INSERT INTO phone_book VALUES(1, list_t(’650-633-5707’,’650-323-0953’));
INSERT INTO phone_book1 VALUES(1, list_t(’415-555-1212’));

CREATE OR REPLACE PROCEDURE chk_coll IS
plist list_t;
plist1 list_t;

BEGIN
SELECT ph INTO plist FROM phone_book WHERE pno=1;

SELECT ph INTO plist1 FROM phone_book1 WHERE pno=1;

IF (UTL_COLL.IS_LOCATOR(plist)) THEN
DBMS_OUTPUT.PUT_LINE(’plist is a locator’);

ELSE
DBMS_OUTPUT.PUT_LINE(’plist is not a locator’);

END IF;

IF (UTL_COLL.IS_LOCATOR(plist1)) THEN
DBMS_OUTPUT.PUT_LINE(’plist1 is a locator’);

ELSE
DBMS_OUTPUT.PUT_LINE(’plist1 is not a locator’);

END IF;

END chk_coll;

SET SERVEROUTPUT ON
EXECUTE chk_coll;
UTL_COLL 93-3

IS_LOCATOR Function
93-4 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_E
94

UTL_ENCODE

The UTL_ENCODE package provides functions that encode RAW data into a standard
encoded format so that the data can be transported between hosts. You can use
UTL_ENCODE functions to encode the body of email text. The package also contains
the decode counterpart functions of the encode functions. The functions follow
published standards for encoding to accommodate non-Oracle utilities on the
sending or receiving ends.

This chapter discusses the following topics:

� Summary of UTL_ENCODE Subprograms
NCODE 94-1

Summary of UTL_ENCODE Subprograms
Summary of UTL_ENCODE Subprograms

BASE64_ENCODE Function
This function encodes the binary representation of the RAW value into base 64
elements and returns it in the form of a RAW string.

Syntax
UTL_ENCODE.BASE64_ENCODE (

r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(base64_encode, WNDS, RNDS, WNPS, RNPS);

Table 94–1 UTL_ENCODE Subprograms

Subprogram Description

BASE64_ENCODE Function on
page 94-2

Encodes the binary representation of the RAW value into
base 64 elements and returns it in the form of a RAW string

BASE64_DECODE Function on
page 94-3

Reads the base 64-encoded RAW input string and decodes
it to its original RAW value

UUENCODE Function on
page 94-4

Reads the RAW input string and encodes it to the
corresponding uuencode format string

UUDECODE Function on
page 94-5

Reads the RAW uuencode format input string and decodes
it to the corresponding RAW string

QUOTED_PRINTABLE_
ENCODE Function on
page 94-6

Reads the RAW input string and encodes it to the
corresponding quoted printable format string

QUOTED_PRINTABLE_
DECODE Function on
page 94-6

Reads the varchar2 quoted printable format input string
and decodes it to the corresponding RAW string
94-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_ENCODE Subprograms
Parameters

Returns

BASE64_DECODE Function
This function reads the base 64-encoded RAW input string and decodes it to its
original RAW value.

Syntax
UTL_ENCODE.BASE64_DECODE (

r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(base64_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 94–2 BASE64_ENCODE Function Parameters

Parameter Description

r The RAW value to be encoded. There are no defaults or
optional parameters.

Table 94–3 BASE64_ENCODE Function Returns

Return Description

RAW Contains the encoded base 64 elements

Table 94–4 BASE64_DECODE Function Parameters

Parameter Description

r The RAW string containing base 64-encoded data. There are
no defaults or optional parameters.
UTL_ENCODE 94-3

UUENCODE Function
Returns

UUENCODE Function
This function reads the RAW input string and encodes it to the corresponding
uuencode format string. The output of this function is cumulative, in that it can be
used to encode large data streams, by splitting the data stream into acceptably sized
RAW values, encoded, and concatenated into a single encoded string. Also see
"UUDECODE Function" on page 94-5.

Syntax
UTL_ENCODE.UUENCODE (

r IN RAW,
type IN PLS_INTEGER DEFAULT 1,
filename IN VARCHAR2 DEFAULT NULL,
permission IN VARCHAR2 DEFAULT NULL) RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(uuencode, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 94–5 BASE64_DECODE Function Returns

Return Description

RAW Contains the decoded string

Table 94–6 UUENCODE Function Parameters

Parameter Description

r RAW string

type Optional number parameter containing the type of uuencoded
output. Options:

complete—a defined PL/SQL constant with a value of 1. (default)
header_piece
middle_piece
end_piece

filename Optional varchar2 parameter containing the uuencode filename;
the default is uuencode.txt
94-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_ENCODE Subprograms
Returns

UUDECODE Function
This function reads the RAW uuencode format input string and decodes it to the
corresponding RAW string. See "UUENCODE Function" on page 94-4 for discussion
of the cumulative nature of UUENCODE and UUDECODE for data streams.

Syntax
UTL_ENCODE.UUDECODE (

r IN RAW)
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(uudecode, WNDS, RNDS, WNPS, RNPS);

Parameters

permission Optional varchar2 parameter containing the permission mode;
the default is 0 (a text string zero).

Table 94–7 UUENCODE Function Returns

Return Description

RAW Contains the uuencode format string

Table 94–8 DUDECODE Function Parameters

Parameter Description

r The RAW string containing the uuencoded data string. There
are no defaults or optional parameters.

Table 94–6 UUENCODE Function Parameters

Parameter Description
UTL_ENCODE 94-5

QUOTED_PRINTABLE_ENCODE Function
Returns

QUOTED_PRINTABLE_ENCODE Function
This function reads the RAW input string and encodes it to the corresponding quoted
printable format string.

Syntax
UTL_ENCODE.QUOTED_PRINTABLE_ENCODE (

r IN RAW
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(quoted_printable_encode, WNDS, RNDS,WNPS, RNPS);

Parameters

Returns

QUOTED_PRINTABLE_DECODE Function
This function reads the varchar2 quoted printable format input string and
decodes it to the corresponding RAW string.

Table 94–9 UUDECODE Function Returns

Return Description

RAW The decoded RAW string

Table 94–10 QUOTED_PRINTABLE_ENCODE Function Parameters

Parameter Description

r The RAW string. There are no defaults or optional parameters.

Table 94–11 QUOTED_PRINTABLE_ENCODE Function Returns

Return Description

RAW Contains the quoted printable string
94-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_ENCODE Subprograms
Syntax
UTL_ENCODE.QUOTED_PRINTABLE_DECODE (

r IN RAW
RETURN RAW;

Pragmas
pragma RESTRICT_REFERENCES(quoted_printable_decode, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns

Table 94–12 QUOTED_PRINTABLE_DECODE Function Parameters

Parameters Description

r The RAW string containing a quoted printable data string.
There are no defaults or optional parameters.

Table 94–13 QUOTED_PRINTABLE_DECODE Function Returns

Return Description

RAW The decoded string
UTL_ENCODE 94-7

QUOTED_PRINTABLE_DECODE Function
94-8 Oracle9i Supplied PL/SQL Packages and Types Reference

U

95

UTL_FILE

With the UTL_FILE package, your PL/SQL programs can read and write operating
system text files. UTL_FILE provides a restricted version of operating system
stream file I/O.

UTL_FILE I/O capabilities are similar to standard operating system stream file I/O
(OPEN, GET, PUT, CLOSE) capabilities, but with some limitations. For example, you
call the FOPEN function to return a file handle, which you use in subsequent calls to
GET_LINE or PUT to perform stream I/O to a file. When file I/O is done, you call
FCLOSE to complete any output and free resources associated with the file.

This chapter discusses the following topics:

� Security

� File Ownership and Protections

� Exceptions

� Types

� Summary of UTL_FILE Subprograms

Note: The UTL_FILE package is similar to the client-side TEXT_
IO package currently provided by Oracle Procedure Builder.
Restrictions for a server implementation require some API
differences between UTL_FILE and TEXT_IO. In PL/SQL file I/O,
errors are returned using PL/SQL exceptions.
TL_FILE 95-1

Security
Security
UTL_FILE is available for both client-side and server-side PL/SQL. The client
implementation (text I/O) is subject to normal operating system file permission
checking. However, the server implementation may be running in a privileged
mode, which requires a restriction on the directories that you can access.

In the past, accessible directories for the UTL_FILE functions were specified in the
initialization file using the UTL_FILE_DIR parameter. However, UTL_FILE_DIR
access is not recommended. It is recommended that you use the CREATE
DIRECTORY feature, which replaces UTL_FILE_DIR . Directory objects offer more
flexibility and granular control to the UTL_FILE application administrator, can be
maintained dynamically (that is, without shutting down the database), and are
consistent with other Oracle tools. CREATE DIRECTORY privilege is granted only to
SYS and SYSTEM by default.

File Ownership and Protections
On UNIX systems, the owner of a file created by the FOPEN function is the owner of
the shadow process running the instance. Normally, this owner is ORACLE. Files
created using FOPEN are always writable and readable using the UTL_FILE
subprograms, but nonprivileged users who need to read these files outside of
PL/SQL may need access from a system administrator.

Examples (UNIX-Specific)
Given the following:

SQL> CREATE DIRECTORY log_dir AS '/appl/gl/log';
SQL> GRANT READ ON DIRECTORY log_dir TO DBA;

SQL> CREATE DIRECTORY out_dir AS '/appl/gl/user'';
SQL> GRANT READ ON DIRECTORY user_dir TO PUBLIC;

The following file locations and filenames are valid and accessible as follows:

Note: use the CREATE DIRECTORY feature instead of UTL_FILE_
DIR for directory access verification.

File Location Filename Accessible By

/appl/gl/log L12345.log Users with DBA privilege
95-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Exceptions
The following file locations and filenames are invalid:

Exceptions

/appl/gl/user u12345.tmp All users

File Location Filename Invalid Because

/appl/gl/log/backup L12345.log # subdirectories are not
accessible

/APPL/gl/log L12345.log # directory strings must
follow case sensitivity rules
as required by the O/S

/appl/gl/log backup/L1234.log # filenames may not include
portions of directory paths

/user/tmp L12345.log # no corresponding CREATE
DIRECTORY command has
been issued

Caution: There are no user-level file permissions. UTL_FILE
directory object privileges give you read and write access to all files
within the specified directory.

Table 95–1 UTL_FILE Package Exceptions

Exception Name Description

INVALID_PATH File location is invalid.

INVALID_MODE The open_mode parameter in FOPEN is invalid.

INVALID_FILEHANDLE File handle is invalid.

INVALID_OPERATION File could not be opened or operated on as requested.

READ_ERROR Operating system error occurred during the read operation.

WRITE_ERROR Operating system error occurred during the write operation.

INTERNAL_ERROR Unspecified PL/SQL error

File Location Filename Accessible By
UTL_FILE 95-3

Types
Procedures in UTL_FILE can also raise predefined PL/SQL exceptions such as NO_
DATA_FOUND or VALUE_ERROR.

Types
The contents of FILE_TYPE are private to the UTL_FILE package. You should not
reference or change components of this record.

TYPE file_type IS RECORD (
id BINARY_INTEGER,
datatype BINARY_INTEGER);

Summary of UTL_FILE Subprograms

CHARSETMISMATCH A file is opened using FOPEN_NCHAR, but later I/O operations
use nonchar functions such as PUTF or GET_LINE.

FILE_OPEN The requested operation failed because the file is open.

INVALID_
MAXLINESIZE

The MAX_LINESIZE value for FOPEN() is invalid; it should be
within the range 1 to 32767.

INVALID_FILENAME The filename parameter is invalid.

ACCESS_DENIED Permission to access to the file location is denied.

INVALID_OFFSET The ABSOLUTE_OFFSET parameter for FSEEK() is invalid; it
should be greater than 0 and less than the total number of bytes
in the file.

DELETE_FAILED The requested file delete operation failed.

RENAME_FAILED The requested file rename operation failed.

Table 95–2 UTL_FILE Subprograms

Subprogram Description

FOPEN Function on
page 95-6

Opens a file for input or output.

FOPEN_NCHAR Function
on page 95-7

Opens a file in Unicode for input or output.

Table 95–1 UTL_FILE Package Exceptions

Exception Name Description
95-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
IS_OPEN Function on
page 95-8

Determines if a file handle refers to an open file.

FCLOSE Procedure on
page 95-9

Closes a file.

FCLOSE_ALL Procedure on
page 95-9

Closes all open file handles.

GET_LINE Procedure on
page 95-10

Reads text from an open file.

GET_LINE_NCHAR
Procedure on page 95-11

Reads text in Unicode from an open file.

GET_RAW Function on
page 95-12

Reads a RAW string value from a file and adjusts the file
pointer ahead by the number of bytes read.

PUT Procedure on
page 95-12

Writes a string to a file.

PUT_NCHAR Procedure on
page 95-13

Writes a Unicode string to a file.

PUT_RAW Function on
page 95-14

Accepts as input a RAW data value and writes the value
to the output buffer.

NEW_LINE Procedure on
page 95-15

Writes one or more operating system-specific line terminators
to a file.

PUT_LINE Procedure on
page 95-15

Writes a line to a file. This appends an operating
system-specific line terminator.

PUT_LINE_NCHAR
Procedure on page 95-16

Writes a Unicode line to a file.

PUTF Procedure on
page 95-17

A PUT procedure with formatting.

PUTF_NCHAR Procedure
on page 95-18

A PUT_NCHARprocedure with formatting. Writes a Unicode
string to a file, with formatting.

FFLUSH Procedure on
page 95-19

Physically writes all pending output to a file.

FSEEK Function on
page 95-20

Adjusts the file pointer forward or backward within the file
by the number of bytes specified.

FREMOVE Function on
page 95-21

Deletes a disk file, assuming that you have sufficient
privileges.

Table 95–2 UTL_FILE Subprograms

Subprogram Description
UTL_FILE 95-5

FOPEN Function

FOPEN Function
This function opens a file. You can specify the maximum line size and have a
maximum of 50 files open simultaneously. See also "FOPEN_NCHAR Function" on
page 95-7.

Syntax
UTL_FILE.FOPEN (

location IN VARCHAR2,
filename IN VARCHAR2,
open_mode IN VARCHAR2,
max_linesize IN BINARY_INTEGER)

RETURN file_type;

FCOPY Function on
page 95-21

Copies a contiguous portion of a file to a newly created file.

FGETPOS Function on
page 95-22

Returns the current relative offset position within a file, in
bytes.

FGETATTR Procedure on
page 95-23

Reads and returns the attributes of a disk file.

FRENAME Function on
page 95-24

Renames an existing file to a new name, similar to the Unix
mv function.

Note: The file location and file name parameters are supplied to
the FOPEN function as separate strings, so that the file location can
be checked against the list of accessible directories as specified by
the ALL_DIRECTORIES view of accessible directory objects.
Together, the file location and name must represent a legal filename
on the system, and the directory must be accessible. A subdirectory
of an accessible directory is not necessarily also accessible; it too
must be specified using a complete path name matching an ALL_
DIRECTORIES object.

Operating system-specific parameters, such as C-shell environment
variables under UNIX, cannot be used in the file location or file
name parameters.

Table 95–2 UTL_FILE Subprograms

Subprogram Description
95-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
Parameters

Returns
FOPEN returns a file handle, which must be passed to all subsequent procedures
that operate on that file. The specific contents of the file handle are private to the
UTL_FILE package, and individual components should not be referenced or
changed by the UTL_FILE user.

Exceptions
INVALID_PATH: File location or name was invalid.
INVALID_MODE: The open_mode string was invalid.
INVALID_OPERATION: File could not be opened as requested.
INVALID_MAXLINESIZE: Specified max_linesize is too large or too small.

FOPEN_NCHAR Function
This function opens a file in Unicode for input or output, with the maximum line
size specified. You can have a maximum of 50 files open simultaneously. With this

Table 95–3 FOPEN Function Parameters

Parameter Description

location Directory location of file.

filename File name, including extension (file type), without directory
path. In Unix, the filename cannot end with / .

open_mode Specifies how the file is opened. Modes include:

r—read text

w—write text

a—append text

If you try to open a file that does not exist using a value for
open_mode , then the file is created in write mode.

max_linesize Maximum number of characters per line, including the newline
character, for this file. (minimum value 1, maximum value
32767). The default is approximately 1000 bytes.

Table 95–4 FOPEN Function Returns

Return Description

file_type Handle to open file.
UTL_FILE 95-7

IS_OPEN Function
function, you can read or write a text file in Unicode instead of in the database
charset. See also FOPEN Function on page 95-6.

Syntax
UTL_FILE.FOPEN_NCHAR (

location IN VARCHAR2,
filename IN VARCHAR2,
open_mode IN VARCHAR2,
max_linesize IN BINARY_INTEGER)

RETURN file_type;

Parameters

IS_OPEN Function
This function tests a file handle to see if it identifies an open file. IS_OPEN reports
only whether a file handle represents a file that has been opened, but not yet closed.
It does not guarantee that there will be no operating system errors when you
attempt to use the file handle.

Syntax
UTL_FILE.IS_OPEN (

file IN FILE_TYPE)
RETURN BOOLEAN;

Table 95–5 FOPEN_NCHAR Function Parameters

Parameter Description

location Directory location of file.

filename File name (including extension).

open_mode Open mode (r , w, a).

max_linesize Maximum number of characters per line, including the newline
character, for this file. (minimum value 1, maximum value
32767).
95-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
Parameters

Returns
TRUE or FALSE

Exceptions
None.

FCLOSE Procedure
This procedure closes an open file identified by a file handle. If there is buffered
data yet to be written when FCLOSE runs, then you may receive a WRITE_ERROR
exception when closing a file.

Syntax
UTL_FILE.FCLOSE (

file IN OUT FILE_TYPE);

Parameters

Exceptions
WRITE_ERROR
INVALID_FILEHANDLE

FCLOSE_ALL Procedure
This procedure closes all open file handles for the session. This should be used as an
emergency cleanup procedure, for example, when a PL/SQL program exits on an
exception.

Table 95–6 IS_OPEN Function Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call.

Table 95–7 FCLOSE Procedure Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call.
UTL_FILE 95-9

GET_LINE Procedure
Syntax
UTL_FILE.FCLOSE_ALL;

Parameters
None.

Exceptions
WRITE_ERROR

GET_LINE Procedure
This procedure reads text from the open file identified by the file handle and places
the text in the output buffer parameter. Text is read up to, but not including, the line
terminator, or up to the end of the file, or up to the end of the linesize parameter.
It cannot exceed the max_linesize specified in FOPEN.

If the line does not fit in the buffer, then a VALUE_ERROR exception is raised. If no
text was read due to end of file, then the NO_DATA_FOUND exception is raised.

Because the line terminator character is not read into the buffer, reading blank lines
returns empty strings.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. See also "GET_LINE_NCHAR Procedure" on page 95-11.

Syntax
UTL_FILE.GET_LINE (

file IN FILE_TYPE,
buffer OUT VARCHAR2,
linesize IN NUMBER,
len IN PLS_INTEGER DEFAULT NULL);

Note: FCLOSE_ALL does not alter the state of the open file
handles held by the user. This means that an IS_OPEN test on a file
handle after an FCLOSE_ALL call still returns TRUE, even though
the file has been closed. No further read or write operations can be
performed on a file that was open before an FCLOSE_ALL.
95-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR
NO_DATA_FOUND
VALUE_ERROR

GET_LINE_NCHAR Procedure
This procedure reads text from the open file identified by the file handle and places
the text in the output buffer parameter. With this function, you can read a text file in
Unicode instead of in the database charset. See also "GET_LINE Procedure" on
page 95-10.

Syntax
UTL_FILE.GET_LINE_NCHAR (

file IN FILE_TYPE,
buffer OUT NVARCHAR2,
len IN PLS_INTEGER DEFAULT NULL);

Table 95–8 GET_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

The file must be open for reading (mode r), otherwise an
INVALID_OPERATION exception is raised.

buffer Data buffer to receive the line read from the file.

linesize Specifies the maximum number of bytes to read.

len The number of bytes read from the file. Default is NULL. If
NULL, len is assumed to be the maximum length of RAW.
UTL_FILE 95-11

GET_RAW Function
Parameters

GET_RAW Function
This function reads a RAW string value from a file and adjusts the file pointer ahead
by the number of bytes read.

Syntax
UTL_FILE.GET_RAW (

fid IN utl_file.file_type,
r OUT NOCOPY RAW,
len IN PLS_INTEGER DEFAULT NULL);

Parameters

PUT Procedure
PUT writes the text string stored in the buffer parameter to the open file identified
by the file handle. The file must be open for write operations. No line terminator is
appended by PUT; use NEW_LINE to terminate the line or use PUT_LINE to write a

Table 95–9 GET_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

buffer Data buffer to receive the line read from the file.

len The number of bytes read from the file. Default is NULL. If
NULL, len is assumed to be the maximum length of RAW.

Table 95–10 GET_RAW Procedure Parameters

Parameters Description

fid The file ID.

r The RAW data.

len The number of bytes read from the file. Default is NULL. If
NULL, len is assumed to be the maximum length of RAW.
95-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
complete line with a line terminator. See also "PUT_NCHAR Procedure" on
page 95-13.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

Syntax
UTL_FILE.PUT (

file IN FILE_TYPE,
buffer IN VARCHAR2);

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUT_NCHAR Procedure
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. With this function, you can write a text file in Unicode
instead of in the database charset. See also "PUT Procedure" on page 95-12.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

Table 95–11 PUT Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

buffer Buffer that contains the text to be written to the file.

You must have opened the file using mode w or mode a;
otherwise, an INVALID_OPERATION exception is raised.
UTL_FILE 95-13

PUT_RAW Function
Syntax
UTL_FILE.PUT_INCHAR (

file IN FILE_TYPE,
buffer IN NVARCHAR2);

Parameters

PUT_RAW Function
This function accepts as input a RAW data value and writes the value to the output
buffer. You can request an automatic flush of the buffer by setting the third
argument to TRUE.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

Syntax
UTL_FILE. PUT_RAW (

fid IN utl_file.file_type,
r IN RAW,
autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Table 95–12 PUT_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. If the file
is opened by FOPEN instead of FOPEN_NCHAR, a
CHARSETMISMATCH exception is raised.

buffer Buffer that contains the text to be written to the file.

You must have opened the file using mode w or mode a;
otherwise, an INVALID_OPERATION exception is raised.

Table 95–13 PUT_RAW Procedure Parameters

Parameters Description

fid (IN) The file ID.
95-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
NEW_LINE Procedure
This procedure writes one or more line terminators to the file identified by the input
file handle. This procedure is separate from PUT because the line terminator is a
platform-specific character or sequence of characters.

Syntax
UTL_FILE.NEW_LINE (

file IN FILE_TYPE,
lines IN NATURAL := 1);

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUT_LINE Procedure
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. The file must be open for write operations. PUT_LINE
terminates the line with the platform-specific line terminator character or
characters.

r (IN) The RAW data written to the buffer.

autoflush (IN) If TRUE, performs a flush after writing the value to the output
buffer; default is FALSE.

Table 95–14 NEW_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR
call.

lines Number of line terminators to be written to the file.

Table 95–13 PUT_RAW Procedure Parameters

Parameters Description
UTL_FILE 95-15

PUT_LINE_NCHAR Procedure
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

See also "PUT_LINE_NCHAR Procedure" on page 95-16.

Syntax
UTL_FILE.PUT_LINE (

file IN FILE_TYPE,
buffer IN VARCHAR2,
autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUT_LINE_NCHAR Procedure
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. With this function, you can write a text file in Unicode
instead of in the database charset. See also "PUT_LINE Procedure" on page 95-15.

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

Syntax
UTL_FILE.PUT_LINE_NCHAR (

Table 95–15 PUT_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

buffer Text buffer that contains the lines to be written to the file.

autoflush Flushes the buffer to disk after the WRITE.
95-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
file IN FILE_TYPE,
buffer IN NVARCHAR2);

Parameters

PUTF Procedure
This procedure is a formatted PUT procedure. It works like a limited printf (). The
format string can contain any text, but the character sequences %s and \n have
special meaning.

See also "PUTF_NCHAR Procedure" on page 95-18.

Syntax
UTL_FILE.PUTF (

file IN FILE_TYPE,
format IN VARCHAR2,
[arg1 IN VARCHAR2 DEFAULT NULL,
. . .
arg5 IN VARCHAR2 DEFAULT NULL]);

Table 95–16 PUT_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

buffer Text buffer that contains the lines to be written to the file.

Character Sequence Meaning

%s Substitute this sequence with the string value of the next
argument in the argument list.

\n Substitute with the appropriate platform-specific line terminator.
UTL_FILE 95-17

PUTF_NCHAR Procedure
Parameters

Example
The following example writes the lines:

Hello, world!
I come from Zork with greetings for all earthlings.

my_world varchar2(4) := ’Zork’;
...
PUTF(my_handle, ’Hello, world!\nI come from %s with %s.\n’,

my_world,
’greetings for all earthlings’);

If there are more %s formatters in the format parameter than there are arguments,
then an empty string is substituted for each %s for which there is no matching
argument.

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUTF_NCHAR Procedure
This procedure is a formatted PUT_NCHAR procedure. With this function, you can
write a text file in Unicode instead of in the database charset. See also "PUTF
Procedure" on page 95-17. See also "PUT_LINE Procedure" on page 95-15.

Table 95–17 PUTF Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call.

format Format string that can contain text as well as the formatting
characters \n and %s.

arg1..arg5 From one to five operational argument strings.

Argument strings are substituted, in order, for the %s
formatters in the format string.

If there are more formatters in the format parameter string than
there are arguments, then an empty string is substituted for
each %s for which there is no argument.
95-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. The default is approximately 1000 bytes, depending on your
platform. The sum of all sequential PUT calls cannot exceed 32767 without
intermediate buffer flushes.

Syntax
UTL_FILE.PUTF_NCHAR (

file IN FILE_TYPE,
format IN NVARCHAR2,
[arg1 IN NVARCHAR2 DEFAULT NULL,
. . .
arg5 IN NVARCHAR2 DEFAULT NULL]);

Parameters

FFLUSH Procedure
FFLUSH physically writes pending data to the file identified by the file handle.
Normally, data being written to a file is buffered. The FFLUSH procedure forces the
buffered data to be written to the file. The data must be terminated with a newline
character.

Flushing is useful when the file must be read while still open. For example,
debugging messages can be flushed to the file so that they can be read immediately.

Table 95–18 PUTF_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call. The file
must be open for reading (mode r). If the file is opened by
FOPEN instead of FOPEN_NCHAR, a CHARSETMISMATCH
exception is raised.

format Format string that can contain text as well as the formatting
characters \n and %s.

arg1..arg5 From one to five operational argument strings.

Argument strings are substituted, in order, for the %s
formatters in the format string.

If there are more formatters in the format parameter string than
there are arguments, then an empty string is substituted for
each %s for which there is no argument.
UTL_FILE 95-19

FSEEK Function
Syntax
UTL_FILE.FFLUSH (

file IN FILE_TYPE);
invalid_maxlinesize EXCEPTION;

Parameters

Exceptions
INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

FSEEK Function
This function adjusts the file pointer forward or backward within the file by the
number of bytes specified.

If offset, the function seeks to a byte offset. If the end of the file or the beginning of
the file is reached before seeking is done, the function returns the last or first row,
respectively.

If loc , the function seeks to an absolute location specified in bytes.

Syntax
UTL_FILE.FSEEK (

fid IN utl_file.file_type,
absolute_offset IN PL_INTEGER DEFAULT NULL,
relative_offset IN PLS_INTEGER DEFAULT NULL);

Parameters

Table 95–19 FFLUSH Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR
call.

Table 95–20 FSEEK Procedure Parameters

Parameters Description

fid (in) The file ID.
95-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
Notes
Using this function, you can read previous lines in the file without first closing and
reopening the file. You must know the number of bytes by which you want to
navigate.

FREMOVE Function
This function deletes a disk file, assuming that you have sufficient privileges.

Syntax
UTL_FILE.FREMOVE (

location IN VARCHAR2,
filename IN VARCHAR2);

Parameters

Notes
The FREMOVE function does not verify privileges prior to deleting the file. The O/S
verifies file and directory permissions. An exception is returned on failure.

FCOPY Function
This function copies a contiguous portion of a file to a newly created file. By default,
the whole file is copied if the start_line and end_line parameters are omitted.

absolute_offset (IN) The absolute location to which to seek; default = NULL

relative_offset (IN) The number of bytes to seek forward or backward; positive =
forward, negative integer = backward, zero = current position,
default = NULL

Table 95–21 FREMOVE Procedure Parameters

Parameters Description

location (IN) The directory location of the file, a DIRECTORY_NAME from
ALL_DIRECTORIES (case sensitive)

filename (IN) The name of the file to be deleted

Table 95–20 FSEEK Procedure Parameters

Parameters Description
UTL_FILE 95-21

FGETPOS Function
The source file is opened in read mode. The destination file is opened in write
mode. A starting and ending line number can optionally be specified to select a
portion from the center of the source file for copying.

Syntax
UTL_FILE.FCOPY (

location IN VARCHAR2,
filename IN VARCHAR2,
dest_dir IN VARCHAR2,
dest_file IN VARCHAR2,
start_line IN PLS_INTEGER DEFAULT 1,
end_line IN PLS_INTEGER DEFAULT NULL);

Parameters

FGETPOS Function
This function returns the current relative offset position within a file, in bytes.

Syntax
UTL_FILE.FGETPOS (

fileid IN file_type)
RETURN PLS_INTEGER;

Table 95–22 FCOPY Procedure Parameters

Parameters Description

location (IN) The directory location of the source file, a DIRECTORY_NAME
from the ALL_DIRECTORIES view (case sensitive)

filename (IN) The source file to be copied

dest_dir (IN) The destination directory where the destination file is created.

dest_file (N) The destination file created from the source file.

start_line (IN) The line number at which to begin copying. The default is 1 for
the first line.

end_line (IN) The line number at which to stop copying. The default is
NULL, signifying end of file.
95-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_FILE Subprograms
Parameters

Returns
FGETPOS returns the relative offset position for an open file, in bytes. It raises an
exception if the file is not open. It returns 0 for the beginning of the file.

FGETATTR Procedure
This procedure reads and returns the attributes of a disk file.

Syntax
UTL_FILE.FGETATTR(

location IN VARCHAR2,
filename IN VARCHAR2,
exists OUT BOOLEAN,
file_length OUT NUMBER,
blocksize OUT NUMBER);

Parameters

Table 95–23 FGETPOS Parameters

Parameters Description

fileid (IN) The directory location of the source file

Table 95–24 FGETATTR Procedure Parameters

Parameters Description

location Directory location of the source file, a DIRECTORY_NAME from
the ALL_DIRECTORIES view (case sensitive)

filename The name of the source file to be copied

exists A BOOLEAN for whether or not the file exists

file_length The length of the file in bytes. NULL if file does not exist.

blocksize The file system block size in bytes. NULL if the file does not
exist.
UTL_FILE 95-23

FRENAME Function
FRENAME Function
 This function renames an existing file to a new name, similar to the Unix mv
function. Permission on both the source and destination directories must be
granted. You can use the overwrite parameter to specify whether or not to
overwrite a file if one exists in the destination directory. The default is FALSE for no
overwrite.

Syntax
UTL_FILE.FRENAME (

location IN VARCHAR2,
filename IN VARCHAR2,
dest_dir IN VARCHAR2,
dest_file IN VARCHAR2,
overwrite IN BOOLEAN DEFAULT FALSE);

Parameters

Table 95–25 FRENAME Parameters

Parameters Description

location (IN) The directory location of the source file, a DIRECTORY_NAME
from the ALL_DIRECTORIES view (case sensitive)

filename (IN) The source file to be renamed

dest_dir (IN) The destination directory of the destination file, a DIRECTORY_
NAME from the ALL_DIRECTORIES view (case sensitive)

dest_file (N) The new name of the file.

overwrite (IN) The default is FALSE
95-24 Oracle9i Supplied PL/SQL Packages and Types Reference

UT
96

UTL_HTTP

The UTL_HTTP package makes Hypertext Transfer Protocol (HTTP) callouts from
SQL and PL/SQL. You can use it to access data on the Internet over HTTP.

With UTL_HTTP, you can write PL/SQL programs that communicate with Web
(HTTP) servers. UTL_HTTP also contains a function that can be used in SQL queries.
The package also supports HTTP over the Secured Socket Layer protocol (SSL), also
known as HTTPS, directly or through an HTTP proxy. Other Internet-related
data-access protocols (such as the File Transfer Protocol (FTP) or the Gopher
protocol) are also supported using an HTTP proxy server that supports those
protocols.

When the package fetches data from a Web site using HTTPS, it requires Oracle
Wallet Manager to set up an Oracle wallet. Non-HTTPS fetches do not require an
Oracle wallet.

This chapter discusses the following topics:

� UTL_HTTP Constants, Types and Flow

� UTL_HTTP Exceptions

� UTL_HTTP Examples

� Summary of UTL_HTTP Subprograms

See Also:

� Chapter 102, "UTL_URL"

� Chapter 100, "UTL_SMTP"

� Oracle Advanced Security Administrator’s Guide for more
information on Wallet Manager
L_HTTP 96-1

UTL_HTTP Constants, Types and Flow
UTL_HTTP Constants, Types and Flow

UTL_HTTP Constants

Table 96–1 UTL_HTTP Constants

Constant and Syntax Purpose

HTTP_VERSION_1_0 CONSTANT VARCHAR2(10) :=
’HTTP/1.0’;

Denotes HTTP version 1.0 that can be
used in the function begin_request .

HTTP_VERSION_1 CONSTANT VARCHAR2(10) :=
’HTTP/1.1’;

Denotes HTTP version 1.1 that can be
used in the function begin_request .

DEFAULT_HTTP_PORT CONSTANT PLS_INTEGER := 80; The default TCP/IP port (80) at which a
Web server or proxy server listens

DEFAULT_HTTPS_PORT CONSTANT PLS_INTEGER := 443; The default TCP/IP port (443) at which
an HTTPS Web server listens

The following denote all the HTTP 1.1 status codes:

HTTP_CONTINUE CONSTANT PLS_INTEGER := 100; -

HTTP_SWITCHING_PROTOCOLS CONSTANT PLS_INTEGER := 101;

HTTP_OK CONSTANT PLS_INTEGER := 200; -

HTTP_CREATED CONSTANT PLS_INTEGER := 201; -

HTTP_ACCEPTED CONSTANT PLS_INTEGER := 202; -

HTTP_NON_AUTHORITATIVE_INFO CONSTANT PLS_INTEGER := 203;

HTTP_NO_CONTENT CONSTANT PLS_INTEGER := 204; -

HTTP_RESET_CONTENT CONSTANT PLS_INTEGER := 205; -

HTTP_PARTIAL_CONTENT CONSTANT PLS_INTEGER := 206; -

HTTP_MULTIPLE_CHOICES CONSTANT PLS_INTEGER := 300;-

HTTP_MOVED_PERMANENTLY CONSTANT PLS_INTEGER := 301;

HTTP_FOUND CONSTANT PLS_INTEGER := 302; -

HTTP_SEE_OTHER CONSTANT PLS_INTEGER := 303; -

HTTP_NOT_MODIFIED CONSTANT PLS_INTEGER := 304; -

HTTP_USE_PROXY CONSTANT PLS_INTEGER := 305; -

HTTP_TEMPORARY_REDIRECT CONSTANT PLS_INTEGER := 307;
96-2 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Constants, Types and Flow
UTL_HTTP Types
Use the following types with UTL_HTTP.

REQ Type
Use this PL/SQL record type to represent an HTTP request.

HTTP_BAD_REQUEST CONSTANT PLS_INTEGER := 400; -

HTTP_UNAUTHORIZED CONSTANT PLS_INTEGER := 401; -

HTTP_PAYMENT_REQUIRED CONSTANT PLS_INTEGER := 402;-

HTTP_FORBIDDEN CONSTANT PLS_INTEGER := 403; -

HTTP_NOT_FOUND CONSTANT PLS_INTEGER := 404; -

HTTP_NOT_ACCEPTABLE CONSTANT PLS_INTEGER := 406; -

HTTP_PROXY_AUTH_REQUIRED CONSTANT PLS_INTEGER := 407;

HTTP_REQUEST_TIME_OUT CONSTANT PLS_INTEGER := 408;-

HTTP_CONFLICT CONSTANT PLS_INTEGER := 409; -

HTTP_GONE CONSTANT PLS_INTEGER := 410; -

HTTP_LENGTH_REQUIRED CONSTANT PLS_INTEGER := 411;-

HTTP_PRECONDITION_FAILED CONSTANT PLS_INTEGER := 412;

HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT PLS_INTEGER := 413;

HTTP_REQUEST_URI_TOO_LARGE CONSTANT PLS_INTEGER := 414;

HTTP_UNSUPPORTED_MEDIA_TYPE CONSTANT PLS_INTEGER := 415;

HTTP_REQ_RANGE_NOT_SATISFIABLE CONSTANT PLS_INTEGER := 416;

HTTP_EXPECTATION_FAILED CONSTANT PLS_INTEGER := 417;

HTTP_NOT_IMPLEMENTED CONSTANT PLS_INTEGER := 501;-

HTTP_BAD_GATEWAY CONSTANT PLS_INTEGER := 502; -

HTTP_SERVICE_UNAVAILABLE CONSTANT PLS_INTEGER := 503;

HTTP_GATEWAY_TIME_OUT CONSTANT PLS_INTEGER := 504;-

HTTP_VERSION_NOT_SUPPORTED CONSTANT PLS_INTEGER := 505;-

Table 96–1 UTL_HTTP Constants

Constant and Syntax Purpose
UTL_HTTP 96-3

UTL_HTTP Constants, Types and Flow
Syntax
TYPE req IS RECORD (

url VARCHAR2(32767),
method VARCHAR2(64),
http_version VARCHAR2(64),

);

Parameters

Usage Notes
The information returned in REQ from the API begin_request is for read only.
Changing the field values in the record has no effect on the request.

There are other fields in REQ record type whose names begin with the prefix
private_. The fields are private and are intended for use by implementation of
the UTL_HTTP package. You should not modify the fields.

RESP Type
This PL/SQL record type is used to represent an HTTP response.

Syntax
TYPE resp IS RECORD (

status_code PLS_INTEGER,
reason_phrase VARCHAR2(256),
http_version VARCHAR2(64),

);

Table 96–2 REQ Type Parameters

Parameter Description

url The URL of the HTTP request. It is set after the request is
created by begin_request .

method The method to be performed on the resource identified by the
URL. It is set after the request is created by begin_request .

http_version The HTTP protocol version used to send the request. It is set
after the request is created by begin_request .
96-4 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Constants, Types and Flow
Parameters

Usage Notes
The information returned in RESP from the API get_response is read-only. There
are other fields in the RESP record type whose names begin with the prefix
private_. The fields are private and are intended for use by implementation of
the UTL_HTTP package. You should not modify the fields.

COOKIE and COOKIE_TABLE Types
The COOKIE type is the PL/SQL record type that represents an HTTP cookie. The
COOKIE_TABLE type is a PL/SQL index-by-table type that represents a collection of
HTTP cookies.

Syntax
TYPE cookie IS RECORD (

name VARCHAR2(256),
value VARCHAR2(1024),
domain VARCHAR2(256),
expire TIMESTAMP WITH TIME ZONE,
path VARCHAR2(1024),
secure BOOLEAN,
version PLS_INTEGER,
comment VARCHAR2(1024)

);
TYPE cookie_table IS TABLE OF cookie INDEX BY binary_integer;

Table 96–3 RESP Type Parameters

Parameter Description

status_code The status code returned by the Web server. It is a 3-digit
integer that indicates the results of the HTTP request as
handled by the Web server. It is set after the response is
processed by get_response .

reason_phrase The short textual message returned by the Web server that
describe the status code. It gives a brief description of the
results of the HTTP request as handled by the Web server. It is
set after the response is processed by get_response .

http_version The HTTP protocol version used in the HTTP response. It is set
after the response is processed by get_response .
UTL_HTTP 96-5

UTL_HTTP Constants, Types and Flow
Fields of COOKIE Record Type
Table 96–4 shows the fields for the COOKIE and COOKIE_TABLE record types.

Usage Notes
PL/SQL programs do not usually examine or change the cookie information stored
in the UTL_HTTP package. The cookies are maintained by the package
transparently. They are maintained inside the UTL_HTTP package, and they last for
the duration of the database session only. PL/SQL applications that require cookies
to be maintained beyond the lifetime of a database session can read the cookies
using get_cookies, store them persistently in a database table, and re-store the
cookies back in the package using add_cookies in the next database session. All
the fields in the cookie record, except for the comment field, must be stored. Do
not alter the cookie information, which can result in an application error in the Web
server or compromise the security of the PL/SQL and the Web server applications.
See "Example: Retrieving and Restoring Cookies" on page 96-14.

CONNECTION Type
Use this PL/SQL record type to represent the remote hosts and TCP/IP ports of a
network connection that is kept persistent after an HTTP request is completed,
according to the HTTP 1.1 protocol specification. The persistent network connection
may be reused by a subsequent HTTP request to the same host and port. The
subsequent HTTP request may be completed faster because the network connection
latency is avoided. connection_table is a PL/SQL table of connection .

Table 96–4 Fields of COOKIE and COOKIE_TABLE Type

Field Description

name The name of the HTTP cookie

value The value of the cookie

domain The domain for which the cookie is valid

expire The time by which the cookie will expire

path The subset of URLs to which the cookie applies

secure Should the cookie be returned to the Web server using secured
means only.

version The version of the HTTP cookie specification the cookie
conforms. This field is NULL for Netscape cookies.

comment The comment that describes the intended use of the cookie.
This field is NULL for Netscape cookies.
96-6 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Constants, Types and Flow
For a direct HTTP persistent connection to a Web server, the host and port fields
contain the host name and TCP/IP port number of the Web server. The proxy_
host and proxy_port fields are not set. For an HTTP persistent connection that
was previously used to connect to a Web server using a proxy, the proxy_host and
proxy_port fields contain the host name and TCP/IP port number of the proxy
server. The host and port fields are not set, which indicates that the persistent
connection, while connected to a proxy server, is not bound to any particular target
Web server. An HTTP persistent connection to a proxy server can be used to access
any target Web server that is using a proxy.

The ssl field indicates if Secured Socket Layer (SSL) is being used in an HTTP
persistent connection. An HTTPS request is an HTTP request made over SSL. For an
HTTPS (SSL) persistent connection connected using a proxy, the host and port fields
contain the host name and TCP/IP port number of the target HTTPS Web server
and the fields will always be set. An HTTPS persistent connection to an HTTPS Web
server using a proxy server can only be reused to make another request to the same
target Web server.

Syntax
TYPE connection IS RECORD (

host VARCHAR2(256),
port PLS_INTEGER,
proxy_host VARCHAR2(256),
proxy_port PLS_INTEGER,
ssl BOOLEAN

);
TYPE connection_table IS TABLE OF connection INDEX BY BINARY_INTEGER;

UTL_HTTP Flow
The UTL_HTTP package provides access to the HTTP protocol. The API must be
called in the order shown in Figure 96–1, or an exception will be raised.
UTL_HTTP 96-7

UTL_HTTP Flow
Figure 96–1 Flow of the Core UTL_HTTP Package

end_request

begin_request

get_authentication

get_header_count

get_header_by_name

get_header

set_body_charset

set_persistent_conn_support

set_body_charset

set_follow_redirect

set_authentication

set_header

set_cookie_support

write_line

write_text

write_raw

read_line

read_text

read_raw

get_response

end_request
96-8 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Constants, Types and Flow
The following can be called at any time:

� Non-protocol APIs that manipulate cookies

� get_cookie_count

� get_cookies

� add_cookies

� clear_cookies

� Persistent connections

� get_persistent_conn_count

� get_persistent_conns

� close_persistent_conn

� close_persistent_conns

� APIs that manipulate attributes and configurations of the UTL_HTTP package in
the current session

� set_proxy

� get_proxy

� set_cookie_support

� get_cookie_support

� set_follow_redirect

� get_follow_redirect

� set_body_charset

� get_body_charset

� set_persistent_conn_support

� get_persistent_conn_support

� set_detailed_excp_support

� get_detailed_excp_support

� set_wallet

� set_transfer_timeout

� get_transfer_timeout
UTL_HTTP 96-9

UTL_HTTP Exceptions
� APIs that retrieve the last detailed exception code and message UTL_HTTP
package in the current session

� get_detailed_sqlcode

� get_detailed_sqlerrm

UTL_HTTP Exceptions
Table 96–5 lists the exceptions that the UTL_HTTP package API can raise. By default,
UTL_HTTP raises the exception request_failed when a request fails to execute.
If the package is set to raise a detailed exception by set_detailed_excp_
support , the rest of the exceptions will be raised directly (except for the exception
end_of_body , which will be raised by read_text , read_line , and read_raw
regardless of the setting).

NOTE: Some of the request and response APIs bear the same
name as the API that manipulates the attributes and configurations
of the package in the current session. They are overloaded versions
of the API that manipulate a request or a response.

Table 96–5 UTL_HTTP Exceptions

Exception Error Code Reason Where Raised

request_failed 29273 The request fails to executes Any HTTP request or response
API when detailed_exception
is disabled

bad_argument 29261 The argument passed to the API is
bad

Any HTTP request or response
API when detailed_exception
is enabled

bad_url 29262 The requested URL is badly
formed

begin_request , when
detailed_exception is enabled

protocol_error 29263 An HTTP protocol error occurs
when communicating with the
Web server

set_header , get_response ,
read_raw , read_text , and
read_line , when detailed_
exception is enabled

unknown_scheme 29264 The scheme of the requested URL
is unknown

begin_request and get_
response , when detailed_
exception is enabled
96-10 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Exceptions
header_not_found 29265 The header is not found get_header , get_header_by_
name, when detailed_
exception is enabled

end_of_body 29266 The end of HTTP response body is
reached

read_raw , read_text , and
read_line , when detailed_
exception is enabled

illegal_call 29267 The call to UTL_HTTP is illegal at
the current state of the HTTP
request

set_header , set_
authentication , and set_
persistent_conn_support ,
when detailed_exception is
enabled

http_client_error 29268 From get_response , the
response status code indicates that
a client error has occurred (status
code in 4xx range). Or from
begin_request , the HTTP proxy
returns a status code in the 4xx
range when making an HTTPS
request through the proxy.

get_response , begin_request
when detailed_exception is
enabled

http_server_error 29269 From get_response , the
response status code indicates that
a client error has occurred (status
code in 5xx range). Or from
begin_request , the HTTP proxy
returns a status code in the 5xx
range when making an HTTPS
request through the proxy.

get_response, begin_
request when detailed_
exception is enabled

too_many_requests 29270 Too many requests or responses
are open

begin_request , when detailed_
exception is enabled

partial_
multibyte_
exception

29275 No complete character is read and
a partial multibyte character is
found at the end of the response
body

read_text and read_line,
when detailed_exception is
enabled

transfer_timeout 29276 No data is read and a read timeout
occurred

read_text and read_line,
when detailed_exception is
enabled

Table 96–5 UTL_HTTP Exceptions

Exception Error Code Reason Where Raised
UTL_HTTP 96-11

UTL_HTTP Examples
For REQUEST and REQUEST_PIECES(), the request_failed exception is raised
when any exception occurs and detailed_exception is disabled.

UTL_HTTP Examples
The following examples demonstrate how to use UTL_HTTP.

Example: Using UTL_HTTP
SET serveroutput ON SIZE 40000

DECLARE
req utl_http.req;
resp utl_http.resp;
value VARCHAR2(1024);

BEGIN

utl_http.set_proxy(’proxy.my-company.com’, ’corp.my-company.com’);

req := utl_http.begin_request(’http://www-hr.corp.my-company.com’);
utl_http.set_header(req, ’User-Agent’, ’Mozilla/4.0’);
resp := utl_http.get_response(req);
LOOP

utl_http.read_line(resp, value, TRUE);
dbms_output.put_line(value);

END LOOP;
utl_http.end_response(resp);

EXCEPTION
WHEN utl_http.end_of_body THEN

utl_http.end_response(resp);
END;

NOTE: The partial_multibyte_char and transfer_
timeout exceptions are duplicates of the same exceptions defined
in UTL_TCP. They are defined in this package so that the use of
this package does not require the knowledge of the UTL_TCP. As
those exceptions are duplicates, an exception handle that catches
the partial_multibyte_char and transfer_timeout
exceptions in this package also catch the exceptions in the UTL_
TCP.
96-12 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Examples
Example: Retrieving HTTP Response Headers
SET serveroutput ON SIZE 40000

DECLARE
req utl_http.req;
resp utl_http.resp;
name VARCHAR2(256);
value VARCHAR2(1024);

BEGIN

utl_http.set_proxy(’proxy.my-company.com’, ’corp.my-company.com’);

req := utl_http.begin_request(’http://www-hr.corp.my-company.com’);
utl_http.set_header(req, ’User-Agent’, ’Mozilla/4.0’);
resp := utl_http.get_response(req);

dbms_output.put_line(’HTTP response status code: ’ || resp.status_code);
dbms_output.put_line(’HTTP response reason phrase: ’ || resp.reason_phrase);

FOR i IN 1..utl_http.get_header_count(resp) LOOP
utl_http.get_header(resp, i, name, value);
dbms_output.put_line(name || ’: ’ || value);

END LOOP;
utl_http.end_response(resp);

END;

Example: Handling HTTP Authentication
SET serveroutput ON SIZE 40000

CREATE OR REPLACE PROCEDURE get_page (url IN VARCHAR2,
username IN VARCHAR2 DEFAULT NULL,
password IN VARCHAR2 DEFAULT NULL,
realm IN VARCHAR2 DEFAULT NULL) AS

req utl_http.req;
resp utl_http.resp;
my_scheme VARCHAR2(256);
my_realm VARCHAR2(256);
my_proxy BOOLEAN;

BEGIN

-- Turn off checking of status code. We will check it by ourselves.
utl_http.http_response_error_check(FALSE);

req := utl_http.begin_request(url);
UTL_HTTP 96-13

UTL_HTTP Examples
IF (username IS NOT NULL) THEN
utl_http.set_authentication(req, username, password); -- Use HTTP Basic

Authen. Scheme
END IF;

resp := utl_http.get_response(req);
IF (resp.status_code = utl_http.HTTP_UNAUTHORIZED) THEN

utl_http.get_authentication(resp, my_scheme, my_realm, my_proxy);
IF (my_proxy) THEN

dbms_output.put_line(’Web proxy server is protected.’);
dbms_output.put(’Please supplied the required ’ || my_scheme || ’

authentication username/password for realm ’ || my_realm || ’ for the proxy
server.’);

ELSE
dbms_output.put_line(’Web page ’ || url || ’ is protected.’);
dbms_output.put(’Please supplied the required ’ || my_scheme || ’

authentication username/password for realm ’ || my_realm || ’ for the Web
page.’);

END IF;
utl_http.end_response(resp);
RETURN;

END IF;

FOR i IN 1..utl_http.get_header_count(resp) LOOP
utl_http.get_header(resp, i, name, value);
dbms_output.put_line(name || ’: ’ || value);

END LOOP;
utl_http.end_response(resp);

END;

Example: Retrieving and Restoring Cookies
CREATE TABLE my_cookies (

session_id BINARY_INTEGER,
name VARCHAR2(256),
value VARCHAR2(1024),
domain VARCHAR2(256),
expire DATE,
path VARCHAR2(1024),
secure VARCHAR2(1),
version BINARY_INTEGER

);

CREATE SEQUENCE session_id;
96-14 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL_HTTP Examples
SET serveroutput ON SIZE 40000

REM Retrieve cookies from UTL_HTTP

CREATE OR REPLACE FUNCTION save_cookies RETURN BINARY_INTEGER AS
cookies utl_http.cookie_table;
my_session_id BINARY_INTEGER;
secure VARCHAR2(1);

BEGIN

/* assume that some cookies have been set in previous HTTP requests. */

utl_http.get_cookies(cookies);
select session_id.nextval into my_session_id from dual;

FOR i in 1..cookies.count LOOP
IF (cookies(i).secure) THEN

secure := ’Y’;
ELSE

secure := ’N’;
END IF;
insert into my_cookies
value (my_session_id, cookies(i).name, cookies(i).value, cookies(i).domain,

cookies(i).expire, cookies(i).path, secure, cookies(i).version);
END LOOP;

RETURN my_session_id;

END;

REM Retrieve cookies from UTL_HTTP

CREATE OR REPLACE PROCEDURE restore_cookies (this_session_id IN BINARY_INTEGER)
AS

cookies utl_http.cookie_table;
cookie utl_http.cookie;
i PLS_INTEGER := 0;
CORSOR c (c_session_id BINARY_INTEGER) IS

SELECT * FROM my_cookies WHERE session_id = c_session_id;
BEGIN

FOR r IN c(this_session_id) LOOP
i := i + 1;
cookie.name := r.name;
UTL_HTTP 96-15

Summary of UTL_HTTP Subprograms
cookie.value := r.value;
cookie.domain := r.domain;
cookie.expire := r.expire;
cookie.path := r.path;
IF (r.secure = ’Y’) THEN

cookie.secure := TRUE;
ELSE

cookie.secure := FALSE;
END IF;
cookie.version := r.version;
cookies(i) := cookie;

END LOOP;

utl_http.clear_cookies;
utl_http.add_cookies(cookies);

END;

Summary of UTL_HTTP Subprograms

Table 96–6 UTL_HTTP Subprograms—Simple HTTP Fetches in a Single Call

Subprogram Description

REQUEST Function on page 96-21 Returns up to the first 2000 bytes of the data retrieved from the given
URL. This function can be used directly in SQL queries.

REQUEST_PIECES Function on
page 96-23

Returns a PL/SQL table of 2000-byte pieces of the data retrieved
from the given URL.

Table 96–7 UTL_HTTP Subprograms—Session Settings

Subprogram Description

SET_PROXY Procedure on page 96-26 Sets the proxy to be used for requests of HTTP or other protocols

GET_PROXY Procedure on page 96-27 Retrieves the current proxy settings

SET_COOKIE_SUPPORT Procedure on
page 96-28

Sets whether or not future HTTP requests will support HTTP
cookies; sets the maximum number of cookies maintained in the
current database user session

GET_COOKIE_SUPPORT Procedure on
page 96-29

Retrieves the current cookie support settings
96-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
SET_FOLLOW_REDIRECT Procedure
on page 96-30

Sets the maximum number of times UTL_HTTP follows the HTTP
redirect instruction in the HTTP responses to future requests in the
get_response function

GET_FOLLOW_REDIRECT Procedure
on page 96-31

Retrieves the follow-redirect setting in the current session

SET_BODY_CHARSET Procedure on
page 96-31

Sets the default character set of the body of all future HTTP requests
when the media type is text and the character set is not specified in
the Content-Type header

GET_BODY_CHARSET Procedure on
page 96-32

Retrieves the default character set of the body of all future HTTP
requests

SET_PERSISTENT_CONN_SUPPORT
Procedure on page 96-32

Sets whether or not future HTTP requests will support the HTTP 1.1
persistent connection; sets the maximum number of persistent
connections maintained in the current database user session

GET_PERSISTENT_CONN_SUPPORT
Procedure on page 96-35

Checks if the persistent connection support is enabled and gets the
maximum number of persistent connections in the current session

SET_RESPONSE_ERROR_CHECK
Procedure on page 96-35

Sets whether or not get_response raises an exception when the
Web server returns a status code that indicates an error—a status
code in the 4xx or 5xx ranges

GET_RESPONSE_ERROR_CHECK
Procedure on page 96-36

Checks if the response error check is set or not

SET_DETAILED_EXCP_SUPPORT
Procedure on page 96-37

Sets the UTL_HTTP package to raise a detailed exception

GET_DETAILED_EXCP_SUPPORT
Procedure on page 96-37

Checks if the UTL_HTTP package will raise a detailed exception or
not

SET_WALLET Procedure on page 96-37 Sets the Oracle Wallet used for all HTTP requests over Secured
Socket Layer (SSL), that is, HTTPS

SET_TRANSFER_TIMEOUT Procedure
on page 96-39

Sets the timeout value for UTL_HTTP to read the HTTP response
from the Web server or proxy server

GET_TRANSFER_TIMEOUT Procedure
on page 96-39

Retrieves the current network transfer timeout value

Table 96–7 (Cont.) UTL_HTTP Subprograms—Session Settings

Subprogram Description
UTL_HTTP 96-17

Summary of UTL_HTTP Subprograms
Table 96–8 UTL_HTTP Subprograms—HTTP Requests

Subprogram Description

BEGIN_REQUEST Function on
page 96-40

Begins a new HTTP request. UTL_HTTP establishes the
network connection to the target Web server or the proxy
server and sends the HTTP request line.

SET_HEADER Procedure on page 96-41 Sets an HTTP request header. The request header is sent to the Web
server as soon as it is set.

SET_AUTHENTICATION Procedure on
page 96-42

Sets HTTP authentication information in the HTTP request header.
The Web server needs this information to authorize the request.

SET_COOKIE_SUPPPORT Procedure on
page 96-42

Enables or disables support for the HTTP cookies in the request.

SET_FOLLOW_REDIRECT Procedure
on page 96-43

Sets the maximum number of times UTL_HTTP follows the
HTTP redirect instruction in the HTTP response to this
request in the GET_RESPONSE function.

SET_BODY_CHARSET Procedure on
page 96-44

Sets the character set of the request body when the media type is
text but the character set is not specified in the Content-Type
header.

SET_PERSISTENT_CONN_SUPPORT
Procedure on page 96-45

Enables or disables support for the HTTP 1.1 persistent-connection in
the request.

WRITE_TEXT Procedure on page 96-47 Writes some text data in the HTTP request body.

WRITE_LINE Procedure on page 96-48 Writes a text line in the HTTP request body and ends the line with
new-line characters (CRLF as defined in UTL_TCP).

WRITE_RAW Procedure on page 96-50 Writes some binary data in the HTTP request body.

END_REQUEST Procedure on
page 96-50

Ends the HTTP request.

Table 96–9 UTL_HTTP Subprograms—HTTP Responses

Subprogram Description

GET_RESPONSE Function on
page 96-51

Reads the HTTP response. When the function returns, the status line
and the HTTP response headers have been read and processed.

GET_HEADER_COUNT Function on
page 96-52

Returns the number of HTTP response headers returned in the
response.

GET_HEADER Procedure on page 96-52 Returns the nth HTTP response header name and value returned in
the response.
96-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
GET_HEADER_BY_NAME Procedure
on page 96-53

Returns the HTTP response header value returned in the response
given the name of the header.

GET_AUTHENTICATION Procedure on
page 96-54

Retrieves the HTTP authentication information needed for the
request to be accepted by the Web server as indicated in the HTTP
response header.

SET_BODY_CHARSET Procedure on
page 96-55

Sets the character set of the response body when the media type is
"text" but the character set is not specified in the "Content-Type"
header.

READ_TEXT Procedure on page 96-56 Reads the HTTP response body in text form and returns the output
in the caller-supplied buffer.

READ_LINE Procedure on page 96-57 Reads the HTTP response body in text form until the end of line is
reached and returns the output in the caller-supplied buffer.

READ_RAW Procedure on page 96-58 Reads the HTTP response body in binary form and returns the
output in the caller-supplied buffer.

END_RESPONSE Procedure on
page 96-59

Ends the HTTP response. It completes the HTTP request and
response.

Table 96–10 UTL_HTTP Subprograms—HTTP Cookies

Subprogram Description

GET_COOKIE_COUNT Function on
page 96-60

Returns the number of cookies currently maintained by the UTL_
HTTP package set by all Web servers.

GET_COOKIES Function on page 96-60 Returns all the cookies currently maintained by the UTL_HTTP
package set by all Web servers.

ADD_COOKIES Procedure on
page 96-60

Adds the cookies maintained by UTL_HTTP.

CLEAR_COOKIES Procedure on
page 96-61

Clears all cookies maintained by the UTL_HTTP package.

Table 96–9 (Cont.) UTL_HTTP Subprograms—HTTP Responses

Subprogram Description
UTL_HTTP 96-19

Simple HTTP Fetches
Simple HTTP Fetches
REQUEST and REQUEST_PIECES take a string universal resource locator (URL),
contact that site, and return the data (typically HTML) obtained from that site.

You should not expect REQUEST or REQUEST_PIECES to succeed in contacting a
URL unless you can contact that URL by using a browser on the same machine (and
with the same privileges, environment variables, and so on.)

If REQUEST or REQUEST_PIECES fails (for example, if it raises an exception, or if it
returns an HTML-formatted error message, but you believe that the URL argument
is correct), then try contacting that same URL with a browser to verify network
availability from your machine. You may have a proxy server set in your browser
that needs to be set with each REQUEST or REQUEST_PIECES call using the
optional proxy parameter.

Table 96–11 UTL_HTTP Subprograms—HTTP Persistent Connections

Subprogram Description

GET_PERSISTENT_CONN_COUNT
Function on page 96-61

Returns the number of network connections currently kept persistent
by the UTL_HTTP package to the Web servers.

GET_PERSISTENT_CONNS Procedure
on page 96-62

Returns all the network connections currently kept persistent by the
UTL_HTTP package to the Web servers.

CLOSE_PERSISTENT_CONN
Procedure on page 96-62

Closes an HTTP persistent connection maintained by the UTL_HTTP
package in the current database session.

CLOSE_PERSISTENT_CONNS
Procedure on page 96-63

Closes a group of HTTP persistent connections maintained by the
UTL_HTTP package in the current database session.

Table 96–12 UTL_HTTP Subprograms—Error Conditions

Subprogram Description

GET_DETAILED_SQLCODE Function
on page 96-64

Retrieves the detailed SQLCODE of the last exception raised.

GET_DETAILED_SQLERRM Function
on page 96-65

Retrieves the detailed SQLERRM of the last exception raised.
96-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
REQUEST Function
This function returns up to the first 2000 bytes of data retrieved from the given
URL. This function can be used directly in SQL queries.

Syntax
UTL_HTTP.REQUEST (

url IN VARCHAR2,
proxy IN VARCHAR2 DEFAULT NULL),
wallet_path IN VARCHAR2 DEFAULT NULL,
wallet_password IN VARCHAR2 DEFAULT NULL)

RETURN VARCHAR2;

Pragmas
pragma restrict_references (request, wnds, rnds, wnps, rnps);

Parameters

Note: UTL_HTTP can also use environment variables to specify its
proxy behavior. For example, on UNIX, setting the environment
variable http_proxy to a URL uses that service as the proxy
server for HTTP requests. Setting the environment variable no_
proxy to a domain name does not use the HTTP proxy server for
URLs in that domain. When the UTL_HTTP package is executed in
the Oracle database server, the environment variables are the ones
that are set when the database instance is started.

Table 96–13 REQUEST Function Parameters

Parameter Description

url Universal resource locator.

proxy (Optional) Specifies a proxy server to use when making the
HTTP request. See set_proxy for the full format of the proxy
setting.
UTL_HTTP 96-21

REQUEST Function
Returns
The return type is a string of length 2000 or less, which contains up to the first 2000
bytes of the HTML result returned from the HTTP request to the argument URL.

Exceptions
INIT_FAILED
REQUEST_FAILED

Usage Notes
The URL passed as an argument to this function is not examined for illegal
characters, for example, spaces, according to URL specification RFC 2396. The caller
should escape those characters with the UTL_URL package. See the comments of
the package for the list of legal characters in URLs. Note that URLs should consist
of US-ASCII characters only. The use of non-US-ASCII characters in a URL is
generally unsafe.

Please see the documentation of the function set_wallet on the use of an Oracle
wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception
when a 4xx or 5xx response is received from the Web server. Instead, it returns the
formatted error message from the Web server:

<HTML>
<HEAD>

wallet_path (Optional) Specifies a client-side wallet. The client-side wallet
contains the list of trusted certificate authorities required for
HTTPS request. The format of wallet_path on a PC is, for
example,
file:c:\WINNT\Profiles\<username>\WALLETS , and in
Unix is, for example, file:/home/<username>/wallets

When the UTL_HTTP package is executed in the Oracle
database server, the wallet is accessed from the database server.
Therefore, the wallet path must be accessible from the database
server. See set_wallet for a description on how to set up an
Oracle wallet. Non-HTTPS requests do not require an Oracle
wallet.

wallet_password (Optional) Specifies the password required to open the wallet.

Table 96–13 REQUEST Function Parameters

Parameter Description
96-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can’t Access Document: http://home.nothing.comm.
<P>
Reason: Can’t locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Example
SQLPLUS> SELECT utl_http.request('http://www.my-company.com/') FROM dual;
UTL_HTTP.REQUEST('HTTP://WWW.MY-COMPANY.COM/')
<html>
<head><title>My Company Home Page</title>
<!--changed Jan. 16, 19
1 row selected.

If you are behind a firewall, include the proxy parameter. For example, from within
the Oracle firewall, where there might be a proxy server named
www-proxy .my-company.com :

SQLPLUS> SELECT
utl_http.request(’http://www.my-company.com’, ’www-proxy.us.my-company.com’)
FROM dual;

REQUEST_PIECES Function
This function returns a PL/SQL table of 2000-byte pieces of the data retrieved from
the given URL.

Syntax
type html_pieces is table of varchar2(2000) index by binary_integer;

UTL_HTTP.REQUEST_PIECES (
url IN VARCHAR2,
max_pieces IN NATURAL DEFAULT 32767,
proxy IN VARCHAR2 DEFAULT NULL,
wallet_path IN VARCHAR2 DEFAULT NULL,
UTL_HTTP 96-23

REQUEST_PIECES Function
wallet_password IN VARCHAR2 DEFAULT NULL)
RETURN html_pieces;

Pragmas
pragma restrict_references (request_pieces, wnds, rnds, wnps, rnps);

Parameters

Returns
REQUEST_PIECES returns a PL/SQL table of type UTL_HTTP.HTML_PIECES. Each
element of that PL/SQL table is a string of maximum length 2000. The elements of
the PL/SQL table returned by REQUEST_PIECES are successive pieces of the data
obtained from the HTTP request to that URL.

Table 96–14 REQUEST_PIECES Function Parameters

Parameter Description

url Universal resource locator.

max_pieces (Optional) The maximum number of pieces (each 2000
characters in length, except for the last, which may be shorter),
that REQUEST_PIECES should return. If provided, then that
argument should be a positive integer.

proxy (Optional) Specifies a proxy server to use when making the
HTTP request. See set_proxy for the full format of the proxy
setting.

wallet_path (Optional) Specifies a client-side wallet. The client-side wallet
contains the list of trusted certificate authorities required for
HTTPS request. The format of wallet_path is
'file:/<local-dir-for-client-side-wallet>'.

The format of wallet_path on a PC is, for example,
file:c:\WINNT\Profiles\<username>\WALLETS, and in Unix
is, for example, file:/home/<username>/wallets. When the
UTL_HTTP package is executed in the Oracle database server,
the wallet is accessed from the database server. Therefore, the
wallet path must be accessible from the database server.

See set_wallet for the description on how to set up an
Oracle wallet. Non-HTTPS requests do not require an Oracle
wallet.

wallet_password (Optional) Specifies the password required to open the wallet.
96-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Exceptions
INIT_FAILED
REQUEST_FAILED

Usage Notes
 The URL passed as an argument to this function will not be examined for illegal
characters, for example, spaces, according to URL specification RFC 2396. The caller
should escape those characters with the UTL_URL package. See the comments of
the package for the list of legal characters in URLs. Note that URLs should consist
of US-ASCII characters only. The use of non-US-ASCII characters in a URL is
generally unsafe.

Each entry of the PL/SQL table (the "pieces") returned by this function may not be
filled to their fullest capacity. The function may start filling the data in the next
piece before the previous "piece" is totally full.

Please see the documentation of the function set_wallet on the use of an Oracle
wallet, which is required for accessing HTTPS Web servers.

Unless response error check is turned on, this function does not raise an exception
when a 4xx or 5xx response is received from the Web server. Instead, it returns the
formatted error message from the Web server:

<HTML>
<HEAD>
<TITLE>Error Message</TITLE>
</HEAD>
<BODY>
<H1>Fatal Error 500</H1>
Can’t Access Document: http://home.nothing.comm.
<P>
Reason: Can’t locate remote host: home.nothing.comm.
<P>
<P><HR>
<ADDRESS>
CERN-HTTPD3.0A</ADDRESS>
</BODY>
</HTML>

Example
SET SERVEROUTPUT ON
UTL_HTTP 96-25

Session Settings
DECLARE
x utl_http.html_pieces;
len PLS_INTEGER;

BEGIN
x := utl_http.request_pieces(’http://www.oracle.com/’, 100);
dbms_output.put_line(x.count || ’ pieces were retrieved.’);
dbms_output.put_line(’with total length ’);
IF x.count < 1 THEN

dbms_output.put_line(’0’);
ELSE

len := 0;
FOR i in 1..x.count LOOP

len := len + length(x(i));
END LOOP;
dbms_output.put_line(i);

END IF;
END;
/
-- Output
Statement processed.
4 pieces were retrieved.
with total length
7687

Session Settings
Session settings manipulate the configuration and default behavior of UTL_HTTP
when HTTP requests are executed within a database user session. When a request is
created, it inherits the default settings of the HTTP cookie support, follow-redirect,
body character set, persistent-connection support, and transfer timeout of the
current session. Those settings can be changed later by calling the request API.
When a response is created for a request, it inherits those settings from the request.
Only the body character set can be changed later by calling the response API.

SET_PROXY Procedure
This procedure sets the proxy to be used for requests of the HTTP or other
protocols, excluding those for hosts that belong to the domain specified in no_
proxy_domains . The proxy may include an optional TCP/IP port number at
which the proxy server listens. The syntax is [http://]host[:port][/] , for
example, www-proxy.my-company.com:80 . If the port is not specified for the
proxy, port 80 is assumed. no_proxy_domains is a comma-, semi-colon-, or
space-separated list of domains or hosts for which HTTP requests should be sent
96-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
directly to the destination HTTP server instead of going through a proxy server.
Optionally, a port number can be specified for each domain or host. If the port
number is specified, the no-proxy restriction is only applied to the request at the
port of the particular domain or host, for example, corp.my-company.com,
eng.my-company.com:80 . When no_proxy_domains is NULL and the proxy is
set, all requests go through the proxy. When the proxy is not set, UTL_HTTP sends
requests to the target Web servers directly.

Syntax
UTL_HTTP.set_proxy (

proxy IN VARCHAR2,
no_proxy_domains IN VARCHAR2);

Parameters

Usage Notes
If proxy settings are set when the database server instance is started, the proxy
settings in the environment variables http_proxy and no_proxy are assumed.
Proxy settings set by this procedure override the initial settings.

GET_PROXY Procedure
This procedure retrieves the current proxy settings.

Syntax
UTL_HTTP.get_proxy (

proxy OUT NOCOPY VARCHAR2,
no_proxy_domains OUT NOCOPY VARCHAR2);

Table 96–15 SET_PROXY Procedure Parameters

Parameter Description

proxy (IN) The proxy (host and an optional port number) to be used by
the UTL_HTTP package

no_proxy_domains
(IN)

The list of hosts and domains for which no proxy should be
used for all requests.
UTL_HTTP 96-27

SET_COOKIE_SUPPORT Procedure
Parameters

SET_COOKIE_SUPPORT Procedure
This procedure sets:

� Whether or not future HTTP requests will support HTTP cookies

� The maximum number of cookies maintained in the current database user
session

If cookie support is enabled for an HTTP request, all cookies saved in the current
session and applicable to the request are returned to the Web server in the request,
in accordance with HTTP cookie specification standards. Cookies that are set in
response to the request are saved in the current session for return to the Web server
in subsequent requests, if cookie support is enabled for those requests. If cookie
support is disabled for an HTTP request, no cookies will be returned to the Web
server in the request and the cookies set in the response to the request are not saved
in the current session, although the Set-Cookie HTTP headers can still be
retrieved from the response.

Cookie support is enabled by default for all HTTP requests in a database user
session. The default setting of the cookie support (enabled versus disabled) affects
only the future requests and has no effect on the existing ones. After your request is
created, the cookie support setting may be changed by using the other set_
cookie_support procedure that operates on a request.

The default maximum number of cookies saved in the current session is 20 for each
site and 300 total.

Syntax
UTL_HTTP.set_cookie_support (

enable IN BOOLEAN,
max_cookies IN PLS_INTEGER DEFAULT 300,
max_cookies_per_site IN PLS_INTEGER DEFAULT 20);

Table 96–16 GET_PROXY Procedure Parameters

Parameter Description

proxy (OUT) The proxy (host and an optional port number) currently used
by the UTL_HTTP package

no_proxy_domains
(OUT)

The list of hosts and domains for which no proxy is used for all
requests.
96-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Parameters

Usage Notes
If you lower the maximum total number of cookies or the maximum number of
cookies for each Web site, the oldest cookies will be purged first to reduce the
number of cookies to the lowered maximum. HTTP cookies saved in the current
session last for the duration of the database session only; there is no persistent
storage for the cookies. Cookies saved in the current session are not cleared if you
disable cookie support.

See "UTL_HTTP Examples" on page 96-12 for how to use get_cookies and add_
cookies to retrieve, save, and restore cookies.

GET_COOKIE_SUPPORT Procedure
This procedure retrieves the current cookie support settings.

Syntax
UTL_HTTP.get_cookie_support (

enable OUT BOOLEAN,
max_cookies OUT PLS_INTEGER,
max_cookies_per_site OUT PLS_INTEGER);

Parameters

Table 96–17 SET_COOKIE SUPPORT Procedure Parameters

Parameter Description

enable (IN) Sets whether future HTTP requests should support HTTP
cookies (TRUE) or not (FALSE)

max_cookies (IN) Sets the maximum total number of cookies maintained in the
current session

max_cookies_per_site
(IN)

Sets the maximum number of cookies maintained in the
current session for each Web site

Table 96–18 GET_COOKIE SUPPORT Procedure Parameters

Parameter Description

enable (OUT) Indicates whether future HTTP requests should support HTTP
cookies (TRUE) or not (FALSE)
UTL_HTTP 96-29

SET_FOLLOW_REDIRECT Procedure
SET_FOLLOW_REDIRECT Procedure
This procedure sets the maximum number of times UTL_HTTP follows the HTTP
redirect instruction in the HTTP responses to future requests in the get_response
function.

If max_redirects is set to a positive number, get_response will automatically
follow the redirected URL for the HTTP response status code 301, 302, and 307 for
the HTTP HEAD and GET methods, and 303 for all HTTP methods, and retry the
HTTP request (the request method will be changed to HTTP GET for the status code
303) at the new location. It follows the redirection until the final, non-redirect
location is reached, or an error occurs, or the maximum number of redirections has
been reached (to prevent an infinite loop). The URL and method fields in the REQ
record will be updated to the last redirected URL and the method used to access the
URL. Set the maximum number of redirects to zero to disable automatic redirection.

The default maximum number of redirections in a database user session is 3. The
default value affects only future requests and has no effect on existing requests.

After a request is created, the maximum number of redirections can be changed by
using the other set_follow_redirect procedure that operates on a request.

Syntax
UTL_HTTP.set_follow_redirect (

max_redirects IN PLS_INTEGER DEFAULT 3);

Parameters

max_cookies (OUT) Indicates the maximum total number of cookies maintained in
the current session

max_cookies_per_site
(OUT)

Indicates the maximum number of cookies maintained in the
current session for each Web site

Table 96–19 SET_FOLLOW_REDIRECT Procedure Parameters

Parameter Description

max_redirects (IN) The maximum number of redirections. Set to zero to disable
redirection

Table 96–18 GET_COOKIE SUPPORT Procedure Parameters

Parameter Description
96-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Usage Notes
While it is set not to follow redirect automatically in the current session, it is
possible to specify individual HTTP requests to follow redirect instructions the
function follow_redirect and vice versa.

GET_FOLLOW_REDIRECT Procedure
This procedure retrieves the follow-redirect setting in the current session.

Syntax
UTL_HTTP.get_follow_redirect (

max_redirects OUT PLS_INTEGER);

Parameters

SET_BODY_CHARSET Procedure
This procedure sets the default character set of the body of all future HTTP requests
when the media type is text and the character set is not specified in the
Content-Type header. Following the HTTP protocol standard specification, if the
media type of a request or a response is text , but the character set information is
missing in the Content-Type header, the character set of the request or response
body should default to ISO-8859-1 . A response created for a request inherits the
default body character set of the request instead of the body character set of the
current session.

The default body character set is ISO-8859-1 in a database user session. The default
body character set setting affects only future requests and has no effect on existing
requests.

After a request is created, the body character set can be changed by using the other
set_body_charset procedure that operates on a request.

Syntax
UTL_HTTP.set_body_charset (

Table 96–20 GET_FOLLOW_REDIRECT Procedure Parameters

Parameter Description

max_redirects (OUT) The maximum number of redirections for all future HTTP
requests.
UTL_HTTP 96-31

GET_BODY_CHARSET Procedure
charset IN VARCHAR2 DEFAULT NULL);

Parameters

GET_BODY_CHARSET Procedure
This procedure retrieves the default character set of the body of all future HTTP
requests.

Syntax
UTL_HTTP.get_body_charset (

charset OUT NOCOPY VARCHAR2);

Parameters

SET_PERSISTENT_CONN_SUPPORT Procedure
This procedure sets:

� Whether or not future HTTP requests will support the HTTP 1.1 persistent
connection

� The maximum number of persistent connections maintained in the current
database user session

If persistent-connection support is enabled for an HTTP request, the package keeps
the network connections to a Web server or the proxy server open in the package
after the request is completed. A subsequent request to the same server can use the
HTTP 1.1 persistent connection. With persistent connection support, subsequent

Table 96–21 SET_BODY_CHARSET Procedure Parameters

Parameter Description

charset (IN) The default character set of the request body. The character set
can be in Oracle or Internet Assigned Numbers Authority
(IANA) naming convention. If charset is NULL, the database
character set is assumed.

Table 96–22 GET_BODY_CHARSET Procedure Parameters

Parameter Description

charset (OUT) The default character set of the body of all future HTTP
requests
96-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
HTTP requests can be completed faster because network connection latency is
avoided. If the persistent-connection support is disabled for a request, the package
will send the HTTP header Connection: close automatically in the HTTP
request and close the network connection when the request is completed. This
setting has no effect on HTTP requests that follows HTTP 1.0 protocol, for which the
network connections will always be closed after the requests are completed.

When a request is made, the package always attempts to reuse an existing persistent
connection to the target Web server (or proxy server) if one is available. If none is
available, a new network connection will be initiated. The persistent-connection
support setting for a request affects only whether the network connection should be
closed after a request completes.

Persistent-connection support is disabled for all HTTP requests in a database user
session by default. The default maximum number of persistent connections saved in
the current session is zero. The default setting of the persistent-connection support
(enabled versus disabled) affects only future requests and has no effect on existing
requests.

After a request is created, the persistent-connection support setting can be changed
by using the other set_persistent_conn_support procedure that operates on
a request.

While the use of persistent connections in UTL_HTTP can reduce the time it takes to
fetch multiple Web pages from the same server, it consumes system resources
(network connections) in the database server. Excessive use of persistent
connections can reduce the scalability of the database server when too many
network connections are kept open in the database server. Network connections
should be kept open only if they will be used immediately by subsequent requests
and should be closed when they are no longer needed. You should normally disable
persistent connection support in the session and enable persistent connections in
individual HTTP requests, as shown in "Example: Using SET_PERSISTENT_
CONN_SUPPORT" on page 96-34.

Syntax
UTL_HTTP.set_persistent_conn_support (

enable IN BOOLEAN,
max_conns IN PLS_INTEGER DEFAULT 0);
UTL_HTTP 96-33

SET_PERSISTENT_CONN_SUPPORT Procedure
Parameters

Usage Notes
The default value of the maximum number of persistent connections in a database
session is zero. To truly enable persistent connections, you must also set the
maximum number of persistent connections to a positive value or no connections
will be kept persistent.

Example: Using SET_PERSISTENT_CONN_SUPPORT
DECLARE

TYPE vc2_table IS TABLE OF VARCHAR2(256) INDEX BY binary_integer;
paths vc2_table;

PROCEDURE fetch_pages(paths IN vc2_table) AS
url_prefix VARCHAR2(256) := ’http://www.my-company.com/’;
req utl_http.req;
resp utl_http.resp;
data VARCHAR2(1024);

BEGIN
FOR i IN 1..paths.count LOOP

req := utl_http.begin_request(url_prefix || paths(i));

-- Use persistent connection except for the last request
IF (i < paths.count) THEN

utl_http.set_persistent_conn_support(req, TRUE);
END IF;

resp := utl_http.get_response(req);

BEGIN
LOOP

utl_http.read_text(resp, data);
-- do something with the data

END LOOP;

Table 96–23 SET_PERSISTENT_CONN_SUPPORT Procedure Parameters

Parameter Description

enable (IN) Enables (set to TRUE) or disables (set to FALSE) persistent
connection support

max_conns (IN) Sets the maximum number of persistent connections
maintained in the current session.
96-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
EXCEPTION
WHEN utl_http.end_of_body THEN

NULL;
END;
utl_http.end_response(resp);

END LOOP;
END;

BEGIN
utl_http.set_persistent_conn_support(FALSE, 1);
paths(1) := ’...’;
paths(2) := ’...’;
...
fetch_pages(paths);

END;

GET_PERSISTENT_CONN_SUPPORT Procedure
This procedure checks:

� If the persistent connection support is enabled

� Gets the maximum number of persistent connections in the current session

Syntax
UTL_HTTP.get_persistent_conn_support (

enable OUT BOOLEAN,
max_conns OUT PLS_INTEGER);

Parameters

SET_RESPONSE_ERROR_CHECK Procedure
This procedure sets whether or not get_response raises an exception when the
Web server returns a status code that indicates an error—a status code in the 4xx or

Table 96–24 GET_PERSISTENT_CONN_SUPPORT Procedure Parameters

Parameter Description

enable (OUT) TRUE if persistent connection support is enabled; otherwise
FALSE

max_conns (OUT) the maximum number of persistent connections maintained in
the current session.
UTL_HTTP 96-35

GET_RESPONSE_ERROR_CHECK Procedure
5xx ranges. For example, when the requested URL is not found in the destination
Web server, a 404 (document not found) response status code is returned. If the
status code indicates an error—a 4xx or 5xx code—and this procedure is enabled,
get_response will raise the HTTP_CLIENT_ERROR or HTTP_SERVER_ERROR
exception. If SET_RESPONSE_ERROR_CHECK is set to FALSE, get_response will
not raise an exception when the status code indicates an error. Response error check
is turned off by default.

Syntax
UTL_HTTP.set_response_error_check (

enable IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The get_response function can raise other exceptions when SET_RESPONSE_
ERROR_CHECK is set to FALSE.

GET_RESPONSE_ERROR_CHECK Procedure
This procedure checks if the response error check is set or not.

Syntax
UTL_HTTP.get_response_error_check (

enable OUT BOOLEAN);

Parameters

Table 96–25 SET_RESPONSE_ERROR_CHECK Procedure Parameters

Parameter Description

enable (IN) TRUE to check for response errors; otherwise FALSE

Table 96–26 GET_RESPONSE_ERROR_CHECK Procedure Parameters

Parameter Description

enable (OUT) TRUE if the response error check is set; otherwise FALSE
96-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
SET_DETAILED_EXCP_SUPPORT Procedure
This procedure sets the UTL_HTTP package to raise a detailed exception. By default,
UTL_HTTP raises the request_failed exception when an HTTP request fails. Use
GET_DETAILED_SQLCODE and GET_DETAILED_SQLEERM for more detailed
information about the error.

Syntax
UTL_HTTP.set_detailed_excp_support (

enable IN BOOLEAN DEFAULT FALSE);

Parameters

GET_DETAILED_EXCP_SUPPORT Procedure
This procedure checks if the UTL_HTTP package will raise a detailed exception or
not.

Syntax
UTL_HTTP.get_detailed_excp_support (

enable OUT BOOLEAN);

Parameters

SET_WALLET Procedure
This procedure sets the Oracle wallet used for all HTTP requests over Secured
Socket Layer (SSL), namely HTTPS. When the UTL_HTTP package communicates
with an HTTP server over SSL, the HTTP server presents its digital certificate,

Table 96–27 SET_DETAILED_EXCP_SUPPORT Procedure Parameters

Parameter Description

enable (IN) Asks UTL_HTTP to raise a detailed exception directly if set to
TRUE; otherwise FALSE

Table 96–28 GET_DETAILED_EXCP_SUPPORT Procedure Parameters

Parameter Description

enable (OUT) TRUE if UTL_HTTP raises a detailed exception; otherwise
FALSE
UTL_HTTP 96-37

SET_WALLET Procedure
which is signed by a certificate authority, to the UTL_HTTP package for
identification purpose. The Oracle wallet contains the list of certificate authorities
that are trusted by the user of the UTL_HTTP package. An Oracle wallet is required
to make an HTTPS request.

To set up an Oracle wallet, use the Oracle Wallet Manager to create a wallet. In
order for the HTTPS request to succeed, the certificate authority that signs the
certificate of the remote HTTPS Web server must be one trust point set in the wallet.
When a wallet is created, it is populated with a set of well-known certificate
authorities as trust points. If the certificate authority that signs the certificate of the
remote HTTPS Web server is not among the trust points, or the certificate authority
has new root certificates, you should obtain the root certificate of that certificate
authority and install it as a trust point in the wallet using Oracle Wallet Manager.

Syntax
UTL_HTTP.set_wallet (

path IN VARCHAR2,
password IN VARCHAR2 DEFAULT NULL);

Parameters

See Also: Oracle Advanced Security Administrator’s Guide for more
information on Wallet Manager

Table 96–29 SET_WALLET Procedure Parameters

Parameter Description

path (IN) The directory path that contains the Oracle wallet. The format
is file:<directory-path> .

The format of wallet_path on a PC is, for example,
file:c:\WINNT\Profiles\<username>\WALLETS, and in Unix
is, for example, file:/home/<username>/wallets. When the
UTL_HTTP package is executed in the Oracle database server,
the wallet is accessed from the database server. Therefore, the
wallet path must be accessible from the database server.

password (IN) The password needed to open the wallet. A second copy of a
wallet in a wallet directory that may be opened without a
password. That second copy of the wallet is read-only. If the
password is NULL, the UTL_HTTP package will open the
second, read-only copy of the wallet instead.
96-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
SET_TRANSFER_TIMEOUT Procedure
Sets the default timeout value for all future HTTP requests that the UTL_HTTP
package should attempt while reading the HTTP response from the Web server or
proxy server. This timeout value may be used to avoid the PL/SQL programs from
being blocked by busy Web servers or heavy network traffic while retrieving Web
pages from the Web servers. The default value of the timeout is 60 seconds.

Syntax
UTL_HTTP.set_transfer_timeout (

timeout IN PLS_INTEGER DEFAULT 60);

Parameters

GET_TRANSFER_TIMEOUT Procedure
This procedure retrieves the default timeout value for all future HTTP requests.

Syntax
UTL_HTTP.get_transfer_timeout (

timeout OUT PLS_INTEGER);

Parameters

HTTP Requests
The following APIs begin an HTTP request, manipulate attributes, and send the
request information to the Web server. When a request is created, it inherits the
default settings of the HTTP cookie support, follow-redirect, body character set,
persistent-connection support, and transfer timeout of the current session. The
settings can be changed by calling the request API.

Table 96–30 SET_TRANSFER_TIMEOUT Procedure Parameters

Parameter Description

TIMEOUT (IN) The network transfer timeout value in seconds.

Table 96–31 GET_TRANSFER_TIMEOUT Procedure Parameters

Parameter Description

TIMEOUT (OUT) The network transfer timeout value in seconds.
UTL_HTTP 96-39

BEGIN_REQUEST Function
BEGIN_REQUEST Function
This functions begins a new HTTP request. UTL_HTTP establishes the network
connection to the target Web server or the proxy server and sends the HTTP request
line. The PL/SQL program continues the request by calling some other API to
complete the request.

Syntax
UTL_HTTP.begin_request (

url IN VARCHAR2,
method IN VARCHAR2 DEFAULT ’GET’,
http_version IN VARCHAR2 DEFAULT NULL)

RETURN req;

Parameters

Usage Notes
The URL passed as an argument to this function is not examined for illegal
characters, such as spaces, according to URL specification RFC 2396. You should
escape those characters with the UTL_URL package to return illegal and reserved
characters. URLs should consist of US-ASCII characters only. See Chapter 102,
"UTL_URL" for a list of legal characters in URLs. Note that URLs should consist of
US-ASCII characters only. The use of non-US-ASCII characters in a URL is generally
unsafe.

An Oracle wallet must be set before accessing Web servers over HTTPS. See the
set_wallet procedure on how to set up an Oracle wallet.

Table 96–32 BEGIN_REQUEST Function Parameters

Parameter Description

url (IN) The URL of the HTTP request

method (IN) The method performed on the resource identified by the URL

http_version (IN) The HTTP protocol version that sends the request. The format
of the protocol version is
HTTP/major-version.minor-version , where
major-version and minor-version are positive numbers.
If this parameter is set to NULL, UTL_HTTP uses the latest
HTTP protocol version that it supports to send the request. The
latest version that the package supports is 1.1 and it can be
upgraded to a later version. The default is NULL.
96-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
SET_HEADER Procedure
This procedure sets an HTTP request header. The request header is sent to the Web
server as soon as it is set.

Syntax
UTL_HTTP.set_header (

r IN OUT NOCOPY req,
name IN VARCHAR2,
value IN VARCHAR2);

Parameters

Usage Notes
Multiple HTTP headers with the same name are allowed in the HTTP protocol
standard. Therefore, setting a header does not replace a prior header with the same
name.

If the request is made using HTTP 1.1, UTL_HTTP sets the Host header
automatically for you.

When you set the Content-Type header with this procedure, UTL_HTTP looks for
the character set information in the header value. If the character set information is
present, it is set as the character set of the request body. It can be overridden later by
using the set_body_charset procedure.

When you set the Transfer-Encoding header with the value chunked, UTL_HTTP
automatically encodes the request body written by the write_text, write_
line and write_raw procedures. Note that some HTTP-1.1-based Web servers
or CGI programs do not support or accept the request body encoding in the HTTP
1.1 chunked transfer-encoding format.

Table 96–33 SET_HEADER Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

name (IN) The name of the HTTP request header

value (IN) The value of the HTTP request header
UTL_HTTP 96-41

SET_AUTHENTICATION Procedure
SET_AUTHENTICATION Procedure
This procedure sets HTTP authentication information in the HTTP request header.
The Web server needs this information to authorize the request.

Syntax
UTL_HTTP.set_authentication(

r IN OUT NOCOPY req,
username IN VARCHAR2,
password IN VARCHAR2,
scheme IN VARCHAR2 DEFAULT ’Basic’,
for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
Only the HTTP Basic Authentication scheme is supported.

SET_COOKIE_SUPPPORT Procedure
This procedure enables or disables support for the HTTP cookies in the request. If
cookie support is enabled for an HTTP request, all cookies saved in the current
session and applicable to the request are returned to the Web server in the request in
accordance with HTTP cookie specification standards. Cookies set in the response to
the request are saved in the current session for return to the Web server in the
subsequent requests if cookie support is enabled for those requests. If the cookie
support is disabled for an HTTP request, no cookies are returned to the Web server
in the request and the cookies set in the response to the request are not saved in the

Table 96–34 SET_AUTHENTICATION Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

username (IN) The username for the HTTP authentication

password (IN) The password for the HTTP authentication

scheme (IN) The HTTP authentication scheme. The default, BASIC, denotes
the HTTP Basic Authentication scheme.

for_proxy (IN) Identifies if the HTTP authentication information is for access
to the HTTP proxy server instead of the Web server. Default is
FALSE.
96-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
current session, although the Set-Cookie HTTP headers can still be retrieved from
the response.

Use this procedure to change the cookie support setting a request inherits from the
session default setting.

Syntax
UTL_HTTP.set_cookie_support(

r IN OUT NOCOPY req,
enable IN BOOLEAN DEFAULT TRUE);

Parameters

Usage Notes
HTTP cookies saved in the current session will last only for the duration of the
database session; there is no persistent storage for the cookies. See "UTL_HTTP
Examples" on page 96-12 for how to use get_cookies and add_cookies to
retrieve, save, and restore cookies.

SET_FOLLOW_REDIRECT Procedure
This procedure sets the maximum number of times UTL_HTTP follows the HTTP
redirect instruction in the HTTP response to this request in the GET_RESPONSE
function.

If max_redirects is set to a positive number, GET_RESPONSE will automatically
follow the redirected URL for the HTTP response status code 301, 302, and 307 for
the HTTP HEAD and GET methods, and 303 for all HTTP methods, and retry the
HTTP request (the request method will be changed to HTTP GET for the status code
303) at the new location. It follows the redirection until the final, non-redirect
location is reached, or an error occurs, or the maximum number of redirections has
been reached (to prevent an infinite loop). The url and method fields in the REQ
record are updated to the last redirected URL and the method used to access the
URL. Set the maximum number of redirects to zero to disable automatic redirection.

Table 96–35 SET_COOKIE_SUPPORT Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

enable (IN) Set enable to TRUE to enable HTTP cookie support; FALSE to
disable
UTL_HTTP 96-43

SET_BODY_CHARSET Procedure
Use this procedure to change the maximum number of redirections a request
inherits from the session default setting.

Syntax
UTL_HTTP.set_follow_redirect(

r IN OUT NOCOPY req,
max_redirects IN PLS_INTEGER DEFAULT 3);

Parameters

Usage Notes
The SET_FOLLOW_REDIRECT procedure must be called before GET_RESPONSE for
any redirection to take effect.

SET_BODY_CHARSET Procedure
This procedure sets the character set of the request body when the media type is
text but the character set is not specified in the Content-Type header. According
to the HTTP protocol standard specification, if the media type of a request or a
response is "text" but the character set information is missing in the "Content-Type"
header, the character set of the request or response body should default to
"ISO-8859-1".

Use this procedure to change the default body character set a request inherits from
the session default setting.

Syntax
UTL_HTTP.set_body_charset(

r IN OUT NOCOPY req,
charset IN VARCHAR2 DEFAULT NULL);

Table 96–36 SET_FOLLOW_REDIRECT Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

max_redirects (IN) The maximum number of redirects. Set to zero to disable
redirects.
96-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Parameters

SET_PERSISTENT_CONN_SUPPORT Procedure
This procedure enables or disables support for the HTTP 1.1 persistent-connection
in the request.

If the persistent-connection support is enabled for an HTTP request, the package
will keep the network connections to a Web server or the proxy server open in the
package after the request is completed properly for a subsequent request to the
same server to reuse for each HTTP 1.1 protocol specification. With the persistent
connection support, subsequent HTTP requests may be completed faster because
the network connection latency is avoided. If the persistent-connection support is
disabled for a request, the package will always send the HTTP header "Connection:
close" automatically in the HTTP request and close the network connection when
the request is completed. This setting has no effect on HTTP requests that follows
HTTP 1.0 protocol, for which the network connections will always be closed after
the requests are completed.

When a request is being made, the package attempts to reuse an existing persistent
connection to the target Web server (or proxy server) if one is available. If none is
available, a new network connection will be initiated. The persistent-connection
support setting for a request affects only whether the network connection should be
closed after a request completes.

Use this procedure to change the persistent-connection support setting a request
inherits from the session default setting.

Users should note that while the use of persistent connections in UTL_HTTP may
reduce the time it takes to fetch multiple Web pages from the same server, it
consumes precious system resources (network connections) in the database server.
Also, excessive use of persistent connections may reduce the scalability of the
database server when too many network connections are kept open in the database
server. Network connections should be kept open only if they will be used

Table 96–37 SET_BODY_CHARSET Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

charset (IN) The default character set of the request body. The character set
can be in Oracle or Internet Assigned Numbers Authority
(IANA) naming convention. If charset is NULL, the database
character set is assumed.
UTL_HTTP 96-45

SET_PERSISTENT_CONN_SUPPORT Procedure
immediately by subsequent requests and should be closed immediately when they
are no longer needed. Set the default persistent connection support as disabled in
the session, and enable persistent connection in individual HTTP requests as shown
in "Example: Using SET_PERSISTENT_CONN_SUPPORT in HTTP Requests" on
page 96-46.

Syntax
UTL_HTTP.set_persistent_conn_support(

r IN OUT NOCOPY req,
enable IN BOOLEAN DEFAULT FALSE);

Parameters

Usage Notes
The default value of the maximum number of persistent connections in a database
session is zero. To truly enable persistent connections, you must also set the
maximum number of persistent connections to a positive value or no connections
will be kept persistent.

Example: Using SET_PERSISTENT_CONN_SUPPORT in HTTP Requests
DECLARE

TYPE vc2_table IS TABLE OF VARCHAR2(256) INDEX BY binary_integer;
paths vc2_table;

UTL_HTTP.fetch_pages(paths IN vc2_table) AS
url_prefix VARCHAR2(256) := ’http://www.my-company.com/’;
req utl_http.req;
resp utl_http.resp;
data VARCHAR2(1024);

BEGIN
FOR i IN 1..paths.count LOOP

req := utl_http.begin_request(url_prefix || paths(i));

Table 96–38 SET_PERSISTENT_CONN_SUPPORT Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

enable (IN) TRUE to keep the network connection persistent. FALSE
otherwise.
96-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
-- Use persistent connection except for the last request
IF (i < paths.count) THEN

utl_http.set_persistent_conn_support(req, TRUE);
END IF;

resp := utl_http.get_response(req);

BEGIN
LOOP

utl_http.read_text(resp, data);
-- do something with the data

END LOOP;
EXCEPTION

WHEN utl_http.end_of_body THEN
NULL;

END;
utl_http.end_response(resp);

END LOOP;
END;

BEGIN
utl_http.set_persistent_conn_support(FALSE, 1);
paths(1) := ’...’;
paths(2) := ’...’;
...
fetch_pages(paths);

END;

WRITE_TEXT Procedure
This procedure writes some text data in the HTTP request body. As soon as some
data is sent as the HTTP request body, the HTTP request headers section is
completed. Text data is automatically converted from the database character set to
the request body character set.

Syntax
UTL_HTTP.write_text(

r IN OUT NOCOPY req,
data IN VARCHAR2);
UTL_HTTP 96-47

WRITE_LINE Procedure
Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. UTL_HTTP performs chunked
transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based
Web servers or CGI programs do not support or accept the request body encoding
in the HTTP 1.1 chunked transfer-encoding format. See the set_header procedure
for details.

If you send the Content-Length header, you should note that the length specified in
the header should be the byte-length of the textual request body after it is converted
from the database character set to the request body character set. When either one of
the two character sets is a multibyte character set, the precise byte-length of the
request body in the request body character set cannot be known beforehand. In this
case, you can perform the character set conversion explicitly, determine the
byte-length of the results, send the Content-Length header, and the results using the
write_raw procedure to avoid the automatic character set conversion. Or, if the
remove Web server or CGI programs allow, you can send the request body using
the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the
length of the chunks transparently.

WRITE_LINE Procedure
This procedure writes a text line in the HTTP request body and ends the line with
new-line characters (CRLF as defined in UTL_TCP). As soon as some data is sent as
the HTTP request body, the HTTP request headers section is completed. Text data is
automatically converted from the database character set to the request body
character set.

Table 96–39 WRITE_TEXT Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

data (IN) The text data to send in the HTTP request body
96-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Syntax
UTL_HTTP.write_line(

r IN OUT NOCOPY req,
data IN VARCHAR2);

Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. The UTL_HTTP package performs
chunked transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based Web
servers or CGI programs do not support or accept the request body encoding in the
HTTP 1.1 chunked transfer-encoding format. See the set_header procedure for
details.

If you send the Content-Length header, you should note that the length specified in
the header should be the byte-length of the textual request body after it is converted
from the database character set to the request body character set. When either one of
the two character sets is a multibyte character set, the precise byte-length of the
request body in the request body character set cannot be known beforehand. In this
case, you can perform the character set conversion explicitly, determine the
byte-length of the results, send the Content-Length header, and the results using the
write_raw procedure to avoid the automatic character set conversion. Or, if the
remove Web server or CGI programs allow, you can send the request body using
the HTTP 1.1 chunked transfer-encoding format, where UTL_HTTP handles the
length of the chunks transparently.

Table 96–40 WRITE_LINE Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

data (IN) The text line to send in the HTTP request body
UTL_HTTP 96-49

WRITE_RAW Procedure
WRITE_RAW Procedure
This procedure writes some binary data in the HTTP request body. As soon as some
data is sent as the HTTP request body, the HTTP request headers section is
completed.

Syntax
UTL_HTTP.write_raw(

r IN OUT NOCOPY req,
data IN RAW);

Parameters

Usage Notes
An HTTP client must always let the remote Web server know the length of the
request body it is sending. If the amount of data is known beforehand, you can set
the Content-Length header in the request, where the length of the content is
measured in bytes instead of characters. If the length of the request body is not
known beforehand, you can send the request body using the HTTP 1.1 chunked
transfer-encoding format. The request body is sent in chunks, where the length of
each chunk is sent before the chunk is sent. UTL_HTTP performs chunked
transfer-encoding on the request body transparently when the
Transfer-Encoding: chunked header is set. Note that some HTTP-1.1-based
Web servers or CGI programs do not support or accept the request body encoding
in the HTTP 1.1 chunked transfer-encoding format. See the set_header
procedure for details.

END_REQUEST Procedure
This procedure ends the HTTP request. To terminate the HTTP request without
completing the request and waiting for the response, the program can call this
procedure. Otherwise, the program should go through the normal sequence of
beginning a request, getting the response, and closing the response. The network
connection will always be closed and will not be reused.

Table 96–41 WRITE_RAW Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

data (IN) The binary data to send in the HTTP request body
96-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Syntax
UTL_HTTP.end_request (

r IN OUT NOCOPY req);

Parameters

HTTP Responses
The following APIs manipulate an HTTP response obtained from GET_RESPONSE
and receive response information from the Web server. When a response is created
for a request, it inherits settings of the HTTP cookie support, follow-redirect, body
character set, persistent-connection support, and transfer timeout from the request.
Only the body character set can be changed by calling the response API.

GET_RESPONSE Function
This function reads the HTTP response. When the function returns, the status line
and the HTTP response headers have been read and processed. The status code,
reason phrase, and the HTTP protocol version are stored in the response record.
This function completes the HTTP headers section.

Syntax
UTL_HTTP.get_response (

r IN OUT NOCOPY req)
RETURN resp;

Parameters

Table 96–42 END_REQUEST Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP request

Table 96–43 GET_RESPONSE Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response
UTL_HTTP 96-51

GET_HEADER_COUNT Function
GET_HEADER_COUNT Function
This function returns the number of HTTP response headers returned in the
response.

Syntax
UTL_HTTP.get_header_count (

r IN OUT NOCOPY resp)
RETURN PLS_INTEGER;

Parameters

Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

GET_HEADER Procedure
This procedure returns the nth HTTP response header name and value returned in
the response.

Syntax
UTL_HTTP.get_header (

r IN OUT NOCOPY resp,
n IN PLS_INTEGER,
name OUT NOCOPY VARCHAR2,
value OUT NOCOPY VARCHAR2);

Table 96–44 GET_HEADER_COUNT Function Parameters

Parameter Description

r (IN/OUT) The HTTP response
96-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Parameters

Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

GET_HEADER_BY_NAME Procedure
This procedure returns the HTTP response header value returned in the response
given the name of the header.

Syntax
UTL_HTTP.get_header_by_name(

r IN OUT NOCOPY resp,
name IN VARCHAR2,
value OUT NOCOPY VARCHAR2,
n IN PLS_INTEGER DEFAULT 1);

Parameters

Table 96–45 GET_HEADER Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

n (IN) The nth header to return.

name (OUT) The name of the HTTP response header.

value (OUT) The value of the HTTP response header.

Table 96–46 GET_HEADER_BY_NAME Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response

n (IN) The nth occurrence of an HTTP response header by the
specified name to return. The default is 1.
UTL_HTTP 96-53

GET_AUTHENTICATION Procedure
Usage Notes
If the response body returned by the remote Web server is encoded in chunked
transfer encoding format, the trailer headers that are returned at the end of the
response body will be added to the response, and the response header count will be
updated. You can retrieve the additional headers after the end of the response body
is reached and before you end the response.

GET_AUTHENTICATION Procedure
This procedure retrieves the HTTP authentication information needed for the
request to be accepted by the Web server as indicated in the HTTP response header.

Syntax
UTL_HTTP.get_authentication(

r IN OUT NOCOPY resp,
scheme OUT VARCHAR2,
realm OUT VARCHAR2,
for_proxy IN BOOLEAN DEFAULT FALSE);

Parameters

name (IN) The name of the HTTP response header for which the value is
to return

value (OUT) The value of the HTTP response header.

Table 96–47 GET_AUTHENTICATION Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

scheme (OUT) The scheme for the required HTTP authentication

realm (OUT) The realm for the required HTTP authentication

for_proxy (IN) Returns the HTTP authentication information required for the
access to the HTTP proxy server instead of the Web server?
Default is FALSE.

Table 96–46 GET_HEADER_BY_NAME Procedure Parameters

Parameter Description
96-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Usage Notes
When a Web client is unaware that a document is protected, at least two HTTP
requests are required for the document to be retrieved. In the first HTTP request, the
Web client makes the request without supplying required authentication
information; so the request is denied. The Web client can determine the
authentication information required for the request to be authorized by calling
get_authentication . The Web client makes the second request and supplies the
required authentication information with set_authorization . If the
authentication information can be verified by the Web server, the request will
succeed and the requested document is returned. Before making the request, if the
Web client knows that authentication information is required, it can supply the
required authentication information in the first request, thus saving an extra
request.

SET_BODY_CHARSET Procedure
This procedure sets the character set of the response body when the media type is
"text" but the character set is not specified in the "Content-Type" header. For each
the HTTP protocol standard specification, if the media type of a request or a
response is "text" but the character set information is missing in the "Content-Type"
header, the character set of the request or response body should default to
"ISO-8859-1".

Use this procedure to change the default body character set a response inherits from
the request.

Syntax
UTL_HTTP.set_body_charset(

r IN OUT NOCOPY resp,
charset IN VARCHAR2 DEFAULT NULL);

Parameters

Table 96–48 SET_BODY_CHARSET Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

charset (IN) The default character set of the response body. The character
set can be in Oracle or Internet Assigned Numbers Authority
(IANA) naming convention. If charset is NULL, the database
character set is assumed.
UTL_HTTP 96-55

READ_TEXT Procedure
READ_TEXT Procedure
This procedure reads the HTTP response body in text form and returns the output
in the caller-supplied buffer. The end_of_body exception will be raised if the end
of the HTTP response body is reached. Text data is automatically converted from
the response body character set to the database character set.

Syntax
UTL_HTTP.read_text(

r IN OUT NOCOPY resp,
data OUT NOCOPY VARCHAR2,
len IN PLS_INTEGER DEFAULT NULL);

Parameters

Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_text waits for each
data packet to be ready to read until timeout occurs. If it occurs, this procedure
stops reading and returns all the data read successfully. If no data is read
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

If a partial multibyte character is found at the end of the response body, read_text
stops reading and returns all the complete multibyte characters read successfully. If

Table 96–49 READ_TEXT Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

data (OUT) The HTTP response body in text form

len (IN) The maximum number of characters of data to read. If len is
NULL, this procedure will read as much input as possible to
fill the buffer allocated in data . The actual amount of data
returned may be less than that specified if little data is
available before the end of the HTTP response body is reached
or the transfer_timeout amount of time has elapsed. The
default is NULL.
96-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
no complete character is read successfully, the partial_multibyte_char
exception is raised. The exception can be handled and the bytes of that partial
multibyte character can be read as binary by the read_raw procedure. If a partial
multibyte character is seen in the middle of the response body because the
remaining bytes of the character have not arrived and read timeout occurs, the
transfer_timeout exception is raised instead. The exception can be handled and
the read operation can be retried later.

 When the "Content-Type" response header specifies the character set of the
response body and the character set is unknown or unsupported by Oracle, the
"ORA-01482: unsupported character set" exception is raised if you try to read the
response body as text. You can either read the response body as binary using the
READ_RAW procedure, or set the character set of the response body explicitly using
the SET_BODY_CHARSET procedure and read the response body as text again.

READ_LINE Procedure
This procedure reads the HTTP response body in text form until the end of line is
reached and returns the output in the caller-supplied buffer. The end of line is as
defined in the function read_line of UTL_TCP. The end_of_body exception will
be raised if the end of the HTTP response body is reached. Text data is
automatically converted from the response body character set to the database
character set.

Syntax
UTL_HTTP.read_line(

r IN OUT NOCOPY resp,
data OUT NOCOPY VARCHAR2,
remove_crlf IN BOOLEAN DEFAULT FALSE);

Parameters

Table 96–50 READ_LINE Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

data (OUT) The HTTP response body in text form

remove_crlf (IN) Removes the newline characters if set to TRUE
UTL_HTTP 96-57

READ_RAW Procedure
Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_line waits for each
data packet to be ready to read until timeout occurs. If it occurs, this procedure
stops reading and returns all the data read successfully. If no data is read
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

If a partial multibyte character is found at the end of the response body, read_line
stops reading and returns all the complete multibyte characters read successfully. If
no complete character is read successfully, the partial_multibyte_char
exception is raised. The exception can be handled and the bytes of that partial
multibyte character can be read as binary by the read_raw procedure. If a partial
multibyte character is seen in the middle of the response body because the
remaining bytes of the character have not arrived and read timeout occurs, the
transfer_timeout exception is raised instead. The exception can be handled and
the read operation can be retried later.

 When the "Content-Type" response header specifies the character set of the
response body and the character set is unknown or unsupported by Oracle, the
"ORA-01482: unsupported character set" exception is raised if you try to read the
response body as text. You can either read the response body as binary using the
READ_RAW procedure, or set the character set of the response body explicitly using
the SET_BODY_CHARSET procedure and read the response body as text again.

READ_RAW Procedure
This procedure reads the HTTP response body in binary form and returns the
output in the caller-supplied buffer. The end_of_body exception will be raised if
the end of the HTTP response body is reached.

Syntax
UTL_HTTP.read_raw(

r IN OUT NOCOPY resp,
data OUT NOCOPY RAW,
len IN PLS_INTEGER DEFAULT NULL);
96-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Parameters

Usage Notes
The UTL_HTTP package supports HTTP 1.1 chunked transfer-encoding. When the
response body is returned in chunked transfer-encoding format as indicated in the
response header, the package automatically decodes the chunks and returns the
response body in de-chunked format.

If transfer timeout is set in the request of this response, read_raw waits for each
data packet to be ready to read until timeout occurs. If it occurs, read_raw stops
reading and returns all the data read successfully. If no data is read successfully, the
transfer_timeout exception is raised. The exception can be handled and the
read operation can be retried later.

END_RESPONSE Procedure
This procedure ends the HTTP response. It completes the HTTP request and
response. Unless HTTP 1.1 persistent connection is used in this request, the network
connection is also closed.

Syntax
UTL_HTTP.end_response (

r IN OUT NOCOPY resp);

Table 96–51 READ_RAW Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

data (OUT) The HTTP response body in binary form

len (IN) The number of bytes of data to read. If len is NULL, this
procedure will read as much input as possible to fill the buffer
allocated in data . The actual amount of data returned may be
less than that specified if not much data is available before the
end of the HTTP response body is reached or the transfer_
timeout amount of time has elapsed. The default is NULL
UTL_HTTP 96-59

HTTP Cookies
Parameters

HTTP Cookies
Use the following APIs to manipulate HTTP cookies.

GET_COOKIE_COUNT Function
This function returns the number of cookies currently maintained by the UTL_
HTTP package set by all Web servers.

Syntax
UTL_HTTP.get_cookie_count
RETURN PLS_INTEGER;

GET_COOKIES Function
This function returns all the cookies currently maintained by the UTL_HTTP
package set by all Web servers.

Syntax
UTL_HTTP.get_cookies (

cookies IN OUT NOCOPY cookie_table);

Parameters

ADD_COOKIES Procedure
This procedure adds the cookies maintained by UTL_HTTP.

Table 96–52 END_RESPONSE Procedure Parameters

Parameter Description

r (IN/OUT) The HTTP response.

Table 96–53 GET_COOKIES Procedure Parameters

Parameter Description

cookies (IN/OUT) The cookies returned
96-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Syntax
UTL_HTTP.add_cookies (

cookies IN cookie_table);

Parameters

Usage Notes
The cookies that the package currently maintains are not cleared before new cookies
are added.

CLEAR_COOKIES Procedure
This procedure clears all cookies maintained by the UTL_HTTP package.

Syntax
UTL_HTTP.clear_cookies;

HTTP Persistent Connections
Use the following functions to manipulate persistent connections.

GET_PERSISTENT_CONN_COUNT Function
This function returns the number of network connections currently kept persistent
by the UTL_HTTP package to the Web servers.

Syntax
UTL_HTTP.get_persistent_conn_count
RETURN PLS_integer;

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with

Table 96–54 ADD_COOKIES Procedure Parameters

Parameter Description

cookies (IN/OUT) The cookies to be added
UTL_HTTP 96-61

GET_PERSISTENT_CONNS Procedure
domain names will be counted differently from the host names without domain
names.

GET_PERSISTENT_CONNS Procedure
This procedure returns all the network connections currently kept persistent by the
UTL_HTTP package to the Web servers.

Syntax
UTL_HTTP.get_persistent_conns (

connections IN OUT NOCOPY connection_table);

Parameters

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with
domain names will be counted differently from the host names without domain
names.

CLOSE_PERSISTENT_CONN Procedure
This procedure closes an HTTP persistent connection maintained by the UTL_HTTP
package in the current database session.

Syntax
UTL_HTTP.close_persistent_conn (

conn IN connection);

Table 96–55 GET_PERSISTENT_CONNS Procedure Parameters

Parameter Description

connections (IN/OUT) The network connections kept persistent
96-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
Parameters

CLOSE_PERSISTENT_CONNS Procedure
This procedure closes a group of HTTP persistent connections maintained by the
UTL_HTTP package in the current database session. This procedure uses a
pattern-match approach to decide which persistent connections to close.

To close a group of HTTP persistent connection that share a common property (for
example, all connections to a particular host, or all SSL connections), set the
particular parameters and leave the rest of the parameters NULL. If a particular
parameter is set to NULL when this procedure is called, that parameter will not be
used to decide which connections to close.

For example, the following call to the procedure closes all persistent connections to
foobar:

utl_http.close_persistent_conns(host => ’foobar’);

And the following call to the procedure closes all persistent connections through the
proxy www-proxy at TCP/IP port 80:

utl_http.close_persistent_conns(proxy_host => ’foobar’,
proxy_port => 80);

And the following call to the procedure closes all persistent connections:

utl_http.close_persistent_conns;

Syntax
UTL_HTTP.close_persistent_conns (

host IN VARCHAR2 DEFAULT NULL,
port IN PLS_INTEGER DEFAULT NULL,
proxy_host IN VARCHAR2 DEFAULT NULL,
proxy_port IN PLS_INTEGER DEFAULT NULL,
ssl IN BOOLEAN DEFAULT NULL);

Table 96–56 CLOSE_PERSISTENT_CONN Procedure Parameters

Parameter Description

conn (IN) The HTTP persistent connection to close
UTL_HTTP 96-63

Error Conditions
Parameters

Usage Notes
Connections to the same Web server at different TCP/IP ports are counted
individually. The host names of the Web servers are identified as specified in the
URL of the original HTTP requests. Therefore, fully qualified host names with
domain names will be counted differently from the host names without domain
names.

Note that the use of a NULL value in a parameter when this procedure is called
means that the caller does not care about its value when the package decides which
persistent connection to close. If you want a NULL value in a parameter to match
only a NULL value of the parameter of a persistent connection (which is when you
want to close a specific persistent connection), you should use the close_
persistent_conn procedure that closes a specific persistent connection.

Error Conditions
The following APIs retrieve error information.

GET_DETAILED_SQLCODE Function
This function retrieves the detailed SQLCODE of the last exception raised.

Syntax
UTL_HTTP.get_detailed_sqlcode
RETURN PLS_INTEGER;

Table 96–57 CLOSE_PERSISTENT_CONNS Procedure Parameters

Parameter Description

host (IN) The host for which persistent connections are to be closed

port (IN) The port number for which persistent connections are to be
closed

proxy_host (IN) The proxy host for which persistent connections are to be
closed

proxy_port (IN) The proxy port for which persistent connections are to be
closed

ssl (IN) Close persistent SSL connection
96-64 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_HTTP Subprograms
GET_DETAILED_SQLERRM Function
This function retrieves the detailed SQLERRM of the last exception raised.

Syntax
UTL_HTTP.get_detailed_sqlerrm
RETURN VARCHAR2;
UTL_HTTP 96-65

GET_DETAILED_SQLERRM Function
96-66 Oracle9i Supplied PL/SQL Packages and Types Reference

UTL
97

UTL_INADDR

 UTL_INADDR provides a PL/SQL procedures to support internet addressing. It
provides an API to retrieve host names and IP addresses of local and remote hosts.

This chapter discusses the following topics:

� Exceptions

� Summary of UTL_INADDR Subprograms
_INADDR 97-1

Exceptions
Exceptions

Summary of UTL_INADDR Subprograms

get_host_name Function
This function retrieves the name of the local or remote host given its IP address.

Syntax
UTL_INADDR.GET_HOST_NAME (

ip IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Parameters

Returns
The name of the local or remote host of the specified IP address.

Table 97–1 Exception from Internet Address Package

Exception Description

UNKNOWN_HOST The host is unknown.

Table 97–2 UTL_INADDR Subprograms

Subprogram Description

get_host_name Function
on page 97-2

Retrieves the name of the local or remote host given its IP
address.

get_host_address Function
on page 97-3

Retrieves the IP address of the local or remote host given its
name.

Table 97–3 get_host_name Function Parameters

Parameter Description

ip The IP address of the host used to determine its host name. If
ip is not NULL, the official name of the host with its domain
name is returned. If this is NULL, the name of the local host is
returned and the name does not contain the domain to which
the local host belongs.
97-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_INADDR Subprograms
Exceptions
unknown_host. The specified IP address is unknown.

get_host_address Function
This function retrieves the IP address of a host.

Syntax
UTL_INADDR.GET_HOST_ADDRESS (

host IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

Parameters

Table 97–4 get_host_address Function Parameters

Parameter Description

host (IN) The name of the host to retrieve the IP address. If host is
NULL, this function returns the IP address of the local host.
UTL_INADDR 97-3

get_host_address Function
97-4 Oracle9i Supplied PL/SQL Packages and Types Reference

U

98

UTL_RAW

The UTL_RAW package provides SQL functions for manipulating RAW datatypes.
This package is necessary because normal SQL functions do not operate on RAWs,
and PL/SQL does not allow overloading between a RAW and a CHAR datatype. UTL_
RAW also includes subprograms that convert various COBOL number formats to,
and from, RAWs.

UTL_RAW is not specific to the database environment, and it may actually be used in
other environments as it exists here. For this reason, the prefix UTL has been given
to the package, instead of DBMS.

This chapter discusses the following topics:

� Usage Notes

� Summary of UTL_RAW Subprograms
TL_RAW 98-1

Usage Notes
Usage Notes
UTL_RAW allows a RAW "record" to be composed of many elements. By using the
RAW datatype, character set conversion will not be performed, keeping the RAW in its
original format when being transferred through remote procedure calls.

With the RAW functions, you can manipulate binary data that was previously
limited to the hextoraw and rawtohex functions.

Summary of UTL_RAW Subprograms

Table 98–1 UTL_RAW Subprograms

Subprogram Description

CAST_FROM_BINARY_
INTEGER Function on
page 98-3

Returns the binary representation of a BINARY_INTEGER
(in RAW).

CAST_FROM_NUMBER
Function on page 98-4

Returns the binary representation of a NUMBER (in
RAW).

CAST_TO_BINARY_INTEGER
Function on page 98-5

Casts the binary representation of a BINARY_INTEGER
(in RAW) into a BINARY_INTEGER

CAST_TO_NUMBER Function
on page 98-5

Casts the binary representation of a NUMBER (in RAW)
into a NUMBER. If include_length is TRUE, the first byte
of r encodes the number of bytes in r (

CAST_TO_RAW Function on
page 98-6

Converts a VARCHAR2 represented using n data bytes into
a RAW with n data bytes.

CAST_TO_VARCHAR2
Function on page 98-7

Converts a RAW represented using n data bytes into
VARCHAR2 with n data bytes.

CONCAT Function on
page 98-8

Concatenates up to 12 RAWs into a single RAW.

LENGTH Function on
page 98-9

Returns the length in bytes of a RAW r .

SUBSTR Function on page 98-9 Returns len bytes, starting at pos from RAW r .

TRANSLATE Function on
page 98-11

Translates the bytes in the input RAW r according to the
bytes in the translation RAWs from_set and to_set .

TRANSLITERATE Function on
page 98-12

Converts the bytes in the input RAW r according to the
bytes in the transliteration RAWs from_set and to_set .
98-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
CAST_FROM_BINARY_INTEGER Function
This function returns the binary representation of a BINARY_INTEGER (in RAW).

Syntax
UTL_RAW.CAST_FROM_BINARY_INTEGER (

n IN BINARY_INTEGER
endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)

RETURN RAW;

Pragmas
pragma restrict_references(cast_from_binary_integer, WNDS, RNDS, WNPS, RNPS);

OVERLAY Function on
page 98-14

Overlays the specified portion of target RAW with overlay
RAW, starting from byte position pos of target and
proceding for len bytes.

COPIES Function on
page 98-16

Returns n copies of r concatenated together.

XRANGE Function on
page 98-17

Returns a RAW containing all valid 1-byte encodings in
succession, beginning with the value start_byte and
ending with the value end_byte .

REVERSE Function on
page 98-18

Reverses a byte sequence in RAW r from end to end.

COMPARE Function on
page 98-19

Compares RAW r1 against RAW r2 .

CONVERT Function on
page 98-20

Converts RAW r from character set from_charset to
character set to_charset and returns the resulting RAW.

BIT_AND Function on
page 98-21

Performs bitwise logical "and" of the values in RAW r1
with RAW r2 and returns the "anded" result RAW.

BIT_OR Function on
page 98-22

Performs bitwise logical "or" of the values in RAW r1 with
RAW r2 and returns the "or’d" result RAW.

BIT_XOR Function on
page 98-23

Performs bitwise logical "exclusive or" of the values in
RAW r1 with RAW r2 and returns the "xor’d" result RAW.

BIT_COMPLEMENT Function
on page 98-24

Performs bitwise logical "complement" of the values in
RAW r and returns the "complement’ed" result RAW.

Table 98–1 UTL_RAW Subprograms (Cont.)

Subprogram Description
UTL_RAW 98-3

CAST_FROM_NUMBER Function
Parameters

Returns
The binary representation of the BINARY_INTEGER value.

CAST_FROM_NUMBER Function
This function returns the binary representation of a NUMBER (in RAW). If
include_length is TRUE, the first byte of the RAW returned encodes the number
of valid bytes in the number (not including the length byte), and the result is
padded to a fixed length of 22 bytes with arbitrary data. If include_length is
FALSE, the RAW returned is variable length, with a maximum length of 21 bytes.

Syntax
UTL_RAW.CAST_FROM_NUMBER (

n IN NUMBER
include_length IN BOOLEAN)

RETURN RAW;

Pragmas
pragma restrict_references(cast_from_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
The binary representation of the NUMBER value.

Table 98–2 CAST_FROM_BINARY_INTEGER Function Parameters

Parameter Description

n The BINARY_INTEGER value.

endianess, A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.

Table 98–3 CAST_FROM_NUMBER Function Parameters

Parameter Description

n The NUMBER value.
98-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
CAST_TO_BINARY_INTEGER Function
This function casts the binary representation of a BINARY_INTEGER (in RAW) into
a BINARY_INTEGER.

Syntax
UTL_RAW.CAST_TO_BINARY_INTEGER (

r IN RAW
endianess IN PLS_INTEGER DEFAULT BIG_ENDIAN)

RETURN BINARY_INTEGER;

Pragmas
pragma restrict_references(cast_to_binary_integer, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
The BINARY_INTEGER value

CAST_TO_NUMBER Function
This function casts the binary representation of a NUMBER (in RAW) into a
NUMBER. If include_length is TRUE, the first byte of r encodes the number of
bytes in r (not including the length byte) which are valid, up to a maximum of 21
bytes plus the length byte.

Syntax
UTL_RAW.CAST_TO_NUMBER (

r IN RAW
include_length IN BOOLEAN)

RETURN NUMBER;

Table 98–4 CAST_TO_BINARY_INTEGER Function Parameters

Parameter Description

r The binary representation of a BINARY_INTEGER.

endianess A PLS_INTEGER representing big-endian or little-endian
architecture. The default is big-endian.
UTL_RAW 98-5

CAST_TO_RAW Function
Pragmas
pragma restrict_references(cast_to_number, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
The NUMBER value.

CAST_TO_RAW Function
This function converts a VARCHAR2 represented using n data bytes into a RAW with
n data bytes. The data is not modified in any way; only its datatype is recast to a
RAW datatype.

Syntax
UTL_RAW.CAST_TO_RAW (

c IN VARCHAR2)
RETURN RAW;

Pragmas
pragma restrict_references(cast_to_raw, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 98–5 CAST_TO_NUMBER function Parameters

Parameter Description

r The binary representation of a NUMBER

Table 98–6 CAST_TO_RAW Function Parameters

Parameter Description

c VARCHAR2 to be changed to a RAW.
98-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Returns

CAST_TO_VARCHAR2 Function
This function converts a RAW represented using n data bytes into VARCHAR2 with n
data bytes.

Syntax
UTL_RAW.CAST_TO_VARCHAR2 (

r IN RAW)
RETURN VARCHAR2;

Pragmas
pragma restrict_references(cast_to_varchar2, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns

Table 98–7 CAST_TO_RAW Function Returns

Return Description

RAW Containing the same data as the input VARCHAR2 and equal byte
length as the input VARCHAR2 and without a leading length field.

NULL If c input parameter was NULL.

Note: When casting to a VARCHAR2, the current Globalization
Support character set is used for the characters within that
VARCHAR2.

Table 98–8 CAST_TO_VARCHAR2 Function Parameters

Parameter Description

r RAW (without leading length field) to be changed to a VARCHAR2).

Table 98–9 CAST_TO_VARCHAR2 Function Returns

Return Description

VARCHAR2 Containing having the same data as the input RAW.
UTL_RAW 98-7

CONCAT Function
CONCAT Function
This function concatenates up to 12 RAWs into a single RAW. If the concatenated size
exceeds 32K, then an error is returned

Syntax
UTL_RAW.CONCAT (

r1 IN RAW DEFAULT NULL,
r2 IN RAW DEFAULT NULL,
r3 IN RAW DEFAULT NULL,
r4 IN RAW DEFAULT NULL,
r5 IN RAW DEFAULT NULL,
r6 IN RAW DEFAULT NULL,
r7 IN RAW DEFAULT NULL,
r8 IN RAW DEFAULT NULL,
r9 IN RAW DEFAULT NULL,
r10 IN RAW DEFAULT NULL,
r11 IN RAW DEFAULT NULL,
r12 IN RAW DEFAULT NULL)

RETURN RAW;

Pragmas
pragma restrict_references(concat, WNDS, RNDS, WNPS, RNPS);

Parameters
r1r12 are the RAW items to concatenate.

Returns

NULL If r input parameter was NULL.

Table 98–10 CONCAT Function Returns

Return Description

RAW Containing the items concatenated.

Table 98–9 CAST_TO_VARCHAR2 Function Returns

Return Description
98-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Errors
There is an error if the sum of the lengths of the inputs exceeds the maximum
allowable length for a RAW, which is 32767 bytes.

LENGTH Function
This function returns the length in bytes of a RAW r .

Syntax
UTL_RAW.LENGTH (

r IN RAW)
RETURN NUMBER;

Pragmas
pragma restrict_references(length, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns

SUBSTR Function
This function returns len bytes, starting at pos from RAW r .

Syntax
UTL_RAW.SUBSTR (

r IN RAW,
pos IN BINARY_INTEGER,
len IN BINARY_INTEGER DEFAULT NULL)

Table 98–11 LENGTH Function Parameters

Parameter Description

r The RAW byte stream to be measured.

Table 98–12 LENGTH Function Returns

Return Description

NUMBER Equal to the current length of the RAW.
UTL_RAW 98-9

SUBSTR Function
RETURN RAW;

Pragmas
pragma restrict_references(substr, WNDS, RNDS, WNPS, RNPS);

Parameters
If pos is positive, then SUBSTR counts from the beginning of r to find the first byte.
If pos is negative, then SUBSTR counts backward from the end of the r . The value
pos cannot be 0.

If len is omitted, then SUBSTR returns all bytes to the end of r . The value len
cannot be less than 1.

Defaults and Optional Parameters

Returns

Table 98–13 SUBSTR Function Parameters

Parameter Description

r The RAW byte-string from which a portion is extracted.

pos The byte position in r at which to begin extraction.

len The number of bytes from pos to extract from r (optional).

Table 98–14 SUBSTR Function Exceptions

Optional Parameter Description

len Position pos through to the end of r .

Table 98–15 SUBSTR Function Returns

Return Description

portion of r Beginning at pos for len bytes long.

NULL R input parameter was NULL.
98-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Errors

TRANSLATE Function
This function translates the bytes in the input RAW r according to the bytes in the
translation RAWs from_set and to_set . If a byte in r has a matching byte in
from_set , then it is replaced by the byte in the corresponding position in to_set ,
or deleted.

Bytes in r , but undefined in from_set , are copied to the result. Only the first
(leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not
scanned and are ignored. If to_set is shorter than from_set , then the extra
from_set bytes have no translation correspondence and any bytes in r matching.

Syntax
UTL_RAW.TRANSLATE (

r IN RAW,
from_set IN RAW,
to_set IN RAW)

RETURN RAW;

Pragmas
pragma restrict_references(translate, WNDS, RNDS, WNPS, RNPS);

Table 98–16 SUBSTR Function Errors

Error Description

VALUE_ERROR Either pos = 0 or len < 0

Note: Difference from TRANSLITERATE:

- Translation RAWs have no defaults.

- r bytes undefined in the to_set translation RAW are deleted.

- Result RAW may be shorter than input RAW r .
UTL_RAW 98-11

TRANSLITERATE Function
Parameters

Returns

Errors

TRANSLITERATE Function
This function converts the bytes in the input RAW r according to the bytes in the
transliteration RAWs from_set and to_set . Successive bytes in r are looked up in
the from_set , and, if not found, copied unaltered to the result RAW. If found, then
they are replaced in the result RAW by either corresponding bytes in the to_set , or
the pad byte when no correspondence exists.

Bytes in r , but undefined in from_set , are copied to the result. Only the first
(leftmost) occurrence of a byte in from_set is used. Subsequent duplicates are not
scanned and are ignored. The result RAW is always the same length as r .

Table 98–17 TRANSLATE Function Parameters

Parameter Description

r RAW source byte-string to be translated.

from_set RAW byte-codes to be translated, if present in r .

to_set RAW byte-codes to which corresponding from_str bytes are
translated.

Table 98–18 TRANSLATE Function Returns

Return Description

RAW Translated byte-string.

Table 98–19 TRANSLATE Function Errors

Error Description

VALUE_ERROR Either:

- r is NULL or has 0 length

- from_set is NULL or has 0 length

- to_set is NULL or has 0 length
98-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
If the to_set is shorter than the from_set , then the pad byte is placed in the
result RAW when a selected from_set byte has no corresponding to_set byte (as
if the to_set were extended to the same length as the from_set with pad bytes).

Syntax
UTL_RAW.TRANSLITERATE (

r IN RAW,
to_set IN RAW DEFAULT NULL,
from_set IN RAW DEFAULT NULL,
pad IN RAW DEFAULT NULL)

RETURN RAW;

Pragmas
pragma restrict_references(transliterate, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters

Note: Difference from TRANSLATE:

- r bytes undefined in to_set are padded.

- Result RAW is always same length as input RAW r .

Table 98–20 TRANSLITERATE Function Parameters

Parameter Description

r RAW input byte-string to be converted.

from_set RAW byte-codes to be converted, if present in r (any length).

to_set RAW byte-codes to which corresponding from_set bytes are
converted (any length).

pad 1 byte used when to-set is shorter than the from_set .

Table 98–21 TRANSLITERATE Function Optional Parameters

Optional Parameter Description

from_set x’00 through x’ff.
UTL_RAW 98-13

OVERLAY Function
Returns

Errors

OVERLAY Function
This function overlays the specified portion of target RAW with overlay RAW, starting
from byte position pos of target and proceeding for len bytes.

If overlay has less than len bytes, then it is extended to len bytes using the pad
byte. If overlay exceeds len bytes, then the extra bytes in overlay are ignored. If
len bytes beginning at position pos of target exceeds the length of target, then
target is extended to contain the entire length of overlay .

len , if specified, must be greater than, or equal to, 0. pos , if specified, must be
greater than, or equal to, 1. If pos exceeds the length of target, then target is padded
with pad bytes to position pos , and target is further extended with overlay bytes.

Syntax
UTL_RAW.OVERLAY (

overlay_str IN RAW,
target IN RAW,
pos IN BINARY_INTEGER DEFAULT 1,
len IN BINARY_INTEGER DEFAULT NULL,

to_set To the NULL string and effectively extended with pad to the length
of from_set as necessary.

pad x’00’.

Table 98–22 TRANSLITERATE Function Returns

Return Description

RAW Converted byte-string.

Table 98–23 TRANSLITERATE Function Errors

Error Description

VALUE_ERROR R is NULL or has 0 length.

Table 98–21 TRANSLITERATE Function Optional Parameters

Optional Parameter Description
98-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
pad IN RAW DEFAULT NULL)
RETURN RAW;

Pragmas
pragma restrict_references(overlay, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters

Returns

Table 98–24 OVERLAY Function Parameters

Parameters Description

overlay_str Byte-string used to overlay target.

target Byte-string which is to be overlayed.

pos Position in target (numbered from 1) to start overlay.

len The number of target bytes to overlay.

pad Pad byte used when overlay len exceeds overlay length or pos
exceeds target length.

Table 98–25 OVERLAY Function Optional Parameters

Optional Parameter Description

pos 1

len To the length of overlay

pad x’00’

Table 98–26 OVERLAY Function Returns

Return Description

RAW The target byte_string overlayed as specified.
UTL_RAW 98-15

COPIES Function
Errors

COPIES Function
This function returns n copies of r concatenated together.

Syntax
UTL_RAW.COPIES (

r IN RAW,
n IN NUMBER)

RETURN RAW;

Pragmas
pragma restrict_references(copies, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns
This returns the RAW copied n times.

Table 98–27 OVERLAY Function Errors

Error Description

VALUE_ERROR Either:

- Overlay is NULL or has 0 length

- Target is missing or undefined

- Length of target exceeds maximum length of a RAW

- len < 0

- pos < 1

Table 98–28 COPIES Function Parameters

Parameters Description

r RAW to be copied

n Number of times to copy the RAW (must be positive).
98-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Errors

XRANGE Function
This function returns a RAW containing all valid 1-byte encodings in succession,
beginning with the value start_byte and ending with the value end_byte . If
start_byte is greater than end_byte , then the succession of resulting bytes
begins with start_byte , wraps through ’FF’x to ’00’x, and ends at end_byte . If
specified, start_byte and end_byte must be single byte RAWs.

Syntax
UTL_RAW.XRANGE (

start_byte IN RAW DEFAULT NULL,
end_byte IN RAW DEFAULT NULL)

RETURN RAW;

Pragmas
pragma restrict_references(xrange, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and Optional Parameters
start_byte - x’00’
end_byte - x’FF’

Table 98–29 COPIES Function Errors

Error Description

VALUE_ERROR Either:

- r is missing, NULL or 0 length

- n < 1

- Length of result exceeds maximum length of a RAW

Table 98–30 XRANGE Function Parameters

Parameters Description

start_byte Beginning byte-code value of resulting sequence.

end_byte Ending byte-code value of resulting sequence.
UTL_RAW 98-17

REVERSE Function
Returns

REVERSE Function
This function reverses a byte sequence in RAW r from end to end. For example,
x’0102F3’ would be reversed to x’F30201’, and ’xyz’ would be reversed to ’zyx’.The
result length is the same as the input RAW length.

Syntax
UTL_RAW.REVERSE (

r IN RAW)
RETURN RAW;

Pragmas
pragma restrict_references(reverse, WNDS, RNDS, WNPS, RNPS);

Parameters

Returns

Table 98–31 XRANGE Function Returns

Return Description

RAW Containing succession of 1-byte hexadecimal encodings.

Table 98–32 REVERSE Function Parameters

Parameter Description

r RAW to reverse.

Table 98–33 REVERSE Function Returns

Return Description

RAW Containing the "reverse" of r .
98-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Errors

COMPARE Function
This function compares RAW r1 against RAW r2 . If r1 and r2 differ in length, then
the shorter RAW is extended on the right with pad if necessary.

Syntax
UTL_RAW.COMPARE (

r1 IN RAW,
r2 IN RAW,
pad IN RAW DEFAULT NULL)

RETURN NUMBER;

Pragmas
pragma restrict_references(compare, WNDS, RNDS, WNPS, RNPS);

Parameters

Defaults and optional parameters
pad - x’00’

Table 98–34 REVERSE Function Errors

Error Description

VALUE_ERROR R is NULL or has 0 length.

Table 98–35 COMPARE Function Parameters

Parameter Description

r1 1st RAW to be compared, may be NULL or 0 length.

r2 2nd RAW to be compared, may be NULL or 0 length.

pad Byte to extend whichever of r1 or r2 is shorter.
UTL_RAW 98-19

CONVERT Function
Returns

CONVERT Function
This function converts RAW r from character set from_charset to character set
to_charset and returns the resulting RAW.

Both from_charset and to_charset must be supported character sets defined
to the Oracle server.

Syntax
UTL_RAW.CONVERT (

r IN RAW,
to_charset IN VARCHAR2,
from_charset IN VARCHAR2)

RETURN RAW;

Pragmas
pragma restrict_references(convert, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 98–36 COMPARE Function Returns

Return Description

NUMBER Equals 0 if RAW byte strings are both NULL or identical; or,

Equals position (numbered from 1) of the first mismatched byte.

Table 98–37 CONVERT Function Parameters

Parameter Description

r RAW byte-string to be converted.

to_charset Name of Globalization Support character set to which r is
converted.

from_charset Name of Globalization Support character set in which r is supplied.
98-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Returns

Errors

BIT_AND Function
This function performs bitwise logical "and" of the values in RAW r1 with RAW r2
and returns the "anded" result RAW.

If r1 and r2 differ in length, the and operation is terminated after the last byte of the
shorter of the two RAWs, and the unprocessed portion of the longer RAW is
appended to the partial result. The result length equals the longer of the two input
RAWs.

Syntax
UTL_RAW.BIT_AND (

r1 IN RAW,
r2 IN RAW)

RETURN RAW;

Pragmas
pragma restrict_references(bit_and, WNDS, RNDS, WNPS, RNPS);

Table 98–38 CONVERT Function Returns

Return Description

RAW Byte string r converted according to the specified character sets.

Table 98–39 CONVERT Function Errors

Error Description

VALUE_ERROR Either:

- r missing, NULL, or 0 length

- from_charset or to_charset missing, NULL, or 0 length

- from_charset or to_charset names invalid or unsupported
UTL_RAW 98-21

BIT_OR Function
Parameters

Returns

BIT_OR Function
This function performs bitwise logical "or" of the values in RAW r1 with RAW r2 and
returns the or’d result RAW.

If r1 and r2 differ in length, then the "or" operation is terminated after the last byte
of the shorter of the two RAWs, and the unprocessed portion of the longer RAW is
appended to the partial result. The result length equals the longer of the two input
RAWs.

Syntax
UTL_RAW.BIT_OR (

r1 IN RAW,
r2 IN RAW)

RETURN RAW;

Pragmas
pragma restrict_references(bit_or, WNDS, RNDS, WNPS, RNPS);

Table 98–40 BIT_AND Function Parameters

Parameter Description

r1 RAW to "and" with r2 .

r2 RAW to "and" with r1 .

Table 98–41 BIT_AND Function Returns

Return Description

RAW Containing the "and" of r1 and r2 .

NULL Either r1 or r2 input parameter was NULL.
98-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Parameters

Returns

BIT_XOR Function
This function performs bitwise logical "exclusive or" of the values in RAW r1 with
RAW r2 and returns the xor’d result RAW.

If r1 and r2 differ in length, then the "xor" operation is terminated after the last
byte of the shorter of the two RAWs, and the unprocessed portion of the longer RAW
is appended to the partial result. The result length equals the longer of the two
input RAWs.

Syntax
UTL_RAW.BIT_XOR (

r1 IN RAW,
r2 IN RAW)

RETURN RAW;

Pragmas
pragma restrict_references(bit_xor, WNDS, RNDS, WNPS, RNPS);

Table 98–42 BIT_OR Function Parameters

Parameters Description

r1 RAW to "or" with r2 .

r2 RAW to "or" with r1 .

Table 98–43 BIT_OR Function Returns

Return Description

RAW Containing the "or" of r1 and r2 .

NULL Either r1 or r2 input parameter was NULL.
UTL_RAW 98-23

BIT_COMPLEMENT Function
Parameters

Returns

BIT_COMPLEMENT Function
This function performs bitwise logical "complement" of the values in RAW r and
returns the complement’ed result RAW. The result length equals the input RAW r
length.

Syntax
UTL_RAW.BIT_COMPLEMENT (

r IN RAW)
RETURN RAW;

Pragmas
pragma restrict_references(bit_complement, WNDS, RNDS, WNPS, RNPS);

Parameters

Table 98–44 BIT_XOR Function Parameters

Parameter Description

r1 RAW to "xor" with r2 .

r2 RAW to "xor" with r1 .

Table 98–45 BIT_XOR Function Returns

Return Description

RAW Containing the "xor" of r1 and r2 .

NULL If either r1 or r2 input parameter was NULL.

Table 98–46 BIT_COMPLEMENT Function Parameters

Parameter Description

r RAW to perform "complement" operation.
98-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_RAW Subprograms
Returns

Table 98–47 BIT_COMPLEMENT Function Returns

Return Description

RAW The "complement" of r1 .

NULL If r input parameter was NULL.
UTL_RAW 98-25

BIT_COMPLEMENT Function
98-26 Oracle9i Supplied PL/SQL Packages and Types Reference

99

UTL_REF

Oracle8i supports user-defined composite type or object type. Any instance of an
object type is called an object. An object type can be used as the type of a column or
as the type of a table.

In an object table, each row of the table stores an object. You can uniquely identify
an object in an object table with an object identifier.

A reference is a persistent pointer to an object, and each reference can contain an
object identifier. The reference can be an attribute of an object type, or it can be
stored in a column of a table. Given a reference, an object can be retrieved.

The UTL_REF package provides PL/SQL procedures to support reference-based
operations. Unlike SQL, UTL_REF procedures enable you to write generic type
methods without knowing the object table name.

This chapter discusses the following topics:

� Requirements

� Datatypes, Exceptions, and Security for UTL_REF

� Summary of UTL_REF Subprograms
UTL_REF 99-1

Requirements
Requirements
The procedural option is needed to use this package. This package must be created
under SYS (connect/as sysdba). Operations provided by this package are
performed under the current calling user, not under the package owner SYS.

Datatypes, Exceptions, and Security for UTL_REF

Datatypes
An object type is a composite datatype defined by the user or supplied as a library
type. You can create the object type employee_type using the following syntax:

CREATE TYPE employee_type AS OBJECT (
name VARCHAR2(20),
id NUMBER,

member function GET_ID
(name VARCHAR2)

RETURN MEMBER);

The object type employee_type is a user-defined type that contains two attributes,
name and id , and a member function, GET_ID().

You can create an object table using the following SQL syntax:

CREATE TABLE employee_table OF employee_type;

Exceptions
Exceptions can be returned during execution of UTL_REF functions for various
reasons. For example, the following scenarios would result in exceptions:

� The object selected does not exist. This could be because either:

1. The object has been deleted, or the given reference is dangling
(invalid).

2. The object table was dropped or does not exist.

� The object cannot be modified or locked in a serializable transaction. The object
was modified by another transaction after the serializable transaction started.

� You do not have the privilege to select or modify the object. The caller of the
UTL_REF subprogram must have the proper privilege on the object that is being
selected or modified.
99-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Datatypes, Exceptions, and Security for UTL_REF

The UTL_REF package does not define any named exceptions. You may define
exception handling blocks to catch specific exceptions and to handle them
appropriately.

Security
You can use the UTL_REF package from stored PL/SQL procedures/packages on
the server, as well as from client/side PL/SQL code.

When invoked from PL/SQL procedures/packages on the server, UTL_REF verifies
that the invoker has the appropriate privileges to access the object pointed to by the
REF.

Thus, if UTL_REF is defined under user SYS, and user A invokes UTL_REF.SELECT
to select an object from a reference, then user A (the invoker) requires the privileges
to check.

When invoked from client-side PL/SQL code, UTL_REF operates with the
privileges of the client session under which the PL/SQL execution is being done.

Table 99–1 UTL_REF Exceptions

Exceptions Description

errnum == 942 Insufficient privileges.

errnum == 1031 Insufficient privileges.

errnum == 8177 Unable to serialize, if in a serializable transaction.

errnum == 60 Deadlock detected.

errnum == 1403 No data found (if the REF is null, etc.).

Note: This is in contrast to PL/SQL packages/procedures on the
server which operate with definer’s privileges, where the package
owner must have the appropriate privileges to perform the desired
operations.
UTL_REF 99-3

Summary of UTL_REF Subprograms
Summary of UTL_REF Subprograms

SELECT_OBJECT Procedure
This procedure selects an object given its reference. The selected object is retrieved
from the database and its value is put into the PL/SQL variable ’object’. The
semantic of this subprogram is similar to the following SQL statement:

SELECT VALUE(t)
INTO object
FROM object_table t
WHERE REF(t) = reference;

Unlike the above SQL statement, this subprogram does not require you to specify
the object table name where the object resides.

Syntax
UTL_REF.SELECT_OBJECT (

reference IN REF "<typename>",
object IN OUT "<typename>");

Parameters

Table 99–2 UTL_REF Subprograms

Subprogram Description

SELECT_OBJECT Procedure on
page 99-4

Selects an object given a reference.

LOCK_OBJECT Procedure on
page 99-5

Locks an object given a reference.

UPDATE_OBJECT Procedure on
page 99-6

Updates an object given a reference.

DELETE_OBJECT Procedure on
page 99-6

Deletes an object given a reference.

Table 99–3 SELECT_OBJECT Procedure Parameters

Parameter Description

reference Reference to the object to select or retrieve.

object The PL/SQL variable that stores the selected object; this variable
should be of the same object type as the referenced object.
99-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_REF Subprograms
Exceptions
May be raised.

LOCK_OBJECT Procedure
This procedure locks an object given a reference. In addition, this procedure lets the
program select the locked object. The semantic of this subprogram is similar to the
following SQL statement:

SELECT VALUE(t)
INTO object
FROM object_table t
WHERE REF(t) = reference
FOR UPDATE;

Unlike the above SQL statement, this subprogram does not require you to specify
the object table name where the object resides. It is not necessary to lock an object
before updating/deleting it.

Syntax
UTL_REF.LOCK_OBJECT (

reference IN REF "<typename>");

UTL_REF.LOCK_OBJECT (
reference IN REF "<typename>",
object IN OUT "<typename>");

Parameters

Exceptions
May be raised.

Table 99–4 LOCK_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to lock.

object The PL/SQL variable that stores the locked object. This variable
should be of the same object type as the locked object.
UTL_REF 99-5

UPDATE_OBJECT Procedure
UPDATE_OBJECT Procedure
This procedure updates an object given a reference. The referenced object is
updated with the value contained in the PL/SQL variable ’object’. The semantic of
this subprogram is similar to the following SQL statement:

UPDATE object_table t
SET VALUE(t) = object
WHERE REF(t) = reference;

Unlike the above SQL statement, this subprogram does not require you to specify
the object table name where the object resides.

Syntax
UTL_REF.UPDATE_OBJECT (

reference IN REF "<typename>",
object IN "<typename>");

Parameters

Exceptions
May be raised.

DELETE_OBJECT Procedure
This procedure deletes an object given a reference. The semantic of this subprogram
is similar to the following SQL statement:

DELETE FROM object_table
WHERE REF(t) = reference;

Unlike the above SQL statement, this subprogram does not require you to specify
the object table name where the object resides.

Table 99–5 UPDATE_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to update.

object The PL/SQL variable that contains the new value of the object. This
variable should be of the same object type as the object to update.
99-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_REF Subprograms
Syntax
UTL_REF.DELETE_OBJECT (

reference IN REF "<typename>");

Parameters

Exceptions
May be raised.

Example
The following example illustrates usage of the UTL_REF package to implement this
scenario: if an employee of a company changes their address, their manager should
be notified.

... declarations of Address_t and others...

CREATE OR REPLACE TYPE Person_t (
name VARCHAR2(64),
gender CHAR(1),
address Address_t,
MEMBER PROCEDURE setAddress(addr IN Address_t)

);

CREATE OR REPLACE TYPE BODY Person_t (
MEMBER PROCEDURE setAddress(addr IN Address_t) IS
BEGIN

address := addr;
END;

);

CREATE OR REPLACE TYPE Employee_t (

Under Person_t : Simulate implementation of inheritance using a REF to Person_
t and delegation of setAddress to it.

thePerson REF Person_t,
empno NUMBER(5),

Table 99–6 DELETE_OBJECT Procedure Parameters

Parameter Description

reference Reference of the object to delete.
UTL_REF 99-7

DELETE_OBJECT Procedure
deptREF Department_t,
mgrREF Employee_t,
reminders StringArray_t,
MEMBER PROCEDURE setAddress(addr IN Address_t),
MEMBER procedure addReminder(reminder VARCHAR2);

);

CREATE TYPE BODY Employee_t (
MEMBER PROCEDURE setAddress(addr IN Address_t) IS

myMgr Employee_t;
meAsPerson Person_t;

BEGIN

Update the address by delegating the responsibility to thePerson . Lock the Person
object from the reference, and also select it:

UTL_REF.LOCK_OBJECT(thePerson, meAsPerson);
meAsPerson.setAddress(addr);

Delegate to thePerson :

UTL_REF.UPDATE_OBJECT(thePerson, meAsPerson);
if mgr is NOT NULL THEN

Give the manager a reminder:

UTL_REF.LOCK_OBJECT(mgr);
UTL_REF.SELECT_OBJECT(mgr, myMgr);
myMgr.addReminder
(’Update address in the employee directory for’ ||
thePerson.name || ’, new address: ’ || addr.asString);
UTL_REF.UPDATE_OBJECT(mgr, myMgr);

END IF;
EXCEPTION

WHEN OTHERS THEN
errnum := SQLCODE;
errmsg := SUBSTR(SQLERRM, 1, 200);
99-8 Oracle9i Supplied PL/SQL Packages and Types Reference

100

UTL_SMTP

UTL_SMTP is designed for sending e-mail over Simple Mail Transfer Protocol
(SMTP). It does not have the functionality to implement an SMTP server for mail
clients to send e-mail using SMTP.

Many interfaces to the SMTP package appear as both a function and a procedure.
The functional form returns the reply from the server for processing by the client.
The procedural form discards the reply but raises an exception if the reply indicates
a transient (400-range reply code) or permanent error (500-range reply code).

Note that the original SMTP protocol communicates using 7-bit ASCII. Using UTL_
SMTP, all text data (in other words, those in VARCHAR2) will be converted to
US7ASCII before it is sent over the wire to the server. Some implementations of
SMTP servers that support SMTP extension 8BITMIME [RFC1652] support full 8-bit
communication between client and server.

The body of the DATA command may be transferred in full 8 bits, but the rest of the
SMTP command and response should be in 7 bits. When the target SMTP server
supports 8BITMIME extension, users of multibyte databases may convert their
non-US7ASCII, multibyte VARCHAR2 data to RAW and use the write_raw_data()
API to send multibyte data using 8-bit MIME encoding.

UTL_SMTP provides for SMTP communication as specified in RFC821, but does not
provide an API to format the content of the message according to RFC 822 (for
example, setting the subject of an electronic mail).You must format the message
appropriately.

This chapter discusses the following topics:

� Exceptions, Limitations, and Reply Codes

� Summary of UTL_SMTP Subprograms

� Example
UTL_SMTP 100-1

Exceptions, Limitations, and Reply Codes
Exceptions, Limitations, and Reply Codes

Exceptions
Table 100–1 lists the exceptions that can be raised by the API of the UTL_SMTP
package. The network error is transferred to a reply code of 421- service not
available.

Table 100–1 UTL_SMTP Exceptions

Limitations
No limitation or range-checking is imposed by the API. However, you should be
aware of the following size limitations on various elements of SMTP. Sending data
that exceed these limits may result in errors returned by the server.

Note : RFC documents are "Request for Comments" documents
that describe proposed standards for public review on the Internet.
For the actual RFC documents, please refer to:

http://www.ietf.org/rfc/

Exception Description

INVALID_OPERATION Raised when an invalid operation is made. In other words, calling API other than
write_data(), write_raw_data() or close_data() after open_data() is
called, or calling write_data(), write_raw_data() or close_data() with-
out first calling open_data().

TRANSIENT_ERROR Raised when receiving a reply code in 400 range.

PERMANENT_ERROR Raised when receiving a reply code in 500 range.

Table 100–2 SMTP Size Limitation

Element Size Limitation

user The maximum total length of a user name is 64 characters.

domain The maximum total length of a domain name or number is 64
characters.

path The maximum total length of a reverse-path or forward-path is
256 characters (including the punctuation and element
separators).
100-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Exceptions, Limitations, and Reply Codes
Reply Codes
The following is a list of the SMTP reply codes.

command line The maximum total length of a command line including the
command word and the <CRLF> is 512 characters.

reply line The maximum total length of a reply line including the reply
code and the <CRLF> is 512 characters.

text line The maximum total length of a text line including the <CRLF>
is 1000 characters (but not counting the leading dot duplicated
for transparency).

recipients buffer The maximum total number of recipients that must be buffered
is 100 recipients.

Table 100–3 SMTP Reply Codes

Reply Code Meaning

211 System status, or system help reply

214 Help message [Information on how to use the receiver or the meaning
of a particular non-standard command; this reply is useful only to the
human user]

220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>

252 OK, pending messages for node <node> started. Cannot VRFY user
(e.g., info is not local), but will take message for this user and attempt
delivery.

253 OK, <messages> pending messages for node <node> started

354 Start mail input; end with <CRLF>.<CRLF>

355 Octet-offset is the transaction offset

421 <domain> Service not available, closing transmission channel (This may
be a reply to any command if the service knows it must shut down.)

Table 100–2 SMTP Size Limitation

Element Size Limitation
UTL_SMTP 100-3

Exceptions, Limitations, and Reply Codes
450 Requested mail action not taken: mailbox unavailable [for example,
mailbox busy]

451 Requested action aborted: local error in processing

452 Requested action not taken: insufficient system storage

453 You have no mail.

454 TLS not available due to temporary reason. Encryption required for
requested authentication mechanism.

458 Unable to queue messages for node <node>

459 Node <node> not allowed: reason

500 Syntax error, command unrecognized (This may include errors such as
command line too long.)

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

504 Command parameter not implemented

521 <Machine> does not accept mail.

530 Must issue a STARTTLS command first. Encryption required for
requested authentication mechanism.

534 Authentication mechanism is too weak.

538 Encryption required for requested authentication mechanism.

550 Requested action not taken: mailbox unavailable [for , mailbox not
found, no access]

551 User not local; please try <forward-path>

552 Requested mail action aborted: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed [for example,
mailbox syntax incorrect]

554 Transaction failed

Table 100–3 SMTP Reply Codes

Reply Code Meaning
100-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
Summary of UTL_SMTP Subprograms

Table 100–4 UTL_SMTP Subprograms

Subprogram Description

connection Record Type on
page 100-6

This is a PL/SQL record type used to represent a SMTP
connection.

reply, replies Record Types
on page 100-7

PL/SQL record types used to represent an SMTP reply line.

open_connection Function
on page 100-7

Opens a connection to an SMTP server.

command(), command_
replies() Functions on
page 100-8

Performs a generic SMTP command.

helo Function on
page 100-9

Performs initial handshaking with SMTP server after
connecting.

ehlo Function on
page 100-10

Performs initial handshaking with SMTP server after
connecting, with extended information returned.

mail Function on
page 100-11

Initiates a mail transaction with the server. The destination is a
mailbox.

rcpt Function on
page 100-12

Specifies the recipient of an e-mail message.

data Function on
page 100-13

Specifies the body of an e-mail message.

open_data(), write_data(),
write_raw_data(), close_
data() Functions on
page 100-14

Provide more fine-grain control to the data() API.

rset Function on
page 100-15

Aborts the current mail transaction.

vrfy Function on
page 100-16

Verifies the validity of a destination e-mail address.

noop() Function on
page 100-17

The null command.

quit Function on
page 100-18

Terminates an SMTP session and disconnects from the server.
UTL_SMTP 100-5

connection Record Type
connection Record Type
This is a PL/SQL record type used to represent an SMTP connection.

Syntax
TYPE connection IS RECORD (

host VARCHAR2(255), -- remote host name
port PLS_INTEGER, -- remote port number
tx_timeout PLS_INTEGER, -- Transfer time-out (in seconds)
private_tcp_con utl_tcp.connection, -- private, for implementation use
private_state PLS_INTEGER -- private, for implementation use

);

Fields

Usage Notes
The read-only fields in a connection record are used to return information about the
SMTP connection after the connection is successfully made with open_
connection() . Changing the values of these fields has no effect on the
connection. The fields private_xxx are for implementation use only. You should
not modify these fields.

Table 100–5 connection Record Type Fields

Field Description

host The name of the remote host when connection is established.
NULL when no connection is established.

port The port number of the remote SMTP server connected. NULL
when no connection is established.

tx_timeout The time in seconds that the UTL_SMTP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent
into the network without being blocked. 0 indicates not to wait
at all. NULL indicates to wait forever.

private_tcp_con Private, for implementation use only. You should not modify
this field.

private_state Private, for implementation use only. You should not modify
this field.
100-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
reply, replies Record Types
These are PL/SQL record types used to represent an SMTP reply line. Each SMTP
reply line consists of a reply code followed by a text message. While a single reply
line is expected for most SMTP commands, some SMTP commands expect multiple
reply lines. For those situations, a PL/SQL table of reply records is used to represent
multiple reply lines.

Syntax
TYPE reply IS RECORD (

code PLS_INTEGER, -- 3-digit reply code
text VARCHAR2(508) -- text message

);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER; -- multiple reply
lines

Fields

open_connection Function
This function opens a connection to an SMTP server.

Syntax
UTL_SMTP.OPEN_CONNECTION (

host IN VARCHAR2,
port IN PLS_INTEGER DEFAULT 25,
c OUT connection,
tx_timeout IN PLS_INTEGER DEFAULT NULL)

RETURN reply;
UTL_SMTP.OPEN_+CONNECTION (

host IN VARCHAR2,
port IN PLS_INTEGER DEFAULT 25,
tx_timeout IN PLS_INTEGER DEFAULT NULL)

RETURN connection;

Table 100–6 reply, replies Record Type Fields

Field Description

code The 3-digit reply code.

text The text message of the reply.
UTL_SMTP 100-7

command(), command_replies() Functions
Parameters

Usage Notes
The expected response from the server is a message beginning with status code 220.

The version of open_connection() API that returns utl_smtp.connection
record is actually the procedure version of open_connection that checks the
reply code returned by an SMTP server when the connection is first established.

A timeout on the write operations feature is not supported in the current release of
this package.

command(), command_replies() Functions
These functions perform generic SMTP commands.

Syntax
UTL_SMTP.COMMAND (

c IN connection,
cmd IN VARCHAR2,
arg IN VARCHAR2 DEFAULT NULL)

RETURN reply;
UTL_SMTP.COMMAND (

c IN connection,
cmd IN VARCHAR2,
arg IN ARCHAR2 DEFAULT NULL);

UTL_SMTP.COMMAND_REPLIES (
c IN connection,

Table 100–7 open_connection Function Parameters

Parameter Description

host (IN) The name of the SMTP server host

port (IN) The port number on which SMTP server is listening (usually
25).

tx_timeout (IN) The time in seconds that the UTL_SMTP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent
into the network without being blocked. 0 indicates not to wait
at all. NULL indicates to wait forever.
100-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
cmd IN VARCHAR2,
arg IN VARCHAR2 DEFAULT NULL)

RETURN replies;

Parameters

Usage Notes
These are the APIs used to invoke generic SMTP commands. Use command() if
only a single reply line is expected. Use command_replies() if multiple reply
lines are expected (in other words, EXPN or HELP).

For command() , if multiple reply lines are returned from the SMTP server, it
returns the last reply line only.

helo Function
This function performs initial handshaking with SMTP server after connecting.

Syntax
UTL_SMTP.HELO (

c IN NOCOPY connection, domain IN NOCOPY)
RETURN reply;
UTL_SMTP.HELO (

c IN NOCOPY connection, domain IN NOCOPY);

Parameters

Table 100–8 command (), command_replies () Function Parameters

Parameter Description

c (IN) The SMTP connection.

cmd (IN) The SMTP command to send to the server.

arg (IN) The optional argument to the SMTP argument. A space will be
inserted between cmd and arg .

Table 100–9 helo Function Parameters

Parameter Description

c (IN NOCOPY) The SMTP connection.
UTL_SMTP 100-9

ehlo Function
Usage Notes
RFC 821 specifies that the client must identify itself to the server after connecting.
This routine performs that identification. The connection must have been opened
via a call to open_connection() before calling this routine.

The expected response from the server is a message beginning with status code 250.

Related Functions
ehlo()

ehlo Function
This function performs initial handshaking with SMTP server after connecting, with
extended information returned.

Syntax
UTL_SMTP.EHLO (

c IN OUT NOCOPY connection,
domain IN NOCOPY)

RETURN replies;
UTL_SMTP.EHLO (

c IN OUT NOCOPY connection,
domain IN NOCOPY);

Parameters

domain (IN NOCOPY) The domain name of the local (sending) host. Used for
identification purposes.

Table 100–10 ehlo Function Parameters

Parameter Description

c (IN NOCOPY) The SMTP connection.

domain (IN NOCOPY) The domain name of the local (sending) host. Used for
identification purposes.

Table 100–9 helo Function Parameters

Parameter Description
100-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
Usage Notes
The ehlo() interface is identical to helo(), except that it allows the server to
return more descriptive information about its configuration. [RFC1869] specifies the
format of the information returned, which the PL/SQL application can retrieve
using the functional form of this call. For compatibility with helo(), each line of
text returned by the server begins with status code 250.

Related Functions
helo()

mail Function
This function initiates a mail transaction with the server. The destination is a
mailbox.

Syntax
UTL_SMTP.MAIL (

c IN OUT NOCOPY connection,
sender IN OUT NOCOPY,
parameters IN OUT NOCOPY)

RETURN reply;
UTL_SMTP.MAIL (

c IN OUT NOCOPY connection,
sender IN OUT NOCOPY,
parameters IN OUT NOCOPY);

Parameters

Table 100–11 Mail Function Parameters

Parameter Description

c (IN NOCOPY) The SMTP connection.

sender (IN OUT
NOCOPY)

The e-mail address of the user sending the message.

parameters (IN OUT
NOCOPY)

The additional parameters to MAIL command as defined in Section 6
of [RFC1869]. It should follow the format of “XXX=XXX
(XXX=XXX)”.
UTL_SMTP 100-11

rcpt Function
Usage Notes
This command does not send the message; it simply begins its preparation. It must
be followed by calls to rcpt() and data() to complete the transaction. The
connection to the SMTP server must be open and a helo() or ehlo() command
must have already been sent.

The expected response from the server is a message beginning with status code 250.

rcpt Function
This function specifies the recipient of an e-mail message.

Syntax
UTL_SMTP.RCPT (

c IN OUT NOCOPY connection,
recipient IN OUT NOCOPY,
parameters IN OUT NOCOPY)

RETURN reply;
UTL_SMTP.RCPT (

c IN OUT NOCOPY connection
recipient IN OUT NOCOPY,
parameters IN OUT NOCOPY);

Usage Notes
To send a message to multiple recipients, call this routine multiple times. Each
invocation schedules delivery to a single e-mail address. The message transaction
must have been begun by a prior call to mail() , and the connection to the mail
server must have been opened and initialized by prior calls to open_
connection() and helo() or ehlo() , respectively.

Table 100–12 rcpt Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.

recipient (IN OUT
NOCOPY)

The e-mail address of the user to which the message is being
sent.

parameters (IN OUT
NOCOPY)

The additional parameters to RCPT command as defined in
Section 6 of [RFC1869]. It should follow the format of
“XXX=XXX (XXX=XXX)”.
100-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
The expected response from the server is a message beginning with status code 250
or 251.

data Function
This function specifies the body of an e-mail message.

Syntax
UTL_SMTP.DATA (

c IN OUT NOCOPY connection
body IN OUT NOCOPY)

RETURN reply;
UTL_SMTP.DATA (

c IN OUT NOCOPY connection
body IN OUT NOCOPY);

Parameters

Usage Notes
The application must ensure that the contents of the body parameter conform to the
MIME(RFC822) specification. The data() routine will terminate the message with
a <CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as
required by RFC821. It will also translate any sequence of <CR><LF>.<CR><LF>
(single period) in body to <CR><LF>..<CR><LF> (double period). This conversion
provides the transparency as described in Section 4.5.2 of RFC821.

The data() call should be called only after open_connection() , helo() /
ehlo() , mail() and rcpt() have been called. The connection to the SMTP
server must be open, and a mail transaction must be active when this routine is
called.

The expected response from the server is a message beginning with status code 250.
The 354 response received from the initial DATA command will not be returned to
the caller.

Table 100–13 data Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP Connection.

body (IN OUT NOCOPY) The text of the message to be sent, including headers, in
[RFC822] format.
UTL_SMTP 100-13

open_data(), write_data(), write_raw_data(), close_data() Functions
open_data(), write_data(), write_raw_data(), close_data() Functions
These APIs provide more fine-grain control to the data() API; in other words, to
the SMTP DATA operation. open_data() sends the DATA command. After that,
write_data() and write_raw_data() write a portion of the e-mail message. A
repeat call to write_data() and write_raw_data() appends data to the e-mail
message. The close_data() call ends the e-mail message by sending the
sequence <CR><LF>.<CR><LF> (a single period at the beginning of a line).

Syntax
UTL_SMTP.OPEN_DATA (

c IN OUT NOCOPY connection)
RETURN reply;
UTL_SMTP.OPEN_DATA (

c IN OUT NOCOPY connection);
UTL_SMTP.WRITE_DATA (

c IN OUT NOCOPY connection,
data IN OUT NOCOPY);

UTL_SMTP.WRITE_RAW_DATA (
c IN OUT NOCOPY connection
data IN OUT NOCOPY);

UTL_SMTP.CLOSE_DATA (
c IN OUT NOCOPY connection)

RETURN reply;
UTL_SMTP.CLOSE_DATA (

c IN OUT NOCOPY connection);

Parameters

Usage Notes
The calls to open_data() , write_data() , write_raw_data() and close_
data() must be made in the right order. A program calls open_data() to send
the DATA command to the SMTP server. After that, it can call write_data() or

Table 100–14 open_data(), write_data(), write_raw_data(), close_data() Function
Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.

data (IN OUT NOCOPY) The portion of the text of the message to be sent, including
headers, in [RFC822] format.
100-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
write_raw_data() repeatedly to send the actual data. The data is terminated by
calling close_data() . After open_data() is called, the only APIs that can be
called are write_data() , write_raw_data(), or close_data() . A call to
other APIs will result in an INVALID_OPERATION exception being raised.

The application must ensure that the contents of the body parameter conform to the
MIME(RFC822) specification. The data() routine will terminate the message with
a <CR><LF>.<CR><LF> sequence (a single period at the beginning of a line), as
required by RFC821. It will also translate any sequence of <CR><LF>.<CR><LF>
(single period) in the body to <CR><LF>..<CR><LF> (double period). This
conversion provides the transparency as described in Section 4.5.2 of RFC821.

 Notice that this conversion is not bullet-proof. Consider this code fragment:

utl_smtp.write_data(‘some message.’ || chr(13) || chr(10));
utl_smtp.write_data(‘.’ || chr(13) || chr(10));

Since the sequence <CR><LF>.<CR><LF> is split between two calls to write_
data() , the implementation of write_data() will not detect the presence of the
data-terminator sequence, and therefore, will not perform the translation. It will be
the responsibility of the user to handle such a situation, or it may result in
premature termination of the message data.

XXX_data() should be called only after open_connection() , helo() /
ehlo() , mail() , and rcpt() have been called. The connection to the SMTP
server must be open and a mail transaction must be active when this routine is
called.

Note that there is no function form of write_data() because the SMTP server
does not respond until the data-terminator is sent during the call to close_
data() .

Text (VARCHAR2) data sent using write_data() API is converted to US7ASCII
before it is sent. If the text contains multibyte characters, each multibyte character in
the text that cannot be converted to US7ASCII is replaced by a ‘?’ character. If
8BITMIME extension is negotiated with the SMTP server using the EHLO() API,
multibyte VARCHAR2 data can be sent by first converting the text to RAW using the
UTL_RAW package, and then sending the RAW data using write_raw_data() .

rset Function
This function aborts the current mail transaction.
UTL_SMTP 100-15

vrfy Function
Syntax
UTL_SMTP.RSET (

c IN OUT NOCOPY connection)
RETURN reply;
UTL_SMTP.RSET (

c IN OUT NOCOPY connection);

Parameters

Usage Notes
This command allows the client to abandon a mail message it was in the process of
composing. No mail will be sent. The client can call rset() at any time after the
connection to the SMTP server has been opened via open_connection(). The
server will always respond to RSET with a message beginning with status code 250.

Related Functions
quit()

vrfy Function
This function verifies the validity of a destination e-mail address.

Syntax
UTL_SMTP.VRFY (

c IN OUT NOCOPY connection
recipient IN OUT NOCOPY)

RETURN reply;

Parameters

Table 100–15 rset Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.

Table 100–16 vrfy Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.
100-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_SMTP Subprograms
Usage Notes
The server attempts to resolve the destination address recipient. If successful, it
returns the recipient’s full name and fully qualified mailbox path. The connection to
the server must have already been established via open_connection() and
helo() / ehlo() before making this request.

Successful verification returns one or more lines beginning with status code 250 or
251.

Related Functions
expn()

noop() Function
The null command.

Syntax
UTL_SMTP.NOOP (

c IN OUT NOCOPY connection)
RETURN VARCHAR2;
UTL_SMTP.NOOP (

c IN OUT NOCOPY connection);

Parameter

Usage Notes
This command has no effect except to elicit a successful reply from the server. It can
be issued at any time after the connection to the server has been established with

recipient (IN OUT
NOCOPY)

The e-mail address to be verified.

Table 100–17 noop Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.

Table 100–16 vrfy Function Parameters

Parameter Description
UTL_SMTP 100-17

quit Function
open_connection() . The noop() command can be used to verify that the
server is still connected and is listening properly.

This command will always reply with a single line beginning with status code 250.

quit Function
This function terminates an SMTP session and disconnects from the server.

Syntax
UTL_SMTP.QUIT (

c IN OUT NOCOPY connection)
RETURN VARCHAR2;

Parameter

Usage Notes
The quit() command informs the SMTP server of the client’s intent to terminate
the session. It then closes the connection established by open_connection() ,
which must have been called before executing this command. If a mail transaction is
in progress when quit() is issued, it is abandoned in the same manner as
rset().

The function form of this command returns a single line beginning with the status
code 221 on successful termination. In all cases, the connection to the SMTP server
is closed. The fields remote_host and remote_port of c are reset.

Related Functions
rset()

Example
The following example illustrates how UTL_SMTP is used by an application to send
e-mail. The application connects to an SMTP server at port 25 and sends a simple
text message.

Table 100–18 quit Function Parameters

Parameter Description

c (IN OUT NOCOPY) The SMTP connection.
100-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Example
DECLARE
c utl_smtp.connection;

PROCEDURE send_header(name IN VARCHAR2, header IN VARCHAR2) AS
BEGIN

utl_smtp.write_data(c, name || ': ' || header || utl_tcp.CRLF);
END;

BEGIN
c := utl_smtp.open_connection('smtp-server.acme.com');
utl_smtp.helo(c, 'foo.com');
utl_smtp.mail(c, 'sender@foo.com');
utl_smtp.rcpt(c, 'recipient@foo.com');
utl_smtp.open_data(c);
send_header('From', '"Sender" <sender@foo.com>');
send_header('To', '"Recipient" <recipient@foo.com>');
send_header('Subject', 'Hello');
utl_smtp.write_data(c, utl_tcp.CRLF || 'Hello, world!');
utl_smtp.close_data(c);
utl_smtp.quit(c);

EXCEPTION
WHEN utl_smtp.transient_error OR utl_smtp.permanent_error THEN

BEGIN
utl_smtp.quit(c);

EXCEPTION
WHEN utl_smtp.transient_error OR utl_smtp.permanent_error THEN

NULL; -- When the SMTP server is down or unavailable, we don't have
-- a connection to the server. The quit call will raise an
-- exception that we can ignore.

END;
raise_application_error(-20000,

'Failed to send mail due to the following error: ' || sqlerrm);
END;
UTL_SMTP 100-19

Example
100-20 Oracle9i Supplied PL/SQL Packages and Types Reference

101

UTL_TCP

With the UTL_TCP package and its procedures and functions, PL/SQL applications
can communicate with external TCP/IP-based servers using TCP/IP. Because many
Internet application protocols are based on TCP/IP, this package is useful to
PL/SQL applications that use Internet protocols and e-mail.

The UTL_TCP package provides TCP/IP client-side access functionality in PL/SQL.
The API provided in the package only allows connections to be initiated by the
PL/SQL program. It does not allow the PL/SQL program to accept connections
initiated outside the program.

This chapter discusses the following topics:

� Exceptions

� Example

� Summary of UTL_TCP Subprograms
UTL_TCP 101-1

Exceptions
Exceptions
The exceptions raised by the TCP/IP package are listed in Table 101–1.

Example
The following code example illustrates how the TCP/IP package can be used to
retrieve a Web page over HTTP. It connects to a Web server listening at port 80
(standard port for HTTP) and requests the root document.

DECLARE
c utl_tcp.connection; -- TCP/IP connection to the Web server
ret_val pls_integer;

BEGIN
c := utl_tcp.open_connection(remote_host => ‘www.acme.com’,

remote_port => 80,
charset => ’US7ASCII’); -- open connection

ret_val := utl_tcp.write_line(c, ‘GET / HTTP/1.0’); -- send HTTP request
ret_val := utl_tcp.write_line(c);
BEGIN

LOOP
dbms_output.put_line(utl_tcp.get_line(c, TRUE)); -- read result

END LOOP;
EXCEPTION

WHEN utl_tcp.end_of_input THEN
NULL; -- end of input

END;
utl_tcp.close_connection(c);

END;

Table 101–1 TCP/IP Exceptions

Exception Description

BUFFER_TOO_SMALL Buffer is too small for input that requires look-ahead.

END_OF_INPUT Raised when no more data is available to read from the con-
nection.

NETWORK_ERROR Generic network error.

BAD_ARGUMENT Bad argument passed in an API call (for example, a negative
buffer size).

TRANSFER_TIMEOUT No data is read and a read time-out occurred.

PARTIAL_MULTIBYTE_
CHAR

No complete character is read and a partial multibyte charac-
ter is found at the end of the input.
101-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Example
The following code example illustrates how the TCP/IP package can be used by an
application to send e-mail (also known as email from PL/SQL). The application
connects to an SMTP server at port 25 and sends a simple text message.

PROCEDURE send_mail (sender IN VARCHAR2,
recipient IN VARCHAR2,

message IN VARCHAR2)
IS

mailhost VARCHAR2(30) := 'mailhost.mydomain.com';
smtp_error EXCEPTION;
mail_conn utl_tcp.connection;
PROCEDURE smtp_command(command IN VARCHAR2,

ok IN VARCHAR2 DEFAULT '250')
IS

response varchar2(3);
len pls_integer;

BEGIN
len := utl_tcp.write_line(mail_conn, command);
response := substr(utl_tcp.get_line(mail_conn), 1, 3);
IF (response <> ok) THEN

RAISE smtp_error;
END IF;

END;

BEGIN
mail_conn := utl_tcp.open_connection(remote_host => mailhost,

remote_port => 25,
charset => ’US7ASCII’);

smtp_command('HELO ' || mailhost);
smtp_command('MAIL FROM: ' || sender);
smtp_command('RCPT TO: ' || recipient);
smtp_command('DATA', '354');
smtp_command(message);
smtp_command('QUIT', '221');
utl_tcp.close_connection(mail_conn);

EXCEPTION
WHEN OTHERS THEN

-- Handle the error
END;
UTL_TCP 101-3

Summary of UTL_TCP Subprograms
Summary of UTL_TCP Subprograms

connection
This is a PL/SQL record type used to represent a TCP/IP connection.

Table 101–2 UTL_TCP Subprograms

Subprogram Description

connection on page 101-4 A PL/SQL record type used to represent a TCP/IP connection.

CRLF on page 101-6 The character sequence carriage-return line-feed. It is the
newline sequence commonly used many communication
standards.

open_connection Function
on page 101-6

Opens a TCP/IP connection to a specified service.

available Function on
page 101-9

Determines the number of bytes available for reading from a
TCP/IP connection.

read_raw Function on
page 101-10

Receives binary data from a service on an open connection.

write_raw Function on
page 101-11

Transmits a binary message to a service on an open connection.

read_text Function on
page 101-12

Receives text data from a service on an open connection.

write_text Function on
page 101-14

Transmits a text message to a service on an open connection.

read_line Function on
page 101-15

Receives a text line from a service on an open connection.

write_line Function on
page 101-16

Transmits a text line to a service on an open connection.

get_raw(), get_text(), get_
line() Functions on
page 101-17

Convenient forms of the read functions, which return the data
read instead of the amount of data read.

flush Procedure on
page 101-18

Transmits all data in the output buffer, if a buffer is used, to the
server immediately.

close_connection
Procedure on page 101-18

Closes an open TCP/IP connection.

close_all_connections
Procedure on page 101-19

Closes all open TCP/IP connections.
101-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
Syntax
TYPE connection IS RECORD (

remote_host VARCHAR2(255), -- remote host name
remote_port PLS_INTEGER, -- remote port number
local_host VARCHAR2(255), -- local host name
local_port PLS_INTEGER, -- local port number
charset VARCHAR2(30), -- character set for on-the-wire communication
newline VARCHAR2(2), -- newline character sequence
tx_timeout PLS_INTEGER, -- transfer time-out value (in seconds)
private_sd PLS_INTEGER, -- for internal use
);

Fields

Table 101–3 connection Record Type Fields

Field Description

remote_host The name of the remote host when connection is established.
NULL when no connection is established.

remote_port The port number of the remote host connected. NULL when no
connection is established.

local_host The name of the local host used to establish the connection.
NULL when no connection is established.

local_port The port number of the local host used to establish the
connection. NULL when no connection is established.

charset The on-the-wire character set. Since text messages in the
database may be encoded in a character set that is different
from the one expected on the wire (that is, the character set
specified by the communication protocol, or the one stipulated
by the other end of the communication), text messages in the
database will be converted to and from the on-the-wire
character set as they are sent and received on the network.

newline The newline character sequence. This newline character
sequence is appended to the text line sent by write_line() API.

tx_timeout A time in seconds that the UTL_TCP package waits before
giving up in a read or write operation in this connection. In
read operations, this package gives up if no data is available
for reading immediately. In write operations, this package
gives up if the output buffer is full and no data is to be sent in
the network without being blocked. Zero (0) indicates not to
wait at all. NULL indicates to wait forever.
UTL_TCP 101-5

CRLF
Usage Notes
The fields in a connection record are used to return information about the
connection, which is often made using open_connection() . Changing the values
of those fields has no effect on the connection. The fields private_XXXX are for
implementation use only. You should not modify the values.

In the current release of the UTL_TCP package, the parameters local_host and
local_port are ignored when open_connection makes a TCP/IP connection. It
does not attempt to use the specified local host and port number when the
connection is made. The local_host and local_port fields will not be set in the
connection record returned by the function.

Time-out on write operations is not supported in the current release of the UTL_TCP
package.

CRLF
The character sequence carriage-return line-feed. It is the newline sequence
commonly used many communication standards.

Syntax
CRLF varchar2(10);

Usage Notes
This package variable defines the newline character sequence commonly used in
many Internet protocols. This is the default value of the newline character sequence
for write_line(), specified when a connection is opened. While such protocols
use <CR><LF> to denote a new line, some implementations may choose to use just
line-feed to denote a new line. In such cases, users can specify a different newline
character sequence when a connection is opened.

This CRLF package variable is intended to be a constant that denotes the carriage-
return line-feed character sequence. Do not modify its value. Modification may
result in errors in other PL/SQL applications.

open_connection Function
This function opens a TCP/IP connection to a specified service.

Syntax
UTL_TCP.OPEN_CONNECTION (remote_host IN VARCHAR2,
101-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
remote_port IN PLS_INTEGER,
local_host IN VARCHAR2 DEFAULT NULL,
local_port IN PLS_INTEGER DEFAULT NULL,
in_buffer_size IN PLS_INTEGER DEFAULT NULL,
out_buffer_size IN PLS_INTEGER DEFAULT NULL,
charset IN VARCHAR2 DEFAULT NULL,
newline IN VARCHAR2 DEFAULT CRLF,
tx_timeout IN PLS_INTEGER DEFAULT NULL)
RETURN connection;

Parameters

Table 101–4 open_connection Function Parameters

Parameter Description

remote_host (IN) The name of the host providing the service. When remote_
host is NULL, it connects to the local host.

remote_port (IN) The port number on which the service is listening for
connections.

local_host (IN) The name of the host providing the service. NULL means don’t
care.

local_port (IN) The port number on which the service is listening for
connections. NULL means don’t care.

in_buffer_size (IN) The size of input buffer. The use of an input buffer can speed
up execution performance in receiving data from the server.
The appropriate size of the buffer depends on the flow of data
between the client and the server, and the network condition.
A 0 value means no buffer should be used. A NULL value
means the caller does not care if a buffer is used or not. The
maximum size of the input buffer is 32767 bytes.

out_buffer_size (IN) The size of output buffer. The use of an output buffer can
speed up execution performance in sending data to the server.
The appropriate size of buffer depends on the flow of data
between the client and the server, and the network condition.
A 0 value means no buffer should be used. A NULL value
means the caller does not care if a buffer is used or not. The
maximum size of the output buffer is 32767 bytes.
UTL_TCP 101-7

open_connection Function
Usage Notes
Note that connections opened by this UTL_TCP package can remain open and be
passed from one database call to another in a shared server configuration. However,
the connection must be closed explicitly. The connection will remain open when the
PL/SQL record variable that stores the connection goes out-of-scope in the PL/SQL
program. Failing to close unwanted connections may result in unnecessary tying up
of local and remote system resources.

The parameters local_host and local_port are ignored currently when open_
connection makes a TCP/IP connection. It does not attempt to use the specified
local host and port number when the connection is made.

In the current release of the UTL_TCP package, the parameters local_host and
local_port are ignored when open_connection makes a TCP/IP connection. It
does not attempt to use the specified local host and port number when the
connection is made. The local_host and local_port fields will not be set in
the connection record returned by the function.

Time-out on write operations is not supported in the current release of the UTL_
TCP package.

charset (IN) The on-the-wire character set. Since text messages in the
database may be encoded in a character set that is different
from the one expected on the wire (that is, the character set
specified by the communication protocol, or the one stipulated
by the other end of the communication), text messages in the
database will be converted to and from the on-the-wire
character set as they are sent and received on the network
using read_text(), read_line(), write_text() and
write_line(). Set this parameter to NULL when no
conversion is needed.

newline (IN) The newline character sequence. This newline character
sequence is appended to the text line sent by write_line()
API.

tx_timeout A time in seconds that the UTL_TCP package should wait
before giving up in a read or write operations in this
connection. In read operations, this package gives up if no data
is available for reading immediately. In write operations, this
package gives up if the output buffer is full and no data is to be
sent in the network without being blocked. Zero (0) indicates
not to wait at all. NULL indicates to wait forever.

Table 101–4 open_connection Function Parameters

Parameter Description
101-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
Related Functions
close_connection(), close_all_connections()

available Function
This function determines the number of bytes available for reading from a TCP/IP
connection. It is the number of bytes that can be read immediately without
blocking. Determines if data is ready to be read from the connection.

Syntax
UTL_TCP.AVAILABLE (

c IN OUT NOCOPY connection,
timeout IN PLS_INTEGER DEFAULT 0)

RETURN PLS_INTEGER;

Parameters

Usage Notes
The connection must have already been opened through a call to open_
connection() . Users may use this API to determine if data is available to be read
before calling the read API so that the program will not be blocked because data is
not ready to be read from the input.

The number of bytes available for reading returned by this function may less than
than what is actually available. On some platforms, this function may only return 1,
to indicate that some data is available. If you are concerned about the portability of
your application, assume that this function returns a positive value when data is
available for reading, and 0 when no data is available. The following example
illustrates using this function in a portable manner:

DECLARE
c utl_tcp.connection

Table 101–5 Available Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to determine the amount of data that is
available to be read from.

timeout A time in seconds to wait before giving up and reporting that
no data is available. Zero (0) indicates not to wait at all. NULL
indicates to wait forever.
UTL_TCP 101-9

read_raw Function
data VARCHAR2(256);
len PLS_INTEGER;

BEGIN
c := utl_tcp.open_connection(...);
LOOP

IF (utl_tcp.available(c) > 0) THEN
len := utl_tcp.read_text(c, data, 256);

ELSE
---do some other things

. . . .
END IF

END LOOP;
END;

Related Functions
read_raw(), read_text(), read_line()

read_raw Function
This function receives binary data from a service on an open connection.

Syntax
UTL_TCP.READ_RAW (c IN OUT NOCOPY connection,

data IN OUT NOCOPY RAW,
len IN PLS_INTEGER DEFAULT 1,
peek IN BOOLEAN DEFAULT FALSE)

RETURN PLS_INTEGER;

Parameters

Table 101–6 read_raw Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to receive data from.

data (IN OUT COPY) The data received.

len (IN) The number of bytes of data to receive.
101-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
Usage Notes
The connection must have already been opened through a call to open_
connection() . This function does not return until the specified number of
characters have been read, or the end of input has been reached.

If transfer time-out is set when the connection is opened, this function waits for
each data packet to be ready to read until time-out occurs. If it occurs, this function
stops reading and returns all the data read successfully. If no data is read
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

Related Functions
read_text(), read_line(), available()

write_raw Function
This function transmits a binary message to a service on an open connection.

Syntax
UTL_TCP.WRITE_RAW (c IN OUT NOCOPY connection,

data IN RAW,
len IN PLS_INTEGER DEFAULT NULL)

RETURN PLS_INTEGER;

peek (IN) Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

return value The actual number of bytes of data received.

Table 101–6 read_raw Function Parameters

Parameter Description
UTL_TCP 101-11

read_text Function
Usage Notes
The connection must have already been opened through a call to open_
connection().

Related Functions
write_text(), write_line(), flush()

read_text Function
This function receives text data from a service on an open connection.

Syntax
UTL_TCP.READ_TEXT (c IN OUT NOCOPY connection,

data IN OUT NOCOPY VARCHAR2,
len IN PLS_INTEGER DEFAULT 1,
peek IN BOOLEAN DEFAULT FALSE) RETURN PLS_

INTEGER;

Table 101–7 write_raw Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to send data to.

data (IN) The buffer containing the data to be sent.

len (IN) The number of bytes of data to transmit. When len is NULL,
the whole length of data is written. The actual amount of data
written may be less because of network condition.

return value The actual number of bytes of data transmitted.

Table 101–8 read_text Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to receive data from.

data (IN OUT NOCOPY) The data received.

len (IN) The number of characters of data to receive.
101-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
Usage Notes
The connection must have already been opened through a call to open_
connection() . This function does not return until the specified number of
characters has been read, or the end of input has been reached. Text messages will
be converted from the on-the-wire character set, specified when the connection was
opened, to the database character set before they are returned to the caller.

Unless explicitly overridden, the size of a VARCHAR2 buffer is specified in terms of
bytes, while the parameter len refers to the maximum number of characters to be
read. When the database character set is multibyte, where a single character may
consist of more than 1 byte, you should ensure that the buffer can hold the
maximum of characters. In general, the size of the VARCHAR2 buffer should equal
the number of characters to be read, multiplied by the maximum number of bytes of
a character of the database character set.

If transfer time-out is set when the connection is opened, this function waits for
each data packet to be ready to read until time-out occurs. If it occurs, this function
stops reading and returns all the data read successfully. If no data is read
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

If a partial multibyte character is found at the end of input, this function stops
reading and returns all the complete multibyte characters read successfully. If no
complete character is read successfully, the partial_multibyte_char exception
is raised. The exception can be handled and the bytes of that partial multibyte
character can be read as binary by the read_raw function. If a partial multibyte
character is seen in the middle of the input because the remaining bytes of the
character have not arrived and read time-out occurs, the transfer_timeout

peek (IN) Normally, users want to read the data and remove it from the
input queue, that is, consume it. In some situations, users may
just want to look ahead at the data without removing it from
the input queue so that it is still available for reading (or even
peeking) in the next call. To keep the data in the input queue,
set this flag to TRUE and an input buffer must be set up when
the connection is opened. The amount of data that you can
peek at (that is, read but keep in the input queue) must be less
than the size of input buffer.

return value The actual number of characters of data received.

Table 101–8 read_text Function Parameters

Parameter Description
UTL_TCP 101-13

write_text Function
exception is raised instead. The exception can be handled and the read operation
can be retried later.

Related Functions
read_raw(), read_line(), available()

write_text Function
This function transmits a text message to a service on an open connection.

Syntax
UTL_TCP.WRITE_TEXT (c IN OUT NOCOPY connection,

data IN VARCHAR2,
len IN PLS_INTEGER DEFAULT NULL)

RETURN PLS_INTEGER;

Usage Notes
The connection must have already been opened through a call to open_connection().
Text messages will be converted to the on-the-wire character set, specified when the
connection was opened, before they are transmitted on the wire.

Related Functions
write_raw(), write_line(), flush()

Table 101–9 write_text Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to send data to.

data (IN) The buffer containing the data to be sent.

len (IN) The number of characters of data to transmit. When len is
NULL, the whole length of data is written. The actual amount
of data written may be less because of network condition.

return value The actual number of characters of data transmitted.
101-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
read_line Function
This function receives a text line from a service on an open connection. A line is
terminated by a line-feed, a carriage-return or a carriage-return followed by a
line-feed.

Syntax
UTL_TCP.READ_LINE (c IN OUT NOCOPY connection,

data IN OUT NOCOPY VARCHAR2,
remove_crlf IN BOOLEAN DEFAULT FALSE,
peek IN BOOLEAN DEFAULT FALSE)

RETURN PLS_INTEGER;

Usage Notes
The connection must have already been opened through a call to open_connection().
This function does not return until the end-of-line have been reached, or the end of
input has been reached. Text messages will be converted from the on-the-wire
character set, specified when the connection was opened, to the database character
set before they are returned to the caller.

If transfer time-out is set when the connection is opened, this function waits for
each data packet to be ready to read until time-out occurs. If it occurs, this function
stops reading and returns all the data read successfully. If no data is read

Table 101–10 read_line Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to receive data from.

data (IN OUT NOCOPY) The data received.

remove_crlf (IN) If TRUE, the trailing CR/LF character(s) are removed from the
received message.

peek (IN) Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

return value The actual number of characters of data received.
UTL_TCP 101-15

write_line Function
successfully, the transfer_timeout exception is raised. The exception can be
handled and the read operation can be retried later.

If a partial multibyte character is found at the end of input, this function stops
reading and returns all the complete multibyte characters read successfully. If no
complete character is read successfully, the partial_multibyte_char exception
is raised. The exception can be handled and the bytes of that partial multibyte
character can be read as binary by the read_raw function. If a partial multibyte
character is seen in the middle of the input because the remaining bytes of the
character have not arrived and read time-out occurs, the transfer_timeout
exception is raised instead. The exception can be handled and the read operation
can be retried later.

Related Functions
read_raw(), read_text(), available()

write_line Function
This function transmits a text line to a service on an open connection. The newline
character sequence will be appended to the message before it is transmitted.

Syntax
UTL_TCP.WRITE_LINE (c IN OUT NOCOPY connection,

data IN VARCHAR2 DEFAULT NULL)
RETURN PLS_INTEGER;

Usage Notes
The connection must have already been opened through a call to open_connection().
Text messages will be converted to the on-the-wire character set, specified when the
connection was opened, before they are transmitted on the wire.

Table 101–11 write_line Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to send data to.

data (IN) The buffer containing the data to be sent.

return value The actual number of characters of data transmitted.
101-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms

;

Related Functions
write_raw(), write_text(), flush()

get_raw(), get_text(), get_line() Functions
Convenient forms of the read functions, which return the data read instead of the
amount of data read.

Syntax
UTL_TCP.GET_RAW (c IN OUT NOCOPY connection,

len IN PLS_INTEGER DEFAULT 1,
peek IN BOOLEAN DEFAULT FALSE) RETURN RAW;

UTL_TCP.GET_TEXT (c IN OUT NOCOPY connection,
len IN PLS_INTEGER DEFAULT 1,
peek IN BOOLEAN DEFAULT FALSE) RETURN VARCHAR2

UTL_TCP.GET_LINE (c IN OUT NOCOPY connection,
remove_crlf IN BOOLEAN DEFAULT false,
peek IN BOOLEAN DEFAULT FALSE) RETURN

VARCHAR2;

Usage Notes
The connection must have already been opened through a call to open_connection().

Table 101–12 get_raw(), get_text(), and get_line() Function Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to receive data from.

len (IN) The number of bytes (or characters for VARCHAR2) of data to
receive. Default is 1.

peek (IN) Normally, you want to read the data and remove it from the
input queue, that is, consume it. In some situations, you may
just want to look ahead at the data, that is, peek at it, without
removing it from the input queue, so that it is still available for
reading (or even peeking) in the next call. To keep the data in
the input queue, set this flag to TRUE and set up an input
buffer before the connection is opened. The amount of data
you can peeked at (that is, read but keep in the input queue)
must be less than the size of input buffer.

remove_crlf (IN) If TRUE, the trailing CR/LF character(s) are removed from the
received message.
UTL_TCP 101-17

flush Procedure
For all the get_* APIs described in this section, see the corresponding read_* API
for the read time-out issue. For get_text and get_line , see the corresponding
read_* API for character set conversion, buffer size, and multibyte character
issues.

Related Functions
read_raw(), read_text(), read_line()

flush Procedure
This procedure transmits all data in the output buffer, if a buffer is used, to the
server immediately.

Syntax
UTL_TCP.FLUSH (c IN OUT NOCOPY connection);

Parameters

Usage Notes
The connection must have already been opened through a call to open_connection().

Related Functions
write_raw(), write_text(), write_line()

close_connection Procedure
This procedure closes an open TCP/IP connection.

Syntax
UTL_TCP.close_CLOSE_CONNECTION (c IN OUT NOCOPY connection);

Table 101–13 flush Procedure Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to send data to.
101-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_TCP Subprograms
Parameters

Usage Notes
Connection must have been opened by a previous call to open_connection() .
The fields remote_host, remote_port, local_host, local_port and
charset of c will be reset after the connection is closed.

An open connection must be closed explicitly. An open connection will remain open
when the PL/SQL record variable that stores the connection goes out-of-scope in
the PL/SQL program. Failing to close unwanted connections may result in
unnecessary tying up of local and remote system resources.

close_all_connections Procedure
This procedure closes all open TCP/IP connections.

Syntax
UTL_TCP.CLOSE_ALL_CONNECTIONS;

Usage Notes
This call is provided to close all connections before a PL/SQL program avoid
dangling connections.

Related Functions
open_connection(), close_connection()

Table 101–14 close_connection Procedure Parameters

Parameter Description

c (IN OUT NOCOPY) The TCP connection to close.
UTL_TCP 101-19

close_all_connections Procedure
101-20 Oracle9i Supplied PL/SQL Packages and Types Reference

102

UTL_URL

The UTL_URL package has two functions: ESCAPE and UNESCAPE.

This chapter discusses the following topics:

� Introduction to the UTL_URL Package

� UTL_URL Exceptions

� Summary of UTL_URL Subprograms

See Also: �Chapter 96, "UTL_HTTP"
UTL_URL 102-1

Introduction to the UTL_URL Package
Introduction to the UTL_URL Package
A Uniform Resource Locator (URL) is a string that identifies a Web resource, such
as a page or a picture. Use a URL to access such resources by way of the HyperText
Transfer Protocol (HTTP). For example, the URL for Oracle's Web site is:

http://www.oracle.com

Normally, a URL contains English alphabetic characters, digits, and punctuation
symbols. These characters are known the unreserved characters. Any other characters
in URLs, including multibyte characters or binary octet codes, must be escaped to
be accurately processed by Web browsers or Web servers. Some punctuation
characters, such as dollar sign ($) , question mark (?) , colon (:) , and equals sign
(=) , are reserved as delimiters in a URL. They are known as the reserved characters.
To literally process these characters, instead of treating them as delimiters, they
must be escaped.

The unreserved characters are:

� A through Z, a through z, and 0 through 9

� Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk
(*), accent (’), left parenthesis ((), right parenthesis ())

The reserved characters are:

� Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand
(&), equals sign (=), plus sign (+), dollar sign ($), and comma (,)

The UTL_URL package has two functions that provide escape and unescape
mechanisms for URL characters. Use the escape function to escape a URL before the
URL is used fetch a Web page by way of the UTL_HTTP package. Use the unescape
function to unescape an escaped URL before information is extracted from the URL.

For more information, refer to the Request For Comments (RFC) document
RFC2396. Note that this URL escape and unescape mechanism is different from the
x-www-form-urlencoded encoding mechanism described in the HTML
specification:

http://www.w3.org/TR/html

You can implement the x-www-form-urlencoded encoding using the UTL_
URL.ESCAPE function as follows:

CREATE OR REPLACE FUNCTION form_url_encode (
data IN VARCHAR2,
charset IN VARCHAR2)
102-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_URL Subprograms
RETURN VARCHAR2 AS
BEGIN

RETURN utl_url.escape(data, TRUE, charset); -- note use of TURE
END;

For decoding data encoded with the form-URL-encode scheme , the following
function implements the decording scheme:

function form_url_decode(
data in varchar2,
charset in varchar2)

return varchar2 as

begin
return utl_url.unescape(

replace(data, '+', ' '),
charset);

end;

UTL_URL Exceptions
 Table 102–1 lists the exceptions that can be raised when the UTL_URL package API
is invoked.

Summary of UTL_URL Subprograms

Table 102–1 UTL_URL Exceptions

Exception Error Code Reason

bad_url 29262 The URL contains badly formed escape code sequences

bad_fixed_
width_charset

29274 Fixed-width multibyte character set is not allowed as a
URL character set.

Table 102–2 UTL_URL Package Subprograms

Subprogram Description

ESCAPE Function on
page 102-4

Returns a URL with illegal characters (and optionally
reserved characters) escaped using the
%2-digit-hex-code format

UNESCAPE Function on
page 102-6

Unescapes the escape character sequences to their original
forms in a URL. Convert the %XX escape character
sequences to the original characters
UTL_URL 102-3

ESCAPE Function
ESCAPE Function
This function returns a URL with illegal characters (and optionally reserved
characters) escaped using the %2-digit-hex-code format.

Syntax
UTL_URL.ESCAPE (

url IN VARCHAR2,
escape_reserved_chars IN BOOLEAN DEFAULT FALSE,
url_charset IN VARCHAR2 DEFAULT

utl_http.body_charset)
RETURN VARCHAR2;

Parameters

Usage Notes
Use this function to escape URLs that contain illegal characters as defined in the
URL specification RFC 2396. The legal characters in URLs are:

� A through Z, a through z, and 0 through 9

� Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk
(*), accent (’), left parenthesis ((), right parenthesis ())

The reserved characters consist of:

Table 102–3 ESCAPE Function Parameters

Parameter Description

url (IN) The original URL

escape_reserved_
chars (IN)

Indicates whether the URL reserved characters should be
escaped. If set to TRUE, both the reserved and illegal URL
characters are escaped. Otherwise, only the illegal URL
characters are escaped. The default value is FALSE.

url_charset (IN) When escaping a character (single-byte or multibyte), what is
the target character set that character should be converted to
before the character is escaped in %hex-code format? If url_
charset is NULL, the database charset is assumed and no
character set conversion will occur. The default value is the
current default body character set of the UTL_HTTP package,
whose default value is ISO-8859-1 . The character set can be
named in Internet Assigned Numbers Authority (IANA) or
Oracle naming convention.
102-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of UTL_URL Subprograms
� Semi-colon (;) slash (/), question mark (?), colon (:), at sign (@), ampersand
(&), equals sign (=), plus sign (+), dollar sign ($), and comma (,)

Many of the reserved characters are used as delimiters in the URL. You should
escape characters beyond those listed here by using escape_url. Also, to use the
reserved characters in the name-value pairs of the query string of a URL, those
characters must be escaped separately. An escape_url cannot recognize the need to
escape those characters because once inside a URL, those characters become
indistinguishable from the actual delimiters. For example, to pass a name-value pair
$logon=scott/tiger into the query string of a URL, escape the $ and /
separately as %24logon=scott%2Ftiger and use it in the URL.

Normally, you will escape the entire URL, which contains the reserved characters
(delimiters) that should not be escaped. For example:

utl_url.escape(’http://www.acme.com/a url with space.html’)

Returns:

http://foo.com/a%20url%20with%20space.html

In other situations, you may want to send a query string with a value that contains
reserved characters. In that case, escape only the value fully (with escape_
reserved_chars set to TRUE) and then concatenate it with the rest of the URL.
For example:

url := ’http://www.acme.com/search?check=’ || utl_url.escape
(’Is the use of the "$" sign okay?’, TRUE);

This expression escapes the question mark (?), dollar sign ($), and space characters
in ’Is the use of the "$" sign okay?’ but not the ? after search in the
URL that denotes the use of a query string.

The Web server that you intend to fetch Web pages from may use a character set
that is different from that of your database. In that case, specify the url_charset as
the Web server character set so that the characters that need to be escaped are
escaped in the target character set. For example, a user of an EBCDIC database who
wants to access an ASCII Web server should escape the URL using US7ASCII so
that a space is escaped as %20 (hex code of a space in ASCII) instead of %40 (hex
code of a space in EBCDIC).

This function does not validate a URL for the proper URL format.
UTL_URL 102-5

UNESCAPE Function
UNESCAPE Function
This function unescapes the escape character sequences to its original form in a
URL, to convert the %XX escape character sequences to the original characters.

Syntax
UTL_URL.UNESCAPE (

url IN VARCHAR2,
url_charset IN VARCHAR2 DEFAULT utl_http.body_charset)

RETURN VARCHAR2;

Parameters

Usage Notes
The Web server that you receive the URL from may use a character set that is
different from that of your database. In that case, specify the url_charset as the Web
server character set so that the characters that need to be unescaped are unescaped
in the source character set. For example, a user of an EBCDIC database who receives
a URL from an ASCII Web server should unescape the URL using US7ASCII so that
%20 is unescaped as a space (0x20 is the hex code of a space in ASCII) instead of a ?
(because 0x20 is not a valid character in EBCDIC).

This function does not validate a URL for the proper URL format.

Table 102–4 UNESCAPE Function Parameters

Parameter Description

url (IN) The URL to unescape

url_charset (IN) After a character is unescaped, the character is assumed to be
in the source_charset character set and it will be converted
from the source_charset to the database character set
before the URL is returned. If source_charset is NULL, the
database charset is assumed and no character set conversion
occurred. The default value is the current default body
character set of the UTL_HTTP package, whose default value is
"ISO-8859-1". The character set can be named in Internet
Assigned Numbers Authority (IANA) or Oracle naming
convention.
102-6 Oracle9i Supplied PL/SQL Packages and Types Reference

ANYD
103

ANYDATA TYPE

An ANYDATA contains an instance of a given type, plus a description of the type. In
this sense, an ANYDATA is self-describing. An ANYDATA can be persistently stored in
the database.

Persistent storage of ANYDATA instances whose type contains embedded LOBs is
not supported yet.

This chapter discusses the following topics:

� Construction

� Summary of ANYDATA Subprograms
ATA TYPE 103-1

Construction
Construction
There are 2 ways to construct an AnyData. The Convert*() calls enable
construction of the AnyData in its entirety with a single call. They serve as explicit
CAST functions from any type in the Oracle ORDBMS to AnyData.

STATIC FUNCTION ConvertNumber(num IN NUMBER) RETURN AnyData,
STATIC FUNCTION ConvertDate(dat IN DATE) RETURN AnyData,
STATIC FUNCTION ConvertChar(c IN CHAR) RETURN AnyData,
STATIC FUNCTION ConvertVarchar(c IN VARCHAR) RETURN AnyData,
STATIC FUNCTION ConvertVarchar2(c IN VARCHAR2) RETURN AnyData,
STATIC FUNCTION ConvertRaw(r IN RAW) RETURN AnyData,
STATIC FUNCTION ConvertBlob(b IN BLOB) RETURN AnyData,
STATIC FUNCTION ConvertClob(c IN CLOB) RETURN AnyData,
STATIC FUNCTION ConvertBfile(b IN BFILE) RETURN AnyData,
STATIC FUNCTION ConvertObject(obj IN "<object_type>") RETURN AnyData,
STATIC FUNCTION ConvertRef(rf IN REF "<object_type>") RETURN AnyData,
STATIC FUNCTION ConvertCollection(col IN "<COLLECTION_1>") RETURN AnyData,

The second way to construct an AnyData is a piece by piece approach. The
BeginCreate() call begins the construction process and EndCreate() call
finishes the construction process. In between these two calls, the individual
attributes of an object type or the elements of a collection can be set using Set*()
calls. For piece by piece access of the attributes of objects and elements of
collections, the PieceWise() call should be invoked prior to Get*() calls.

Note: The AnyData has to be constructed or accessed sequentially starting from its
first attribute (or collection element). The BeginCreate() call automatically
begins the construction in a piece-wise mode. There is no need to call
PieceWise() immediately after BeginCreate() . EndCreate() should be
called to finish the construction process (before which any access calls can be made).

Summary of ANYDATA Subprograms

Table 103–1 ANYDATA Subprograms

Subprogram Description

BEGINCREATE Static
Procedure on page 103-3

Begins creation process on a new AnyData.

PIECEWISE Member
Procedure on page 103-4

Sets the MODE of access of the current data value to be an
attribute at a time (if the data value is of TYPECODE_OBJECT).
103-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATA Subprograms
BEGINCREATE Static Procedure
This procedure begins the creation process on a new AnyData.

Syntax
STATIC PROCEDURE BeginCreate(

dtype IN OUT NOCOPY AnyType,
adata OUT NOCOPY AnyData);

Parameters

Exception
DBMS_TYPES.invalid_parameters: dtype is invalid (not fully constructed, etc.)

Usage Notes
There is no need to call PieceWise() immediately after this call. The construction
process begins in a piece-wise manner automatically.

SET Member Procedures
on page 103-4

Sets the current data value.

ENDCREATE Member
Procedure on page 103-6

Ends creation of an AnyData.

GETTYPENAME Member
Function on page 103-7

Get the fully qualified type name for the AnyData.

GETTYPE Member
Function on page 103-7

Gets the Type of the AnyData.

GET Member Functions on
page 103-8

Gets the current data value (which should be of appropriate
type).

Table 103–2 BEGINCREATE Procedure Parameters

Parameter Description

dtype The type of the AnyData. (Should correspond to OCI_
TYPECODE_OBJECT or a Collection typecode.)

adata AnyData being constructed.

Table 103–1 ANYDATA Subprograms

Subprogram Description
ANYDATA TYPE 103-3

PIECEWISE Member Procedure
PIECEWISE Member Procedure
This procedure sets the MODE of access of the current data value to be an attribute
at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of access of the data value to be a collection element at a time (if
the data value is of collection type). Once this call has been made, subsequent calls
to Set*() and Get*() will sequentially obtain individual attributes or collection
elements.

Syntax
MEMBER PROCEDURE PieceWise(

self IN OUT NOCOPY AnyData);

Parameters

Exceptions
� DBMS_TYPES.invalid_parameters

� DBMS_TYPES.incorrect_usage: On incorrect usage.

Usage Notes
The current data value must be of an OBJECT or COLLECTION type before this call
can be made.

Piece-wise construction and access of nested attributes that are of object or
collection types is not supported.

SET Member Procedures
Sets the current data value.

This is a list of procedures that should be called depending on the type of the
current data value. The type of the data value should be the type of the attribute at
the current position during the piece-wise construction process.

Table 103–3 BEGINCREATE Procedure Parameters

Parameter Description

self The current data value.
103-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATA Subprograms
Syntax
MEMBER PROCEDURE SetNumber(

self IN OUT NOCOPY AnyData,
num IN NUMBER,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetDate(
self IN OUT NOCOPY AnyData,
dat IN DATE,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetChar(
self IN OUT NOCOPY AnyData,
c IN CHAR,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetVarchar(
self IN OUT NOCOPY AnyData,
c IN VARCHAR,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetVarchar2(
self IN OUT NOCOPY AnyData,
c IN VARCHAR2,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetRaw(
self IN OUT NOCOPY AnyData,
r IN RAW,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetBlob(
self IN OUT NOCOPY AnyData,
b IN BLOB,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetClob(
self IN OUT NOCOPY AnyData,
c IN CLOB,
last_elem IN boolean DEFAULT FALSE)’

MEMBER PROCEDURE SetBfile(
self IN OUT NOCOPY AnyData,
b IN BFILE,
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetObject(
self IN OUT NOCOPY AnyData,
obj IN "<object_type>",
last_elem IN boolean DEFAULT FALSE);

MEMBER PROCEDURE SetRef(
self IN OUT NOCOPY AnyData,
rf IN REF "<object_type>",
ANYDATA TYPE 103-5

ENDCREATE Member Procedure
last_elem IN boolean DEFAULT FALSE),
MEMBER PROCEDURE SetCollection(

self IN OUT NOCOPY AnyData,
col IN "<collectyion_type>",
last_elem IN boolean DEFAULT FALSE);

Parameters

Exceptions
� DBMS_TYPES.invalid_parameters: Invalid Parameters (if it is not appropriate

to add a number at this point in the creation process).

� DBMS_TYPES.incorrect_usage: Incorrect usage.

� DBMS_TYPES.type_mismatch: When the expected type is different from the
passed in type.

Usage Notes
When BeginCreate() is called, construction has already begun in a piece-wise
fashion. Subsequent calls to Set*() will set the successive attribute values.

If the AnyData is a standalone collection, the Set*() call will set the successive
collection elements.

ENDCREATE Member Procedure
This procedure ends creation of an AnyData. Other creation functions cannot be
called after this call.

Syntax
MEMBER PROCEDURE EndCreate(

Table 103–4 SET*() Procedure Parameters

Parameter Description

self An AnyData.

num The number, etc., that is to be set.

last_elem Relevant only if AnyData represents a collection.

Set to TRUE if it is the last element of the collection, FALSE
otherwise.
103-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATA Subprograms
self IN OUT NOCOPY AnyData);

Parameters

GETTYPENAME Member Function
This function gets the fully qualified type name for the AnyData.

If the AnyData is based on a built-in type, this function will return NUMBER etc.

If it is based on a user defined type, this function will return <schema_
name>.<type_name>. for example, SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

Syntax
MEMBER FUNCTION GetTypeName(

self IN AnyData)
RETURN VARCHAR2;

Parameters

Returns
Type name of the AnyData.

GETTYPE Member Function
This function gets the typecode of the AnyData.

Syntax
MEMBER FUNCTION GetType(

Table 103–5 ENDCREATE Procedure Parameter

Parameter Description

self An AnyData.

Table 103–6 GETTYPENAME Function Parameter

Parameter Description

self An AnyData.
ANYDATA TYPE 103-7

GET Member Functions
self IN AnyData,
typ OUT NOCOPY AnyType)
RETURN PLS_INTEGER;

Parameters

Returns
The typecode corresponding to the type of the AnyData.

GET Member Functions
These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which we are
accessing (depending on whether we have invoked the PieceWise() call).

If PieceWise() has NOT been called, we are accessing the AnyData in its entirety
and the type of the data value should match the type of the AnyData.

If PieceWise() has been called, we are accessing the AnyData piece-wise. The
type of the data value should match the type of the attribute (or collection element)
at the current position.

Syntax
MEMBER FUNCTION GetNumber(

self IN AnyData,
num OUT NOCOPY NUMBER)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetDate(
self IN AnyData,
dat OUT NOCOPY DATE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetChar(
self IN AnyData,
c OUT NOCOPY CHAR)

Table 103–7 GETTYPE Function Parameter

Parameter Description

self An AnyData.

typ The AnyType corresponding to the AnyData. May be NULL if
it does not represent a user-defined type.
103-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATA Subprograms
RETURN PLS_INTEGER;
MEMBER FUNCTION GetVarchar(

self IN AnyData,
c OUT NOCOPY VARCHAR)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar2(
self IN AnyData,
c OUT NOCOPY VARCHAR2)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetRaw(
self IN AnyData,
r OUT NOCOPY RAW)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBlob(
self IN AnyData,
b OUT NOCOPY BLOB)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetClob(
self IN AnyData,
c OUT NOCOPY CLOB)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBfile(
self IN AnyData,
b OUT NOCOPY BFILE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetObject(
self IN AnyData,
obj OUT NOCOPY "<object_type>")
RETURN PLS_INTEGER;

MEMBER FUNCTION GetRef(
self IN AnyData,
rf OUT NOCOPY REF "<object_type>")
RETURN PLS_INTEGER;

MEMBER FUNCTION GetCollection(
self IN AnyData,
col OUT NOCOPY "<collection_type>")
RETURN PLS_INTEGER;

Parameters

Table 103–8 GET* Function Parameter

Parameter Description

self An AnyData.
ANYDATA TYPE 103-9

GET Member Functions
Returns
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PieceWise() has been already called (for a
collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the
collection when all elements have been accessed.

Exceptions
DBMS_TYPES.type_mismatch: When the expected type is different from the passed
in type.

DBMS_TYPES.invalid_parameters: Invalid Parameters (if it is not appropriate to
add a number at this point in the creation process).

DBMS_TYPES.incorrect_usage: Incorrect usage.

num The number, etc., to be obtained.

Table 103–8 GET* Function Parameter

Parameter Description
103-10 Oracle9i Supplied PL/SQL Packages and Types Reference

ANYDATA
104

ANYDATASET TYPE

An ANYDATASET type contains a description of a given type plus a set of data
instances of that type. An ANYDATASET can be persistently stored in the database if
desired, or it can be used as interface parameters to communicate self-descriptive
sets of data, all of which belong to a certain type.

This chapter discusses the following topics:

� Construction

� Summary of ANYDATASET Subprograms
SET TYPE 104-1

Construction
Construction
The AnyDataSet needs to be constructed value by value, sequentially.

For each data instance (of the type of the AnyDataSet), the AddInstance()
function must be invoked. This adds a new data instance to the AnyDataSet.
Subsequently, Set*() can be called to set each value in its entirety.

The MODE of construction/access can be changed to attribute/collection element
wise by making calls to PieceWise().

� If the type of the AnyDataSet is TYPECODE_OBJECT, individual attributes will
be set with subsequent Set*() calls. Likewise on access.

� If the type of the current data value is a collection type individual collection
elements will be set with subsequent Set*() calls. Likewise on access. This call
is very similar to AnyData.PieceWise() call defined for the type AnyData.

Note that there is no support for piece-wise construction and access of nested (not
top level) attributes that are of object types or collection types.

EndCreate() should be called to finish the construction process (before which no
access calls can be made).

Summary of ANYDATASET Subprograms

Table 104–1 ANYDATASET Subprograms

Subprogram Description

BEGINCREATE Static
Procedure on page 104-3

The AnyDataSet needs to be constructed value by value,
sequentially.

BEGINCREATE Static
Procedure on page 104-3

Creates a new AnyDataSet which can be used to create a set of
data values of the given ANYTYPE.

ADDINSTANCE Member
Procedure on page 104-4

Adds a new data instance to an AnyDataSet.

PIECEWISE Member
Procedure on page 104-4

Sets the MODE of construction, access of the data value to be
an attribute at a time (if the data value is of TYPECODE_
OBJECT).

SET* Member Procedures
on page 104-5

Sets the current data value.

ENDCREATE Member
Procedure on page 104-7

Ends Creation of a AnyDataSet. Other creation functions
cannot be called after this call.
104-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATASET Subprograms
BEGINCREATE Static Procedure
This procedure creates a new AnyDataSet which can be used to create a set of data
values of the given ANYTYPE.

Syntax
STATIC PROCEDURE BeginCreate(

typecode IN PLS_INTEGER,
rtype IN OUT NOCOPY AnyType,
aset OUT NOCOPY AnyDataSet);

Parameters

Exceptions
DBMS_TYPES.invalid_parameters: dtype is invalid (not fully constructed, etc.)

GETTYPENAME Member
Function on page 104-7

Gets the AnyType describing the type of the data instances in
an AnyDataSet.

GETTYPE Member
Function on page 104-8

Gets the current data value (which should be of appropriate
type).

GETINSTANCE Member
Function on page 104-9

Gets the next instance in an AnyDataSet.

GET* Member Functions
on page 104-9

Gets the current data value (which should be of appropriate
type).

GETCOUNT Member
Function on page 104-11

Gets the number of data instances in an AnyDataSet.

Table 104–2 BEGINCREATE Procedure Parameter

Parameter Description

typecode The typecode for the type of the AnyDataSet.

dtype The type of the data values. This parameter is a must for
user-defined types like TYPECODE_OBJECT, Collection
typecodes, etc.

aset The AnyDataSet being constructed.

Table 104–1 ANYDATASET Subprograms

Subprogram Description
ANYDATASET TYPE 104-3

ADDINSTANCE Member Procedure
ADDINSTANCE Member Procedure
This procedure adds a new data instance to an AnyDataSet.

Syntax
MEMBER PROCEDURE AddInstance(

self IN OUT NOCOPY AnyDataSet);

Parameters

Exceptions
DBMS_TYPES.invalid_parameters: Invalid parameters.
DBMS_TYPES.incorrect_usage: On incorrect usage.

Usage Notes
The data instances have to be added sequentially. The previous data instance must
be fully constructed (or set to NULL) before a new one can be added.

This call DOES NOT automatically set the mode of construction to be piece-wise.
The user has to explicitly call PieceWise() if a piece-wise construction of the
instance is intended.

PIECEWISE Member Procedure
This procedure sets the MODE of construction, access of the data value to be an
attribute at a time (if the data value is of TYPECODE_OBJECT).

It sets the MODE of construction, access of the data value to be a collection element
at a time (if the data value is of a collection TYPE). Once this call has been made,
subsequent Set*() and Get*() calls will sequentially obtain individual attributes
or collection elements.

Syntax
MEMBER PROCEDURE PieceWise(

self IN OUT NOCOPY AnyDataSet);

Table 104–3 ADDINSTANCE Procedure Parameter

Parameter Description

self The AnyDataSet being constructed.
104-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATASET Subprograms
Parameters

Exceptions
DBMS_TYPES.invalid_parameters
DBMS_TYPES.incorrect_usage: On incorrect usage.

Usage Notes
The current data value must be of an object or collectyon type before this call can be
made. There is no support for piece-wise construction or access of embedded object
type attributes or nested collections.

SET* Member Procedures
This procedure sets the current data value.

The type of the current data value depends on the MODE with which we are
constructing (depending on how we have invoked the PieceWise() call). The
type of the current data should be the type of the AnyDataSet if PieceWise() has
NOT been called. The type should be the type of the attribute at the current position
if PieceWise() has been called.

Syntax
MEMBER PROCEDURE SetNumber(

self IN OUT NOCOPY AnyDataSet,
num IN NUMBER,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetDate(
self IN OUT NOCOPY AnyDataSet,
dat IN DATE,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetChar(
self IN OUT NOCOPY AnyDataSet,
c IN CHAR,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetVarchar(
self IN OUT NOCOPY AnyDataSet,

Table 104–4 PIECEWISE Procedure Parameter

Parameter Description

self The AnyDataSet being constructed.
ANYDATASET TYPE 104-5

SET* Member Procedures
c IN VARCHAR,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetVarchar2(
self IN OUT NOCOPY AnyDataSet,
c IN VARCHAR2,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetRaw(
self IN OUT NOCOPY AnyDataSet,
r IN RAW,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetBlob(
self IN OUT NOCOPY AnyDataSet,
b IN BLOB,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetClob(
self IN OUT NOCOPY AnyDataSet,
c IN CLOB,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetBfile(
self IN OUT NOCOPY AnyDataSet,
b IN BFILE,
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetObject(
self IN OUT NOCOPY AnyDataSet,
obj IN "<object_type>",
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetRef(
self IN OUT NOCOPY AnyDataSet,
rf IN REF "<object_type>",
last_elem boolean DEFAULT FALSE);

MEMBER PROCEDURE SetCollection(
self IN OUT NOCOPY AnyDataSet,
col IN "<collection_type>",
last_elem boolean DEFAULT FALSE);

Parameters

Table 104–5 SET* Procedure Parameters

Parameter Description

self The AnyDataSet being accessed.

num The number, etc., that is to be set.
104-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATASET Subprograms
Exceptions
� DBMS_TYPES.invalid_parameters: Invalid parameters (if it is not appropriate

to add a number at this point in the creation process).

� DBMS_TYPES.incorrect_usage: Incorrect usage.

� DBMS_TYPES.type_mismatch: When the expected type is different from the
passed in type.

ENDCREATE Member Procedure
This procedure ends Creation of a AnyDataSet. Other creation functions cannot be
called after this call.

Syntax
MEMBER PROCEDURE EndCreate(

self IN OUT NOCOPY AnyDataSet);

Parameters

GETTYPENAME Member Function
This procedure gets the fully qualified type name for the AnyDataSet.

If the AnyDataSet is based on a built-in, this function will return NUMBER etc.

If it is based on a user defined type, this function will return <schema_
name>.<type_name>. e.g. SCOTT.FOO.

If it is based on a transient anonymous type, this function will return NULL.

last_elem Relevant only if PieceWise() has been already called (for a
collection). Set to TRUE if it is the last element of the collection,
FALSE otherwise.

Table 104–6 ENDCREATE Procedure Parameter

Parameter Description

self The AnyDataSet being constructed.

Table 104–5 SET* Procedure Parameters

Parameter Description
ANYDATASET TYPE 104-7

GETTYPE Member Function
Syntax
MEMBER FUNCTION GetTypeName(

self IN AnyDataSet)
RETURN VARCHAR2;

Parameter

Returns
Type name of the AnyDataSet.

GETTYPE Member Function
Gets the AnyType describing the type of the data instances in an AnyDataSet.

Syntax
MEMBER FUNCTION GetType(

self IN AnyDataSet,
typ OUT NOCOPY AnyType)
RETURN PLS_INTEGER;

Parameters

Returns
The typecode corresponding to the type of the AnyData.

Table 104–7 GETTYPENAME Function Parameter

Parameter Description

self The AnyDataSet being constructed.

Table 104–8 GETTYPE Function Parameter

Parameter Description

self The AnyDataSet.

typ The AnyType corresponding to the AnyData. May be NULL if
it does not represent a user-defined function.
104-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATASET Subprograms
GETINSTANCE Member Function
This function gets the next instance in an AnyDataSet. Only sequential access to the
instances in an AnyDataSet is allowed. After this function has been called, the
Get*() functions can be invoked on the AnyDataSet to access the current instance.
If PieceWise() is called before doing the Get*() calls, the individual attributes
(or collection elements) can be accessed.

It is an error to invoke this function before the AnyDataSet is fully created.

Syntax
MEMBER FUNCTION GetInstance(

self IN OUT NOCOPY AnyDataSet)
RETURN PLS_INTEGER;

Parameters

Returns
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

DBMS_TYPES.NO_DATA signifies the end of the AnyDataSet (all instances have
been accessed).

Usage Notes
This function should be called even before accessing the first instance.

GET* Member Functions
These functions get the current data value (which should be of appropriate type).

The type of the current data value depends on the MODE with which you are
accessing it (depending on how we have invoked the PieceWise() call). If
PieceWise() has NOT been called, we are accessing the instance in its entirety
and the type of the data value should match the type of the AnyDataSet.

Table 104–9 GETINSTANCE Function Parameter

Parameter Description

self The AnyDataSet being accessed.
ANYDATASET TYPE 104-9

GET* Member Functions
If PieceWise() has been called, we are accessing the instance piece-wise. The type
of the data value should match the type of the attribute (or collection element) at the
current position.

Syntax
MEMBER FUNCTION GetNumber(

self IN AnyDataSet,
num OUT NOCOPY NUMBER)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetDate(
self IN AnyDataSet,
dat OUT NOCOPY DATE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetChar(
self IN AnyDataSet,
c OUT NOCOPY CHAR)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar(
self IN AnyDataSet,
c OUT NOCOPY VARCHAR)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetVarchar2(
self IN AnyDataSet,
c OUT NOCOPY VARCHAR2)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetRaw(
self IN AnyDataSet,
r OUT NOCOPY RAW)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBlob(
self IN AnyDataSet,
b OUT NOCOPY BLOB)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetClob(
self IN AnyDataSet,
c OUT NOCOPY CLOB)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetBfile(
self IN AnyDataSet,
b OUT NOCOPY BFILE)
RETURN PLS_INTEGER;

MEMBER FUNCTION GetObject(
self IN AnyDataSet,
obj OUT NOCOPY "<object_type>")
104-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYDATASET Subprograms
RETURN PLS_INTEGER;
MEMBER FUNCTION GetRef(

self IN AnyDataSet,
rf OUT NOCOPY REF "<object_type>")
RETURN PLS_INTEGER;

MEMBER FUNCTION GetCollection(
self IN AnyDataSet,
col OUT NOCOPY "<collection_type>")
RETURN PLS_INTEGER;

Parameters

Returns
DBMS_TYPES.SUCCESS or DBMS_TYPES.NO_DATA

The return value is relevant only if PieceWise() has been already called (for a
collection). In such a case, DBMS_TYPES.NO_DATA signifies the end of the
collection when all elements have been accessed.

Exceptions
DBMS_TYPES.invalid_parameters: Invalid Parameters (if it is not appropriate to
add a number at this point in the creation process).

DBMS_TYPES.incorrect_usage: Incorrect usage

DBMS_TYPES.type_mismatch: When the expected type is different from the passed
in type.

GETCOUNT Member Function
This function gets the number of data instances in an AnyDataSet.

Syntax
MEMBER FUNCTION GetCount(

self IN AnyDataSet)

Table 104–10 GET* Procedure Parameters

Parameter Description

self The AnyDataSet being accessed.

num The number, etc., that is to be obtained.
ANYDATASET TYPE 104-11

GETCOUNT Member Function
RETURN PLS_INTEGER;

Parameter

Returns
The number of data instances.

Table 104–11 GETCOUNT Function Parameter

Parameter Description

self The AnyDataSet being accessed.
104-12 Oracle9i Supplied PL/SQL Packages and Types Reference

ANYT
105

ANYTYPE TYPE

An ANYTYPE can contain a type description of any persistent SQL type, named or
unnamed, including object types and collection types. It can also be used to
construct new transient type descriptions.

New persistent types can only be created using the CREATE TYPE statement. Only
new transient types can be constructed using the ANYTYPE interfaces.

Thios chapter discusses the following:

� Summary of ANYTYPE Subprograms
YPE TYPE 105-1

Summary of ANYTYPE Subprograms
Summary of ANYTYPE Subprograms

BEGINCREATE Static Procedure
This procxedure creates a new instance of ANYTYPE which can be used to create a
transient type description.

Syntax
STATIC PROCEDURE BEGINCREATE(

typecode IN PLS_INTEGER,
atype OUT NOCOPY AnyType);

Table 105–1 ANYTYPE Subprograms

Subprogram Description

BEGINCREATE Static
Procedure on page 105-2

Creates a new instance of ANYTYPE which can be used to
create a transient type description.

SETINFO Member
Procedure on page 105-3

Sets any additional information required for constructing a
COLLECTION or builtin type.

ADDATTR Member
Procedure on page 105-4

Adds an attribute to an ANYTYPE (of typecode DBMS_
TYPES.TYPECODE_OBJECT).

ENDCREATE Member
Procedure on page 105-5

Ends creation of a transient AnyType. Other creation
functions cannot be called after this call.

GETPERSISTENT Static
Function on page 105-6

Returns an AnyType corresponding to a persistent type created
earlier using the CREATE TYPE SQL statement.

GETINFO Member
Function on page 105-6

Gets the type information for the AnyType.

GETATTRELEMINFO
Member Function on
page 105-8

Gets the type information for an attribute of the type (if it is of
TYPECODE_OBJECT). Gets the type information for a
collection’s element type if the self parameter is of a collection
type.
105-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYTYPE Subprograms
Parameters

SETINFO Member Procedure
This procedure sets any additional information required for constructing a
COLLECTION or builtin type.

Syntax
MEMBER PROCEDURE SetInfo(

self IN OUT NOCOPY AnyType,
prec IN PLS_INTEGER,
scale IN PLS_INTEGER,
len IN PLS_INTEGER,
csid IN PLS_INTEGER,
csfrm IN PLS_INTEGER,
atype IN ANYTYPE DEFAULT NULL,
elem_tc IN PLS_INTEGER DEFAULT NULL,
elem_count IN PLS_INTEGER DEFAULT 0);

Parameters

Table 105–2 BEGINCREATE Procedure Parameters

Parameter Description

typecode Use a constant from DBMS_TYPES package.
Typecodes for user-defined type:

can be DBMS_TYPES.TYPECODE_OBJECT

DBMS_TYPES.TYPECODE_VARRAY or

 DBMS_TYPES.TYPECODE_TABLE

Typecodes for builtin types:

 DBMS_TYPES.TYPECODE_NUMBER etc.

atype AnyType for a transient type

Table 105–3 SETINFO Procedure Parameters

Parameter Description

self The transient ANYTYPE that is being constructed.

prec, scale
(OPTIONAL)

Required if typecode represents a NUMBER.

Give precision and scale. Ignored otherwise.
ANYTYPE TYPE 105-3

ADDATTR Member Procedure
Exceptions
� DBMS_TYPES.invalid_parameter: Invalid Parameters (typecode, typeinfo)

� DBMS_TYPES.incorrect_usage: Incorrect usage (cannot call after calling
EndCreate() , etc.)

Usage Notes
It is an error to call this function on an AnyType that represents a persistent user
defined type.

ADDATTR Member Procedure
This procedure adds an attribute to an AnyType (of typecode DBMS_
TYPES.TYPECODE_OBJECT).

Syntax
MEMBER PROCEDURE AddAttr(

self IN OUT NOCOPY AnyType,
aname IN VARCHAR2,
typecode IN PLS_INTEGER,
prec IN PLS_INTEGER,

len (OPTIONAL) Required if typecode represents a RAW, CHAR,
VARCHAR, or VARCHAR2 type. Gives length.

csid, csfrm
(OPTIONAL)

Required if typecode represents types requiring character
information such as CHAR, VARCHAR, VARCHAR2, or
CFILE.

atype (OPTIONAL) Required if collection element typecode is a user-defined type
such as TYPECODE_OBJECT, etc. It is also required for a
built-in type that needs user-defined type information such as
TYPECODE_REF. This parameter is not needed otherwise.

The Following Parameters Are Required For Collection Types:

elem_tc Must be of the collection element’s typecode (from DBMS_
TYPES package).

elem_count Pass 0 for elem_count if the self represents a nested table
(TYPECODE_TABLE). Otherwise pass the collection count if
self represents a VARRAY.

Table 105–3 SETINFO Procedure Parameters

Parameter Description
105-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYTYPE Subprograms
scale IN PLS_INTEGER,
len IN PLS_INTEGER,
csid IN PLS_INTEGER,
csfrm IN PLS_INTEGER,
attr_type IN ANYTYPE DEFAULT NULL);

Parameters

Exceptions
� DBMS_TYPES.invalid_parameters: Invalid Parameters (typecode, typeinfo)

� DBMS_TYPES.incorrect_usage: Incorrect usage (cannot call after calling
EndCreate() , etc.)

ENDCREATE Member Procedure
This procedure ends creation of a transient AnyType. Other creation functions
cannot be called after this call.

Syntax
MEMBER PROCEDURE EndCreate(

self IN OUT NOCOPY AnyType);

Table 105–4 ADDATTR Procedure Parameters

Parameter Description

self The transient AnyType that is being constructed. Must be of
type DBMS_TYPES.TYPECODE_OBJECT.

aname (OPTIONAL) Attribute’s name. Could be NULL.

typecode Attribute’s typecode. Can be built-in or user-defined
typecode (from DBMS_TYPES package).

prec, scale
(OPTIONAL)

Required if typecode represents a NUMBER. Give precision
and scale. Ignored otherwise.

len (OPTIONAL) Required if typecode represents a RAW, CHAR, VARCHAR, or
VARCHAR2 type. Give length.

csid, csfrm
(OPTIONAL)

Required if typecode represents a type requiring character
information, such as CHAR, VARCHAR, VARCHAR2, CFILE.

attr_type (OPTIONAL) AnyType corresponding to a user-defined type. This parameter
is required if the attribute is a user defined type.
ANYTYPE TYPE 105-5

GETPERSISTENT Static Function
Parameter

GETPERSISTENT Static Function
This procedure returns an AnyType corresponding to a persistent type created
earlier using the CREATE TYPE SQL statement.

Syntax
STATIC FUNCTION GetPersistent(

schema_name IN VARCHAR2,
type_name IN VARCHAR2,
version IN VARCHAR2 DEFAULT NULL)
RETURN AnyType;

Parameters

Returns
An AnyType corresponding to a persistent type created earlier using the CREATE
TYPE SQL statement.

GETINFO Member Function
This function gets the type information for the AnyType.

Syntax
MEMBER FUNCTION GetInfo (

self IN AnyType,

Table 105–5 ENDCREATE Procedure Parameter

Parameter Description

self The transient AnyType that is being constructed.

Table 105–6 GETPERSISTENT Function Parameters

Parameter Description

schema_name Schema name of the type.

type_name Type name.

version Type version.
105-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYTYPE Subprograms
prec OUT PLS_INTEGER,
scale OUT PLS_INTEGER,
len OUT PLS_INTEGER,
csid OUT PLS_INTEGER,
csfrm OUT PLS_INTEGER,
schema_name OUT VARCHAR2,
type_name OUT VARCHAR2,
version OUT varchar2,
count OUT PLS_INTEGER)
RETURN PLS_INTEGER;

Parameters

Returns
The typecode of self.

Exceptions
� DBMS_TYPES.invalid_parameters: Invalid Parameters (position is beyond

bounds or the AnyType is not properly Constructed).

Table 105–7 GETINFO Function Parameters

Parameter Description

self The AnyType.

prec, scale If typecode represents a number. Gives precision and scale.
Ignored otherwise.

len If typecode represents a RAW, CHAR, VARCHAR, or
VARCHAR2 type. Gives length.

csid, csfrm If typecode represents a type requiring character information
such as: CHAR, VARCHAR, VARCHAR2, CFILE.

schema_name, type_
name, version

Type’s schema (if persistent), typename and version.

count If self is a VARRAY, this gives the VARRAY count. If self is of
TYPECODE_OBJECT, this gives the number of attributes.
ANYTYPE TYPE 105-7

GETATTRELEMINFO Member Function
GETATTRELEMINFO Member Function
This function gets the type information for an attribute of the type (if it is of
TYPECODE_OBJECT). Gets the type information for a collection’s element type if
the self parameter is of a collection type.

Syntax
MEMBER FUNCTION GetAttrElemInfo (

self IN AnyType,
pos IN PLS_INTEGER,
prec OUT PLS_INTEGER,
scale OUT PLS_INTEGER,
len OUT PLS_INTEGER,
csid OUT PLS_INTEGER,
csfrm OUT PLS_INTEGER,
attr_elt_type OUT ANYTYPE
aname OUT VARRCHAR2)
RETURN PLS_INTEGER;

Parameters

Table 105–8 GETATTRELEMINFO Function Parameters

Parameter Description

self The AnyType.

pos If self is of TYPECODE_OBJECT, this gives the attribute
position (starting at 1). It is ignored otherwise.

prec, scale If attribute/collection element typecode represents a
NUMBER. Gives precision and scale. Ignored otherwise.

len If typecode represents a RAW, CHAR, VARCHAR, or
VARCHAR2 type. Gives length.

csid, csfrm If typecode represents a type requiring character information
such as: CHAR, VARCHAR, VARCHAR2, CFILE. Gives
character set ID, character set form.

attr_elt_type IF attribute/collection element typecode represents a
user-defined type, this returns the AnyType corresponding to
it. User can subsequently describe the attr_elt_type.

aname Attribute name (if it is an attribute of an object type, NULL
otherwise).
105-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of ANYTYPE Subprograms
Returns
The typecode of the attribute or collection element.

Exceptions
� DBMS_TYPES.invalid_parameters: Invalid Parameters (position is beyond

bounds or the AnyType is not properly constructed).
ANYTYPE TYPE 105-9

GETATTRELEMINFO Member Function
105-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Qu
106

Advanced Queuing Types

This chapter describes the types designed for use with the following Advanced
Queuing (AQ) packages:

� DBMS_AQ

� DBMS_AQADM

This chapter describes the following topics:

� Advanced Queuing Types

Advanced Queuing Types

See Also:

� Oracle9i Application Developer’s Guide - Advanced Queuing
contains information about using AQ

� Oracle9i Supplied PL/SQL Packages and Types Reference contains
information about the DBMS_AQ and DBMS_AQADM packages

Table 106–1 Advanced Queuing Types

Type Description

AQ$_AGENT Type on
page 106-2

Identifies a producer or a consumer of a message

AQ$_AGENT_LIST_T Type
on page 106-3

Identifies the list of agents for which DBMS_AQ.LISTEN
listens

AQ$_DESCRIPTOR Type on
page 106-3

Specifies the AQ descriptor received by the AQ PL/SQL
callbacks upon notification
euing Types 106-1

AQ$_AGENT Type
AQ$_AGENT Type
Identifies a producer or a consumer of a message.

Syntax
TYPE SYS.AQ$_AGENT IS OBJECT (

name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER DEFAULT 0);

AQ$_POST_INFO Type on
page 106-4

Specifies anonymous subscriptions to which you want to post
messages

AQ$_POST_INFO_LIST
Type on page 106-4

Identifies the list of anonymous subscriptions to which you
want to post messages

AQ$_RECIPIENT_LIST_T
Type on page 106-5

Identifies the list of agents that receive the message

AQ$_REG_INFO Type on
page 106-5

Identifies a producer or a consumer of a message

AQ$_REG_INFO_LIST Type
on page 106-7

Identifies the list of registrations to a queue

AQ$_SUBSCRIBER_LIST_T
Type on page 106-7

Identifies the list of subscribers that subscribe to a queue

DEQUEUE_OPTIONS_T
Type on page 106-8

Specifies the options available for the dequeue operation

ENQUEUE_OPTIONS_T
Type on page 106-10

Specifies the options available for the enqueue operation

MESSAGE_PROPERTIES_T
Type on page 106-11

Describes the information that is used by AQ to manage
individual messages

Table 106–1 (Cont.) Advanced Queuing Types

Type Description
106-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
Attributes

AQ$_AGENT_LIST_T Type
Identifies the list of agents for which DBMS_AQ.LISTEN listens.

Syntax
TYPE SYS.AQ$_AGENT_LIST_T IS TABLE OF SYS.AQ$_AGENT

INDEX BY BINARY INTEGER;

AQ$_DESCRIPTOR Type
Specifies the AQ descriptor received by the AQ PL/SQL callbacks upon
notification.

Syntax
TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (

queue_name VARCHAR2(61),
consumer_name VARCHAR2(30),
msg_id RAW(16),
msg_prop MSG_PROP_T);

Table 106–2 AQ$_AGENT Attributes

Attribute Description

name Name of a producer or consumer of a message. The name must follow
object name guidelines in the Oracle9i SQL Reference with regard to
reserved characters.

address Protocol-specific address of the recipient. If the protocol is 0, then the
address is of the form [schema.] queue [@dblink] .

For example, a queue named emp_messages in the hr queue at the site
dbs1.net has the following address:

hr.emp_messages@dbs1.net

protocol Protocol to interpret the address and propagate the message.

See Also: "AQ$_AGENT Type" on page 106-2

See Also: "MESSAGE_PROPERTIES_T Type" on page 106-11
Advanced Queuing Types 106-3

AQ$_POST_INFO Type
Attributes

AQ$_POST_INFO Type
Specifies anonymous subscriptions to which you want to post messages.

Syntax
TYPE SYS.AQ$_POST_INFO IS OBJECT (

name VARCHAR2(128),
namespace NUMBER,
payload RAW(2000) DEFAULT NULL);

Attributes

AQ$_POST_INFO_LIST Type
Identifies the list of anonymous subscriptions to which you want to post messages.

Table 106–3 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_name Name of the queue in which the message was enqueued which
resulted in the notification

consumer_name Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

Table 106–4 AQ$_POST_INFO Attributes

Attribute Description

name The name of the anonymous subscription to which you want to post

namespace To receive notifications from other applications through
DBMS_AQ.POST or OCISubscriptionPost(), the namespace must
be DBMS_AQ.NAMESPACE_ANONYMOUS

payload The payload to be posted to the anonymous subscription
106-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
Syntax
TYPE SYS.AQ$_POST_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_POST_INFO;

AQ$_RECIPIENT_LIST_T Type
Identifies the list of agents that receive the message. This type can be used only
when the queue is enabled for multiple dequeues.

Syntax
TYPE SYS.AQ$_RECIPIENT_LIST_T IS TABLE OF SYS.AQ$_AGENT

INDEX BY BINARY_INTEGER;

AQ$_REG_INFO Type
Specifies the information regarding the registrant for notification on a queue.

Syntax
TYPE SYS.AQ$_REG_INFO IS OBJECT (

name VARCHAR2(128),
namespace NUMBER,
callback VARCHAR2(4000),
context RAW(2000) DEFAULT NULL);

Attributes

See Also: "AQ$_POST_INFO Type" on page 106-4

See Also: "AQ$_AGENT Type" on page 106-2

Table 106–5 AQ Registration Info Type Attributes

Attribute Description

name Specifies the name of the subscription.

The subscription name is of the form schema.queue if the
registration is for a single consumer queue or
schema.queue:consumer_name if the registration is for a
multiconsumer queues.
Advanced Queuing Types 106-5

AQ$_REG_INFO Type
Usage Notes
You can use the following notification mechanisms: OCI, e-mail, or PL/SQL
callback. Notification for nonpersistent queues depends on the notification
mechanism and the queue payload type specified, as shown in Table 106–6.

namespace Specifies the namespace of the subscription.

To receive notifications from AQ queues, the namespace must be
DBMS_AQ.NAMESPACE_AQ.

To receive notifications from other applications through
DBMS_AQ.POSTor OCISubscriptionPost(), the namespace
must be DBMS_AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification.

For HTTP notifications, the form is the following:

http://www.company.com:8080

For e-mail notifications, the form is the following:

mailto://xyz@company.com

For raw message payload for the PLSQLCALLBACK procedure, use
the following:

plsql:// schema.procedure ?PR=0

For user-defined type message payload converted to XML for the
PLSQLCALLBACK procedure, use the following:

plsql:// schema.procedure ?PR=1

context Specifies the context that is to be passed to the callback function.

Table 106–5 (Cont.) AQ Registration Info Type Attributes

Attribute Description
106-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
AQ$_REG_INFO_LIST Type
Identifies the list of registrations to a queue.

Syntax
TYPE SYS.AQ$_REG_INFO_LIST AS VARRAY(1024) OF SYS.AQ$_REG_INFO;

AQ$_SUBSCRIBER_LIST_T Type
Identifies the list of subscribers that subscribe to a queue.

Syntax
TYPE SYS.AQ$_SUBSCRIBER_LIST_T IS TABLE OF SYS.AQ$_AGENT

INDEX BY BINARY_INTEGER;

Table 106–6 Nonpersistent Queues

Queue
Payload
Type

Presentation Specified

RAW XML

Notification Mechanism Notification Mechanism

OCI E-mail
PL/SQL
Callback OCI E-mail

PL/SQL
Callback

RAW The callback
receives the
RAW data in
the payload.

Not supported The PL/SQL
callback
receives the
RAW data in
the payload.

The callback
receives the
XML data in
the payload.

The XML data
is formatted as
an IDAP
message and
e-mailed to the
registered
e-mail address.

The PL/SQL
callback
receives the
XML data in
the payload.

ADT Not supported. Not supported. Not supported. The callback
receives the
XML data in
the payload.

The XML data
is formatted as
an IDAP
message and
e-mailed to the
registered
e-mail address.

The PL/SQL
callback
receives the
XML data in
the payload.

See Also: "AQ$_REG_INFO Type" on page 106-5

See Also: "AQ$_AGENT Type" on page 106-2
Advanced Queuing Types 106-7

DEQUEUE_OPTIONS_T Type
DEQUEUE_OPTIONS_T Type
Specifies the options available for the dequeue operation.

Syntax
TYPE DEQUEUE_OPTIONS_T IS RECORD (

consumer_name VARCHAR2(30) DEFAULT NULL,
dequeue_mode BINARY_INTEGER DEFAULT REMOVE,
navigation BINARY_INTEGER DEFAULT NEXT_MESSAGE,
visibility BINARY_INTEGER DEFAULT ON_COMMIT,
wait BINARY_INTEGER DEFAULT FOREVER,
msgid RAW(16) DEFAULT NULL,
correlation VARCHAR2(128) DEFAULT NULL,
deq_condition VARCHAR2(4000) DEFAULT NULL,
transformation VARCHAR2(60) DEFAULT NULL);

Attributes

Table 106–7 DEQUEUE_OPTIONS_T Attributes

Attribute Description

consumer_name Name of the consumer. Only those messages matching the
consumer name are accessed. If a queue is not set up for
multiple consumers, then this field should be set to NULL.

For secure queues, consumer_name must be a valid AQ Agent

dequeue_mode Specifies the locking behavior associated with the dequeue. The
possible settings follow:

BROWSE: Read the message without acquiring any lock on the
message. This specification is equivalent to a select statement.

LOCKED: Read and obtain a write lock on the message. The lock
lasts for the duration of the transaction. This setting is equivalent
to a select for update statement.

REMOVE: Read the message and update or delete it. This setting
is the default. The message can be retained in the queue table
based on the retention properties.

REMOVE_NODATA: Mark the message as updated or deleted. The
message can be retained in the queue table based on the
retention properties.
106-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
navigation Specifies the position of the message that will be retrieved. First,
the position is determined. Second, the search criterion is
applied. Finally, the message is retrieved.

The possible settings follow:

NEXT_MESSAGE: Retrieve the next message that is available and
matches the search criteria. If the previous message belongs to a
message group, then AQ retrieves the next available message
that matches the search criteria and belongs to the message
group. This setting is the default.

NEXT_TRANSACTION: Skip the remainder of the current
transaction group (if any) and retrieve the first message of the
next transaction group. This setting can only be used if message
grouping is enabled for the current queue.

FIRST_MESSAGE: Retrieves the first message which is available
and matches the search criteria. This setting resets the position to
the beginning of the queue.

visibility Specifies whether the new message is dequeued as part of the
current transaction.The visibility parameter is ignored when
using the BROWSE dequeue mode.

The possible settings follow:

ON_COMMIT: The dequeue will be part of the current transaction.
This setting is the default.

IMMEDIATE: The dequeued message is not part of the current
transaction. It constitutes a transaction on its own.

wait Specifies the wait time if there is currently no message available
which matches the search criteria.

The possible settings follow:

FOREVER: Wait forever. This setting is the default.

NO_WAIT: Do not wait.

number: Wait time in seconds.

msgid Specifies the message identifier of the message to be dequeued.

correlation Specifies the correlation identifier of the message to be
dequeued. Special pattern matching characters, such as the
percent sign (%) and the underscore (_) can be used. If more than
one message satisfies the pattern, then the order of dequeuing is
undetermined.

Table 106–7 (Cont.) DEQUEUE_OPTIONS_T Attributes

Attribute Description
Advanced Queuing Types 106-9

ENQUEUE_OPTIONS_T Type
ENQUEUE_OPTIONS_T Type
Specifies the options available for the enqueue operation.

Syntax
TYPE SYS.ENQUEUE_OPTIONS_T IS RECORD (

visibility BINARY_INTEGER DEFAULT ON_COMMIT,
relative_msgid RAW(16) DEFAULT NULL,
sequence_deviation BINARY_INTEGER DEFAULT NULL,
transformation VARCHAR2(60) DEFAULT NULL);

deq_condition A conditional expression based on the message properties, the
message data properties, and PL/SQL functions.

A deq_condition is specified as a Boolean expression using
syntax similar to the WHERE clause of a SQL query. This Boolean
expression can include conditions on message properties, user
data properties (object payloads only), and PL/SQL or SQL
functions (as specified in the WHERE clause of a SQL query).
Message properties include priority , corrid and other
columns in the queue table

To specify dequeue conditions on a message payload (object
payload), use attributes of the object type in clauses. You must
prefix each attribute with tab .user_data as a qualifier to
indicate the specific column of the queue table that stores the
payload. The deq_condition parameter cannot exceed 4000
characters.

transformation Specifies a transformation that will be applied after dequeuing
the message. The source type of the transformation must match
the type of the queue.

Table 106–7 (Cont.) DEQUEUE_OPTIONS_T Attributes

Attribute Description
106-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
Attributes

MESSAGE_PROPERTIES_T Type
Describes the information that AQ uses to manage individual messages. These are
set at enqueue time, and their values are returned at dequeue time.

Syntax
TYPE MESSAGE_PROPERTIES_T IS RECORD (

priority BINARY_INTEGER DEFAULT 1,
delay BINARY_INTEGER DEFAULT NO_DELAY,
expiration BINARY_INTEGER DEFAULT NEVER,
correlation VARCHAR2(128) DEFAULT NULL,
attempts BINARY_INTEGER,

Table 106–8 ENQUEUE_OPTIONS_T Attributes

Attribute Description

visibility Specifies the transactional behavior of the enqueue request.
The possible settings follow:

ON_COMMIT: The enqueue is part of the current transaction.
The operation is complete when the transaction commits. This
setting is the default.

IMMEDIATE: The enqueue is not part of the current transaction.
The operation constitutes a transaction on its own. This is the
only value allowed when enqueuing to a non-persistent queue.

relative_msgid Specifies the message identifier of the message which is
referenced in the sequence deviation operation. This field is
valid only if BEFORE is specified in sequence_deviation .
This parameter is ignored if sequence deviation is not
specified.

sequence_deviation Specifies whether the message being enqueued should be
dequeued before other messages already in the queue. The
possible settings follow:

BEFORE: The message is enqueued ahead of the message
specified by relative_msgid .

TOP: The message is enqueued ahead of any other messages.

transformation Specifies a transformation that will be applied before
enqueuing the message. The return type of the transformation
function must match the type of the queue.

See Also: "AQ$_RECIPIENT_LIST_T Type" on page 106-5
Advanced Queuing Types 106-11

MESSAGE_PROPERTIES_T Type
recipient_list AQ$_RECIPIENT_LIST_T,
exception_queue VARCHAR2(51) DEFAULT NULL,
enqueue_time DATE,
state BINARY_INTEGER,
sender_id AQ$_AGENT DEFAULT NULL,
original_msgid RAW(16) DEFAULT NULL);

Attributes

Table 106–9 MESSAGE_PROPERTIES_T Attributes

Attribute Description

priority Specifies the priority of the message. A smaller number
indicates higher priority. The priority can be any number,
including negative numbers.

delay Specifies the delay of the enqueued message. The delay
represents the number of seconds after which a message is
available for dequeuing. Dequeuing by msgid overrides the
delay specification. A message enqueued with delay set is in
the WAITING state, and when the delay expires, the message
goes to the READY state. DELAY processing requires the queue
monitor to be started. Delay is set by the producer who
enqueues the message.

The possible settings follow:

NO_DELAY: The message is available for immediate dequeuing

number: The number of seconds to delay the message

expiration Specifies the expiration of the message. It determines, in
seconds, the duration the message is available for dequeuing.
This parameter is an offset from the delay. Expiration
processing requires the queue monitor to be running.

The possible settings follow:

NEVER: The message does not expire

number: The number of seconds message remains in READY
state. If the message is not dequeued before it expires, then it is
moved to the exception queue in the EXPIRED state.

correlation Returns the identification supplied by the producer for a
message at enqueuing

attempts Returns the number of attempts that have been made to
dequeue the message. This parameter cannot be set at enqueue
time.
106-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Advanced Queuing Types
recipient_list This parameter is only valid for queues that allow multiple
consumers. The default recipients are the queue subscribers.
This parameter is not returned to a consumer at dequeue time.

For type definition, see the "AQ$_AGENT Type" on page 106-2.

exception_queue Specifies the name of the queue into which the message is
moved if it cannot be processed successfully.

Messages are moved automatically in the following cases:

� The number of unsuccessful dequeue attempts has
exceeded the specification for the max_retries
parameter in the DBMS_AQADM.CREATE_QUEUE
procedure during queue creation. You can view the
max_retries for a queue in the ALL_QUEUES data
dictionary view.

� All messages in the exception queue are in the EXPIRED
state.

The default is the exception queue associated with the queue
table. If the exception queue specified does not exist at the time
of the move, then the message is moved to the default
exception queue associated with the queue table, and a
warning is logged in the alert file. If the default exception
queue is specified, then the parameter returns a NULL value at
dequeue time.

enqueue_time Specifies the time the message was enqueued. This value is
determined by the system and cannot be set by the user. This
parameter cannot be set at enqueue time.

state Specifies the state of the message at the time of the dequeue.
This parameter cannot be set at enqueue time. The possible
states follow:

0: The message is ready to be processed.

1: The message delay has not yet been reached.

2: The message has been processed and is retained.

3: The message has been moved to the exception queue.

sender_id Specifies the application-specified sender identification. You
must specify sender_id to enqueue messages to secure
queues.

original_msgid This parameter is used by Oracle AQ for propagating
messages.

Table 106–9 (Cont.) MESSAGE_PROPERTIES_T Attributes

Attribute Description
Advanced Queuing Types 106-13

MESSAGE_PROPERTIES_T Type
106-14 Oracle9i Supplied PL/SQL Packages and Types Reference

107

JMS Types

In release 9.2, member procedures and functions and static functions are added to
existing JMS PL/SQL types (aq$_jms_text_message and aq$_jms_bytes_
message) so that a PL/SQL application can use JMS queues of these types. The
aq$_jms_message type is added so that JMS messages of different types can be
enqueued on the same AQ queue. Using the release 9.2 member procedures and
functions, messages enqueued from PL/SQL can be dequeued in OJMS, and
messages enqueued from OJMS can be dequeued in PL/SQL.

This chapter discusses the following topics:

� Constants to Support the aq$_jms_message Type

� Summary of JMS Types

� Summary of JMS Type Member and Static Subprograms

� Enqueuing Through the Oracle JMS Administrative Interface: Example

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing
JMS Types 107-1

Constants to Support the aq$_jms_message Type
Constants to Support the aq$_jms_message Type
These constants are part of the DBMS_AQJMS package.

� JMS_TEXT_MESSAGE CONSTANT BINARY_INTEGER;

� JMS_BYTES_MESSAGE CONSTANT BINARY_INTEGER;

� JMS_STREAM_MESSAGE CONSTANT BINARY_INTEGER;

� JMS_MAP_MESSAGE CONSTANT BINARY_INTEGER;

� JMS_OBJECT_MESSAGE CONSTANT BINARY_INTEGER;

See "aq$_jms_message Type" on page 107-4 for more information.

Summary of JMS Types
This chapter discusses the following JMS types:

� aq$_jms_userproperty Type

� aq$_jms_userproparray Type

� aq$_jms_header Type

� aq$_jms_message Type

� aq$_jms_text_message Type

� aq$_jms_bytes_message Type

aq$_jms_userproperty Type
This type is used to store an individual user-specified JMS message user property.

Syntax
TYPE aq$_jms_userproperty AS object(

name VARCHAR(100),
type INT,
str_value VARCHAR(2000),
num_value NUMBER,
java_type INT);
107-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Types
aq$_jms_userproparray Type
This type is used to store the list of JMS user-specified message properties for a
given JMS message.

Syntax
TYPE aq$_jms_userproparray AS varray(100) of aq$_jms_userproperty;

aq$_jms_header Type
This type is used to store the JMS message header values for a given JMS message.

Syntax
TYPE aq$_jms_header AS object(

replyto sys.aq$_agent,
type VARCHAR(100),
userid VARCHAR(100),
appid VARCHAR(100),
groupid VARCHAR(100),
groupseq INT,
properties aq$_jms_userproparray,
MEMBER PROCEDURE lookup_property_name (new_property_name IN VARCHAR),
MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
MEMBER PROCEDURE set_type (type IN VARCHAR),
MEMBER PROCEDURE set_userid (userid IN VARCHAR),
MEMBER PROCEDURE set_appid (appid IN VARCHAR),
MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
MEMBER PROCEDURE set_groupseq (groupseq IN INT),
MEMBER PROCEDURE clear_properties,
MEMBER PROCEDURE set_boolean_property(

property_name IN VARCHAR,
property_value IN BOOLEAN),

MEMBER PROCEDURE set_byte_property(
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_short_property (
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_int_property (
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_long_property (
property_name IN VARCHAR,
JMS Types 107-3

aq$_jms_message Type
property_value IN NUMBER),
MEMBER PROCEDURE set_float_property (

property_name IN VARCHAR,
property_value IN FLOAT),

MEMBER PROCEDURE set_double_property (
property_name IN VARCHAR,
property_value IN DOUBLE PRECISION),

MEMBER PROCEDURE set_string_property (
property_name IN VARCHAR,
property_value IN VARCHAR),

MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
MEMBER FUNCTION get_type RETURN VARCHAR,
MEMBER FUNCTION get_userid RETURN VARCHAR,
MEMBER FUNCTION get_appid RETURN VARCHAR,
MEMBER FUNCTION get_groupid RETURN VARCHAR,
MEMBER FUNCTION get_groupseq RETURN INT,
MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)

RETURN BOOLEAN,
MEMBER FUNCTION get_byte_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_short_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_int_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_long_property (property_name IN VARCHAR)

RETURN NUMBER,
MEMBER FUNCTION get_float_property (property_name IN VARCHAR)

RETURN FLOAT,
MEMBER FUNCTION get_double_property (property_name IN VARCHAR)

RETURN DOUBLE PRECISION,
MEMBER FUNCTION get_string_property (property_name IN VARCHAR)

RETURN VARCHAR);

aq$_jms_message Type
This type is the ADT used to store JMS messages of all the JMS -specified message
types: JMSText , JMSBytes , JMSMap, JMSStream , and JMSObject .

The static function contruct defined as a part of aq$_jms_message is

STATIC FUNCTION construct (mtype IN int) RETURN aq$_jms_message.

See "CONSTRUCT Static Function" on page 107-27 for more information.
107-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Types
Syntax
TYPE aq$_jms_message AS object(

header aq$_jms_header,
senderid varchar2(100),
message_type INT,
text_len INT,
bytes_len INT,
text_vc varchar2(4000),
bytes_raw raw(2000),
text_lob clob,
bytes_lob blob,
STATIC FUNCTION construct (mtype IN INT) RETURN aq$_jms_message,
MEMBER PROCEDURE set_text (payload IN VARCHAR2),
MEMBER PROCEDURE set_text (payload IN CLOB),
MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
MEMBER PROCEDURE get_text (payload OUT CLOB),
MEMBER PROCEDURE set_bytes (payload IN RAW),
MEMBER PROCEDURE set_bytes (payload IN BLOB),
MEMBER PROCEDURE get_bytes (payload OUT RAW),
MEMBER PROCEDURE get_bytes (payload OUT BLOB),
MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
MEMBER PROCEDURE set_type (type IN VARCHAR),
MEMBER PROCEDURE set_userid (userid IN VARCHAR),
MEMBER PROCEDURE set_appid (appid IN VARCHAR),
MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
MEMBER PROCEDURE set_groupseq (groupseq IN INT),
MEMBER PROCEDURE clear_properties ,
MEMBER PROCEDURE set_boolean_property(

property_name IN VARCHAR,
property_value IN BOOLEAN),

MEMBER PROCEDURE set_byte_property(
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_short_property(
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_int_property(
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_long_property(
property_name IN VARCHAR,
property_value IN NUMBER),

MEMBER PROCEDURE set_float_property(
property_name IN VARCHAR,
JMS Types 107-5

aq$_jms_text_message Type
property_value IN FLOAT),
MEMBER PROCEDURE set_double_property(

property_name IN VARCHAR,
property_value IN DOUBLE PRECISION),

MEMBER PROCEDURE set_string_property(
property_name IN VARCHAR,
property_value IN VARCHAR),

MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
MEMBER FUNCTION get_type RETURN VARCHAR,
MEMBER FUNCTION get_userid RETURN VARCHAR,
MEMBER FUNCTION get_appid RETURN VARCHAR,
MEMBER FUNCTION get_groupid RETURN VARCHAR,
MEMBER FUNCTION get_groupseq RETURN INT,
MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)

RETURN BOOLEAN,
MEMBER FUNCTION get_byte_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_short_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_int_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_long_property (property_name IN VARCHAR)

RETURN NUMBER,
MEMBER FUNCTION get_float_property (property_name IN VARCHAR)

RETURN FLOAT,
MEMBER FUNCTION get_double_property (property_name IN VARCHAR)

RETURN DOUBLE PRECISION,
MEMBER FUNCTION get_string_property (property_name IN VARCHAR)

RETURN VARCHAR);

aq$_jms_text_message Type
This type is the ADT used to store a JMSText message in an AQ queue.

Syntax
TYPE aq$_jms_text_message AS object(

header aq$_jms_header,
text_len INT,
text_vc varchar2(4000),
text_lob clob,
STATIC FUNCTION construct RETURN aq$_jms_text_message,
MEMBER PROCEDURE set_text (payload IN VARCHAR2),
MEMBER PROCEDURE set_text (payload IN CLOB),
MEMBER PROCEDURE get_text (payload OUT VARCHAR2),
107-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Types
MEMBER PROCEDURE get_text (payload OUT CLOB),
MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
MEMBER PROCEDURE set_type (type IN VARCHAR),
MEMBER PROCEDURE set_userid (userid IN VARCHAR),
MEMBER PROCEDURE set_appid (appid IN VARCHAR),
MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
MEMBER PROCEDURE set_groupseq (groupseq IN INT),
MEMBER PROCEDURE clear_properties,
MEMBER PROCEDURE set_boolean_property(

property_name IN VARCHAR,
property_value IN BOOLEAN),

MEMBER PROCEDURE set_byte_property (
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_short_property (
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_int_property (
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_long_property (
property_name IN VARCHAR,
property_value IN NUMBER),

MEMBER PROCEDURE set_float_property (
property_name IN VARCHAR,
property_value IN FLOAT),

MEMBER PROCEDURE set_double_property (
property_name IN VARCHAR,
property_value IN DOUBLE PRECISION),

MEMBER PROCEDURE set_string_property (
property_name IN VARCHAR,
property_value IN VARCHAR),

MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
MEMBER FUNCTION get_type RETURN VARCHAR,
MEMBER FUNCTION get_userid RETURN VARCHAR,
MEMBER FUNCTION get_appid RETURN VARCHAR,
MEMBER FUNCTION get_groupid RETURN VARCHAR,
MEMBER FUNCTION get_groupseq RETURN INT,
MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)

RETURN BOOLEAN,
MEMBER FUNCTION get_byte_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_short_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_int_property (property_name IN VARCHAR)
JMS Types 107-7

aq$_jms_bytes_message Type
RETURN INT,
MEMBER FUNCTION get_long_property (property_name IN VARCHAR)

RETURN NUMBER,
MEMBER FUNCTION get_float_property (property_name IN VARCHAR)

RETURN FLOAT,
MEMBER FUNCTION get_double_property (property_name IN VARCHAR)

RETURN DOUBLE PRECISION,
MEMBER FUNCTION get_string_property (property_name IN VARCHAR)

RETURN VARCHAR);

aq$_jms_bytes_message Type
This type is the ADT used to store a JMSBytes message in an AQ queue.

Syntax
TYPE aq$_jms_bytes_message AS object(

header aq$_jms_header,
bytes_len INT,
bytes_raw raw(2000),
bytes_lob blob,
STATIC FUNCTION construct RETURN aq$_jms_bytes_message,
MEMBER PROCEDURE set_bytes (payload IN RAW),
MEMBER PROCEDURE set_bytes (payload IN BLOB),
MEMBER PROCEDURE get_bytes (payload OUT RAW),
MEMBER PROCEDURE get_bytes (payload OUT BLOB),
MEMBER PROCEDURE set_replyto (replyto IN sys.aq$_agent),
MEMBER PROCEDURE set_type (type IN VARCHAR),
MEMBER PROCEDURE set_userid (userid IN VARCHAR),
MEMBER PROCEDURE set_appid (appid IN VARCHAR),
MEMBER PROCEDURE set_groupid (groupid IN VARCHAR),
MEMBER PROCEDURE set_groupseq (groupseq IN INT),
MEMBER PROCEDURE clear_properties,
MEMBER PROCEDURE set_boolean_property(

property_name IN VARCHAR,
property_value IN BOOLEAN),

MEMBER PROCEDURE set_byte_property(
property_name IN VARCHAR,
property_value IN INT),

MEMBER PROCEDURE set_short_property(
property_name IN VARCHAR,

property_value IN INT),
MEMBER PROCEDURE set_int_property(

property_name IN VARCHAR,
property_value IN INT),
107-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
MEMBER PROCEDURE set_long_property(
property_name IN VARCHAR,
property_value IN NUMBER),

MEMBER PROCEDURE set_float_property(
property_name IN VARCHAR,
property_value IN FLOAT),

MEMBER PROCEDURE set_double_property(
property_name IN VARCHAR,
property_value IN DOUBLE PRECISION),

MEMBER PROCEDURE set_string_property(
property_name IN VARCHAR,
property_value IN VARCHAR),

MEMBER FUNCTION get_replyto RETURN sys.aq$_agent,
MEMBER FUNCTION get_type RETURN VARCHAR,
MEMBER FUNCTION get_userid RETURN VARCHAR,
MEMBER FUNCTION get_appid RETURN VARCHAR,
MEMBER FUNCTION get_groupid RETURN VARCHAR,
MEMBER FUNCTION get_groupseq RETURN INT,
MEMBER FUNCTION get_boolean_property (property_name IN VARCHAR)

RETURN BOOLEAN,
MEMBER FUNCTION get_byte_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_short_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_int_property (property_name IN VARCHAR)

RETURN INT,
MEMBER FUNCTION get_long_property (property_name IN VARCHAR)

RETURN NUMBER,
MEMBER FUNCTION get_float_property (property_name IN VARCHAR)

RETURN FLOAT,
MEMBER FUNCTION get_double_property (property_name IN VARCHAR)

RETURN DOUBLE PRECISION,
MEMBER FUNCTION get_string_property (property_name IN VARCHAR)

RETURN VARCHAR);

Summary of JMS Type Member and Static Subprograms

Table 107–1 JMS Types—Member and Static Subprograms

Subprogram Description

LOOKUP_PROPERTY_
NAME Member Procedure

Checks whether new_property_name exists in the
properties
JMS Types 107-9

Summary of JMS Type Member and Static Subprograms
SET_REPLYTO Member
Procedure

Sets the replyto parameter, which corresponds to
JMSReplyTo

SET_TYPE Member
Procedure

Sets the JMS type, which can be any text, and which
corresponds to JMSType

SET_USERID Member
Procedure

Sets userid , which corresponds to JMSXUserID

SET_APPID Member
Procedure

Sets appid , which corresponds to JMSXAppID

SET_GROUPID Member
Procedure

Sets groupid , which corresponds to JMSXGroupID

SET_GROUPSEQ Member
Procedure

Sets groupseq , which corresponds to JMSXGroupSeq

CLEAR_PROPERTIES
Member Procedure

Clears all properties

SET_BOOLEAN_
PROPERTY Member
Procedure

Checks whether property_name is null or exists

SET_BYTE_PROPERTY
Member Procedure

Checks whether property_name is null or exists

SET_SHORT_PROPERTY
Member Procedure

Checks whether property_name is null or exists

SET_INT_PROPERTY
Member Procedure

Checks whether property_name is null or exists

SET_LONG_PROPERTY
Member Procedure

Checks whether property_name is null or exists

SET_FLOAT_PROPERTY
Member Procedure

Checks whether property_name is null or exists

SET_DOUBLE_
PROPERTY Member
Procedure

Checks whether property_name is null or exists

SET_STRING_PROPERTY
Member Procedure

Checks whether property_name is null or exists

GET_REPLYTO Member
Function

Returns replyto , which corresponds to JMSReplyTo

Table 107–1 (Cont.) JMS Types—Member and Static Subprograms

Subprogram Description
107-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
GET_TYPE Member
Function

Returns type , which corresponds to JMSType

GET_USERID Member
Function

Returns userid , which corresponds to JMSXUserID

GET_APPID Member
Function

Returns appid , which corresponds to JMSXAppID

GET_GROUPID Member
Function

Returns groupid , which corresponds to JMSXGroupID

GET_GROUPSEQ Member
Function

Returns groupseq , which corresponds to
JMSXGroupSeq

GET_BOOLEAN_
PROPERTY Member
Function

Returns a BOOLEAN value if it can find property_
name and if java_type is BOOLEAN

GET_BYTE_PROPERTY
Member Function

Returns a byte value if it can find property_name and
if java_type is byte

GET_SHORT_PROPERTY
Member Function

Returns a short value if it can find property_name
and if java_type is short

GET_INT_PROPERTY
Member Function

Returns an integer value if it can find property_
name and if java_type is INT

GET_LONG_PROPERTY
Member Function

Returns a number value if it can find property_name
and if java_type is long

GET_FLOAT_PROPERTY
Member Function

Returns a FLOAT value if it can find property_name
and if java_type is FLOAT

GET_DOUBLE_
PROPERTY Member
Function

Returns a DOUBLE PRECISION value if it can find
property_name and if java_type is DOUBLE

GET_STRING_PROPERTY
Member Function

Returns a VARCHAR value if it can find property_name
and if java_type is STRING

CONSTRUCT Static
Function

Obtains instances of aq$_jms_message, which can
hold a specific type of JMS message (JMSText ,
JMSBytes , JMSMap, JMSStream).

SET_TEXT Member
Procedure

Sets the payload to an internal representation. See
"Usage Notes" on page 107-28.

Table 107–1 (Cont.) JMS Types—Member and Static Subprograms

Subprogram Description
JMS Types 107-11

LOOKUP_PROPERTY_NAME Member Procedure
LOOKUP_PROPERTY_NAME Member Procedure
This procedure checks whether new_property_name exists in the properties.

Syntax
DBMS_AQJMS.LOOKUP_PROPERTY_NAME(

new_property_name IN VARCHAR);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

SET_REPLYTO Member Procedure
This procedure sets the replyto parameter, which corresponds to JMSReplyTo .

Syntax
DBMS_AQJMS.SET_REPLYTO(

replyto IN SYS.AQ$_AGENT);

GET_TEXT Member
Procedure

Puts the internal representation of the payload into a
VARCHAR2 or CLOB variable payload. See "Usage Notes"
on page 107-29.

SET_BYTES Member
Procedure

Sets the payload to an internal representation. See "Usage
Notes" on page 107-30.

GET_BYTES Member
Procedure

Puts the internal representation of the payload into a
RAW or BLOB variable payload. See "Usage Notes" on
page 107-31.

Table 107–2 LOOKUP_PROPERTY_NAME Procedure Parameters

Parameter Description

new_property_name The property name to look up in the JMS property list

Table 107–1 (Cont.) JMS Types—Member and Static Subprograms

Subprogram Description
107-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

SET_TYPE Member Procedure
This procedure sets the JMS type, which can be any text, and which corresponds to
JMSType.

Syntax
DBMS_AQJMS.SET_TYPE(

type IN VARCHAR);

Parameters

SET_USERID Member Procedure
This procedure sets userid , which corresponds to JMSXUserID .

Syntax
DBMS_AQJMS.SET_USERID(

userid IN VARCHAR);

Table 107–3 SET_REPLYTO Procedure Parameters

Parameter Description

replyto The client-supplied JMSReplyTo header field of the JMS
message, which provides the destination for the reply to the
message.

Table 107–4 SET_TYPE Procedure Parameters

Parameter Description

type The JMSType header field of the JMS message, which is a
client-supplied message type identifier
JMS Types 107-13

SET_APPID Member Procedure
Parameters

SET_APPID Member Procedure
This procedure sets appid , which corresponds to JMSXAppID.

Syntax
DBMS_AQJMS.SET_APPID(

appid IN VARCHAR);

Parameters

SET_GROUPID Member Procedure
This procedure sets groupid , which corresponds to JMSXGroupID .

Syntax
DBMS_AQJMS.SET_GROUPID(

groupid IN VARCHAR);

Table 107–5 SET_USERID Procedure Parameters

Parameter Description

userid The JMS-defined JMSXUserID message property that is set
by OJMS on send and contains the identity of the user
sending the message

Table 107–6 SET_APPID Procedure Parameters

Parameter Description

appid The JMS-defined JMSXAppID message property that is set
by OJMS on send and contains the identity of the
application sending the message
107-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

SET_GROUPSEQ Member Procedure
This procedure sets groupseq , which corresponds to JMSXGroupSeq.

Syntax
DBMS_AQJMS.SET_GROUPSEQ(

groupseq IN INT);

Parameters

CLEAR_PROPERTIES Member Procedure
This procedure clears all properties.

Syntax
DBMS_AQJMS.CLEAR_PROPERTIES;

SET_BOOLEAN_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure stores property_value in an internal representation (a NUMBER type).

Syntax
DBMS_AQJMS.SET_BOOLEAN_PROPERTY(

property_name IN VARCHAR,

Table 107–7 SET_GROUPID Procedure Parameters

Parameter Description

groupid The JMS-defined JMSXGroupID message property that is
set by the client and contains the identity of the message
group of which the current message is a part

Table 107–8 SET_GROUPSEQ Procedure Parameters

Parameter Description

groupseq The JMS-defined JMSXGroupSeq message property that is
set by the client and contains the sequence of the message
within the group starting with 1.
JMS Types 107-15

SET_BYTE_PROPERTY Member Procedure
property_value IN BOOLEAN);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

SET_BYTE_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure checks whether property_value is within -127 to 127 (8-bits). This
check is necessary because neither PL/SQL nor RDBMS defines the byte datatype.

Syntax
DBMS_AQJMS.SET_BYTE_PROPERTY(

property_name IN VARCHAR,
property_value IN INT);

Parameters

Table 107–9 SET_BOOLEAN_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property

Table 107–10 SET_BYTE_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property
107-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

ORA-24193 if the property value exceeds the valid range

SET_SHORT_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure checks whether property_value is within -32767 to 32767 (16-bits).
This check is necessary because neither PL/SQL nor RDBMS defines the short
datatype.

Syntax
DBMS_AQJMS.SET_SHORT_PROPERTY(

property_name IN VARCHAR,
property_value IN INT);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

ORA-24193 if the property value exceeds the valid range

SET_INT_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure checks whether property_value is within -2147483647 to 2147483647

Table 107–11 SET_SHORT_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property
JMS Types 107-17

SET_LONG_PROPERTY Member Procedure
(32-bits). This check is necessary because in PL/SQL and the Oracle database, the
INT datatype is 38 bits.

Syntax
DBMS_AQJMS.SET_INT_PROPERTY(

property_name IN VARCHAR,
property_value IN INT);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

ORA-24193 if the property value exceeds the valid range

SET_LONG_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure stores property_value . In PL/SQL and Oracle database, the NUMBER
datatype is 38 bits. In Java, the long datatype is 64 bits. Therefore, no range check is
needed.

Syntax
DBMS_AQJMS.SET_LONG_PROPERTY(

property_name IN VARCHAR,
property_value IN NUMBER);

Table 107–12 SET_INT_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property
107-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

SET_FLOAT_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure stores property_value .

Syntax
DBMS_AQJMS.SET_FLOAT_PROPERTY(

property_name IN VARCHAR,
property_value IN FLOAT);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

Table 107–13 SET_LONG_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property

Table 107–14 SET_FLOAT_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property
JMS Types 107-19

SET_DOUBLE_PROPERTY Member Procedure
SET_DOUBLE_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure stores property_value .

Syntax
DBMS_AQJMS.SET_DOUBLE_PROPERTY(

property_name IN VARCHAR,
property_value IN DOUBLE PRECISION);

Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

SET_STRING_PROPERTY Member Procedure
This procedure checks whether property_name is null or exists. If not, the
procedure stores property_value .

Syntax
DBMS_AQJMS.SET_STRING_PROPERTY(

property_name IN VARCHAR,
property_value IN VARDHAR);

Table 107–15 SET_DOUBLE_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property
107-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

Exceptions
ORA-24191 if the property name exists

ORA-24192 if the property name is null

GET_REPLYTO Member Function
This function returns replyto , which corresponds to JMSReplyTo .

Syntax
DBMS_AQJMS.GET_REPLYTO(

replyto OUT SYS.AQ$_AGENT);

Returns

GET_TYPE Member Function
This function returns type , which corresponds to JMSType.

Syntax
DBMS_AQJMS.GET_TYPE(

type OUT VARCHAR);

Table 107–16 SET_STRING_PROPERTY Procedure Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

property_value The value of the JMS message user property or system
property

Table 107–17 GET_REPLYTO Function Returns

Return Description

replyto The client-supplied JMSReplyTo header field of the JMS
message, which provides the destination for the reply to the
message.
JMS Types 107-21

GET_USERID Member Function
Returns

GET_USERID Member Function
This function returns userid , which corresponds to JMSXUserID .

Syntax
DBMS_AQJMS.GET_USERID(

userid OUT VARCHAR);

Returns

GET_APPID Member Function
This function returns appid , which corresponds to JMSXAppID.

Syntax
DBMS_AQJMS.GET_APPID(

appid OUT VARCHAR);

Returns

Table 107–18 GET_TYPE Function Returns

Return Description

type The JMSType header field of the JMS message, which is a
client-supplied message type identifier

Table 107–19 GET_USERID Function Returns

Return Description

userid The JMS-defined JMSXUserID message property that is set
by OJMS on send and contains the identity of the user
sending the message

Table 107–20 GET_APPID Function Returns

Return Description

appid The JMS-defined JMSXAppID message property that is set
by OJMS on send and contains the identity of the
application sending the message
107-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
GET_GROUPID Member Function
This function returns groupid , which corresponds to JMSXGroupID .

Syntax
DBMS_AQJMS.GET_GROUPID(

groupid OUT VARCHAR);

Returns

GET_GROUPSEQ Member Function
This function returns groupseq , which corresponds to JMSXGroupSeq.

Syntax
DBMS_AQJMS.GET_GROUPSEQ(

groupseq OUT INT);

Returns

GET_BOOLEAN_PROPERTY Member Function
This function returns a BOOLEAN value if it can find property_name and if
java_type is BOOLEAN. Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_BOOLEAN_PROPERTY(

Table 107–21 GET_GROUPID Function Returns

Return Description

groupid The JMS-defined JMSXGroupID message property that is
set by the client and contains the identity of the message
group of which the current message is a part

Table 107–22 GET_GROUPSEQ Function Returns

Return Description

groupseq The JMS-defined JMSXGroupSeq message property that is
set by the client and contains the sequence of the message
within the group starting with 1.
JMS Types 107-23

GET_BYTE_PROPERTY Member Function
property_name IN VARCHAR,
RETURN BOOLEAN);

Parameters

GET_BYTE_PROPERTY Member Function
This function returns a byte value if it can find property_name and if java_
type is byte . Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_BYTE_PROPERTY(

property_name IN VARCHAR,
RETURN INT);

Parameters

GET_SHORT_PROPERTY Member Function
This function returns a short value if it can find property_name and if java_
type is short . Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_SHORT_PROPERTY(

property_name IN VARCHAR,
RETURN INT);

Table 107–23 GET_BOOLEAN_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

Table 107–24 GET_BYTE_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property
107-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

GET_INT_PROPERTY Member Function
This function returns an integer value if it can find property_name and if
java_type is INT . Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_INT_PROPERTY(

property_name IN VARCHAR,
RETURN INT);

Parameters

GET_LONG_PROPERTY Member Function
This function returns a number value if it can find property_name and if java_
type is long . Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_LONG_PROPERTY(

property_name IN VARCHAR,
RETURN NUMBER);

Table 107–25 GET_SHORT_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

Table 107–26 GET_INT_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property
JMS Types 107-25

GET_FLOAT_PROPERTY Member Function
Parameters

GET_FLOAT_PROPERTY Member Function
This function returns a FLOAT value if it can find property_name and if java_
type is FLOAT. Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_FLOAT_PROPERTY(

property_name IN VARCHAR,
RETURN FLOAT);

Parameters

GET_DOUBLE_PROPERTY Member Function
This function returns a DOUBLE PRECISION value if it can find property_name
and if java_type is DOUBLE. Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_DOUBLE_PROPERTY(

property_name IN VARCHAR,
RETURN DOUBLE PRECISION);

Table 107–27 GET_LONG_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

Table 107–28 GET_FLOAT_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property
107-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
Parameters

GET_STRING_PROPERTY Member Function
This function returns a VARCHAR value if it can find property_name and if java_
type is STRING. Otherwise it returns a NULL.

Syntax
DBMS_AQJMS.GET_STRING_PROPERTY(

property_name IN VARCHAR,
RETURN VARCHAR);

Parameters

CONSTRUCT Static Function
This function is used to obtain instances of aq$_jms_message, which can hold a
specific type of JMS message (JMSText , JMSBytes , JMSMap, JMSStream). The
type of message each of these instances can hold depends on the mtype parameter
passed to the contruct method. Once a message has been constructed, it can be used
only to store JMS messages of the type it has been constructed to hold. The legal
values of the mtype parameter are defined in the "Constants to Support the aq$_
jms_message Type" on page 107-2. See "aq$_jms_message Type" on page 107-4 for
more information.

Syntax
DBMS_AQJMS.CONSTRUCT(

mtype IN INT)
RETURN aq$_jms_message;

Table 107–29 GET_DOUBLE_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property

Table 107–30 GET_STRING_PROPERTY Parameters

Parameter Description

property_name The name of the user-specified JMS user property or the
JMS-specified JMS system property
JMS Types 107-27

SET_TEXT Member Procedure
Syntax
DBMS_AQJMS.CONSTRUCT RETURN aq$_jms_text_message;

SET_TEXT Member Procedure
This procedure sets the payload, a VARCHAR2, to an internal representation. If the
payload length is <= 4000, it is set into text_vc . Otherwise, it is set into text_
lob .

Syntax
DBMS_AQJMS.SET_TEXT(

payload IN VARCHAR2;

Syntax
This procedure sets the payload, a CLOB, to an internal representation (sets payload
into text_lob).

DBMS_AQJMS.SET_TEXT(
payload IN CLOB;

Parameters

Usage Notes
This procedure is available with aq$_jms_text_message (and aq$_jms_
message), but not aq$_jms_bytes_message .

GET_TEXT Member Procedure
This procedure puts the internal representation of the payload into a VARCHAR2
variable payload. It puts text_vc into payload if text_vc is not null, or
transfers text_lob into payload if the length of text_lob is =< 32767 (2**16 -1).

Syntax
DBMS_AQJMS.GET_TEXT(

Table 107–31 SET_TEXT Procedure Parameters

Parameter Description

payload The payload of a JMS message
107-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of JMS Type Member and Static Subprograms
payload OUT VARCHAR2);

Syntax
This procedure puts the internal payload into a CLOB variable payload. It puts
text_lob into payload if text_lob is not null, or transfers text_vc into
payload .

DBMS_AQJMS.GET_TEXT(
payload OUT CLOB;

Parameters

Exceptions
ORA-24190 if the length of the internal payload is more than 32767 (the maximum
length of VARCHAR2 in PL/SQL).

Usage Notes
This procedure is available with aq$_jms_text_message (and aq$_jms_
message), but not aq$_jms_bytes_message .

SET_BYTES Member Procedure
This procedure sets the payload, a RAW value, to an internal representation (into
bytes_raw if the length of payload is <= 2000; otherwise into bytes_lob) .

Syntax
DBMS_AQJMS.SET_BYTES(

payload IN RAW);

Syntax
This procedure sets the payload, a BLOB value, to an internal representation (into
bytes_lob).

DBMS_AQJMS.SET_BYTES(

Table 107–32 GET_TEXT Procedure Parameters

Parameter Description

payload The payload of a JMS message
JMS Types 107-29

GET_BYTES Member Procedure
payload IN BLOB);

Parameters

Usage Notes
This procedure is available with aq$_jms_bytes_message (and aq$_jms_
message), but not aq$_jms_text_message .

GET_BYTES Member Procedure
This procedure puts the internal representation of the payload into a RAW variable
payload. It puts bytes_raw into payload if it is not null, or transfers bytes_lob
into payload if the length of bytes_lob is =< 32767 (2**16 -1).

Syntax
DBMS_AQJMS.GET_BYTES(

payload OUT RAW);

Syntax
This procedure puts the internal representation of the payload into a BLOB variable
payload.

DBMS_AQJMS.GET_BYTES(
payload OUT BLOB);

Exceptions
ORA-24190 if the length of the internal payload is more than 32767 (the maximum
length of VARCHAR2 in PL/SQL).

Table 107–33 SET_BYTES Procedure Parameters

Parameter Description

payload The payload of a JMS message
107-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Enqueuing Through the Oracle JMS Administrative Interface: Example
Returns

Usage Notes
This procedure is available with aq$_jms_bytes_message (and aq$_jms_
message), but not aq$_jms_text_message .

Enqueuing Through the Oracle JMS Administrative Interface: Example
The following sample program enqueues a large text message (along with JMS user
properties) in an AQ queue created through the OJMS administrative interfaces to
hold JMS TEXT messages. Both the text and bytes messages enqueued in this
example can be dequeued using OJMS Java clients.

DECLARE

text varchar2(32767);
agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
message sys.aq$_jms_text_message;

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
msgid raw(16);

BEGIN

message := sys.aq$_jms_text_message.construct;

message.set_replyto(agent);
message.set_type('tkaqpet2');
message.set_userid('jmsuser');
message.set_appid('plsql_enq');
message.set_groupid('st');
message.set_groupseq(1);

message.set_boolean_property('import', True);
message.set_string_property('color', 'RED');
message.set_short_property('year', 1999);
message.set_long_property('mileage', 300000);

Table 107–34 GET_BYTES Function Returns

Return Description

payload The payload of a JMS message
JMS Types 107-31

Enqueuing Through the Oracle JMS Administrative Interface: Example
message.set_double_property('price', 16999.99);
message.set_byte_property('password', 127);

FOR i IN 1..500 LOOP
text := CONCAT (text, '1234567890');

END LOOP;

message.set_text(text);

dbms_aq.enqueue(queue_name => 'jmsuser.jms_text_t1',
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

END;

The following sample program enqueues a large bytes message.

DECLARE

text VARCHAR2(32767);
bytes RAW(32767);
agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
message sys.aq$_jms_bytes_message;
body BLOB;
position INT;

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
msgid raw(16);

BEGIN

message := sys.aq$_jms_bytes_message.construct;

message.set_replyto(agent);
message.set_type('tkaqper4');
message.set_userid('jmsuser');
message.set_appid('plsql_enq_raw');
message.set_groupid('st');
message.set_groupseq(1);

message.set_boolean_property('import', True);
message.set_string_property('color', 'RED');
107-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Enqueuing Through the Oracle JMS Administrative Interface: Example
message.set_short_property('year', 1999);
message.set_long_property('mileage', 300000);
message.set_double_property('price', 16999.99);

-- prepare a huge payload into a blob

FOR i IN 1..1000 LOOP
text := CONCAT (text, '0123456789ABCDEF');

END LOOP;

bytes := HEXTORAW(text);

dbms_lob.createtemporary(lob_loc => body, cache => TRUE);
dbms_lob.open (body, DBMS_LOB.LOB_READWRITE);
position := 1 ;
FOR i IN 1..10 LOOP

dbms_lob.write (lob_loc => body,
amount => FLOOR((LENGTH(bytes)+1)/2),
offset => position,
buffer => bytes);

position := position + FLOOR((LENGTH(bytes)+1)/2) ;
END LOOP;

-- end of the preparation

message.set_bytes(body);
dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_t1',

enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => msgid);

dbms_lob.freetemporary(lob_loc => body);
END;

JMS Types 107-33

Enqueuing Through the Oracle JMS Administrative Interface: Example
107-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Logical Change R
108

Logical Change Record Types

This chapter describes the logical change record (LCR) types. In Streams, LCRs are
message payloads that contain information about changes to a database. These
changes can include changes to the data, which are data manipulation language
(DML) changes, and changes to database objects, which are data definition
language (DDL) changes.

When you use Streams, the capture process captures changes in the form of LCRs
and enqueues them into a queue. These LCRs can be propagated from a queue in
one database to a queue in another database. Finally, the apply process can apply
LCRs at a destination database. You also have the option of creating, enqueuing,
and dequeuing LCRs manually.

LCR types are used with the following Oracle-supplied PL/SQL packages:

� DBMS_APPLY_ADM

� DBMS_AQ

� DBMS_AQADM

� DBMS_CAPTURE_ADM

� DBMS_PROPAGATION_ADM

� DBMS_RULE

� DBMS_RULE_ADM

� DBMS_STREAMS

� DBMS_STREAMS_ADM

� DBMS_TRANSFORM
ecord Types 108-1

This chapter contains these topics:

� LCR$_DDL_RECORD Type

� LCR$_ROW_RECORD Type

� Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD

� LCR$_ROW_LIST Type

� LCR$_ROW_UNIT Type
108-2 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
LCR$_DDL_RECORD Type

This type represents a DDL change to a database object.

If you create or modify a DDL LCR, then make sure the ddl_text is consistent
with the base_table_name , base_table_owner , object_type ,
object_owner , object_name , and command_type attributes.

Note:

� When passing a name as a parameter to an LCR constructor,
you can enclose the name in double quotes to handle names
that use mixed case or lower case for database objects. For
example, if a name contains any lower case characters, then you
must enclose it in double quotes.

� The application does not need to specify a transaction identifier
or SCN when it creates an LCR because the apply process
generates these values and stores them in memory. If a
transaction identifier or SCN is specified in the LCR, then the
apply process ignores it and assigns a new value.
Logical Change Record Types 108-3

LCR$_DDL_RECORD Constructor
LCR$_DDL_RECORD Constructor

Creates a SYS.LCR$_DDL_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
source_database_name IN VARCHAR2,
command_type IN VARCHAR2,
object_owner IN VARCHAR2,
object_name IN VARCHAR2,
object_type IN VARCHAR2,
ddl_text IN CLOB,
logon_user IN VARCHAR2,
current_schema IN VARCHAR2,
base_table_owner IN VARCHAR2,
base_table_name IN VARCHAR2,
tag IN RAW DEFAULT NULL,
transaction_id IN VARCHAR2 DEFAULT NULL,
scn IN NUMBER DEFAULT NULL)

RETURN SYS.LCR$_DDL_RECORD;
108-4 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
LCR$_DDL_RECORD Constructor Function Parameters

Table 108–1 Constructor Function Parameters for LCR$_DDL_RECORD (Page 1 of 3)

Parameter Description

source_database_name The database where the DDL statement occurred. If you do not
include the domain name, then the local domain is appended
to the database name automatically. For example, if you specify
DBS1 and the local domain is .NET, then DBS1.NET is
specified automatically. This parameter should be set to a
non-NULL value.

command_type The type of command executed in the DDL statement. This
parameter should be set to a non-NULL value.

See Also: The "SQL Command Codes" table in the Oracle Call
Interface Programmer’s Guide for a complete list of command
types

The following command types are not supported in DDL LCRs:

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW LOG
ALTER SUMMARY
CREATE SCHEMA
CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW LOG
CREATE SUMMARY
DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG
DROP SUMMARY
RENAME

The snapshot equivalents of the materialized view command
types are also not supported.

object_owner The user who owns the object on which the DDL statement
was executed

object_name The database object on which the DDL statement was executed
Logical Change Record Types 108-5

LCR$_DDL_RECORD Constructor
object_type The type of object on which the DDL statement was executed.

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object
types not listed. The GET_OBJECT_TYPE member procedure
returns NULL for object types not listed.

ddl_text The text of the DDL statement. This parameter should be set to
a non-NULL value.

logon_user The user whose session executed the DDL statement

current_schema The schema that is used if no schema is specified explicitly for
the modified database objects in ddl_text . If a schema is
specified in ddl_text that differs from the one specified for
current_schema , then the schema specified in ddl_text is
used.

This parameter should be set to a non-NULL value.

base_table_owner If the DDL statement is a table related DDL (such as CREATE
TABLE and ALTER TABLE), or if the DDL statement involves a
table (such as creating a trigger on a table), then
base_table_owner specifies the owner of the table involved.
Otherwise, base_table_owner is NULL.

Table 108–1 Constructor Function Parameters for LCR$_DDL_RECORD (Page 2 of 3)

Parameter Description
108-6 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
base_table_name If the DDL statement is a table related DDL (such as CREATE
TABLE and ALTER TABLE), or if the DDL statement involves a
table (such as creating a trigger on a table), then
base_table_name specifies the name of the table involved.
Otherwise, base_table_name is NULL.

tag A binary tag that enables tracking of the LCR. For example,
this tag may be used to determine the original source database
of the DDL statement if apply forwarding is used.

See Also: Oracle9i Streams for more information about tags

transaction_id The identifier of the transaction

scn The SCN at the time when the change record for a captured
LCR was written to the redo. The SCN value is meaningless for
a user-created LCR.

Table 108–1 Constructor Function Parameters for LCR$_DDL_RECORD (Page 3 of 3)

Parameter Description
Logical Change Record Types 108-7

Summary of LCR$_DDL_RECORD Subprograms
Summary of LCR$_DDL_RECORD Subprograms

Table 108–2 LCR$_DDL_RECORD Subprograms

Subprogram Description

Common Subprograms See "Common Subprograms for
LCR$_ROW_RECORD and LCR$_DDL_RECORD"
on page 108-33 for a list of subprograms common to
the SYS.LCR$_ROW_RECORD and
SYS.LCR$_DDL_RECORD types

"EXECUTE Member Procedure" on
page 108-9

Executes the LCR under the security domain of the
current user

"GET_BASE_TABLE_NAME Member
Function" on page 108-9

Returns the base (dependent) table name

"GET_BASE_TABLE_OWNER
Member Function" on page 108-9

Returns the base (dependent) table owner

"GET_CURRENT_SCHEMA Member
Function" on page 108-9

Returns the default schema (user) name

"GET_DDL_TEXT Member
Procedure" on page 108-10

Gets the DDL text in a CLOB

"GET_LOGON_USER Member
Function" on page 108-11

Returns the logon user name

"GET_OBJECT_TYPE Member
Function" on page 108-11

Returns the type of the object involved for the DDL

"SET_BASE_TABLE_NAME Member
Procedure" on page 108-11

Sets the base (dependent) table name

"SET_BASE_TABLE_OWNER
Member Procedure" on page 108-12

Sets the base (dependent) table owner

"SET_CURRENT_SCHEMA Member
Procedure" on page 108-12

Sets the default schema (user) name

"SET_DDL_TEXT Member
Procedure" on page 108-13

Sets the DDL text

"SET_LOGON_USER Member
Procedure" on page 108-13

Sets the logon user name

"SET_OBJECT_TYPE Member
Procedure" on page 108-14

Sets the object type
108-8 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
EXECUTE Member Procedure
Executes the DDL LCR under the security domain of the current user. Any apply
process handlers that would be run for an LCR are not run when the LCR is applied
using this procedure.

Syntax
MEMBER PROCEDURE EXECUTE();

GET_BASE_TABLE_NAME Member Function
Returns the base (dependent) table name.

Syntax
MEMBER FUNCTION GET_BASE_TABLE_NAME RETURN VARCHAR2;

GET_BASE_TABLE_OWNER Member Function
Returns the base (dependent) table owner.

Syntax
MEMBER FUNCTION GET_BASE_TABLE_OWNER RETURN VARCHAR2;

GET_CURRENT_SCHEMA Member Function
Returns the current schema name.

Syntax
MEMBER FUNCTION GET_CURRENT_SCHEMA RETURN VARCHAR2;

Note: The EXECUTE member procedure can be invoked only in an
apply handler for an apply process.
Logical Change Record Types 108-9

Summary of LCR$_DDL_RECORD Subprograms
GET_DDL_TEXT Member Procedure
Gets the DDL text in a CLOB.

The following is an example of a PL/SQL procedure that uses this procedure to get
the DDL text in a DDL LCR:

CREATE OR REPLACE PROCEDURE ddl_in_lcr (ddl_lcr in SYS.LCR$_DDL_RECORD)
IS

ddl_text CLOB;
BEGIN

DBMS_OUTPUT.PUT_LINE(’ ---’);
DBMS_OUTPUT.PUT_LINE(’ Displaying DDL text in a DDL LCR: ’);
DBMS_OUTPUT.PUT_LINE(’ ---’);
DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
ddl_lcr.GET_DDL_TEXT(ddl_text);
DBMS_OUTPUT.PUT_LINE(’DDL text:’ || ddl_text);
DBMS_LOB.FREETEMPORARY(ddl_text);

END;
/

Syntax
MEMBER FUNCTION GET_DDL_TEXT

ddl_text IN OUT CLOB);

Parameter

Note: GET_DDL_TEXT is a member procedure and not a member
function to make it easier for you to manage the space used by the
CLOB. Notice that the previous example creates temporary space
for the CLOB and then frees the temporary space when it is no
longer needed.

Table 108–3 GET_DDL_TEXT Procedure Parameter

Parameter Description

ddl_text The DDL text in the DDL LCR
108-10 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
GET_LOGON_USER Member Function
Returns the logon user name.

Syntax
MEMBER FUNCTION GET_LOGON_USER RETURN VARCHAR2;

GET_OBJECT_TYPE Member Function
Returns the type of the object involved for the DDL.

Syntax
MEMBER FUNCTION GET_OBJECT_TYPE RETURN VARCHAR2;

SET_BASE_TABLE_NAME Member Procedure
Sets the base (dependent) table name.

Syntax
MEMBER PROCEDURE SET_BASE_TABLE_NAME(

base_table_name IN VARCHAR2);

Parameter

Table 108–4 SET_BASE_TABLE_NAME Procedure Parameter

Parameter Description

base_table_name The name of the base table
Logical Change Record Types 108-11

Summary of LCR$_DDL_RECORD Subprograms
SET_BASE_TABLE_OWNER Member Procedure
Sets the base (dependent) table owner.

Syntax
MEMBER PROCEDURE SET_BASE_TABLE_OWNER(

base_table_owner IN VARCHAR2);

Parameter

SET_CURRENT_SCHEMA Member Procedure
Sets the default schema (user) name.

Syntax
MEMBER PROCEDURE SET_CURRENT_SCHEMA(

current_schema IN VARCHAR2);

Parameter

Table 108–5 SET_BASE_TABLE_OWNER Procedure Parameter

Parameter Description

base_table_owner The name of the base owner

Table 108–6 SET_CURRENT_SCHEMA Procedure Parameter

Parameter Description

current_schema The name of the schema to set as the current schema. This
parameter should be set to a non-NULL value.
108-12 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_DDL_RECORD Type
SET_DDL_TEXT Member Procedure
Sets the DDL text.

Syntax
MEMBER PROCEDURE SET_DDL_TEXT(

ddl_text IN CLOB);

Parameter

SET_LOGON_USER Member Procedure
Sets the logon user name.

Syntax
MEMBER PROCEDURE SET_LOGON_USER(

logon_user IN VARCHAR2);

Parameter

Table 108–7 SET_DDL_TEXT Procedure Parameter

Parameter Description

ddl_text The DDL text. This parameter should be set to a non-NULL
value.

Table 108–8 SET_LOGON_USER Procedure Parameter

Parameter Description

logon_user The name of the schema to set as the logon user
Logical Change Record Types 108-13

Summary of LCR$_DDL_RECORD Subprograms
SET_OBJECT_TYPE Member Procedure
Sets the object type.

Syntax
MEMBER PROCEDURE SET_OBJECT_TYPE(

object_type IN VARCHAR2);

Parameter

Table 108–9 SET_OBJECT_TYPE Procedure Parameter

Parameter Description

object_type The object type.

The following are valid object types:

CLUSTER
FUNCTION
INDEX
LINK
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

LINK represents a database link.

NULL is also a valid object type. Specify NULL for all object
types not listed. The GET_OBJECT_TYPE member procedure
returns NULL for object types not listed.
108-14 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
LCR$_ROW_RECORD Type

This type represents a DML change to a row in a table. This type uses the
LCR$_ROW_LIST type.

If you create or modify a row LCR, then make sure the command_type attribute is
consistent with the presence or absence of old column values and the presence or
absence of new column values.

Note:

� When passing a name as a parameter to an LCR constructor,
you can enclose the name in double quotes to handle names
that use mixed case or lower case for database objects. For
example, if a name contains any lower case characters, then you
must enclose it in double quotes.

� The application does not need to specify a transaction identifier
or SCN when it creates an LCR because the apply process
generates these values and stores them in memory. If a
transaction identifier or SCN is specified in the LCR, then the
apply process ignores it and assigns a new value.

See Also: "LCR$_ROW_LIST Type" on page 108-40
Logical Change Record Types 108-15

LCR$_ROW_RECORD Constructor
LCR$_ROW_RECORD Constructor

Creates a SYS.LCR$_ROW_RECORD object with the specified information.

STATIC FUNCTION CONSTRUCT(
source_database_name IN VARCHAR2,
command_type IN VARCHAR2,
object_owner IN VARCHAR2,
object_name IN VARCHAR2,
tag IN RAW DEFAULT NULL,
transaction_id IN VARCHAR2 DEFAULT NULL,
scn IN NUMBER DEFAULT NULL,
old_values IN SYS.LCR$_ROW_LIST DEFAULT NULL,
new_values IN SYS.LCR$_ROW_LIST DEFAULT NULL)

RETURN SYS.LCR$_ROW_RECORD;
108-16 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
LCR$_ROW_RECORD Constructor Function Parameters

Table 108–10 Constructor Function Parameters for LCR$_ROW_RECORD (Page 1 of 2)

Parameter Description

source_database_name The database where the row change occurred. If you do not
include the domain name, then the local domain is appended
to the database name automatically. For example, if you specify
DBS1 and the local domain is .NET, then DBS1.NET is
specified automatically. This parameter should be set to a
non-NULL value.

command_type The type of command executed in the DML statement. This
parameter should be set to a non-NULL value.

Valid values are the following:

INSERT
UPDATE
DELETE
LOB ERASE
LOB WRITE
LOB TRIM

If INSERT, then an LCR should have a new_values collection
that is not empty and an empty or NULL old_values
collection.

If UPDATE, then an LCR should have a new_values collection
that is not empty and an old_values collection that is not
empty.

If DELETE, then an LCR should have a NULL or empty
new_values collection and an old_values collection that is
not empty.

If LOB ERASE, LOB WRITE, or LOB TRIM, then an LCR should
have a new_values collection that is not empty and an empty
or NULL old_values collection.

object_owner The user who owns the table on which the row change
occurred. This parameter should be set to a non-NULL value.

object_name The table on which the DML statement was executed. This
parameter should be set to a non-NULL value.

tag A binary tag that enables tracking of the LCR. For example,
this tag may be used to determine the original source database
of the DML change when apply forwarding is used.

See Also: Oracle9i Streams for more information about tags

transaction_id The identifier of the transaction
Logical Change Record Types 108-17

LCR$_ROW_RECORD Constructor
scn The SCN at the time when the change record was written to
the redo

old_values If the DML statement is an UPDATE or a DELETE statement,
then the values of columns in the row before the DML
statement

new_values If the DML statement is an UPDATE or an INSERT statement,
then the values of columns in the row after the DML statement.

If the LCR reflects a LOB operation, then the supplementally
logged columns and any relevant LOB information.

Table 108–10 Constructor Function Parameters for LCR$_ROW_RECORD (Page 2 of 2)

Parameter Description
108-18 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
Summary of LCR$_ROW_RECORD Subprograms

Table 108–11 LCR$_ROW_RECORD Subprograms (Page 1 of 2)

Subprogram Description

Common Subprograms See "Common Subprograms for
LCR$_ROW_RECORD and LCR$_DDL_RECORD"
on page 108-33 for a list of subprograms common to
the SYS.LCR$_ROW_RECORD and
SYS.LCR$_DDL_RECORD types

"ADD_COLUMN Member
Procedure" on page 108-20

Adds the value as old or new, depending on the
value type specified, for the column

"DELETE_COLUMN Member
Procedure" on page 108-21

Deletes the old value, the new value, or both, for the
specified column, depending on the value type
specified

"EXECUTE Member Procedure" on
page 108-22

Executes the LCR under the security domain of the
current user

"GET_LOB_INFORMATION
Member Function" on page 108-23

Gets the LOB information for the column

"GET_LOB_OFFSET Member
Function" on page 108-24

Returns the LOB offset for the specified column

"GET_LOB_OPERATION_SIZE
Member Function" on page 108-25

Gets the operation size for the LOB column

"GET_VALUE Member Function" on
page 108-26

Returns the old or new value for the specified
column, depending on the value type specified

"GET_VALUES Member Function" on
page 108-26

Returns a list of old or new values, depending on
the value type specified

"RENAME_COLUMN Member
Procedure" on page 108-27

Renames a column in an LCR

"SET_LOB_INFORMATION Member
Procedure" on page 108-28

Sets LOB information for the column

"SET_LOB_OFFSET Member
Procedure" on page 108-29

Sets the LOB offset for the specified column
Logical Change Record Types 108-19

Summary of LCR$_ROW_RECORD Subprograms
ADD_COLUMN Member Procedure
Adds the value as old or new, depending on the value type specified, for the
column. An error is raised if a value of the same type already exists for the column.

To set a column value that already exists, run SET_VALUE.

Syntax
MEMBER PROCEDURE ADD_COLUMN(

value_type IN VARCHAR2,
column_name IN VARCHAR2,
column_value IN SYS.AnyData);

Parameters

"SET_LOB_OPERATION_SIZE
Member Procedure" on page 108-30

Sets the operation size for the LOB column

"SET_VALUE Member Procedure" on
page 108-31

Overwrites the value of the specified column

"SET_VALUES Member Procedure"
on page 108-32

Replaces the existing old or new values for the LCR,
depending on the value type specified

See Also: "SET_VALUE Member Procedure" on page 108-31

Table 108–12 ADD_COLUMN Procedure Parameters

Parameter Description

value_type The type of value to add for the column. Specify old to add
the old value of the column. Specify new to add the new value
of the column.

column_name The column name. This name is not validated. An error may be
raised during application of the LCRs if an invalid name is
specified.

column_value The value of the column. If NULL, then an error is raised.

A NULL column value can be specified by encapsulating the
NULL value in a SYS.AnyData wrapper.

Table 108–11 LCR$_ROW_RECORD Subprograms (Page 2 of 2)

Subprogram Description
108-20 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
DELETE_COLUMN Member Procedure
Deletes the old value, the new value, or both, for the specified column, depending
on the value type specified.

Syntax
MEMBER PROCEDURE DELETE_COLUMN(

column_name IN VARCHAR2,
value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 108–13 DELETE_COLUMN Procedure Parameters

Parameter Description

column_name The column name. An error is raised if the column does not
exist in the LCR.

value_type The type of value to delete for the column. Specify old to
delete the old value of the column. Specify new to delete the
new value of the column. If * is specified, then both the old
and new values are deleted.
Logical Change Record Types 108-21

Summary of LCR$_ROW_RECORD Subprograms
EXECUTE Member Procedure
Executes the row LCR under the security domain of the current user. Any apply
process handlers that would be run for an LCR are not run when the LCR is applied
using this procedure.

Syntax
MEMBER PROCEDURE EXECUTE(

conflict_resolution IN BOOLEAN);

Parameters

Note: The EXECUTE member procedure can be invoked only in an
apply handler for an apply process.

Table 108–14 EXECUTE Procedure Parameters

Parameter Description

conflict_resolution If true , then any conflict resolution defined for the table using
the SET_UPDATE_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package is used to resolve conflicts
resulting from the execution of the LCR.

If false , then conflict resolution is not used.
108-22 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
GET_LOB_INFORMATION Member Function
Gets the LOB information for the column.

The return value can be one of the following:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

Returns NULL if the specified column does not exist.

Syntax
MEMBER FUNCTION GET_LOB_INFORMATION(

value_type IN VARCHAR2,
column_name IN VARCHAR2)

RETURN NUMBER;

Parameters

Table 108–15 GET_LOB_INFORMATION Function Parameters

Parameter Description

value_type The type of value to return for the column, either old or new

column_name The name of the column
Logical Change Record Types 108-23

Summary of LCR$_ROW_RECORD Subprograms
GET_LOB_OFFSET Member Function
Gets the LOB offset for the specified column in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Returns a non-NULL value
only if all of the following conditions are met:

� The value exists for the column

� The column value is an out-of-line LOB. That is, the information is
DBMS_LCR.LAST_LOB_CHUNK or DBMS_LCR.LOB_CHUNK

� The command type is LOB ERASE or LOB WRITE

Otherwise, returns NULL.

Syntax
GET_LOB_OFFSET(

value_type IN VARCHAR2,
column_name IN VARCHAR2)

RETURN NUMBER;

Parameters

Table 108–16 GET_LOB_OFFSET Procedure Parameters

Parameter Description

value_type The type of value to return for the column. Currently, only new
can be specified.

column_name The name of the LOB column
108-24 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
GET_LOB_OPERATION_SIZE Member Function
Gets the operation size for the LOB column in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Returns a non-NULL value
only if all of the following conditions are met:

� The value exists for the column

� The column value is an out-of-line LOB

� The command type is LOB ERASE or LOB TRIM

� The information is DBMS_LCR.LAST_LOB_CHUNK

Otherwise, returns NULL.

Syntax
MEMBER FUNCTION GET_LOB_OPERATION_SIZE(

value_type IN VARCHAR2,
column_name IN VARCHAR2)

RETURN NUMBER,

Parameters

Table 108–17 GET_LOB_OPERATION_SIZE Function Parameters

Parameter Description

value_type The type of value to return for the column. Currently, only new
can be specified.

column_name The name of the LOB column
Logical Change Record Types 108-25

Summary of LCR$_ROW_RECORD Subprograms
GET_VALUE Member Function
Returns the old or new value for the specified column, depending on the value type
specified.

Syntax
MEMBER FUNCTION GET_VALUE(

value_type IN VARCHAR2,
column_name IN VARCHAR2)

RETURN SYS.AnyData;

Parameters

GET_VALUES Member Function
Returns a list of old or new values, depending on the value type specified.

Syntax
MEMBER FUNCTION GET_VALUES(

value_type IN VARCHAR2)
RETURN SYS.LCR$_ROW_LIST;

Parameter

Table 108–18 GET_VALUE Procedure Parameters

Parameter Description

value_type The type of value to return for the column. Specify old to get
the old value for the column. Specify new to get the new value
for the column.

column_name The column name. If the column is present and has a NULL
value, returns a SYS.AnyData instance containing a NULL
value. If the column value is absent, returns a NULL.

Table 108–19 GET_VALUES Procedure Parameter

Parameter Description

value_type The type of values to return. Specify old to return a list of old
values. Specify new to return a list of new values.
108-26 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
RENAME_COLUMN Member Procedure
Renames a column in an LCR.

Syntax
MEMBER PROCEDURE RENAME_COLUMN(

from_column_name IN VARCHAR2,
to_column_name IN VARCHAR2,
value_type IN VARCHAR2 DEFAULT '*');

Parameters

Table 108–20 RENAME_COLUMN Procedure Parameters

Parameter Description

from_column_name The existing column name

to_column_name The new column name. An error is raised if a column with the
specified name already exists.

value_type The type of value for which to rename the column.

Specify old to rename the old value of the column. An error is
raised if the old value does not exist in the LCR.

Specify new to rename the new value of the column. An error
is raised if the new value does not exist in the LCR.

If * is specified, then the column names for both old and new
value are renamed. An error is raised if either column value
does not exist in the LCR.
Logical Change Record Types 108-27

Summary of LCR$_ROW_RECORD Subprograms
SET_LOB_INFORMATION Member Procedure
Sets LOB information for the column.

Syntax
MEMBER PROCEDURE SET_LOB_INFORMATION(

value_type IN VARCHAR2,
column_name IN VARCHAR2,
lob_information IN NUMBER);

Parameters

Table 108–21 SET_LOB_INFORMATION Procedure Parameters

Parameter Description

value_type The type of value to set for the column, either old or new.
Specify old only if lob_information is set to
DBMS_LCR.NOT_A_LOB.

column_name The name of the column. An exception is raised if the column
value does not exist. You may need to set this parameter for
non-LOB columns.

lob_information Specify one of the following values:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;
108-28 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
SET_LOB_OFFSET Member Procedure
Sets the LOB offset for the specified column in the number of characters for CLOB
columns and the number of bytes for BLOB columns.

Syntax
SET_LOB_OFFSET(

value_type IN VARCHAR2,
column_name IN VARCHAR2,
lob_offset IN NUMBER);

Parameters

Table 108–22 SET_LOB_OFFSET Procedure Parameters

Parameter Description

value_type The type of value to set for the column. Currently, only new
can be specified.

column_name The column name. An error is raised if the column value does
not exist in the LCR.

lob_offset The LOB offset number. Valid values are NULL or a positive
integer less than or equal to DBMS_LOB.LOBMAXSIZE.
Logical Change Record Types 108-29

Summary of LCR$_ROW_RECORD Subprograms
SET_LOB_OPERATION_SIZE Member Procedure
Sets the operation size for the LOB column in the number of characters for CLOB
columns and bytes for BLOB columns.

Syntax
MEMBER PROCEDURE SET_LOB_OPERATION_SIZE(

value_type IN VARCHAR2,
column_name IN VARCHAR2,
lob_operation_size IN NUMBER);

Parameters

Table 108–23 SET_LOB_OPERATION_SIZE Procedure Parameters

Parameter Description

value_type The type of value to set for the column. Currently, only new
can be specified.

column_name The name of the LOB column. An exception is raised if the
column value does not exist in the LCR.

lob_operation_size If lob_information for the LOB is or will be
DBMS_LCR.LAST_LOB_CHUNK, then can be set to either a valid
LOB ERASE value or a valid LOB TRIM value. A LOB_ERASE
value must be a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE. A LOB_TRIM value must be a
nonnegative integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

Otherwise, set to NULL.
108-30 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_RECORD Type
SET_VALUE Member Procedure
Overwrites the old or new value of the specified column.

One reason you may want to overwrite an old value for a column is to resolve an
error that resulted from a conflict.

Syntax
MEMBER PROCEDURE SET_VALUE(

value_type IN VARCHAR2,
column_name IN VARCHAR2,
column_value IN SYS.AnyData);

Parameters

Table 108–24 SET_VALUE Procedure Parameters

Parameter Description

value_type The type of value to set. Specify old to set the old value of the
column. Specify new to set the new value of the column.

column_name The column name. An error is raised if the specified
column_value does not exist in the LCR for the specified
column_type .

column_value The new value of the column. If NULL is specified, then an
error is raised. To set the value to NULL, encapsulate the NULL
in a SYS.AnyData instance.
Logical Change Record Types 108-31

Summary of LCR$_ROW_RECORD Subprograms
SET_VALUES Member Procedure
Replaces all old values or all new values for the LCR, depending on the value type
specified.

Syntax
MEMBER PROCEDURE SET_VALUES(

value_type IN VARCHAR2,
value_list IN SYS.LCR$_ROW_LIST);

Parameters

Table 108–25 SET_VALUES Procedure Parameters

Parameter Description

value_type The type of values to replace. Specify old to replace the old
values. Specify new to replace the new values.

value_list List of values to replace the existing list. Use a NULL or an
empty list to remove all values.
108-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD

The following functions and procedures are common to both the
LCR$_ROW_RECORD and LCR$_DDL_RECORD type.

See Also: For descriptions of the subprograms for these types
that are exclusive to each type:

� "Summary of LCR$_DDL_RECORD Subprograms" on
page 108-8

� "Summary of LCR$_ROW_RECORD Subprograms" on
page 108-19
Logical Change Record Types 108-33

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
Table 108–26 Summary of Common Subprograms for Row and DDL Types

Subprogram Description

"GET_COMMAND_TYPE Member
Function" on page 108-35

Returns the command type of the LCR

"GET_OBJECT_NAME Member
Function" on page 108-35

Returns the name of the object that is changed by
the LCR

"GET_OBJECT_OWNER Member
Function" on page 108-35

Returns the owner of the object that is changed by
the LCR

"GET_SCN Member Function" on
page 108-35

Returns the system change number (SCN) of
the LCR

"GET_SOURCE_DATABASE_NAME
Member Function" on page 108-36

Returns the source database name.

"GET_TAG Member Function" on
page 108-36

Returns the tag for the LCR

"GET_TRANSACTION_ID Member
Function" on page 108-36

Returns the transaction identifier of the LCR

"IS_NULL_TAG Member Function"
on page 108-36

Returns Y if the tag for the LCR is NULL, or returns N
if the tag for the LCR is not NULL

"SET_COMMAND_TYPE Member
Procedure" on page 108-37

Sets the command type

"SET_OBJECT_NAME Member
Procedure" on page 108-38

Sets the name of the object that is changed by
the LCR

"SET_OBJECT_OWNER Member
Procedure" on page 108-38

Sets the owner of the object that is changed by
the LCR

"SET_SOURCE_DATABASE_NAME
Member Procedure" on page 108-39

Sets the source database name of the object that is
changed by the LCR

"SET_TAG Member Procedure" on
page 108-39

Sets the tag for the LCR
108-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
GET_COMMAND_TYPE Member Function
Returns the command type of the LCR.

Syntax
MEMBER FUNCTION GET_COMMAND_TYPE RETURN VARCHAR2;

GET_OBJECT_NAME Member Function
Returns the name of the object that is changed by the LCR.

Syntax
MEMBER FUNCTION GET_OBJECT_NAME RETURN VARCHAR2;

GET_OBJECT_OWNER Member Function
Returns the owner of the object that is changed by the LCR.

Syntax
MEMBER FUNCTION GET_OBJECT_OWNER RETURN VARCHAR2;

GET_SCN Member Function
Returns the system change number (SCN) of the LCR.

Syntax
MEMBER FUNCTION GET_SCN RETURN NUMBER;

See Also: The "SQL Command Codes" table in the Oracle Call
Interface Programmer’s Guide for a complete list of command types
Logical Change Record Types 108-35

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
GET_SOURCE_DATABASE_NAME Member Function
Returns the global name of the source database name. The source database is the
database where the change occurred.

Syntax
MEMBER FUNCTION GET_SOURCE_DATABASE_NAME RETURN VARCHAR2;

GET_TAG Member Function
Returns the tag for the LCR. An LCR tag is a binary tag that enables tracking of the
LCR. For example, this tag may be used to determine the original source database
of the DML or DDL change when apply forwarding is used.

Syntax
MEMBER FUNCTION GET_TAG RETURN RAW;

GET_TRANSACTION_ID Member Function
Returns the transaction identifier of the LCR.

Syntax
MEMBER FUNCTION GET_TRANSACTION_ID RETURN VARCHAR2;

IS_NULL_TAG Member Function
Returns Y if the tag for the LCR is NULL, or returns N if the tag for the LCR is not
NULL.

Syntax
MEMBER FUNCTION IS_NULL_TAG RETURN VARCHAR2;

See Also: Oracle9i Streams for more information about tags

See Also: Oracle9i Streams for more information about tags
108-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
SET_COMMAND_TYPE Member Procedure
Sets the command type. If the command type specified cannot be interpreted, then
an error is raised. For example, changing INSERT to GRANT would raise an error.

Syntax
MEMBER PROCEDURE SET_COMMAND_TYPE(

command_type IN VARCHAR2);

Parameter

See Also:

� The description of the command_type parameter in
"LCR$_DDL_RECORD Constructor Function Parameters" on
page 108-5

� The description of the command_type parameter in
"LCR$_ROW_RECORD Constructor Function Parameters" on
page 108-17

� The "SQL Command Codes" table in the Oracle Call Interface
Programmer’s Guide for a complete list of command types

Table 108–27 SET_COMMAND_TYPE Procedure Parameter

Parameter Description

command_type The command type. This parameter should be set to a
non-NULL value.
Logical Change Record Types 108-37

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
SET_OBJECT_NAME Member Procedure
Sets the name of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_OBJECT_NAME(

object_name IN VARCHAR2);

Parameter

SET_OBJECT_OWNER Member Procedure
Sets the owner of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_OBJECT_OWNER(

object_owner IN VARCHAR2);

Parameter

Table 108–28 SET_OBJECT_NAME Procedure Parameter

Parameter Description

object_name The name of the object

Table 108–29 SET_OBJECT_OWNER Procedure Parameter

Parameter Description

object_owner The schema that contains the object
108-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
SET_SOURCE_DATABASE_NAME Member Procedure
Sets the source database name of the object that is changed by the LCR.

Syntax
MEMBER PROCEDURE SET_SOURCE_DATABASE_NAME(

source_database_name IN VARCHAR2);

Parameter

SET_TAG Member Procedure
Sets the tag for the LCR. An LCR tag is a binary tag that enables tracking of the
LCR. For example, this tag may be used to determine the original source database
of the change when apply forwarding is used.

Syntax
MEMBER PROCEDURE SET_TAG(

tag IN RAW);

Parameter

Table 108–30 SET_SOURCE_DATABASE_NAME Procedure Parameter

Parameter Description

source_database_name The source database of the change. If you do not include the
domain name, then the local domain is appended to the
database name automatically. For example, if you specify DBS1
and the local domain is .NET, then DBS1.NET is specified
automatically. This parameter should be set to a non-NULL
value.

See Also: Oracle9i Streams for more information about tags

Table 108–31 SET_TAG Procedure Parameter

Parameter Description

tag The binary tag for the LCR. The size limit for a tag value is two
kilobytes.
Logical Change Record Types 108-39

LCR$_ROW_LIST Type
LCR$_ROW_LIST Type

Identifies a list of column values for a row in a table.

This type uses the LCR$_ROW_UNIT type and is used in the LCR$_ROW_RECORD
type.

Syntax
CREATE TYPE SYS.LCR$_ROW_LIST AS TABLE OF SYS.LCR$_ROW_UNIT
/

See Also:

� "LCR$_ROW_UNIT Type" on page 108-41

� "LCR$_ROW_RECORD Type" on page 108-15
108-40 Oracle9i Supplied PL/SQL Packages and Types Reference

LCR$_ROW_UNIT Type
LCR$_ROW_UNIT Type

Identifies the value for a column in a row.

This type is used in the LCR$_ROW_LIST type.

Syntax
CREATE TYPE LCR$_ROW_UNIT AS OBJECT (

column_name VARCHAR2(4000),
data SYS.AnyData,
lob_information NUMBER,
lob_offset NUMBER,
lob_operation_size NUMBER);

/

See Also: "LCR$_ROW_LIST Type" on page 108-40
Logical Change Record Types 108-41

LCR$_ROW_UNIT Type
Attributes

Table 108–32 LCR$_ROW_UNIT Attributes

Attribute Description

column_name The name of the column

data The data contained in the column

lob_information Contains the LOB information for the column and contains one
of the following values:

DBMS_LCR.NOT_A_LOB CONSTANT NUMBER := 1;
DBMS_LCR.NULL_LOB CONSTANT NUMBER := 2;
DBMS_LCR.INLINE_LOB CONSTANT NUMBER := 3;
DBMS_LCR.EMPTY_LOB CONSTANT NUMBER := 4;
DBMS_LCR.LOB_CHUNK CONSTANT NUMBER := 5;
DBMS_LCR.LAST_LOB_CHUNK CONSTANT NUMBER := 6;

lob_offset The LOB offset specified in the number of characters for CLOB
columns and the number of bytes for BLOB columns. Valid
values are NULL or a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

lob_operation_size If lob_information for the LOB is
DBMS_LCR.LAST_LOB_CHUNK, then can be set to either a valid
LOB ERASE value or a valid LOB TRIM value. A LOB_ERASE
value must be a positive integer less than or equal to
DBMS_LOB.LOBMAXSIZE. A LOB_TRIM value must be a
nonnegative integer less than or equal to
DBMS_LOB.LOBMAXSIZE.

If lob_information is not DBMS_LCR.LAST_LOB_CHUNK
and for all other operations, is NULL.
108-42 Oracle9i Supplied PL/SQL Packages and Types Reference

109

Rule Types

This chapter describes the types used with rules, rule sets, and evaluation contexts.

This chapter contains the following topic:

� Rule Types

Rule types are used with the following Oracle-supplied PL/SQL packages:

� DBMS_RULE

� DBMS_RULE_ADM

� DBMS_STREAMS_ADM

You can use the DBMS_RULE_ADM package to create and administer rules, rule sets,
and evaluation contexts, and you can use the DBMS_RULE package to evaluate rules.
When you use Streams, rules determine which changes are captured by a capture
process, which events are propagated by a propagation job, and which events are
dequeued and applied by an apply process. Also, the DBMS_STREAMS_ADM package
creates system-generated rules for use during capture, propagation, and apply.

See Also:

� Oracle9i Streams

� Chapter 63, "DBMS_RULE"

� Chapter 64, "DBMS_RULE_ADM"
Rule Types 109-1

Rule Types
Rule Types

Table 109–1 DBMS_RULE Types (Page 1 of 2)

Data Structure Description

"RE$ATTRIBUTE_VALUE Type" on
page 109-4

Specifies the value of a variable attribute

"RE$ATTRIBUTE_VALUE_LIST
Type" on page 109-4

Identifies a list of attribute values used in a rule
evaluation context

"RE$COLUMN_VALUE Type" on
page 109-5

Specifies the value of a table column

"RE$COLUMN_VALUE_LIST Type"
on page 109-5

Identifies a list of column values used in a rule
evaluation context

"RE$NAME_ARRAY Type" on
page 109-6

Identifies a list of names

"RE$NV_ARRAY Type" on
page 109-6

Identifies a list of name-value pairs

"RE$NV_LIST Type" on page 109-6 Identifies an object containing a list of name-value
pairs and methods that operate on this list. This
object type is used to represent the event context
and the action context for a rule

"RE$NV_NODE Type" on page 109-9 Identifies a name-value pair

"RE$RULE_HIT Type" on
page 109-10

Specifies a rule found as a result of evaluation

"RE$RULE_HIT_LIST Type" on
page 109-10

Identifies a list of rules found as a result of
evaluation

"RE$TABLE_ALIAS Type" on
page 109-11

Provides the table corresponding to an alias used in
a rule evaluation context

"RE$TABLE_ALIAS_LIST Type" on
page 109-11

Identifies a list of table aliases used in a rule
evaluation context

"RE$TABLE_VALUE Type" on
page 109-12

Specifies the value of a table row using a ROWID

"RE$TABLE_VALUE_LIST Type" on
page 109-12

Identifies a list of table values used in a rule
evaluation context

"RE$VARIABLE_TYPE Type" on
page 109-13

Provides the type of a variable used in a rule
evaluation context
109-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
"RE$VARIABLE_TYPE_LIST Type"
on page 109-15

Identifies a list of variables and their types used in a
rule evaluation context

"RE$VARIABLE_VALUE Type" on
page 109-15

Specifies the value of a variable

"RE$VARIABLE_VALUE_LIST Type"
on page 109-15

Identifies a list of variable values used in a rule
evaluation context

Table 109–1 DBMS_RULE Types (Page 2 of 2)

Data Structure Description
Rule Types 109-3

RE$ATTRIBUTE_VALUE Type
RE$ATTRIBUTE_VALUE Type

Specifies the value of a variable attribute.

Syntax
TYPE SYS.RE$ATTRIBUTE_VALUE (

variable_name VARCHAR2(32),
attribute_name VARCHAR2(4000),
attribute_value SYS.AnyData);

Attributes

RE$ATTRIBUTE_VALUE_LIST Type

Identifies a list of attribute values used in a rule evaluation context.

Syntax
TYPE SYS.RE$ATTRIBUTE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$ATTRIBUTE_VALUE;

Table 109–2 RE$ATTRIBUTE_VALUE Attributes

Attribute Description

variable_name Specifies the variable used in a rule

attribute_name Specifies the attribute name

attribute_value Specifies the attribute value
109-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$COLUMN_VALUE Type

Specifies the value of a table column.

Syntax
TYPE SYS.RE$COLUMN_VALUE (

table_alias VARCHAR2(32),
column_name VARCHAR2(4000),
column_value SYS.AnyData);

Attributes

RE$COLUMN_VALUE_LIST Type

Identifies a list of column values used in a rule evaluation context.

Syntax
TYPE SYS.RE$COLUMN_VALUE_LIST AS VARRAY(1024) OF SYS.RE$COLUMN_VALUE;

Table 109–3 RE$COLUMN_VALUE Attributes

Attribute Description

table_alias Specifies the alias used for the table in a rule

column_name Specifies the column name

column_value Specifies the column value
Rule Types 109-5

RE$NAME_ARRAY Type
RE$NAME_ARRAY Type

Identifies a list of names.

Syntax
TYPE SYS.RE$NAME_ARRAY AS VARRAY(1024) OF VARCHAR2(30);

RE$NV_ARRAY Type

Identifies a list of name-value pairs.

Syntax
TYPE SYS.RE$NV_ARRAY AS VARRAY(1024) OF SYS.RE$NV_NODE;

RE$NV_LIST Type

Identifies an object containing a list of name-value pairs and methods that operate
on this list. This object type is used to represent the event context for rule set
evaluation and the action context for a rule.

Syntax
TYPE SYS.RE$NV_LIST AS OBJECT(

actx_list SYS.RE$NV_ARRAY);

Attributes

Table 109–4 RE$NV_LIST Attributes

Attribute Description

actx_list The list of name-value pairs
109-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$NV_LIST Subprograms
This section describes the following member procedures and member functions of
the SYS.RE$NV_LIST type:

� ADD_PAIR Member Procedure

� GET_ALL_NAMES Member Function

� GET_VALUE Member Function

� REMOVE_PAIR Member Procedure

ADD_PAIR Member Procedure
Adds a name-value pair to the list of name-value pairs.

Syntax
MEMBER PROCEDURE ADD_PAIR(

name IN VARCHAR2,
value IN SYS.AnyData);

Parameters

GET_ALL_NAMES Member Function
Returns a list of all the names in the name-value pair list.

Syntax
MEMBER FUNCTION GET_ALL_NAMES RETURN SYS.RE$NAME_ARRAY;

Table 109–5 ADD_PAIR Procedure Parameters

Parameter Description

name The name in the name-value pair being added to the list. If the
name already exists in the list, then an error is raised.

value The value in the name-value pair being added to the list
Rule Types 109-7

RE$NV_LIST Type
GET_VALUE Member Function
Returns the value for the specified name in a name-value pair list.

Syntax
MEMBER FUNCTION GET_VALUE(

name IN VARCHAR2)
RETURN SYS.AnyData;

Parameters

REMOVE_PAIR Member Procedure
Removes the name-value pair with the specified name from the name-value pair
list.

Syntax
MEMBER PROCEDURE REMOVE_PAIR(

name IN VARCHAR2);

Parameters

Table 109–6 GET_VALUE Procedure Parameters

Parameter Description

name The name whose value to return

Table 109–7 REMOVE_PAIR Procedure Parameters

Parameter Description

name The name of the pair to remove
109-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$NV_NODE Type

Identifies a name-value pair.

Syntax
TYPE SYS.RE$NV_NODE (

nvn_name VARCHAR2(30),
nvn_value SYS.AnyData);

Attributes

Table 109–8 RE$NV_NODE Attributes

Attribute Description

nvn_name Specifies the name in the name-value pair

nvn_value Specifies the value in the name-value pair
Rule Types 109-9

RE$RULE_HIT Type
RE$RULE_HIT Type

Specifies a rule found as a result of an evaluation.

Syntax
TYPE SYS.RE$RULE_HIT (

rule_name VARCHAR2(61),
rule_action_context RE$NV_LIST);

Attributes

RE$RULE_HIT_LIST Type

Identifies a list of rules found as a result of an evaluation.

Syntax
TYPE SYS.RE$RULE_HIT_LIST AS VARRAY(1024) OF SYS.RE$RULE_HIT;

See Also:

� "CREATE_RULE Procedure" on page 64-11

� "ALTER_RULE Procedure" on page 64-5

Table 109–9 RE$RULE_HIT Attributes

Attribute Description

rule_name The rule name in the form schema_name.rule_name . For
example, a rule named employee_rule in the hr schema is
returned in the form hr.employee_rule .

rule_action_context The rule action context as specified in the CREATE_RULE or
ALTER_RULE procedure of the DBMS_RULE_ADM package
109-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$TABLE_ALIAS Type

Provides the table corresponding to an alias used in a rule evaluation context. A
specified table name must satisfy the schema object naming rules.

Syntax
TYPE SYS.RE$TABLE_ALIAS IS OBJECT(

table_alias VARCHAR2(32),
table_name VARCHAR2(194));

Attributes

RE$TABLE_ALIAS_LIST Type

Identifies a list of table aliases used in a rule evaluation context.

Syntax
TYPE SYS.RE$TABLE_ALIAS_LIST AS VARRAY(1024) OF SYS.RE$TABLE_ALIAS;

See Also: Oracle9i SQL Reference for information about schema
object naming rules

Table 109–10 RE$TABLE_ALIAS Attributes

Attribute Description

table_alias The alias used for the table in a rule

table_name The table name referred to by the alias. A synonym can be
specified. The table name is resolved in the evaluation context
schema.

The format is the following:

schema_name. table_name

For example, if the schema_name is hr and the table_name
is employees , then enter the following:

hr.employees
Rule Types 109-11

RE$TABLE_VALUE Type
RE$TABLE_VALUE Type

Specifies the value of a table row using a ROWID.

Syntax
TYPE SYS.RE$TABLE_VALUE(

table_alias VARCHAR2(32),
table_rowid VARCHAR2(18));

Attributes

RE$TABLE_VALUE_LIST Type

Identifies a list of table values used in a rule evaluation context.

Syntax
TYPE SYS.RE$TABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$TABLE_VALUE;

Table 109–11 RE$TABLE_VALUE Attributes

Attribute Description

table_alias Specifies the alias used for the table in a rule

table_rowid Specifies the rowid for the table row
109-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$VARIABLE_TYPE Type

Provides the type of a variable used in a rule evaluation context. A specified
variable name must satisfy the schema object naming rules.

Syntax
TYPE SYS.RE$VARIABLE_TYPE (

variable_name VARCHAR2(32),
variable_type VARCHAR2(4000),
variable_value_function VARCHAR2(228),
variable_method_function VARCHAR2(228));

Attributes

See Also: Oracle9i SQL Reference for information about schema
object naming rules

Table 109–12 RE$VARIABLE_TYPE Attributes

Attribute Description

variable_name The variable name used in a rule

variable_type The type that is resolved in the evaluation context
schema. Any valid Oracle built-in datatype, user-defined
type, or Oracle-supplied type can be specified. See the
Oracle9i SQL Reference for more information about these
types.

variable_value_function A value function that can be specified for implicit
variables. A synonym can be specified. The function
name is resolved in the evaluation context schema.

See the "Usage Notes" for more information.

variable_method_function Specifies a value function, which can return the result of
a method invocation. Specifying such a function can
speed up evaluation, if there are many simple rules that
invoke the method on the variable. The function can be a
synonym or a remote function.

The function name is resolved in the evaluation context
schema. It is executed on behalf of the owner of a rule set
using the evaluation context or containing a rule that
uses the evaluation context.

See the "Usage Notes" for more information.
Rule Types 109-13

RE$VARIABLE_TYPE Type
Usage Notes
The functions for both the for the variable_value_function parameter and
variable_method_function parameter have the following format:

schema_name. package_name . function_name @dblink

For example, if the schema_name is hr , the package_name is var_pac , the
function_name is func_value , and the dblink is dbs1.net , then enter the
following:

hr.var_pac.func_value@dbs1.net

The following sections describe the signature of the functions.

Signature for variable_value_function
The function must have the following signature:

FUNCTION variable_value_func(
evaluation_context_schema IN VARCHAR2,
evaluation_context_name IN VARCHAR2,
variable_name IN VARCHAR2,
event_context IN SYS.RE$NV_LIST)

RETURN SYS.RE$VARIABLE_VALUE;

Signature for variable_method_function
This function must have the following signature:

FUNCTION variable_method_function(
evaluation_context_schema IN VARCHAR2,
evaluation_context_name IN VARCHAR2,
variable_value IN SYS.RE$VARIABLE_VALUE,
method_name IN VARCHAR2,
event_context IN SYS.RE$NV_LIST)

RETURN SYS.RE$ATTRIBUTE_VALUE;
109-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Rule Types
RE$VARIABLE_TYPE_LIST Type

Identifies a list of variables and their types used in a rule evaluation context.

Syntax
TYPE SYS.RE$VARIABLE_TYPE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_TYPE;

RE$VARIABLE_VALUE Type

Specifies the value of a variable.

Syntax
TYPE SYS.RE$VARIABLE_VALUE (

variable_name VARCHAR2(32),
variable_data SYS.AnyData);

Attributes

RE$VARIABLE_VALUE_LIST Type

Identifies a list of variable values used in a rule evaluation context.

Syntax
TYPE SYS.RE$VARIABLE_VALUE_LIST AS VARRAY(1024) OF SYS.RE$VARIABLE_VALUE;

Table 109–13 RE$VARIABLE_VALUE Attributes

Attribute Description

variable_name Specifies the variable name used in a rule

variable_data Specifies the data for the variable value
Rule Types 109-15

RE$VARIABLE_VALUE_LIST Type
109-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Index

A
ABORT_GLOBAL_INSTANTIATION

procedure, 8-3
ABORT_SCHEMA_INSTANTIATION

procedure, 8-3
ABORT_TABLE_INSTANTIATION procedure, 8-4
ADD_COLUMN member procedure, 108-20
ADD_GLOBAL_PROPAGATION_RULES

procedure, 73-3
ADD_GLOBAL_RULES procedure, 73-7
ADD_PAIR member procedure, 109-7
ADD_RULE procedure, 64-3
ADD_SCHEMA_PROPAGATION_RULES

procedure, 73-11
ADD_SCHEMA_RULES procedure, 73-15
ADD_SUBSET_RULES procedure, 73-19
ADD_TABLE_PROPAGATION_RULES

procedure, 73-24
ADD_TABLE_RULES procedure, 73-28
Advanced Queuing

DBMS_AQADM package, 6-1
ALTER_APPLY procedure, 4-4
ALTER_CAPTURE procedure, 8-4
ALTER_PROPAGATION procedure, 47-3
ALTER_RULE procedure, 64-5
altering

propagation method, 53-27, 53-32
savepoints, 80-6
workspace description, 80-7

AlterSavepoint procedure, 80-6
AlterWorkspace procedure, 80-7
anonymous PL/SQL blocks

dynamic SQL and, 69-3

AnyData datatype
queues

creating, 73-35
apply process

altering, 4-4
conflict handlers

setting, 4-37
creating, 4-9, 73-7, 73-15, 73-19, 73-28
DBMS_APPLY_ADM package, 4-1
DDL handler

setting, 4-4, 4-9
DML handlers

setting, 4-18
dropping, 4-14
error handlers

setting, 4-18
error queue

deleting errors, 4-13, 4-14
executing errors, 4-15, 4-16
getting error messages, 4-17

instantiation
global SCN, 4-23
schema SCN, 4-32
table SCN, 4-35

message handler
setting, 4-4, 4-9

parameters
commit_serialization, 4-29
disable_on_error, 4-29
disable_on_limit, 4-29
maximum_scn, 4-29
parallelism, 4-30
setting, 4-28
time_limit, 4-30
Index-1

trace_level, 4-30
transaction_limit, 4-31

rules
defining global, 73-7
defining schema, 73-15
defining subset, 73-19
defining table, 73-28
removing, 73-34

starting, 4-41
stopping, 4-42
substitute key columns

setting, 4-26
arrays

BIND_ARRAY procedure, 69-7
bulk DML using DBMS_SQL, 69-29

auditing modifications
EnableVersioning history option, 80-29

availability
extended, 53-10, 53-31, 53-84, 53-97, 53-102,

53-107
available()

function of UTL_TCP, 101-9

B
BeginDDL procedure, 80-8
BeginResolve procedure, 80-9

C
capture process

altering, 8-4
creating, 73-7, 73-15, 73-28
instantiation

aborting database preparation, 8-3
aborting schema preparation, 8-3
aborting table preparation, 8-4
preparing a database for, 8-8
preparing a schema for, 8-9
preparing a table for, 8-10

parameters
disable_on_limit, 8-12
maximum_scn, 8-12
message_limit, 8-12
parallelism, 8-12

setting, 8-11
startup_seconds, 8-13
time_limit, 8-13
trace_level, 8-13
write_alert_log, 8-13

rules
defining global, 73-7
defining schema, 73-15
defining table, 73-28
removing, 73-34

starting, 8-14
stopping, 8-15

catproc.sql script, 1-3
Change Data Capture

DBMS_LOGMNR_CDC_PUBLISH
package, 26-1

DBMS_LOGMNR_CDC_SUBSCRIBE
package, 27-1

child workspace
merging, 80-52
refreshing, 80-57, 80-58
removing, 80-62

close_all_connections()
function of UTL_TCP, 101-19

close_connection()
function of UTL_TCP, 101-18

close_data() function
of UTL_SMTP, 100-14

collections
table items, 69-29

columns
adding to master tables, 53-94
column groups

adding members to, 53-6
creating, 53-59, 53-82
dropping, 53-63
removing members from, 53-64

command() function
of UTL_SMTP, 100-8

command_replies() function
of UTL_SMTP, 100-8

CommitDDL procedure, 80-10
CommitResolve procedure, 80-12
comparing

tables, 49-2
Index-2

compressing
workspaces, 80-13, 80-16

CompressWorkspace procedure, 80-13
CompressWorkspaceTree procedure, 80-16
conflict management, 80-63

beginning resolution, 80-9
committing resolution, 80-12
rolling back resolution, 80-69
showing conflicts, 80-74

conflict resolution
additive method, 53-19
statistics, 53-38, 53-90

connection
function of UTL_TCP, 101-4

connection function
of UTL_SMTP, 100-6

constants
DBMS_MGWADM package, 31-7
DBMS_MGWMSG package, 32-8

context (session)
GetSessionInfo function, 80-38

context of current operation
getting, 80-37

continually refreshed workspace, 80-21
CopyForUpdate procedure, 80-17
CREATE PACKAGE BODY command, 1-3
CREATE PACKAGE command, 1-3
CREATE_APPLY procedure, 4-9
CREATE_CAPTURE procedure

capture process
creating, 8-6

CREATE_EVALUATION_CONTEXT
procedure, 64-8

CREATE_PROPAGATION procedure, 47-4
CREATE_RULE procedure, 64-11
CREATE_RULE_SET procedure, 64-13
CreateSavepoint procedure, 80-19
CreateWorkspace procedure, 80-20
creating

packages, 1-3
savepoints, 80-19
workspaces, 80-20

CRLF (carriage-return line-feed)
function of UTL_TCP, 101-6

cursors

DBMS_SQL package, 69-5

D
data definition language

altering replicated objects, 53-28
asynchronous, 53-77
supplying asynchronous, 53-77

data dictionary
removing Streams information, 73-32

data() function
of UTL_SMTP, 100-13

database tables
creating for DBMS_TRACE, 74-3

datatypes
DBMS_DESCRIBE, 14-4
DESC_TAB, 69-45
PL/SQL

numeric codes for, 14-8
ROWID, 62-1

DBA_REPCATLOG view
purging, 53-85

DBA_REPCOLUMN_GROUP view
updating, 53-39

DBA_REPGROUP view
updating, 53-42

DBA_REPOBJECT view
updating, 53-43

DBA_REPPRIORITY_GROUP view
updating, 53-41

DBA_REPRESOLUTION view
updating, 53-46

DBA_REPRESOLUTION_STATISTICS view
purging, 53-86

DBA_REPSITES view
updating, 53-44

DBMS_ALERT package, 2-1
DBMS_APPLICATION_INFO package, 3-2
DBMS_APPLY_ADM package, 4-1
DBMS_AQ package, 5-1
DBMS_AQADM package, 6-1
DBMS_AQELM package, 7-1, 7-2
DBMS_CAPTURE package, 106-1
DBMS_CAPTURE_ADM package

capture process
Index-3

DBMS_CAPTURE_ADM package, 8-1
DBMS_DDL package, 9-1
DBMS_DEBUG package, 10-1
DBMS_DEFER package, 11-1

ANY_CHAR_ARG procedure, 11-4
ANY_CLOB_ARG procedure, 11-4
ANY_VARCHAR2_ARG procedure, 11-4
ANYDATA_ARG procedure, 11-4
BLOB_ARG procedure, 11-4
CALL procedure, 11-2
CHAR_ARG procedure, 11-4
CLOB_ARG procedure, 11-4
COMMIT_WORK procedure, 11-3
datatype_ARG procedure, 11-4
DATE_ARG procedure, 11-4
IDS_ARG procedure, 11-4
IYM_ARG procedure, 11-4
NCHAR_ARG procedure, 11-4
NCLOB_ARG procedure, 11-4
NUMBER_ARG procedure, 11-4
NVARCHAR2_ARG procedure, 11-4
RAW_ARG procedure, 11-4
ROWID_ARG procedure, 11-4
TIMESTAMP_ARG procedure, 11-4
TRANSACTION procedure, 11-6
TSLTZ_ARG procedure, 11-4
TSTZ_ARG procedure, 11-4
VARCHAR2_ARG procedure, 11-4

DBMS_DEFER_QUERY package, 12-1
GET_ANYDATA_ARG procedure, 12-7
GET_ARG_FORM function, 12-2
GET_ARG_TYPE function, 12-3
GET_BLOB_ARG procedure, 12-7
GET_CALL_ARGS procedure, 12-6
GET_CHAR_ARG procedure, 12-7
GET_CLOB_ARG procedure, 12-7
GET_datatype_ARG function, 12-7
GET_DATE_ARG procedure, 12-7
GET_IDS_ARG procedure, 12-7
GET_IYM_ARG procedure, 12-7
GET_NCHAR_ARG procedure, 12-7
GET_NCLOB_ARG procedure, 12-7
GET_NUMBER_ARG procedure, 12-7
GET_NVARCHAR2_ARG procedure, 12-7
GET_OBJECT_NULL_VECTOR_ARG

function, 12-9
GET_RAW_ARG procedure, 12-7
GET_ROWID_ARG procedure, 12-7
GET_TIMESTAMP_ARG procedure, 12-7
GET_TSLTZ_ARG procedure, 12-7
GET_TSTZ_ARG procedure, 12-7
GET_VARCHAR2_ARG procedure, 12-7

DBMS_DEFER_SYS package
ADD_DEFAULT_DEST procedure, 13-3
CLEAR_PROP_STATISTICS procedure, 13-4
DELETE_DEF_DESTINATION procedure, 13-5
DELETE_DEFAULT_DEST procedure, 13-5
DELETE_ERROR procedure, 13-6
DELETE_TRAN procedure, 13-6, 13-7, 13-9
DISABLED function, 13-7
EXCLUDE_PUSH function, 13-8
EXECUTE_ERROR procedure, 13-9
EXECUTE_ERROR_AS_USER procedure, 13-10
PURGE function, 13-11
PUSH function, 13-13
REGISTER_PROPAGATOR procedure, 13-17
SCHEDULE_EXECUTION procedure, 13-19
SCHEDULE_PURGE procedure, 13-17
SCHEDULE_PUSH procedure, 13-19
SET_DISABLED procedure, 13-21
UNREGISTER_PROPAGATOR

procedure, 13-23
UNSCHEDULE_PURGE procedure, 13-24
UNSCHEDULE_PUSH procedure, 13-24

DBMS_DESCRIBE package, 14-1
DBMS_DISTRIBUTED_TRUST_ADMIN

package, 15-1
DBMS_FGA package, 16-1
DBMS_FLASHBACK package, 17-1, 17-6
DBMS_HS_PASSTHROUGH package, 18-1
DBMS_IOT package, 19-1
DBMS_JOB package, 20-1

and instance affinity, 20-2
DBMS_LOB package, 23-1
DBMS_LOCK package, 24-1
DBMS_LOGMNR package, 25-1

ADD_LOGFILE procedure, 25-4
COLUMN_PRESENT function, 25-10
constants, 25-2
END_LOGMNR procedure, 25-8
Index-4

MINE_VALUE function, 25-8
START_LOGMNR procedure, 25-5

DBMS_LOGMNR_CDC_PUBLISH package, 26-1
ALTER_CHANGE_TABLE procedure, 26-8
CREATE_CHANGE_SOURCE procedure, 26-3
CREATE_CHANGE_TABLE procedure, 26-3
DROP_CHANGE_TABLE procedure, 26-14

DBMS_LOGMNR_CDC_SUBSCRIBE
package, 27-1

ACTIVATE_SUB SCRIPTION procedure, 27-9
DROP_SUBSCRIBER_VIEW procedure, 27-13
DROP_SUBSCRIPTION procedure, 26-13, 27-16
EXTEND_WINDOW procedure, 27-10
EXTEND_WINDOW_LIST procedure, 27-11
GET_SUBSCRIPTION_HANDLE

procedure, 27-5
PREPARE_SUBSCRIBER_VIEW

procedure, 27-11
PREPARE_UNBOUNDED_VIEW

procedure, 27-13
PURGE_WINDOW procedure, 27-14
SUBSCRIBE procedure, 27-6
usage examples, 27-16

DBMS_LOGMNR_D package, 28-1
BUILD procedure, 28-2
SET_TABLESPACE procedure, 28-5

DBMS_LOGSTDBY package, 29-1
APPLY_SET procedure, 29-3
APPLY_UNSET procedure, 29-7
BUILD procedure, 29-8
GUARD BYPASS OFF procedure, 29-9
GUARD_BYPASS_ON procedure, 29-9
INSTANTIATE_TABLE procedure, 29-10
SKIP procedure, 29-11
SKIP_ERROR procedure, 29-18
SKIP_TRANSACTION procedure, 29-21
UNSKIP procedure, 29-22
UNSKIP_ERROR procedure, 29-23
UNSKIP_TRANSACTION procedure, 29-23

DBMS_METADATA package, 30-1
ADD_TRANSFORM procedure, 30-15
CLOSE procedure, 30-24
FETCH_xxx procedure, 30-21
GET_DDL function, 30-28
GET_DEPENDENT_DDL function, 30-31

GET_DEPENDENT_XML function, 30-31
GET_GRANTED_DDL function, 30-33
GET_GRANTED_XML function, 30-33
GET_QUERY procedure, 30-12
GET_XML function, 30-28
OPEN procedure, 30-2
SET_COUNT procedure, 30-12
SET_FILTER procedure, 30-6
SET_PARSE_ITEM procedure, 30-13
SET_TRANSFORM_PARAM procedure, 30-17

DBMS_MGWADM package, 31-1
constants, 31-7
methods, 31-2
object types, 31-2
summary of subprograms, 31-12

DBMS_MGWMSG package, 32-1
constants, 32-8
methods, 32-2
object types, 32-2
summary of subprograms, 32-9

DBMS_MVIEW package
BEGIN_TABLE_REORGANIZATION

procedure, 33-3
END_TABLE_REORGANIZATION

procedure, 33-4
EXPLAIN_MVIEW procedure, 33-4
EXPLAIN_REWRITE procedure, 33-5
I_AM_A_REFRESH function, 33-6
PMARKER function, 33-7
PURGE_DIRECT_LOAD_LOG procedure, 33-7
PURGE_LOG procedure, 33-7
PURGE_MVIEW_FROM_LOG procedure, 33-8
REFRESH procedure, 33-10
REFRESH_ALL_MVIEWS procedure, 33-12
REFRESH_DEPENDENT procedure, 33-14
REGISTER_MVIEW procedure, 33-16
UNREGISTER_MVIEW procedure, 33-18

DBMS_OBFUSCATION_TOOLKIT package, 34-1
DBMS_OFFLINE_OG package

BEGIN_INSTANTIATION procedure, 36-2
BEGIN_LOAD procedure, 36-3
END_INSTANTIATION procedure, 36-5
END_LOAD procedure, 36-6
RESUME_SUBSET_OF_MASTERS

procedure, 36-7
Index-5

DBMS_OFFLINE_SNAPSHOT package
BEGIN_LOAD procedure, 37-2
END_LOAD procedure, 37-4

DBMS_OLAP package, 38-1
DBMS_ORACLE_TRACE_AGENT package, 39-1
DBMS_ORACLE_TRACE_USER package, 40-1
DBMS_OUTLN package, 41-1
DBMS_OUTLN_EDIT package, 42-1
DBMS_OUTPUT package, 43-1
DBMS_PCLXUTIL package, 44-1
DBMS_PIPE package, 45-1
DBMS_PROFILER package, 46-1
DBMS_PROPAGATION_ADM package, 47-1
DBMS_RANDOM package, 48-1
DBMS_RECTIFIER_DIFF package

DIFFERENCES procedure, 49-2
RECTIFY procedure, 49-5

DBMS_REFRESH package
ADD procedure, 51-2
CHANGE procedure, 51-3
DESTROY procedure, 51-5
MAKE procedure, 51-6
REFRESH procedure, 51-8
SUBTRACT procedure, 51-9

DBMS_REPAIR package, 52-1
DBMS_REPCAT package

ADD_DELETE_RESOLUTION
procedure, 53-19

ADD_GROUPED_COLUMN procedure, 53-6
ADD_MASTER_DATABASE procedure, 53-8
ADD_NEW_MASTERS procedure, 53-10
ADD_PRIORITY_CHAR procedure, 53-16
ADD_PRIORITY_datatype procedure, 53-16
ADD_PRIORITY_DATE procedure, 53-16
ADD_PRIORITY_NUMBER procedure, 53-16
ADD_PRIORITY_VARCHAR2

procedure, 53-16
ADD_SITE_PRIORITY_SITE procedure, 53-17
ADD_UNIQUENESS_RESOLUTION

procedure, 53-19
ADD_UPDATE_RESOLUTION

procedure, 53-19
ALTER_CATCHUP_PARAMETERS

procedure, 53-24
ALTER_MASTER_PROPAGATION

procedure, 53-27
ALTER_MASTER_REPOBJECT

procedure, 53-28
ALTER_MVIEW_PROPAGATION

procedure, 53-32
ALTER_PRIORITY procedure, 53-33
ALTER_PRIORITY_CHAR procedure, 53-35
ALTER_PRIORITY_datatype procedure, 53-35
ALTER_PRIORITY_DATE procedure, 53-35
ALTER_PRIORITY_NUMBER procedure, 53-35
ALTER_PRIORITY_RAW procedure, 53-35
ALTER_SITE_PRIORITY procedure, 53-36
ALTER_SITE_PRIORITY_SITE procedure, 53-37
CANCEL_STATISTICS procedure, 53-38
COMMENT_ON_COLUMN_GROUP

procedure, 53-39
COMMENT_ON_DELETE_RESOLUTION

procedure, 53-46
COMMENT_ON_MVIEW_REPSITES

procedure, 53-40
COMMENT_ON_PRIORITY_GROUP

procedure, 53-41
COMMENT_ON_REPGROUP procedure, 53-42
COMMENT_ON_REPOBJECT procedure, 53-43
COMMENT_ON_REPSITES procedure, 53-44
COMMENT_ON_SITE_PRIORITY

procedure, 53-41
COMMENT_ON_UNIQUE_RESOLUTION

procedure, 53-46
COMMENT_ON_UPDATE_RESOLUTION

procedure, 53-46
COMPARE_OLD_VALUES procedure, 53-47
CREATE_MASTER_REPGROUP

procedure, 53-50
CREATE_MASTER_REPOBJECT

procedure, 53-51
CREATE_MVIEW_REPGROUP

procedure, 53-55
CREATE_MVIEW_REPOBJECT

procedure, 53-56
DEFINE_COLUMN_GROUP procedure, 53-59
DEFINE_PRIORITY_GROUP procedure, 53-60
DEFINE_SITE_PRIORITY procedure, 53-61
DO_DEFERRED_REPCAT_ADMIN

procedure, 53-62
Index-6

DROP_COLUMN_GROUP procedure, 53-63
DROP_DELETE_RESOLUTION

procedure, 53-75
DROP_GROUPED_COLUMN procedure, 53-64
DROP_MASTER_REPGROUP procedure, 53-65
DROP_MASTER_REPOBJECT procedure, 53-67
DROP_MVIEW_REPGROUP procedure, 53-68
DROP_MVIEW_REPOBJECT procedure, 53-69
DROP_PRIORITY procedure, 53-70
DROP_PRIORITY_CHAR procedure, 53-72
DROP_PRIORITY_datatype procedure, 53-72
DROP_PRIORITY_DATE procedure, 53-72
DROP_PRIORITY_GROUP procedure, 53-71
DROP_PRIORITY_NUMBER procedure, 53-72
DROP_PRIORITY_VARCHAR2

procedure, 53-72
DROP_SITE_PRIORITY procedure, 53-73
DROP_SITE_PRIORITY_SITE procedure, 53-74
DROP_UNIQUE_RESOLUTION

procedure, 53-75
DROP_UPDATE_RESOLUTION

procedure, 53-75
EXECUTE_DDL procedure, 53-77
GENERATE_MVIEW_SUPPORT

procedure, 53-78
GENERATE_REPLICATION_SUPPORT

procedure, 53-80
MAKE_COLUMN_GROUP procedure, 53-82
PREPARE_INSTANTIATED_MASTERS

procedure, 53-84
PURGE_MASTER_LOG procedure, 53-85
PURGE_STATISTICS procedure, 53-86
REFRESH_MVIEW_REPGROUP

procedure, 53-87
REGISTER_MVIEW_REPGROUP

procedure, 53-89
REGISTER_STATISTICS procedure, 53-90
RELOCATE_MASTERDEF procedure, 53-91
REMOVE_MASTER_DATABASES

procedure, 53-93
RENAME_SHADOW_COLUMN_GROUP

procedure, 53-94
REPCAT_IMPORT_CHECK procedure, 53-95
RESUME_MASTER_ACTIVITY

procedure, 53-96

RESUME_PROPAGATION_TO_MDEF
procedure, 53-97

SEND_OLD_VALUES procedure, 53-98
SET_COLUMNS procedure, 53-50, 53-100
SPECIFY_NEW_MASTERS procedure, 53-102
SUSPEND_MASTER_ACTIVITY

procedure, 53-105
SWITCH_MVIEW_MASTER procedure, 53-105
UNDO_ADD_NEW_MASTERS_REQUEST

procedure, 53-107
UNREGISTER_MVIEW_REPGROUP

procedure, 53-109
VALIDATE procedure, 53-109
WAIT_MASTER_LOG procedure, 53-112

DBMS_REPCAT_ADMIN package
GRANT_ADMIN_ANY_SCHEMA

procedure, 54-2
GRANT_ADMIN_SCHEMA procedure, 54-3
REGISTER_USER_REPGROUP procedure, 54-4
REVOKE_ADMIN_ANY_SCHEMA

procedure, 54-6
REVOKE_ADMIN_SCHEMA procedure, 54-6
UNREGISTER_USER_REPGROUP

procedure, 54-7
DBMS_REPCAT_INSTANTIATE package

DROP_SITE_INSTANTIATION procedure, 55-2
INSTANTIATE_OFFLINE function, 55-3
INSTANTIATE_ONLINE function, 55-5

DBMS_REPCAT_RGT package
ALTER_REFRESH_TEMPLATE procedure, 56-4
ALTER_TEMPLATE_OBJECT procedure, 56-6
ALTER_TEMPLATE_PARM procedure, 56-9
ALTER_USER_AUTHORIZATION

procedure, 56-11
ALTER_USER_PARM_VALUE

procedure, 56-12
COMPARE_TEMPLATES function, 56-15
COPY_TEMPLATE function, 56-16
CREATE_OBJECT_FROM_EXISTING

function, 56-18
CREATE_REFRESH_TEMPLATE

function, 56-20
CREATE_TEMPLATE_OBJECT function, 56-22
CREATE_TEMPLATE_PARM function, 56-25
CREATE_USER_AUTHORIZATION
Index-7

function, 56-27
CREATE_USER_PARM_VALUE

function, 56-29
DELETE_RUNTIME_PARMS procedure, 56-31
DROP_ALL_OBJECTS procedure, 56-32
DROP_ALL_TEMPLATE_PARMS

procedure, 56-33
DROP_ALL_TEMPLATE_SITES

procedure, 56-34
DROP_ALL_TEMPLATES procedure, 56-35
DROP_ALL_USER_AUTHORIZATIONS

procedure, 56-35
DROP_ALL_USER_PARM_VALUES

procedure, 56-36
DROP_REFRESH_TEMPLATE

procedure, 56-38
DROP_SITE_INSTANTIATION

procedure, 56-39
DROP_TEMPLATE_OBJECT procedure, 56-40
DROP_TEMPLATE_PARM procedure, 56-41
DROP_USER_AUTHORIZATION

procedure, 56-42
DROP_USER_PARM_VALUE procedure, 56-43
GET_RUNTIME_PARM_ID function, 56-44
INSERT_RUNTIME_PARMS procedure, 56-45
INSTANTIATE_OFFLINE function, 56-47
INSTANTIATE_ONLINE function, 56-50
LOCK_TEMPLATE_EXCLUSIVE

procedure, 56-52
LOCK_TEMPLATE_SHARED procedure, 56-53

DBMS_REPUTIL package
FROM_REMOTE function, 57-3
GLOBAL_NAME function, 57-4
MAKE_INTERNAL_PKG procedure, 57-4
REPLICATION_IS_ON function, 57-3
REPLICATION_OFF procedure, 57-2
REPLICATION_ON procedure, 57-3
SYNC_UP_REP procedure, 57-5

DBMS_RESOURCE_MANAGER package, 58-1
DBMS_RESOURCE_MANAGER_PRIVS

package, 59-1
DBMS_RESUMABLE package, 60-1
DBMS_RLS package, 61-1
DBMS_ROWID package, 62-1
DBMS_RULE package, 63-1

DBMS_RULE_ADM package, 64-1
DBMS_SESSION package, 65-1
DBMS_SHARED_POOL package, 66-1
DBMS_SPACE package, 67-1
DBMS_SPACE_ADMIN package, 68-1
DBMS_STATS package, 70-1
DBMS_STREAMS package, 72-1
DBMS_STREAMS_ADM package, 73-1
DBMS_TRACE package, 74-1
DBMS_TRANSACTION package, 75-1
DBMS_TRANSFORM package, 76-1
DBMS_TTS package, 77-1
DBMS_UTILITY package, 79-1
DBMS_WM package, 80-1

AlterSavepoint procedure, 80-6
AlterWorkspace procedure, 80-7
BeginDDL procedure, 80-8
BeginResolve procedure, 80-9
CommitDDL procedure, 80-10
CommitResolve, 80-12
CompressWorkspace procedure, 80-13
CompressWorkspaceTree procedure, 80-16
CopyForUpdate procedure, 80-17
CreateSavepoint procedure, 80-19
CreateWorkspace procedure, 80-20
DeleteSavepoint procedure, 80-22
DisableVersioning procedure, 80-24
DropReplicationSupport procedure, 80-26
EnableVersioning procedure, 80-27
FreezeWorkspace procedure, 80-30
GenerateReplicationSupport procedure, 80-32
GetConflictWorkspace function, 80-34
GetDiffVersions function, 80-35
GetLockMode function, 80-35
GetMultiWorkspaces function, 80-36
GetOpContext function, 80-37
GetPrivs function, 80-38
GetSessionInfo function, 80-38
GetWorkspace function, 80-40
GotoWorkspace procedure, 80-43
GrantSystemPriv procedure, 80-44
GrantWorkspacePriv procedure, 80-46
IsWorkspaceOccupied function, 80-48
LockRows procedure, 80-49
MergeTable procedure, 80-50
Index-8

MergeWorkspace procedure, 80-52
RecoverAllMigratingTables procedure, 80-54
RecoverMigratingTable procedure, 80-55
RefreshTable procedure, 80-57
RefreshWorkspace procedure, 80-58
RelocateWriterSite procedure, 80-59
RemoveWorkspace procedure, 80-61
RemoveWorkspaceTree procedure, 80-62
ResolveConflicts procedure, 80-63
RevokeSystemPriv procedure, 80-65
RevokeWorkspacePriv procedure, 80-67
RollbackDDL procedure, 80-68
RollbackResolve procedure, 80-69
RollbackTable procedure, 80-70
RollbackToSP procedure, 80-72
RollbackWorkspace procedure, 80-73
SetConflictWorkspace procedure, 80-74
SetDiffVersions procedure, 80-75
SetLockingOFF procedure, 80-77
SetLockingON procedure, 80-78
SetMultiWorkspaces, 80-79
SetWoOverwriteOFF, 80-80
SetWoOverwriteON, 80-81
SetWorkspaceLockModeOFF procedure, 80-82
SetWorkspaceLockModeON procedure, 80-83
SynchronizeSite procedure, 80-85
UnfreezeWorkspace procedure, 80-86
UnlockRows procedure, 80-87

DDL (data definition language) operations
beginning, 80-8
committing, 80-10
rolling back, 80-68

DDL. See data definition language
DEBUG_EXPTOC package, 92-1
DEFDEFAULTDEST view

adding destinations to, 13-3
removing destinations from, 13-5

deferred transactions
DefDefaultDest table

removing destinations from, 13-5
DEFDEFAULTDEST view

adding destination to, 13-3
removing destinations from, 13-5

deferred remote procedure calls (RPCs)
argument types, 12-3

argument values, 12-7
arguments to, 11-4
building, 11-2
executing immediately, 13-13

DEFSCHEDULE view
clearing statistics, 13-4

deleting from queue, 13-6
reexecuting, 13-9
scheduling execution, 13-19
starting, 11-6

DEFERROR view
deleting transactions from, 13-6

DEFSCHEDULE view
clearing statistics, 13-4

DELETE_ALL_ERRORS procedure, 4-13
DELETE_COLUMN member procedure, 108-21
DELETE_ERROR procedure, 4-14
DeleteSavepoint procedure, 80-22
deleting

savepoints, 80-22
workspace, 80-61

deployment templates
alter object, 56-6
alter parameters, 56-9
alter template, 56-4
alter user authorization, 56-11
alter user parameter values, 56-12
compare templates, 56-15
copy template, 56-16
create object from existing, 56-18
create template, 56-20
drop site instantiation, 55-2
dropping, 56-38
dropping all, 56-35
lock template, 56-52, 56-53
objects

creating, 56-22
dropping, 56-40
dropping all, 56-32

offline instantiation, 55-3, 56-47
online instantiation, 55-5, 56-50
parameters

creating, 56-25
dropping, 56-41
dropping all, 56-33
Index-9

runtime parameters
creating, 56-45
deleting, 56-31
get ID, 56-44
inserting, 56-45

sites
dropping, 56-39
dropping all, 56-34

user authorizations
creating, 56-27
dropping, 56-42
dropping all, 56-35

user parameter values
creating, 56-29
dropping, 56-43
dropping all, 56-36

DESC_TAB datatype, 69-45
DESDecrypt procedure, 34-5, 34-10
DESEncrypt procedure, 34-4, 34-8
differences

between tables, 49-2
rectifying, 49-5

DisableVersioning procedure, 80-24
disabling

propagation, 13-21
workspace changes

freezing, 80-30
unfreezing, 80-86

DROP_APPLY procedure, 4-14
DROP_CAPTURE procedure

capture process
dropping, 8-8

DROP_EVALUATION_CONTEXT
procedure, 64-14

DROP_PROPAGATION procedure, 47-7
DROP_RULE procedure, 64-15
DROP_RULE_SET procedure, 64-16
DropReplicationSupport procedure, 80-26
dynamic SQL

anonymous blocks and, 69-3
DBMS_SQL functions, using, 69-3
execution flow in, 69-5

E
ehlo() function

of UTL_SMTP, 100-10
e-mail

sending with UTL_SMTP, 100-1
e-mail from PL/SQL (email), 101-3
EnableVersioning procedure, 80-27
error queue

deleting errors, 4-13, 4-14
executing errors, 4-15, 4-16
getting error messages, 4-17

errors
returned by DBMS_ALERT package, 19-3

EVALUATE procedure, 63-3
exclusive locks, 80-78
EXECUTE member procedure, 108-9, 108-22
EXECUTE_ALL_ERRORS procedure, 4-15
EXECUTE_ERROR procedure, 4-16
execution flow

in dynamic SQL, 69-5
extend window

to create a new view, 27-2
extended availability, 53-10, 53-31, 53-84, 53-97,

53-102, 53-107

F
features, new, xxvii
fine-grained access control

DBMS_RLS package, 61-1
flush()

function of UTL_TCP, 101-18
FORCE parameter

and job-to-instance affinity, 20-2
FreezeWorkspace procedure, 80-30
freezing

workspace changes, 80-30

G
GenerateReplicationSupport procedure, 80-32
GET_ALL_NAMES member function, 109-7
GET_BASE_TABLE_NAME member

function, 108-9
GET_BASE_TABLE_OWNER member
Index-10

function, 108-9
GET_COMMAND_TYPE member function, 108-35
GET_CURRENT_SCHEMA member

function, 108-9
GET_ERROR_MESSAGE function, 4-17
get_host_address()

function of UTL_INADDR, 97-3
get_line()

function UTL_TCP, 101-17
GET_LOB_INFORMATION member

procedure, 108-23
GET_LOB_OFFSET member function, 108-24
GET_LOB_OPERATION_SIZE member

procedure, 108-25
GET_LOGON_USER member function, 108-11
GET_OBJECT_NAME member function, 108-35
GET_OBJECT_OWNER member function, 108-35
GET_OBJECT_TYPE member function, 108-11
get_raw()

function of UTL_TCP, 101-17
GET_SCN member function, 108-35
GET_SOURCE_DATABASE_NAME member

function, 108-36
GET_TAG member function, 108-36
get_text()

function of UTL_TCP, 101-17
GET_TRANSACTION_ID member

function, 108-36
GET_VALUE member function, 108-26, 109-8
GET_VALUES member function, 108-26
GetConflictWorkspace function, 80-34
GetDiffVersions function, 80-35
GetLockMode function, 80-35
GetMultiWorkspaces function, 80-36
GetOpContext function, 80-37
GetPrivs function, 80-38
GetSessionInfo function, 80-38
GetWorkspace function, 80-40
GotoWorkspace procedure, 80-43
GRANT_OBJECT_PRIVILEGE procedure, 64-17
GRANT_SYSTEM_PRIVILEGE procedure, 64-20
granting

Workspace Manager privileges
system, 80-44
workspace, 80-46

GrantSystemPriv procedure, 80-44
GrantWorkspacePriv procedure, 80-46

H
helo() function

of UTL_SMTP, 100-9
hierarchy

removing, 80-62
history option

EnableVersioning procedure, 80-28

I
importing

materialized views
offline instantiation and, 37-2, 37-4

replication groups
offline instantiation and, 36-3, 36-6

status check, 53-95
instantiation

aborting database preparation, 8-3
aborting schema preparation, 8-3
aborting table preparation, 8-4
DROP_SITE_INSTANTIATION

procedure, 55-2, 56-39
global SCN, 4-23
offline

INSTANTIATE_OFFLINE function, 55-3,
56-47

online
INSTANTIATE_ONLINE function, 55-5,

56-50
preparing a database for, 8-8
preparing a schema for, 8-9
preparing a table for, 8-10
schema SCN, 4-32
table SCN, 4-35

internet addressing
using UTL_INADDR, 97-1

IS_NULL_TAG member function, 108-36
IsWorkspaceOccupied function, 80-48
Index-11

J
jobs

queues for
removing jobs from, 13-24

L
LCR$_DDL_RECORD type, 108-3
LCR$_ROW_LIST type, 108-40
LCR$_ROW_RECORD type, 108-15
LCR$_ROW_UNIT type, 108-41

GET_LOB_INFORMATION member
procedure, 108-23

GET_LOB_OPERATION_SIZE member
procedure, 108-25

SET_LOB_INFORMATION member
procedure, 108-28

SET_LOB_OPERATION_SIZE member
procedure, 108-30

LOB columns with versioned tables, 80-17
LOBs

DBMS_LOB package, 23-1
lock mode

getting, 80-35
locking table rows, 80-49
LockRows procedure, 80-49
locks

disabling, 80-77
enabling, 80-78

log apply services
managing initialization parameters for logical

standby databases, 29-2
logging of modifications

EnableVersioning history option, 80-29
logical change records (LCRs)

DDL LCRs, 108-3
getting base table name, 108-9
getting base table owner, 108-9
getting current schema, 108-9
getting logon user name, 108-11
getting object type, 108-11
setting base table name, 108-11
setting base table owner, 108-12
setting current schema, 108-12
setting DDL text, 108-13

setting logon user, 108-13
setting object type, 108-14

determining if tag is NULL, 108-36
executing, 108-9, 108-22
getting command type, 108-35
getting object name, 108-35
getting object owner, 108-35
getting SCN, 108-35
getting source database name, 108-36
getting tag, 108-36
getting transaction identifier, 108-36
LCR$_DDL_RECORD type, 108-3
LCR$_ROW_LIST type, 108-40
LCR$_ROW_RECORD type, 108-15
LCR$_ROW_UNIT type, 108-41
row LCRs, 108-15

adding value to column, 108-20
deleting value to column, 108-21
getting column value, 108-26
getting list of column values, 108-26
getting LOB offset, 108-24
renaming column, 108-27
setting column value, 108-31
setting list of column values, 108-32
setting LOB offset, 108-29

setting command type, 108-37
setting object name, 108-38
setting object owner, 108-38
setting source database name, 108-39
setting tag, 108-39
types, 108-1

M
mail() function

of UTL_SMTP, 100-11
master definition sites

relocating, 53-91
master groups

creating, 53-50
dropping, 53-65
quiescing, 53-105
resuming replication activity, 53-96

master sites
creating, 53-8
Index-12

dropping, 53-93
propagating changes between, 13-19

master tables
adding columns to, 53-94

materialized view groups
creating, 53-55

materialized view logs
master table

purging, 33-7, 33-8
materialized view sites

changing masters, 53-105
dropping, 53-68
propagating changes to master, 13-19
refreshing, 53-87

materialized views
generating support for, 53-78
offline instantiation of, 37-2, 37-4
refreshing, 33-10, 33-12, 33-14

MergeTable procedure, 80-50
MergeWorkspace procedure, 80-52
merging

table changes, 80-50
workspaces, 80-52

messaging links
MQSeries, 31-10

queue properties, 31-12
methods

DBMS_MGWADM package, 31-2
DBMS_MGWMSG package, 32-2

migration
post-migration actions, 34-1

MQSeries
messaging links, 31-10

queue properties, 31-12

N
nested table

not supported for EnableVersioning, 80-29
new features, xxvii
noop() function

of UTL_SMTP, 100-17

O
object types

DBMS_MGWADM package, 31-2
DBMS_MGWMSG package, 32-2

objects
adding to materialized view sites, 53-56
altering, 53-28
creating, 53-51

for master group, 53-50
for master sites, 53-51
for materialized view sites, 53-56

dropping
materialized view site, 53-69

generating replication support for, 53-80
offline instantiation

INSTANTIATE_OFFLINE function, 55-3, 56-47
materialized views, 37-2, 37-4
replication groups, 36-2, 36-3, 36-5, 36-6, 36-7

online instantiation
INSTANTIATE_ONLINE function, 55-5, 56-50

open_connection()
function of UTL_TCP, 101-6

open_connection() function
of UTL_SMTP, 100-7

open_data() function
of UTL_SMTP, 100-14

operation context
getting, 80-37

OR REPLACE clause
for creating packages, 1-3

Oracle Advanced Queuing (Oracle AQ)
DBMS_AQADM package, 6-1

Oracle Streams
creating queues, 73-35
data dictionary

removing information, 73-32
Oracle-supplied types

logical change record (LCR) types, 108-1
rule types, 109-1

OUTLN_PKG package, 41-1

P
package overview, 1-2
package variables
Index-13

i_am_a_refresh, 33-6
packages

creating, 1-3
referencing, 1-6
where documented, 1-7

parent workspace
conflicts with, 80-74

plan stability, 41-1
PL/SQL

datatypes, 14-6
numeric codes for, 14-8

functions
DBMS_MGWADM package

subprograms, 31-12
DBMS_MGWMSG package

subprograms, 32-9
procedures

DBMS_MGWADM package
subprograms, 31-12

DBMS_MGWMSG package
subprograms, 32-9

PREPARE_GLOBAL_INSTANTIATION
procedure, 8-8

PREPARE_SCHEMA_INSTANTIATION
procedure, 8-9

PREPARE_TABLE_INSTANTIATION
procedure, 8-10

priority groups
adding members to, 53-16
altering members

priorities, 53-33
values, 53-35

creating, 53-60
dropping, 53-71
removing members from, 53-70, 53-72
site priority groups

adding members to, 53-17
privileges

getting, 80-38
granting, 80-44, 80-46
revoking, 80-65, 80-67

programmatic environments, 106-7
propagation

altering method, 53-27, 53-32
disabling, 13-21

of changes, 53-27
status of, 13-7

propagation jobs
altering, 47-3
creating, 47-4, 73-3, 73-11, 73-24
DBMS_PROPAGATION_ADM package, 47-1
dropping, 47-7
queues

creating, 73-35
rules

defining global, 73-3
defining schema, 73-11
defining table, 73-24

propagator
registering, 13-17

PURGE_SOURCE_CATALOG procedure, 73-32
purging

DBA_REPCATLOG table, 53-85

Q
queues

AnyData
creating, 73-35

queuing
DBMS_AQADM package, 6-1

quiescing
master groups, 53-105

quit() function
of UTL_SMTP, 100-18

R
rcpt() function

of UTL_SMTP, 100-12
RE$ATTRIBUTE_VALUE type, 109-4
RE$ATTRIBUTE_VALUE_LIST type, 109-4
RE$COLUMN_VALUE type, 109-5, 109-9
RE$COLUMN_VALUE_LIST type, 109-5
RE$NAME_ARRAY type, 109-6
RE$NV_ARRAY type, 109-6
RE$NV_LIST type, 109-6

ADD_PAIR member procedure, 109-7
GET_ALL_NAMES member function, 109-7
GET_VALUE member function, 109-8
Index-14

REMOVE_PAIR member procedure, 109-8
RE$RULE_HIT type, 109-10
RE$RULE_HIT_LIST type, 109-10
RE$TABLE_ALIAS type, 109-11
RE$TABLE_ALIAS_LIST type, 109-11
RE$TABLE_VALUE type, 109-12
RE$TABLE_VALUE_LIST type, 109-12
RE$VARIABLE_TYPE type, 109-13
RE$VARIABLE_TYPE_LIST type, 109-15
RE$VARIABLE_VALUE type, 109-15
RE$VARIABLE_VALUE_LIST type, 109-15
read_line()

function of UTL_TCP, 101-15
read_raw()

function of UTL_TCP, 101-10
read_text()

function of UTL_TCP, 101-12
RecoverAllMigratingTables procedure, 80-54
RecoverMigratingTable procedure, 80-55
rectifying

tables, 49-5
refresh

materialized view sites, 53-87
materialized views, 33-10, 33-12, 33-14

refresh groups
adding members to, 51-2
creating, 51-6
deleting, 51-5
refresh interval

changing, 51-3
refreshing

manually, 51-8
removing members from, 51-9

refreshing
tables, 80-57
workspaces, 80-58

refreshing workspaces, 80-58
RefreshTable procedure, 80-57
RefreshWorkspace procedure, 80-58
registering

propagator for local database, 13-17
RelocateWriterSite procedure, 80-59
REMOVE_PAIR member procedure, 109-8
REMOVE_RULE procedure, 64-23, 73-34
RemoveWorkspace procedure, 80-61

RemoveWorkspaceTree procedure, 80-62
removing workspaces, 80-61
RENAME_COLUMN member procedure, 108-27
replicated objects

dropping from master sites, 53-67
replication

datetime datatypes
abbreviations, 1-6

disabling, 57-2
dropping support for, 80-26
enabling, 57-3
generating support for, 80-32
interval datatypes

abbreviations, 1-6
relocating writer site, 80-59
synchronizing local site, 80-85

replication groups
offline instantiation of, 36-2, 36-3, 36-5, 36-6,

36-7
replies function

of UTL_SMTP, 100-7
reply functions

of UTL_SMTP, 100-7
ResolveConflicts procedure, 80-63
resolving conflicts, 80-63

beginning, 80-9
committing, 80-12
rolling back, 80-69

resuming replication activity, 53-96
REVOKE_OBJECT_PRIVILEGE procedure, 64-25
REVOKE_SYSTEM_PRIVILEGE procedure, 64-26
RevokeSystemPriv procedure, 80-65
RevokeWorkspacePriv procedure, 80-67
revoking privileges, 80-65, 80-67
RollbackDDL procedure, 80-68
RollbackResolve procedure, 80-69
RollbackTable procedure, 80-70
RollbackToSP procedure, 80-72
RollbackWorkspace procedure, 80-73
rolling back

workspace to savepoint, 80-72
rolling back tables, 80-70
rolling back workspaces, 80-73
ROWID datatype

DBMS_ROWID package, 62-1
Index-15

extended format, 62-13
rows

locking, 80-49
unlocking, 80-87

rset() function
of UTL_SMTP, 100-15

rule sets
adding rules to, 64-3
creating, 64-13
dropping, 64-16
removing rules from, 64-23

rules
action contexts

adding name-value pairs, 109-7
getting name-value pairs, 109-7
getting value for name, 109-8
removing name-value pairs, 109-8

altering, 64-5
creating, 64-11
DBMS_RULE package, 63-1
DBMS_RULE_ADM package, 64-1
dropping, 64-15
evaluation, 63-3
evaluation contexts

creating, 64-8
dropping, 64-14

object privileges
granting, 64-17
revoking, 64-25

propagation jobs
removing, 73-34

RE$ATTRIBUTE_VALUE type, 109-4
RE$ATTRIBUTE_VALUE_LIST type, 109-4
RE$COLUMN_VALUE type, 109-5, 109-9
RE$COLUMN_VALUE_LIST type, 109-5
RE$NAME_ARRAY type, 109-6
RE$NV_ARRAY type, 109-6
RE$NV_LIST type, 109-6
RE$RULE_HIT type, 109-10
RE$RULE_HIT_LIST type, 109-10
RE$TABLE_ALIAS type, 109-11
RE$TABLE_ALIAS_LIST type, 109-11
RE$TABLE_VALUE type, 109-12
RE$TABLE_VALUE_LIST type, 109-12
RE$VARIABLE_TYPE type, 109-13

RE$VARIABLE_TYPE_LIST type, 109-15
RE$VARIABLE_VALUE type, 109-15
RE$VARIABLE_VALUE_LIST type, 109-15
subset

defining, 73-19
system privileges

granting, 64-20
revoking, 64-26

system-created
global apply, 73-7
global capture, 73-7
global propagation, 73-3
global schema, 73-15
removing, 73-34
schema capture, 73-15
schema propagation, 73-11
subset apply, 73-19
table apply, 73-28
table capture, 73-28
table propagation, 73-24

types, 109-1

S
savepoints

altering, 80-6
creating, 80-19
deleting, 80-22
rolling back to, 80-72

SDO_CD package, 1-16
SDO_GEOM package, 1-16
SDO_LRS package, 1-17
SDO_MIGRATE package, 1-20
SDO_TUNE package, 1-21
SDO_UTIL Package, 1-22
session context

GetSessionInfo function, 80-38
SET_BASE_TABLE_NAME member

procedure, 108-11
SET_BASE_TABLE_OWNER member

procedure, 108-12
SET_COMMAND_TYPE member

procedure, 108-37
SET_CURRENT_SCHEMA member

procedure, 108-12
Index-16

SET_DDL_TEXT member procedure, 108-13
set_disabled, 13-21
SET_DML_HANDLER procedure, 4-18
SET_GLOBAL_INSTANTIATION procedure, 4-23
SET_KEY_COLUMNS procedure, 4-26
SET_LOB_INFORMATION member

procedure, 108-28
SET_LOB_OFFSET member procedure, 108-29
SET_LOB_OPERATION_SIZE member

procedure, 108-30
SET_LOGON_USER member procedure, 108-13
SET_OBJECT_NAME member procedure, 108-38
SET_OBJECT_OWNER member procedure, 108-38
SET_OBJECT_TYPE member procedure, 108-14
SET_PARAMETER procedure, 8-11

apply process, 4-28
SET_SCHEMA_INSTANTIATION procedure, 4-32
SET_SOURCE_DATABASE_NAME member

procedure, 108-39
SET_TABLE_INSTANTIATION procedure, 4-35
SET_TAG member procedure, 108-39
SET_UP_QUEUE procedure, 73-35
SET_UPDATE_CONFLICT_HANDLER

procedure, 4-37
SET_VALUE member procedure, 108-31
SET_VALUES member procedure, 108-32
SetConflictWorkspace procedure, 80-74
SetDiffVersions procedure, 80-75
SetLockingON procedure, 80-77, 80-78
SetMultiWorkspaces procedure, 80-79
SetWoOverwriteOFF procedure, 80-80
SetWoOverwriteON procedure, 80-81
SetWorkspaceLockModeOFF procedure, 80-82
SetWorkspaceLockModeON procedure, 80-83
shared locks, 80-78
site priority

altering, 53-36
site priority groups

adding members to, 53-17
creating

syntax, 53-61
dropping, 53-73
removing members from, 53-74

snapshot. See DBMS_MVIEW, 33-1
SQL statements

larger than 32 KB, 69-27
SQL*Plus

creating a sequence, 1-6
staging

queues
creating, 73-35

START_APPLY procedure, 4-41
START_CAPTURE procedure, 8-14
statistics

clearing, 13-4
collecting, 53-90
purging, 53-86

status
propagation, 13-7

STOP_APPLY procedure, 4-42
STOP_CAPTURE procedure, 8-15
stored outlines

OUTLN_PKG package, 41-1
subscriber view

dropping, 27-2
subscriber views

removing, 27-2
subscribers

drop the subscriber view, 27-2
drop the subscription, 27-2
extend the window to create a new view, 27-2
purge the subscription window, 27-2
removing subscriber views, 27-2
retrieve change data from the subscriber

views, 27-2
subscription window

purging, 27-2
SynchronizeSite procedure, 80-85
SYS.ANYDATA, 12-7
system privileges, 80-44

T
tables

comparing, 49-2
rectifying, 49-5
table items as arrays, 69-29

TRACETAB.SQL, 74-3
Index-17

U
UnfreezeWorkspace procedure, 80-86
unfreezing

workspaces, 80-86
unlocking

table rows, 80-87
UnlockRows procedure, 80-87
upgrading

post-upgrade actions, 34-1
UTL_COLL package, 93-1
UTL_ENCODE package, 94-1
UTL_FILE package, 95-1
UTL_INADDR package, 97-1
UTL_PG package, 1-22
UTL_RAW package, 94-1, 98-1
UTL_REF package, 99-1
UTL_SMTP package, 100-1
UTL_TCP package, 101-1

V
versioning

disabling, 80-24
enabling, 80-27

VIEW_WO_OVERWRITE mode
disabling, 80-80
enabling, 80-81

views
summary, 31-34

vrfy() function
of UTL_SMTP, 100-16

W
workspace lock mode

disabling, 80-82
enabling, 80-83

workspaces
altering description, 80-7
compressing, 80-13, 80-16
continually refreshed, 80-21
creating, 80-20
freezing, 80-30
getting, 80-40
going to, 80-43

unfreezing, 80-86
write_data() function

of UTL_SMTP, 100-14
write_line()

function of UTL_TCP, 101-16
write_raw()

function of UTL_TCP, 101-11
write_raw_data() function

of UTL_SMTP, 100-14
write_text()

function of UTL_TCP, 101-14
Index-18

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Supplied PL/SQL Packages and Types?
	Oracle9i Release 2 (9.2) Beta New Features in Supplied PL/SQL Packages and Types
	Oracle9i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages and Types
	Oracle8i Release 2 (8.1.6) New Features in Supplied PL/SQL Packages
	Oracle8i Release 1 (8.1.5) New Features in Supplied PL/SQL Packages

	1 Introduction
	Package Overview
	Package Components
	Using Oracle Supplied Packages
	Creating New Packages
	Referencing Package Contents

	Abbreviations for Datetime and Interval Datatypes
	Summary of Oracle Supplied PL/SQL Packages
	Summary of Subprograms in Supplemental Packages
	SDO_CS Package
	SDO_GEOM Package
	SDO_LRS Package
	SDO_MIGRATE Package
	SDO_TUNE Package
	SDO_UTIL Package
	UTL_PG Package

	2 DBMS_ALERT
	Security, Constants, and Errors for DBMS_ALERT
	Using Alerts
	Summary of DBMS_ALERT Subprograms
	REGISTER Procedure
	REMOVE Procedure
	REMOVEALL Procedure
	SET_DEFAULTS Procedure
	SIGNAL Procedure
	WAITANY Procedure
	WAITONE Procedure

	3 DBMS_APPLICATION_INFO
	Privileges
	Summary of DBMS_APPLICATION_INFO Subprograms
	SET_MODULE Procedure
	SET_ACTION Procedure
	READ_MODULE Procedure
	SET_CLIENT_INFO Procedure
	READ_CLIENT_INFO Procedure
	SET_SESSION_LONGOPS Procedure

	4 DBMS_APPLY_ADM
	Summary of DBMS_APPLY_ADM Subprograms
	ALTER_APPLY Procedure
	CREATE_APPLY Procedure
	DELETE_ALL_ERRORS Procedure
	DELETE_ERROR Procedure
	DROP_APPLY Procedure
	EXECUTE_ALL_ERRORS Procedure
	EXECUTE_ERROR Procedure
	GET_ERROR_MESSAGE Function
	SET_DML_HANDLER Procedure
	SET_GLOBAL_INSTANTIATION_SCN Procedure
	SET_KEY_COLUMNS Procedure
	SET_PARAMETER Procedure
	SET_SCHEMA_INSTANTIATION_SCN Procedure
	SET_TABLE_INSTANTIATION_SCN Procedure
	SET_UPDATE_CONFLICT_HANDLER Procedure
	START_APPLY Procedure
	STOP_APPLY Procedure

	5 DBMS_AQ
	Java Classes
	Enumerated Constants
	Data Structures for DBMS_AQ
	Object Name
	Type Name
	AQ PL/SQL Callback

	Summary of DBMS_AQ Subprograms
	ENQUEUE Procedure
	DEQUEUE Procedure
	LISTEN Procedure
	REGISTER Procedure
	UNREGISTER Procedure
	POST Procedure
	BIND_AGENT Procedure
	UNBIND_AGENT Procedure

	6 DBMS_AQADM
	Enumerated Constants
	Summary of DBMS_AQADM Subprograms
	CREATE_QUEUE_TABLE Procedure
	ALTER_QUEUE_TABLE Procedure
	DROP_QUEUE_TABLE Procedure
	CREATE_QUEUE Procedure
	CREATE_NP_QUEUE Procedure
	ALTER_QUEUE Procedure
	DROP_QUEUE Procedure
	START_QUEUE Procedure
	STOP_QUEUE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure
	GRANT_QUEUE_PRIVILEGE Procedure
	REVOKE_QUEUE_PRIVILEGE Procedure
	ADD_SUBSCRIBER Procedure
	ALTER_SUBSCRIBER Procedure
	REMOVE_SUBSCRIBER Procedure
	SCHEDULE_PROPAGATION Procedure
	UNSCHEDULE_PROPAGATION Procedure
	VERIFY_QUEUE_TYPES Procedure
	ALTER_PROPAGATION_SCHEDULE Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	MIGRATE_QUEUE_TABLE Procedure
	CREATE_AQ_AGENT Procedure
	ALTER_AQ_AGENT Procedure
	DROP_AQ_AGENT Procedure
	ENABLE_DB_ACCESS Procedure
	DISABLE_DB_ACCESS Procedure
	ADD_ALIAS_TO_LDAP Procedure
	DEL_ALIAS_FROM_LDAP Procedure

	7 DBMS_AQELM
	Summary of DBMS_AQELM Subprograms
	SET_MAILHOST Procedure
	GET_MAILHOST Procedure
	SET_MAILPORT Procedure
	GET_MAILPORT Procedure
	SET_SENDFROM Procedure
	GET_SENDFROM Procedure
	SET_PROXY Procedure
	GET_PROXY Procedure

	8 DBMS_CAPTURE_ADM
	Summary of DBMS_CAPTURE_ADM Subprograms
	ABORT_GLOBAL_INSTANTIATION Procedure
	ABORT_SCHEMA_INSTANTIATION Procedure
	ABORT_TABLE_INSTANTIATION Procedure
	ALTER_CAPTURE Procedure
	CREATE_CAPTURE Procedure
	DROP_CAPTURE Procedure
	PREPARE_GLOBAL_INSTANTIATION Procedure
	PREPARE_SCHEMA_INSTANTIATION Procedure
	PREPARE_TABLE_INSTANTIATION Procedure
	SET_PARAMETER Procedure
	START_CAPTURE Procedure
	STOP_CAPTURE Procedure

	9 DBMS_DDL
	Summary of DBMS_DDL Subprograms
	ALTER_COMPILE Procedure
	ANALYZE_OBJECT Procedure
	IS_TRIGGER_FIRE_ONCE Function
	SET_TRIGGER_FIRING_PROPERTY Procedure
	ALTER_TABLE_REFERENCEABLE Procedure
	ALTER_TABLE_NOT_REFERENCEABLE Procedure

	10 DBMS_DEBUG
	Using DBMS_DEBUG
	Usage Notes
	Types and Constants
	Error Codes, Exceptions, and Variables
	Common and Debug Session Sections
	OER Breakpoints
	Summary of DBMS_DEBUG Subprograms
	PROBE_VERSION Procedure
	SELF_CHECK Procedure
	SET_TIMEOUT Function
	TARGET SESSION Section
	INITIALIZE Function
	DEBUG_ON Procedure
	DEBUG_OFF Procedure
	ATTACH_SESSION Procedure
	SYNCHRONIZE Function
	SHOW_SOURCE Procedure
	PRINT_BACKTRACE Procedure
	CONTINUE Function
	SET_BREAKPOINT Function
	DELETE_BREAKPOINT Function
	DISABLE_BREAKPOINT Function
	ENABLE_BREAKPOINT Function
	SHOW_BREAKPOINTS Procedure
	GET_VALUE Function
	SET_VALUE Function
	DETACH_SESSION Procedure
	GET_RUNTIME_INFO Function
	GET_INDEXES Function
	EXECUTE Procedure
	PRINT_INSTANTIATIONS Procedure
	TARGET_PROGRAM_RUNNING Procedure
	PING Procedure
	SET_TIMEOUT_BEHAVIOR Procedure
	GET_TIMEOUT_BEHAVIOR Function
	SET_OER_BREAKPOINT Function
	DELETE_OER_BREAKPOINT Function
	SHOW_BREAKPOINTS Procedure

	11 DBMS_DEFER
	Summary of DBMS_DEFER Subprograms
	CALL Procedure
	COMMIT_WORK Procedure
	datatype_ARG Procedure
	TRANSACTION Procedure

	12 DBMS_DEFER_QUERY
	Summary of DBMS_DEFER_QUERY Subprograms
	GET_ARG_FORM Function
	GET_ARG_TYPE Function
	GET_CALL_ARGS Procedure
	GET_datatype_ARG Function
	GET_OBJECT_NULL_VECTOR_ARG Function

	13 DBMS_DEFER_SYS
	Summary of DBMS_DEFER_SYS Subprograms
	ADD_DEFAULT_DEST Procedure
	CLEAR_PROP_STATISTICS Procedure
	DELETE_DEFAULT_DEST Procedure
	DELETE_DEF_DESTINATION Procedure
	DELETE_ERROR Procedure
	DELETE_TRAN Procedure
	DISABLED Function
	EXCLUDE_PUSH Function
	EXECUTE_ERROR Procedure
	EXECUTE_ERROR_AS_USER Procedure
	PURGE Function
	PUSH Function
	REGISTER_PROPAGATOR Procedure
	SCHEDULE_PURGE Procedure
	SCHEDULE_PUSH Procedure
	SET_DISABLED Procedure
	UNREGISTER_PROPAGATOR Procedure
	UNSCHEDULE_PURGE Procedure
	UNSCHEDULE_PUSH Procedure

	14 DBMS_DESCRIBE
	Security, Types, and Errors for DBMS_DESCRIBE
	Summary of DBMS_DESCRIBE Subprograms
	DESCRIBE_PROCEDURE Procedure

	15 DBMS_DISTRIBUTED_TRUST_ADMIN
	Requirements
	Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
	ALLOW_ALL Procedure
	ALLOW_SERVER Procedure
	DENY_ALL Procedure
	DENY_SERVER Procedure

	16 DBMS_FGA
	Summary of DBMS_FGA Subprograms
	ADD_POLICY Procedure
	DROP_POLICY Procedure
	ENABLE_POLICY Procedure
	DISABLE_POLICY Procedure

	17 DBMS_FLASHBACK
	DBMS_FLASHBACK Error Messages
	Using DBMS_FLASHBACK: Example
	Summary of DBMS_FLASHBACK Subprograms
	ENABLE_AT_TIME Procedure
	ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure
	GET_SYSTEM_CHANGE_NUMBER Function
	DISABLE Procedure

	18 DBMS_HS_PASSTHROUGH
	Security
	Summary of DBMS_HS_PASSTHROUGH Subprograms
	BIND_VARIABLE Procedure
	BIND_VARIABLE_RAW Procedure
	BIND_OUT_VARIABLE Procedure
	BIND_OUT_VARIABLE_RAW Procedure
	BIND_INOUT_VARIABLE Procedure
	BIND_INOUT_VARIABLE_RAW Procedure
	CLOSE_CURSOR Procedure
	EXECUTE_IMMEDIATE Procedure
	EXECUTE_NON_QUERY Function
	FETCH_ROW Function
	GET_VALUE Procedure
	GET_VALUE_RAW Procedure
	OPEN_CURSOR Function
	PARSE Procedure

	19 DBMS_IOT
	Summary of DBMS_IOT Subprograms
	BUILD_CHAIN_ROWS_TABLE Procedure
	BUILD_EXCEPTIONS_TABLE Procedure

	20 DBMS_JOB
	Requirements
	Using the DBMS_JOB Package with Oracle Real Application Clusters
	Summary of DBMS_JOB Subprograms
	SUBMIT Procedure
	REMOVE Procedure
	CHANGE Procedure
	WHAT Procedure
	NEXT_DATE Procedure
	INSTANCE Procedure
	INTERVAL Procedure
	BROKEN Procedure
	RUN Procedure
	USER_EXPORT Procedure
	USER_EXPORT Procedure

	21 DBMS_LDAP
	Exception Summary
	Summary of Data Types
	Summary of DBMS_LDAP Subprograms
	init Function
	simple_bind_s Function
	bind_s Function
	unbind_s Function
	compare_s Function
	search_s Function
	search_st Function
	first_entry Function
	next_entry Function
	count_entries Function
	first_attribute Function
	next_attribute Function
	get_dn Function
	get_values Function
	get_values_len Function
	delete_s Function
	modrdn2_s Function
	err2string Function
	create_mod_array Function
	populate_mod_array (String Version) Procedure
	populate_mod_array (Binary Version) Procedure
	modify_s Function
	add_s Function
	free_mod_array Procedure
	count_values Function
	count_values_len Function
	rename_s Function
	explode_dn Function
	open_ssl Function

	22 DBMS_LIBCACHE
	Requirements
	Summary of DBMS_LIBCACHE Subprograms
	COMPILE_CURSORS_FROM_REMOTE Procedure

	23 DBMS_LOB
	LOB Locators for DBMS_LOB
	Datatypes, Constants, and Exceptions for DBMS_LOB
	Security for DBMS_LOB
	Rules and Limitations for DBMS_LOB
	Temporary LOBs
	Summary of DBMS_LOB Subprograms
	APPEND Procedure
	CLOSE Procedure
	COMPARE Function
	COPY Procedure
	CREATETEMPORARY Procedure
	ERASE Procedure
	FILECLOSE Procedure
	FILECLOSEALL Procedure
	FILEEXISTS Function
	FILEGETNAME Procedure
	FILEISOPEN Function
	FILEOPEN Procedure
	FREETEMPORARY Procedure
	GETCHUNKSIZE Function
	GETLENGTH Function
	INSTR Function
	ISOPEN Function
	ISTEMPORARY Function
	LOADFROMFILE Procedure
	LOADBLOBFROMFILE Procedure
	LOADCLOBFROMFILE Procedure
	OPEN Procedure
	READ Procedure
	SUBSTR Function
	TRIM Procedure
	WRITE Procedure
	WRITEAPPEND Procedure

	24 DBMS_LOCK
	Requirements, Security, and Constants for DBMS_LOCK
	Summary of DBMS_LOCK Subprograms
	ALLOCATE_UNIQUE Procedure
	REQUEST Function
	CONVERT Function
	RELEASE Function
	SLEEP Procedure

	Printing a Check: Example

	25 DBMS_LOGMNR
	DBMS_LOGMNR Constants
	Extracting Data Values from Redo Logs
	Example of Using DBMS_LOGMNR

	Summary of DBMS_LOGMNR Subprograms
	ADD_LOGFILE Procedure
	START_LOGMNR Procedure
	END_LOGMNR Procedure
	MINE_VALUE Function
	COLUMN_PRESENT Function

	26 DBMS_LOGMNR_CDC_PUBLISH
	Publishing Change Data
	Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms
	CREATE_CHANGE_TABLE Procedure
	ALTER_CHANGE_TABLE Procedure
	DROP_SUBSCRIBER_VIEW Procedure
	DROP_SUBSCRIPTION Procedure
	DROP_CHANGE_TABLE Procedure
	PURGE Procedure

	27 DBMS_LOGMNR_CDC_SUBSCRIBE
	Subscribing to Change Data
	Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms
	GET_SUBSCRIPTION_HANDLE Procedure
	SUBSCRIBE Procedure
	ACTIVATE_SUBSCRIPTION Procedure
	EXTEND_WINDOW Procedure
	PREPARE_SUBSCRIBER_VIEW Procedure
	DROP_SUBSCRIBER_VIEW Procedure
	PURGE_WINDOW Procedure
	DROP_SUBSCRIPTION Procedure

	28 DBMS_LOGMNR_D
	Summary of DBMS_LOGMNR_D Subprograms
	BUILD Procedure
	SET_TABLESPACE Procedure

	29 DBMS_LOGSTDBY
	Configuring and Managing the Logical Standby Environment
	Summary of DBMS_LOGSTDBY Subprograms
	APPLY_SET Procedure
	APPLY_UNSET Procedure
	BUILD Procedure
	GUARD_BYPASS_OFF Procedure
	GUARD_BYPASS_ON Procedure
	INSTANTIATE_TABLE Procedure
	SKIP Procedure
	SKIP_ERROR Procedure
	SKIP_TRANSACTION Procedure
	UNSKIP Procedure
	UNSKIP_ERROR Procedure
	UNSKIP_TRANSACTION Procedure

	30 DBMS_METADATA
	Summary of DBMS_METADATA Subprograms
	OPEN Procedure
	SET_FILTER Procedure
	SET_COUNT Procedure
	GET_QUERY Procedure
	SET_PARSE_ITEM Procedure
	ADD_TRANSFORM Procedure
	SET_TRANSFORM_PARAM Procedure
	FETCH_xxx Procedure
	CLOSE Procedure
	GET_XML and GET_DDL Functions
	GET_DEPENDENT_XML and GET_DEPENDENT_DDL Functions
	GET_GRANTED_XML and GET_GRANTED_DDL Functions

	31 DBMS_MGWADM
	Summary of DBMS_MGWADM Object Types and Methods
	MGW_PROPERTY Type
	MGW_PROPERTY.CONSTRUCT Method
	MGW_PROPERTY.CONSTRUCT Method
	MGW_PROPERTIES Type
	MGW_MQSERIES_PROPERTIES Type
	MGW_MQSERIES_PROPERTIES.CONSTRUCT Method
	MGW_MQSERIES_PROPERTIES.ALTER_CONSTRUCT Method

	DBMS_MGWADM Constants
	MQSeries System Properties
	Basic Link Properties (MGW_MQSERIES_PROPERTIES)
	Optional Link Properties
	Optional Queue Properties

	Summary of DBMS_MGWADM Subprograms
	ALTER_AGENT Procedure
	DB_CONNECT_INFO Procedure
	STARTUP Procedure
	SHUTDOWN Procedure
	CLEANUP_GATEWAY Procedure
	SET_LOG_LEVEL Procedure
	CREATE_MSGSYSTEM_LINK Procedure
	ALTER_MSGSYSTEM_LINK Procedure
	REMOVE_MSGSYSTEM_LINK Procedure
	REGISTER_FOREIGN_QUEUE Procedure
	UNREGISTER_FOREIGN_QUEUE Procedure
	ADD_SUBSCRIBER Procedure
	ALTER_SUBSCRIBER Procedure
	REMOVE_SUBSCRIBER Procedure
	RESET_SUBSCRIBER Procedure
	SCHEDULE_PROPAGATION Procedure
	UNSCHEDULE_PROPAGATION Procedure
	ALTER_PROPAGATION_SCHEDULE Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure

	Summary of Database Views
	MGW_GATEWAY View
	MGW_LINKS View
	MGW_MQSERIES_LINKS View
	MGW_FOREIGN_QUEUES View
	MGW_SUBSCRIBERS View
	MGW_SCHEDULES View

	32 DBMS_MGWMSG
	Summary of DBMS_MGWMSG Object Types and Methods
	MGW_NAME_VALUE_T Type
	MGW_NAME_VALUE_T.CONSTRUCT Method
	MGW_NAME_VALUE_T.CONSTRUCT_<TYPE> Methods
	MGW_NAME_TYPE_ARRAY_T Type
	MGW_TEXT_VALUE_T Type
	MGW_TEXT_VALUE_T.CONSTRUCT Method
	MGW_RAW_VALUE_T Type
	MGW_RAW_VALUE_T.CONSTRUCT Method
	MGW_BASIC_MSG_T Type
	MGW_BASIC_MSG_T.CONSTRUCT Method

	DBMS_MGWMSG Constants
	Summary of DBMS_MGWMSG Subprograms
	NVARRAY_ADD Procedure
	NVARRAY_GET Function
	NVARRAY_GET_BOOLEAN Function
	NVARRAY_GET_BYTE Function
	NVARRAY_GET_SHORT Function
	NVARRAY_GET_INTEGER Function
	NVARRAY_GET_LONG Function
	NVARRAY_GET_FLOAT Function
	NVARRAY_GET_DOUBLE Function
	NVARRAY_GET_TEXT Function
	NVARRAY_GET_RAW Function
	NVARRAY_GET_DATE Function
	NVARRAY_FIND_NAME Function
	NVARRAY_FIND_NAME_TYPE Function

	33 DBMS_MVIEW
	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedure
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedure
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedure
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

	34 DBMS_OBFUSCATION_TOOLKIT
	Overview of Key Management
	Summary of DBMS_OBFUSCATION Subprograms
	DESEncrypt Procedure
	DESDecrypt Procedure
	DES3Encrypt Procedure
	DES3Decrypt Procedure

	35 DBMS_ODCI
	Summary of DBMS_ODCI Subprograms
	ESTIMATE_CPU_UNITS Function

	36 DBMS_OFFLINE_OG
	Summary of DBMS_OFFLINE_OG Subprograms
	BEGIN_INSTANTIATION Procedure
	BEGIN_LOAD Procedure
	END_INSTANTIATION Procedure
	END_LOAD Procedure
	RESUME_SUBSET_OF_MASTERS Procedure

	37 DBMS_OFFLINE_SNAPSHOT
	Summary of DBMS_OFFLINE_SNAPSHOT Subprograms
	BEGIN_LOAD Procedure
	END_LOAD Procedure

	38 DBMS_OLAP
	Requirements
	Error Messages
	Summary of DBMS_OLAP Subprograms
	ADD_FILTER_ITEM Procedure
	CREATE_ID Procedure
	ESTIMATE_MVIEW_SIZE Procedure
	EVALUATE_MVIEW_STRATEGY Procedure
	GENERATE_MVIEW_REPORT Procedure
	GENERATE_MVIEW_SCRIPT Procedure
	LOAD_WORKLOAD_CACHE Procedure
	LOAD_WORKLOAD_TRACE Procedure
	LOAD_WORKLOAD_USER Procedure
	PURGE_FILTER Procedure
	PURGE_RESULTS Procedure
	PURGE_WORKLOAD Procedure
	RECOMMEND_MVIEW_STRATEGY Procedure
	SET_CANCELLED Procedure
	VALIDATE_DIMENSION Procedure
	VALIDATE_WORKLOAD_CACHE Procedure
	VALIDATE_WORKLOAD_TRACE Procedure
	VALIDATE_WORKLOAD_USER Procedure
	DBMS_OLAP Interface Views
	SYSTEM.MVIEW_EVALUATIONS
	SYSTEM.MVIEW_EXCEPTIONS
	SYSTEM.MVIEW_FILTER
	SYSTEM.MVIEW_FILTERINSTANCE
	SYSTEM.MVIEW_LOG
	SYSTEM.MVIEW_RECOMMENDATIONS
	SYSTEM.MVIEW_WORKLOAD

	39 DBMS_ORACLE_TRACE_AGENT
	Security
	Summary of DBMS_ORACLE_TRACE_AGENT Subprograms
	SET_ORACLE_TRACE_IN_SESSION Procedure

	40 DBMS_ORACLE_TRACE_USER
	Summary of DBMS_ORACLE_TRACE_USER Subprograms
	SET_ORACLE_TRACE Procedure

	41 DBMS_OUTLN
	Requirements and Security for DBMS_OUTLN
	Summary of DBMS_OUTLN Subprograms
	DROP_BY_CAT Procedure
	DROP_COLLISION Procedure
	DROP_EXTRAS Procedure
	DROP_UNREFD_HINTS Procedure
	DROP_UNUSED Procedure
	UPDATE_BY_CAT Procedure
	GENERATE_SIGNATURE Procedure

	42 DBMS_OUTLN_EDIT
	Summary of DBMS_OUTLN_EDIT Subprograms
	CHANGE_JOIN_POS Procedure
	CREATE_EDIT_TABLES Procedure
	DROP_EDIT_TABLES Procedure
	REFRESH_PRIVATE_OUTLINE Procedure

	43 DBMS_OUTPUT
	Security, Errors, and Types for DBMS_OUTPUT
	Using DBMS_OUTPUT
	Summary of DBMS_OUTPUT Subprograms
	ENABLE Procedure
	DISABLE Procedure
	PUT and PUT_LINE Procedures
	NEW_LINE Procedure
	GET_LINE and GET_LINES Procedures

	44 DBMS_PCLXUTIL
	Using DBMS_PCLXUTIL
	Limitations
	Summary of DBMS_PCLUTTL Subprograms
	BUILD_PART_INDEX Procedure

	45 DBMS_PIPE
	Public Pipes, Private Pipes, and Pipe Uses
	Security, Constants, and Errors
	Summary of DBMS_PIPE Subprograms
	CREATE_PIPE Function
	PACK_MESSAGE Procedure
	SEND_MESSAGE Function
	RECEIVE_MESSAGE Function
	NEXT_ITEM_TYPE Function
	UNPACK_MESSAGE Procedure
	REMOVE_PIPE Function
	PURGE Procedure
	RESET_BUFFER Procedure
	UNIQUE_SESSION_NAME Function

	46 DBMS_PROFILER
	Using DBMS_PROFILER
	Requirements
	Security
	Exceptions
	Error Codes
	Summary of DBMS_PROFILER Subprograms
	START_PROFILER Function
	STOP_PROFILER Function
	FLUSH_DATA Function
	PAUSE_PROFILER Function
	RESUME_PROFILER Function
	GET_VERSION Procedure
	INTERNAL_VERSION_CHECK Function

	47 DBMS_PROPAGATION_ADM
	Summary of DBMS_PROPAGATION_ADM Subprograms
	ALTER_PROPAGATION Procedure
	CREATE_PROPAGATION Procedure
	DROP_PROPAGATION Procedure

	48 DBMS_RANDOM
	Requirements
	Summary of DBMS_RANDOM Subprograms
	INITIALIZE Procedure
	SEED Procedure
	RANDOM Function
	TERMINATE Procedure

	49 DBMS_RECTIFIER_DIFF
	Summary of DBMS_RECTIFIER_DIFF Subprograms
	DIFFERENCES Procedure
	RECTIFY Procedure

	50 DBMS_REDEFINITION
	Constants for DBMS_REDEFINITION
	Summary of DBMS_REDEFINITION Subprograms
	CAN_REDEF_TABLE Procedure
	START_REDEF_TABLE Procedure
	FINISH_REDEF_TABLE Procedure
	SYNC_INTERIM_TABLE Procedure
	ABORT_REDEF_TABLE Procedure

	51 DBMS_REFRESH
	Summary of DBMS_REFRESH Subprograms
	ADD Procedure
	CHANGE Procedure
	DESTROY Procedure
	MAKE Procedure
	REFRESH Procedure
	SUBTRACT Procedure

	52 DBMS_REPAIR
	Security, Enumeration Types, and Exceptions
	Summary of DBMS_REPAIR Subprograms
	ADMIN_TABLES Procedure
	CHECK_OBJECT Procedure
	DUMP_ORPHAN_KEYS Procedure
	FIX_CORRUPT_BLOCKS Procedure
	REBUILD_FREELISTS Procedure
	SKIP_CORRUPT_BLOCKS Procedure
	SEGMENT_FIX_STATUS Procedure

	53 DBMS_REPCAT
	Summary of DBMS_REPCAT Subprograms
	ADD_GROUPED_COLUMN Procedure
	ADD_MASTER_DATABASE Procedure
	ADD_NEW_MASTERS Procedure
	ADD_PRIORITY_datatype Procedure
	ADD_SITE_PRIORITY_SITE Procedure
	ADD_conflicttype_RESOLUTION Procedure
	ALTER_CATCHUP_PARAMETERS Procedure
	ALTER_MASTER_PROPAGATION Procedure
	ALTER_MASTER_REPOBJECT Procedure
	ALTER_MVIEW_PROPAGATION Procedure
	ALTER_PRIORITY Procedure
	ALTER_PRIORITY_datatype Procedure
	ALTER_SITE_PRIORITY Procedure
	ALTER_SITE_PRIORITY_SITE Procedure
	CANCEL_STATISTICS Procedure
	COMMENT_ON_COLUMN_GROUP Procedure
	COMMENT_ON_MVIEW_REPSITES Procedure
	COMMENT_ON_PRIORITY_GROUP/COMMENT_ON_SITE_PRIORITY Procedures
	COMMENT_ON_REPGROUP Procedure
	COMMENT_ON_REPOBJECT Procedure
	COMMENT_ON_REPSITES Procedure
	COMMENT_ON_conflicttype_RESOLUTION Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_MASTER_REPGROUP Procedure
	CREATE_MASTER_REPOBJECT Procedure
	CREATE_MVIEW_REPGROUP Procedure
	CREATE_MVIEW_REPOBJECT Procedure
	DEFINE_COLUMN_GROUP Procedure
	DEFINE_PRIORITY_GROUP Procedure
	DEFINE_SITE_PRIORITY Procedure
	DO_DEFERRED_REPCAT_ADMIN Procedure
	DROP_COLUMN_GROUP Procedure
	DROP_GROUPED_COLUMN Procedure
	DROP_MASTER_REPGROUP Procedure
	DROP_MASTER_REPOBJECT Procedure
	DROP_MVIEW_REPGROUP Procedure
	DROP_MVIEW_REPOBJECT Procedure
	DROP_PRIORITY Procedure
	DROP_PRIORITY_GROUP Procedure
	DROP_PRIORITY_datatype Procedure
	DROP_SITE_PRIORITY Procedure
	DROP_SITE_PRIORITY_SITE Procedure
	DROP_conflicttype_RESOLUTION Procedure
	EXECUTE_DDL Procedure
	GENERATE_MVIEW_SUPPORT Procedure
	GENERATE_REPLICATION_SUPPORT Procedure
	MAKE_COLUMN_GROUP Procedure
	PREPARE_INSTANTIATED_MASTER Procedure
	PURGE_MASTER_LOG Procedure
	PURGE_STATISTICS Procedure
	REFRESH_MVIEW_REPGROUP Procedure
	REGISTER_MVIEW_REPGROUP Procedure
	REGISTER_STATISTICS Procedure
	RELOCATE_MASTERDEF Procedure
	REMOVE_MASTER_DATABASES Procedure
	RENAME_SHADOW_COLUMN_GROUP Procedure
	REPCAT_IMPORT_CHECK Procedure
	RESUME_MASTER_ACTIVITY Procedure
	RESUME_PROPAGATION_TO_MDEF Procedure
	SEND_OLD_VALUES Procedure
	SET_COLUMNS Procedure
	SPECIFY_NEW_MASTERS Procedure
	SUSPEND_MASTER_ACTIVITY Procedure
	SWITCH_MVIEW_MASTER Procedure
	UNDO_ADD_NEW_MASTERS_REQUEST Procedure
	UNREGISTER_MVIEW_REPGROUP Procedure
	VALIDATE Function
	WAIT_MASTER_LOG Procedure

	54 DBMS_REPCAT_ADMIN
	Summary of DBMS_REPCAT_ADMIN Subprograms
	GRANT_ADMIN_ANY_SCHEMA Procedure
	GRANT_ADMIN_SCHEMA Procedure
	REGISTER_USER_REPGROUP Procedure
	REVOKE_ADMIN_ANY_SCHEMA Procedure
	REVOKE_ADMIN_SCHEMA Procedure
	UNREGISTER_USER_REPGROUP Procedure

	55 DBMS_REPCAT_INSTANTIATE
	Summary of DBMS_REPCAT_INSTANTIATE Subprograms
	DROP_SITE_INSTANTIATION Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function

	56 DBMS_REPCAT_RGT
	Summary of DBMS_REPCAT_RGT Subprograms
	ALTER_REFRESH_TEMPLATE Procedure
	ALTER_TEMPLATE_OBJECT Procedure
	ALTER_TEMPLATE_PARM Procedure
	ALTER_USER_AUTHORIZATION Procedure
	ALTER_USER_PARM_VALUE Procedure
	COMPARE_TEMPLATES Function
	COPY_TEMPLATE Function
	CREATE_OBJECT_FROM_EXISTING Function
	CREATE_REFRESH_TEMPLATE Function
	CREATE_TEMPLATE_OBJECT Function
	CREATE_TEMPLATE_PARM Function
	CREATE_USER_AUTHORIZATION Function
	CREATE_USER_PARM_VALUE Function
	DELETE_RUNTIME_PARMS Procedure
	DROP_ALL_OBJECTS Procedure
	DROP_ALL_TEMPLATE_PARMS Procedure
	DROP_ALL_TEMPLATE_SITES Procedure
	DROP_ALL_TEMPLATES Procedure
	DROP_ALL_USER_AUTHORIZATIONS Procedure
	DROP_ALL_USER_PARM_VALUES Procedure
	DROP_REFRESH_TEMPLATE Procedure
	DROP_SITE_INSTANTIATION Procedure
	DROP_TEMPLATE_OBJECT Procedure
	DROP_TEMPLATE_PARM Procedure
	DROP_USER_AUTHORIZATION Procedure
	DROP_USER_PARM_VALUE Procedure
	GET_RUNTIME_PARM_ID Function
	INSERT_RUNTIME_PARMS Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function
	LOCK_TEMPLATE_EXCLUSIVE Procedure
	LOCK_TEMPLATE_SHARED Procedure

	57 DBMS_REPUTIL
	Summary of DBMS_REPUTIL Subprograms
	REPLICATION_OFF Procedure
	REPLICATION_ON Procedure
	REPLICATION_IS_ON Function
	FROM_REMOTE Function
	GLOBAL_NAME Function
	MAKE_INTERNAL_PKG Procedure
	SYNC_UP_REP Procedure

	58 DBMS_RESOURCE_MANAGER
	Requirements
	Summary of DBMS_RESOURE_MANAGER Subprograms
	CREATE_PLAN Procedure
	CREATE_SIMPLE_PLAN Procedure
	UPDATE_PLAN Procedure
	DELETE_PLAN Procedure
	DELETE_PLAN_CASCADE Procedure
	CREATE_CONSUMER_GROUP Procedure
	UPDATE_CONSUMER_GROUP Procedure
	DELETE_CONSUMER_GROUP Procedure
	CREATE_PLAN_DIRECTIVE Procedure
	UPDATE_PLAN_DIRECTIVE Procedure
	DELETE_PLAN_DIRECTIVE Procedure
	CREATE_PENDING_AREA Procedure
	VALIDATE_PENDING_AREA Procedure
	CLEAR_PENDING_AREA Procedure
	SUBMIT_PENDING_AREA Procedure
	SET_INITIAL_CONSUMER_GROUP Procedure
	SWITCH_CONSUMER_GROUP_FOR_SESS Procedure
	SWITCH_CONSUMER_GROUP_FOR_USER Procedure

	59 DBMS_RESOURCE_MANAGER_PRIVS
	Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure
	GRANT_SWITCH_CONSUMER_GROUP Procedure
	REVOKE_SWITCH_CONSUMER_GROUP Procedure

	60 DBMS_RESUMABLE
	Summary of DBMS_RESUMABLE Subprograms
	ABORT Procedure
	GET_SESSION_TIMEOUT Function
	SET_SESSION_TIMEOUT Procedure
	GET_TIMEOUT Function
	SET_TIMEOUT Procedure
	SPACE_ERROR_INFO Function

	61 DBMS_RLS
	Dynamic Predicates
	Security
	Usage Notes
	Summary of DBMS_RLS Subprograms
	ADD_POLICY Procedure
	DROP_POLICY Procedure
	REFRESH_POLICY Procedure
	ENABLE_POLICY Procedure
	CREATE_POLICY_GROUP Procedure
	ADD_GROUPED_POLICY Procedure
	ADD_POLICY_CONTEXT Procedure
	DELETE_POLICY_GROUP Procedure
	DROP_GROUPED_POLICY Procedure
	DROP_POLICY_CONTEXT Procedure
	ENABLE__GROUPED_POLICY Procedure
	REFRESH_GROUPED_POLICY Procedure

	62 DBMS_ROWID
	Usage Notes
	Requirements
	ROWID Types
	Exceptions
	Summary of DBMS_ROWID Subprograms
	ROWID_CREATE Function
	ROWID_INFO Procedure
	ROWID_TYPE Function
	ROWID_OBJECT Function
	ROWID_RELATIVE_FNO Function
	ROWID_BLOCK_NUMBER Function
	ROWID_ROW_NUMBER Function
	ROWID_TO_ABSOLUTE_FNO Function
	ROWID_TO_EXTENDED Function
	ROWID_TO_RESTRICTED Function
	ROWID_VERIFY Function

	63 DBMS_RULE
	Summary of DBMS_RULE Subprograms
	EVALUATE Procedure

	64 DBMS_RULE_ADM
	Summary of DBMS_RULE_ADM Subprograms
	ADD_RULE Procedure
	ALTER_RULE Procedure
	CREATE_EVALUATION_CONTEXT Procedure
	CREATE_RULE Procedure
	CREATE_RULE_SET Procedure
	DROP_EVALUATION_CONTEXT Procedure
	DROP_RULE Procedure
	DROP_RULE_SET Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REMOVE_RULE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

	65 DBMS_SESSION
	Requirements
	Summary of DBMS_SESSION Subprograms
	SET_IDENTIFIER
	SET_CONTEXT
	SET_CONTEXT Procedure
	CLEAR_CONTEXT
	CLEAR_IDENTIFIER
	SET_ROLE Procedure
	SET_SQL_TRACE Procedure
	SET_NLS Procedure
	CLOSE_DATABASE_LINK Procedure
	RESET_PACKAGE Procedure
	MODIFY_PACKAGE_STATE Procedure
	UNIQUE_SESSION_ID Function
	IS_ROLE_ENABLED Function
	IS_SESSION_ALIVE Function
	SET_CLOSE_CACHED_OPEN_CURSORS Procedure
	FREE_UNUSED_USER_MEMORY Procedure
	SET_CONTEXT Procedure
	LIST_CONTEXT Procedure
	SWITCH_CURRENT_CONSUMER_GROUP Procedure

	66 DBMS_SHARED_POOL
	Installation Notes
	Usage Notes
	Summary of DBMS_SHARED_POOL Subprograms
	SIZES Procedure
	KEEP Procedure
	UNKEEP Procedure
	ABORTED_REQUEST_THRESHOLD Procedure

	67 DBMS_SPACE
	Security
	Requirements
	Summary of DBMS_SPACE Subprograms
	UNUSED_SPACE Procedure
	FREE_BLOCKS Procedure
	SPACE_USAGE Procedure

	68 DBMS_SPACE_ADMIN
	Security
	SYSTEM Tablespace Migration: Conditions
	Constants for DBMS_SPACE_ADMIN Constants
	Summary of DBMS_SPACE_ADMIN Subprograms
	SEGMENT_VERIFY Procedure
	SEGMENT_CORRUPT Procedure
	SEGMENT_DROP_CORRUPT Procedure
	SEGMENT_DUMP Procedure
	TABLESPACE_VERIFY Procedure
	TABLESPACE_FIX_BITMAPS Procedure
	TABLESPACE_REBUILD_BITMAPS Procedure
	TABLESPACE_REBUILD_QUOTAS Procedure
	TABLESPACE_MIGRATE_FROM_LOCAL Procedure
	TABLESPACE_MIGRATE_TO_LOCAL Procedure
	TABLESPACE_RELOCATE_BITMAPS Procedure
	TABLESPACE_FIX_SEGMENT_STATES Procedure

	69 DBMS_SQL
	Using DBMS_SQL
	Constants, Types, and Exceptions for DBMS_SQL
	Execution Flow
	Security
	Processing Queries
	Examples
	Processing Updates, Inserts, and Deletes
	Locating Errors
	Summary of DBMS_SQL Subprograms
	OPEN_CURSOR Function
	PARSE Procedure
	BIND_VARIABLE and BIND_ARRAY Procedures
	DEFINE_COLUMN Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN_LONG Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	COLUMN_VALUE Procedure
	COLUMN_VALUE_LONG Procedure
	VARIABLE_VALUE Procedure
	IS_OPEN Function
	DESCRIBE_COLUMNS Procedure
	CLOSE_CURSOR Procedure
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function

	70 DBMS_STATS
	Using DBMS_STATS
	User-Defined Statistics

	Setting or Getting Statistics
	Transferring Statistics
	Gathering Optimizer Statistics
	Summary of DBMS_STATS Subprograms
	PREPARE_COLUMN_VALUES Procedure
	SET_COLUMN_STATS Procedure
	SET_INDEX_STATS Procedure
	SET_SYSTEM_STATS Procedure
	SET_TABLE_STATS Procedure
	CONVERT_RAW_VALUE Procedure
	GET_COLUMN_STATS Procedure
	GET_INDEX_STATS Procedure
	GET_SYSTEM_STATS Procedure
	GET_TABLE_STATS Procedure
	DELETE_COLUMN_STATS Procedure
	DELETE_INDEX_STATS Procedure
	DELETE_SYSTEM_STATS Procedure
	DELETE_TABLE_STATS Procedure
	DELETE_SCHEMA_STATS Procedure
	DELETE_DATABASE_STATS Procedure
	CREATE_STAT_TABLE Procedure
	DROP_STAT_TABLE Procedure
	EXPORT_COLUMN_STATS Procedure
	EXPORT_INDEX_STATS Procedure
	EXPORT_SYSTEM_STATS Procedure
	EXPORT_TABLE_STATS Procedure
	EXPORT_SCHEMA_STATS Procedure
	EXPORT_DATABASE_STATS Procedure
	IMPORT_COLUMN_STATS Procedure
	IMPORT_INDEX_STATS Procedure
	IMPORT_SYSTEM_STATS Procedure
	IMPORT_TABLE_STATS Procedure
	IMPORT_SCHEMA_STATS Procedure
	IMPORT_DATABASE_STATS Procedure
	GATHER_INDEX_STATS Procedure
	GATHER_TABLE_STATS Procedure
	GATHER_SCHEMA_STATS Procedure
	GATHER_DATABASE_STATS Procedure
	GATHER_SYSTEM_STATS Procedure
	GENERATE_STATS Procedure
	FLUSH_SCHEMA_MONITORING_INFO Procedure
	FLUSH_DATABASE_MONITORING_INFO Procedure
	ALTER_SCHEMA_TABLE_MONITORING Procedure
	ALTER_DATABASE_TABLE_MONITORING Procedure

	71 DBMS_STORAGE_MAP
	Mapping Terminology
	Summary of DBMS_STORAGE_MAP Subprograms
	MAP_ELEMENT Function
	MAP_FILE Function
	MAP_OBJECT Function
	MAP_ALL Function
	DROP_ELEMENT Function
	DROP_FILE Function
	DROP_ALL Function
	SAVE Function
	RESTORE Function
	LOCK_MAP Procedure
	UNLOCK_MAP Procedure

	Usage Notes for DBMS_STORAGE_MAP Subprograms

	72 DBMS_STREAMS
	Summary of DBMS_STREAMS Subprograms
	CONVERT_ANYDATA_TO_LCR_DDL Function
	CONVERT_ANYDATA_TO_LCR_ROW Function
	GET_INFORMATION Function
	GET_TAG Function
	SET_TAG Procedure

	73 DBMS_STREAMS_ADM
	Summary of DBMS_STREAMS_ADM Subprograms
	ADD_GLOBAL_PROPAGATION_RULES Procedure
	ADD_GLOBAL_RULES Procedure
	ADD_SCHEMA_PROPAGATION_RULES Procedure
	ADD_SCHEMA_RULES Procedure
	ADD_SUBSET_RULES Procedure
	ADD_TABLE_PROPAGATION_RULES Procedure
	ADD_TABLE_RULES Procedure
	PURGE_SOURCE_CATALOG Procedure
	REMOVE_RULE Procedure
	SET_UP_QUEUE Procedure

	74 DBMS_TRACE
	Requirements, Restrictions, and Constants for DBMS_TRACE
	Using DBMS_TRACE
	Summary of DBMS_TRACE Subprograms
	SET_PLSQL_TRACE Procedure
	CLEAR_PLSQL_TRACE Procedure
	PLSQL_TRACE_VERSION Procedure

	75 DBMS_TRANSACTION
	Requirements
	Summary of DBMS_TRANSACTION Subprograms
	READ_ONLY Procedure
	READ_WRITE Procedure
	ADVISE_ROLLBACK Procedure
	ADVISE_NOTHING Procedure
	ADVISE_COMMIT Procedure
	USE_ROLLBACK_SEGMENT Procedure
	COMMIT_COMMENT Procedure
	COMMIT_FORCE Procedure
	COMMIT Procedure
	SAVEPOINT Procedure
	ROLLBACK Procedure
	ROLLBACK_SAVEPOINT Procedure
	ROLLBACK_FORCE Procedure
	BEGIN_DISCRETE_TRANSACTION Procedure
	PURGE_MIXED Procedure
	PURGE_LOST_DB_ENTRY Procedure
	LOCAL_TRANSACTION_ID Function
	STEP_ID Function

	76 DBMS_TRANSFORM
	Summary of DBMS_TRANSFORM Subprograms
	CREATE_TRANSFORMATION Procedure
	MODIFY_TRANSFORMATION Procedure
	DROP_TRANSFORMATION Procedure

	77 DBMS_TTS
	Exceptions
	Summary of DBMS_TTS Subprograms
	TRANSPORT_SET_CHECK Procedure
	DOWNGRADE Procedure

	78 DBMS_TYPES
	Constants for DBMS_TYPES

	79 DBMS_UTILITY
	Requirements and Types for DBMS_UTILITY
	Summary of DBMS_UTILITY Subprograms
	COMPILE_SCHEMA Procedure
	ANALYZE_SCHEMA Procedure
	ANALYZE_DATABASE Procedure
	FORMAT_ERROR_STACK Function
	FORMAT_CALL_STACK Function
	IS_CLUSTER_DATABASE Function
	GET_TIME Function
	GET_PARAMETER_VALUE Function
	NAME_RESOLVE Procedure
	NAME_TOKENIZE Procedure
	COMMA_TO_TABLE Procedure
	TABLE_TO_COMMA Procedure
	PORT_STRING Function
	DB_VERSION Procedure
	MAKE_DATA_BLOCK_ADDRESS Function
	DATA_BLOCK_ADDRESS_FILE Function
	DATA_BLOCK_ADDRESS_BLOCK Function
	GET_HASH_VALUE Function
	ANALYZE_PART_OBJECT Procedure
	EXEC_DDL_STATEMENT Procedure
	CURRENT_INSTANCE Function
	ACTIVE_INSTANCES Procedure

	80 DBMS_WM
	Summary of DBMS_WM Subprograms
	AlterSavepoint Procedure
	AlterWorkspace Procedure
	BeginDDL Procedure
	BeginResolve Procedure
	CommitDDL Procedure
	CommitResolve Procedure
	CompressWorkspace Procedure
	CompressWorkspaceTree Procedure
	CopyForUpdate Procedure
	CreateSavepoint Procedure
	CreateWorkspace Procedure
	DeleteSavepoint Procedure
	DisableVersioning Procedure
	DropReplicationSupport Procedure
	EnableVersioning Procedure
	FreezeWorkspace Procedure
	GenerateReplicationSupport Procedure
	GetConflictWorkspace Function
	GetDiffVersions Function
	GetLockMode Function
	GetMultiWorkspaces Function
	GetOpContext Function
	GetPrivs Function
	GetSessionInfo Procedure
	GetWorkspace Function
	GotoDate Procedure
	GotoSavepoint Procedure
	GotoWorkspace Procedure
	GrantSystemPriv Procedure
	GrantWorkspacePriv Procedure
	IsWorkspaceOccupied Function
	LockRows Procedure
	MergeTable Procedure
	MergeWorkspace Procedure
	RecoverAllMigratingTables Procedure
	RecoverMigratingTable Procedure
	RefreshTable Procedure
	RefreshWorkspace Procedure
	RelocateWriterSite Procedure
	RemoveWorkspace Procedure
	RemoveWorkspaceTree Procedure
	ResolveConflicts Procedure
	RevokeSystemPriv Procedure
	RevokeWorkspacePriv Procedure
	RollbackDDL Procedure
	RollbackResolve Procedure
	RollbackTable Procedure
	RollbackToSP Procedure
	RollbackWorkspace Procedure
	SetConflictWorkspace Procedure
	SetDiffVersions Procedure
	SetLockingOFF Procedure
	SetLockingON Procedure
	SetMultiWorkspaces Procedure
	SetWoOverwriteOFF Procedure
	SetWoOverwriteON Procedure
	SetWorkspaceLockModeOFF Procedure
	SetWorkspaceLockModeON Procedure
	SynchronizeSite Procedure
	UnfreezeWorkspace Procedure
	UnlockRows Procedure

	81 DBMS_XDB
	Description of DBMS_XDB
	Functions and Procedures of DBMS_XDB
	getAclDocument()
	getPrivileges()
	changePrivileges()
	checkPrivileges()
	setacl()
	AclCheckPrivileges()
	LockResource()
	GetLockToken()
	UnlockResource()
	CreateResource()
	CreateFolder()
	DeleteResource()
	Link()
	CFG_Refresh()
	CFG_Get()
	CFG_Update()

	82 DBMS_XDBT
	Description of BMS_XDBT
	Functions and Procedures of BMS_XDBT
	dropPreferences()
	createPreferences()
	createDatastorePref()
	createFilterPref()
	createLexerPref()
	createWordlistPref()
	createStoplistPref()
	createStoragePref()
	createSectiongroupPref()
	createIndex()
	configureAutoSync()

	Customizing the DBMS_XDBT package
	General Indexing Settings
	Filtering Settings
	Sectioning and Section Group Settings
	Stoplist Settings
	Other Preference Settings
	Index SYNC settings

	83 DBMS_XDB_VERSION
	Description of DBMS_XDB_VERSION
	Functions and Procedures of DBMS_XDB_VERSION
	MakeVersioned()
	Checkout()
	Checkin()
	Uncheckout()
	GetPredecessors()
	GetPredsByResId()
	GetResourceByResId()
	GetSuccessors()
	GetSuccsByResId()

	84 DBMS_XMLDOM
	Description of DBMS_XMLDOM
	Types of DBMS_XMLDOM
	Defined Constants of DBMS_XMLDOM
	Exceptions of DBMS_XMLDOM
	Functions and Procedures of DBMS_XMLDOM
	DOM Node Methods
	isNull()
	makeAttr()
	makeCDataSection()
	makeCharacterData()
	makeComment()
	makeDocumentFragment()
	makeDocumentType()
	makeElement()
	makeEntity()
	makeEntityReference()
	makeNotation()
	makeProcessingInstruction()
	makeText()
	makeDocument()
	writeToFile()
	writeToBuffer()
	writeToClob()
	getNodeName()
	getNodeValue()
	setNodeValue()
	getNodeType()
	getParentNode()
	getChildNodes()
	getFirstChild()
	getLastChild()
	getPreviousSibling()
	getNextSibling()
	getAttributes()
	getOwnerDocument()
	insertBefore()
	replaceChild()
	removeChild()
	appendChild()
	hasChildNodes()
	cloneNode()
	DOM Named Node Map Methods
	isNull()
	getNamedItem()
	setNamedItem()
	removeNamedItem()
	item()
	getLength()
	DOM Node List Methods
	isNull()
	item()
	getLength()
	DOM Attr Methods
	isNull()
	makeNode()
	getQualifiedName()
	getNamespace()
	getLocalName()
	getExpandedName()
	getName()
	getSpecified()
	getValue()
	setValue()
	DOM C Data Section Methods
	isNull()
	makeNode()
	Character Data Methods
	isNull()
	makeNode()
	getData()
	setData()
	getLength()
	substringData()
	appendData()
	insertData()
	deleteData()
	replaceData()
	DOM Comment Methods
	isNull()
	makeNode()
	DOM Implementation Methods
	isNull()
	hasFeature()
	DOM Document Fragment Methods
	isNull()
	makeNode()
	DOM Document Type Methods
	isNull()
	makeNode()
	findEntity()
	findNotation()
	getPublicId()
	getSystemId()
	writeExternalDTDToFile()
	writeExternalDTDToBuffer()
	writeExternalDTDToClob()
	getName()
	getEntities()
	getNotations()
	DOM Element Methods
	isNull()
	makeNode()
	getQualifiedName()
	getNamespace()
	getLocalName()
	getExpandedName()
	getChildrenByTagName()
	getElementsByTagName()
	resolveNamespacePrefix()
	getTagName()
	getAttribute()
	setAttribute()
	removeAttribute()
	getAttributeNode()
	setAttributeNode()
	removeAttributeNode()
	normalize()
	DOM Entity Methods
	isNull()
	makeNode()
	getPublicId()
	getSystemId()
	getNotationName()
	DOM Entity Reference Methods
	isNull()
	makeNode()
	DOM Notation Methods
	isNull()
	makeNode()
	getPublicId()
	getSystemId()
	DOM Processing Instruction Methods
	isNull()
	makeNode()
	getData()
	getTarget()
	setData()
	DOM Text Methods
	isNull()
	makeNode()
	splitText()
	DOM Document Methods
	isNull()
	makeNode()
	newDOMDocument()
	freeDocument()
	getVersion()
	setVersion()
	getCharset()
	setCharset()
	getStandalone()
	setStandalone()
	writeToFile()
	writeToBuffer()
	writeToClob()
	writeExternalDTDToFile()
	writeExternalDTDToBuffer()
	writeExternalDTDToClob()
	getDoctype()
	getImplementation()
	getDocumentElement()
	createElement()
	createDocumentFragment()
	createTextNode()
	createComment()
	createCDATASection()
	createProcessingInstruction()
	createAttribute()
	createEntityReference()
	getElementsByTagName()

	85 DBMS_XMLGEN
	Description of DMS_XMLGEN
	Functions and Procedures of DBMS_XMLGEN
	newContext()
	setRowTag()
	setRowSetTag ()
	getXML()
	getNumRowsProcessed()
	setMaxRows()
	setSkipRows()
	setConvertSpecialChars()
	convert()
	useItemTagsForColl()
	restartQUERY()
	closeContext()

	86 DBMS_XMLPARSER
	Description of DBMS_XMLPARSER
	Functions and Procedures of DBMS_XMLPARSER
	parse()
	newParser()
	parseBuffer()
	parseClob()
	parseDTD()
	parseDTDBuffer()
	parseDTDClob()
	setBaseDir()
	showWarnings()
	setErrorLog()
	setPreserveWhitespace()
	setValidationMode()
	getValidationMode()
	setDoctype()
	getDoctype()
	getDocument()
	freeParser()
	getReleaseVersion()

	87 DBMS_XMLQUERY
	Description of DBMS_XMLQuery
	Types of DBMS_XMLQuery
	Constants of DBMS_XMLQuery
	Functions and Procedures of DBMS_XMLQuery
	newContext()
	closeContext()
	setRowsetTag()
	setRowTag()
	setErrorTag()
	setRowIdAttrName()
	setRowIdAttrValue()
	setCollIdAttrName()
	useNullAttributeIndicator()
	useTypeForCollElemTag()
	setTagCase()
	setDateFormat()
	setMaxRows()
	setSkipRows()
	setStylesheetHeader()
	setXSLT()
	setXSLTParam()
	removeXSLTParam()
	setBindValue()
	setMetaHeader()
	setDataHeader()
	setEncodingTag()
	setRaiseException()
	setRaiseNoRowsException()
	setSQLToXMLNameEscaping()
	propagateOriginalException()
	getExceptionContent()
	getDTD()
	getNumRowsProcessed()
	getVersion()
	getXML()

	88 DBMS_XMLSAVE
	Description of DBMS_XMLSave
	Types of DBMS_XMLSave
	Constants of DBMS_XMLSave
	Functions and Procedures of DBMS_XMLSave
	newContext()
	closeContext()
	setRowTag()
	setIgnoreCase()
	setDateFormat()
	setBatchSize()
	setCommitBatch()
	setSQLToXMLNameEscaping()
	setUpdateColumn()
	clearUpdateColumnList()
	setPreserveWhitespace()
	setKeyColumn()
	clearKeyColumnList()
	setXSLT()
	setXSLTParam()
	removeXSLTParam()
	insertXML()
	updateXML()
	deleteXML()
	propagateOriginalException()
	getExceptionContent()

	89 DBMS_XMLSchema
	Description of DBMS_XMLSCHEMA
	Constants of DBMS_XMLSCHEMA
	Procedures and Functions of DBMS_XMLSCHEMA
	registerSchema()
	registerURI()
	deleteSchema()
	generateBean()
	compileSchema()
	generateSchema()

	Catalog Views
	USER_XML_SCHEMAS
	ALL_XML_SCHEMAS
	DBA_XML_SCHEMAS
	DBA_XML_TABLES
	USER_XML_TABLES
	ALL_XML_TABLES
	DBA_XML_TAB_COLS
	USER_XML_TAB_COLS
	ALL_XML_TAB_COLS
	DBA_XML_VIEWS
	USER_XML_VIEWS
	ALL_XML_VIEWS
	DBA_XML_VIEW_COLS
	USER_XML_VIEW_COLS
	ALL_XML_VIEW_COLS

	90 DBMS_XPLAN
	Using DBMS_XPLAN
	Summary of DBMS_XPLAN Subprograms
	DISPLAY Function

	Usage Notes

	91 DBMS_XSLPROCESSOR
	Description of DBMS_XSLPROCESSOR
	Subprograms of DBMS_XSLPROCESSOR
	newProcessor()
	processXSL()
	showWarnings()
	setErrorLog()
	newStylesheet()
	transformNode()
	selectNodes()
	selectSingleNodes()
	valueOf()
	setParam()
	removeParam()
	resetParams()
	freeStylesheet()
	freeProcessor()

	92 DEBUG_EXTPROC
	Requirements and Installation Notes for DEBUG_EXTPROC
	Using DEBUG_EXTPROC
	Summary of DBMS_EXTPROC Subprograms
	STARTUP_EXTPROC_AGENT Procedure

	93 UTL_COLL
	Summary of UTL_COLL Subprograms
	IS_LOCATOR Function

	94 UTL_ENCODE
	Summary of UTL_ENCODE Subprograms
	BASE64_ENCODE Function
	BASE64_DECODE Function
	UUENCODE Function
	UUDECODE Function
	QUOTED_PRINTABLE_ENCODE Function
	QUOTED_PRINTABLE_DECODE Function

	95 UTL_FILE
	Security
	File Ownership and Protections
	Exceptions
	Types
	Summary of UTL_FILE Subprograms
	FOPEN Function
	FOPEN_NCHAR Function
	IS_OPEN Function
	FCLOSE Procedure
	FCLOSE_ALL Procedure
	GET_LINE Procedure
	GET_LINE_NCHAR Procedure
	GET_RAW Function
	PUT Procedure
	PUT_NCHAR Procedure
	PUT_RAW Function
	NEW_LINE Procedure
	PUT_LINE Procedure
	PUT_LINE_NCHAR Procedure
	PUTF Procedure
	PUTF_NCHAR Procedure
	FFLUSH Procedure
	FSEEK Function
	FREMOVE Function
	FCOPY Function
	FGETPOS Function
	FGETATTR Procedure
	FRENAME Function

	96 UTL_HTTP
	UTL_HTTP Constants, Types and Flow
	UTL_HTTP Flow

	UTL_HTTP Exceptions
	UTL_HTTP Examples
	Summary of UTL_HTTP Subprograms
	Simple HTTP Fetches
	REQUEST Function
	REQUEST_PIECES Function
	Session Settings
	SET_PROXY Procedure
	GET_PROXY Procedure
	SET_COOKIE_SUPPORT Procedure
	GET_COOKIE_SUPPORT Procedure
	SET_FOLLOW_REDIRECT Procedure
	GET_FOLLOW_REDIRECT Procedure
	SET_BODY_CHARSET Procedure
	GET_BODY_CHARSET Procedure
	SET_PERSISTENT_CONN_SUPPORT Procedure
	GET_PERSISTENT_CONN_SUPPORT Procedure
	SET_RESPONSE_ERROR_CHECK Procedure
	GET_RESPONSE_ERROR_CHECK Procedure
	SET_DETAILED_EXCP_SUPPORT Procedure
	GET_DETAILED_EXCP_SUPPORT Procedure
	SET_WALLET Procedure
	SET_TRANSFER_TIMEOUT Procedure
	GET_TRANSFER_TIMEOUT Procedure
	HTTP Requests
	BEGIN_REQUEST Function
	SET_HEADER Procedure
	SET_AUTHENTICATION Procedure
	SET_COOKIE_SUPPPORT Procedure
	SET_FOLLOW_REDIRECT Procedure
	SET_BODY_CHARSET Procedure
	SET_PERSISTENT_CONN_SUPPORT Procedure
	WRITE_TEXT Procedure
	WRITE_LINE Procedure
	WRITE_RAW Procedure
	END_REQUEST Procedure
	HTTP Responses
	GET_RESPONSE Function
	GET_HEADER_COUNT Function
	GET_HEADER Procedure
	GET_HEADER_BY_NAME Procedure
	GET_AUTHENTICATION Procedure
	SET_BODY_CHARSET Procedure
	READ_TEXT Procedure
	READ_LINE Procedure
	READ_RAW Procedure
	END_RESPONSE Procedure
	HTTP Cookies
	GET_COOKIE_COUNT Function
	GET_COOKIES Function
	ADD_COOKIES Procedure
	CLEAR_COOKIES Procedure
	HTTP Persistent Connections
	GET_PERSISTENT_CONN_COUNT Function
	GET_PERSISTENT_CONNS Procedure
	CLOSE_PERSISTENT_CONN Procedure
	CLOSE_PERSISTENT_CONNS Procedure
	Error Conditions
	GET_DETAILED_SQLCODE Function
	GET_DETAILED_SQLERRM Function

	97 UTL_INADDR
	Exceptions
	Summary of UTL_INADDR Subprograms
	get_host_name Function
	get_host_address Function

	98 UTL_RAW
	Usage Notes
	Summary of UTL_RAW Subprograms
	CAST_FROM_BINARY_INTEGER Function
	CAST_FROM_NUMBER Function
	CAST_TO_BINARY_INTEGER Function
	CAST_TO_NUMBER Function
	CAST_TO_RAW Function
	CAST_TO_VARCHAR2 Function
	CONCAT Function
	LENGTH Function
	SUBSTR Function
	TRANSLATE Function
	TRANSLITERATE Function
	OVERLAY Function
	COPIES Function
	XRANGE Function
	REVERSE Function
	COMPARE Function
	CONVERT Function
	BIT_AND Function
	BIT_OR Function
	BIT_XOR Function
	BIT_COMPLEMENT Function

	99 UTL_REF
	Requirements
	Datatypes, Exceptions, and Security for UTL_REF
	Summary of UTL_REF Subprograms
	SELECT_OBJECT Procedure
	LOCK_OBJECT Procedure
	UPDATE_OBJECT Procedure
	DELETE_OBJECT Procedure

	100 UTL_SMTP
	Exceptions, Limitations, and Reply Codes
	Summary of UTL_SMTP Subprograms
	connection Record Type
	reply, replies Record Types
	open_connection Function
	command(), command_replies() Functions
	helo Function
	ehlo Function
	mail Function
	rcpt Function
	data Function
	open_data(), write_data(), write_raw_data(), close_data() Functions
	rset Function
	vrfy Function
	noop() Function
	quit Function

	Example

	101 UTL_TCP
	Exceptions
	Example
	Summary of UTL_TCP Subprograms
	connection
	CRLF
	open_connection Function
	available Function
	read_raw Function
	write_raw Function
	read_text Function
	write_text Function
	read_line Function
	write_line Function
	get_raw(), get_text(), get_line() Functions
	flush Procedure
	close_connection Procedure
	close_all_connections Procedure

	102 UTL_URL
	Introduction to the UTL_URL Package
	UTL_URL Exceptions
	Summary of UTL_URL Subprograms
	ESCAPE Function
	UNESCAPE Function

	103 ANYDATA TYPE
	Construction
	Summary of ANYDATA Subprograms
	BEGINCREATE Static Procedure
	PIECEWISE Member Procedure
	SET Member Procedures
	ENDCREATE Member Procedure
	GETTYPENAME Member Function
	GETTYPE Member Function
	GET Member Functions

	104 ANYDATASET TYPE
	Construction
	Summary of ANYDATASET Subprograms
	BEGINCREATE Static Procedure
	ADDINSTANCE Member Procedure
	PIECEWISE Member Procedure
	SET* Member Procedures
	ENDCREATE Member Procedure
	GETTYPENAME Member Function
	GETTYPE Member Function
	GETINSTANCE Member Function
	GET* Member Functions
	GETCOUNT Member Function

	105 ANYTYPE TYPE
	Summary of ANYTYPE Subprograms
	BEGINCREATE Static Procedure
	SETINFO Member Procedure
	ADDATTR Member Procedure
	ENDCREATE Member Procedure
	GETPERSISTENT Static Function
	GETINFO Member Function
	GETATTRELEMINFO Member Function

	106 Advanced Queuing Types
	Advanced Queuing Types
	AQ$_AGENT Type
	AQ$_AGENT_LIST_T Type
	AQ$_DESCRIPTOR Type
	AQ$_POST_INFO Type
	AQ$_POST_INFO_LIST Type
	AQ$_RECIPIENT_LIST_T Type
	AQ$_REG_INFO Type
	AQ$_REG_INFO_LIST Type
	AQ$_SUBSCRIBER_LIST_T Type
	DEQUEUE_OPTIONS_T Type
	ENQUEUE_OPTIONS_T Type
	MESSAGE_PROPERTIES_T Type

	107 JMS Types
	Constants to Support the aq$_jms_message Type
	Summary of JMS Types
	aq$_jms_userproperty Type
	aq$_jms_userproparray Type
	aq$_jms_header Type
	aq$_jms_message Type
	aq$_jms_text_message Type
	aq$_jms_bytes_message Type

	Summary of JMS Type Member and Static Subprograms
	LOOKUP_PROPERTY_NAME Member Procedure
	SET_REPLYTO Member Procedure
	SET_TYPE Member Procedure
	SET_USERID Member Procedure
	SET_APPID Member Procedure
	SET_GROUPID Member Procedure
	SET_GROUPSEQ Member Procedure
	CLEAR_PROPERTIES Member Procedure
	SET_BOOLEAN_PROPERTY Member Procedure
	SET_BYTE_PROPERTY Member Procedure
	SET_SHORT_PROPERTY Member Procedure
	SET_INT_PROPERTY Member Procedure
	SET_LONG_PROPERTY Member Procedure
	SET_FLOAT_PROPERTY Member Procedure
	SET_DOUBLE_PROPERTY Member Procedure
	SET_STRING_PROPERTY Member Procedure
	GET_REPLYTO Member Function
	GET_TYPE Member Function
	GET_USERID Member Function
	GET_APPID Member Function
	GET_GROUPID Member Function
	GET_GROUPSEQ Member Function
	GET_BOOLEAN_PROPERTY Member Function
	GET_BYTE_PROPERTY Member Function
	GET_SHORT_PROPERTY Member Function
	GET_INT_PROPERTY Member Function
	GET_LONG_PROPERTY Member Function
	GET_FLOAT_PROPERTY Member Function
	GET_DOUBLE_PROPERTY Member Function
	GET_STRING_PROPERTY Member Function
	CONSTRUCT Static Function
	SET_TEXT Member Procedure
	GET_TEXT Member Procedure
	SET_BYTES Member Procedure
	GET_BYTES Member Procedure

	Enqueuing Through the Oracle JMS Administrative Interface: Example

	108 Logical Change Record Types
	LCR$_DDL_RECORD Type
	LCR$_DDL_RECORD Constructor
	Summary of LCR$_DDL_RECORD Subprograms

	LCR$_ROW_RECORD Type
	LCR$_ROW_RECORD Constructor
	Summary of LCR$_ROW_RECORD Subprograms

	Common Subprograms for LCR$_ROW_RECORD and LCR$_DDL_RECORD
	LCR$_ROW_LIST Type
	LCR$_ROW_UNIT Type

	109 Rule Types
	Rule Types
	RE$ATTRIBUTE_VALUE Type
	RE$ATTRIBUTE_VALUE_LIST Type
	RE$COLUMN_VALUE Type
	RE$COLUMN_VALUE_LIST Type
	RE$NAME_ARRAY Type
	RE$NV_ARRAY Type
	RE$NV_LIST Type
	RE$NV_NODE Type
	RE$RULE_HIT Type
	RE$RULE_HIT_LIST Type
	RE$TABLE_ALIAS Type
	RE$TABLE_ALIAS_LIST Type
	RE$TABLE_VALUE Type
	RE$TABLE_VALUE_LIST Type
	RE$VARIABLE_TYPE Type
	RE$VARIABLE_TYPE_LIST Type
	RE$VARIABLE_VALUE Type
	RE$VARIABLE_VALUE_LIST Type

	Index

