Oracle9

Supplied PL/SQL Packages and Types Reference

Release 2 (9.2)

March 2002
Part No. A96612-01

ORACLE

Oracle9i Supplied PL/SQL Packages and Types Reference, Release 2 (9.2)
Part No. A96612-01

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: D.K. Bradshaw

Contributing Authors: Ted Burroughs, Shelley Higgins, Paul Lane, Roza Leyderman, Kevin Macdowell,
Jack Melnick, Chuck Murray, Kathy Rich, Vivian Schupmann, Randy Urbano

Contributors: D. Alpern, G. Arora, L. Barton, N. Bhatt, S. Chandrasekar, T. Chang, G. Claborn, R.
Decker, A. Downing, J. Draaijer, S. Ehrsam, A. Ganesh, R. Govindarajan, B. Goyal, C. lyer, H. Jakobsson,
A. Kalra, B. Lee, J. Liu, P. Locke, A. Logan, V. Maganty, N. Mallavarupu, J. Mallory, R. Mani, S. Mavris,
A. Mozes, J. Muller, K. Muthukkaruppan, R. Pang, D. Raphaely, S. Ray, A. Rhee, J. Sharma, R. Sujithan,
A. Swaminathan, K. Tarkhanov, A. Tsukerman A. To, S. Urman, S. Vivian, D. Voss, W. Wang, D. Wong

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Procedural Gateway, Oracle Store, Oracle?,
Oracle8, Oracle8i, Oracle9i, PL/SQL, Pro*C, Pro*COBOL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send US YOUr COMMENTS ..ottt Xix
PIEIACE ... b XXi
Y E o [T o (o1 OSSOSO PRSPPI XXii
L@ 1o T- T T2 1 To] o 1SS XXii
Related DOCUMENTALIONoviviiiiiieee ettt nenes XXii
(070] 01 V7=T o1 1o o LS F OO XXiii
Documentation ACCESSIDIIITYcvooviiiiiecccc e se et ene s XXV
What's New in Supplied PL/SQL Packages and Types? ..., XXVii
Oracle9i Release 2 (9.2) Beta New Features in Supplied PL/SQL Packages and Types........ XXViii
Oracle9i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages and Types................ XXX
Oracle8i Release 2 (8.1.6) New Features in Supplied PL/SQL Packagescccceveeeeviiiennne. XXXi
Oracle8i Release 1 (8.1.5) New Features in Supplied PL/SQL Packagesccocovvevvevvnvrernne. XXXi

1 Introduction

o To] 2 (o [T @ A LT Y 1= SRS 1-2
Abbreviations for Datetime and Interval Datatypesc.ccccovvieiviieiinene e 1-6
Summary of Oracle Supplied PL/SQL PaCKAGEScccciiiiiiiiieie e 1-7
Summary of Subprograms in Supplemental Packages.........c.cccoivevviviieieniine e 1-16

2 DBMS_ALERT
Security, Constants, and Errors for DBMS_ALERTccccviiiviininie i 2-2

10

L YT gL AN =T o S 2-3
Summary of DBMS_ALERT SUDPIOQIramScc.oiiieiiieeireecnies ettt 2-4

DBMS_APPLICATION_INFO

PIIVITEOES ..ottt e h et h e bbbt bt bt b s b et be e et b e e e bt e st e et ere et 3-2

Summary of DBMS_APPLICATION_INFO Subprograms..........cccccocvvieiinereieneenseese s 3-2

DBMS_APPLY_ADM

Summary of DBMS_APPLY_ADM SUDPIrOGramsccccvcovvvieieieisnsieseseeeesesesessieseesesnesnens 4-2

DBMS_AQ

JAVA CIASSES ... 5-2

ENUMErated CONSTANTSoiiiiiieieeie ettt sttt sttt s et seenesaeeaeseeeeas 5-2

Data Structures For DBMS _AQ ...ttt sttt e st re b aeenas 5-2

Summary of DBMS_AQ SUDPIOgramsccccveiiiiiiie et sese s 5-5

DBMS_AQADM

ENUMErated CONSTANTScoviiriiriiiiee ettt n e 6-2

Summary of DBMS_AQADM SUDPIOGramMSccooiiiiirieieisenie st 6-2

DBMS_AQELM

Summary of DBMS_AQELM SUDPFOQIaIMScooviiiiiiiiieieies e e 7-2

DBMS_CAPTURE_ADM

Summary of DBMS_CAPTURE_ADM SUDPIrOgramSc..coiieiiirie e 8-2

DBMS_DDL

Summary of DBMS_DDL SUDPIrOQIramS.........cc.ciiiiiiiiie et 9-2
DBMS_DEBUG

USING DBMS _DEBUG ..ottt as et as bt ss bbbttt enenen 10-2

USBGE INOTES. ... ettt bt bbbt bt a b bt et b e ehe e s he s e e e he e be b e e e be et e e sbeesb et e sbeannan 10-5

11

12

13

14

15

16

17

TYPES AN CONSTANTSveviiviieieece ettt e e et esbe s tesr e be st e e e e eneereaneeresrennenrens 10-6

Error Codes, Exceptions, and Variables ... 10-11

Common and Debug SeSSIoN SECLIONS.........ccccveieiiiisc s 10-13

(@] o 2T =T 4 0T T 1 | £ 10-14

Summary of DBMS_DEBUG SUDPIOGIamMS.c.coviiriiiiiieiie et seese e e 10-15

DBMS_DEFER

Summary of DBMS_DEFER SUDPIOQIramIScccoiiiiiiiiiiie et 11-2
DBMS_DEFER_QUERY

Summary of DBMS_DEFER_QUERY SUDPIrOgramsScccciieireiinine e 12-2
DBMS_DEFER_SYS

Summary of DBMS_DEFER_SYS SUDPIOQIamMS.......cccoiiiiiie et 13-2
DBMS_DESCRIBE

Security, Types, and Errors for DBMS_DESCRIBEccccooiiiiiiiiiceee e 14-2

Summary of DBMS_DESCRIBE SUDPIrOgrams........ccccceieiiieinecnsesie e sese e se s e 14-2
DBMS_DISTRIBUTED_TRUST_ADMIN

L =T0 {8 T =1 0 0 T=T) € 15-2

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms...........cccccoceniinnnnenn 15-2
DBMS_FGA

Summary of DBMS_FGA SUDPIrOgrams ... 16-2
DBMS_FLASHBACK

DBMS_FLASHBACK EIrOr IMESSAgES.ccietiiiierieiieiee sttt sieesiesiee e steesbe s be e e sbe e saessnesesneas 17-3

Using DBMS_FLASHBACK: EXAMPIE......coiiiiiiiiei et 17-3

Summary of DBMS_FLASHBACK SUDPIrOgramscccceruiieiinieiinnsiesesesie e seeseeseesesnessessenns 17-6

18

19

20

21

22

23

24

Vi

DBMS_HS_PASSTHROUGH
IST=To UL | YOS UPO TS URTURURUR 18-2
Summary of DBMS_HS PASSTHROUGH Subprograms.........c.cccccoeviieininsiencneeiese e, 18-2
DBMS_IOT
Summary of DBMS_1OT SUDPIrOgramsc.covcviiiiiicicece st enae s 19-2
DBMS_JOB
=T 0 [T (=1 0 1 1=T) €SS 20-2
Using the DBMS_JOB Package with Oracle Real Application CIUSterscccccceeeieieneee 20-2
Summary of DBMS_JOB SUDPIrOGIamMScc.oouiiiiiiiieieeeee et 20-3
DBMS_LDAP
EXCEPTION SUMIMATY ...ttt ettt ettt et b e b et b et e st e et es e e bt e resbeane b 21-2
SUMMATY OF DAt TYPES...ueiveiiieieieei ettt s et e e s be st e besaese et e see e et eneetesnearenren 21-3
Summary of DBMS_LDAP SUDPIrOGIramScoooiiiiiiiiieeisene et 21-4
DBMS_LIBCACHE
REGUITEIMENTS ...ttt bbb e b bt h e s ekt e hesb e e b e be e b et e sk e et en e e b bt eaesbeaneaneas 22-2
Summary of DBMS_LIBCACHE SUDPFOQIamScooiiiiiiie e 22-2
DBMS_LOB
LOB Locators Tor DBIMS _LOB ..ottt sn e st ta et 23-2
Datatypes, Constants, and Exceptions for DBMS_LOB...........cccccoeveiivienine e 23-3
Security FOr DBIMS _LOB ...ttt sttt n et et ebennas 23-4
Rules and Limitations For DBMS LOB ..ot 23-5
=T] oTe] =V Y] = S 23-9
Summary of DBMS_LOB SUDPIOGIAMScc.oiiiiiiiiiiiieiiee et seenes 23-13
DBMS_LOCK
Requirements, Security, and Constants for DBMS _LOCKccccooiiiniiiiiniie e 24-2
Summary of DBMS_LOCK SUDPIOGIAMScoviiiiiiiieiieieieic ettt es 24-3

25

26

27

28

29

30

31

Printing @ Check: EXAMPIE.......ccv it ene e 24-10

DBMS_LOGMNR
DBMS_LOGMNR CONSLANTSooiiiiiciiiieiiet ettt ensessae e sseessesneessesneessnsnens 25-2
Summary of DBMS_LOGMNR SUDPIrOGramISccoeiiieireiineseee e 25-4

DBMS_LOGMNR_CDC_PUBLISH

PUDbLisShing Change DAtcccooi ittt 26-2
Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms..........ccccoceveveinivienennenenn, 26-2

DBMS_LOGMNR_CDC_SUBSCRIBE

Subscribing t0 Change Data.........ccc.covcieiiiciie e e renne s 27-2

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms...........cccceeevneseneneeene. 27-2
DBMS _LOGMNR_D

Summary of DBMS_LOGMNR_D SUDPIrOgramsSccccuoeiiiiiniieie e 28-2
DBMS_LOGSTDBY

Configuring and Managing the Logical Standby Environment............cccccccooiiiiiiiiiine 29-2

Summary of DBMS_LOGSTDBY SUDPIOGIamMS.......cocoiiiiiie et 29-2
DBMS_METADATA

Summary of DBMS_METADATA SUDPIrOgrams ... 30-2
DBMS_MGWADM

Summary of DBMS_MGWADM Object Types and Methods............ccccoeiininienc e, 31-2

DBMS_MGWADM CONSTANTSocvveiiiiieiisii et see s siee e ssaessessaesse e essesseessessesssnsnes 31-7

MQSErIES SYSIEM PrOPEITIES ...ttt ettt et r e re b e saeneas 31-9

Summary of DBMS_MGWADM Subprograms ... 31-12

Summary of Database VIEWS.........cc.oov i ere s 31-34

vii

32

33

34

35

36

37

38

39

40

viii

DBMS_MGWMSG
Summary of DBMS_MGWMSG Object Types and Methods ..., 32-2
DBMS_MGWMSG CONSTANTSciiiiiieiieieitiiee et ste e e staesae et esreesesseeseesseessessesssessaessessenns 32-8
Summary of DBMS_MGWMSG SUDPrograms..........ccoceeeveiinienieneneieeiese e s 32-9
DBMS_MVIEW
Summary of DBMS_MVIEW SUDPIrOgrams..........coceieiiiiiine e 33-2

DBMS_OBFUSCATION_TOOLKIT

Overview 0f KeY ManagemMIENTcouoiiiiiiiiiic ettt 34-2

Summary of DBMS_OBFUSCATION SUDPIrOgramS.........cccoeieririenieesire e 34-4
DBMS_ODCI

Summary of DBMS_ODCI SUDPIOQramIS.cuiiiiiiiieieeeeiete sttt sne e es 35-2
DBMS_OFFLINE_OG

Summary of DBMS_OFFLINE_OG SUDPrOgramMS........ccciiiiriiieciniesenie e 36-2

DBMS_OFFLINE_SNAPSHOT

Summary of DBMS_OFFLINE_SNAPSHOT Subprogramsccccoereeeiinenieneneee e 37-2
DBMS_OLAP

REGUITEIMENTS ...ttt bbb e b bt h e s b e ae e bt e b et e b et e et e et en b e e beeaeebeane b 38-2

L o] g\ [t Vo =SS 38-2

Summary of DBMS_OLAP SUDPIrOGIaMScooiiiiiiiiiiieieicsieie et 38-6

DBMS_ORACLE_TRACE_AGENT

IST=To UL | YOO OSSOSO TSROSO 39-2
Summary of DBMS_ORACLE_TRACE_AGENT Subprograms..........cccoceeeieienienesenesenenne 39-2

DBMS_ORACLE_TRACE_USER
Summary of DBMS_ORACLE_TRACE_USER Subprograms..........ccccoeeveniinenieneneieines 40-2

41

42

43

44

45

46

a7

DBMS_OUTLN

Requirements and Security for DBMS_OUTLNccoiiiiiiiii e e 41-2

Summary of DBMS_OUTLN SUDPIOGramS.........coveviiiiieiirieieiesestesiesiereeeee e ssessesaessess e s ssens 41-2
DBMS_OUTLN_EDIT

Summary of DBMS_OUTLN_EDIT SUbPrOgramsS.........cccovvviinieneesienesesiesesesseseseeseeseseesens 42-2
DBMS_OUTPUT

Security, Errors, and Types for DBMS_OUTPUT ... 43-2

USING DBMS_OUTPUT ...ttt bbbt bbbttt 43-2

Summary of DBMS_OUTPUT SUDPrOgramscocooiiiiiiiieinesie e 43-3
DBMS_PCLXUTIL

USING DBMS_PCLXUTIL ..ttt 44-2

LIMITATIONS ..ottt r ettt 44-3

Summary of DBMS_PCLUTTL SUDPIrOQramISc.cvciiiiiiiiieieie st 44-3
DBMS_PIPE

Public Pipes, Private Pipes, and Pipe USEScccoiiiiiiiiiiisenie e 45-2

Security, CONSLANTS, AN EFTOTSc..ooiiiiiiieeiiese ettt et eee e e 45-4

Summary of DBMS_PIPE SUDPIOGIamMS.cccoieieiiisieseseeietestestesieseesaetes e sse e ssesassesnesseseessessens 45-4
DBMS_PROFILER

USING DBMS_PROFILER ..ot 46-2

L =To (BTN =] 0 L] o) (TSSOSO 46-3

IS T=To UL | USSR 46-5

T (oT=] o) o 1S 46-6

g o] GO0 Lo [T SRR 46-6

Summary of DBMS_PROFILER SUDPFOQIamMScoiiiiiiie et 46-7
DBMS_PROPAGATION_ADM

Summary of DBMS_PROPAGATION_ADM Subprogramscccccccoeineneneneienne e nens 47-2

48

49

50

51

52

53

54

55

56

DBMS_RANDOM

REGUITEIMENTS ...ttt bbb b bt h e st b e h e s bt e b e be e b et e st e et en b e e bt ebeebeane b 48-2

Summary of DBMS_RANDOM SUDPrograms.........cccocvviiineiieinie e sesee e sesesssesesee s 48-2
DBMS_RECTIFIER_DIFF

Summary of DBMS_RECTIFIER_DIFF SUDPrograms........cccoovviereneeeieneseneseeeese e s 49-2
DBMS_REDEFINITION

Constants for DBMS _REDEFINITION ..ottt enae s 50-2

Summary of DBMS_REDEFINITION SUDPrOgramsccooiieiiierenine e 50-2
DBMS_REFRESH

Summary of DBMS_REFRESH SUDPIrOgrams ..ot e e 51-2
DBMS_REPAIR

Security, Enumeration Types, and EXCEPLIONSccciiiiiiiiiiirie e e 52-2

Summary of DBMS_REPAIR SUDPIrOgrams..........ccciiiiiiiiie e e 52-4
DBMS_REPCAT

Summary of DBMS_REPCAT SUDPFIOGIaMS....c..coviiiiiiiiieieiisesie et e 53-2
DBMS_REPCAT_ADMIN

Summary of DBMS_REPCAT_ADMIN SUDProgramsccoeieneininenene e 54-2

DBMS_REPCAT_INSTANTIATE

Summary of DBMS_REPCAT_INSTANTIATE SUDPrograms..........cccoverereenenienieseee e 55-2
DBMS_REPCAT_RGT
Summary of DBMS_REPCAT_RGT SUDPIOGIamMScccieieriiie et 56-2

57

58

59

60

61

62

63

64

DBMS_REPUTIL
Summary of DBMS_REPUTIL SUDPIrOQIramScc.cuiiiiiiiiieieie st 57-2

DBMS_RESOURCE_MANAGER

REGUITEIMENTS. ...ttt b et b bbbt bt bt b sh et e nbe e et e s e e e bt e be et e e resbeebe b eee 58-2
Summary of DBMS_RESOURE_MANAGER Subprograms...........ccccecevviviiinenienesinesiesenenn 58-2

DBMS_RESOURCE_MANAGER_PRIVS

Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms.........ccccceevvervivennnnnn. 59-2
DBMS_RESUMABLE

Summary of DBMS_RESUMABLE SUDPIrOgramscccoveviieiiiniieesereseeseee e seeeesenesnens 60-2
DBMS_RLS

DYNAMIC PrEAICALESvivviiceieicee ettt st e e et te st e s besee s aen e e ese et er e e e e seenenresnenrenees 61-2

IS T=To UL | TSRS 61-3

USAGE INOTES...... ettt bkt b et he e bt h e e e bt he e eb e e Re e e be et e e ke eb e e sbeembeebeenbensbe e 61-3

Summary of DBMS_RLS SUDPIrOGramScucviirieieeieeeseie et sesre e ssens et ssessessesessessessens 61-3
DBMS_ROWID

L0 SF Vo 1= AN [0 =S 62-2

L =To (BTN =] 0 L] o) (TSSOSO 62-3

ROWID TYPES ..ottt ettt ettt bbbkt h e bt he e bt he e e bt he e eb e e he e ebe et e ebeeb e e sbeeabenbeenbenbeenes 62-3

D (oT=] o) To] 1SS 62-4

Summary of DBMS_ROWID SUDPrograms..........ccciiiiiiiiie e 62-4
DBMS_RULE

Summary of DBMS_RULE SUDPIOGIamMS.......coooviiiiiiie et 63-2
DBMS_RULE_ADM

Summary of DBMS_RULE_ADM SUDPrograms ... 64-2

Xi

65

66

67

68

69

70

Xii

DBMS_SESSION
REGUITEIMENTS ...ttt bbb b bt h e st b e h e s bt e b e be e b et e st e et en b e e bt ebeebeane b 65-2
Summary of DBMS_SESSION SUBDPIOGramS........ccvcuiiiiiinieesisie e sie e seeeessse s es 65-2
DBMS_SHARED_POOL
INSTAHALION NOTES......cviici et 66-2
USAGE INOTES. ..ottt ettt bbb e bt e a b e bt et e bt ehe e s bt e e e e he e ke b e e e be st e e ebeenb et e saeannan 66-2
Summary of DBMS_SHARED_POOL SUDPrOgramMS.......cccoiuieiiieieeeerie st 66-2
DBMS_SPACE
IST=To UL | YOS UPO TS URTURURUR 67-2
L =To {8 T =1 0 1 1=T) €TSS 67-2
Summary of DBMS_SPACE SUDPIOGIaMS.......couiiiieieeeieeeesiee ettt s ene e 67-2
DBMS_SPACE_ADMIN
IST=To UL | YOO OSSOSO TSROSO 68-2
SYSTEM Tablespace Migration: CONAItIONSccoeiiiiiiiiiinre e e 68-2
Constants for DBMS_SPACE_ADMIN CONStaNtS.........cccoiveviiieiinieiesesie e seesie s esseeee e evesens 68-2
Summary of DBMS_SPACE_ADMIN SUDPrOgramscocieiiiinrenenesene e 68-3
DBMS_SQL
USING DBIMS_SQL ...ttt bbbttt 69-3
Constants, Types, and Exceptions for DBMS_SQLcccoiiiiiiiiiiiiiicee e 69-4
EXECUTION FIOW ..ottt 69-5
7= 1o UL | YOS 69-8
ProCeSSING QUETTES ..ottt ettt sttt sttt e e st s et e st bt eb e be s b et e sbe e e ben e e neereebeaneaneas 69-9
=T 0] 0] 1= SRS SPS 69-10
Processing Updates, Inserts, and DeIetes..........cocoiiiiiiiiiiineee e 69-22
(o Tor= L | To I =1 o (o] =TSSP 69-22
Summary of DBMS_SQL SUDPIOGramS........cccvieiiiiiiesieesese e s snens 69-23
DBMS_STATS
USING DBIMS_STATS ...ttt 70-2

71

72

73

74

75

76

77

Setting OF GEHING STALISTICS ...viviiieiiee e sne e e s 70-4

TranSTErTING STATISTICSooviieiii ettt s b e e ebesienbesneas 70-5

Gathering OPtiMIZEr STALISTICScvivv et 70-5

Summary of DBMS_STATS SUDPIOGraMScceiviieriiiiieie s e et ie e e e e e sne s s 70-6
DBMS_STORAGE_MAP

MapPiNg TEIMINOIOGY .. .cviiiiiiiiiie ettt bbbt bbb bbb e et e st e sbeneas 71-2

Summary of DBMS_STORAGE_MAP SUDPIrOgramS........ccoceiiriieieieneeiene e 71-3

Usage Notes for DBMS_STORAGE_MAP SUbProgramsccocvverereereeiesieseseeeeeeesesesnens 71-8
DBMS_STREAMS

Summary of DBMS_STREAMS SUBPrograms...........cccooviiineienicse s e 72-2
DBMS_STREAMS_ADM

Summary of DBMS_STREAMS_ADM Subprogramscccccevveennesinniesnneessesese e 73-2
DBMS_TRACE

Requirements, Restrictions, and Constants for DBMS_TRACE........cccccocevvvvieisiecie e 74-2

USING DBMS _TRAWCE ...ttt et ettt b ettt bttt ss b st 74-2

Summary of DBMS_TRACE SUDPrograms. ... 74-5
DBMS_TRANSACTION

REGUITEIMENTS. ...ttt bbb e bt bt bbb e e nbe e et e s e e e bt e be et e e e sbeebe st eee 75-2

Summary of DBMS_TRANSACTION SUBProgramsccccoeveverierinesinieseneessesnse e 75-2
DBMS_TRANSFORM

Summary of DBMS_TRANSFORM SUDPIrOgramIS......cccovevieriniiieresesiesiesiesesesessessessesessessens 76-2
DBMS_TTS

T (o7=] o) o 1 77-2

Summary of DBMS_TTS SUDPIOGIaMSc.coiiiiiiieieieie ettt s eeee e eee e 77-2

Xiii

78

79

80

81

82

83

84

85

Xiv

DBMS_TYPES

Constants fTOr DBIMS TYPES ...ttt st st e e s be et e s teeneeere e 78-2
DBMS_UTILITY

Requirements and Types for DBMS _UTILITY ..o 79-2

Summary of DBMS_UTILITY SUDPIrOgramScccccveieieiieiiesiesie et ie e seesie s essesasse s snesees 79-2
DBMS_WM

Summary of DBMS_ WM SUDPIOGIramMS......cc.coviiieiiierceeeete e steseesaese e seessesseessessessesseseenes 80-2
DBMS_XDB

Description 0Of DBMS _XDBccvcoiiiieiicie sttt e ene st sae e e 81-2

Functions and Procedures 0f DBIMS XDBccccooiioiiiiiii e 81-2
DBMS_XDBT

Description OFf BIMS_ XDBT ..ottt ettt bbbt be e 82-2

Functions and Procedures 0f BMS XDBTccociiiieiiiice et 82-2

Customizing the DBMS_XDBT PACKAGEcccciviviiierieiiiisieseseie e iees s e sse s e s sse s eseseenes 82-7
DBMS_XDB_VERSION

Description of DBMS_XDB_VERSION ...ttt e 83-2

Functions and Procedures of DBMS XDB VERSIONcccocoiiiiiii i 83-2
DBMS_XMLDOM

Description 0f DBMS_XMLDOM ...ttt s 84-2

Types Of DBMS_XIMLDOMccccoiiiiiieiiiciiiee et sttt sttt ettt se et 84-3

Defined Constants 0f DBMS _XMLDOMcccccooiiiiiiiiieicie e 84-4

Exceptions 0f DBMS_XIMLDOM ...ttt sttt sne 84-5

Functions and Procedures of DBMS XMLDOM ... 84-5
DBMS_XMLGEN

Description 0f DIMS_XIMLGENooiiiiii e e 85-2

86

87

88

89

90

91

Functions and Procedures of DBMS_XMLGEN.........cc.cociiiiiininic e 85-2

DBMS_XMLPARSER
Description 0f DBMS_XMLPARSERocoiiiieiiice sttt et 86-2
Functions and Procedures of DBMS XMLPARSERccccooiii i 86-2
DBMS_XMLQUERY
Description 0f DBMS _XIMLQUETYcoiiiiiiiiie ettt sne s 87-2
TypPeS OF DBMS_ XIMLQUEIYc.viueeiieieiicte e e st se e a ettt sresbestesn e s ensereaneenassessennens 87-2
Constants 0f DBMS_XMLQUETY ..ottt sttt ettt ae st see e e esesresneseesaens 87-2
Functions and Procedures of DBMS_XMLQUEIYcccoiiiiiiiiiieinese e 87-3
DBMS_XMLSAVE
Description Of DBMS _XIMLSAVE........cciiiiiiiiiiie ettt 88-2
TYPES OF DBIMS_XIMLSAVE.....c.oiiiiiiiiiiiiiiiit ettt bt es bbbttt 88-2
Constants Of DBIMS_ XIMLSAVEco ittt et ae st se e eee e e 88-2
Functions and Procedures 0f DBMS_XIMLSAVEccoiiiiiiiiiiiiine e 88-2
DBMS_XMLSchema
Description of DBMS_XMLSCHEMA ..o e 89-2
Constants 0f DBMS _XMLSCHEMA ...ttt sttt aene s 89-2
Procedures and Functions of DBMS XMLSCHEMA ... 89-2
L02= =1 [0 To IRV =TT 89-9
DBMS_XPLAN
USING DBIMS _XPLAN ...ttt sttt ettt ettt sttt s b bt nnns 90-2
Summary of DBMS_XPLAN SUDPIOGramS.......ccccviiiiiiiieiie et 90-2
USAGE INOTES...... etttk b et he e bt h e e e bt he e eb e e he e bt et e ek e eb e e sbeeabeebeenbeesbe e 90-4
DBMS_XSLPROCESSOR
Description of DBMS_XSLPROCESSOR ...ttt 91-2
Subprograms of DBMS_XSLPROCESSOR.........ccccoiiiiiiieiie sttt 91-2

XV

92

93

94

95

96

97

98

XVi

DEBUG_EXTPROC

Requirements and Installation Notes for DEBUG_EXTPROC.........ccccooiiiiiniieiiiecseneie 92-2

USING DEBUG_EXTPROCooviiiiiiieiieerine s 92-2

Summary of DBMS_EXTPROC SUDPIOGIramScccciueeeieieiieeiese e sies e seeseesiesaeseessesassnsnsssesees 92-3
UTL_COLL

Summary of UTL_COLL SUDPIOQIAMIScoiiiiiiiieie ettt see e et sre s 93-2
UTL_ENCODE

Summary of UTL_ENCODE SUDPrograms ...t s 94-2
UTL_FILE

ST=To UL | YT OSSO UPO VRO URUPURU 95-2

File OWNership and ProteCliONS....... ..o e 95-2

T (o7=] o) o LRSS 95-3

L/ 12T TR U TP URTURTP 95-4

Summary of UTL_FILE SUDPFOGIAIMSoiuiiiiiiieie sttt eene s 95-4
UTL_HTTP

UTL_HTTP Constants, TyPes and FIOWc.ccoiiiiiiiiiieicsee e 96-2

L0 I I I I (=T o] T TSRS 96-10

UTL_HTTP EXAMPIES.....oi ettt bbbt be e sbesae st e 96-12

Summary of UTL_HTTP SUDPIrOQIramMScciiiiiiiie ettt ene 96-16
UTL_INADDR

D (el=] o) A o] o LTSS USURUPURPRRON 97-2

Summary of UTL_INADDR SUDPIrOGIramScccoveveiiiiiiieieesiesesteeiee s see e seese e es 97-2
UTL_RAW

LT o 1= AN [0 =SS 98-2

Summary of UTL_RAW SUDPIOGIAMScooiiiiiiiiieeiee ettt see s beneenes 98-2

99 UTL_REF

REGUITEIMENTS. ...ttt b et b bbbt bt bt b sh et e nbe e et e s e e e bt e be et e e resbeebe b eee 99-2
Datatypes, Exceptions, and Security for UTL _REFcccccoov i 99-2
Summary of UTL_REF SUDPIOGramsc.ccvviiiiie e 99-4

100 UTL_SMTP

Exceptions, Limitations, and ReplYy COESccciiiiiiiiiiccee e 100-2
Summary of UTL_SMTP SUDPIrOQIramISc.cooooiiiiiiiiiiie et st 100-5
L= 0 1] 0] =SSR 100-18

101 UTL_TCP

T (o7=] o) { o 1 PSSR 101-2
D= T 0 1] 0] =TSRSS 101-2
Summary of UTL_TCP SUDPIOGIamMScoiiiieeieii ettt aeneens 101-4

102 UTL_URL

Introduction to the UTL_URL PaCKAQEccceoiiiieiiieie e 102-2
(O I U I (o= o A o] 1 OSSR 102-3
Summary of UTL_URL SUDPIrOGIamScccooiiiiiii et 102-3

103 ANYDATA TYPE

CONSIIUCTION ...ttt b et bt b et b bbbt b b n e n e n e 103-2
Summary of ANYDATA SUDPIOGIANMIScciiiiiiiieiieet ittt se e e ere e e 103-2

104 ANYDATASET TYPE

(70 151 4 1 [1 o] PSSR 104-2
Summary of ANYDATASET SUDPIrOGramIS......c.covciviiiieiresesiesie e sieie s se e e ssesve e s e s 104-2

105 ANYTYPE TYPE
Summary of ANYTYPE SUDPIrOGrams.......ccccovieiiieiiicse et sre s 105-2

XVii

106 Advanced Queuing Types
AdVaNCed QUEUING TYPES ..ottt sttt et se ettt eb et et sb et e sbe e et es e e e sneereeas 106-1

107 JIMS Types

Constants to Support the ag$_jms_MesSSage TYPE......cccouirrieriririreiine ettt 107-2
SUMMATY OF JIMIS TYPES wo.viiieiiie ettt ettt ettt e se et st et se e e enententesee e e 107-2
Summary of JMS Type Member and Static SUbprograms............ccccooooiineniieneneicceee 107-9
Enqueuing Through the Oracle JIMS Administrative Interface: Example..............c.......... 107-31

108 Logical Change Record Types

LCR$ DDL_RECORD TYPE .iiiieieieieiesieiestete ettt sttt sa st st sttt ettt ssssessssesasnane 108-3
LCR$_ROW_RECORD TYPE ..ottt ittt sttt 108-15
Common Subprograms for LCR$_ROW_RECORD and LCR$ DDL_RECORD 108-33
LCRS ROW _LIST TYPE cuiriiuiiiitiriitiiietisieti sttt ettt et st bbb s e sbena st na st neesens 108-40
LCRE_ROW _UNIT TYPE oottt ettt bbbt 108-41

109 Rule Types
0T =)Y/ 0 LTS 109-2

Index

XViii

Send Us Your Comments

Oracle9j Supplied PL/SQL Packages and Types Reference, Release 2 (9.2)
Part No. A96612-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

=« Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

= Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
= Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XiX

XX

Preface

This reference manual describes the Oracle PL/SQL packages shipped with the
Oracle database server. This information applies to versions of the Oracle database
server that run on all platforms unless otherwise specified.

This preface contains these topics:
= Audience

= Organization

=« Related Documentation

= Conventions

= Documentation Accessibility

XXi

Audience

Organization

Oracle9i Supplied PL/SQL Packages and Types Reference is intended for
programmers, systems analysts, project managers, and others interested in
developing database applications. This manual assumes a working knowledge of
application programming and familiarity with SQL to access information in
relational database systems. Some sections also assume a knowledge of basic
object-oriented programming.

See Table 1-1, " Summary of Oracle Supplied PL/SQL Packages" on page 1-7 for
information about the organization of this reference.

Related Documentation

XXii

For more information, see these Oracle resources:

s Oracle9i Application Developer’s Guide - Fundamentals
s PL/SQL User’s Guide and Reference

s Oracle9i Supplied Java Packages Reference.

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http/Amww.oraclebookshop.conv

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http:/tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:
= Conventions in Text
= Conventions in Code Examples
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles, Oracle9i Database Concepts
emphasis, syntax clauses, or placeholders. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width font)

elements include parameters, privileges, .
datatypes, RMAN keywords, SQL You can back up the database by using the

keywords, SQL*Plus or utility commands, BACKURommand.
packages and methods, as well as Query the TABLE_NAMEolumn in the USER_
system-supplied column names, database TABLESdata dictionary view.

?gljsgts and structures, user names, and y. 1o pEMS_STATSENERATE_STATS
' procedure.

XXiii

Convention Meaning Example
lowercase Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
monospace executables and sample user-supplied

(fixed-width font)

elements. Such elements include The password is specified in the orapwd file.

computer and database names, net Back up the datafiles and control files in the
service names, and connect identifiers, as /disk1/oracle/dbs directory.

well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

The department_id , department_name
and location_id columns are in the
hr.departments table.

The JRepUtil class implements these
methods.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame = 'MIGRATE;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{1} Braces enclose two or more items, one of {ENABLE | DISABLE}

XXiv

which is required. Do not enter the braces.

A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces. [COMPRESS | NOCOMPRESS]
Enter one of the options. Do not enter the

vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the CREATE TABLE .. AS subquery ;

code that are not directly related to
the example SELECTcoll , col2, .., con FROM

= That you can repeat a portion of the employees;

code

Convention Meaning Example
Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFILE;
have omitted several lines of code not NAME
directly related to the example.
fslidbsitbs_01.dbf
fsl/dbsftbs_02.dbf
fslidbsitbs _09.dbf
9 rows selected.
Other notation You must enter symbols other than acctbal NUMBER(11,2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) = 3;

UPPERCASE

lowercase

points as shown.

Italicized text indicates placeholders or CONNECT SYSTEMstern password

variables for which you must supply DB _NAME =database name
particular values.

Uppercase typeface indicates elements SELECT last name, employee_id FROM
supplied by the system. We show these employees;

terms in uppercase in order to distinguish SE|LECT * FROM USER TABLES;
them from terms you define. Unlessterms prop TABLE hremployees;

appear in brackets, enter them in the

order and with the spelling shown.

However, because these terms are not

case sensitive, you can enter them in

lowercase.

Lowercase typeface indicates SELECT last name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names sgiplus hr/hr

of tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MU9;

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

XXV

market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

XXVi

What's New in Supplied PL/SQL Packages
and Types?

The following sections describe the new features in Oracle Supplied PL/SQL

Packages and Types:

= Oracle9i Release 2 (9.2) Beta New Features in Supplied PL/SQL Packages and
Types

= Oracle9i Release 1 (9.0.1) New Features in Supplied PL/SQL Packages and
Types

= Oracle8i Release 2 (8.1.6) New Features in Supplied PL/SQL Packages
= Oracle8i Release 1 (8.1.5) New Features in Supplied PL/SQL Packages

XXVii

Oracle9j Release 2 (9.2) Beta New Features in Supplied PL/SQL
Packages and Types

This release includes the following new chapters:

= Advanced Queuing Types

« DBMS_APPLY_ADM

« DBMS _CAPTURE_ADM

= DBMS LOGSTDBY

« DBMS_MGWADM

« DBMS_MGWMSG

= DBMS_PROPAGATION_ADM

= DBMS RULE

« DBMS RULE_ADM

= DBMS_STORAGE_MAP

= DBMS_STREAMS

= DBMS_STREAMS_ADM

= DBMS_XDB

= DBMS_XDBT

= DBMS_XDB_VERSION

« DBMS _XMLDOM

= DBMS_XMLPARSER

= DBMS_XPLAN

» DBMS_XSLPROCESSOR

= JMS Types

= Logical Change Record Types

= Rule Types

This release includes changes to the following chapters:

XXViii

DBMS_DDL

DBMS_FLASHBACK

DBMS_LOB

DBMS_LOGMNR
DBMS_LOGMNR_CDC_PUBLISH
DBMS_LOGMNR_CDC_SUBSCRIBE
DBMS_LOGMNR_D
DBMS_METADATA
DBMS_REDEFINITION
DBMS_RLS
DBMS_SPACE_ADMIN
DBMS_STATS
DBMS_TRANSFORM

DBMS_WM

DBMS_XMLGEN
DBMS_XMLQUERY
DBMS_XMLSAVE
DBMS_XMLSchema

UTL_FILE

UTL_HTTP

XXiX

Oracle9j Release 1 (9.0.1) New Features in Supplied PL/SQL Packages

and Types

XXX

This release includes the following new packages:
= DBMS_AQELM

= DBMS_ENCODE

= DBMS_FGA

= DBMS_FLASHBACK

= DBMS_LDAP

« DBMS LibCache

= DBMS_LOGMNR_CDC_PUBLISH

= DBMS_LOGMNR_CDC_SUBSCRIBE
= DBMS_METADATA

= DBMS_ODCI

= DBMS_OUTLN_EDIT

= DBMS_REDEFINITION

= DBMS_TRANSFORM

= DBMS_URL

= DBMS_WM

= DBMS_XMLGEN

= DBMS_XMLQuery

= DMBS_XMLSave

= UTL_ENCODE

This release includes new information about types:
= DBMS_TYPES

= ANYDATA_TYPE

= ANYDATASET_TYPE

= ANYTYPE_TYPE

This release includes enhancements to the following packages:

UTL_FILE
UTL_HTTP
UTL_RAW

Oracle8j Release 2 (8.1.6) New Features in Supplied PL/SQL Packages

This release included the following new packages

DBMS_BACKUP_RESTORE
DBMS_OBFUSCATION_TOOLKIT
UTL_INADDR

UTL_SMTP

UTL_TCP

This release included enhancements to the following packages:

DBMS_DEBUG
DBMS_DISTRIBUTED_TRUST_ADMIN
DBMS_LOGMINER
DBMS_LOGMINER_D
DBMS_PCLXUTIL
DMBS_PROFILER
DBMS_REPAIR
DBMS_RESOURCE_MANAGER
DBMS_ROWID

DBMS_SQL

DBMS_UTILITY

UTL_HTTP

Oracle8j Release 1 (8.1.5) New Features in Supplied PL/SQL Packages

This book was new for release 8.1.5.

XXXi

XXXii

1

Introduction

Oracle supplies many PL/SQL packages with the Oracle server to extend database
functionality and provide PL/SQL access to SQL features. You can use the supplied
packages when creating your applications or for ideas in creating your own stored
procedures.

Note: This manual covers the packages provided with the Oracle
database server. Packages supplied with other products, such as
Oracle Developer or the Oracle Application Server, are not covered.

This chapter contains the following topics:
= Package Overview
= Summary of Oracle Supplied PL/SQL Packages

= Summary of Subprograms in Supplemental Packages

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information on how to create your own packages

Introduction 1-1

Package Overview

Package Overview

A package is an encapsulated collection of related program objects stored together in
the database. Program objects are procedures, functions, variables, constants,
cursors, and exceptions.

Packages have many advantages over standalone procedures and functions. For
example, they:

= Let you organize your application development more efficiently.

= Let you grant privileges more efficiently.

= Let you modify package objects without recompiling dependent schema objects.
= Enable Oracle to read multiple package objects into memory at once.

= Let you overload procedures or functions. Overloading means creating multiple
procedures with the same name in the same package, each taking arguments of
different number or datatype.

= Can contain global variables and cursors that are available to all procedures and
functions in the package.

Package Components

PL/SQL packages have two parts: the specification and the body, although
sometimes the body is unnecessary. The specification is the interface to your
application; it declares the types, variables, constants, exceptions, cursors, and
subprograms available for use. The body fully defines cursors and subprograms,
and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested.
However, the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS - specificaion (visible part)
— public type and item declarations
— subprogram specifications

END [nhame];

CREATE PACKAGE BODY name AS - body (hidden part)
— private type and item declarations
— subprogram bodies

[BEGIN
— iniialization statements]

END [name];

1-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Package Overview

The specification holds public declarations that are visible to your application. The
body holds implementation details and private declarations that are hidden from
your application. You can debug, enhance, or replace a package body without
changing the specification. You can change a package body without recompiling
calling programs because the implementation details in the body are hidden from
your application.

Using Oracle Supplied Packages

Most Oracle supplied packages are automatically installed when the database is
created and the CATPROGQLscript is run. For example, to create the DBMS_ALERT
package, the DBMSALRBQLand PRVTALRTPLB scripts must be run when
connected as the user SYS These scripts are run automatically by the CATPROGQL
script.

Certain packages are not installed automatically. Special installation instructions for
these packages are documented in the individual chapters.

To call a PL/SQL function from SQL, you must either own the function or have
EXECUTHprivileges on the function. To select from a view defined with a PL/SQL
function, you must have SELECTprivileges on the view. No separate EXECUTE
privileges are needed to select from the view. Instructions on special requirements
for packages are documented in the individual chapters.

Creating New Packages

To create packages and store them permanently in an Oracle database, use the
CREATEPACKAGENd CREATEPACKAGHBODYstatements. You can execute these
statements interactively from SQL*Plus or Enterprise Manager.

To create a new package, do the following:
1. Create the package specification with the CREATEPACKAGEtatement.

You can declare program objects in the package specification. Such objects are
called public objects. Public objects can be referenced outside the package, as
well as by other objects in the package.

Note: It is often more convenient to add the ORREPLACElause in
the CREATEPACKAGEtatement.

2. Create the package body with the CREATEPACKAGBOD Ystatement.

Introduction 1-3

Package Overview

You can declare and define program objects in the package body.
= You must define public objects declared in the package specification.

= You can declare and define additional package objects, called private objects.
Private objects are declared in the package body rather than in the package
specification, so they can be referenced only by other objects in the package.
They cannot be referenced outside the package.

See Also:

s PL/SQL User’s Guide and Reference

= Oracle9i Application Developer’s Guide - Fundamentals
for more information on creating new packages

. Oracle9i Database Concepts

for more information on storing and executing packages

Separating the Specification and Body

The specification of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body
of a package defines the objects declared in the specification, as well as private
objects that are not visible to applications outside the package.

Oracle stores the specification and body of a package separately in the database.
Other schema objects that call or reference public program objects depend only on
the package specification, not on the package body. Using this distinction, you can
change the definition of a program object in the package body without causing
Oracle to invalidate other schema objects that call or reference the program object.
Oracle invalidates dependent schema objects only if you change the declaration of
the program object in the package specification.

Example The following example shows a package specification for a package named
EMPLOYEE_MANAGEMENTe package contains one stored function and two stored
procedures.

CREATE PACKAGE employee_management AS
FUNCTION hire_emp (name VARCHAR?2, job VARCHAR?Z,
mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
deptno NUMBER) RETURN NUMBER;
PROCEDURE fire_emp (emp_id NUMBERY);
PROCEDURE sal_raise (emp_id NUMBER, sal incr NUMBER);
END employee_management,

1-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Package Overview

The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee management AS
FUNCTION hire_emp (name VARCHAR?2, job VARCHAR?Z,
mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
deptno NUMBER) RETURN NUMBER IS

The function accepts all arguments for the fields in the employee table except for
the employee number. A value for this field is supplied by a sequence. The function
returns the sequence number generated by the call to this function.

new_empno NUMBER(10);

BEGIN
SELECT emp_sequence NEXTVAL INTO new_empno FROM dual
INSERT INTO emp VALUES (new_empno, name, job, mgr,
hiredate, sal, comm, deptno);
RETURN (new_empno);
END hire_emp;

PROCEDURE fire_emp(emp_id IN NUMBER) AS

The procedure deletes the employee with an employee number that corresponds to
the argument emp_id . If no employee is found, then an exception is raised.

BEGIN
DELETE FROM emp WHERE empno = emp_id;
IF SQL%NOTFOUND THEN
raise_application_emor(-20011, ‘Invalid Employee
Number: ’ || TO_CHAR(Eemp_id));
END IF;
END fire_emp;

PROCEDURE sal raise (emp_id IN NUMBER, sal incr IN NUMBER) AS

The procedure accepts two arguments. Emp_id is a number that corresponds to an
employee number. Sal_incr is the amount by which to increase the employee’s
salary.

BEGIN
— If employee exists, then update salary with increase.
UPDATE emp

SET sal = sal + sal incr
WHERE empno = emp_id;

Introduction 1-5

Abbreviations for Datetime and Interval Datatypes

IF SQL%NOTFOUND THEN
raise_application_emor(-20011, ‘Invalid Employee
Number: ’ | TO_CHAR(Eemp_id));
END IF;
END sal_raise;
END employee_management,

Note: If you want to try this example, then first create the
sequence number emp_sequence . You can do this using the
following SQL*Plus statement:

SQL> CREATE SEQUENCE emp_sequence
> START WITH 8000 INCREMENT BY 10;

Referencing Package Contents

To reference the types, items, and subprograms declared in a package specification,
use the dot notation. For example:

package_nameltype_name
package_name.tem_name
package_name.subprogram_name

Abbreviations for Datetime and Interval Datatypes

Many of the datetime and interval datatypes have names that are too long to be
used with the procedures and functions in the replication management API.
Therefore, you must use abbreviations for these datatypes instead of the full names.
The following table lists each datatype and its abbreviation. No abbreviation is
necessary for the DATEand TIMESTAMPdatatypes.

Datatype Abbreviation
TIMESTAMPWITHTIME ZONE TSTZ
TIMESTAMPLOCALTIME ZONE TSLTZ
INTERVALYEARTOMONTH IYM
INTERVALDAYTOSECOND IDS

For example, if you want to use the DBMS_DEFER_QUERY.GEdatatype ARG
function to determine the value of a TIMESTAMPLOCALTIME ZONEargument in a

1-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages

deferred call, then you substitute TSLTZ for datatype

DBMS_DEFER_QUERY.GET_TSLTZ_AR@ction.

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 lists the supplied PL/SQL server packages. These packages run as the
invoking user, rather than the package owner. Unless otherwise noted, the packages
are callable through public synonyms of the same name.

. Therefore, you run the

Caution:

The procedures and functions provided in these packages and
their external interfaces are reserved by Oracle and are subject

to change.

Modifying Oracle supplied packages can cause internal errors
and database security violations. Do not modify supplied

packages.

Table 1-1 Summary of Oracle Supplied PL/SQL Packages

Package Name

Description

Documentation

CWM2_OLAP_AW_ACCESS

DBMS_ALERT

DBMS_APPLICATION_INFO

DBMS_APPLY_ADM

DBMS_AQ

DBMS_AQADM

DBMS_AQELM

Generates scripts that create relational views of
analytic workspace objects.

Provides support for the asynchronous
notification of database events.

Lets you register an application name with the
database for auditing or performance tracking
purposes.

Provides administrative procedures to start, stop,
and configure an apply process.

Lets you add a message (of a predefined object
type) onto a queue or to dequeue a message.

Lets you perform administrative functions on a
gueue or queue table for messages of a
predefined object type.

Provides procedures to manage the configuration
of Advanced Queuing asynchronous notification
by e-mail and HTTP.

Oracle9i OLAP User’s

Guide
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction 1-7

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name

Description

Documentation

DBMS_AW

DBMS_CAPTURE_ADM

DBMS_DDL

DBMS_DEBUG

DBMS_DEFER

DBMS_DEFER_QUERY

DMBS_DEFER_SYS

DBMS_DESCRIBE

DBMS_DISTRIBUTED_TRUST _
ADMIN

DBMS_FGA
DMBS_FLASHBACK

DBMS_HS_PASSTHROUGH

Issues OLAP DML statements against analytic
workspace objects. Also, lets you retrieve and
print the session logs created by the execution of
the procedures and functions in this package and
the OLAP_TABLEunction.

Describes administrative procedures to start,
stop, and configure a capture process; used in
Streams.

Provides access to some SQL DDL statements
from stored procedures, and provides special
administration operations not available as DDLSs.

Implements server-side debuggers and provides
a way to debug server-side PL/SQL program
units.

Provides the user interface to a replicated
transactional deferred remote procedure call
facility. Requires the Distributed Option.

Permits querying the deferred remote procedure
calls (RPC) queue data that is not exposed
through views. Requires the Distributed Option.

Provides the system administrator interface to a
replicated transactional deferred remote
procedure call facility. Requires the Distributed
Option.

Describes the arguments of a stored procedure
with full name translation and security checking.

Maintains the Trusted Database List, which is
used to determine if a privileged database link
from a particular server can be accepted.

Provides fine-grained security functions.

Lets you flash back to a version of the database at
a specified wall-clock time or a specified system
change number (SCN).

Lets you use Heterogeneous Services to send
pass-through SQL statements to non-Oracle
systems.

1-8 Oracle9/ Supplied PL/SQL Packages and Types Reference

Oracle9i OLAP User’s
Guide

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16
Chapter 17

Chapter 18

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

DBMS_IOT Creates a table into which references to the Chapter 19
chained rows for an Index Organized Table can
be placed using the ANALYZEcommand.

DBMS_JOB Lets you schedule administrative procedures that Chapter 20
you want performed at periodic intervals; it is
also the interface for the job queue.

DBMS_LDAP Provides functions and procedures to access Chapter 21
data from LDAP servers.

DBMS_LIBCACHE Prepares the library cache on an Oracle instance ~ Chapter 22
by extracting SQL and PL/SQL from a remote
instance and compiling this SQL locally without
execution.

DBMS_LOB Provides general purpose routines for operations Chapter 23
on Oracle Large Object (LOBs) datatypes - BLOB
CLOB(read/write), and BFILE s (read-only).

DBMS_LOCK Lets you request, convert and release locks Chapter 24
through Oracle Lock Management services.

DBMS_LOGMNR Provides functions to initialize and run the log Chapter 25
reader.

DBMS_LOGMNR_CDC_PUBLISHIdentifies new data that has been added to, Chapter 26

modified, or removed from, relational tables and
publishes the changed data in a form that is
usable by an application.

DBMS_LOGMNR_CDC _ Lets you view and query the change data that Chapter 27

SUBSCRIBE was captured and published with the DBMS_
LOGMNR_CDC_PUBLISbackage.

DBMS_LOGMNR_D Queries the dictionary tables of the current Chapter 28

database, and creates a text based file containing
their contents.

DBMS_LOGSTDBY Describes procedures for configuring and Chapter 29
managing the logical standby database
environment.

DBMS_METADATA Lets callers easily retrieve complete database Chapter 30
object definitions (metadata) from the dictionary.

DBMS_MGWADM Describes the Messaging Gateway administrative Chapter 31
interface; used in Advanced Queuing.

Introduction 1-9

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

DBMS_MGWMSG Describes object types—used by the canonical Chapter 32
message types to convert message bodies—and
helper methods, constants, and subprograms for
working with the Messaging Gateway message
types; used in Advanced Queuing.

DBMS_MVIEW Lets you refresh snapshots that are not part of the Chapter 33
same refresh group and purge logs. DBMS _
SNAPSHOTs a synonym.

DBMS_OBFUSCATION_TOOLKITProvides procedures for Data Encryption Chapter 34
Standards.

DBMS_ODCI Returns the CPU cost of a user function based on Chapter 35
the elapsed time of the function.

DBMS_OFFLINE_OG Provides public APIs for offline instantiation of ~ Chapter 36

master groups.

DBMS_OFFLINE_SNAPSHOT Provides public APIs for offline instantiation of ~ Chapter 37
snapshots.

DBMS_OLAP Provides procedures for summaries, dimensions, Chapter 38
and query rewrites.

DBMS_ORACLE_TRACE_AGENTProvides client callable interfaces to the Oracle Chapter 39
TRACE instrumentation within the Oracle7

Server.

DBMS_ORACLE_TRACE_USER Provides public access to the Oracle release 7 Chapter 40
Server Oracle TRACE instrumentation for the
calling user.

DBMS_OUTLN Provides the interface for procedures and Chapter 41

functions associated with management of stored
outlines. Synonymous with OUTLN_PKG

DBMS_OUTLN_EDIT Lets you edit an invoker’s rights package. Chapter 42

DBMS_OUTPUT Accumulates information in a buffer so that it can Chapter 43
be retrieved out later.

DBMS_PCLXUTIL Provides intra-partition parallelism for creating ~ Chapter 44
partition-wise local indexes.

DBMS_PIPE Provides a DBMS pipe service which enables Chapter 45

messages to be sent between sessions.

1-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation
DBMS_PROFILER Provides a Probe Profiler API to profile existing Chapter 46
PL/SQL applications and identify performance
bottlenecks.
DBMS_PROPAGATION_ADM Provides administrative procedures for Chapter 47

DBMS_RANDOM
DBMS_RECTIFIER_DIFF

DBMS_REDEFINITION

DBMS_REFRESH

DBMS_REPAIR
DBMS_REPCAT

DBMS_REPCAT_ADMIN

DBMS_REPCAT_INSTATIATE

DBMS_REPCAT _RGT

DBMS_REPUTIL

DBMS_RESOURCE_MANAGER

configuring propagation from a source queue to a
destination queue.

Provides a built-in random number generator.

Provides APIs used to detect and resolve data
inconsistencies between two replicated sites.

Lets you perform an online reorganization of
tables.

Lets you create groups of snapshots that can be
refreshed together to a transactionally consistent
point in time. Requires the Distributed Option.

Provides data corruption repair procedures.

Provides routines to administer and update the
replication catalog and environment. Requires
the Replication Option.

Lets you create users with the privileges needed
by the symmetric replication facility. Requires the
Replication Option.

Instantiates deployment templates. Requires the
Replication Option.

Controls the maintenance and definition of
refresh group templates. Requires the Replication
Option.

Provides routines to generate shadow tables,
triggers, and packages for table replication.

Maintains plans, consumer groups, and plan
directives; it also provides semantics so that you
may group together changes to the plan schema.

DBMS_RESOURCE_MANAGER_Maintains privileges associated with resource

PRIVS

consumer groups.

Chapter 48
Chapter 49

Chapter 50

Chapter 51

Chapter 52
Chapter 53

Chapter 54

Chapter 55

Chapter 56

Chapter 57

Chapter 58

Chapter 59

Introduction 1-11

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name

Description

Documentation

DBMS_RESUMABLE

DBMS_RLS

DBMS_ROWID

DBMS_RULE

DBMS_RULE_ADM

DBMS_SESSION

DBMS_SHARED_POOL

DBMS_SPACE

DBMS_SPACE_ADMIN

DBMS_SQL
DBMS_STATS

DBMS_STORAGE_MAP

DBMS_STRM

1-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Lets you suspend large operations that run out of Chapter 60

space or reach space limits after executing for a
long time, fix the problem, and make the
statement resume execution.

Provides row level security administrative

interface.

Provides procedures to create rowids and to

interpret their contents.

Describes the EVALUATEprocedure used in

Streams.

Describes the administrative interface for creating
and managing rules, rule sets, and rule
evaluation contexts; used in Streams.

Provides access to SQL ALTERSESSION
statements, and other session information, from

stored procedures.

Lets you keep objects in shared memory, so that
they will not be aged out with the normal LRU

mechanism.

Provides segment space information not available

through standard SQL.

Provides tablespace and segment space
administration not available through the

standard SQL.

Lets you use dynamic SQL to access the database.

Provides a mechanism for users to view and
modify optimizer statistics gathered for database

objects.

Communicates with FMON to invoke mapping

operations.

Describes the interface to convert SYS.AnyData
objects into LCR objects and an interface to
annotate redo entries generated by a session with

a binary tag.

Chapter 61

Chapter 62

Chapter 63

Chapter 64

Chapter 65

Chapter 66

Chapter 67

Chapter 68

Chapter 69
Chapter 70

Chapter 71

Chapter 72

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

DBMS_STRM_A Describes administrative procedures for adding Chapter 73
and removing simple rules, without
transformations, for capture, propagation, and
apply at the table, schema, and database level.

DBMS_TRACE Provides routines to start and stop PL/SQL Chapter 74
tracing.

DBMS_TRANSACTION Provides access to SQL transaction statements Chapter 75
from stored procedures and monitors transaction
activities.

DBMS_TRANSFORM Provides an interface to the message format Chapter 76
transformation features of Oracle Advanced
Queuing.

DBMS_TTS Checks if the transportable set is self-contained. Chapter 77

DBMS_TYPES Consists of constants, which represent the built-in Chapter 78
and user-defined types.

DBMS_UTILITY Provides various utility routines. Chapter 79

DBMS_WM Describes how to use the programming interface Chapter 80

to Oracle Database Workspace Manager to work
with long transactions.

DBMS_XDB Describes Resource Management and Access Chapter 81
Control APIs for PL/SQL

DBMS_XDBT Describes how an administrator can create a Chapter 82
ConText index on the XML DB hierarchy and
configure it for automatic maintenance

DBMS_XDB_VERSION Describes versioning APIs Chapter 83

DBMS_XMLDOM Explains access to XMLType objects Chapter 84

DBMS_XMLGEN Converts the results of a SQL query to a Chapter 85
canonical XML format.

DBMS_XMLPARSER Explains access to the contents and structure of Chapter 86
XML documents.

DMBS_XMLQUERY Provides database-to-XMLType functionality. Chapter 87

DBMS_XMLSAVE Provides XML-to-database-type functionality. Chapter 88

DBMS_XMLSCHEMA Exhplains procedures to register and delete XML Chapter 89
schemas.

Introduction 1-13

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

DBMS_XPLAN Describes how to format the output of the Chapter 90
EXPLAIN PLANcommand.

DBMS_XSLPROCESSOR Explains access to the contents and structure of Chapter 91
XML documents.

DEBUG_EXTPROC Lets you debug external procedures on platforms Chapter 92

SDO_CS
(refer to Note #1)

SDO_GEOM
(refer to Note #1)

SDO_LRS
(refer to Note #1)

SDO_MIGRATE
(refer to Note #1)

SDO_TUNE
(refer to Note #1)

SDO_UTIL
(refer to Note #1)

UTL_COLL

UTL_ENCODE

UTL_FILE

UTL_HTTP

UTL_INADDR

with debuggers that attach to a running process.

Provides functions for coordinate system
transformation.

Provides functions implementing geometric
operations on spatial objects.

Provides functions for linear referencing system
support.

Provides functions for migrating spatial data
from previous releases.

Provides functions for selecting parameters that
determine the behavior of the spatial indexing
scheme used in Oracle Spatial.

Provides utility functions and procedures for
Oracle Spatial.

Enables PL/SQL programs to use collection
locators to query and update.

Provides functions that encode RAW data into a
standard encoded format so that the data can be
transported between hosts.

Enables your PL/SQL programs to read and
write operating system text files and provides a
restricted version of standard operating system
stream file 170.

Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet or to call Oracle Web
Server Cartridges.

Provides a procedure to support internet
addressing.

1-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Oracle Spatial User’s Guide
and Reference

Chapter 93

Chapter 94

Chapter 95

Chapter 96

Chapter 97

Summary of Oracle Supplied PL/SQL Packages

Table 1-1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description Documentation

UTL_PG Provides functions for converting COBOL Oracle Procedural Gateway
numeric data into Oracle numbers and Oracle for APPC User’s Guide
numbers into COBOL numeric data.

UTL_RAW Provides SQL functions for RAWdatatypes that ~ Chapter 98
concat, substr to and from RAWS.

UTL_REF Enables a PL/SQL program to access an object by Chapter 99
providing a reference to the object.

UTL_SMTP Provides PL/SQL functionality to send emails. Chapter 100

UTL_TCP Provides PL/SQL functionality to support simple Chapter 101

TCP/I1P-based communications between servers
and the outside world.

UTL_URL Provides escape and unescape mechanisms for Chapter 102
URL characters.

ANYDATA TYPE A self-describing data instance type containing Chapter 103
an instance of the type plus a description

ANYDATASET TYPE Contains a description of a given type plusaset Chapter 104
of data instances of that type

ANYTYPE TYPE Contains a type description of any persistent SQL Chapter 105
type, named or unnamed, including object types
and collection types; or, it can be used to
construct new transient type descriptions

JMS TYPES Describes JMS types so that a PL/SQL Chapter 107
application can use JMS queues of IMS types

ADVANCED QUEUING TYPES Describes the types used in Advanced Queuing Chapter 106

LOGICAL CHANGE RECORD Describes LCR types, which are message Chapter 108
TYPES payloads that contain information about changes
to a database, used in Streams

RULES TYPES Describes the types used with rules, rule sets,and Chapter 109
evaluation contexts

Note #1
Spatial packages are installed in user MDSY Swith public synonyms.

Introduction 1-15

Summary of Subprograms in Supplemental Packages

Summary of Subprograms in Supplemental Packages

The packages listed in this section are documented in other Oracle books. See
Table 1-1 for the documentation reference for each package. See Table 1-2 through
Table 1-8 for the subprograms provided with these packages.

SDO_CS Package

Table 1-2 SDO_CS Package Subprograms

Subprogram Description

SDO_CS.TRANSFORM Transforms a geometry representation using a coordinate
system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is, all
geometries in a specified column in a table).

VIEWPORT_TRANSFORM Transforms an optimized rectangle into a valid geodetic
polygon for use with Spatial operators and functions.

SDO_GEOM Package

Table 1-3 SDO_GEOM Package Subprograms

Subprogram Description
RELATE Determines how two objects interact.
SDO_ARC_DENSIFY Changes each circular arc into an approximation consisting of

straight lines, and each circle into a polygon consisting of a
series of straight lines that approximate the circle.

SDO_AREA Computes the area of a two-dimensional polygon.
SDO_BUFFER Generates a buffer polygon around a geometry.
SDO_CENTROID Returns the centroid of a polygon.

SDO_CONVEXHULL Returns a polygon-type object that represents the convex hull

of a geometry object.

SDO_DIFFERENCE Returns a geometry object that is the topological difference
(MINUS operation) of two geometry objects.

SDO_DISTANCE Computes the distance between two geometry objects.

SDO_INTERSECTION Returns a geometry object that is the topological intersection
(AND operation) of two geometry objects.

1-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages

Table 1-3 (Cont) SDO_GEOM Package Subprograms

Subprogram Description

SDO_LENGTH Computes the length or perimeter of a geometry.

SDO_MAX_MBR_ORDINATREeturns the maximum value for the specified ordinate of the
minimum bounding rectangle of a geometry object.

SDO_MBR Returns the minimum bounding rectangle of a geometry.

SDO_MIN_MBR_ORDINATReturns the minimum value for the specified ordinate of the
minimum bounding rectangle of a geometry object.

SDO_POINTONSURFACE Returns a point that is guaranteed to be on the surface of a
polygon.

SDO_UNION Returns a geometry object that is the topological union (OR
operation) of two geometry objects.

SDO_XOR Returns a geometry object that is the topological symmetric
difference (XOR operation) of two geometry objects.

VALIDATE_GEOMETRY Determines if a geometry is valid.

VALIDATE_GEOMETRY_ Performs a consistency check for valid geometry types and

WITH_CONTEXT returns context information if the geometry is invalid. The
function checks the representation of the geometry from the
tables against the element definitions.

VALIDATE_LAYER Determines if all the geometries stored in a column are valid.

VALIDATE_LAYER_WITH_ Examines a geometry column to determine if the stored
CONTEXT geometries follow the defined rules for geometry objects, and
returns context information about any invalid geometries.

WITHIN_DISTANCE Determines if two geometries are within a specified Euclidean
distance from one another.

SDO_LRS Package

Table 1-4 SDO_LRS Package Subprograms

Subprogram Description

CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of
DYNAMIC_SEGMENT).

CONCATENATE_GEOM_SEGMENTS Concatenates two geometric segments into one
segment.

Introduction 1-17

SDO_LRS Package

Table 1-4 (Cont.) SDO_LRS Package Subprograms

Subprogram

Description

CONNECTED_GEOM_SEGMENTS

CONVERT _TO_LRS_DIM_ARRAY

CONVERT_TO_LRS_GEOM

CONVERT_TO_LRS_LAYER

CONVERT_TO_STD_DIM_ARRAY

CONVERT_TO_STD_GEOM

CONVERT_TO_STD_LAYER

DEFINE_GEOM_SEGMENT
DYNAMIC_SEGMENT

FIND_LRS_DIM_POS

FIND_MEASURE

GEOM_SEGMENT_END_MEASURE

Checks if two geometric segments are
connected.

Converts a standard dimensional array to a
Linear Referencing System dimensional array
by creating a measure dimension.

Converts a standard SDO_GEOMETRY line
string to a Linear Referencing System geometric
segment by adding measure information.

Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to Linear Referencing System geometric
segments with measure information, and
updates the metadata.

Converts a Linear Referencing System
dimensional array to a standard dimensional
array by removing the measure dimension.

Converts a Linear Referencing System
geometric segment to a standard SDO_
GEOMETRY line string by removing measure
information.

Converts all geometry objects in a column of
type SDO_GEOMETRY from Linear
Referencing System geometric segments with
measure information to standard line string
geometries without measure information, and
updates the metadata.

Defines a geometric segment.

Clips a geometric segment (synonym of CLIP_
GEOM_SEGMENT).

Returns the position of the measure dimension
within the SDO_DIM_ARRAJ¥tructure for a
specified SDO_GEOMETR%lumn.

Returns the measure of the closest point on a
segment to a specified projection point.

Returns the end measure of a geometric
segment.

1-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages

Table 1-4 (Cont.) SDO_LRS Package Subprograms

Subprogram

Description

GEOM_SEGMENT_END_PT
GEOM_SEGMENT_LENGTH
GEOM_SEGMENT_START_MEASURE

GEOM_SEGMENT_START_PT
GET_MEASURE
IS_GEOM_SEGMENT_DEFINED
IS_MEASURE_DECREASING

IS_MEASURE_INCREASING

LOCATE_PT

MEASURE_RANGE

MEASURE_TO_PERCENTAGE

OFFSET_GEOM_SEGMENT

PERCENTAGE_TO_MEASURE

PROJECT_PT

REDEFINE_GEOM_SEGMENT

Returns the end point of a geometric segment.
Returns the length of a geometric segment.

Returns the start measure of a geometric
segment.

Returns the start point of a geometric segment.
Returns the measure of an LRS point.
Checks if an LRS segment is defined correctly.

Checks if the measure values along an LRS
segment are decreasing (that is, descending in
numerical value).

Checks if the measure values along an LRS
segment are increasing (that is, ascending in
numerical value).

Returns the point located at a specified distance
from the start of a geometric segment.

Returns the measure range of a geometric
segment, that is, the difference between the start
measure and end measure.

Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

Returns the geometric segment at a specified
offset from a geometric segment.

Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

Returns the projection point of a point on a
geometric segment.

Populates the measures of all shape points of a
geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

Introduction 1-19

SDO_MIGRATE Package

Table 1-4 (Cont.) SDO_LRS Package Subprograms

Subprogram

Description

RESET_MEASURE

REVERSE_GEOMETRY

REVERSE_MEASURE

SCALE_GEOM_SEGMENT
SET_PT_MEASURE
SPLIT_GEOM_SEGMENT
TRANSLATE_MEASURE

VALID_GEOM_SEGMENT
VALID_LRS_PT
VALID_MEASURE

Sets all measures of a geometric segment,
including the start and end measures, to null
values, overriding any previously assigned
measures.

Returns a new geometric segment by reversing
the measure values and the direction of the
original geometric segment.

Returns a new geometric segment by reversing
the original geometric segment.

Scales a geometric segment.
Sets the measure value of a specified point.
Splits a geometric segment into two segments.

Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

Checks if a geometric segment is valid.
Checks if an LRS point is valid.

Checks if a measure falls within the measure
range of a geometric segment.

VALIDATE_LRS_GEOMETRY Checks if an LRS geometry is valid.

SDO_MIGRATE Package

Table 1-5 SDO_MIGRATE Package Subprograms

Procedure

Description

FROM_815_TO_81X
OGIS_METADATA_FROM

OGIS_METADATA_TO

TO_734

Migrates data from Spatial release 8.1.5 to the current release.

Generates a temporary table used when migrating OGIS
(OpenGlIS) metadata tables.

Reads a temporary table used when migrating OGIS
metadata tables.

Migrates data from a previous release of Spatial Data Option
to release 7.3.4.

1-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Subprograms in Supplemental Packages

Table 1-5 (Cont.) SDO_MIGRATE Package Subprograms

Procedure Description

TO_81X Migrates tables from Spatial Data Option 7.3.4 or Spatial
Cartridge 8.0.4 to Oracle Spatial.

TO_CURRENT Migrates data from a previous Spatial release to the current

release.

SDO_TUNE Package

Table 1-6 SDO_TUNE Package Subprograms

Subprogram

Description

ANALYZE_RTREE

AVERAGE_MBR
ESTIMATE_INDEX_
PERFORMANCE
ESTIMATE_TILING_LEVEL

ESTIMATE_TILING_TIME
ESTIMATE_TOTAL_NUMTILES
EXTENT_OF

HISTOGRAM_ANALYSIS
MIX_INFO

QUALITY_DEGRADATION

RTREE_QUALITY

Analyzes an R-tree index; generates statistics about the
index use, and recommends a rebuild of the index if a
rebuild would improve query performance
significantly.

Calculates the average minimum bounding rectangle
for geometries in a layer.

Estimates the spatial index selectivity.

Determines an appropriate tiling level for creating
fixed-size index tiles.

Estimates the tiling time for a layer, in seconds.
Estimates the total number of spatial tiles for a layer.

Determines the minimum bounding rectangle of the
data in a layer.

Calculates statistical histograms for a spatial layer.

Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.

Returns the quality degradation for an R-tree index or
the average quality degradation for all index tables for
an R-tree index.

Returns the quality score for an R-tree index or the
average quality score for all index tables for an R-tree
index.

Introduction 1-21

SDO_UTIL Package

SDO_UTIL Package

Table 1-7 SDO_UTIL Package Subprograms

Subprogram Description

EXTRACT Returns the geometry that represents a specified
element (and optionally a ring) of the input geometry.

GETVERTICES Returns a table containing the coordinates of the
vertices of the input geometry.

UTL_PG Package

Table 1-8 UTL_PG Package Subprograms

Subprogram Description

MAKE_NUMBER_TO_ Makes a number_to_raw format conversion specification used to
RAW_FORMAT convert an Oracle number of declared precision and scale to a RAW
byte-string in the remote host internal format.

MAKE_RAW_TO _ Makes a raw_to_number format conversion specification used to
NUMBER_FORMAT convert a RAWbyte-string from the remote host internal format into
an Oracle number of comparable precision and scale.

NUMBER_TO_RAW Converts an Oracle number of declared precision and scale to a RAW
byte-string in the remote host internal format.

NUMBER_TO_RAW_ Converts, according to the number_to_raw conversion format
FORMAT n2rfmt, an Oracle number numval of declared precision and scale
to a RAWbyte-string in the remote host internal format.

RAW_TO_NUMBER Converts a RAWbyte-string from the remote host internal format
into an Oracle number.

RAW_TO_NUMBER_ Converts, according to the raw_to_number conversion format
FORMAT r2nfmt , a RAWbyte-string rawval in the remote host internal
format to an Oracle number.

WMSG Extracts a warning message specified by wmsgitem from wmsgblk .
WMSGCNT Tests a wmsgblk to determine how many warnings, if any, are
present.

1-22 Oracle9i Supplied PL/SQL Packages and Types Reference

2

DBMS_ALERT

DBMS_ALERBupports asynchronous notification of database events (alerts). By
appropriate use of this package and database triggers, an application can notify
itself whenever values of interest in the database are changed.

For example, suppose a graphics tool is displaying a graph of some data from a
database table. The graphics tool can, after reading and graphing the data, wait on a
database alert (WAITONE covering the data just read. The tool automatically wakes
up when the data is changed by any other user. All that is required is that a trigger
be placed on the database table, which performs a signal (SIGNAL) whenever the
trigger is fired.

Alerts are transaction-based. This means that the waiting session is not alerted until
the transaction signalling the alert commits. There can be any number of concurrent
signalers of a given alert, and there can be any number of concurrent waiters on a
given alert.

A waiting application is blocked in the database and cannot do any other work.

Note: Because database alerters issue commits, they cannot be
used with Oracle Forms. For more information on restrictions on
calling stored procedures while Oracle Forms is active, refer to your
Oracle Forms documentation.

This chapter discusses the following topics:

= Security, Constants, and Errors for DBMS_ALERT
= Using Alerts

= Summary of DBMS_ALERT Subprograms

DBMS_ALERT 2-1

Security, Constants, and Errors for DBMS_ALERT

Security, Constants, and Errors for DBMS_ALERT

Security

Security on this package can be controlled by granting EXECUTEon this package to
selected users or roles. You might want to write a cover package on top of this one
that restricts the alert names used. EXECUTHEprivilege on this cover package can
then be granted rather than on this package.

Constants
maxwait constant integer .= 86400000; — 1000 days

The maximum time to wait for an alert (this is essentially forever).

Errors

DBMS_ALERTaises the application error -20000 on error conditions. Table 2-1
shows the messages and the procedures that can raise them.

Table 2-1 DBMS_ALERT Error Messages

Error Message Procedure
ORU-10001 lock request error, status: N SIGNAL
ORU-10015 error: N waiting for pipe status WAITANY
ORU-10016 error: N sending on pipe 'X’ SIGNAL
ORU-10017 error: N receiving on pipe 'X’ SIGNAL
ORU-10019 error: N on lock request WAIT
ORU-10020 error: N on lock request WAITANY
ORU-10021 lock request error; status: N REGISTER
ORU-10022 lock request error, status: N SIGNAL
ORU-10023 lock request error; status N WAITONE
ORU-10024 there are no alerts registered WAITANY
ORU-10025 lock request error; status N REGISTER
ORU-10037 attempting to wait on uncommitted WAITONE

signal from same session

2-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using Alerts

Using Alerts

The application can register for multiple events and can then wait for any of them
to occur using the WAITANYprocedure.

An application can also supply an optional timeout parameter to the WAITONEor
WAITANYprocedures. A timeout of 0 returns immediately if there is no pending
alert.

The signalling session can optionally pass a message that is received by the waiting
session.

Alerts can be signalled more often than the corresponding application wait calls. In
such cases, the older alerts are discarded. The application always gets the latest alert
(based on transaction commit times).

If the application does not require transaction-based alerts, the DBMS_PIPEpackage
may provide a useful alternative.

See Also: Chapter 45, "DBMS_PIPE"

If the transaction is rolled back after the call to SIGNAL, no alert occurs.

It is possible to receive an alert, read the data, and find that no data has changed.
This is because the data changed after the prior alert, but before the data was read
for that prior alert.

Checking for Alerts

Usually, Oracle is event-driven; this means that there are no polling loops. There are
two cases where polling loops can occur:

= Shared mode. If your database is running in shared mode, a polling loop is
required to check for alerts from another instance. The polling loop defaults to
one second and can be set by the SET_DEFAULT Srocedure.

= WAITANYprocedure. If you use the WAITANYprocedure, and if a signalling
session does a signal but does not commit within one second of the signal, a
polling loop is required so that this uncommitted alert does not camouflage
other alerts. The polling loop begins at a one second interval and exponentially
backs off to 30-second intervals.

DBMS_ALERT 2-3

Summary of DBMS_ALERT Subprograms

Summary of DBMS_ALERT Subprograms

Table 2-2 DBMS_ALERT Package Subprograms

Subprogram Description

REGISTER Procedure on Receives messages from an alert.
page 2-4

REMOVE Procedure on Disables notification from an alert.
page 2-5

REMOVEALL Procedure Removes all alerts for this session from the registration list.
on page 2-5

SET_DEFAULTS Sets the polling interval.
Procedure on page 2-6

SIGNAL Procedure on Signals an alert (send message to registered sessions).
page 2-6

WAITANY Procedure on Waits timeout seconds to receive alert message from an alert
page 2-7 registered for session.

WAITONE Procedure on Waits timeout seconds to receive message from named alert.
page 2-8

REGISTER Procedure

Syntax

Parameters

This procedure lets a session register interest in an alert. The name of the alert is the
IN parameter. A session can register interest in an unlimited number of alerts.
Alerts should be deregistered when the session no longer has any interest, by
calling REMOVE

DBMS_ALERT.REGISTER (
name IN VARCHAR2);

Table 2-3 REGISTER Procedure Parameters

Parameter Description

name Name of the alert in which this session is interested.

2-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms

Caution: Alert names beginning with 'ORAS$’ are reserved for
use for products provided by Oracle Corporation. Names must be
30 bytes or less. The name is case insensitive.

REMOVE Procedure

Syntax

Parameters

This procedure enables a session that is no longer interested in an alert to remove
that alert from its registration list. Removing an alert reduces the amount of work
done by signalers of the alert.

Removing alerts is important because it reduces the amount of work done by
signalers of the alert. If a session dies without removing the alert, that alert is
eventually (but not immediately) cleaned up.

DBMS_ALERT.REMOVE (
name IN VARCHAR2);

Table 2-4 REMOVE Procedure Parameters

Parameter Description

name Name of the alert (case-insensitive) to be removed from
registration list.

REMOVEALL Procedure

Syntax

This procedure removes all alerts for this session from the registration list. You
should do this when the session is no longer interested in any alerts.

This procedure is called automatically upon first reference to this package during a
session. Therefore, no alerts from prior sessions which may have terminated
abnormally can affect this session.

This procedure always performs a commit.

DBMS_ALERT.REMOVEALL,

DBMS_ALERT 2-5

SET_DEFAULTS Procedure

SET_DEFAULTS Procedure

In case a polling loop is required, use the SET_DEFAULT Srocedure to set the
polling interval.

Syntax

DBMS_ALERT.SET_DEFAULTS (
sensitvity IN NUMBER);

Parameters
Table 2-5 SET_DEFAULTS Procedure Parameters
Parameter Description
sensitivity Polling interval, in seconds, to sleep between polls. The default

interval is five seconds.

SIGNAL Procedure
This procedure signals an alert. The effect of the SIGNAL call only occurs when the
transaction in which it is made commits. If the transaction rolls back, SIGNAL has
no effect.
All sessions that have registered interest in this alert are notified. If the interested
sessions are currently waiting, they are awakened. If the interested sessions are not
currently waiting, they are notified the next time they do a wait call.
Multiple sessions can concurrently perform signals on the same alert. Each session,
as it signals the alert, blocks all other concurrent sessions until it commits. This has
the effect of serializing the transactions.

Syntax

DBMS_ALERT.SIGNAL (
name IN VARCHAR2,
message IN VARCHAR2)

2-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms

Parameters
Table 2-6 SIGNAL Procedure Parameters
Parameter Description
name Name of the alert to signal.
message Message, of 1800 bytes or less, to associate with this alert.
This message is passed to the waiting session. The waiting session
might be able to avoid reading the database after the alert occurs by
using the information in the message.
WAITANY Procedure
Call WAITANYto wait for an alert to occur for any of the alerts for which the current
session is registered. An implicit COMMITis issued before this procedure is
executed. The same session that waits for the alert may also first signal the alert. In
this case remember to commit after the signal and before the wait; otherwise,
DBMS_LOCIREQUESTwhich is called by DBMS_ALERJreturns status 4.
Syntax

DBMS_ALERT.WAITANY (
name OUT VARCHAR2,
message OUT VARCHAR2,
status OUT INTEGER,
imeout IN NUMBER DEFAULT MAXWAIT);

DBMS_ALERT 2-7

WAITONE Procedure

Parameters

Table 2-7 WAITANY Procedure Parameters

Parameter

Description

name

message

status

timeout

Returns the name of the alert that occurred.

Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals
on this alert occurred before WAITANY the message corresponds to
the most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

Values returned:

0 - alert occurred

1 - time-out occurred

Maximum time to wait for an alert.

If no alert occurs before timeout seconds, this returns a status of 1.

Errors

-20000, ORU-10024: there are no alerts registered.

Cause: You must register an alert before waiting.

WAITONE Procedure

This procedure waits for a specific alert to occur. An implicit COMMITis issued
before this procedure is executed. A session that is the first to signal an alert can
also wait for the alert in a subsequent transaction. In this case, remember to commit
after the signal and before the wait; otherwise, DBMS_LOCREQUESTwhich is
called by DBMS_ALER]returns status 4.

Syntax

DBMS_ALERT.WAITONE (

name

message

status
timeout

IN VARCHARZ,

OUT VARCHARZ,

INTEGER,

NUMBER DEFAULT MAXWAIT);

2-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_ALERT Subprograms

Parameters

Example

Table 2-8 WAITONE Procedure Parameters

Parameter Description
name Name of the alert to wait for.
message Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on
this alert occurred before WAITONEthe message corresponds to the
most recent SIGNAL call. Messages from prior SIGNAL calls are
discarded.

status Values returned:
0 - alert occurred
1 - time-out occurred

timeout Maximum time to wait for an alert.

If the named alert does not occurs before timeout seconds, this returns
a status of 1.

Suppose you want to graph average salaries by department, for all employees. Your
application needs to know whenever EMPis changed. Your application would look
similar to this code:

DBMS_ALERT.REGISTER(emp_table_alert);
<<readagain>>:

F ... read the emp table and graph it ¥
DBMS_ALERT.WAITONE(emp_table_alert, :message, :stafus);
if status = O then goto <<readagain>>; else
/... emor condition */

The EMPtable would have a trigger similar to this:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
BEGIN
DBMS_ALERT.SIGNAL(emp_table_alert, 'message_text);
END;
When the application is no longer interested in the alert, it makes this request:

DBMS_ALERT.REMOVE(emp_table_alert);

DBMS_ALERT 2-9

WAITONE Procedure

This reduces the amount of work required by the alert signaller. If a session exits (or
dies) while registered alerts exist, the alerts are eventually cleaned up by future
users of this package.

The preceding example guarantees that the application always sees the latest data,
although it may not see every intermediate value.

2-10 Oracle9i Supplied PL/SQL Packages and Types Reference

3

DBMS_APPLICATION_INFO

Application developers can use the DBMS_APPLICATION_INFOpackage with
Oracle Trace and the SQL trace facility to record names of executing modules or
transactions in the database for later use when tracking the performance of various
modules and debugging.

Registering the application allows system administrators and performance tuning
specialists to track performance by module. System administrators can also use this
information to track resource use by module. When an application registers with

the database, its name and actions are recorded in the VSSESSIONand V$SQLAREA
views.

Your applications should set the name of the module and name of the action
automatically each time a user enters that module. The module name could be the
name of a form in an Oracle Forms application, or the name of the code segment in
an Oracle Precompilers application. The action hame should usually be the name or
description of the current transaction within a module.

If you want to gather your own statistics based on module, you can implement a
wrapper around this package by writing a version of this package in another
schema that first gathers statistics and then calls the SYSversion of the package.
The public synonym for DBMS_APPLICATION_INFCcan then be changed to point
to the DBA’s version of the package.

This chapter discusses the following topics:
= Privileges

=« Summary of DBMS_APPLICATION_INFO Subprograms

DBMS_APPLICATION_INFO 3-1

Privileges

Note: The public synonym for DBMS_APPLICATION_INFOis not
dropped before creation so that you can redirect the public
synonym to point to your own package.

Privileges

No further privileges are required. The DBMSUTIL.SQL script is already run by
catproc.

Summary of DBMS_APPLICATION_INFO Subprograms

Table 3-1 DBMS_APPLICATION_INFO Package Subprograms

Subprogram Description

SET_MODULE Procedure Sets the name of the module that is currently running to a new
on page 3-2 module.

SET_ACTION Procedure Sets the name of the current action within the current module.
on page 3-3

READ_MODULE Reads the values of the module and action fields of the current
Procedure on page 3-4 session.

SET_CLIENT_INFO Sets the client info field of the session.

Procedure on page 3-5

READ_CLIENT_INFO Reads the value of the client_info field of the current
Procedure on page 3-6 session.

SET_SESSION_LONGOPS Sets a row in the V$SESSION_LONGO®ble.
Procedure on page 3-6

SET_MODULE Procedure

This procedure sets the name of the current application or module. The module
name should be the name of the procedure (if using stored procedures), or the name
of the application. The action name should describe the action performed.

Syntax

DBMS_APPLICATION_INFO.SET_MODULE (
module_name IN VARCHAR2,
action_name IN VARCHAR?2);

3-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms

Parameters
Table 3-2 SET_MODULE Procedure Parameters
Parameter Description
module_name Name of module that is currently running. When the current
module terminates, call this procedure with the name of the
new module if there is one, or NULL if there is not. Names
longer than 48 bytes are truncated.
action_name Name of current action within the current module. If you do
not want to specify an action, this value should be NULL
Names longer than 32 bytes are truncated.
Example

CREATE or replace PROCEDURE add _employee(
name VARCHAR2,
salary NUMBER,
manager NUMBER,
tite VARCHARZ,
commission NUMBER,
department NUMBER) AS
BEGIN
DBMS_APPLICATION_INFO.SET_MODULE(
module_name => ‘add_employee,
action_name => ‘insert into emp));
INSERT INTO emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES (hame, emp_seq.nextval, salary, manager, tite, SYSDATE,
commission, department);
DBMS_APPLICATION_INFO.SET_MODULE(null,null);
END;

SET_ACTION Procedure

This procedure sets the name of the current action within the current module. The
action name should be descriptive text about the current action being performed.
You should probably set the action name before the start of every transaction.

Syntax

DBMS_APPLICATION_INFO.SET_ACTION (
action_name IN VARCHAR?2);

DBMS_APPLICATION_INFO 3-3

READ_MODULE Procedure

Parameters

Table 3-3 SET_ACTION Procedure Parameters

Parameter Description

action_name The name of the current action within the current module.
When the current action terminates, call this procedure with
the name of the next action if there is one, or NULL if there is
not. Names longer than 32 bytes are truncated.

Usage Notes

Set the transaction name to NULL after the transaction completes, so that subsequent
transactions are logged correctly. If you do not set the transaction name to NULL,
subsequent transactions may be logged with the previous transaction’s name.

Example
The following is an example of a transaction that uses the registration procedure:
CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
BEGIN
— balance transfer transaction

DBMS_APPLICATION_INFO.SET_ACTION(
action_name => ‘ransfer from chk to sav);
UPDATE chk SET bal = bal + :amt
WHERE acct# = :acct;
UPDATE sav SET bal = bal - :amt
WHERE acct# = :acct,
COMMIT;
DBMS_APPLICATION_INFO.SET_ACTION(null);

END;

READ_MODULE Procedure

This procedure reads the values of the module and action fields of the current
session.

Syntax

DBMS_APPLICATION_INFO.READ_MODULE (
module_name OUT VARCHARZ,

3-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms

Parameters

Usage Notes

action_name OUT VARCHARY2),

Table 3-4 READ_MODULE Procedure Parameters

Parameter Description

module_name Last value that the module name was set to by calling SET_
MODULE

action_name Last value that the action name was set to by calling SET_

ACTIONor SET_MODULE

Module and action names for a registered application can be retrieved by querying
V$SQLAREAr by calling the READ_MODULRrocedure. Client information can be
retrieved by querying the VSSESSIONview, or by calling the READ_CLIENT_INFO
procedure.

Example

The following sample query illustrates the use of the MODULENnd ACTIONcolumn
of the V$SQLAREA

SELECT sql text, disk reads, module, action
FROM vésglarea
WHERE module = 'add_employee;

SQL TEXT DISK_READS MODULE ACTION

INSERT INTO emp 1 add employee insert into emp

(ename, empno, sal, mgr, job, hiredate, comm, deptno)

VALUES

(hame, nextemp_seq, manager, tile, SYSDATE, commission, department)

1 row selected.

SET_CLIENT_INFO Procedure

Syntax

This procedure supplies additional information about the client application.

DBMS_APPLICATION_INFO.SET_CLIENT INFO (

DBMS_APPLICATION_INFO 3-5

READ_CLIENT_INFO Procedure

client_info IN VARCHAR?);

Parameters

Table 3-5 SET_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Supplies any additional information about the client
application. This information is stored in the V$SESSIONS
view. Information exceeding 64 bytes is truncated.

Note: CLIENT_INFO is readable and writable by any user. For
storing secured application attributes, you can use the application
context feature.

READ CLIENT _INFO Procedure

This procedure reads the value of the client_info field of the current session.
Syntax
DBMS_APPLICATION_INFO.READ_CLIENT_INFO (
dient_info OUT VARCHARY);
Parameters

Table 3-6 READ_CLIENT_INFO Procedure Parameters

Parameter Description

client_info Last client information value supplied to the SET_CLIENT_
INFO procedure.

SET_SESSION_LONGOPS Procedure

This procedure sets a row in the V$SESSION_LONGOPSiew. This is a view that is
used to indicate the on-going progress of a long running operation. Some Oracle
functions, such as parallel execution and Server Managed Recovery, use rows in this
view to indicate the status of, for example, a database backup.

3-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLICATION_INFO Subprograms

Syntax

Pragmas

Parameters

Applications may use the set_session_longops procedure to advertise
information on the progress of application specific long running tasks so that the
progress can be monitored by way of the VESESSION_LONGOPS@iew.

DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS (

rindex
siho

op_name

target
context
sofar

totalwork
target desc IN

units

IN OUT BINARY_INTEGER,
IN OUT BINARY_INTEGER,

VARCHAR2 DEFAULT NULL,
BINARY_INTEGER DEFAULT 0,
BINARY_INTEGER DEFAULT 0,

NUMBER DEFAULT 0,
NUMBER DEFAULT 0,
VARCHAR2 DEFAULT ‘'unknown target,
VARCHAR2 DEFAULT NULL)

set session_longops_nohint constant BINARY_INTEGER = -1;

pragma TIMESTAMP('1998-03-12:12:00:00);

Table 3-7 SET_SESSION_LONGOPS Procedure Parameters

Parameter

Description

rindex

slno

op_name

target

context

A token which represents the v$session_longops row to
update. Set this to set_session_longops_nohint to starta
new row. Use the returned value from the prior call to reuse a
row.

Saves information across calls to set_session_longops It
is for internal use and should not be modified by the caller.

Specifies the name of the long running task. It appears as the
OPNAMEolumn of v$session_longops . The maximum
length is 64 bytes.

Specifies the object that is being worked on during the long
running operation. For example, it could be a table ID that is
being sorted. It appears as the TARGETcolumn of
v$session_longops

Any number the client wants to store. It appears in the
CONTEXTolumn of v$session_longops

DBMS_APPLICATION_INFO 3-7

SET_SESSION_LONGOPS Procedure

Table 3-7 SET_SESSION_LONGOPS Procedure Parameters

Parameter Description

Example

sofar Any number the client wants to store. It appears in the SOFAR

column of v$session_longops . This is typically the amount
of work which has been done so far.

totalwork Any number the client wants to store. It appears in the

TOTALWOREolumn of v$session_longops . This is
typically an estimate of the total amount of work needed to be
done in this long running operation.

target_desc Specifies the description of the object being manipulated in this

long operation. This provides a caption for the target
parameter. This value appears in the TARGET_DESdield of
v$session_longops . The maximum length is 32 bytes.

Specifies the units in which sofar and totalwork are being
represented. It appears as the UNITS field of vésession_
longops . The maximum length is 32 bytes.

This example performs a task on 10 objects in a loop. As the example completes
each object, Oracle updates VSSESSION_LONGOPSN the procedure’s progress.

DECLARE

rindex BINARY_INTEGER,;
sino BINARY_INTEGER,;
totalwork number;
sofar number;
obj BINARY_INTEGER;
BEGIN
rindex = dbms_application_info.set_session longops_nohint;
sofar = O;
totalwork = 10;

WHILE sofar < 10 LOOP
— update obj based on sofar
— perfom task on object target

sofar = sofar + 1;
dbms_application_info.set_session_longops(rindex, sino,
"Operation X", obj, O, sofar, totalwork, "table", "tables");
END LOOP;
END;

3-8 Oracle9i Supplied PL/SQL Packages and Types Reference

A

DBMS_APPLY_ADM

The DBMS_APPLY_ADpbckageprovides administrative procedures to start, stop,
and configure an apply process.

This chapter contains the following topic:

= Summary of DBMS_APPLY_ADM Subprograms

See Also: Oracle9i Streams for more information about the apply
process

DBMS_APPLY_ADM 4-1

Summary of DBMS_APPLY_ADM Subprograms

Summary of DBMS_APPLY ADM Subprograms

Table 4-1 DBMS_APPLY _ADM Subprograms (Page 1 of 2)

Subprogram Description

"ALTER_APPLY Procedure" on page 4-4
"CREATE_APPLY Procedure" on page 4-9

"DELETE_ALL_ERRORS Procedure" on
page 4-13

"DELETE_ERROR Procedure" on page 4-14

"DROP_APPLY Procedure” on page 4-14

"EXECUTE_ALL_ERRORS Procedure" on
page 4-15

"EXECUTE_ERROR Procedure" on
page 4-16

"GET_ERROR_MESSAGE Function” on
page 4-17

"SET_DML_HANDLER Procedure" on
page 4-18

"SET_GLOBAL_INSTANTIATION_SCN
Procedure"” on page 4-23

"SET_KEY_COLUMNS Procedure" on
page 4-26

"SET_PARAMETER Procedure” on
page 4-28

"SET_SCHEMA_INSTANTIATION_SCN
Procedure" on page 4-32

"SET_TABLE_INSTANTIATION_SCN
Procedure" on page 4-35

4-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Alters an apply process
Creates an apply process

Deletes all the error transactions for the
specified apply process from the error queue

Deletes the specified error transaction from
the error queue

Drops an apply process

Reexecutes the error queue transactions for
the specified apply process.

Reexecutes the specified error queue
transaction

Returns the message payload from the error
gueue for the specified message number and
transaction identifier

Alters operation options for a specified object
with a specified apply process

Records the specified instantiation SCN for
the specified source database

Records the set of columns to be used as the
substitute primary key for local apply
purposes and removes existing substitute
primary key columns for the specified object if
they exist

Sets an apply parameter to the specified value

Records the specified instantiation SCN for
the specified schema in the specified source
database

Records the specified instantiation SCN for
the specified table in the specified source
database

Summary of DBMS_APPLY_ADM Subprograms

Table 4-1 DBMS_APPLY _ADM Subprograms (Page 2 of 2)

Subprogram Description
"SET_UPDATE_CONFLICT_HANDLER Adds, updates, or drops an update conflict
Procedure" on page 4-37 handler for the specified object

"START_APPLY Procedure” on page 4-41 Directs the apply process to start applying
events

"STOP_APPLY Procedure" on page 4-42 Stops the apply process from applying any
events and rolls back any unfinished
transactions being applied

Note: All procedures and functions commit unless specified
otherwise.

DBMS_APPLY_ADM 4-3

ALTER_APPLY Procedure

ALTER_APPLY Procedure

Syntax

Parameters

Alters an apply process.

DBMS_APPLY ADMALTER APPLY(

apply_name
rule_set name
remove_rule_set
message_handler

remove_message_handler

ddl_handler
remove_ddl_handler
apply_user
apply_tag
remove_apply_tag

IN VARCHARZ,
IN VARCHAR2 DEFAULT NULL,

IN BOOLEAN DEFAULT false,

IN VARCHAR2 DEFAULT NULL

IN BOOLEAN DEFAULT false,
IN VARCHAR2 DEFAULT NULL,
IN BOOLEAN DEFAULT false,

IN VARCHAR2 DEFAULT NULL,
IN RAW DEFAULT NULL,

IN BOOLEAN DEFAULT false);

Table 4-2 ALTER_APPLY Procedure Parameters (Page 1 of 5)

Parameter

Description

apply_name

rule_set_name

The name of the apply process being altered. You must
specify an existing apply process name.

The name of the rule set that contains the apply rules for
this apply process. If you want to use a rule set for the apply
process, then you must specify an existing rule set in the
form [schema_name.] rule_set_name .For example, to
specify arule set in the hr schema named

job_apply_rules , enter hr.job_apply_rules . If the
schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist.
You can create a rule set and add rules to it using the
DBMS_RULE_ADphckage.

If you specify NULL, then the apply process applies all LCRs
and user messages in its queue.

4-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 4-2 ALTER_APPLY Procedure Parameters (Page 2 of 5)

Parameter

Description

remove_rule_set

message_handler

remove_message_handler

If true , then removes the rule set for the specified apply
process.

If false , then retains any rule set for the specified apply
process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false

A user-defined procedure that processes non-LCR messages
in the queue for the apply process. You must specify an
existing procedure in one of the following forms:

= [schema_name.] procedure_name
= [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package _name
must be specified. For example, to specify a procedure in
the apply_pkg package in the hr schema named
process_msgs , enter hr.apply_pkg.process_msgs

An error is returned if the specified procedure does not
exist.

If the schema is not specified, then the user who invokes the
ALTER_APPLYprocedure is the default. This user must
have EXECUTHBrivilege on a specified message handler.

If true , then removes the message handler for the specified
apply process.

If false , then retains any message handler for the specified
apply process.

If the message_handler parameter is non-NULL, then this
parameter should be set to false

DBMS_APPLY_ADM 4-5

ALTER_APPLY Procedure

Table 4-2 ALTER_APPLY Procedure Parameters (Page 3 of 5)

Parameter Description

ddl_handler A user-defined procedure that processes DDL LCRs in the
queue for the apply process. You must specify an existing
procedure in the form
[schema_name.] procedure_name . For example, to
specify a procedure in the hr schema named
process_ddIs , enter hr.process_ddls . An error is
returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
ALTER_APPLYprocedure is the default. This user must
have EXECUTHBrivilege on a specified DDL handler.

All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTEnember procedure of a
DDL LCR, then a commit is performed automatically.

remove_ddl_handler If true , then removes the DDL handler for the specified
apply process.

If false , then retains any DDL handler for the specified
apply process.

If the ddI_handler parameter is non-NULL, then this
parameter should be set to false

4-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 4-2 ALTER_APPLY Procedure Parameters (Page 4 of 5)

Parameter

Description

apply_user

apply_tag

The user who applies all DML and DDL changes and who
runs user-defined apply handlers. If NULL, then the apply
user is not changed.

The specified user must have the necessary privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. The specified user must also have
dequeue privileges on the queue used by the apply process
and privileges to execute the rule set and transformation
functions used by the apply process. These privileges must
be granted directly to the apply user; they cannot be
granted through roles.

By default, this parameter is set to the user who created the
apply process by running either the CREATE_APPLY
procedure in this package or one of the following
procedures in the DBMS_STREAMS_Alpdckage with the
streams_type parameter set to apply :

« ADD_GLOBAL_RULES
=« ADD_SCHEMA_RULES
« ADD_TABLE_RULES

« ADD_SUBSET _RULES

Note: If the specified user is dropped using DRORUSER

CASCADEthen the apply_user for the apply process
is set to NULLautomatically. You must specify an apply
user before the apply process can run.

A binary tag that is added to redo entries generated by the
specified apply process. The tag is a binary value that can be
used to track LCRs.

The tag is relevant only if a capture process at the database
where the apply process is running will capture changes
made by the apply process. If so, then the captured changes
will include the tag specified by this parameter.

If NULL, the default, then the apply tag for the apply process
is not changed.

The following is an example of a tag with a hexadecimal
value of 17:
HEXTORAW(17)

See Also: Oracle9i Streams for more information about tags

DBMS_APPLY_ADM 4-7

ALTER_APPLY Procedure

Table 4-2 ALTER_APPLY Procedure Parameters (Page 5 of 5)

Parameter Description

remove_apply_tag If true , then sets the apply tag for the specified apply
process to NULL, and the apply process generated redo
entries with NULLtags.

If false , then retains any apply tag for the specified apply
process.

If the apply_tag parameter is non-NULL, then this
parameter should be set to false

Usage Notes

An apply process is stopped and restarted automatically when you change the
value of one or more of the following ALTER_APPL Yprocedure parameters:

= message_handler
= ddl_handler

= apply_user

= apply_tag

4-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

CREATE_APPLY Procedure

Syntax

Parameters

Creates an apply process.

DBMS_APPLY ADM.CREATE APPLY(

queue_name IN VARCHAR2,

apply_name IN VARCHARZ,

rule_set name IN VARCHAR2 DEFAULT NULL,
message_handler IN VARCHAR2 DEFAULT NULL,
ddl_handler IN VARCHAR2 DEFAULT NULL,
apply_user IN VARCHAR2 DEFAULT NULL,
apply_database link IN VARCHAR2 DEFAULT NULL,
apply_tag IN RAW DEFAULT '00,
apply_captured IN BOOLEAN DEFAULT false);

Table 4-3 CREATE_APPLY Procedure Parameters (Page 1 of 4)

Parameter Description

gueue_name The name of the queue from which the apply process dequeues

LCRs and user messages. You must specify an existing queue
in the form [schema_name.] queue_name . For example, to
specify a queue in the hr schema named streams_queue ,
enter hr.streams_queue . If the schema is not specified, then
the current user is the default.

Note: The queue_name setting cannot be altered after the
apply process is created.

apply_name The name of the apply process being created. A NULL

specification is not allowed.

Note: The apply_name setting cannot be altered after the
apply process is created.

DBMS_APPLY_ADM 4-9

CREATE_APPLY Procedure

Table 4-3 CREATE_APPLY Procedure Parameters (Page 2 of 4)

Parameter Description

rule_set_name The name of the rule set that contains the apply rules for this
apply process. If you want to use a rule set for the apply
process, then you must specify an existing rule set in the form
[schema_name.] rule_set name .For example, to specify a
rule set in the hr schema named job_apply_rules , enter
hr.job_apply_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADphckage.

If you specify NULL, then the apply process applies all LCRs
and user messages in its queue.

message_handler A user-defined procedure that processes non-LCR messages in
the queue for the apply process. You must specify an existing
procedure in one of the following forms:

= [schema_name.] procedure_name
= [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package _name must
be specified. For example, to specify a procedure in the
apply_pkg package in the hr schema named

process_msgs , enter hr.apply_pkg.process_msgs .An
error is returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
CREATE_APPLYorocedure is the default. This user must have
EXECUTHBprivilege on a specified message handler.

See "Usage Notes" on page 4-13 for more information about a
message handler procedure.

4-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 4-3 CREATE_APPLY Procedure Parameters (Page 3 of 4)

Parameter

Description

ddl_handler

apply_user

A user-defined procedure that processes DDL LCRs in the
gueue for the apply process. You must specify an existing
procedure in one of the following forms:

= [schema_name.] procedure_name
= [schema_name.] package_name.procedure_name

If the procedure is in a package, then the package _name must
be specified. For example, to specify a procedure in the
apply_pkg package in the hr schema named

process_ddls , enter hr.apply_pkg.process_ddls .An
error is returned if the specified procedure does not exist.

If the schema is not specified, then the user who invokes the
CREATE_APPLYorocedure is the default. This user must have
EXECUTHBprivilege on a specified DDL handler.

All applied DDL LCRs commit automatically. Therefore, if a
DDL handler calls the EXECUTHEnember procedure of a DDL
LCR, then a commit is performed automatically.

See "Usage Notes" on page 4-13 for more information about a
DDL handler procedure.

The user who applies all DML and DDL changes and who runs
user-defined apply handlers. If NULL, then the user who runs
the CREATE_APPLYsrocedure is used.

The user must have the necessary privileges to perform DML
and DDL changes on the apply objects and to run any apply
handlers. The specified user must also have dequeue privileges
on the queue used by the apply process and privileges to
execute the rule set and transformation functions used by the
apply process. These privileges must be granted directly to the
apply user; they cannot be granted through roles.

Note: If the specified user is dropped using DROPUSER ..
CASCADEthen the apply_user setting for the apply process
is set to NULLautomatically. You must specify an apply user
before the apply process can run.

See Also: Oracle9i Streams for more information about the
privileges required to apply changes

DBMS_APPLY_ADM 4-11

CREATE_APPLY Procedure

Table 4-3 CREATE_APPLY Procedure Parameters (Page 4 of 4)

Parameter Description

apply_database_link The database at which the apply process applies messages.
This parameter is used by an apply process when applying
changes from Oracle to non-Oracle systems, such as Sybase. Set
this parameter to NULL to specify that the apply process
applies messages at the local database.

Note: The apply_database_link setting cannot be altered
after the apply process is created.

apply_tag A binary tag that is added to redo entries generated by the
specified apply process. The tag is a binary value that can be
used to track LCRs.

The tag is relevant only if a capture process at the database
where the apply process is running will capture changes made
by the apply process. If so, then the captured changes will
include the tag specified by this parameter.

By default, the tag for an apply process is the hexadecimal
equivalent of '00' (double zero).

The following is an example of a tag with a hexadecimal value
of 17:

HEXTORAW(17)

If NULL, then the apply process generates redo entries with
NULL tags.

See Also: Oracle9i Streams for more information about tags

apply_captured Either true or false

If true , then the apply process applies only the events in a
gueue that were captured by a Streams capture process.

If false , then the apply process applies only the
user-enqueued events in a queue. These events are user
messages that were not captured by a Streams capture process.
These messages may or may not contain a user-created LCR.

To apply both captured and user-enqueued events in a queue,
you must create at least two apply processes.

Note: The apply_captured setting cannot be altered after
the apply process is created.

See Also: Oracle9i Streams for more information about
captured and user-enqueued events

4-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Usage Notes

The procedure specified in both the message_handler parameter and the
ddl_handler parameter must have the following signature:

PROCEDUREandler_procedure (
parameter_name IN SYS.AnyData);

Here, handler_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
For the message handler, the parameter passed to the procedure is a SYS.AnyData
encapsulation of a user message. For the DDL handler procedure, the parameter
passed to the procedure is a SYS.AnyData encapsulation of a DDL LCR.

See Also: Chapter 108, "Logical Change Record Types" for
information DDL LCRs

DELETE_ALL ERRORS Procedure

Syntax

Parameter

Deletes all the error transactions for the specified apply process from the error
queue.

DBMS_APPLY_ADMDELETE_ALL_ERRORS(
apply name IN VARCHAR2 DEFAULT NULL);

Table -4 DELETE ALL _ERRORS Procedure Parameter

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions.

If NULL, then all error transactions for all apply processes are
deleted.

DBMS_APPLY_ADM 4-13

DELETE_ERROR Procedure

DELETE_ERROR Procedure

Deletes the specified error transaction from the error queue.

Syntax

DBMS_APPLY_ADM.DELETE ERROR(
local_transaction_id IN VARCHAR?);

Parameter

Table 4-5 DELETE _ERROR Procedure Parameter

Parameter Description

local_transaction_id The identification number of the error transaction to delete. If

the specified transaction does not exist in the error queue, then
an error is raised.

DROP_APPLY Procedure

Drops an apply process.

Syntax

DBMS_APPLY_ADM.DROP_APPLY(
apply_name IN VARCHAR?2);

Parameter

Table -6 DROP_APPLY Procedure Parameter

Parameter Description

apply_name The name of the apply process being dropped. You must
specify an existing apply process name.

4-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

EXECUTE_ALL_ERRORS Procedure

Syntax

Parameters

Reexecutes the error queue transactions for the specified apply process.

The transactions are reexecuted in commit SCN order. Error reexecution stops if an
error is raised.

DBMS_APPLY_ADM.EXECUTE_ALL ERRORS(
apply_name IN VARCHAR2 DEFAULT NULL
execute_as_user IN BOOLEAN DEFAULT false);

Table 4-7 EXECUTE_ALL ERRORS Procedure Parameters

Parameter Description

apply_name The name of the apply process that raised the errors while
processing the transactions.

If NULL, then all error transactions for all apply processes are
reexecuted.

execute_as_user If TRUE then reexecutes the transactions in the security context
of the current user.

If FALSE, then reexecutes each transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERRO@&ata dictionary
view lists the original receiver for each transaction in the error
queue.

The user who executes the transactions must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.

DBMS_APPLY_ADM 4-15

EXECUTE_ERROR Procedure

EXECUTE_ERROR Procedure

Reexecutes the specified error queue transaction.

Syntax
DBMS_APPLY_ADM.EXECUTE_ERROR(
local_transaction_id IN VARCHAR?2,
execute_as_user IN BOOLEAN DEFAULT FALSE);
Parameters

Table 4-8 EXECUTE_ERROR Procedure Parameters

Parameter Description

local_transaction_id The identification number of the error transaction to execute. If
the specified transaction does not exist in the error queue, then
an error is raised.

execute_as_user If TRUE then reexecutes the transaction in the security context
of the current user.

If FALSE, then reexecutes the transaction in the security
context of the original receiver of the transaction. The original
receiver is the user who was processing the transaction when
the error was raised. The DBA_APPLY_ERRO@&ata dictionary
view lists the original receiver for each transaction in the error
queue.

The user who executes the transaction must have privileges to
perform DML and DDL changes on the apply objects and to
run any apply handlers. This user must also have dequeue
privileges on the queue used by the apply process.

4-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

GET_ERROR_MESSAGE Function

Returns the message payload from the error queue for the specified message
number and transaction identifier.

Syntax
DBMS_APPLY _ADM.GET_ERROR_MESSAGE(
message_number IN NUMBER,
local_transaction_id IN VARCHAR2)
RETURN SysAnydata;
Parameters

Table 4-9 GET_ERROR_MESSAGE Function Parameters

Parameter Description

message_number The identification number of the message. Query the

DBA_APPLY_ERRO@®ata dictionary view to view the message
number of each apply error.

local_transaction_id Identifier of the error transaction for which to return a message

DBMS_APPLY_ADM 4-17

SET_DML_HANDLER Procedure

SET_DML_HANDLER Procedure

Syntax

Sets a user procedure as a DML handler for a specified operation on a specified
object. The user procedure alters the apply behavior for the specified operation on
the specified object. Run this procedure at the destination database. The
SET_DML_HANDLEPRrocedure provides a way for users to apply logical change
records containing DML changes (row LCRs) using a customized apply.

If the error_handler parameter is set to true , then it specifies that the user
procedure is an error handler. An error handler is invoked only when a row LCR
raises an apply process error. Such an error may result from a data conflict if no
conflict handler is specified or if the update conflict handler cannot resolve the
conflict. If the error_handler parameter is set to false , then the user procedure
is a DML handler, not an error handler, and a DML handler is always run instead of
performing the specified operation on the specified object.

This procedure either sets a DML handler or an error handler for a particular
operation on an object. It cannot set both a DML handler and an error handler for
the same object and operation.

At the source database, you must specify an unconditional supplemental log group
for the columns needed by a DML or error handler.

Note: Currently, setting an error handler for an apply process that
is applying changes to a non-Oracle database is not supported.

DBMS APPLY_ADM.SET DML HANDLER(

object_ name IN VARCHAR2,

object _type IN VARCHAR2,
operation_name IN VARCHARZ,

error_handler IN BOOLEAN DEFAULT false,
user_procedure IN VARCHAR2,

apply_database link IN VARCHAR2 DEFAULT NULL);

4-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Parameters

Table 4-10 SET_DML_HANDLER Procedure Parameters (Page 1 of 2)

Parameter

Description

object_name

object_type

operation_name

error_handler

The name of the source object specified as

[schema_name.] object name .For example,

hr.employees . If the schema is not specified, then the current
user is the default.

The type of the source object. Currently, TABLEIs the only
possible source object type.

The name of the operation, which can be specified as:
» INSERT

= UPDATE

= DELETE

= LOB_UPDATE

For example, suppose you run this procedure twice for the
hr.employees table. In one call, you set operation_name

to UPDATEand user_procedure to employees_update .In
another call, you set operation_name to INSERT and
user_procedure to employees_insert . Both times, you
set error_handler to false

In this case, the employees_update procedure is run for
UPDATEBEoperations on the hr.employees table, and the
employees_insert procedure is run for INSERT operations
on the hr.employees table.

If true , then the specified user procedure is run when a row
LCR involving the specified operation on the specified object
raises an apply process error. The user procedure may try to
resolve possible error conditions, or it may simply notify
administrators of the error or log the error.

If false , then the handler being set is run for all row LCRs
involving the specified operation on the specified object.

Note: Currently, error handlers are not supported when
applying changes to a non-Oracle database.

DBMS_APPLY_ADM 4-19

SET_DML_HANDLER Procedure

Table 4-10 SET_DML_HANDLER Procedure Parameters (Page 2 of 2)

Parameter Description

user_procedure A user-defined procedure that is invoked during apply for the
specified operation on the specified object. If the procedure is a
DML handler, then it is invoked instead of the default apply
performed by Oracle. If the procedure is an error handler, then
it is invoked when the apply process encounters an error.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Usage Notes

The SET_DML_HANDLEPRrocedure can be used to set either a general DML handler
or an error handler for row LCRs that perform a specified operation on a specified
object. The following sections describe the signature of a general DML handler
procedure and the signature of an error handler procedure.

In either case, you must specify the full procedure name for the user_procedure
parameter in one of the following forms:

s [schema_name.]p ackage name.procedure_name
s [schema_name.] procedure_name

If the procedure is in a package, then the package _name must be specified. If the
schema is not specified, then the user who invokes the SET_DML_HANDLER
procedure is the default. This user must have EXECUTHprivilege on the specified
procedure.

For example, suppose the procedure_name has the following properties:
s hr isthe schema name.

= apply_pkg isthe package name .

= employees_default is the procedure_name

In this case, specify the following:

hr.apply_pkg.employees_default

4-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

The following restrictions apply to the user procedure:

s Do not execute COMMITor ROLLBACKstatements. Doing so may endanger the
consistency of the transaction that contains the LCR.

s If you are manipulating a row using the EXECUTENember procedure for the
row LCR, then do not attempt to manipulate more than one row in a row
operation. You must construct and execute manually any DML statements that
manipulate more than one row.

s If the command type is UPDATEor DELETE then row operations resubmitted
using the EXECUTEmember procedure for the LCR must include the entire key
in the list of old values. The key is the primary key, unless a substitute key has
been specified by the SET_KEY_COLUMN#&ocedure.

= If the command type is INSERT, then row operations resubmitted using the
EXECUTHnember procedure for the LCR should include the entire key in the
list of new values. Otherwise, duplicate rows are possible. The key is the
primary key, unless a substitute key has been specified by the
SET_KEY_COLUMN#&rocedure.

Signature of a General DML Handler Procedure
The procedure specified in the user_procedure parameter must have the
following signature:

PROCEDURIEser procedure (
parameter_name IN SYS.AnyData);

Here, user_procedure stands for the name of the procedure and
parameter_name stands for the name of the parameter passed to the procedure.
The parameter passed to the procedure is a SYS.AnyData encapsulation of a row
LCR.

See Also: Chapter 108, "Logical Change Record Types" for more
information about LCRs

DBMS_APPLY_ADM 4-21

SET_DML_HANDLER Procedure

Signature of an Error Handler Procedure
The procedure you create for error handling must have the following signature:

PROCEDURSser procedure (

message IN SYS.AnyData,
enor_stack depth IN NUMBER,
error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
error_messages IN emsg_aray);
Note:

= Each parameter is required and must have the specified
datatype. However, you can change the names of the
parameters.

= Theemsg_array parameter must be a user-defined array that
is a table of type VARCHARZ®2vith at least 76 characters.

Running an error handler results in one of the following outcomes:

The error handler successfully resolves the error and returns control to the
apply process.

The error handler fails to resolve the error, and the error is raised. The raised
error causes the transaction to be rolled back and placed in the error queue.

If you want to retry the DML operation, then have the error handler procedure run
the EXECUTHENember procedure for the LCR.

4-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

SET_GLOBAL_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified source database. This
procedure overwrites any existing instantiation SCN for the database.

This procedure gives you precise control over which DDL LCRs for a database are
ignored and which DDL LCRs are applied by an apply process. If the commit SCN
of a DDL LCR for a database object from a source database is less than or equal to
the instantiation SCN for that database at some destination database, then the apply
process at the destination database disregards the DDL LCR. Otherwise, the apply
process applies the DDL LCR.

The instantiation SCN specified by this procedure is used for a DDL LCR only if the
DDL LCR does not have object owner , base table owner ,and

base table name specified. For example, the instantiation SCN set by this
procedure is used for DDL LCRs with a command_type of CREATBJSER

Attention: If you run the SET_GLOBAL_INSTANTIATION_SCN
for a database, then you should run
SET_SCHEMA_INSTANTIATION_SCifbr all of the existing
schemas in the database and SET_TABLE_INSTANTIATION_SCN
for all of the existing tables in the database. If you add new
schemas and tables to the database in the future, then you need not
run these procedures for the new schemas and tables.

DBMS_APPLY_ADM 4-23

SET_GLOBAL_INSTANTIATION_SCN Procedure

Note:

This procedure sets the instantiation SCN only for DDL LCRs.
To set the instantiation SCN for row LCRs, which record the
results of DML changes, use
SET_TABLE_INSTANTIATION_SCN

The instantiation SCN set by the
SET_SCHEMA_INSTANTIATION_SCIgrocedure is used for
DDL LCRs that have object_owner specified.

The instantiation SCN set by the
SET_TABLE_INSTANTIATION_SCNprocedure is used for
DDL LCRs that have both base _table_ owner and
base_table_name specified, except for DDL LCRs with a
command_type of CREATETABLE

The instantiation SCN specified by this procedure is used only
for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

"SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 4-32

"SET_TABLE_INSTANTIATION_SCN Procedure" on page 4-35

"LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

Oracle9i Streams

4-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Syntax

Parameters

DBMS_APPLY ADM.SET GLOBAL_INSTANTIATION_SCN(
source_database name IN VARCHARZ,
instantiation_scn IN NUMBER,
apply_database link IN VARCHAR2 DEFAULT NULL);

Table 4-11 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters

Parameter Description
source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local
domain is appended to the database name automatically. For
example, if you specify DBS1and the local domain is .NET,
then DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN number. Specify NULLto remove the
instantiation SCN metadata for the source database from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.

DBMS_APPLY_ADM 4-25

SET_KEY_COLUMNS Procedure

SET_KEY_COLUMNS Procedure

Records the set of columns to be used as the substitute primary key for apply
purposes and removes existing substitute primary key columns for the specified
object if they exist. Unlike true primary keys, these columns may contain NULLs.

When not empty, this set of columns takes precedence over any primary key for the
specified object. Do not specify substitute key columns if the object already has
primary key columns and you want to use those primary key columns as the key.

Run this procedure at the destination database. At the source database, you must
specify an unconditional supplemental log group for the substitute key columns.

Note:

= Oracle Corporation recommends that each column you specify
as a substitute key column be a NOTNULL column. You should
also create a single index that includes all of the columns in a
substitute key. Following these guidelines improves
performance for updates, deletes, and piecewise updates to
LOBs because Oracle can locate the relevant row more
efficiently.

= You should not permit applications to update the primary key
or substitute key columns of a table. This ensures that Oracle
can identify rows and preserve the integrity of the data.

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

4-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Syntax

Parameters

DBMS_APPLY_ADM.SET_KEY_COLUMNS(

object name

{ column_list
column_table

apply_database_link

IN VARCHARZ,

IN VARCHAR?, |
IN DBMS_UTILITY.NAME ARRAY, }
IN VARCHAR2 DEFAULT NULL);

Table 4-12 SET_KEY_COLUMNS Procedure Parameters

Parameter

Description

object_name

column_list

column_table

apply_database_link

The name of the table specified as

[schema_name.] object_name . For example,

hr.employees . If the schema is not specified, then the current
user is the default. If the apply process is applying changes to a
non-Oracle database in a heterogeneous environment, then the
object name is not verified.

A comma-delimited list of the columns in the table that you
want to use as the substitute primary key, with no spaces
between the column names.

If the column_list parameter is empty or NULL, then the
current set of key columns is removed.

A PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAYof the columns in the table that
you want to use as the substitute primary key. The index for
column_table must be 1-based, increasing, dense, and
terminated by a NULL.

If the column_table parameter is empty or NULL, then the
current set of key columns is removed.

The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

DBMS_APPLY_ADM 4-27

SET_PARAMETER Procedure

SET_PARAMETER Procedure

Sets an apply parameter to the specified value.

When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

Syntax
DBMS_APPLY_ADM.SET_PARAMETER (
apply_name IN VARCHAR?2,
parameter IN VARCHARZ2,
value IN VARCHARY);
Parameters

Table 4-13 SET_PARAMETER Procedure Parameters

Parameter Description
apply_name The apply process name
parameter The name of the parameter you are setting. See "Apply Process

Parameters" on page 4-29 for a list of these parameters.

value The value to which the parameter is set

4-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Apply Process Parameters
The following table lists the parameters for the apply process.

Table 4-14 Apply Process Parameters (Page 1 of 3)

Parameter Name

Possible
Values Default

Description

commit_serialization

disable_on_error

disable_on_limit

maximum_scn

full or full
none

YorN Y

YorN N

A valid SCN infinite
or infinite

The order in which applied transactions are
committed.

If full , then the apply process commits applied
transactions in the order in which they were
committed at the source database.

If none, then the apply process may commit
transactions may commit in any order. Performance is
best if you specify none.

Regardless of the specification, applied transactions
may execute in parallel subject to data dependencies
and constraint dependencies.

Logical standby environments typically specify full

If Y, then the apply process is disabled on the first
unresolved error, even if the error is not fatal.

If N, then the apply process continues regardless of
unresolved errors.

If Y, then the apply process is disabled if the apply
process terminates because it reached a value
specified by the time_limit parameter or
transaction_limit parameter.

If N, then the apply process is restarted immediately
after stopping because it reached a limit.

The apply process is disabled before applying a
transaction with a commit SCN greater than or equal
to the value specified.

If infinite , then the apply process runs regardless
of the SCN value.

DBMS_APPLY_ADM 4-29

SET_PARAMETER Procedure

Table 4-14 Apply Process Parameters

(Page 2 of 3)

Possible

Parameter Name Values Default

Description

parallelism A positive 1

integer

startup_seconds 0, a positive 0
integer, or

infinite

time_limit A positive infinite
integer or

infinite

trace_level Oora 0
positive

integer

The number of transactions that may be concurrently
applied

Note:

= When you change the value of this parameter, the
apply process is stopped and restarted
automatically. This may take some time
depending on the size of the transactions
currently being applied.

= Setting the parallelism parameter to a number
higher than the number of available parallel
execution servers may disable the apply process.
Make sure the PROCESSESnd
PARALLEL_MAX_SERVERSitialization
parameters are set appropriately when you set
the parallelism apply process parameter.

The maximum number of seconds to wait for another
instantiation of the same apply process to finish. If the
other instantiation of the same apply process does not
finish within this time, then the apply process does
not start.

If infinite , then an apply process does not start
until another instantiation of the same apply process
finishes.

The apply process stops as soon as possible after the
specified number of seconds since it started.

If infinite , then the apply process continues to run
until it is stopped explicitly.

Set this parameter only under the guidance of Oracle
Support Services.

4-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 4-14 Apply Process Parameters (Page 3 of 3)

Possible
Parameter Name Values Default Description
transaction_limit A positive infinite The apply process stops after applying the specified
integer or number of transactions.
infinite If infinite , then the apply process continues to run
regardless of the number of transactions applied.
write_alert_log YorN Y If Y, then the apply process writes a message to the
alert log on exit.
If N, then the apply process does not write a message
to the alert log on exit.
The message specifies the reason why the apply
process stopped.
Note:

= For all parameters that are interpreted as positive integers, the
maximum possible value is 4,294,967,295 . Where
applicable, specify infinite for larger values.

= For parameters that require an SCN setting, any valid SCN
value can be specified.

DBMS_APPLY_ADM 4-31

SET_SCHEMA_INSTANTIATION_SCN Procedure

SET_SCHEMA_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified schema in the specified
source database. This procedure overwrites any existing instantiation SCN for the
particular schema.

This procedure gives you precise control over which DDL LCRs for a schema are
ignored and which DDL LCRs are applied by an apply process. If the commit SCN
of a DDL LCR for a database object in a schema from a source database is less than
or equal to the instantiation SCN for that database object at some destination
database, then the apply process at the destination database disregards the DDL
LCR. Otherwise, the apply process applies the DDL LCR.

The instantiation SCN specified by this procedure is used on the following types of
DDL LCRs:

s DDL LCRs with acommand_type of CREATETABLE

s DDL LCRs with a non-NULLobject_owner specified and no
base table owner nor base_table name specified.

For example, the instantiation SCN set by this procedure is used for a DDL LCR
with a command_type of CREATETABLEand ALTERUSER

The instantiation SCN specified by this procedure is not used for DDL LCRs with a
command_type of CREATBJSER

Attention: If you run the SET_SCHEMA_INSTANTIATION_SCN
for a schema, then you should run
SET_TABLE_INSTANTIATION_SCNfor all of the existing tables in
the schema. If you add new tables to the schema in the future, then
you need not run SET_TABLE_INSTANTIATION_SCNfor these
tables.

4-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Note:

This procedure sets the instantiation SCN only for DDL LCRs.
To set the instantiation SCN for row LCRs, which record the
results of DML changes, use
SET_TABLE_INSTANTIATION_SCN

The instantiation SCN set by the
SET_TABLE_INSTANTIATION_SCNprocedure is used for
DDL LCRs that have both base _table_ owner and
base_table_name specified, except for DDL LCRs with a
command_type of CREATETABLE

The instantiation SCN specified by this procedure is used only
for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

"SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 4-23

"SET_TABLE_INSTANTIATION_SCN Procedure" on page 4-35

"LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

Oracle9i Streams

DBMS_APPLY_ADM 4-33

SET_SCHEMA_INSTANTIATION_SCN Procedure

Syntax
DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
source_schema_name IN VARCHARZ,
source_database name IN VARCHARZ,
instantiation_scn IN NUMBER,
apply_database link IN VARCHAR2 DEFAULT NULL);
Parameters

Table 4-15 SET_SCHEMA INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_schema_name The name of the source schema. For example, hr.

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local is
appended to the database name automatically. For example,
if you specify DBS1and the local domain is .NET, then
DBS1.NET is specified automatically.

instantiation_scn The instantiation SCN number. Specify NULLto remove the
instantiation SCN metadata for the source schema from the
data dictionary.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database
of a local apply process is a non-Oracle database.

4-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

SET_TABLE_INSTANTIATION_SCN Procedure

Records the specified instantiation SCN for the specified table in the specified
source database. This procedure overwrites any existing instantiation SCN for the
particular table.

This procedure gives you precise control over which LCRs for a table are ignored
and which LCRs are applied by an apply process. If the commit SCN of an LCR for
a table from a source database is less than or equal to the instantiation SCN for that
table at some destination database, then the apply process at the destination
database disregards the LCR. Otherwise, the apply process applies the LCR.

The instantiation SCN specified by this procedure is used on the following types of
LCRs:

= Row LCRs for the table

= DDL LCRs that have a non-NULLbase_table_owner and
base table name specified, except for DDL LCRs with a command_type of
CREATETABLE

For example, the instantiation SCN set by this procedure is used for DDL LCRs
with a command_type of ALTERTABLEor CREATETRIGGER

Note: The instantiation SCN specified by this procedure is used
only for LCRs captured by a capture process. It is not used for
user-created LCRs.

See Also:

s "SET_GLOBAL_INSTANTIATION_SCN Procedure" on
page 4-23

» "SET_SCHEMA_INSTANTIATION_SCN Procedure" on
page 4-32

= "LCR$_ROW_RECORD Type" on page 108-15 for more
information about row LCRs

= "LCR$_DDL_RECORD Type" on page 108-3 for more
information about DDL LCRs

s Oracle9i Streams

DBMS_APPLY_ADM 4-35

SET_TABLE_INSTANTIATION_SCN Procedure

Syntax
DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
source_object_name IN VARCHAR2,
source_database name IN VARCHARZ,
instantiation_scn IN NUMBER,
apply_database link IN VARCHAR2 DEFAULT NULL);
Parameters

Table 4-16 SET_TABLE _INSTANTIATION_SCN Procedure Parameters

Parameter Description

source_object_name The name of the source object specified as
[schema_name.] object_name .For example,
hr.employees . If the schema is not specified, then the
current user is the default.

source_database_name The global name of the source database. For example,
DBS1.NET.

If you do not include the domain name, then the local
domain name is appended to the database name
automatically. For example, if you specify DBS1and the
global domain is .NET, then DBS1.NET is specified
automatically.

instantiation_scn The instantiation SCN number. Specify NULLto remove the
instantiation SCN metadata for the source table from the data
dictionary.

apply_database_link The name of the database link to a non-Oracle database. This

parameter should be set only when the destination database
of a local apply process is a non-Oracle database.

4-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

SET_UPDATE_CONFLICT_HANDLER Procedure

Adds, modifies, or removes an update conflict handler for the specified object.

If you want to modify an existing update conflict handler, then you specify the table
and resolution column of an the existing update conflict handler. You can modify
the prebuilt method or the column list.

If you want to remove an existing update conflict handler, then specify NULL for the
prebuilt method and specify the table, column list, and resolution column of the
existing update conflict handler.

If an update conflict occurs, then Oracle completes the following series of actions:
1. Calls the appropriate update conflict handler to resolve the conflict

2. If no update conflict handler is specified or if the update conflict handler cannot
resolve the conflict, then calls the appropriate error handler for the apply
process, table, and operation to handle the error

3. Ifnoerror handler is specified or if the error handler cannot resolve the error,
then raises an error and moves the transaction containing the row LCR that
caused the error to the error queue

Note: Currently, setting an update conflict handler for an apply
process that is applying to a non-Oracle database is not supported.

See Also: "Signature of an Error Handler Procedure" on page 4-22
for information about setting an error handler

Syntax
DBMS_APPLY_ADM.SET_UPDATE_CONFLICT _HANDLER(
object name IN VARCHAR2,
method_name IN VARCHAR2,
resolution_column IN VARCHARZ,
column_list IN DBMS_UTILITY.NAME_ARRAY,

apply_database link IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM 4-37

SET_UPDATE_CONFLICT_HANDLER Procedure

Parameters

Table 4-17 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

Parameter Description

object_name The schema and name of the table, specified as
[schema_name.] object_name , for which an update conflict
handler is being added, modified, or removed.

For example, if an update conflict handler is being added for
table employees owned by user hr, then specify
hr.employees . If the schema is not specified, then the current
user is the default.

method_name Type of update conflict handler to create.

You can specify one of the built-in handlers, which determine
whether the column list from the source database is applied for
the row or whether the values in the row at the destination
database are retained:

= MAXIMUMAPpplies the column list from the source
database if it has the greater value for the resolution
column. Otherwise, retains the values at the destination
database.

= MINIMUM Applies the column list from the source
database if it has the lesser value for the resolution
column. Otherwise, retains the values at the destination
database.

= OVERWRITEApplies the column list from the source
database, overwriting the column values at the destination
database

= DISCARD Retains the column list from the destination
database, discarding the column list from the source
database

If NULL, then removes any existing update conflict handler
with the same object_name |, resolution_column ,and
column_list . If non-NULL, then replaces any existing update
conflict handler with the same object_name and
resolution_column

4-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

Table 4-17 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

Parameter Description

resolution_column Name of the column used to uniquely identify an update
conflict handler. For the MAXIMUMNd MINIMUMprebuilt
methods, the resolution column is also used to resolve the
conflict. The resolution column must be one of the columns
listed in the column_list parameter.

NULLIis not allowed for this parameter. For the OVERWRITE
and DISCARDprebuilt methods, you can any column in the
column list.

column_list List of columns for which the conflict handler is called.

If a conflict occurs for one or more of the columns in the list
when an apply process tries to apply a row LCR, then the
conflict handler is called to resolve the conflict. The conflict
handler is not called if a conflict occurs only for columns that
are not in the list.

Note: Conflict resolution does not support LOB columns.
Therefore, you should not include LOB columns in the
column_list parameter.

apply_database_link The name of the database link to a non-Oracle database. This
parameter should be set only when the destination database is
a non-Oracle database.

Note: Currently, conflict handlers are not supported when
applying changes to a non-Oracle database.

DBMS_APPLY_ADM 4-39

SET_UPDATE_CONFLICT_HANDLER Procedure

Usage Notes

The following is an example for setting an update conflict handler for the
employees table in the hr schema:

DECLARE

cols DBMS_UTILITY.NAME_ARRAY;

BEGIN

cals(l) = ‘salary;

cals(2) = ‘commission_pct;
DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
object name => ‘hremployees,
method_name = 'MAXIMUM,
resolution_column = ‘salary,
column_list => cols);

END;

/

This example sets a conflict handler that is called if a conflict occurs for the salary
or commission_pct column in the hr.employees table. If such a conflict occurs,
then the salary column is evaluated to resolve the conflict. If a conflict occurs only
for a column that is not in the column list, such as the job_id column, then this
conflict handler is not called.

4-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

START_APPLY Procedure

Syntax

Parameter

Directs the apply process to start applying events.

The start status is persistently recorded. Hence, if the status is START then the
apply process is started upon database instance startup. Each apply process is an
Oracle background process and is prefixed by AP

The enqueue and dequeue state of DBMS_AQADM.START_QUE®bI
DBMS_AQADM.STOP_QUEbL#&ve no effect on the start status of an apply process.

You can create the apply process using the following procedures:
= DBMS_APPLY_ADM.CREATE_APPLY

» DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

»« DBMS_STREAMS_ADM.ADD_SCHEMA RULES

=« DBMS_STREAMS ADM.ADD_TABLE_RULES

» DBMS_STREAMS_ADM.ADD_SUBSET_RULES

See Also: Chapter 73, "DBMS_STREAMS_ADM"

DBMS_APPLY_ADM.START APPLY(
apply_ name IN VARCHARY);

Table 4-18 START_APPLY Procedure Parameter

Parameter Description

apply_name The apply process name. A NULL setting is not allowed.

DBMS_APPLY_ADM 4-41

STOP_APPLY Procedure

STOP_APPLY Procedure

Stops the apply process from applying events and rolls back any unfinished
transactions being applied.

The stop status is persistently recorded. Hence, if the status is STORthen the apply
process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEBd
DBMS_AQADM.STOP_QUEb&ve no effect on the STOPstatus of an apply process.

Syntax
DBMS_APPLY_ADM.STOP_APPLY(
apply name IN VARCHAR2
force IN BOOLEAN DEFAULT false);
Parameters

Table 4-19 STOP_APPLY Procedure Parameters

Parameter Description
apply_name The apply process name. A NULL setting is not allowed.
force If true , then stops the apply process as soon as possible.

If false , then stops the apply process after ensuring that there
are no gaps in the set of applied transactions.

The behavior of the apply process depends on the setting
specified for the force parameter and the setting specified for the
commit_serialization apply process parameter. See "Usage
Notes" for more information.

Usage Notes

The following table describes apply process behavior for each setting of the force
parameter in the STOP_APPL Yprocedure and the commit_serialization apply
process parameter. In all cases, the apply process rolls back any unfinished
transactions when it stops.

4-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_APPLY_ADM Subprograms

force commit_serialization Apply Process Behavior

true full The apply process stops immediately and does not
apply any unfinished transactions.

true none When the apply process stops, some transactions that
have been applied locally may have committed at the
source database at a later point in time than some
transactions that have not been applied locally.

false full The apply process stops after applying the next
uncommitted transaction in the commit order, if any
such transaction is in progress.

false none Before stopping, the apply process applies all of the
transactions that have a commit time that is earlier than
the applied transaction with the most recent commit
time.

For example, assume that the commit_serialization apply process parameter
is set to none and there are three transactions: transaction 1 has the earliest commit
time, transaction 2 is committed after transaction 1, and transaction 3 has the latest
commit time. Also assume that an apply process has applied transaction 1 and
transaction 3 and is in the process of applying transaction 2 when the STOP_APPLY
procedure is run. Given this scenario, if the force parameter is set to true , then
transaction 2 is not applied, and the apply process stops (transaction 2 is rolled
back). If, however, the force parameter is set to false , then transaction 2 is
applied before the apply process stops.

A different scenario would result if the commit_serialization apply process
parameter is set to full . For example, assume that the commit_serialization
apply process parameter is set to full and there are three transactions:
transaction A has the earliest commit time, transaction B is committed after
transaction A, and transaction C has the latest commit time. In this case, the apply
process has applied transaction A and is in the process of applying transactions B
and C when the STOP_APPL Yprocedure is run. Given this scenario, if the force
parameter is set to true , then transactions B and C are not applied, and the apply
process stops (transactions B and C are rolled back). If, however, the force
parameter is set to false , then transaction B is applied before the apply process
stops, and transaction C is rolled back.

See Also: "SET_PARAMETER Procedure” on page 4-28 for more
information about the commit_serialization apply process
parameter

DBMS_APPLY_ADM 4-43

STOP_APPLY Procedure

4-44 Oracle9i Supplied PL/SQL Packages and Types Reference

D

DBMS_AQ

The DBMS_AQackage provides an interface to Oracle’s Advanced Queuing.

See Also:
= Oracle9i Application Developer’s Guide - Advanced Queuing
= Chapter 106, "Advanced Queuing Types" for information about
the TYPEs to use with DBMS_AQ
This chapter discusses the following topics:
= Java Classes
= Enumerated Constants
= Data Structures for DBMS_AQ
= Summary of DBMS_AQ Subprograms

DBMS_AQ 5-1

Java Classes

Java Classes

Java interfaces are available for DBMS_AQ@nd DBMS_AQADNIhe Java interfaces are
provided in the SORACLE_HOME/rdbms/jlib/agapi Jar . Users are required to
have EXECUTHBprivileges on the DBMS_AQINpackage to use these interfaces.

Enumerated Constants

When using enumerated constants such as BROWSH OCKEDor REMOVEhe
PL/SQL constants must be specified with the scope of the packages defining it. All
types associated with the operational interfaces have to be prepended with DBMS _
AQ For example: DBMS_AQ.BROWSE

Table 5-1 Enumerated Constants

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA
navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION
state WAITING, READY, PROCESSED, EXPIRED

sequence_deviation BEFORE, TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

Data Structures for DBMS_AQ

5-2

Table 5-2 Data Structures for DBMS_AQ

Data Structures

Object Name on page 5-3
Type Name on page 5-3
AQ PL/SQL Callback on page 5-4

Oracle9/ Supplied PL/SQL Packages and Types Reference

Data Structures for DBMS_AQ

Object Name

Syntax

Usage Notes

Type Name

Syntax

Attributes

The object name data structure names database objects. It applies to queues,
gueue tables, agent names, and object types.

object name = VARCHAR2
object name = [<schema_name>.]J<name>;

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, the current schema is assumed. The name must
follow object name guidelines in the Oracle9i SQL Reference with regard to reserved
characters. Schema names, agent names, and object type names can be up to 30
bytes long. Queue names and queue table names can be up to 24 bytes long.

The type_name data structure defines queue types.

type_name = VARCHARZ,
type_name := <object type> | "RAW"

Table 5-3 Type Name Attributes

Attribute Description
<object_types> Maximum number of attributes in the object type is limited to
900.

DBMS_AQ 5-3

AQ PL/SQL Callback

Table 5-3 (Cont.) Type Name Attributes

Attribute

Description

“RAW”

To store payload of type RAWAQ creates a queue table with a
LOBcolumn as the payload repository. The theoretical
maximum size of the message payload is the maximum
amount of data that can be stored in a LOBcolumn. However,
the maximum size of the payload is determined by which
programmatic environment you use to access AQ. For
PL/SQL, Java and precompilers the limit is 32K; for the OCI
the limit is 4G. Because the PL/SQL enqueue and dequeue
interfaces accept RAWbuffers as the payload parameters you
will be limited to 32K bytes. In OCI, the maximum size of your
RAWata will be limited to the maximum amount of
contiguous memory (as an OCIRawis simply an array of bytes)
that the OCI Object Cache can allocate. Typically, this will be at
least 32K bytes and much larger in many cases.

Because LOBcolumns are used for storing RAWpayload, the
AQ administrator can choose the LOBtablespace and configure
the LOBstorage by constructing a LOBstorage string in the
storage_clause parameter during queue table creation
time.

AQ PL/SQL Callback

The plsglcallback

data structure specifies the user-defined PL/SQL procedure,

defined in the database to be invoked on message notification.

Syntax

If a notification message is expected for a RAWpayload enqueue, then the PL/SQL
callback must have the following signature;

procedure plsgjcallback(

context IN RAW,

reginffo IN SYS.AQ$ REG INFO,
descr IN SYS.AQ$ DESCRIPTOR,
payload IN RAW,

payloadl IN NUMBER);

5-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

Attributes

Table 5-4 AQ PL/SQL Callback Attributes

Attribute Description

context Specifies the context for the callback function that was passed
by dbms_ag.register . See "AQ$_REG_INFO Type" on
page 106-5.

reginfo See "AQ$_REG_INFO Type" on page 106-5.

descr See "AQ$_DESCRIPTOR Type" on page 106-3.

payload If a notification message is expected for a raw payload enqueue

then this contains the raw payload that was enqueued into a
non persistent queue.

In case of a persistent queue with raw payload this parameter

will be null.
payloadl Specifies the length of payload . If payload is null,
payloadl =0.

If the notification message is expected for an ADT payload enqueue, the PL/SQL
callback must have the following signature;

procedure plsgicallback(
context IN RAW,
reginfio IN SYSAQ$ REG_INFO,
descr IN SYS.AQ$ DESCRIPTOR,
payload IN VARCHAR2,
payloadl IN NUMBER);

Summary of DBMS_AQ Subprograms

Table 5-5 DBMS_AQ Package Subprograms

Subprograms Description

ENQUEUE Procedure on Adds a message to the specified queue.

page 5-6

DEQUEUE Procedure on Dequeues a message from the specified queue.

page 5-8

LISTEN Procedure on Listen to one or more queues on behalf of a list of agents.
page 5-11

DBMS_AQ 5-5

ENQUEUE Procedure

Table 5-5 (Cont.) DBMS_AQ Package Subprograms

Subprograms Description

REGISTER Procedure on
page 5-12

UNREGISTER Procedure on
page 5-13

POST Procedure on page 5-13

BIND_AGENT Procedure on

Registers for message notifications
Unregisters a subscription which turns off notification
Posts to a anonymous subscription which allows all clients

who are registered for the subscription to get notifications.

Creates an entry for an AQ agent in the LDAP directory

page 5-14
UNBIND_AGENT Procedure Removes an entry for an AQ agent from the LDAP directory
on page 5-15

Note: The DBMS_A@ackage does not have a purity level defined;

therefore, you cannot call any procedure in this package from other
procedures that have RNDS, WNDS, RNPS or WNPS constraints

defined.

ENQUEUE Procedure

This procedure adds a message to the specified queue.

Syntax

DBMS_AQ.ENQUEUE (
queue_name
enqueue_options
message_properties
payload
msgid

IN
IN
IN
IN

Parameters

ouT

VARCHAR2,
enqueue_options t,
message_properties t,
"<type_name>",

RAW);

Table 5-6 ENQUEUE Procedure Parameters

Parameter

Description

queue_name

Specifies the name of the queue to which this message
should be enqueued. The queue cannot be an exception
queue.

5-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

Usage Notes

Table 5-6 (Cont.) ENQUEUE Procedure Parameters

Parameter Description
enqueue_options See "ENQUEUE_OPTIONS_T Type" on page 106-10.
message_properties See "MESSAGE_PROPERTIES_T Type" on page 106-11. See

"Using Secure Queues” on page 5-7.

payload Not interpreted by Oracle AQ.

The payload must be specified according to the specification
in the associated queue table. NULLIis an acceptable
parameter.

For the definition of <type_name > please refer to "Type
Name" on page 5-3.

msgid System generated identification of the message.

This is a globally unique identifier that can be used to
identify the message at dequeue time.

The sequence_deviation parameter in enqueue_options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue_options parameter relative_
msgid . The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than or
equal to the priority of the message before which this message is to be enqueued.

If a message is enqueued to a multiconsumer queue with no recipient, and if the
gueue has no subscribers (or rule-based subscribers that match this message), then
the Oracle error ORA 24033 is raised. This is a warning that the message will be
discarded because there are no recipients or subscribers to whom it can be
delivered.

Using Secure Queues

For secure queues, you must specify the sender_id in the messages_

properties parameter. See "MESSAGE_PROPERTIES_T Type" on page 106-11 for
more information about sender _id

When you use secure queues, the following are required:

DBMS_AQ 5-7

DEQUEUE Procedure

= You must have created a valid AQ Agent using DBMS_AQADM.CREATE_AQ _
AGENTSee "CREATE_AQ_AGENT Procedure" on page 6-28.

= You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCEHE®Slo this. See
"ENABLE_DB_ACCESS Procedure" on page 6-31.

See Also: Oracle9i Streams for information about secure queues

DEQUEUE Procedure
This procedure dequeues a message from the specified queue.
Syntax
DBMS_AQ.DEQUEUE (
gueue_name IN VARCHAR2,
dequeue_options IN dequeue_options t,
message_properties OUT message_properties t,
payioad ouT "<type_name>",
msgid ouT RAW);
Parameters

Table 5-7 DEQUEUE Procedure Parameters

Parameter Description

gueue_name Specifies the name of the queue.

dequeue_options See "DEQUEUE_OPTIONS_T Type" on page 106-8. See
"Using Secure Queues" on page 5-10.

message_properties See "MESSAGE_PROPERTIES_T Type" on page 106-11.

payload Not interpreted by Oracle AQ. The payload must be
specified according to the specification in the associated
gueue table.

For the definition of <type_name > please refer to "Type
Name" on page 5-3.

msgid System generated identification of the message.

5-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

Usage Notes

The search criteria for messages to be dequeued is determined by the consumer_
name, msgid , correlation and deq_condition parameters in dequeue_
options

s Msgid uniquely identifies the message to be dequeued.

s Correlation identifiers are application-defined identifiers that are not
interpreted by AQ.

= Dequeue condition is an expression based on the message properties, the
message data properties and PL/SQL functions. A deq_condition is
specified as a Boolean expression using syntax similar to the WHERElause of a
SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions (as specified in the where clause of a SQL query). Message properties
include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue
table that stores the payload.

Example: tab.user_data.orderstatus="EXPRESS”
Only messages in the READYstate are dequeued unless msgid is specified.

The dequeue order is determined by the values specified at the time the queue table
is created unless overridden by the msgid and correlation ID in dequeue_
options

The database-consistent read mechanism is applicable for queue operations. For
example, a BROWSEall may not see a message that is enqueued after the beginning
of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT_MESSAGH his
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the FIRST _
MESSAGIHavigation option when the first message in the queue needs to be
processed by every dequeue command. This usually becomes necessary when a

DBMS_AQ 5-9

DEQUEUE Procedure

higher priority message arrives in the queue while messages already-enqueued are
being processed.

Note: It may be more efficient to use the FIRST _MESSAGE
navigation option when messages are concurrently enqueued. If the
FIRST_MESSAGHption is not specified, AQ continually generates
the snapshot as of the first dequeue command, leading to poor
performance. If the FIRST_MESSAGHption is specified, then AQ
uses a new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping will form a group. If only one message is enqueued in the
transaction, then this will effectively form a group of one message. There is no
upper limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED
or REMOVHEnode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group will lock the entire group. This is
useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The application
can then use the NEXT_TRANSACTIOND start dequeuing messages from the next
available group. In the event that no groups are available, the dequeue will time-out
after the specified WAIT period.

Using Secure Queues

For secure queues, you must specify consumer_name in the dequeue_options
parameter. See "DEQUEUE_OPTIONS_T Type" on page 106-8 for more information
about consumer_name .

When you use secure queues, the following are required:

= You must have created a valid AQ Agent using DBMS_AQADM.CREATE_AQ _
AGENTSee "CREATE_AQ_AGENT Procedure" on page 6-28.

= You must map the AQ Agent to a database user with dequeue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCHS®Slo this. See
"ENABLE_DB_ACCESS Procedure" on page 6-31.

See Also: Oracle9i Streams for information about secure queues

5-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

LISTEN Procedure

Syntax

Parameters

Usage Notes

This procedure listens on one or more queues on behalf of a list of agents. The
address field of the agent indicates the queue the agent wants to monitor. Only local
gueues are supported as addresses. Protocol is reserved for future use.

If agent-address is a multiconsumer queue, then agent-name is mandatory. For
single-consumer queues, agent-name must not be specified.

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If no messages are found when the wait time expires, an
error is raised.

DBMS_AQLISTEN (
agent_list IN ag$_agent list t,
wait IN BINARY_INTEGER DEFAULT DBMS_AQ.FOREVER,
agent OUT sysags agent),

TYPE aq$ _agent list t IS TABLE of ag$_agent INDEXED BY BINARY INTEGER;

Table 5-8 LISTEN Procedure Parameters

Parameter Description
agent_list List of agents to listen for.
wait Time-out for the listen call (in seconds). By default, the call

will block forever.

agent Agent with a message available for consumption.

This procedure takes a list of agents as an argument. You specify the queue to be
monitored in the address field of each agent listed. You also must specify the name
of the agent when monitoring multiconsumer queues. For single-consumer queues,
an agent name must not be specified. Only local queues are supported as addresses.
Protocol is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are messages for more than one agent, only the first

DBMS_AQ 5-11

REGISTER Procedure

agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

A successful return from the listen call is only an indication that there is a message
for one of the listed agents in one the specified queues. The interested agent must
still dequeue the relevant message.

Note that you cannot call listen on nonpersistent queues.

REGISTER Procedure

This procedure registers an email address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

Syntax
DBMS_AQREGISTER (
reg_list IN SYSAQ$ REG INFO_LIST,
count IN NUMBER);
Parameters

Table 5-9 REGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to
register for message notifications. It is a list of AQ$_REG _
INFO Type.

count Specifies the number of entries in the reg_list.

Usage Notes

This procedure is used to register for notifications. You can specify an email address
to which message notifications are sent, register a procedure to be invoked on a
notification, or register an HTTP URL to which the notification is posted. Interest in
several subscriptions can be registered at one time.

If you register for email notifications, you should set the host name and port name

for the SMTP server that will be used by the database to send email notifications. If
required, you should set the send-from email address, which is set by the database

as the sent from field. See Chapter 7, "DBMS_AQELM" for more information on

email notifications. You need a Java-enabled database to use this feature.

5-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

If you register for HTTP notifications, you may want to set the host name and port
number for the proxy server and a list of no-proxy domains that will be used by the
database to post HTTP notifications. See Chapter 7, "DBMS_AQELM" for more
information on HTTP notifications.

UNREGISTER Procedure
This procedure unregisters a subscription which turns off notifications.
Syntax
DBMS_AQ.UNREGISTER (
reg_list IN SYSAQ$ REG INFO_LIST,
count IN NUMBER),
Parameters

Table 5-10 UNREGISTER Procedure Parameters

Parameter Description

reg_list Specifies the list of subscriptions to which you want to
register for message notifications. It is a list of AQ$_REG _
INFO Type.

count Specifies the number of entries in the reg_list.

Usage Notes

This procedure is used to unregister a subscription which turns off notifications.
Several subscriptions can be unregistered from at one time.

POST Procedure

This procedure posts to a list of anonymous subscriptions that allows all clients who
are registered for the subscriptions to get notifications.

Syntax

DBMS_AQPOST (

post st IN SYSAQ$ POST INFO_LIST,
count IN NUMBER);

DBMS_AQ 5-13

BIND_AGENT Procedure

Parameters

Table 5-11 POST Procedure Parameters

Parameter Description

post_list Specifies the list of anonymous subscriptions to which you
want to post. It is a list of AQ$_POST_INFO Type.

count Specifies the number of entries in the post_list.

Usage Notes

This procedure is used to post to anonymous subscriptions which allows all clients
who are registered for the subscriptions to get notifications. Several subscriptions
can be posted to at one time.

BIND_AGENT Procedure

This procedure creates an entry for an AQ agent in the LDAP server.

Syntax
DBMS_AQBIND AGENT(
agent IN SYSAQ$ AGENT,
certificate IN VARCHAR? default NULL);
Parameters

Table 5-12 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be registered in LDAP server

certificate Location (LDAP distinguished name) of the
"organizationalperson” entry in LDAP whose digital
certificate (attribute usercertificate) is to be used for
this agent

Example: "cn=0OE, cn=ACME, cn=com" is a DN for a
OrganizationalPerson OE whose certificate will be used
with the specified agent.

5-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQ Subprograms

Usage Notes

In the LDAP server, digital certificates are stored as an attribute
(usercertificate) of the OrganizationalPerson entity. The distinguished
name for this OrganizationalPerson must be specified when binding the agent.

UNBIND AGENT Procedure

This procedure removes the entry for an AQ agent from the LDAP server.

Syntax

DBMS_AQUNBIND_AGENT(
agent IN SYSAQ$ AGENT);

Parameters

Table 5-13 BIND_AGENT Procedure Parameters

Parameter Description

agent Agent that is to be removed from the LDAP server

DBMS_AQ 5-15

UNBIND_AGENT Procedure

5-16 Oracle9i Supplied PL/SQL Packages and Types Reference

6

DBMS_AQADM

The DBMS_AQADackage provides procedures to manage Advanced Queuing
configuration and administration information.

See Also:
= Oracle9i Application Developer’s Guide - Advanced Queuing
= Chapter 106, "Advanced Queuing Types" for information about
the TYPEs to use with DBMS_AQADM
This chapter discusses the following topics:
= Enumerated Constants

« Summary of DBMS_AQADM Subprograms

DBMS_AQADM 6-1

Enumerated Constants

Enumerated Constants

When using enumerated constants, such as INFINITE , TRANSACTIONALor
NORMAL_QUEUthe symbol must be specified with the scope of the packages
defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADMor example: DBMS_AQADM.NORMAL_QUEUE.

Table 6-1 Enumerated Types in the Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NgEI\E/ICII;_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_

See Also: For more information on the Java classes and data
structures used in both DBMS_AQ@nd DBMS_AQADIgee Chapter 5,
"DBMS_AQ"

Summary of DBMS_AQADM Subprograms

Table 6-2 DBMS_AQADM Package Subprograms

Subprogram Description

CREATE_QUEUE_TABLE Creates a queue table for messages of a predefined type.
Procedure on page 6-4

ALTER_QUEUE_TABLE Alters an existing queue table.

Procedure on page 6-8

DROP_QUEUE_TABLE Drops an existing queue table.

Procedure on page 6-9

CREATE_QUEUE Procedure on Creates a queue in the specified queue table.
page 6-9

CREATE_NP_QUEUEProcedure Creates a nonpersistent RAWjueue.
on page 6-11

ALTER_QUEUE Procedure on Alters existing properties of a queue.
page 6-12

DROP_QUEUE Procedure on Drops an existing queue.
page 6-14

6-2 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Table 6-2 (Cont.) DBMS_AQADM Package Subprograms

Subprogram Description

START_QUEUE Procedure on
page 6-14

STOP_QUEUE Procedure on
page 6-15

GRANT_SYSTEM_PRIVILEGE
Procedure on page 6-16

REVOKE_SYSTEM_PRIVILEGE
Procedure on page 6-17

GRANT_QUEUE_PRIVILEGE
Procedure on page 6-18

REVOKE_QUEUE_PRIVILEGE
Procedure on page 6-19

ADD_SUBSCRIBER Procedure
on page 6-19

ALTER_SUBSCRIBER Procedure

on page 6-21

REMOVE_SUBSCRIBER
Procedure on page 6-21

SCHEDULE_PROPAGATION
Procedure on page 6-22

UNSCHEDULE_
PROPAGATION Procedure on
page 6-24

VERIFY_QUEUE_TYPES
Procedure on page 6-24

ALTER_PROPAGATION _
SCHEDULE Procedure on
page 6-25

ENABLE_PROPAGATION_
SCHEDULE Procedure on
page 6-27

DISABLE_PROPAGATION_
SCHEDULE Procedure on
page 6-27

Enables the specified queue for enqueuing or
dequeueing.

Disables enqueuing or dequeuing on the specified queue.
Grants AQ system privileges to users and roles.

Revokes AQ system privileges from users and roles.
Grants privileges on a queue to users and roles.

Revokes privileges on a queue from users and roles.
Adds a default subscriber to a queue.

Alters existing properties of a subscriber to a specified
queue.

Removes a default subscriber from a queue.

Schedules propagation of messages from a queue to a

destination identified by a specific dblink.

Unschedules previously scheduled propagation of
messages from a queue to a destination identified by a
specific dblink.

Verifies that the source and destination queues have
identical types.

Alters parameters for a propagation schedule.

Enables a previously disabled propagation schedule.

Disables a propagation schedule.

DBMS_AQADM 6-3

CREATE_QUEUE_TABLE Procedure

Table 6-2 (Cont.) DBMS_AQADM Package Subprograms

Subprogram

Description

MIGRATE_QUEUE_TABLE
Procedure on page 6-28

CREATE_AQ_AGENT
Procedure on page 6-28

ALTER_AQ_AGENT Procedure
on page 6-29

DROP_AQ_AGENT Procedure
on page 6-30

ENABLE _DB_ACCESS
Procedure on page 6-31

DISABLE_DB_ACCESS
Procedure on page 6-32

ADD_ALIAS TO LDAP
Procedure on page 6-32

DEL_ALIAS_FROM_LDAP
Procedure on page 6-33

Upgrades an 8.0-compatible queue table to an
8.1-compatible queue table, or downgrades an
8.1-compatible queue table to an 8.0-compatible queue
table.

Registers an agent for AQ Internet access

Alters an agent registered for AQ Internet access

Drops an agent registered for AQ Internet access

Grants an AQ Internet agent the privileges of a specific
database user

Revokes the privileges of a database user from an AQ
Internet agent

Creates an alias for a queue, agent, or a JMS
ConnectionFactory in LDAP.

Drops an alias for a queue, agent, or JMS
ConnectionFactory in LDAP.

CREATE_QUEUE_TABLE Procedure

This procedure creates a queue table for messages of a predefined type. The sort
keys for dequeue ordering, if any, must be defined at table creation time. The
following objects are created at this time:

= A default exception queue associated with the queue table, called ag$_

<queue_table_name>_e

= Aread-only view, which is used by AQ applications for querying queue data,
called ag$<queue_table_name>

= Anindex or an index organized table (I0T) in the case of multiple consumer
queues for the queue monitor operations, called aq$_<queue_table_name>_

t.

= Anindex or an index organized table in the case of multiple consumer queues
for dequeue operations, called aq$_<queue_table_name>_i

For Oracle8i-compatible queue tables, the following index-organized tables are

created:

6-4 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Syntax

Parameters

s Atablecalled ag$_<queue_table_name>_s . This table stores information

about the subscribers.

= Atablecalled ag$_<queue_table_name>_r . This table stores information

about rules on subscriptions.

= Anindex-organized table called aqg$_<queue_table_name>_h . This table

stores the dequeue history data.

DBMS_AQADM.CREATE. QUEUE TABLE (

queue_table IN VARCHAR?2,

queue_payload type IN VARCHARZ,

storage_clause IN VARCHAR2 DEFAULT NULL,
sort_list IN VARCHAR2 DEFAULT NULL,
multiple_consumers N BOOLEAN DEFAULT FALSE,
message_grouping IN BINARY_INTEGER DEFAULT NONE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE,
primary_instance IN BINARY_INTEGER DEFAULT 0,
secondary_instance N BINARY_INTEGER DEFAULT 0,
compatible IN VARCHAR2 DEFAULT NULL);

Table 6-3 CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description
queue_table Name of a queue table to be created.
queue_payload_type Type of the user data stored. See "Type Name" Chapter 5,

"DBMS_AQ" for valid values for this parameter.

DBMS_AQADM 6-5

CREATE_QUEUE_TABLE Procedure

Table 6-3 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter

Description

storage_clause

sort_list

multiple_consumers

Storage parameter.

The storage parameter is included in the CREATETABLE
statement when the queue table is created. The storage
parameter can be made up of any combinations of the following
parameters: PCTFREEPCTUSEDINITRANS, MAXTRANS
TABLEPSACELOB and a table storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace. If a
tablespace is specified here, then the queue table and all its
related objects are created in the tablespace specified in the
storage clause. See Oracle9i SQL Reference for the usage of these
parameters.

The columns to be used as the sort key in ascending order.
Sort_list has the following format:
'<sort_column_1>,<sort_column_2>’

The allowed column names are priority and eng_time . If
both columns are specified, then <sort_column_1 > defines the
most significant order.

After a queue table is created with a specific ordering
mechanism, all queues in the queue table inherit the same
defaults. The order of a queue table cannot be altered after the
gueue table has been created.

If no sort list is specified, then all the queues in this queue table
are sorted by the enqueue time in ascending order. This order is
equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to
choose a message to dequeue by specifying its msgid or
correlation . msgid , correlation , and sequence_
deviation take precedence over the default dequeueing order,
if they are specified.

FALSE :Queues created in the table can only have one consumer

for each message. This is the default.

TRUE Queues created in the table can have multiple consumers
for each message.

6-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Table 6-3 (Cont.) CREATE_QUEUE_TABLE Procedure Parameters

Parameter Description

message_grouping Message grouping behavior for queues created in the table.
NONEEach message is treated individually.

TRANSACTIONALMessages enqueued as part of one transaction
are considered part of the same group and can be dequeued as a
group of related messages.

comment User-specified description of the queue table. This user comment
is added to the queue catalog.

auto_commit TRUE : causes the current transaction, if any, to commit before the
CREATE_QUEUE_TABL&peration is carried out. The CREATE _
QUEUE_TABLBperation becomes persistent when the call
returns. This is the default.

FALSE The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Note: This parameter has been deprecated.

primary_instance The primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
are done in this instance.

The default value for primary instance is 0, which means queue
monitor scheduling and propagation will be done in any
available instance.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available. The default value is 0, which
means that the queue table will fail over to any available
instance.

compatible The lowest database version with which the queue is
compatible. Currently the possible values are either ’8.0" or ’8.1".

= If the database is in 8.1 or higher compatible mode, the
default value is ’8.1’

n If the database is in 8.0 compatible mode, the default value
is 8.0

Usage Notes

CLOB BLOB and BFILE are valid attributes for AQ object type payloads. However,
only CLOBand BLOBcan be propagated using AQ propagation in Oracle8i release
8.1.5 or later. See the Oracle9i Application Developer’s Guide - Advanced Queuing for
more information.

DBMS_AQADM 6-7

ALTER_QUEUE_TABLE Procedure

The default value of the compatible parameter depends on the database
compatibility mode in the init.ora.

= If the database is in 8.1 or higher compatible mode, the default value is 8.1
= If the database is in 8.0 compatible mode, the default value is 8.0

You can specify and modify the primary_instance and secondary_instance
only in 8.1-compatible mode.

You cannot specify a secondary instance unless there is a primary instance.

ALTER_QUEUE_TABLE Procedure

Syntax

Parameters

This procedure alters the existing properties of a queue table.

DBMS_AQADMALTER QUEUE TABLE (
queue_table IN VARCHAR?2,
comment IN VARCHAR2 DEFAULT NULL,
primary_instance IN BINARY_INTEGER DEFAULT NULL,
secondary_instance IN BINARY_INTEGER DEFAULT NULL),

Table 6-4 ALTER_QUEUE_TABLE Procedure Parameters

Parameter Description
queue_table Name of a queue table to be created.
comment Modifies the user-specified description of the queue table. This

user comment is added to the queue catalog. The default value is
NULLwhich means that the value will not be changed.

primary_instance This is the primary owner of the queue table. Queue monitor
scheduling and propagation for the queues in the queue table
will be done in this instance.

The default value is NULL, which means that the current value
will not be changed.

secondary_instance The queue table fails over to the secondary instance if the
primary instance is not available.

The default value is NULL, which means that the current value
will not be changed.

6-8 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

DROP_QUEUE_TABLE Procedure

Syntax

Parameters

This procedure drops an existing queue table. All the queues in a queue table must
be stopped and dropped before the queue table can be dropped. You must do this
explicitly unless the force option is used, in which case this is done automatically.

DBMS_AQADM.DROP_QUEUE TABLE (

queue_table IN VARCHAR?2,
force IN BOOLEAN DEFAULT FALSE,
auto_commit IN BOOLEAN DEFAULT TRUE);

Table 6-5 DROP_QUEUE_TABLE Procedure Parameters

Parameter Description
queue_table Name of a queue table to be dropped.
force FALSE : The operation does not succeed if there are any

gueues in the table. This is the default.

TRUE All queues in the table are stopped and dropped
automatically.

auto_commit TRUE : Causes the current transaction, if any, to commit
before the DROP_QUEUE_TABLdperation is carried out.
The DROP_QUEUE_TABLd&peration becomes persistent
when the call returns. This is the default.

FALSE The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

CREATE_QUEUE Procedure

Syntax

This procedure creates a queue in the specified queue table.

DBMS_AQADM.CREATE_QUEUE (

gueue_name IN VARCHARZ,

queue_table IN VARCHAR?2,

queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
max_retries IN NUMBER DEFAULT NULL,

retry_delay IN NUMBER DEFAULT O,

DBMS_AQADM 6-9

CREATE_QUEUE Procedure

retention_time
dependency_tracking IN

comment

auto_commit

Parameters

NUMBER DEFAULT 0O,
BOOLEAN DEFAULT FALSE,
IN VARCHAR2 DEFAULT NULL,
BOOLEAN DEFAULT TRUE);

Table 6-6 CREATE_QUEUE Procedure Parameters

Parameter

Description

gueue_name

queue_table

queue_type

max_retries

retry_delay

Name of the queue that is to be created. The name must be
unique within a schema and must follow object name guidelines
in Oracle9i SQL Reference with regard to reserved characters.

Name of the queue table that will contain the queue.

Specifies whether the queue being created is an exception queue
or a normal queue.

NORMAL_QUEUEhe queue is a normal queue. This is the
default.

EXCEPTION_QUEUHt is an exception queue. Only the dequeue
operation is allowed on the exception queue.

Limits the number of times a dequeue with the REMOVEnhode
can be attempted on a message. The maximum value of max_
retries is2**31 -1.

The count is incremented when the application issues a rollback
after executing the dequeue. The message is moved to the
exception queue when it is reaches its max_retries

Note that max_retries is supported for all single consumer
gueues and 8.1-compatible multiconsumer queues but not for
8.0-compatible multiconsumer queues.

Delay time, in seconds, before this message is scheduled for
processing again after an application rollback.

The default is 0, which means the message can be retried as soon
as possible. This parameter has no effect if max_retries is set
to 0. Note that rety_delay is supported for single consumer
gueues and 8.1-compatible multiconsumer queues but not for
8.0-compatible multiconsumer queues.

6-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Table 6-6 (Cont.) CREATE_QUEUE Procedure Parameters

Parameter Description

retention_time Number of seconds for which a message is retained in the queue
table after being dequeued from the queue.

INFINITE : Message is retained forever.

NUMBERNumber of seconds for which to retain the messages.
The default is 0, no retention.

dependency_ Reserved for future use.
tracking FALSE This is the default.
TRUE Not permitted in this release.

comment User-specified description of the queue. This user comment is
added to the queue catalog.

auto_commit TRUE : Causes the current transaction, if any, to commit before
the CREATE_QUEUgperation is carried out. The CREATE_
QUEUBperation becomes persistent when the call returns. This
is the default.

FALSE The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

All queue names must be unique within a schema. After a queue is created with
CREATE_QUEUEHt can be enabled by calling START _QUEUBY default, the queue
is created with both enqueue and dequeue disabled.

CREATE_NP_QUEUE Procedure

Create a nonpersistent RAWjueue.

Syntax
DBMS_AQADM.CREATE_NP_QUEUE (
gueue_name IN VARCHAR?2,
muliple_consumers IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULLY;

DBMS_AQADM 6-11

ALTER_QUEUE Procedure

Parameters

Table 6-7 CREATE_NP_QUEUE Procedure Parameters

Parameter Description

gueue_name Name of the nonpersistent queue that is to be created. The
name must be unique within a schema and must follow
object name guidelines in Oracle9i SQL Reference.

multiple_consumers FALSE :Queues created in the table can only have one
consumer for each message. This is the default.

TRUE Queues created in the table can have multiple
consumers for each message.

Note that this parameter is distinguished at the queue level,
because a nonpersistent queue does not inherit this
characteristic from any user-created queue table.

comment User-specified description of the queue. This user comment
is added to the queue catalog.

Usage Notes

The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a 8.1-compatible
system-created queue table (AQ$_MEM_SGr AQ$_MEM_MGn the same schema as
that specified by the queue name.

If the queue name does not specify a schema name, the queue is created in the login
user’s schema. After a queue is created with CREATE_NP_QUEUH can be enabled
by calling START_QUEUBY default, the queue is created with both enqueue and
dequeue disabled.

You cannot dequeue from a nonpersistent queue. The only way to retrieve a
message from a nonpersistent queue is by using the OCI notification mechanism.
You cannot invoke the listen call on a nonpersistent queue.

ALTER_QUEUE Procedure

This procedure alters existing properties of a queue. The parameters max_retries
retention_time , and retry_delay are not supported for nonpersistent queues.

Syntax

DBMS_AQADMALTER QUEUE (
gueue_name IN VARCHAR?2,

6-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Parameters

max_retries
retry_delay

retention_time

auto_commit
comment

NUMBER DEFAULT NULL,
NUMBER DEFAULT NULL,
NUMBER DEFAULT NULL,

BOOLEAN DEFAULT TRUE,

VARCHAR2 DEFAULT NULL);

Table 6-8 ALTER_QUEUE Procedure Parameters

Parameter

Description

gueue_name

max_retries

retry_delay

retention_time

auto_commit

Name of the queue that is to be altered.

Limits the number of times a dequeue with REMOVEnode
can be attempted on a message. The maximum value of
max_retries is 2**31 -1.

The count is incremented when the application issues a
rollback after executing the dequeue. If the time at which
one of the retries has passed the expiration time, then no
further retries are attempted. Default is NULL, which means
that the value will not be altered.

Note that max_retries is supported for all single
consumer queues and 8.1-compatible multiconsumer
gueues but not for 8.0-compatible multiconsumer queues.

Delay time in seconds before this message is scheduled for
processing again after an application rollback. The default is
NULL which means that the value will not be altered.

Note that retry_delay is supported for single consumer
gueues and 8.1-compatible multiconsumer queues but not
for 8.0-compatible multiconsumer queues.

Retention time in seconds for which a message is retained in
the queue table after being dequeued. The default is NULL,
which means that the value will not be altered.

TRUE : Causes the current transaction, if any, to commit
before the ALTER_QUEUEoperation is carried out. The
ALTER_QUEUEoperation become persistent when the call
returns. This is the default.

FALSE The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

DBMS_AQADM 6-13

DROP_QUEUE Procedure

Table 6-8 (Cont.) ALTER_QUEUE Procedure Parameters

Parameter Description

comment User-specified description of the queue. This user comment
is added to the queue catalog. The default value is NULL,
which means that the value will not be changed.

DROP_QUEUE Procedure

This procedure drops an existing queue. DROP_QUEUR not allowed unless STOP_
QUEUHas been called to disable the queue for both enqueuing and dequeuing. All
the queue data is deleted as part of the drop operation.

Syntax
DBMS_AQADM.DROP_QUEUE (
gueue_name IN VARCHAR?2,
auto_commit IN BOOLEAN DEFAULT TRUE),
Parameters

Table 6-9 DROP_QUEUE Procedure Parameters

Parameter Description
gueue_name Name of the queue that is to be dropped.
auto_commit TRUE : Causes the current transaction, if any, to commit before

the DROP_QUEUgperation is carried out. The DROP_QUEUE
operation becomes persistent when the call returns. This is the
default.

FALSE The operation is part of the current transaction and
becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

START _QUEUE Procedure
This procedure enables the specified queue for enqueuing or dequeueing.

After creating a queue, the administrator must use START_QUEUIo enable the
gueue. The default is to enable it for both ENQUEURNd DEQUEUEOnNIy dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

6-14 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Syntax

Parameters

DBMS_AQADM.START QUEUE (

gueue_name IN VARCHAR?,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE);

Table 6-10 START_QUEUE Procedure Parameters

Parameter Description
gueue_name Name of the queue to be enabled.
enqueue Specifies whether ENQUEUEhould be enabled on this queue.

TRUE Enable ENQUEUEThis is the default.
FALSE Do not alter the current setting.
dequeue Specifies whether DEQUEUEhould be enabled on this queue.
TRUE Enable DEQUEUEThis is the default.
FALSE Do not alter the current setting.

STOP_QUEUE Procedure

Syntax

This procedure disables enqueuing or dequeuing on the specified queue.

By default, this call disables both ENQUEUE®r DEQUEUESA queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

DBMS_AQADM.STOP_QUEUE (

gueue_name IN VARCHARZ,

enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE,
wait IN BOOLEAN DEFAULT TRUE),

DBMS_AQADM 6-15

GRANT_SYSTEM_PRIVILEGE Procedure

Parameters

Table 6-11 STOP_QUEUE Procedure Parameters

Parameter Description
gueue_name Name of the queue to be disabled.
enqueue Specifies whether ENQUEUEhould be disabled on this queue.

TRUE Disable ENQUEUEThis is the default.
FALSE Do not alter the current setting.

dequeue Specifies whether DEQUEUEhould be disabled on this queue.
TRUE Disable DEQUEUEThis is the default.
FALSE Do not alter the current setting.

wait Specifies whether to wait for the completion of outstanding
transactions.

TRUE Wait if there are any outstanding transactions. In this
state no new transactions are allowed to enqueue to or
dequeue from this queue.

FALSE Return immediately either with a success or an error.

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grants AQ system privileges to users and roles. The privileges are
ENQUEUE_ANDEQUEUE_AN¥nd MANAGE_ANMhitially, only SYSand SYSTEM
can use this procedure successfully.

Syntax
DBMS_AQADM.GRANT _SYSTEM PRIVILEGE (
privilege IN VARCHAR?2,
grantee IN VARCHAR?2,
admin_option IN BOOLEAN = FALSE);

6-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Parameters

Table 6-12 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ system privilege to grant. The options are ENQUEUE_ANY
DEQUEUE_AN¥nd MANAGE_ANY

The operations allowed for each system privilege are specified as
follows:

ENQUEUE_ANYsers granted with this privilege are allowed to
engueue messages to any queues in the database.

DEQUEUE_ANYsers granted with this privilege are allowed to
dequeue messages from any queues in the database.

MANAGE_ANV¥sers granted with this privilege are allowed to run
DBMS_AQAD®AlIs on any schemas in the database.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.
admin_option Specifies if the system privilege is granted with the ADMINoption
or not.

If the privilege is granted with the ADMINoption, then the grantee
is allowed to use this procedure to grant the system privilege to
other users or roles. The default is FALSE

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes AQ system privileges from users and roles. The privileges
are ENQUEUE_ANDEQUEUE_ANanhd MANAGE_ANYhe ADMINoption for a
system privilege cannot be selectively revoked.

Syntax
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
privilege IN VARCHARZ,
grantee IN VARCHARY2),

DBMS_AQADM 6-17

GRANT_QUEUE_PRIVILEGE Procedure

Parameters

Table 6-13 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ system privilege to revoke. The options are ENQUEUE_
ANY DEQUEUE_AN¥nd MANAGE_ANY

The ADMINoption for a system privilege cannot be selectively
revoked.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

GRANT_QUEUE_PRIVILEGE Procedure

This procedure grants privileges on a queue to users and roles. The privileges are
ENQUEUBr DEQUEUHNitially, only the queue table owner can use this procedure
to grant privileges on the queues.

Syntax
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
privilege IN VARCHARZ,
gueue_name IN VARCHAR?,
grantee IN VARCHARZ,
grant_option IN BOOLEAN = FALSE);
Parameters

Table 6-14 GRANT_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ queue privilege to grant. The options are ENQUEUE
DEQUEUEand ALL. ALL means both ENQUEUENd DEQUEUE

gueue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

grant_option Specifies if the access privilege is granted with the GRANToption or
not.

If the privilege is granted with the GRANToption, then the grantee
is allowed to use this procedure to grant the access privilege to
other users or roles, regardless of the ownership of the queue table.
The default is FALSE

6-18 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

REVOKE_QUEUE_PRIVILEGE Procedure

This procedure revokes privileges on a queue from users and roles. The privileges
are ENQUEUBr DEQUEUETOo revoke a privilege, the revoker must be the original

grantor of the privilege. The privileges propagated through the GRANToption are

revoked if the grantor’s privileges are revoked.

Syntax
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
privilege IN VARCHAR?,
gueue_name IN VARCHARZ,
grantee IN VARCHARY)
Parameters

Table 6-15 REVOKE_QUEUE_PRIVILEGE Procedure Parameters

Parameter Description

privilege The AQ queue privilege to revoke. The options are ENQUEUE
DEQUEUEand ALL. ALL means both ENQUEUENnd DEQUEUE

gueue_name Name of the queue.

grantee Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

If the privilege has been propagated by the grantee through the
GRANToption, then the propagated privilege is also revoked.

ADD SUBSCRIBER Procedure

This procedure adds a default subscriber to a queue.

Syntax
DBMS_AQADM.ADD_SUBSCRIBER (
gueue_name IN VARCHAR?2,
subscriber IN sys.ag$s_agent,
ule IN VARCHAR2 DEFAULT NULL,

transformation IN VARCHAR2 DEFAULT NULLY);

DBMS_AQADM 6-19

ADD_SUBSCRIBER Procedure

Parameters

Table 6-16 ADD_SUBSCRIBER Procedure Parameters

Parameter Description

gueue_name Name of the queue.

subscriber Agent on whose behalf the subscription is being defined.

rule A conditional expression based on the message properties, the

message data properties and PL/SQL functions.

A rule is specified as a Boolean expression using syntax similar
to the WHEREIlause of a SQL query. This Boolean expression can
include conditions on message properties, user data properties
(object payloads only), and PL/SQL or SQL functions (as
specified in the where clause of a SQL query). Currently
supported message properties are priority and corrid

To specify rules on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each
attribute with tab .user_data as a qualifier to indicate the
specific column of the queue table that stores the payload. The
rule parameter cannot exceed 4000 characters.

transformation Specifies a transformation that will be applied when this
subscriber dequeues the message. The source type of the
transformation must match the type of the queue.

If the subscriber is remote, then the transformation is applied
before propagation to the remote queue

Usage Notes

A program can enqueue messages to a specific list of recipients or to the default list
of subscribers. This operation only succeeds on queues that allow multiple
consumers. This operation takes effect immediately, and the containing transaction
is committed. Enqueue requests that are executed after the completion of this call
will reflect the new behavior.

Any string within the rule must be quoted:
e => PRIORITY <= 3 AND CORRID = "FROM JAPAN"

Note that these are all single quotation marks.

6-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

ALTER_SUBSCRIBER Procedure

Syntax

Parameters

Usage Notes

This procedure alters existing properties of a subscriber to a specified queue. Only
the rule can be altered.

DBMS_AQADMALTER_SUBSCRIBER (

gueue_name IN VARCHAR?2,
subscriber IN sys.ag$_agent,
rule IN VARCHAR2

transformation IN VARCHARY?);

Table 6-17 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description
gueue_name Name of the queue.
subscriber Agent on whose behalf the subscription is being altered. See

"AQ$_AGENT Type" on page 106-2.

rule A conditional expression based on the message properties, the
message data properties and PL/SQL functions.

Note: The rule parameter cannot exceed 4000 characters. To
eliminate the rule, set the rule parameter to NULL

transformation Specifies a transformation that will be applied when this
subscriber dequeues the message. The source type of the
transformation must match the type of the queue.

If the subscriber is remote, then the transformation is applied
before propagation to the remote queue

This procedure alters both the rule and the transformation for the subscriber. If you
want to retain the existing value for either of them, you must specify its old value.
The current values for rule and transformation for a subscriber can be obtained
from the <schema>.AQ%$<queue_table> R and <schema>.AQ$<queue_
table> S views.

DBMS_AQADM 6-21

REMOVE_SUBSCRIBER Procedure

REMOVE_SUBSCRIBER Procedure

This procedure removes a default subscriber from a queue. This operation takes
effect immediately, and the containing transaction is committed. All references to
the subscriber in existing messages are removed as part of the operation.

Syntax
DBMS_AQADM.REMOVE_SUBSCRIBER (
gueue_name IN VARCHAR?Z,
subscriber IN sysag$_agent);
Parameters

Table 6-18 REMOVE_SUBSCRIBER Procedure Parameters

Parameter Description

gueue_name Name of the queue.

subscriber Agent who is being removed. See "AQ$_AGENT Type" on
page 106-2.

SCHEDULE_PROPAGATION Procedure

This procedure schedules propagation of messages from a queue to a destination
identified by a specific dblink.

Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated
to all of them at the same time.

Syntax
DBMS_AQADM.SCHEDULE_PROPAGATION (

gueue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_tme IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

6-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Parameters

Table 6-19 SCHEDULE_PROPAGATION Procedure Parameters

Parameter Description

gueue_name Name of the source queue whose messages are to be
propagated, including the schema name.

If the schema name is not specified, then it defaults to the
schema name of the administrative user.

destination Destination dblink.

Messages in the source queue for recipients at this
destination are propagated. If it is NULL, then the
destination is the local database and messages are
propagated to other queues in the local database. The length
of this field is currently limited to 128 bytes, and if the name
is not fully qualified, then the default domain name is used.

start_time Initial start time for the propagation window for messages
from the source queue to the destination.

duration Duration of the propagation window in seconds.

A NULL value means the propagation window is forever or
until the propagation is unscheduled.

next_time Date function to compute the start of the next propagation
window from the end of the current window.

If this value is NULL, then propagation is stopped at the end
of the current window. For example, to start the window at
the same time every day, next_time should be specified as
'SYSDATE + 1 - duration/86400 .

latency Maximum wait, in seconds, in the propagation window for
a message to be propagated after it is enqueued.

For example: If the latency is 60 seconds, then during the
propagation window; if there are no messages to be
propagated, then messages from that queue for the
destination are not propagated for at least 60 more seconds.

It is at least 60 seconds before the queue is checked again for
messages to be propagated for the specified destination. If
the latency is 600, then the queue is not checked for 10
minutes, and if the latency is 0, then a job queue process
will be waiting for messages to be enqueued for the
destination. As soon as a message is enqueued, it is
propagated.

DBMS_AQADM 6-23

UNSCHEDULE_PROPAGATION Procedure

UNSCHEDULE_PROPAGATION Procedure

This procedure unschedules previously scheduled propagation of messages from a
gueue to a destination identified by a specific dblink

Syntax
DBMS_AQADM.UNSCHEDULE _PROPAGATION (
gueue_name IN VARCHARZ,
destination ~ IN VARCHAR2 DEFAULT NULL);
Parameters

Table 6-20 UNSCHEDULE _PROPAGATION Procedure Parameters

Parameter Description

gueue_name Name of the source queue whose messages are to be
propagated, including the schema name.

If the schema name is not specified, then it defaults to the
schema name of the administrative user.

destination Destination dblink.

Messages in the source queue for recipients at this
destination are propagated. If it is NULL, then the
destination is the local database and messages are
propagated to other queues in the local database. The
length of this field is currently limited to 128 bytes, and if
the name is not fully qualified, then the default domain
name is used.

VERIFY_QUEUE_TYPES Procedure

This procedure verifies that the source and destination queues have identical types.
The result of the verification is stored in the table sys .aq$_message_types
overwriting all previous output of this command.

Syntax

DBMS_AQADM.VERIFY_QUEUE _TYPES (
SIC_queue_name IN VARCHAR?2,
dest queue_name IN VARCHAR?2,
destination IN VARCHAR2 DEFAULT NULL,
rc OUT BINARY_INTEGER);

6-24 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Parameters

Table 6-21 VERIFY_QUEUE_TYPES Procedure Parameters

Parameter Description

src_gueue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

dest_queue_name Name of the destination queue where messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

rc Return code for the result of the procedure.

If there is no error, and if the source and destination queue types
match, then the result is 1. If they do not match, then the result is 0. If
an Oracle error is encountered, then it is returned in rc .

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters parameters for a propagation schedule.

Syntax
DBMS_AQADMALTER_PROPAGATION_SCHEDULE (
gueue_name IN VARCHAR?2,
destination IN VARCHAR2 DEFAULT NULL,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60);

DBMS_AQADM 6-25

ALTER_PROPAGATION_SCHEDULE Procedure

Parameters

Table 6-22 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

gueue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

duration Duration of the propagation window in seconds.

A NULLvalue means the propagation window is forever or until the
propagation is unscheduled.

next_time Date function to compute the start of the next propagation window
from the end of the current window.

If this value is NULL, then propagation is stopped at the end of the
current window. For example, to start the window at the same time
every day, next_time should be specified as 'SYSDATE+ 1 -
duration/86400 .

latency Maximum wait, in seconds, in the propagation window for a
message to be propagated after it is enqueued.

The default value is 60. Caution: if latency is not specified for this
call, then latency will over-write any existing value with the default
value.

For example, if the latency is 60 seconds, then during the
propagation windowy, if there are no messages to be propagated, then
messages from that queue for the destination will not be propagated
for at least 60 more seconds. It will be at least 60 seconds before the
qgueue will be checked again for messages to be propagated for the
specified destination. If the latency is 600, then the queue will not be
checked for 10 minutes and if the latency is 0, then a job queue
process will be waiting for messages to be enqueued for the
destination and as soon as a message is enqueued it will be
propagated.

6-26 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a previously disabled propagation schedule.

Syntax

Parameters

DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (

queue_name

destination

IN VARCHARZ,

VARCHAR2 DEFAULT NULL);

Table 6-23 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

Parameter

Description

queue_name

destination

Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (

queue_name

destination

IN VARCHARZ2,
VARCHAR2 DEFAULT NULL);

DBMS_AQADM 6-27

MIGRATE_QUEUE_TABLE Procedure

Parameters

Table 6-24 DISABLE PROPAGATION_SCHEDULE Procedure Parameters

Parameter Description

gueue_name Name of the source queue whose messages are to be propagated,
including the schema name.

If the schema name is not specified, then it defaults to the schema
name of the user.

destination Destination dblink.

Messages in the source queue for recipients at this destination are
propagated. If it is NULL, then the destination is the local database
and messages are propagated to other queues in the local database.
The length of this field is currently limited to 128 bytes, and if the
name is not fully qualified, then the default domain name is used.

MIGRATE_QUEUE_TABLE Procedure

This procedure upgrades an 8.0-compatible queue table to an 8.1-compatible queue
table, or downgrades an 8.1-compatible queue table to an 8.0-compatible queue

table.
Syntax
DBMS_AQADMMIGRATE_QUEUE,_TABLE (
queue table IN VARCHAR2,
compatble IN VARCHARY);
Parameters

Table 6-25 MIGRATE_QUEUE_TABLE Procedure Parameters

Parameter Description
queue_table Specifies name of the queue table to be migrated.
compatible Set this to '8.1" to upgrade an 8.0-compatible queue table, or set

this to ’8.0’ to downgrade an 8.1-compatible queue table.

CREATE_AQ _ AGENT Procedure

This procedure registers an agent for AQ Internet access using HTTP/SMTP
protocols. It is also used to create an AQ agent to access secure queues.

6-28 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

See Also: Oracle9i Streams for information about secure queues

Syntax
DBMS_AQADM.CREATE_AQ AGENT (
agent_name IN VARCHAR2,
certificate_location IN VARCHAR2 DEFAULT NULL,
enable_htip IN BOOLEAN DEFAULT FALSE,
enable_smtp IN BOOLEAN DEFAULT FALSE,
enable_anyp IN BOOLEAN DEFAULT FALSE)
Parameters

Table 6-26 CREATE_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent
certification_ Agent’s certificate location in LDAP (default= NULL).
location

If the agent is allowed to access AQ through SMTP, then its
certificate must be registered in LDAP.

For access through HTTP, the certificate location is not required

enable_http TRUE: the agent can access AQ through HTTP

FALSE: the agent cannot access AQ through HTTP
enable_smtp TRUE: the agent can access AQ through SMTP (e-mail)

FALSE: the agent cannot access AQ through SMTP
enable_anyp -Srlsll'Jl'E) the agent can access AQ through any protocol (HTTP or

Usage Notes
The SYS.AQSINTERNET_USERSiew has a list of all AQ Internet agents.

ALTER_AQ_AGENT Procedure

This procedure alters an agent registered for AQ Internet access. It is also used to
alter an AQ agent that accesses secure queues.

See Also: Oracle9i Streams for information about secure queues

DBMS_AQADM 6-29

DROP_AQ_AGENT Procedure

DBMS AQADMALTER AQ AGENT (

Syntax
agent_name
certificate_location
enable_http
enable_smtp
enable_anyp
Parameters

IN VARCHARZ,

IN VARCHAR2 DEFAULT NULL,

IN BOOLEAN DEFAULT FALSE,
IN BOOLEAN DEFAULT FALSE,
IN BOOLEAN DEFAULT FALSE)

Table 6-27 ALTER_AQ_AGENT Procedure Parameters

Parameter

Description

agent_name

certification_
location

enable_http

enable_smtp

enable_anyp

Specifies the username of the AQ Internet agent

Agent’s certificate location in LDAP (default= NULL).

If the agent is allowed to access AQ through SMTP, then its
certificate must be registered in LDAP.

For access through HTTP, the certificate location is not required
TRUE: the agent can access AQ through HTTP

FALSE: the agent cannot access AQ through HTTP

TRUE: the agent can access AQ through SMTP (e-mail)

FALSE: the agent cannot access AQ through SMTP

TRUE: the agent can access AQ through any protocol (HTTP or
SMTP)

DROP_AQ_AGENT Procedure

This procedure drops an agent that was previously registered for AQ Internet

access.

Syntax

DBMS_AQADM.DROP_AQ AGENT (

agent_name

IN VARCHAR?2)

6-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Parameters

Table 6-28 DROP_AQ_AGENT Procedure Parameters

Parameter Description

agent_name Specifies the username of the AQ Internet agent

ENABLE_DB_ACCESS Procedure

Syntax

Parameters

Usage Notes

This procedure grants an AQ Internet agent the privileges of a specific database
user. The AQ Internet agent should have been previously created using the
CREATE_AQ_AGENgrocedure.

For secure queues, the sender and receiver agent of the message must be mapped to
the database user performing the enqueue or dequeue operation.

See Also: Oracle9i Streams for information about secure queues

DBMS_AQADM.ENABLE DB ACCESS (
agent_name IN VARCHAR2,
db_usemame IN VARCHAR2)

Table 6-29 ENABLE_DB_ACCESS Procedure Parameters

Parameter Description
agent_name Specifies the username of the AQ Internet agent
db_username Specified the database user whose privileges are to be granted

to the AQ Internet agent

The SYS.AQSINTERNET_USERSiew has a list of all AQ Internet agents and the
names of the database users whose privileges are granted to them.

DBMS_AQADM 6-31

DISABLE_DB_ACCESS Procedure

DISABLE_DB_ACCESS Procedure

This procedure revokes the privileges of a specific database user from an AQ
Internet agent. The AQ Internet agent should have been previously granted those
privileges using the ENABLE_DB_ACCES@rocedure.

Syntax
DBMS_AQADM.DISABLE DB _ACCESS (
agent_name IN VARCHARZ2,
db_usemame IN VARCHAR?)
Parameters

Table 6-30 DISABLE DB _ACCESS Procedure Parameters

Parameter Description
agent_name Specifies the username of the AQ Internet agent
db_username Specified the database user whose privileges are to be revoked

from the AQ Internet agent

ADD _ALIAS TO_LDAP Procedure

This procedure creates an alias for a queue, agent, or a JMS ConnectionFactory in
LDAP. The alias will be placed directly under the database server’s distinguished
name in LDAP hierarchy.

Syntax
DBMS_AQADM.ADD_ALIAS TO_LDAP(
alias IN VARCHAR?,
obj location IN VARCHAR2);
Parameters

Table 6-31 ADD_ALIAS_TO_LDAP Procedure Parameters

Parameter Description

alias the name of the alias
Example:’west_shipping’

obj_location The distinguished name of the object (queue, agent or
connection factory) to which alias refers

6-32 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQADM Subprograms

Usage Notes

This method can be used to create aliases for Queues, Agents and JMS
ConnectionFactory objects. These object must exist before the alias is created. These
aliases can be used for JINDI lookup in JMS and AQ Internet access.

DEL_ALIAS FROM_LDAP Procedure

This procedure drops an alias for a queue, agent, or JMS ConnectionFactory in

LDAP.
Syntax
DBMS_AQDEL ALIAS FROM_LDAP(
alias IN VARCHARY?);
Parameters

Table 6-32 DEL_ALIAS _FROM_LDAP Procedure Parameters

Parameter Description

alias The alias to be removed

DBMS_AQADM 6-33

DEL_ALIAS_FROM_LDAP Procedure

6-34 Oracle9i Supplied PL/SQL Packages and Types Reference

v

DBMS_AQELM

The DBMS_AQELIdackage provides procedures to manage the configuration of
Advanced Queuing asynchronous notification by e-mail and HTTP.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing for detailed information about DBMS_AQELM.

This chapter discusses the following topics:

=« Summary of DBMS_AQELM Subprograms

DBMS_AQELM 7-1

Summary of DBMS_AQELM Subprograms

Summary of DBMS_AQELM Subprograms

Table 7-1 DBMS_AQELM Subprograms

Subprogram

Description

SET_MAILHOST
Procedure on page 7-2

GET_MAILHOST
Procedure on page 7-3

SET_MAILPORT
Procedure on page 7-3

GET_MAILPORT
Procedure on page 7-4

SET_SENDFROM
Procedure on page 7-4

GET_SENDFROM
Procedure on page 7-5

SET_PROXY Procedure on
page 7-5

GET_PROXY Procedure
on page 7-6

Sets the host name for SMTP server.

Gets the host name for SMTP server.

Sets the port number for SMTP server.

Gets the port number for SMTP server.

Sets the sent-from e-mail address.

Gets the sent-from e-mail address.

Sets the proxy server name to be used for requests of HTTP
protocol, excluding requests for hosts that belong to the
domain specified in no_proxy_domains

Gets the proxy server name and no_proxy_domains set by
DBMS_AQELM.SET_PROX®r HTTP notifications.

SET_MAILHOST Procedure

This procedure sets the host name for the SMTP server. As part of the configuration
for e-mail notifications, a user with AQ_ADMINISTRATOR_ROL&r with EXECUTE
permissions on the DBMS_AQELIdackage needs to set the host name before
registering for e-mail notifications. The database will use this SMTP server host
name to send out e-mail notifications.

Syntax

DBMS_AQELM.SET MAILHOST (
maihost IN VARCHAR?),

7-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQELM Subprograms

Parameters

Table 7-2 SET_MAILHOST Procedure Parameters

Parameter Description

mailhost The SMTP server host name.

GET_MAILHOST Procedure
This procedure gets the host name set by DBMS_AQELM.SET_MAILHOSTor the

SMTP server.
Syntax
DBMS_AQELM.GET_MAILHOST (
maihost OUT VARCHARY);
Parameters

Table 7-3 GET_MAILHOST Procedure Parameters

Parameter Description

mailhost The SMTP server host name.

SET_MAILPORT Procedure

This procedure sets the port number for the SMTP server. As part of the
configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLé&r
with EXECUTBEpermissions on DBMS_AQELIdackage needs to set the port number
before registering for e-mail notifications. The database will use this SMTP server
port number to send out e-mail notifications. If not set, the SMTP mailport defaults

to 25.
Syntax
DBMS_AQELM.SET_MAILPORT (
mailport IN NUMBERY);
Parameters

Table 7-4 shows the parameters for the SET_MAILPORTprocedure.

DBMS_AQELM 7-3

GET_MAILPORT Procedure

Table 7-4 SET_MAILPORT Procedure Parameters

Parameter Description

mailport The SMTP server port number.

GET_MAILPORT Procedure

This procedure gets the port number for the SMTP server set by the DBMS_AQELM.
SET_MAILPORTprocedure or the default value, which is 25.

Syntax
DBMS_AQELM.GET_MAILPORT (
maipot OUT NUMBER);

Parameters

Table 7-5 GET_MAILPORT Procedure Parameters

Parameter Description

mailport The SMTP server port number.

SET_SENDFROM Procedure

This procedure sets the sent-from e-mail address. As part of the configuration for
e-mail notifications, a user with AQ_ ADMINISTRATOR_ROLé&r with EXECUTE
permissions on the DBMS_AQELdackage should set the sent-from address before
registering for e-mail notifications This e-mail address is used in the sent-from field
in all the e-mail notifications sent out by the database to the registered e-mail

addresses.
Syntax
DBMS_AQELM.SET_SENDFROM (
sendfrom IN VARCHAR2);
Parameters

Table 7-6 SET_SENDFROM Procedure Parameters

Parameter Description

sendfrom The sent-from e-mail address.

7-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_AQELM Subprograms

GET_SENDFROM Procedure

Syntax

Parameters

This procedure gets the sent-from e-mail address set by DBMS_AQELM.SET _
SENDFROMrocedure.

DBMS_AQELM.GET_SENDFROM (
sendfrom OUT VARCHAR2);

Table 7-7 GET_SENDFROM Procedure Parameters

Parameter Procedure

sendfrom The sent-from e-mail address.

SET_PROXY Procedure

Syntax

This procedure sets the proxy server name to be used for requests of HTTP protocol,
excluding requests for hosts that belong to the domain specified in no_proxy
domains . The proxy server name can include an optional TCP/IP port number at
which the proxy server listens. If the port is not specified for the proxy server, port
80 is assumed. no_proxy_domains is a list of domains or hosts for which HTTP
requests should be sent directly to the destination HTTP server instead of going
through a proxy server. Optionally, a port number can be specified for each domain
or host. If the port number is specified, the no-proxy restriction is only applied to
the request at that port of the particular domain or host. When no_proxy

domains is NULLand the proxy server is set, all requests go through the proxy
server. When the proxy server is not set, http_send sends the requests to the
target Web servers directly.

As part of the configuration for HTTP notifications, a user with AQ _
ADMINISTRATOR_ROLBr with EXECUTEpermissions on the DBMS_AQELM
package can choose to set the proxy server name and a list of no_proxy_domains
if required, before registering for HTTP notifications. The database will use this
information to post HTTP notifications.

DBMS_AQELM.SET_PROXY (
proxy IN VARCHAR2,
no_proxy_domains IN VARCHAR2 DEFAULT NULL);

DBMS_AQELM 7-5

GET_PROXY Procedure

Parameters

Table 7-8 SET_PROXY Procedure Parameters

Parameter Procedure
proxy The proxy server host and port number. The syntax is
"[http:/Nhost[:port][N" . For example,

"Www-proxy.my-company.com:80"

no_proxy_domains The list of no-proxy domains or hosts. The syntax is
a list of host or domains, with optional port numbers separated
by a comma, a semi-colon, or a space. For example,
"corp.my-company.com, eng.my-company.com:80"

GET_PROXY Procedure

This procedure gets the proxy server name and no_proxy_domains set by DBMS _
AQELM.SET_PROXYor HTTP notifications.

Syntax
DBMS _AQELM.GET_PROXY (
proxy OUT VARCHAR2,
no_proxy_domains OUT VARCHARY);
Parameters

Table 7-9 GET_PROXY Procedure Parameters

Parameter Procedure
proxy The proxy server host and port number.
no_proxy_domains The list of no-proxy domains or hosts.

7-6 Oracle9i Supplied PL/SQL Packages and Types Reference

38

DBMS_CAPTURE_ADM

The DBMS_CAPTURE_Adckage provides administrative procedures for starting,
stopping, and configuring a capture process. The source of the captured changes is

the redo logs, and the repository for the captured changes is a queue (created using
the DBMS_AQADpackage or the DBMS_STEAMS_ADM.SET_UP_QUHbHacedure).

This chapter contains the following topic:

=« Summary of DBMS_CAPTURE_ADM Subprograms

See Also: Oracle9i Streams for more information about the capture
process

DBMS_CAPTURE_ADM 8-1

Summary of DBMS_CAPTURE_ADM Subprograms

Summary of DBMS_CAPTURE_ADM Subprograms

Table 8-1 DBMS_CAPTURE_ADM Subprograms

Subprogram

Description

"ABORT_GLOBAL_INSTANTIATION
Procedure"” on page 8-3

"ABORT_SCHEMA_INSTANTIATION
Procedure"” on page 8-3

"ABORT_TABLE_INSTANTIATION
Procedure"” on page 8-4

"ALTER_CAPTURE Procedure" on
page 8-4

"CREATE_CAPTURE Procedure” on
page 8-6

"DROP_CAPTURE Procedure" on
page 8-8

"PREPARE_GLOBAL_INSTANTIATION
Procedure"” on page 8-8

"PREPARE_SCHEMA_INSTANTIATION
Procedure" on page 8-9

"PREPARE_TABLE_INSTANTIATION
Procedure" on page 8-10

"SET_PARAMETER Procedure" on
page 8-11

"START_CAPTURE Procedure" on
page 8-14

"STOP_CAPTURE Procedure” on
page 8-15

Reverses the effects of running the
PREPARE_GLOBAL_INSTANTIATION
procedure

Reverses the effects of running the
PREPARE_SCHEMA_INSTANTIATION
procedure

Reverses the effects of running the
PREPARE_TABLE_INSTANTIATIONprocedure

Alters a capture process

Creates a capture process

Drops a capture process

Performs the synchronization necessary for
instantiating all the tables in the database at
another database

Performs the synchronization necessary for
instantiating all tables in the schema at another
database

Performs the synchronization necessary for
instantiating the table at another database

Sets a capture process parameter to the
specified value

Starts the capture process, which mines redo
logs and enqueues the mined redo information
into the associated queue

Stops the capture process from mining redo
logs

Note:

All procedures commit unless specified otherwise.

8-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

ABORT_GLOBAL_INSTANTIATION Procedure

Syntax

Reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION
procedure.

Specifically, running this procedure removes data dictionary information related to
the database instantiation.

DBMS_CAPTURE_ADM.ABORT_GLOBAL_INSTANTIATION();

ABORT_SCHEMA_INSTANTIATION Procedure

Syntax

Parameter

Reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION
procedure.

Specifically, running this procedure removes data dictionary information related to
the schema instantiation.

DBMS_CAPTURE_ADM.ABORT_SCHEMA_INSTANTIATION(
schema_name IN VARCHARY?),

Table 8-2 ABORT_SCHEMA_INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema for which to abort the effects of
preparing instantiation.

DBMS_CAPTURE_ADM 8-3

ABORT_TABLE_INSTANTIATION Procedure

ABORT_TABLE_INSTANTIATION Procedure

Reverses the effects of running the PREPARE_TABLE_INSTANTIATIONprocedure.
Specifically, running this procedure removes data dictionary information related to
the table instantiation.
Syntax
DBMS_CAPTURE_ADMABORT_TABLE_INSTANTIATION(
table_name IN VARCHAR2)
Parameter

Table 8-3 ABORT_TABLE INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table for which to abort the effects of
preparing instantiation, specified as
[schema_name.] object name .For example,

hr.employees . If the schema is not specified, then the current
user is the default.

ALTER_CAPTURE Procedure

Alters a capture process.

Syntax
DBMS_CAPTURE_ADM.ALTER_CAPTURE(
capture_name IN VARCHAR2,
rule_set name IN VARCHAR2 DEFAULT NULL,
remove_rule_set IN BOOLEAN DEFAULT false,
start_scn IN NUMBER DEFAULT NULL);

8-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

Parameters

Table 8-4 ALTER_CAPTURE Procedure Parameters

Parameter

Description

capture_name

rule_set_name

remove_rule_set

start_scn

The name of the capture process being altered. You must
specify an existing capture process name.

The name of the rule set that contains the capture rules for this
capture process. If you want to use a rule set for the capture
process, then you must specify an existing rule set in the form
[schema_name.] rule_set name .For example, to specify a
rule set in the hr schema named job_capture_rules , enter
hr.job_capture_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADphckage.

See Also: Oracle9i Streams for more information about the
changes that can be captured by a capture process

If true , then removes the rule set for the specified capture
process. If you remove a rule set for a capture process, then the
capture process captures all supported changes to all objects in
the database, excluding database objects in the SYSand
SYSTEMschemas.

If false , then retains any rule set for the specified capture
process.

If the rule_set_name parameter is non-NULL, then this
parameter should be set to false

A valid past SCN for the database where the capture process is
capturing changes. The capture process will capture changes
starting at the SCN specified.

The SCN value specified must be from a point-in-time after the
first capture process was created for the database. The first
capture process for the database may or may not be the capture
process being altered. An error is returned if an invalid SCN is
specified.

Note: When you change the start SCN for a capture process,
the capture process is stopped and restarted automatically.

DBMS_CAPTURE_ADM 8-5

CREATE_CAPTURE Procedure

CREATE_CAPTURE Procedure

Creates a capture process.

The user who runs the CREATE_CAPTURfrocedure is the user who captures
changes. This user must have the necessary privileges to capture changes. These
privileges include the following:

Syntax

Execute privilege on the rule set used by the capture process
Execute privilege on all transformation functions used in the rule set

Enqueue privilege on the queue used by the capture process

Note: Creation of the first capture process in a database may take
some time because the data dictionary is duplicated during this
creation.

See Also: Oracle9i Streams and Chapter 64, "DBMS_RULE_ADM"
for more information about rules and rule sets

DBMS_CAPTURE_ADM.CREATE_CAPTURE(

gueue_name IN VARCHARZ2,

capture_name IN VARCHARZ2,

rule_set name IN VARCHAR2 DEFAULT NULL,
start_scn IN NUMBER DEFAULT NULLY;

8-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

Parameters

Table 8-5 CREATE_CAPTURE Procedure Parameters

Parameter

Description

queue_name

capture_name

rule_set_name

start_scn

The name of the queue into which the capture process
enqueues changes. You must specify an existing queue in the
form [schema_name.] queue_name. For example, to specify
a queue in the hr schema named streams_queue , enter
hr.streams_queue . If the schema is not specified, then the
current user is the default.

Note: The queue_name setting cannot be altered after the
capture process is created.

The name of the capture process being created. A NULL
specification is not allowed.

Note: The capture_name setting cannot be altered after the
capture process is created.

The name of the rule set that contains the capture rules for this
capture process. If you want to use a rule set for the capture
process, then you must specify an existing rule set in the form
[schema_name.] rule_set name .For example, to specify a
rule set in the hr schema named job_capture_rules , enter
hr.job_capture_rules . If the schema is not specified, then
the current user is the default.

An error is returned if the specified rule set does not exist. You
can create a rule set and add rules to it using the
DBMS_RULE_ADphckage.

If you specify NULL, then the capture process captures all
supported changes to all objects in the database, excluding
database objects in the SYSand SYSTEMchemas.

See Also: Oracle9i Streams for more information about the
changes that can be captured by a capture process

A valid past SCN for the database where the capture process is
capturing changes. The capture process will capture changes
starting at the SCN specified.

The SCN value specified must be from a point in time after the
first capture process was created for the database. If the
capture process being created is the first capture process ever
created for the current database, then you must specify NULL
for the start_scn . An error is returned if an invalid SCN is
specified.

DBMS_CAPTURE_ADM 8-7

DROP_CAPTURE Procedure

DROP_CAPTURE Procedure

Syntax

Parameter

Drops a capture process.

DBMS_CAPTURE_ADM.DROP_CAPTURE(
capture_name IN VARCHAR2);

Table 8-6 DROP_CAPTURE Procedure Parameter

Parameter Description

capture_name The name of the capture process being dropped. Specify an
existing capture process name.

PREPARE_GLOBAL_INSTANTIATION Procedure

Syntax

Performs the synchronization necessary for instantiating all the tables in the
database at another database. Run this procedure at the source database.

This procedure records the lowest SCN of each object in the database for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the database for instantiation.

DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION,;

8-8 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

PREPARE_SCHEMA_INSTANTIATION Procedure

Syntax

Parameter

Performs the synchronization necessary for instantiating all tables in the schema at
another database. Run this procedure at the source database.

This procedure records the lowest SCN of each object in the schema for
instantiation. SCNs subsequent to the lowest SCN for an object can be used for
instantiating the object. Running this procedure prepares all current and future
objects in the schema for instantiation.

DBMS_CAPTURE_ADM.PREPARE_SCHEMA INSTANTIATION(
schema_name IN VARCHAR2);

Table 8-7 PREPARE_SCHEMA INSTANTIATION Procedure Parameter

Parameter Description

schema_name The name of the schema. For example, hr.

DBMS_CAPTURE_ADM 8-9

PREPARE_TABLE_INSTANTIATION Procedure

PREPARE_TABLE_INSTANTIATION Procedure

Performs the synchronization necessary for instantiating the table at another
database. Run this procedure at the source database.

This procedure records the lowest SCN of the table for instantiation. SCNs
subsequent to the lowest SCN for an object can be used for instantiating the object.

Syntax
DBMS_CAPTURE._ADM.PREPARE_TABLE_INSTANTIATION(
table_name IN VARCHAR2);
Parameters

Table 8-8 PREPARE_TABLE _INSTANTIATION Procedure Parameter

Parameter Description

table_name The name of the table specified as
[schema_name.] object name .For example,

hr.employees . If the schema is not specified, then the current
user is the default.

8-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

SET_PARAMETER Procedure

Syntax

Parameters

Sets a capture process parameter to the specified value.

When you alter a parameter value, a short amount of time may pass before the new
value for the parameter takes effect.

DBMS_CAPTURE_ADM.SET_PARAMETER(
capture name IN VARCHAR?Z,
parameter IN VARCHARZ2,
value IN VARCHARY);

Table 8-9 SET_PARAMETER Procedure Parameters

Parameter Description

capture_name The name of the capture process. The capture process uses
LogMiner to capture changes from the redo logs.

parameter The name of the parameter you are setting. See "Capture
Process Parameters" on page 8-12 for a list of these parameters.

value The value to which the parameter is set

DBMS_CAPTURE_ADM 8-11

SET_PARAMETER Procedure

Capture Process Parameters

The following table lists the parameters for the capture process.

Table 8-10 Capture Process Parameters (Page 1 of 2)

Possible
Parameter Name Values Default Description
disable_on_limit Y orN N If Y, then the capture process is disabled if the

A valid SCN infinite
or infinite

maximum_scn

message_limit A positive infinite
integer or
infinite

parallelism A positive 1
integer

capture process terminates because it reached a
value specified by the time_limit parameter or
message_limit parameter.

If N, then the capture process is restarted
immediately after stopping because it reached a
limit.

The capture process is disabled before capturing

a change record with an SCN greater than or
equal to the value specified.

If infinite , then the capture process runs
regardless of the SCN value.

The capture process stops after capturing the
specified number of messages.

If infinite , then the capture process continues
to run regardless of the number of messages
captured.

The number of parallel execution servers that
may concurrently mine the redo log

Note:

= When you change the value of this
parameter, the capture process is stopped
and restarted automatically.

= Setting the parallelism parameter to a
number higher than the number of available
parallel execution servers may disable the
capture process. Make sure the PROCESSES
and PARALLEL_MAX_SERVERSitialization
parameters are set appropriately when you
set the parallelism capture process
parameter.

8-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

Table 8—-10 Capture Process Parameters

(Page 2 of 2)

Parameter Name

Possible

Values Default

Description

startup_seconds

, apositive 0

The maximum number of seconds to wait for

integer, or another instantiation of the same capture process
infinite to finish. If the other instantiation of the same
capture process does not finish within this time,
then the capture process does not start.
If infinite , then a capture process does not
start until another instantiation of the same
capture process finishes.
time_limit A positive infinite The capture process stops as soon as possible
integer or after the specified number of seconds since it
infinite started.
If infinite , then the capture process continues
to run until it is stopped explicitly.
trace_level ora 0 Set this parameter only under the guidance of
positive Oracle Support Services.
integer
write_alert_log Y orN Y If Y, then the capture process writes a message to
the alert log on exit.
If N, then the capture process does not write a
message to the alert log on exit.
The message specifies the reason the capture
process stopped.
Note:

= For all parameters that are interpreted as positive integers, the

maximum possible value is 4,294,967,295
applicable, specify infinite

. Where
for larger values.

= For parameters that require an SCN setting, any valid SCN

value can be specified.

DBMS_CAPTURE_ADM 8-13

START_CAPTURE Procedure

START _CAPTURE Procedure

Starts the capture process, which mines redo logs and enqueues the mined redo
information into the associated queue.

The start status is persistently recorded. Hence, if the status is ENABLEDthen the
capture process is started upon database instance startup.

The capture process is a background Oracle process and is prefixed by CP

The enqueue and dequeue state of DBMS_AQADM.START_QUEBbI
DBMS_AQADM.STOP_QUEbL#&ve no effect on the start status of a capture process.

You can create the capture process using the following procedures:
= DBMS_CAPTURE_ADM.CREATE_CAPTURE

» DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

» DBMS_STREAMS_ADM.ADD_SCHEMA RULES

» DBMS_STREAMS_ADM.ADD_TABLE_RULES

See Also: Chapter 73, "DBMS_STREAMS_ADM"
Syntax
DBMS_CAPTURE_ADM.START CAPTURE(
capture_name IN VARCHAR2);

Parameter

Table 8-11 START_CAPTURE Procedure Parameter

Parameter Description

capture_name The name of the capture process. The capture process uses
LogMiner to capture changes in the redo information. A NULL
setting is not allowed.

8-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_CAPTURE_ADM Subprograms

STOP_CAPTURE Procedure

Syntax

Parameters

Stops the capture process from mining redo logs.

The stop status is persistently recorded. Hence, if the status is DISABLED, then the
capture process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEBbI
DBMS_AQADM.STOP_QUEbL#&ve no effect on the stop status of a capture process.

DBMS_CAPTURE_ADM.STOP_CAPTURE(
capture_ name IN VARCHARZ2,
force IN BOOLEAN DEFAULT false);

Table 8-12 STOP_CAPTURE Procedure Parameters

Parameter Description

capture_name The name of the capture process. A NULL setting is not
allowed.

force If TRUE then stops the capture process instantly.

If FALSE, then stops the capture process after the capture
process captures its current transaction.

DBMS_CAPTURE_ADM 8-15

STOP_CAPTURE Procedure

8-16 Oracle9i Supplied PL/SQL Packages and Types Reference

9

DBMS_DDL

This package provides access to some SQL data definition language (DDL)
statements from stored procedures. It also provides special administration
operations that are not available as DDLs.

The ALTER_COMPILEand ANALYZE_OBJECPprocedures commit the current
transaction, perform the operation, and then commit again.

This package runs with the privileges of the calling user, rather than the package
owner SYS

This chapter discusses the following topics:

= Summary of DBMS_DDL Subprograms

DBMS_DDL 9-1

Summary of DBMS_DDL Subprograms

Summary of DBMS_DDL Subprograms

Table 9-1 DBMS_DDL Package Subprograms

Subprogram Description
ALTER_COMPILE Procedure on Compiles the PL/SQL object.
page 9-2

ANALYZE_OBJECT Procedure on Provides statistics for the database object.
page 9-3

IS_TRIGGER_FIRE_ONCE Function Returns TRUEif the specified DML or DDL trigger is
on page 9-4 set to fire once. Otherwise, returns FALSE

SET_TRIGGER_FIRING_PROPERTY Sets the specified DML or DDL trigger’s firing
Procedure on page 9-5 property.

ALTER_TABLE_REFERENCEABLE Reorganizes object tables and swizzles
Procedure on page 9-7 references

ALTER_TABLE_NOT_REFERENCE Reorganizes object tables and swizzles
ABLE Procedure on page 9-7 references

ALTER_COMPILE Procedure

Syntax

Parameters

This procedure is equivalent to the following SQL statement:

ALTER PROCEDURE|FUNCTION|PACKAGE [<schema>] <name> COMPILE [BODY]

DBMS_DDLALTER_COMPILE (
type VARCHAR2,
schema VARCHAR?,
name VARCHAR?),

Table 9-2 ALTER_COMPILE Procedure Parameters

Parameter Description

type Must be either PROCEDUREUNCTION PACKAGEPACKAGEBODY
or TRIGGER.

schema Schema name.

If NULL, then use current schema (case-sensitive).

9-2 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms

Exceptions

Table 9-2 ALTER_COMPILE Procedure Parameters

Parameter Description

name Name of the object (case-sensitive).

Table 9-3 ALTER_COMPILE Procedure Exceptions

Exception Description

ORA-20000: Insufficient privileges or object does not exist.
ORA-20001: Remote object, cannot compile.

ORA-20002: Bad value for object type

Should be either PACKAGEPACKAGE BODFROCEDURE

FUNCTION or TRIGGER

ANALYZE_OBJECT Procedure

This procedure provides statistics for the given table, index, or cluster. It is

Syntax

equivalent to the following SQL statement:

ANALYZE TABLE|CLUSTER|INDEX [<schema>J<name> [<method>] STATISTICS [SAMPLE <n>

[ROWS|PERCENT]]

DBMS_DDLANALYZE_OBJECT (

type VARCHAR2,

schema VARCHAR?,
name VARCHAR?,
method VARCHAR2,

estimate_rows NUMBER DEFAULT NULL,
estimate_percent NUMBER ~ DEFAULT NULL,
method_opt VARCHAR2 DEFAULT NULL,
partname VARCHAR2 DEFAULT NULL);

DBMS_DDL 9-3

IS_TRIGGER_FIRE_ONCE Function

Parameters

Table 9-4 ANALYZE _OBJECT Procedure Parameters

Parameter Description

type One of TABLE CLUSTERor INDEX. If none of these, an ORA-20001
error is raised.

schema Schema o_f _object to analyze. NULL means current schema,
case-sensitive.

name Name of object to analyze, case-sensitive.

method One of ESTIMATE COMPUTEr DELETE
If ESTIMATE then either estimate_rows or
estimate_percent must be nonzero.

estimate_rows Number of rows to estimate.

estimate_percent Percentage of rows to estimate.
If estimate_rows s specified, then ignore this parameter.

method_opt Method options of the following format.
[FOR TABLE]
[FOR ALL [INDEXED] COLUMNS] [SIZE n]
[FOR ALL INDEXES]

partname Specific partition to be analyzed.

Exceptions

Table 9-5 ANALYZE OBJECT Procedure Exceptions

Exception Description
ORA-20000: Insufficient privileges or object does not exist.
ORA-20001: Bad value for object type.

Should be either TABLE, INDEX or CLUSTER
ORA-20002: METHODmMust be one of COMPUTEESTIMATEor DELETE

IS_TRIGGER_FIRE_ONCE Function

This function returns TRUEIf the specified DML or DDL trigger is set to fire once.
Otherwise, it returns FALSE

9-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms

Syntax

Parameters

A fire once trigger fires in a user session but does not fire in the following cases:
s For changes made by a Streams apply process

s For changes made by executing one or more Streams apply errors using the
EXECUTE_ERRO& EXECUTE_ALL_ERRORSocedure in the
DBMS_APPLY_ADphkckage

Note: Only DML and DDL triggers can be fire once. All other
types of triggers always fire.

See Also: "SET_TRIGGER_FIRING_PROPERTY Procedure" on
page 9-5

DBMS_DDL.IS TRIGGER _FIRE_ONCE
trig_owner IN VARCHAR2,
trig_name IN VARCHAR2)

RETURN BOOLEAN,;

Table 9-6 |IS_TRIGGER_FIRE_ONCE Function Parameters

Parameter Description
trig_owner Schema of trigger
trig_name Name of trigger

SET_TRIGGER_FIRING_PROPERTY Procedure

This procedure sets the specified DML or DDL trigger’s firing property. Use this
procedure to control a DML or DDL trigger’s firing property for changes:

= Applied by a Streams apply process

= Made by executing one or more Streams apply errors using the
EXECUTE_ERRO& EXECUTE_ALL_ERRORSocedure in the
DBMS_APPLY_ADphckage.

You can specify one of the following settings for a trigger’s firing property:

DBMS_DDL 9-5

SET_TRIGGER_FIRING_PROPERTY Procedure

=« Ifthefire_once parameter is set to TRUEfor a trigger, then the trigger does
not fire for these types of changes.

= Ifthefire_once parameter is setto FALSEfor a trigger, then the trigger fires
for these types of changes.

Regardless of the firing property set by this procedure, a trigger continues to fire
when changes are made by means other than the apply process or apply error
execution. For example, if a user session or an application makes a change, then the
trigger continues to fire, regardless of the firing property.

Note:

=« If you dequeue an error transaction from the error queue and
execute it without using the DBMS_APPLY_ADphkckage, then
relevant changes resulting from this execution cause a trigger to
fire, regardless of the trigger firing property.

= Only DML and DDL triggers can be fire once. All other types of
triggers always fire.

See Also: Oracle9i Streams for more information about the apply
process and controlling a trigger’s firing property

Syntax
DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY
trig_owner IN VARCHAR2,
trig_name IN VARCHAR2,
fire_once IN BOOLEAN);
Parameters

Table 9-7 SET_TRIGGER_FIRING_PROPERTY Procedure Parameters

Parameter Description

trig_owner Schema of the trigger to set

trig_name Name of the trigger to set

fire_once If TRUE then the trigger is set to fire once. By default, the

fire_once parameter is set to TRUEfor DML and DDL triggers.
If FALSE, then the trigger is set to always fire.

9-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DDL Subprograms

ALTER_TABLE_REFERENCEABLE Procedure

This procedure reorganizes object tables and swizzles references. For example,
assume you have an object table FOOand that references in other tables point to
objects stored in FOO If you want to change some of the table organization—for
example, you want to make it an IOT or a partitioned table, or you want to
reorganize the data more efficiently—you copy all data from FOQinto FOO2 Then
you use the alter_table_referenceable and

alter_table_not_referenceable procedures to swizzle all existing references
to point to FOO2instead of FOO.

Syntax

DBMS_DDLALTER TABLE _REFERENCEABLE
TABLE_NAME IN VARCHARZ,
TABLE_SCHEMA IN DEFAULT VARCHARZ,
AFFECTED_SCHEMA IN DEFAULT VARCHARZ;

ALTER _TABLE_NOT REFERENCEABLE Procedure
See ALTER_TABLE_NOT_REFERENCEABLE Procedure on page 9-7.

Syntax

DBMS_DDLALTER TABLE NOT REFERENCEABLE
TABLE_NAME IN VARCHAR?,
TABLE_SCHEMA IN DEFAULT VARCHAR2,
AFFECTED SCHEMA IN DEFAULT VARCHAR2;

DBMS_DDL 9-7

ALTER_TABLE_NOT_REFERENCEABLE Procedure

9-8 Oracle9i Supplied PL/SQL Packages and Types Reference

10

DBMS_DEBUG

DBMS_DEBU®G a PL/SQL API to the PL/SQL debugger layer, Probe, in the Oracle
server.

This API is primarily intended to implement server-side debuggers and it provides

a way to debug server-side PL/SQL program units.

Note: The term program unit refers to a PL/SQL program of any
type (procedure, function, package, package body, trigger,

anonymous block, object type, or object type body).

This chapter discusses the following topics:

Using DBMS_DEBUG

Usage Notes

Types and Constants

Error Codes, Exceptions, and Variables
Common and Debug Session Sections
OER Breakpoints

Summary of DBMS_DEBUG Subprograms

DBMS_DEBUG

10-1

Using DBMS_DEBUG

Using DBMS_DEBUG

To debug server-side code, you must have two database sessions: one session to run
the code in debug mode (the target session), and a second session to supervise the
target session (the debug session).

The target session becomes available for debugging by making initializing calls
with DBMS_DEBUG his marks the session so that the PL/SQL interpreter runs in
debug mode and generates debug events. As debug events are generated, they are
posted from the session. In most cases, debug events require return notification: the
interpreter pauses awaiting a reply.

Meanwhile, the debug session must also initialize itself using DBMS_DEBUG his
tells it which target session to supervise. The debug session may then call entry
points in DBMS_DEBU read events that were posted from the target session and
to communicate with the target session.

DBMS_DEBUG@oes not provide an interface to the PL/SQL compiler; however, it
does depend on debug information optionally generated by the compiler. Without
debug information, it is not possible to examine or modify the values of parameters
or variables. There are two ways to ensure that debug information is generated:
through a session switch, or through individual recompilation.

To set the session switch, enter the following statement:

ALTER SESSION SET PLSQL DEBUG = true;

This instructs the compiler to generate debug information for the remainder of the
session. It does not recompile any existing PL/SQL.

To generate debug information for existing PL/SQL code, use one of the following
statements (the second recompiles a package or type body):

ALTER [PROCEDURE | FUNCTION | PACKAGE | TRIGGER | TYPE] <name> COMPILE DEBUG;
ALTER [PACKAGE | TYPE] <name> COMPILE DEBUG BODY;

Figure 10-1 and Figure 10-2 illustrate the flow of operations in the session to be
debugged and in the debugging session.

10-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_DEBUG

Figure 10-1 Target Session

Initialize session for debugging,
and generate/specify unique debugID.
DBMS_DEBUB.initialize()

>
Start debugging Stop debugging
DBMS_DEBUG.debug_on() DBMS_DEBUG.debug_off()
v
Execute PL/SQL programs

DBMS_DEBUG 10-3

Using DBMS_DEBUG

Figure 10-2 Debug Session

Input:
debuglID from
target session

—

Initialize
DBMS_DEBUG.attach_session()

2)

Maniputlate breakpoints
DBMS_DEBUG.set_breakpoint()
DBMS_DEBUG.delete_breakpoint()
DBMS_DEBUG.disable_breakpoint()
DBMS_DEBUG.enable_breakpoint()
DBMS_DEBUG.show_breakpoints()

5

Read first event from target session
DBMS_DEBUG.synchronize()

—

>

v

Show stack
DBMS_DEBUG.print_backtrace()

Get/set values
DBMS_DEBUG.get_value()
DBMS_DEBUG.set_value()

v

Manipulate breakpoints

Show source
DBMS_DEBUG.show_source()

1‘4

10-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Usage Notes

Usage Notes

Figure 10-2 Debug Session (Cont.)

A

Continue execution and wait for
next event DBMS_DEBUG.continue()

v

Program terminated?
No| (eventis DBMS_DEBUG.reason_knl_exit)

* Yes

next program to debug *

Detach session
DBMS_DEBUG.detach_session()

Control of the Interpreter
The interpreter pauses execution at the following times:

1. At startup of the interpreter so any deferred breakpoints may be installed prior
to execution.

2. Atany line containing an enabled breakpoint.

3. Atany line where an interesting event occurs. The set of interesting events is
specified by the flags passed to DBMS_DEBUGONTINUEN the breakflags
parameter.

Session Termination

There is no event for session termination. Therefore, it is the responsibility of the
debug session to check and make sure that the target session has not ended. A call
to DBMS_DEBUGYNCHRONIZEfter the target session has ended causes the debug
session to hang until it times out.

Deferred Operations

The diagram suggests that it is possible to set breakpoints prior to having a target
session. This is true. In this case, Probe caches the breakpoint request and transmits

DBMS_DEBUG 10-5

Types and Constants

it to the target session at first synchronization. However, if a breakpoint request is
deferred in this fashion, then:

= SET BREAKPOINTdoes not set the breakpoint number (it can be obtained later
from SHOW_BREAKPOINTISnecessary).

= SET BREAKPOINTdoes not validate the breakpoint request. If the requested
source line does not exist, then an error silently occurs at synchronization, and
no breakpoint is set.

Diagnostic Output

To debug Probe, there are diagnostics parameters to some of the calls in DBMS _
DEBUGThese parameters specify whether to place diagnostic output in the RDBMS
tracefile. If output to the RDBMS tracefile is disabled, these parameters have no
effect.

Types and Constants

PROGRAM_INFO Types

This type specifies a program location. It is a line number in a program unit. This is
used for stack backtraces and for setting and examining breakpoints. The read-only
fields are currently ignored by Probe for breakpoint operations. They are set by
Probe only for stack backtraces.

Type Description
EntrypointName Null, unless this is a nested procedure or function.
LibunitType Disambiguate among objects that share the same

namespace (for example, procedure and package
specifications).

See the Libunit Types on page 10-9 for more information.

10-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Types and Constants

TYPE program _info IS RECORD

(
— The following fields are used when setling a breakpoint

Namespace BINARY_INTEGER, - See NAMESPACES' section below.
Name VARCHAR2(30), — name of the program unit

Owner VARCHAR2(30), - owner of the program unit

Dblink VARCHAR2(30), — database link, if remote

Line# BINARY_INTEGER,

— Read-only fields (set by Probe when doing a stack backirace)

LibunitType BINARY_INTEGER,

EntrypointName ~ VARCHAR2(30)

RUNTIME_INFO Type
This type gives context information about the running program.

TYPE runtime_info IS RECORD
(

Line# BINARY_INTEGER, - (duplicate of program.line#)
Teminated BINARY_INTEGER, - has the program terminated?
Breakpoint BINARY_INTEGER, - breakpoint number

StackDepth BINARY_INTEGER, - number of frames on the stack
InterpreterDepth BINARY_INTEGER, - <reserved field>

Reason BINARY_INTEGER, - reason for suspension
Program program_info - source location

BREAKPOINT_INFO Type

This type gives information about a breakpoint, such as its current status and the
program unit in which it was placed.

TYPE breakpoint_info IS RECORD

(
— These fields are duplicates of ‘program info’.

Name VARCHAR2(30),

Owner VARCHAR2(30),

DbLink VARCHAR2(30),

Line# BINARY_INTEGER,

LibunitType BINARY_INTEGER,

Status BINARY_INTEGER - see hreakpoint_status * below

DBMS_DEBUG 10-7

Types and Constants

INDEX_TABLE Type

This type is used by GET_INDEXESto return the available indexes for an indexed
table.

TYPE index table IS table of BINARY_INTEGER INDEX BY BINARY_INTEGER;

BACKTRACE_TABLE Type
This type is used by PRINT_BACKTRACE

TYPE backirace table IS TABLE OF program info INDEX BY BINARY INTEGER;

BREAKPOINT_TABLE Type
This type is used by SHOW_BREAKPOINTS

TYPE breakpoint table IS TABLE OF breakpoint_info INDEX BY BINARY_INTEGER;

VC2_TABLE Type
This type is used by SHOW_SOURCE

TYPE vc2_table IS TABLE OF VARCHAR2(90) INDEX BY BINARY_INTEGER;

Constants
A breakpoint status may have the following value:

= breakpoint_status _unused —hbreakpoint is not in use

Otherwise, the status is a mask of the following values:

= breakpoint_status_active —a line breakpoint
= breakpoint_status_disabled —breakpoint is currently disabled
= breakpoint_status_remote —a shadow breakpoint (a local representation

of a remote breakpoint)

NAMESPACES

Program units on the server reside in different namespaces. When setting a
breakpoint, specify the desired namespace.

1. Namespace_cursor contains cursors (anonymous blocks).
2. Namespace_pgkspec_or_toplevel contains:

= Package specifications.

10-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Types and Constants

s Procedures and functions that are not nested inside other packages,
procedures, or functions.

s Object types.

3. Namespace _pkg body contains package bodies and type bodies.

4. Namespace_trigger

Libunit Types

contains triggers.

These values are used to disambiguate among objects in a given namespace. These
constants are used in PROGRAM_INF@hen Probe is giving a stack backtrace.

= LibunitType_cursor

= LibunitType_procedure

= LibunitType_function

= LibunitType_package

= LibunitType_package_ body

= LibunitType_trigger

= LibunitType_Unknown

Breakflags

These are values to use for the breakflags parameter to CONTINUE in order to
tell Probe what events are of interest to the client. These flags may be combined.

Value

Description

break_next_line
break_any_call

break_any_return

break_return

break_exception

break_handler

Break at next source line (step over calls).
Break at next source line (step into calls).

Break after returning from current entrypoint (skip over any
entrypoints called from the current routine).

Break the next time an entrypoint gets ready to return. (This
includes entrypoints called from the current one. If interpreter is
running Procl , which calls Proc2 , then break_return stops
at the end of Proc2 .)

Break when an exception is raised.

Break when an exception handler is executed.

DBMS_DEBUG 10-9

Types and Constants

Value Description

abort_execution Stop execution and force an ’exit’ event as soon as DBMS _
DEBUGCONTINUEHS called.

Information Flags

These are flags which may be passed as the info_requested parameter to
SYNCHRONIZECONTINUEand GET_RUNTIME_INFO

Flag Description

info_getStackDepth Get the current depth of the stack.
info_getBreakpoint Get the breakpoint number.
info_getLineinfo Get program unit information.

Reasons for Suspension

After CONTINUHS run, the program either runs to completion or breaks on some
line.

Reason Description

reason_none -

reason_ Interpreter is starting.
interpreter_

starting

reason_breakpoint Hit a breakpoint.
reason_enter Procedure entry.
reason_return Procedure is about to return.
reason_finish Procedure is finished.
reason_line Reached a new line.
reason_interrupt An interrupt occurred.
reason_exception An exception was raised.
reason_exit Interpreter is exiting (old form).
reason_knl_exit Kernel is exiting.
reason_handler Start exception-handler.

10-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Error Codes, Exceptions, and Variables

Error Codes,

Reason

Description

reason_timeout
reason_instantiate

reason_abort

A timeout occurred.
Instantiation block.

Interpreter is aborting.

Exceptions, and Variables

Error Codes

These values are returned by the various functions called in the debug session
(SYNCHRONIZECONTINUESET_BREAKPOINTand so on). If PL/SQL exceptions
worked across client/server and server/server boundaries, then these would all be
exceptions rather than error codes.

Value

Description

success

Normal termination.

Statuses returned by GET_VALUENnd SET_VALUE

Status

Description

error_bogus_frame

error_no_debug_
info

error_no_such_
object

error_unknown_type

error_indexed_
table

error_illegal_
index

error_
nullcollection

error_nullvalue

No such entrypoint on the stack.

Program was compiled without debug symbols.

No such variable or parameter.

Debug information is unreadable.

Returned by GET_VALUHTf the object is a table, but no index was

provided.

No such element exists in the collection.

Table is atomically null.

Value is null.

Statuses returned by SET_VALUE

DBMS_DEBUG 10-11

Error Codes, Exceptions, and Variables

Status Description

error_illegal_ Constraint violation.

value

error_illegal_null Constraint violation.

error_value_ Unable to decipher the given value.
malformed

error_other Some other error.

error_name_ Name did not resolve to a scalar.
incomplete

Statuses returned by the breakpoint functions;

Status Description

error_no_such_ No such breakpoint.

breakpt

error_idle_breakpt Cannot enable or disable an unused breakpoint.
error_bad_handle Unable to set breakpoint in given program (nonexistent or

security violation).

General error codes (returned by many of the DBMS_DEBUS&ubprograms):

Status Description

error_ Functionality is not yet implemented.

unimplemented

error_deferred No program running; operation deferred.

error_exception An exception was raised in the DBMS_DEBUGr Probe packages

on the server.

error_ Some error other than a timeout occurred.
communication

error_timeout Timout occurred.

10-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Common and Debug Session Sections

Exceptions
Exception Description
illegal_init DEBUG_ON was called prior to INITIALIZE

The following exceptions are raised by procedure SELF_CHECK

Exception Description

pipe_creation_ Could not create a pipe.

failure

pipe_send_failure Could not write data to the pipe.
pipe_receive_ Could not read data from the pipe.
failure

pipe_datatype_ Datatype in the pipe was wrong.
mismatch

pipe_data_error Data got garbled in the pipe.
Variables

Exception Description

default_timeout The timeout value (used by both sessions).The smallest possible

timeout is 1 second. If this value is set to 0, then a large value
(3600) is used.

Common and Debug Session Sections

Common Section
The following subprograms may be called in either the target or the debug session:

= PROBE_VERSION Procedure
» SELF CHECK Procedure
» SET _TIMEOUT Function

Debug Session Section
The following subprograms should be run in the debug session only:

DBMS_DEBUG 10-13

OER Breakpoints

= ATTACH_SESSION Procedure

= SYNCHRONIZE Function

» SHOW_SOURCE Procedure

= PRINT_BACKTRACE Procedure

= CONTINUE Function

= SET_BREAKPOINT Function

« DELETE BREAKPOINT Function

= DISABLE_BREAKPOINT Function
= ENABLE_BREAKPOINT Function
= SHOW BREAKPOINTS Procedure
» GET_VALUE Function

= SET VALUE Function

s DETACH_SESSION Procedure

» GET_RUNTIME_INFO Function

= GET_INDEXES Function

= EXECUTE Procedure

OER Breakpoints

Exceptions that are declared in PL/SQL programs are known as user-defined
exceptions. In addition, there are Oracle Errors (OERS) that are returned from the
Oracle kernel. To tie the two mechanisms together, PL/SQL provides the
exception_init pragma that turns a user-defined exception into an OER, so that
a PL/SQL handler may be used for it, and so that the PL/SQL engine can return
OERs to the Oracle kernel. As of the current release, the only information available
about an OER is its number. If two user-defined exceptions are exception_init'd to
the same OER, they are indistinguishable.

10-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Summary of DBMS_DEBUG Subprograms

Table 10-1 DBMS_DEBUG Package Subprograms

Subprogram Description

PROBE_VERSION Returns the version number of DBMS_DEBUGN the server.
Procedure on page 10-16

SELF_CHECK Procedure on Performs an internal consistency check.

page 10-16

SET_TIMEOUT Function on Sets the timeout value.

page 10-17

INITIALIZE Function on Sets debuglD in target session.

page 10-18

DEBUG_ON Procedure on Turns debug-mode on.

page 10-19

DEBUG_OFF Procedure on Turns debug-mode off.

page 20

ATTACH_SESSION Notifies the debug session about the target debuglD.

Procedure on page 10-20

SYNCHRONIZE Function Waits for program to start running.
on page 10-21

SHOW_SOURCE Procedure Fetches program source.
on page 10-22

PRINT_BACKTRACE Prints a stack backtrace.
Procedure on page 10-24

CONTINUE Function on Continues execution of the target program.
page 10-24
SET_BREAKPOINT Sets a breakpoint in a program unit.

Function on page 10-25

DELETE_BREAKPOINT Deletes a breakpoint.
Function on page 10-27

DISABLE_BREAKPOINT Disables a breakpoint.
Function on page 10-27

ENABLE_BREAKPOINT Activates an existing breakpoint.
Function on page 10-28

SHOW_BREAKPOINTS Returns a listing of the current breakpoints.
Procedure on page 10-29

DBMS_DEBUG 10-15

PROBE_VERSION Procedure

Table 10-1 (Cont.) DBMS_DEBUG Package Subprograms

Subprogram Description

GET_VALUE Function on Gets a value from the currently-running program.
page 10-30

SET_VALUE Function on Sets a value in the currently-running program.
page 10-32

DETACH_SESSION Stops debugging the target program.

Procedure on page 10-34

GET_RUNTIME_INFO Returns information about the current program.
Function on page 10-34

GET_INDEXES Function on Returns the set of indexes for an indexed table.
page 10-35

EXECUTE Procedure on Executes SQL or PL/SQL in the target session.
page 10-36

PROBE_VERSION Procedure

This procedure returns the version number of DBMS_DEBUGN the server.

Syntax
DBMS_DEBUG.PROBE_VERSION (
major out BINARY_INTEGER,
minor out BINARY_INTEGER);
Parameters

Table 102 PROBE_VERSION Procedure Parameters

Parameter Description
major Major version number.
minor Minor version number: increments as functionality is added.

SELF_CHECK Procedure

This procedure performs an internal consistency check. SELF_CHECHKlso runs a
communications test to ensure that the Probe processes are able to communicate.

10-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Syntax

Parameters

Exceptions

If SELF_CHECKdoes not return successfully, then an incorrect version of DBMS _
DEBUGwas probably installed on this server. The solution is to install the correct
version (pbload .sql loads DBMS_DEBUEnNd the other relevant packages).

DBMS_DEBUG.SELF CHECK (
timeout IN binary_integer := 60);

Table 10-3 SELF_CHECK Procedure Parameters

Parameter Description
timeout The timeout to use for the communication test. Default is 60
seconds.

Table 10-4 SELF_CHECK Procedure Exceptions

Exception Description

OER-6516 Probe version is inconsistent.
pipe_creation_ Could not create a pipe.

failure

pipe_send_failure Could not write data to the pipe.
pipe_receive_failure Could not read data from the pipe.
pipe_datatype__ Datatype in the pipe was wrong.
mismatch

pipe_data_error Data got garbled in the pipe.

All of these exceptions are fatal. They indicate a serious problem with Probe that
prevents it from working correctly.

SET_TIMEOUT Function

This function sets the timeout value and returns the new timeout value.

DBMS_DEBUG 10-17

INITIALIZE Function

Syntax
DBMS_DEBUG.SET_TIMEOUT (
timeout BINARY_INTEGER)
RETURN BINARY_INTEGER;
Parameters

Table 10-5 SET_TIMEOUT Function Parameters

Parameter Description

timeout The timeout to use for communication between the target and
debug sessions.

TARGET SESSION Section

The following subprograms are run in the target session (the session that is to be
debugged):

= INITIALIZE Function
= DEBUG_ON Procedure
» DEBUG_OFF Procedure

INITIALIZE Function

This function initializes the target session for debugging.

Syntax
DBMS_DEBUG.INITIALIZE (
debug_session id IN VARCHAR2 = NULL,
diagnostics IN BINARY_INTEGER = 0)
RETURN VARCHAR?2;
Parameters

Table 10-6 INITIALIZE Function Parameters

Parameter Description

debug_session_id Name of session ID. If NULL, then a unique ID is generated.

10-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Table 10—-6 INITIALIZE Function Parameters

Parameter Description

diagnostics Indicates whether to dump diagnostic output to the tracefile.
0 = (default) no diagnostics
1 = print diagnostics

Returns
The newly-registered debug session 1D (debugID)

DEBUG_ON Procedure

This procedure marks the target session so that all PL/SQL is run in debug mode.
This must be done before any debugging can take place.

Syntax
DBMS_DEBUG.DEBUG_ON (
no_client_side pisgl engine BOOLEAN = TRUE,
immediate BOOLEAN = FALSE);
Parameters

Table 10-7 DEBUG_ON Procedure Parameters

Parameter Description

no_client_side_ Should be left to its default value unless the debugging session
plsgl_engine is taking place from a client-side PL/SQL engine.

immediate If this is TRUE then the interpreter immediately switches itself

into debug-mode, instead of continuing in regular mode for
the duration of the call.

DBMS_DEBUG 10-19

DEBUG_OFF Procedure

Caution: There must be a debug session waiting if immediate is TRUE

DEBUG_OFF Procedure

Syntax

Usage Notes

This procedure notifies the target session that debugging should no longer take
place in that session. It is not necessary to call this function before ending the
session.

DBMS_DEBUG.DEBUG_OFF;

The server does not handle this entrypoint specially. Therefore, it attempts to debug
this entrypoint.

ATTACH_SESSION Procedure

Syntax

Parameters

This procedure notifies the debug session about the target program.

DBMS _DEBUG.ATTACH_SESSION (
debug_session id IN VARCHAR2,
diagnostics IN BINARY_INTEGER = 0);

Table 10-8 ATTACH_SESSION Procedure Parameters

Parameter Description
debug_session_id Debug ID from a call to INITIALIZE in target session.
diagnostics Generate diagnostic output if nonzero.

10-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

SYNCHRONIZE Function

This function waits until the target program signals an event. If info_requested
is not NULL, then it calls GET_RUNTIME_INFO

Syntax
DBMS_DEBUG.SYNCHRONIZE (
run_info OUT runtime_info,
info_requested IN BINARY_INTEGER = NULL)
RETURN BINARY_INTEGER,;
Parameters
Table 10-9 SYNCHRONIZE Function Parameters
Parameter Description
run_info Structure in which to write information about the program. By
default, this includes information about what program is
running and at which line execution has paused.
info_requested Optional bit-field in which to request information other than
the default (which is info_getStackDepth +info_
getLinelnfo). 0 means that no information is requested at
all.
See "Information Flags" on page 10-10.
Returns

Table 10-10 SYNCHRONIZE Function Returns

Return Description

success

error_timeout Timed out before the program started execution.
error_communication Other communication error.

DBMS_DEBUG 10-21

SHOW_SOURCE Procedure

SHOW_SOURCE Procedure

The best way to get the source code (for a program that is being run) is to use SQL.
For example:

DECLARE
info DBMS_DEBUG.runtime_info;
BEGIN
- cal DBMS_DEBUG.SYNCHRONIZE, CONTINUE,
- or GET_RUNTIME_INFO fo fil in ‘info’
SELECT text INTO <buffer> FROM all_source
WHERE owner = info.Program.Owner
AND name = info.Program.Name
AND line = infoLine#
END;

However, this does not work for nonpersistent programs (for example, anonymous
blocks and trigger invocation blocks). For nonpersistent programs, call SHOW _
SOURCEThere are two flavors: one returns an indexed table of source lines, and the
other returns a packed (and formatted) buffer.

There are two overloaded SHOW_SOURGQ@Eocedures.

Syntax
DBMS_DEBUG.SHOW_SOURCE (
frst ine IN BINARY_INTEGER,
last lne IN BINARY_INTEGER,
source OUT w2 table);
Parameters

Table 10-11 SHOW_SOURCE Procedure Parameters

Parameter Description

first_line Line number of first line to fetch. (PL/SQL programs always
start at line 1 and have no holes.)

last_line Line number of last line to fetch. No lines are fetched past the
end of the program.

source The resulting table, which may be indexed by line#.

10-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Returns

Usage Notes

Syntax

Parameters

An indexed table of source-lines. The source lines are stored starting at first_
line . If any error occurs, then the table is empty.

This second overloading of SHOW_SOURGC&urns the source in a formatted buffer,
complete with line-numbers. It is faster than the indexed table version, but it does
not guarantee to fetch all the source.

If the source does not fit in bufferlength (buflen), then additional pieces can be
retrieved using the GET_MORE_SOUR@®Eocedure (pieces returns the number of
additional pieces that need to be retrieved).

DBMS_DEBUG.SHOW_SOURCE (
first line IN BINARY_INTEGER,
last_line IN BINARY_INTEGER,

window IN BINARY_INTEGER,
print_amow IN BINARY_INTEGER,
buffer IN OUT VARCHAR2,

buflen IN BINARY_INTEGER,
pieces OUT BINARY_INTEGERY);

Table 10-12 SHOW_SOURCE Procedure Parameters

Parameter Description

first_line Smallest line-number to print.

last_line Largest line-number to print.

window "Window’ of lines (the number of lines around the current
source line).

print_arrow Nonzero means to print an arrow before the current line.

buffer Buffer in which to place the source listing.

buflen Length of buffer.

pieces Set to nonzero if not all the source could be placed into the
given buffer.

DBMS_DEBUG 10-23

PRINT_BACKTRACE Procedure

PRINT_BACKTRACE Procedure

This procedure prints a backtrace listing of the current execution stack. This should
only be called if a program is currently running.

There are two overloaded PRINT_BACKTRACHrocedures.

Syntax
DBMS_DEBUG.PRINT_BACKTRACE (
lising IN OUT VARCHAR2);
Parameters
Table 10-13 PRINT_BACKTRACE Procedure Parameters
Parameter Description
listing A formatted character buffer with embedded newlines.
Syntax
DBMS_DEBUG.PRINT_BACKTRACE (
backtrace OUT backirace_table);
Parameters
Table 10-14 PRINT_BACKTRACE Procedure Parameters
Parameter Description
backtrace 1-based indexed table of backtrace entries. The
currently-running procedure is the last entry in the table (that
is, the frame numbering is the same as that used by GET_
VALUB. Entry 1 is the oldest procedure on the stack.
CONTINUE Function

This function passes the given breakflags (a mask of the events that are of interest)
to Probe in the target process. It tells Probe to continue execution of the target
process, and it waits until the target process runs to completion or signals an event.

If info_requested is not NULL, then calls GET_RUNTIME_INFO

10-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Syntax

Parameters

Returns

DBMS_DEBUG.CONTINUE (

run_info
breakflags

IN OUT runtime_info,
IN BINARY_INTEGER,

info_requested IN BINARY_INTEGER = NULL)
RETURN BINARY INTEGER;

Table 10—-15 CONTINUE Function Parameters

Parameter Description
run_info Information about the state of the program.
breakflags Mask of events that are of interest. See "Breakflags" on

info_requested

page 10-9.

Which information should be returned in run_info when the
program stops. See "Information Flags" on page 10-10.

Table 10-16 CONTINUE Function Returns

Return

Description

success

error_timeout

Timed out before the program started running.

error_communication Other communication error.

SET_BREAKPOINT Function

Syntax

This function sets a breakpoint in a program unit, which persists for the current
session. Execution pauses if the target program reaches the breakpoint.

DBMS_DEBUG.SET_BREAKPOINT (

program
linett

IN program_info,
IN BINARY_INTEGER,

breakpoint# OUT BINARY INTEGER,

fuzzy

IN BINARY_INTEGER = O,

DBMS_DEBUG 10-25

SET_BREAKPOINT Function

Parameters

Returns

iteraions IN BINARY_INTEGER = 0)
RETURN BINARY_INTEGER;

Table 10-17 SET_BREAKPOINT Function Parameters

Parameter Description

program Information about the program unit in which the breakpoint is
to be set. (In version 2.1 and later, the namespace, name, owner,
and dblink may be set to NULL, in which case the breakpoint is
placed in the currently-running program unit.)

line# Line at which the breakpoint is to be set.

breakpoint# On successful completion, contains the unique breakpoint
number by which to refer to the breakpoint.

fuzzy Only applicable if there is no executable code at the specified
line:

0 means return error_illegal_line

1 means search forward for an adjacent line at which to place
the breakpoint.

-1 means search backward for an adjacent line at which to
place the breakpoint.

iterations Number of times to wait before signalling this breakpoint.

Note: Thefuzzy and iterations parameters are not yet
implemented.

Table 10-18 SET_BREAKPOINT Function Returns

Return Description

success

error_illegal_line Cannot set a breakpoint at that line.
error_bad_handle No such program unit exists.

10-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

DELETE_BREAKPOINT Function

Syntax

Parameters

Returns

This function deletes a breakpoint.

DBMS_ DEBUG.DELETE_BREAKPOINT (
breakpoint IN BINARY INTEGER)
RETURN BINARY_ INTEGER;

Table 10-19 DELETE BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT

Table 10-20 DELETE BREAKPOINT Function Returns

Return Description

success

error_no_such_ No such breakpoint exists.

breakpt

error_idle_breakpt Cannot delete an unused breakpoint.

error_stale_breakpt The program unit was redefined since the breakpoint was set.

DISABLE_BREAKPOINT Function

Syntax

This function makes an existing breakpoint inactive, but it leaves it in place.

DBMS DEBUG.DISABLE_BREAKPOINT (
breakpoint IN BINARY INTEGER)
RETURN BINARY INTEGER;

DBMS_DEBUG 10-27

ENABLE_BREAKPOINT Function

Parameters

Table 10-21 DISABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT
Returns

Table 10-22 DISABLE _BREAKPOINT Function Returns

Returns Description

success

error_no_such_ No such breakpoint exists.

breakpt

error_idle_breakpt Cannot disable an unused breakpoint.

ENABLE_BREAKPOINT Function

This function is the reverse of disabling. This enables a previously disabled

breakpoint.
Syntax
DBMS_DEBUG.ENABLE_BREAKPOINT (
breakpoint IN' BINARY_INTEGER)
RETURN BINARY_INTEGER;
Parameters

Table 10-23 ENABLE_BREAKPOINT Function Parameters

Parameter Description

breakpoint Breakpoint number from a previous call to SET_BREAKPOINT

10-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Returns

Table 10-24 ENABLE_BREAKPOINT Function Returns

Return Description

success

error_no_such_ No such breakpoint exists.

breakpt

error_idle_breakpt Cannot enable an unused breakpoint.

SHOW_BREAKPOINTS Procedure

This procedure returns a listing of the current breakpoints. There are two
overloaded SHOW_BREAKPOINTSocedures.

Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (
lsing IN OUT VARCHARY);
Parameters
Table 10-25 SHOW_BREAKPOINTS Procedure Parameters
Parameter Description
listing A formatted buffer (including newlines) of the breakpoints.
Syntax
DBMS_DEBUG.SHOW_BREAKPOINTS (
lising OUT breakpoint_table);
Parameters

Table 10-26 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

listing Indexed table of breakpoint entries. The breakpoint number is
indicated by the index into the table. Breakpoint numbers start
at 1 and are reused when deleted.

DBMS_DEBUG 10-29

GET_VALUE Function

GET_VALUE Function

Syntax

Parameters

Returns

This function gets a value from the currently-running program. There are two
overloaded GET_VALUHunctions.

DBMS_DEBUG.GET_VALUE (
variable name IN VARCHAR2,

framet IN BINARY_INTEGER,
scalar value OUT VARCHARZ,
format IN VARCHAR2 = NULL)

RETURN BINARY_INTEGER;

Table 10-27 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

frame# Frame in which it lives; 0 means the current procedure.
scalar_value Value.

format Optional date format to use, if meaningful.

Table 10-28 GET_VALUE Function Returns

Return Description

success

error_bogus_frame Frame does not exist.

error_no_debug_info Entrypoint has no debug information.
error_no_such_object variable_name does not exist in frame# .
error_unknown_type The type information in the debug information is illegible.
error_nullvalue Value is NULL

error_indexed_table The object is a table, but no index was provided.

10-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Syntax

Parameters

Returns

Example

This form of GET_VALUAHs for fetching package variables. Instead of a frame#, it
takes a handle, which describes the package containing the variable.

DBMS_DEBUG.GET_VALUE (
variable name IN VARCHAR2,

handle IN program_info,
scalar value OUT VARCHARZ,
format IN VARCHAR2 = NULL)

RETURN BINARY_INTEGER;

Table 10-29 GET_VALUE Function Parameters

Parameter Description

variable_name Name of the variable or parameter.

handle Description of the package containing the variable.
scalar_value Value.

format Optional date format to use, if meaningful.

Table 10-30 GET_VALUE Function Returns

Return Description

error_no_such_object Either:
- Package does not exist.
- Package is not instantiated.
- User does not have privileges to debug the package.

- Object does not exist in the package.

error_indexed_table The object is a table, but no index was provided.

This example illustrates how to get the value with a given package PACKin schema
SCOTTcontaining variable VAR

DECLARE

DBMS_DEBUG 10-31

SET_VALUE Function

handle doms_debug.program_info;
resultbuf VARCHAR2(500);
retval BINARY_INTEGER,;

BEGIN

handle.Owner = 'SCOTT;

handie.Name = 'PACK;

handle.namespace = dbms_debug.namespace _pkgspec_or_toplevel;

retval = dbms_debug.get value(VAR, handle, resultbuf, NULL);
END;

SET_VALUE Function

This function sets a value in the currently-running program. There are two
overloaded SET_VALUEfunctions.

Syntax
DBMS_DEBUG.SET_VALUE (
framet IN binary_integer,
assignment_statement IN varchar2)
RETURN BINARY_INTEGER;
Parameters
Table 10-31 SET_VALUE Function Parameters
Parameter Description
frame# Frame in which the value is to be set; 0 means the currently
executing frame.
assignment_statement An assignment statement (which must be legal PL/SQL) to run
in order to set the value. For example, 'x := 3;’.
Only scalar values are supported in this release. The right side
of the assignment statement must be a scalar.
Returns

Table 10-32 SET_VALUE Function Returns

Return Description

success -

10-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Table 10-32 SET_VALUE Function Returns

Return Description

error_illegal_value Not possible to set it to that value.

error_illegal_null Cannot set to NULLbecause object type specifies it as 'not null’.
error_value_ Value is not a scalar.

malformed

error_name_ The assignment statement does not resolve to a scalar. For
incomplete example, 'x := 3}, if x is a record.

This form of SET_VALUEsets the value of a package variable.

Syntax
DBMS_DEBUG.SET VALUE (
handle IN program_info,
assignment_statement IN VARCHAR?2)
RETURN BINARY_INTEGER;
Parameters

Table 10-33 SET_VALUE Function Parameters

Parameter Description
handle Description of the package containing the variable.
assignment_statement An assignment statement (which must be legal PL/SQL) to run

in order to set the value. For example, 'x := 3;’.

Only scalar values are supported in this release. The right side
of the assignment statement must be a scalar.

Table 10-34 SET_VALUE Function Returns

Return Description

error_no_such_object Either:
- Package does not exist.
- Package is not instantiated.
- User does not have privileges to debug the package.
- Object does not exist in the package.

DBMS_DEBUG 10-33

DETACH_SESSION Procedure

Example

In some cases, the PL/SQL compiler uses temporaries to access package variables,
and Probe does not guarantee to update such temporaries. It is possible, although
unlikely, that modification to a package variable using SET_VALUEmMight not take
effect for a line or two.

To set the value of SCOTTPACKvar to 6:

DECLARE
handle dbms_debug.program_info;
retval BINARY_INTEGER,;

BEGIN
handle.Owner = 'SCOTT;
handle.Name = 'PACK;
handle.namespace = dbms_debug.namespace _pkgspec_or_toplevel;
retval = dbms_debug.set value(handle, var = 6,);
END;

DETACH_SESSION Procedure

Syntax

This procedure stops debugging the target program. This procedure may be called
at any time, but it does not notify the target session that the debug session is
detaching itself, and it does not abort execution of the target session. Therefore, care
should be taken to ensure that the target session does not hang itself.

DBMS_DEBUG.DETACH_SESSION,;

GET_RUNTIME_INFO Function

Syntax

This function returns information about the current program. It is only needed if the
info_requested parameter to SYNCHRONIZBr CONTINUEwas set to 0.

Note: This is currently only used by client-side PL/SQL.

DBMS_ DEBUG.GET_RUNTIME_INFO (

10-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Parameters

info_requested IN BINARY_INTEGER,
run_info OUT runtime_info)
RETURN BINARY_INTEGER;

Table 10-35 GET_RUNTIME_INFO Function Parameters

Parameter Description

info_requested Which information should be returned in run_info when the
program stops. See "Information Flags" on page 10-10.

run_info Information about the state of the program.

GET_INDEXES Function

Syntax

Parameters

Given a name of a variable or parameter, this function returns the set of its indexes,
if it is an indexed table. An error is returned if it is not an indexed table.

DBMS_DEBUG.GET_INDEXES (
vamame IN VARCHAR2,
framett IN BINARY_INTEGER,
handle IN program_info,
enies OUT index_table)

RETURN BINARY_INTEGER;

Table 10-36 GET_INDEXES Function Parameters

Parameter Description

varname Name of the variable to get index information about.

frame# Number of frame in which the variable or parameter resides;
NULL for a package variable.

handle Package description, if object is a package variable.

entries 1-based table of the indexes. If non-NULL, then entries (1)

contains the first index of the table, entries (2) contains the
second index, and so on.

DBMS_DEBUG 10-35

EXECUTE Procedure

Returns

Table 10-37 GET_INDEXES Function Returns

Return Description

error_no_such_object Either:
- The package does not exist.
- The package is not instantiated.
- The user does not have privileges to debug the package.
- The object does not exist in the package.

EXECUTE Procedure

This procedure executes SQL or PL/SQL code in the target session. The target
session is assumed to be waiting at a breakpoint (or other event). The call to DBMS _

DEBU@EXECUTEoccurs in the debug session, which then asks the target session to
execute the code.

Syntax

DBMS_DEBUG.EXECUTE (
what IN VARCHAR?Z,
framett IN BINARY_INTEGER,
bind_resuits IN BINARY_INTEGER,
results IN OUT NOCOPY dbms_debug_vc2coll,
emm IN OUT NOCOPY VARCHAR2);

Parameters

Table 10-38 EXECUTE Procedure Parameters

Parameter Description
what SQL or PL/SQL source to execute.
frame# The context in which to execute the code. Only -1 (global

context) is supported at this time.

10-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

Table 10-38 EXECUTE Procedure Parameters

Parameter Description
bind_results Whether the source wants to bind to results in order to
return values from the target session.
0=No
1=Yes
results Collection in which to place results, if bind_results is not 0.
errm Error message, if an error occurred; otherwise, NULL

Example 1
This example executes a SQL statement. It returns no results.

DECLARE
coll sys.dbms_debug vc2col; — results (Unused)
emm VARCHAR2(100);
BEGIN
doms_debug.execute(insert into emp(ename,empno,deptno) * ||
values('LJE", 1, 1),
-1, 0, col, emmy;
END;

Example 2

This example executes a PL/SQL block, and it returns no results. The block is an
autonomous transaction, which means that the value inserted into the table
becomes visible in the debug session.

DECLARE
coll sys.dbms_debug_vc2col;
emm VARCHAR2(100);
BEGIN
dbms_debug.execute(
'DECLARE PRAGMA autonomous_transaction; ’ ||
'BEGIN " ||
" insert into emp(ename, empno, deptno) ||
" values('LIE", 1, 1); ' ||
" COMMIT; " ||
'END;,
-1, 0, col, erm);
END;

DBMS_DEBUG 10-37

PRINT_INSTANTIATIONS Procedure

Example 3
This example executes a PL/SQL block, and it returns some results.

DECLARE
coll sys.dbms_debug_vc2col;
emm VARCHAR2(100);
BEGIN
dbms_debug.execute(
'DECLARE "’ ||
" pp SYS.dbms _debug vc2coll = SYS.dbms_debug_ve2coll(); * ||
X PLS_INTEGER; ' ||
i PLS INTEGER =1, ||
'BEGIN "’ ||
'’ SELECT COUNT(® INTO x FROM emp; ’ ||
" PPEXTEND(X * 6); " ||
" FOR c IN (SELECT * FROM emp) LOOP ' ||

pp() = "Ename: " || cename; i = i+1; " ||
pp() = "Empno: " || cempno; i = i+1; " ||
’ pp@) = "Job: " | cjob; i =1L
’ pp@® = "Mgr. " || cmgr, 0= ||
’ pp@) = "Sa: " || csal; 0=l
’ pp@ = nul, =L
END LOOP; ' ||
1= pp; |

'END;,
-1, 1, col, erm);

each = colFIRST;

WHILE (each IS NOT NULL) LOOP
dosomething(coll(each));
each = col.NEXT(each);

END LOOP;

END;

PRINT_INSTANTIATIONS Procedure

This procedure returns a list of the packages that have been instantiated in the
current session.

Syntax

DBMS_DEBUG.PRINT_INSTANTIATIONS (
pkgs IN OUT NOCOPY backirace table,

10-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

flags IN BINARY INTEGERY);

Parameters

Table 10-39 PRINT_INSTANTIATIONS Procedure Parameters

Parameter Description

pkgs (OUT) The instantiated packages

flags Bitmask of options:

1 - show specs

2 - show bodies

4 - show local instantiations

8 - show remote instantiations (NY1)

16 - do a fast job. The routine does not test whether debug
information exists or whether the libunit is

shrink-wrapped.

Exceptions
no_target_program

Usage Notes

On return, pkgs contains a program_info

are: Namespace, Name, Owner, and LibunitType.

In addition, Line# contains a bitmask of:

= 1 -the libunit contains debug info

= 2 -the libunit is shrink-wrapped

TARGET_PROGRAM_RUNNING Procedure

- target session is not currently executing

for each instantiation. The valid fields

This procedure returns TRUEIf the target session is currently executing a stored
procedure, or FALSEIf it is not.

Syntax

FUNCTION target_program_running RETURN BOOLEAN;

DBMS_DEBUG 10-39

PING Procedure

PING Procedure

This procedure pings the target session, to prevent it from timing out. Use this
procedure when execution is suspended in the target session, for example at a
breakpoint.

If the timeout_behavior is set to retry_on_timeout then this procedure is not
necessary.

Syntax
DBMS_DEBUG.PING;

Exceptions

Oracle will display the no_target_program exception if there is no target
program or if the target session is not currently waiting for input from the debug
session.

Timeout Options

Timeout options for the target session are registered with the target session by
calling set_timeout_behavior.

= retry_on_timeout - Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

= continue_on_timeout - Continue execution, using same event flags.

= nodebug_on_timeout - Turn debug-mode OFF (in other words, call debug_

off) and then continue execution. No more events will be generated by this
target session unless it is re-initialized by calling debug_on.

= abort_on_timeout - Continue execution, using the abort_execution flag,
which should cause the program to abort immediately. The session remains in
debug-mode.

retry_on_timeout CONSTANT BINARY_INTEGER:= 0;
continue_on_timeout CONSTANT BINARY_INTEGER:= 1,
nodebug_on_timeout CONSTANT BINARY_INTEGER:= 2;
abort_on_timeout CONSTANT BINARY_INTEGER:= 3;

10-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

SET_TIMEOUT_BEHAVIOR Procedure

Syntax

Parameters

Exceptions

Usage Notes

This procedure tells Probe what to do with the target session when a timeout
occurs. This call is made in the target session.

DBMS DEBUG.SET TIMEOUT BEHAVIOR (

behavior IN PLS _INTEGER);

Table 10-40 SET_TIMEOUT_BEHAVIOR Procedure Parameters

Parameter

Description

behavior - One of the
following:

= retry_on_timeout

= continue_on_timeout

= nhodebug_on_timeout

= abort_on_timeout

Retry. Timeout has no effect. This is like setting the
timeout to an infinitely large value.

Continue execution, using same event flags.

Turn debug-mode OFF (in other words, call debug_off)
and continue execution. No more events will be generated
by this target session unless it is re-initialized by calling
debug_on.

Continue execution, using the abort_execution flag,
which should cause the program to abort immediately.
The session remains in debug-mode.

unimplemented - the requested behavior is not recognized

The default behavior (if this procedure is not called) is continue_on_timeout,
since it allows a debugger client to reestablish control (at the next event) but does
not cause the target session to hang indefinitely.

DBMS_DEBUG 10-41

GET_TIMEOUT_BEHAVIOR Function

GET_TIMEOUT_BEHAVIOR Function

This procedure returns the current timeout behavior. This call is made in the target
session.

Syntax

DBMS_DEBUG.GET TIMEOUT BEHAVIOR (
RETURN BINARY INTEGER;

Information Flags
info_getOerinfo CONSTANT PLS_INTEGER:= 32;

Reasons
reason_oer_breakpoint CONSTANT BINARY_INTEGER:= 26;
RUNTIME_INFO
Runtime_info gives context information about the running program.
Probe v2.4:

Added OER. It gets set if info_getOerinfo is set. The OER is a positive number.
It can be translated into SQLCODE by translating 1403 to 100, 6510 to 1, and
negating any other value.

TYPE runtime_info IS RECORD
(

Line# BINARY_INTEGER, (duplicate of program.line#)
Teminated BINARY_INTEGER, has the program terminated?
Breakpoint BINARY_INTEGER, breakpoint number
StackDepth BINARY_INTEGER, number of frames on the stack
InterpreterDepth BINARY_INTEGER, ~ <reserved field>
Reason BINARY_INTEGER, reason for suspension
Program program_info, source location
Following fields were added in Probe v24 oer PLS INTEGER OER

(exception), if any
)

oer_table

Used by show_breakpoints
TYPE oer_table IS TABLE OF BINARY_INTEGER INDEX BY BINARY_INTEGER;

10-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

- SET_OER_BREAKPOINT

Set a breakpoint on an OER. The breakpoint persists for the session (or until
deleted), as with code breakpoints.

Parameters

Table 10-41

Parameter Description

oer The OER (a 4-byte positive number).
Returns

success

Usage Notes

Less functionality is supported on OER breakpoints than on code breakpoints. In
particular, note that:

= No "breakpoint number" is returned - the number of the OER is used instead.
Thus it is impossible to set duplicate breakpoints on a given OER (it is a no-op).

= Itis not possible to disable an OER breakpoint (although clients are free to
simulate this by deleting it).

= OER breakpoints are deleted using delete_oer_breakpoint.
SET_OER_BREAKPOINT Function

This function sets an OER breakpoint.

Syntax

DBMS DEBUG.SET OER BREAKPOINT (
oer IN PLS_INTEGER)
RETURN PLS INTEGER;

DBMS_DEBUG 10-43

DELETE_OER_BREAKPOINT Function

Parameters

Returns

Table 10-42 SET_OER_BREAKPOINT Function Parameters

Parameter Description

oer The OER (positive 4-byte number) to delete.
success

error_no_such_breakpt - no such OER breakpoint exists

DELETE_OER_BREAKPOINT Function

Syntax

This function deletes an OER breakpoint.

DBMS_DEBUG.DELETE._ OER BREAKPOINT (
oer IN PLS INTEGER)
RETURN PLS INTEGER;

SHOW_BREAKPOINTS Procedure

Syntax

Parameters

DBMS_DEBUG.SHOW_BREAKPOINTS (
code_breakpoints OUT breakpoint_table,
oer_breakpoints OUT oer_table);

Table 10-43 SHOW_BREAKPOINTS Procedure Parameters

Parameter Description

code_breakpoints The indexed table of breakpoint entries, indexed by breakpoint
number.

oer_breakpoints The indexed table of OER breakpoints, indexed by OER.

10-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEBUG Subprograms

code_breakpoints - indexed table of breakpoint entries, indexed by breakpoint
number.

oer_breakpoints - indexed table of OER breakpoints, indexed by OER.

PROCEDURE show_breakpoints (code_breakpoints OUT breakpoint_table,
oer_breakpoints OUT oer_table);

DBMS_DEBUG 10-45

SHOW_BREAKPOINTS Procedure

10-46 Oracle9i Supplied PL/SQL Packages and Types Reference

11

DBMS_DEFER

DBMS_DEFER the user interface to a replicated transactional deferred remote
procedure call facility. Replicated applications use the calls in this interface to queue
procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application
specified update procedures.

This chapter discusses the following topics:

=« Summary of DBMS_DEFER Subprograms

DBMS_DEFER 11-1

Summary of DBMS_DEFER Subprograms

Summary of DBMS_DEFER Subprograms

Table 11-1 DBMS_DEFER Package Subprograms

Subprogram Description
CALL Procedure on Builds a deferred call to a remote procedure.
page 11-2

COMMIT_WORK
Procedure on page 11-3

datatype_ARG Procedure
on page 11-4

TRANSACTION

Performs a transaction commit after checking for well-formed
deferred remote procedure calls.

Provides the data that is to be passed to a deferred remote
procedure call.

Indicates the start of a new deferred transaction.

Procedure on page 11-6

CALL Procedure
This procedure builds a deferred call to a remote procedure.
Syntax
DBMS_DEFER.CALL (
schema_name IN VARCHARZ,
package_name IN VARCHARZ,
proc_name IN VARCHAR2,
arg_count IN NATURAL,
{ nodes IN node_list t
| group_name IN VARCHAR2 =),
Note: This procedure is overloaded. The nodes and group_name

parameters are mutually exclusive.

11-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms

Parameters

Exceptions

Table 11-2 CALL Procedure Parameters

Parameter Description
schema_name Name of the schema in which the stored procedure is located.
package_name Name of the package containing the stored procedure. The stored

procedure must be part of a package. Deferred calls to standalone
procedures are not supported.

proc_name Name of the remote procedure to which you want to defer a call.

arg_count Number of parameters for the procedure. You must have one call to
DBMS_DEFERatatype_ ARGfor each of these parameters.

Note: You must include all of the parameters for the procedure,
even if some of the parameters have defaults.

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred call. The table is indexed
starting at position 1 and continuing until a NULLentry is found, or
the no_data_found exception is raised. The data in the table is
case insensitive. This parameter is optional.

group_name Reserved for internal use.

Table 11-3 CALL Procedure Exceptions

Exception Description

ORA-23304 Previous call was not correctly formed.

(malformedcall)

ORA-23319 Parameter value is not appropriate.

ORA-23352 Destination list (specified by nodes or by a previous DBMS _

DEFERTRANSACTIONall) contains duplicates.

COMMIT_WORK Procedure

Syntax

This procedure performs a transaction commit after checking for well-formed
deferred remote procedure calls.

DBMS_DEFER.COMMIT_WORK (

DBMS_DEFER 11-3

datatype_ARG Procedure

Parameters

Exceptions

commit_work_comment IN VARCHAR2);

Table 11-4 COMMIT_WORK Procedure Parameters

Parameter Description
commit_work_ Equivalent to the COMMITCOMMENStatement in SQL.
comment

Table 11-5 COMMIT_WORK Procedure Exceptions

Exception Description

ORA-23304 Transaction was not correctly formed or terminated.
(malformedcall)

datatype ARG Procedure

This procedure provides the data that is to be passed to a deferred remote
procedure call. Depending upon the type of the data that you need to pass to a
procedure, you must call one of the following procedures for each argument to the
procedure.

You must specify each parameter in your procedure using the datatype ARG
procedure after you execute DBMS_DEFER.CALLThat is, you cannot use the
default parameters for the deferred remote procedure call. For example, suppose
you have the following procedure:

CREATE OR REPLACE PACKAGE my pack AS

PROCEDURE my proc@ VARCHAR?, b VARCHAR? DEFAULT 'SALES);
END;
/

When you run the DBMS_DEFER.CALIprocedure, you must include a separate
procedure call for each parameter in the my_proc procedure:

CREATE OR REPLACE PROCEDURE load def tx IS
node DBMS_DEFER.NODE_LIST_T;

BEGIN
node(l) = MYCOMPUTER.WORLD;
node(2) = NULL,;
DBMS_DEFER.TRANSACTION(node);

11-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms

Syntax

DBMS_DEFER.CALL(PR, 'MY_PACK, MY_PROC, 2);
DBMS_DEFER.VARCHAR2 ARG(TEST);
DBMS_DEFER.VARCHAR2 ARG('SALES); - required, cannot omit to use default
END;
/

Note:

s The AnyData_ARG procedure supports the following
user-defined types: object types, collections, and REFs. See
Oracle9i SQL Reference for more information about the AnyData
datatype.

= This procedure uses abbreviations for some datetime and
interval datatypes. For example, TSTZis used for the
TIMESTAMPWITHTIME ZONEdatatype. For information about
these abbreviations, see "Abbreviations for Datetime and
Interval Datatypes" on page 1-6.

DBMS_DEFERAnyData ARG @g IN SYSAnyData),
DBMS_DEFERNUMBER ARG @g IN NUMBER),
DBMS DEFERDATE ARG @g IN DATE),
DBMS_DEFERVARCHAR2 ARG @g IN VARCHAR?);
DBMS DEFER.CHAR ARG @g IN CHAR);
DBMS_DEFERROWID_ARG @g IN ROWID);
DBMS_DEFERRAW ARG @g IN RAW),
DBMS DEFERBLOB ARG @g IN BLOB),
DBMS DEFER.CLOB ARG (@g IN CLOBY);
DBMS_DEFERNCLOB_ARG @g IN NCLOB);
DBMS_DEFERNCHAR ARG @g IN NCHARY),

DBMS_DEFERNVARCHAR2 ARG (arg IN NVARCHARY);
DBMS_DEFERANY CLOB ARG @g IN CLOBY);
DBMS_DEFERANY VARCHAR2 ARG (arg IN VARCHARY);
DBMS_DEFERANY CHAR ARG @g IN CHAR);

DBMS_DEFERIDS_ARG @g IN DSINTERVAL UNCONSTRAINEDY);
DBMS_DEFERIYM_ARG @g IN YMINTERVAL UNCONSTRAINEDY);
DBMS_DEFERTIMESTAMP_ ARG (arg IN TIMESTAMP_UNCONSTRAINED);
DBMS_DEFERTSLTZ ARG @g IN TIMESTAMP_LTZ UNCONSTRAINED);
DBMS_DEFERTSTZ ARG @g IN TIMESTAMP_TZ UNCONSTRAINED);

DBMS_DEFER 11-5

TRANSACTION Procedure

Parameters

Exceptions

Table 11-6 datatype_ ARG Procedure Parameters

Parameter Description

arg Value of the parameter that you want to pass to the remote
procedure to which you previously deferred a call.

Table 11-7 datatype ARG Procedure Exceptions

Exception Description

ORA-23323 Argument value is too long.

TRANSACTION Procedure

Syntax

This procedure indicates the start of a new deferred transaction. If you omit this
call, then Oracle considers your first call to DBMS_DEFERALL to be the start of a
new transaction.

DBMS_DEFER.TRANSACTION (
nodes IN node_list t);

Note: This procedure is overloaded. The behavior of the version
without an input parameter is similar to that of the version with an
input parameter, except that the former uses the nodes in the
DEFDEFAULTDESView instead of using the nodes in the nodes
parameter.

11-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER Subprograms

Parameters
Table 11-8 TRANSACTION Procedure Parameters
Parameter Description
nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred calls of the transaction.
The table is indexed starting at position 1 and continuing until a
NULLentry is found, or the no_data_found exception is raised.
The data in the table is case insensitive.
Exceptions

Table 11-9 TRANSACTION Procedure Exceptions

Exception Description

ORA-23304 Previous transaction was not correctly formed or terminated.
(malformedcall)

ORA-23319 Parameter value is not appropriate.

ORA-23352 Raised by DBMS_DEFERALL if the node list contains duplicates.

DBMS_DEFER 11-7

TRANSACTION Procedure

11-8 Oracle9i Supplied PL/SQL Packages and Types Reference

12

DBMS_DEFER_QUERY

DBMS_DEFER_QUERMables you to query the deferred transactions queue data
that is not exposed through views.

This chapter discusses the following topics:

= Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 12-1

Summary of DBMS_DEFER_QUERY Subprograms

Summary of DBMS_DEFER_QUERY Subprograms

Table 12-1 DBMS_DEFER_QUERY Package Subprograms

Subprogram Description

GET_ARG_FORM Function on Determines the form of an argument in a deferred call.
page 12-2

GET_ARG_TYPE Functionon Determines the type of an argument in a deferred call.
page 12-3

GET_CALL_ARGS Procedure Returns the text version of the various arguments for the
on page 12-6 specified call.

GET_datatype_ARG Function = Determines the value of an argument in a deferred call.
on page 12-7

GET_OBJECT_NULL _ Returns the type information for a column object.
VECTOR_ARG Function on

page 12-9

GET_ARG_FORM Function
This function returns the character set form of a deferred call parameter.
See Also: The Replication Management tool’s online help for

information about displaying deferred transactions and error
transactions in the Replication Management tool

Syntax
DBMS DEFER_QUERY.GET_ARG_FORM (
calino IN NUMBER,
arg_no IN NUMBER,
deferred tran id IN VARCHAR?)
RETURN NUMBER:
Parameters

Table 12-2 GET_ARG_FORM Function Parameters

Parameter Description
callno Call identifier from the DEFCALLview.
arg_no Position of desired parameter in calls argument list. Parameter

positions are 1...number of parameters in call.

12-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms

Table 12-2 GET_ARG_FORM Function Parameters

Parameter Description

deferred_tran_id Deferred transaction identification.

Exceptions
Table 12-3 GET_ARG_FORM Function Exceptions
Exception Description
NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.
Returns

Table 12-4 GET_ARG_FORM Function Returns

Constant Return Value Return Value Possible Datatype
DBMS_DEFER_QUERY.ARG_FORM_NONE 0 DATE
NUMBER
ROWID
RAW
BLOB
User-defined types
DBMS_DEFER_QUERY.ARG_FORM_ 1 CHAR
IMPLICIT VARCHAR?
CLOB
DBMS_DEFER_QUERY.ARG_FORM_NCHAR 2 NCHAR
NVARCHAR2
NCLOB

GET_ARG_TYPE Function

This function determines the type of an argument in a deferred call. The type of the
deferred remote procedure call (RPC) parameter is returned.

DBMS_DEFER_QUERY 12-3

GET_ARG_TYPE Function

See Also: The Replication Management tool’s online help for
information about displaying deferred transactions and error
transactions in the Replication Management tool

Syntax
DBMS_DEFER_QUERY.GET_ARG_TYPE (
calino IN NUMBER,
arg no IN NUMBER,
deferred tran id IN VARCHAR2)
RETURN NUMBER;
Parameters
Table 12-5 GET_ARG_TYPE Function Parameters
Parameter Description
callno Identification number from the DEFCALLview of the deferred
remote procedure call.
arg_no Numerical position of the argument to the call whose type you
want to determine. The first argument to a procedure is in
position 1.
deferred_tran_id Identifier of the deferred transaction.
Exceptions
Table 12-6 GET_ARG_TYPE Function Exceptions
Exception Description
NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

12-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms

Returns

Table 12-7 GET_ARG_TYPE Function Returns

Return Corresponding
Constant Return Value Value Datatype
DBMS_DEFER_QUERY.ARG_TYPE_VARCHAR?2 1 VARCHAR2
DBMS_DEFER_QUERY.ARG_TYPE_NUM 2 NUMBER
DBMS_DEFER_QUERY.ARG_TYPE_ROWID 11 ROWID
DBMS_DEFER_QUERY.ARG_TYPE_DATE 12 DATE
DBMS_DEFER_QUERY.ARG_TYPE_RAW 23 RAW
DBMS_DEFER_QUERY.ARG_TYPE_CHAR 96 CHAR
DBMS_DEFER_QUERY.ARG_TYPE_AnyData 109 AnyData
DBMS_DEFER_QUERY.ARG_TYPE_CLOB 112 CLOB
DBMS_DEFER_QUERY.ARG_TYPE_BLOB 113 BLOB
DBMS_DEFER_QUERY.ARG_TYPE_BFIL 114 BFILE
DBMS_DEFER_QUERY.ARG_TYPE_OBJECT_NULL121 OBJECT_NULL_
VECTOR VECTOR
DBMS_DEFER_QUERY.ARG_TYPE_TIMESTAMP 180 TIMESTAMP
DBMS_DEFER_QUERY.ARG_TYPE_TSTZ 181 TSTZ
DBMS_DEFER_QUERY.ARG_TYPE_IYM 182 I'YM
DBMS_DEFER_QUERY.ARG_TYPE_IDS 183 IDS
DBMS_DEFER_QUERY.ARG_TYPE_TSLTZ 231 TSLTZ

DBMS_DEFER_QUERY 12-5

GET_CALL_ARGS Procedure

Note:

= The AnyData datatype supports the following user-defined
types: object types, collections, and REFs. See Oracle9i SQL
Reference for more information about the AnyData datatype.

= This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ s used for the TIMESTAMPWITH
TIME ZONEdatatype. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Datatypes" on page 1-6.

GET_CALL_ARGS Procedure

This procedure returns the text version of the various arguments for the specified
call. The text version is limited to the first 2000 bytes.

See Also:
= "GET_datatype ARG Function" on page 12-7

= Oracle9i SQL Reference for more information about the AnyData
datatype

Syntax

DBMS DEFER QUERY.GET CALL ARGS (

calno IN NUMBER,

statarg IN NUMBER = 1,
agent IN NUMBER,

argsze IN NUMBER,

tanid IN VARCHAR?,
date fmt IN VARCHAR?,
types OUT TYPE ARY,
forms OUT TYPE_ARY,
vals OUT VAL ARYY;

12-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms

Parameters

Exceptions

Table 12-8 GET_CALL_ARGS Procedure Parameters

Parameter Description

callno Identification number from the DEFCALLview of the deferred
remote procedure call (RPC).

startarg Numerical position of the first argument you want described.

argent Number of arguments in the call.

argsize Maximum size of returned argument.

tran_id Identifier of the deferred transaction.

date_fmt Format in which the date is returned.

types Array containing the types of arguments.

forms Array containing the character set forms of arguments.

vals Array containing the values of the arguments in a textual form.

Table 12-9 GET_CALL_ARGS Procedure Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred call.

GET _datatype ARG Function

This function determines the value of an argument in a deferred call.

The AnyData type supports the following user-defined types: object types,
collections and REFs. Not all types supported by this function can be enqueued by
the AnyData_ARG procedure in the DBMS_DEFERackage.

The returned text for type arguments includes the following values: type owner,
type name, type version, length, precision, scale, character set identifier, character
set form, and number of elements for collections or number of attributes for object
types. These values are separated by a colon ().

DBMS_DEFER_QUERY 12-7

GET_datatype_ARG Function

Syntax

See Also:

"datatype ARG Procedure" on page 11-4

= The Replication Management tool’s online help for information
about displaying deferred transactions and error transactions in
the Replication Management tool

= Oracle9i SQL Reference for more information about the AnyData
datatype

= This function uses abbreviations for some datetime and interval
datatypes. For example, TSTZ s used for the TIMESTAMPWITH
TIME ZONEdatatype. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Datatypes" on page 1-6.

Depending upon the type of the argument value that you want to retrieve, the
syntax for the appropriate function is as follows. Each of these functions returns the
value of the specified argument.

DBMS DEFER QUERY.GHEtafype ARG (
calino IN NUMBER,
arg_no IN NUMBER,
deferred tran id IN VARCHAR2 DEFAULT NULL)

RETURNdatatype;

where datatype is:

{ AnyData

| NUMBER

| VARCHAR?
| CHAR

| DATE

| RAW

| ROWID

| BLOB

| CLOB

| NCLOB

| NCHAR

| NVARCHAR2
| IDS

| IYM

| TIMESTAMP

12-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_QUERY Subprograms

Parameters

Exceptions

| TSLTZ
| TSTZ }

Table 12-10 GET_datatype_ ARG Function Parameters

Parameter Description

callno Identification number from the DEFCALLview of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose value you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction. Defaults to the last

transaction identifier passed to the GET_ARG_TYPHEunction. The
default is NULL

Table 12-11 GET_datatype_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Argument in this position is not of the specified type or is not

one of the types supported by the AnyData type.

GET_OBJECT_NULL_VECTOR_ARG Function

Syntax

This function returns the type information for a column object, including the type
owner, name, and hashcode.

DBMS_DEFER_QUERY.GET_OBJECT-NULL_VECTOR ARG (

calino IN NUMBER,
arg_no IN NUMBER,
deferred_tran_id IN VARCHAR?)

RETURN SYSTEM.REPCAT$ OBJECT_NULL_VECTOR;

DBMS_DEFER_QUERY 12-9

GET_OBJECT_NULL_VECTOR_ARG Function

Parameters
Table 12-12 GET_OBJECT_NULL _VECTOR_ARG Function Parameters
Parameter Description
callno Call identifier from the DEFCALLview.
arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.
deferred_tran_id Deferred transaction identification.
Exceptions
Table 12-13 GET_OBJECT_NULL_VECTOR_ARG Function Exceptions
Exception Description
NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.
ORA-26564 Parameter is not an object_null_vector type.
Returns

Table 12-14 GET_OBJECT_NULL VECTOR_ARG Function Returns

Return Value Type Definition

SYSTEM.REPCAT$_OBJECT_NULL_VECT®Re CREATE TYPE
SYSTEM.REPCAT$_OBJECT_NULL_VECTOR

AS OBJECT (
type_owner VARCHAR2(30),
type_name VARCHAR2(30),
type_hashcode RAW(17),
null_vector RAW/(2000));

12-10 Oracle9i Supplied PL/SQL Packages and Types Reference

13

DBMS_DEFER_SYS

DBMS_DEFER_SY@rocedures manage default replication node lists. This package
is the system administrator interface to a replicated transactional deferred remote
procedure call facility. Administrators and replication daemons can execute
transactions queued for remote nodes using this facility, and administrators can
control the nodes to which remote calls are destined.

This chapter discusses the following topics:

=« Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 13-1

Summary of DBMS_DEFER_SYS Subprograms

Summary of DBMS_DEFER_SYS Subprograms

Table 13-1 DBMS_DEFER_SYS Package Subprograms

Subprogram

Description

ADD_DEFAULT_DEST
Procedure on page 13-3

CLEAR_PROP_
STATISTICS Procedure on
page 13-4

DELETE_DEFAULT_DEST
Procedure on page 13-5

DELETE_DEF_
DESTINATION Procedure
on page 13-5

DELETE_ERROR
Procedure on page 13-6

DELETE_TRAN Procedure
on page 13-6

DISABLED Function on
page 13-7

EXCLUDE_PUSH
Function on page 13-8

EXECUTE_ERROR
Procedure on page 13-9

EXECUTE_ERROR_AS _
USER Procedure on
page 13-10

PURGE Function on
page 13-11

PUSH Function on
page 13-13

REGISTER_
PROPAGATOR Procedure
on page 13-17

Adds a destination database to the DEFDEFAULTDESView.

Clears the propagation statistics in the DEFSCHEDULHata
dictionary view.

Removes a destination database from the DEFDEFAULTDEST
view.

Removes a destination database from the DEFSCHEDULKiew.

Deletes a transaction from the DEFERRORiew.

Deletes a transaction from the DEFTRANDESView.

Determines whether propagation of the deferred transaction
gueue from the current site to a specified site is enabled.

Acquires an exclusive lock that prevents deferred transaction
PUSH

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the original
receiver of the transaction.

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the user who
executes this procedure.

Purges pushed transactions from the deferred transaction
gueue at your current master site or materialized view site.

Forces a deferred remote procedure call queue at your current
master site or materialized view site to be pushed to a remote
site.

Registers the specified user as the propagator for the local
database.

13-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 13-1 DBMS_DEFER_SYS Package Subprograms

Subprogram Description

SCHEDULE_PURGE Schedules a job to purge pushed transactions from the deferred

Procedure on page 13-17 transaction queue at your current master site or materialized
view site.

SCHEDULE_PUSH Schedules a job to push the deferred transaction queue to a

Procedure on page 13-19 remote site.

SET_DISABLED Disables or enables propagation of the deferred transaction
Procedure on page 13-21 gueue from the current site to a specified destination site.

UNREGISTER_ Unregisters a user as the propagator from the local database.
PROPAGATOR Procedure
on page 13-23

UNSCHEDULE_PURGE Stops automatic purges of pushed transactions from the
Procedure on page 13-24 deferred transaction queue at a master site or materialized
view site.

UNSCHEDULE_PUSH Stops automatic pushes of the deferred transaction queue from
Procedure on page 13-24 a master site or materialized view site to a remote site.

ADD_DEFAULT_DEST Procedure

This procedure adds a destination database to the DEFDEFAULTDESTata
dictionary view.

Syntax

DBMS DEFER SYSADD DEFAULT DEST (
doink IN VARCHAR?);

Parameters

Table 13-2 ADD_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
add to the DEFDEFAULTDESView.

DBMS_DEFER_SYS 13-3

CLEAR_PROP_STATISTICS Procedure

Exceptions

Table 13-3 ADD_DEFAULT_DEST Procedure Exceptions

Exception Description

ORA-23352 The dblink that you specified is already in the default list.

CLEAR_PROP_STATISTICS Procedure

This procedure clears the propagation statistics in the DEFSCHEDULHata
dictionary view. When this procedure is executed successfully, all statistics in this
view are returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the
DEFSCHEDULHata dictionary view:

Syntax

TOTAL_TXN_COUNT
AVG_THROUGHPUT
AVG_LATENCY
TOTAL_BYTES_SENT
TOTAL_BYTES_RECEIVED
TOTAL_ROUND_TRIPS
TOTAL_ADMIN_COUNT
TOTAL_ERROR_COUNT
TOTAL_SLEEP_TIME

DBMS_DEFER SYS.CLEAR PROP_STATISTICS (

dblink IN VARCHARY2),

13-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Parameters

Table 13-4 CLEAR _PROP_STATISTICS Procedure Parameters
Parameter

dblink

Description

The fully qualified database name of the node whose statistics you
want to clear. The statistics to be cleared are the statistics for

propagation of deferred transactions from the current node to the
node you specify for dblink

DELETE_DEFAULT _DEST Procedure
This procedure removes a destination database from the DEFDEFAULTDESView.
Syntax

DBMS DEFER SYS.DELETE DEFAULT DEST (
doink IN VARCHAR?);

Parameters

Table 13-5 DELETE DEFAULT_DEST Procedure Parameters

Parameter Description
dblink

The fully qualified database name of the node that you want to
delete from the DEFDEFAULTDESView. If Oracle does not find
this dblink in the view, then no action is taken.

DELETE_DEF_DESTINATION Procedure

This procedure removes a destination database from the DEFSCHEDULEiew.

Syntax

DBMS_DEFER_SYSDELETE_DEF DESTINATION (
destinaion IN VARCHAR2,
force IN BOOLEAN := false);

DBMS_DEFER_SYS 13-5

DELETE_ERROR Procedure

Parameters

Table 13-6 DELETE DEF _DESTINATION Procedure Parameters

Parameter

Description

destination

force

The fully qualified database name of the destination that you want
to delete from the DEFSCHEDULEiew. If Oracle does not find this
destination in the view, then no action is taken.

When set to true , Oracle ignores all safety checks and deletes the
destination.

DELETE_ERROR Procedure

This procedure deletes a transaction from the DEFERRORiew.

Syntax

DBMS DEFER SYS.DELETE ERROR(

deferred_tran id

destination

Parameters

IN VARCHAR2,
IN VARCHARY);

Table 13-7 DELETE _ERROR Procedure Parameters

Parameter

Description

deferred_tran_id

destination

Identification number from the DEFERRORiew of the deferred
transaction that you want to remove from the DEFERRORiew. If
this parameter is NULL, then all transactions meeting the
requirements of the other parameter are removed.

The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. If this
parameter is NULL, then all transactions meeting the requirements
of the other parameter are removed from the DEFERRORiew.

DELETE_TRAN Procedure

This procedure deletes a transaction from the DEFTRANDESView. If there are no
other DEFTRANDES®r DEFERRORNtries for the transaction, then the transaction is
deleted from the DEFTRANand DEFCALLviews as well.

13-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Syntax

Parameters

DBMS_DEFER_SYS.DELETE_TRAN (
deferred_tran id IN VARCHARZ,
destination IN VARCHAR?);

Table 13-8 DELETE_TRAN Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFTRANview of the deferred
transaction that you want to delete. If this is NULL, then all
transactions meeting the requirements of the other parameter are
deleted.

destination The fully qualified database name from the DEFTRANDESView of
the database to which the transaction was originally queued. If
this is NULL, then all transactions meeting the requirements of the
other parameter are deleted.

DISABLED Function

Syntax

Parameters

This function determines whether propagation of the deferred transaction queue
from the current site to a specified site is enabled. The DISABLED function returns
true if the deferred remote procedure call (RPC) queue is disabled for the specified
destination.

DBMS_DEFER_SYS.DISABLED (
destnaion IN VARCHAR?)
RETURN BOOLEAN;

Table 13—-9 DISABLED Function Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to check.

DBMS_DEFER_SYS 13-7

EXCLUDE_PUSH Function

Returns
Table 13-10 DISABLED Function Return Values
Value Description
true Propagation to this site from the current site is disabled.
false Propagation to this site from the current site is enabled.
Exceptions

Table 13—-11 DISABLED Function Exceptions

Exception Description

NO_DATA_FOUND Specified destination does not appear in the DEFSCHEDULE
view.

EXCLUDE_PUSH Function

This function acquires an exclusive lock that prevents deferred transaction PUSH
(either serial or parallel). This function performs a commit when acquiring the lock.
The lock is acquired with RELEASE_ON_COMME> true , so that pushing of the
deferred transaction queue can resume after the next commit.

Syntax
DBMS_DEFER_SYSEXCLUDE._PUSH (
tmeout IN INTEGER)
RETURN INTEGER;
Parameters

Table 13—-12 EXCLUDE_PUSH Function Parameters

Parameter Description

timeout Timeout in seconds. If the lock cannot be acquired within this time
period (either because of an error or because a PUSHis currently
under way), then the call returns a value of 1. A timeout value of
DBMS_LOCKIAXWAITwaits indefinitely.

13-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Returns

Table 13—-13 EXCLUDE_PUSH Function Return Values

Value Description

0 Success, lock acquired.

1 Timeout, no lock acquired.
2 Deadlock, no lock acquired.
4 Already own lock.

EXECUTE_ERROR Procedure

Syntax

Parameters

Exceptions

This procedure reexecutes a deferred transaction that did not initially complete
successfully in the security context of the original receiver of the transaction.

DBMS_DEFER_SYS.EXECUTE_ERROR (
deferred tran id IN VARCHAR2,
destination IN VARCHAR?);

Table 13-14 EXECUTE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERRORiew of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. This
must not be NULL If the provided database name is not fully
qualified or is invalid, no error will be raised.

Table 13—-15 EXECUTE_ERROR Procedure Exceptions

Exception Description
ORA-24275 error Illegal combinations of NULL and non-NULL parameters were
used.

DBMS_DEFER_SYS 13-9

EXECUTE_ERROR_AS_USER Procedure

Table 13—-15 EXECUTE_ERROR Procedure Exceptions

Exception Description

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

EXECUTE_ERROR_AS_USER Procedure

Syntax

Parameters

Exceptions

This procedure reexecutes a deferred transaction that did not initially complete
successfully. Each transaction is executed in the security context of the connected
user.

DBMS_DEFER_SYSEXECUTE_ERROR AS_USER (
deferred tran id IN VARCHAR?,
destination IN VARCHARY);

Table 13—-16 EXECUTE_ERROR_AS_USER Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERRORiew of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERRORiew of the
database to which the transaction was originally queued. This
must not be NULL

Table 13-17 EXECUTE_ERROR_AS_USER Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULLand non-NULL parameters
were used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

13-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

PURGE Function

This function purges pushed transactions from the deferred transaction queue at
your current master site or materialized view site.

Syntax

DBMS DEFER SYS.PURGE (

purge_method
rollback_segment
startup_seconds

execution_seconds

delay_seconds
transaction_count
write_trace

IN BINARY_INTEGER := purge_method_quick,

IN VARCHAR2 = NULL,
IN BINARY_INTEGER = 0,
IN BINARY_INTEGER := seconds_infinity,

IN BINARY_INTEGER = 0,

IN BINARY_INTEGER := transactions_infinity,
IN BOOLEAN = NULL);

RETURN BINARY_INTEGER;

Parameters

Table 13—-18 PURGE Function Parameters

Parameter

Description

purge_method

rollback_segment

startup_seconds

execution_seconds

Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method__
quick :
dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_
precise

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRANind DEFCALLdata dictionary views for
longer than expected before they are purged. See "Usage Notes" on
page 13-13 for more information.

Name of rollback segment to use for the purge, or NULL for
default.

Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

If > 0, then stop purge cleanly after the specified number of
seconds of real time.

DBMS_DEFER_SYS 13-11

PURGE Function

Table 13—-18 PURGE Function Parameters

Parameter Description

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGHunction in the server’s trace file. When set to false
Oracle does not record the result value.

Returns

Table 13-19 Purge Function Returns

Value

Description

result_ok
result_startup_seconds
result_execution_seconds
result_transaction_count
result_errors

result_split_del_order_
limit

result_purge_disabled

OK, terminated after delay_seconds expired.
Terminated by lock timeout while starting.
Terminated by exceeding execution_seconds
Terminated by exceeding transaction_count
Terminated after errors.

Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the purge. If the problem persists, then contact
Oracle Support Services.

Queue purging is disabled internally for synchronization
when adding new master sites without quiesce.

13-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Exceptions

Table 13-20 PURGE Function Exceptions

Exception Description

argoutofrange Parameter value is out of a valid range.
executiondisabled Execution of purging is disabled.
defererror Internal error.

Usage Notes

When you use the purge_method_quick for the purge_method parameter in the
DBMS_DEFER_SYS.PURdHNction, deferred transactions and deferred procedure
calls may remain in the DEFCALLand DEFTRANJata dictionary views after they
have been successfully pushed. This behavior occurs in replication environments
that have more than one database link and the push is executed to only one
database link.

To purge the deferred transactions and deferred procedure calls, perform one of the
following actions:

PUSH Function

Use purge_method_precise for the purge_method parameter instead of
the purge_method_quick . Using purge_method_precise is more
expensive, but it ensures that the deferred transactions and procedure calls are
purged after they have been successfully pushed.

Using purge_method_quick for the purge_method parameter, push the
deferred transactions to all database links. The deferred transactions and
deferred procedure calls are purged efficiently when the push to the last
database link is successful.

This function forces a deferred remote procedure call (RPC) queue at your current
master site or materialized view site to be pushed (propagated) to a remote site
using either serial or parallel propagation.

Syntax

DBMS_DEFER_SYSPUSH (

destination IN VARCHARZ,

parallelism IN BINARY_INTEGER = 0,
heap_size IN BINARY_INTEGER = 0,
stop_on_eror IN BOOLEAN = false,

DBMS_DEFER_SYS 13-13

PUSH Function

wite_frace IN BOOLEAN = false,
startup_seconds IN BINARY_INTEGER = 0,
execution_seconds IN BINARY_INTEGER := seconds_infinity,
delay_seconds IN BINARY_INTEGER = 0,
transaction_count IN BINARY_INTEGER = transactions_infinity,
delivery_order_limit IN NUMBER = delivery_order_infinity)

RETURN BINARY_INTEGER;

Parameters

Table 13-21 PUSH Function Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

parallelism 0 specifies serial propagation.
n > 1 specifies parallel propagation with n parallel processes.
1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file. When set to false , Oracle does
not record the result value.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

13-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 13-21 PUSH Function Parameters

Parameter

Description

execution_seconds

delay_seconds

transaction_count

delivery_order_
limit

If > 0, then stop push cleanly after the specified number of seconds
of real time. If transaction_count and execution_seconds

are zero (the default), then transactions are executed until there are
no more in the queue.

The execution_seconds parameter only controls the duration
of time that operations can be started. It does not include the
amount of time that the transactions require at remote sites.
Therefore, the execution_seconds parameter is not intended to
be used as a precise control to stop the propagation of transactions
to a remote site. If a precise control is required, use the
transaction_count or delivery_order parameters.

Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSHIs called from a tight loop.

If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution_
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

Stop execution cleanly before pushing a transaction where
delivery_order >= delivery_order_limit

DBMS_DEFER_SYS 13-15

PUSH Function

Returns

Table 13-22 PUSH Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds

result_transaction_count Terminated by exceeding transaction_count

result_delivery_order_ Terminated by exceeding delivery_order_limit

limit

result_errors Terminated after errors.

result_push_disabled Push was disabled internally. Typically, this return value
means that propagation to the destination was set to
disabled internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a later
time

result_split_del_order_ Terminated after failing to acquire the enqueue in

limit exclusive mode. If you receive this return code, then
retry the push. If the problem persists, then contact
Oracle Support Services.

Exceptions

Table 13-23 PUSH Function Exceptions

Exception

Description

incompleteparallelpu
sh

executiondisabled

crt_err_err
deferred_rpc_quiesce

commfailure

missingpropagator

Serial propagation requires that parallel propagation shuts
down cleanly.

Execution of deferred remote procedure calls (RPCs) is
disabled at the destination.

Error while creating entry in DEFERROR
Replication activity for replication group is suspended.

Communication failure during deferred remote procedure call
(RPC).

A propagator does not exist.

13-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

REGISTER_PROPAGATOR Procedure

Syntax

Parameters

Exceptions

This procedure registers the specified user as the propagator for the local database.
It also grants the following privileges to the specified user (so that the user can
create wrappers):

» CREATESESSION

» CREATEPROCEDURE

» CREATEDATABASH.INK

» EXECUTEANYPROCEDURE

DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
usemame IN VARCHAR2);

Table 13-24 REGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the user.

Table 13-25 REGISTER_PROPAGATOR Procedure Exceptions

Exception Description

missinguser Specified user does not exist.
alreadypropagator Specified user is already the propagator.
duplicatepropagat There is already a different propagator.

or

SCHEDULE_PURGE Procedure

This procedure schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized view site. You should
schedule one purge job.

DBMS_DEFER_SYS 13-17

SCHEDULE_PURGE Procedure

Syntax

Parameters

See Also: Oracle9i Replication for information about using this
procedure to schedule continuous or periodic purge of your
deferred transaction queue

DBMS_DEFER_SYS.SCHEDULE PURGE (

interval IN VARCHARZ,

next_date IN DATE,

reset IN BOOLEAN = NULL,
purge_method IN BINARY_INTEGER := NULL,
rollback_segment IN VARCHAR2 = NULL,
startup_seconds IN BINARY_INTEGER = NULL,
execution_seconds IN BINARY_INTEGER = NULL,
delay_seconds IN BINARY_INTEGER = NULL,
transaction_count IN BINARY_INTEGER = NULL,
wite_trace IN BOOLEAN = NULL);

Table 13-26 SCHEDULE_PURGE Procedure Parameters

Parameter Description

interval

Allows you to provide a function to calculate the next time to
purge. This value is stored in the interval field of the
DEFSCHEDULFiew and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL If you do not
supply a value for this field, you must supply a value for next_
date .

next_date Allows you to specify a time to purge pushed transactions from

reset

the site’s queue. This value is stored in the next_date field of the
DEFSCHEDULFiew. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, it is created with a value of
NULL If you do not supply a value for this field, then you must
supply a value for interval

Set to true to reset LAST_TXN_COUNTAST_ERRORand LAST _
MSGo NULL

13-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 13-26 SCHEDULE_PURGE Procedure Parameters

Parameter Description

purge_method Controls how to purge the deferred transaction queue: purge_
method_quick costs less, while purge_method_precise offers
better precision.

Specify the following for this parameter to use purge_method_
quick :

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method__
precise

dbms_defer_sys.purge_method_precise

If you use purge_method_quick , deferred transactions and
deferred procedure calls that have been successfully pushed may
remain in the DEFTRANind DEFCALLdata dictionary views for
longer than expected before they are purged. For more
information, see "Usage Notes" on page 13-13. These usage notes
are for the DBMS_DEFER_SYS.PUR@Hnction, but they also
apply to the DBMS_DEFER_SYS.SCHEDULE_PUR@#cedure.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.
startup_seconds Maximum number of seconds to wait for a previous purge of the

same deferred transaction queue.

execution_seconds If >0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds

transaction_count If > 0, then shut down cleanly after purging transaction_
count number of transactions.

write_trace When set to true , Oracle records the result value returned by the
PURGHunction in the server’s trace file.

SCHEDULE_PUSH Procedure

This procedure schedules a job to push the deferred transaction queue to a remote
site. This procedure performs a COMMIT

DBMS_DEFER_SYS 13-19

SCHEDULE_PUSH Procedure

Syntax

Parameters

See Also:

Oracle9i Replication for information about using this

procedure to schedule continuous or periodic push of your
deferred transaction queue

DBMS_DEFER_SYS.SCHEDULE PUSH (

destination
interval

next_date

reset

parallelism
heap_size
stop_on_eror
wite_trace
Startup_seconds
execution_seconds
delay_seconds
transaction_count

IN VARCHARZ,
IN VARCHARZ,
IN DATE,
IN BOOLEAN = false,
IN BINARY_INTEGER = NULL,
IN BINARY_INTEGER := NULL,
IN BOOLEAN = NULL,
IN BOOLEAN = NULL,
IN BINARY_INTEGER = NULL,
IN BINARY_INTEGER = NULL,
IN BINARY_INTEGER = NULL,

IN BINARY_INTEGER = NULL);

Table 13-27 SCHEDULE_PUSH Procedure Parameters

Parameter

Description

destination

interval

next_date

The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

Allows you to provide a function to calculate the next time to
push. This value is stored in the interval field of the
DEFSCHEDULFiew and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL If you do not
supply a value for this field, then you must supply a value for
next_date

Allows you to specify a time to push deferred transactions to the
remote site. This value is stored in the next_date field of the
DEFSCHEDULFiew. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, then it is created with a value
of NULL If you do not supply a value for this field, then you must
supply a value for interval

13-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 13-27 SCHEDULE_PUSH Procedure Parameters

Parameter Description

reset Set to true to reset LAST_TXN_COUNTST_ERRORand LAST_
MSGo NULL

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.
1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, false , indicates that the executor should continue
even if errors, such as conflicts, are encountered. If true , then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

write_trace When set to true , Oracle records the result value returned by the
function in the server’s trace file.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If >0, then stop execution cleanly after the specified number of
seconds of real time. If transaction_count and execution_

seconds are zero (the default), then transactions are executed
until there are no more in the queue.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSHIis called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and execution__
seconds are zero (the default), then transactions are executed
until there are no more in the queue that need to be pushed.

SET_DISABLED Procedure

This procedure disables or enables propagation of the deferred transaction queue
from the current site to a specified destination site. If the disabled parameter is
true , then the procedure disables propagation to the specified destination and
future invocations of PUSHdo not push the deferred remote procedure call (RPC)
gueue. SET_DISABLEDeventually affects a session already pushing the queue to

DBMS_DEFER_SYS 13-21

SET_DISABLED Procedure

the specified destination, but does not affect sessions appending to the queue with

DBMS_DEFER

If the disabled parameter is false , then the procedure enables propagation to the
specified destination and, although this does not push the queue, it permits future
invocations of PUSHto push the queue to the specified destination. Whether the
disabled parameter is true or false , a COMMITis required for the setting to take
effect in other sessions.

Syntax
DBMS DEFER_SYS.SET DISABLED (
destinaion IN VARCHAR2,
disabled IN BOOLEAN := true,
catchup IN RAW = '00,
ovenide IN BOOLEAN = false);
Parameters

Table 13-28 SET_DISABLED Procedure Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to change.

disabled By default, this parameter disables propagation of the deferred
transaction queue from your current site to the specified
destination. Set this to false to enable propagation.

catchup The extension identifier for adding new master sites to a master
group without quiescing the master group. The new master site is
the destination. Query the DEFSCHEDULHata dictionary view for
the existing extension identifiers.

override Afalse setting, the default, specifies that Oracle raises the

cantsetdisabled exception if the disabled parameter is set to
false and propagation was disabled internally by Oracle.

A true setting specifies that Oracle ignores whether the disabled
state was set internally for synchronization and always tries to set
the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

13-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DEFER_SYS Subprograms

Exceptions

Table 13-29 SET_DISABLED Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULKiew for the
specified destination

cantsetdisabled The disabled status for this site is set internally by Oracle for
synchronization during adding a new master site to a master
group without quiescing the master group. Ensure that adding a
new master site without quiescing finished before invoking this
procedure.

UNREGISTER_PROPAGATOR Procedure

To unregister a user as the propagator from the local database. This procedure:
n Deletes the specified propagator from DEFPROPAGATOR

= Revokes privileges granted by REGISTER_PROPAGATdRM the specified
user (including identical privileges granted independently).

= Drops any generated wrappers in the schema of the specified propagator, and
marks them as dropped in the replication catalog.

Syntax
DBMS_DEFER_SYSUNREGISTER PROPAGATOR (
usemame IN VARCHAR2
tmeout IN INTEGER DEFAULT DBMS_LOCKMAXWAITY;
Parameters

Table 13-30 UNREGISTER_PROPAGATOR Procedure Parameters

Parameter Description
username Name of the propagator user.
timeout Timeout in seconds. If the propagator is in use, then the procedure

waits until timeout. The default is DBMS_LOCKIAXWAIT

DBMS_DEFER_SYS 13-23

UNSCHEDULE_PURGE Procedure

Exceptions

Table 13-31 UNREGISTER_PROPAGATOR Procedure Exceptions

Parameter Description
missingpropagator Specified user is not a propagator.
propagator_inuse Propagator is in use, and thus cannot be unregistered. Try later.

UNSCHEDULE_PURGE Procedure

Syntax

This procedure stops automatic purges of pushed transactions from the deferred
transaction queue at a master site or materialized view site.

DBMS_DEFER_SYS.UNSCHEDULE PURGE();

UNSCHEDULE_PUSH Procedure

Syntax

Parameters

This procedure stops automatic pushes of the deferred transaction queue from a
master site or materialized view site to a remote site.

DBMS DEFER SYS.UNSCHEDULE_PUSH (
doink IN VARCHAR?);

Table 13-32 UNSCHEDULE_PUSH Procedure Parameters

Parameter Description

dblink Fully qualified path name for the database at which you want to
unschedule periodic execution of deferred remote procedure calls.

Table 13-33 UNSCHEDULE_PUSH Procedure Exceptions

Exception Description
NO_DATA_FOUND No entry was found in the DEFSCHEDULFKiew for the specified
dblink

13-24 Oracle9i Supplied PL/SQL Packages and Types Reference

14

DBMS_DESCRIBE

You can use the DBMS_DESCRIBpackage to get information about a PL/SQL
object. When you specify an object name, DBMS_DESCRIBEeturns a set of indexed
tables with the results. Full name translation is performed and security checking is
also checked on the final object.

This package provides the same functionality as the Oracle Call Interface
OCIDescribeAny call.

See Also: Oracle Call Interface Programmer’s Guide

This chapter discusses the following topics:
= Security, Types, and Errors for DBMS_DESCRIBE
= Summary of DBMS_DESCRIBE Subprograms

DBMS_DESCRIBE 14-1

Security, Types, and Errors for DBMS_DESCRIBE

Security, Types, and Errors for DBMS_DESCRIBE

Security

This package is available to PUBLIC and performs its own security checking based
on the schema object being described.

Types

The DBMS_DESCRIBPpackage declares two PL/SQL table types, which are used to
hold data returned by DESCRIBE_PROCEDURE its OUTparameters. The types are:

TYPE VARCHAR2 TABLE IS TABLE OF VARCHAR2(30)
INDEX BY BINARY_INTEGER,;

TYPE NUMBER_TABLE IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

Errors
DBMS_DESCRIBEan raise application errors in the range -20000 to -20004.

Table 14-1 DBMS_DESCRIBE Errors

Error Description
ORA-20000 ORU 10035: cannot describe a package ("X’) only a procedure within a
package.

ORA-20001 ORU-10032: procedure "X within package 'Y’ does not exist.
ORA-20002 ORU-10033: object "X is remote, cannot describe; expanded name "Y’.
ORA-20003 ORU-10036: object "X’ is invalid and cannot be described.
ORA-20004 Syntax error attempting to parse 'X'.

Summary of DBMS_DESCRIBE Subprograms

DBMS_DESCRIBEontains only one procedure: DESCRIBE_PROCEDURE

DESCRIBE_PROCEDURE Procedure

The procedure DESCRIBE_PROCEDURIEcepts the name of a stored procedure, a
description of the procedure, and each of its parameters.

14-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms

Syntax

Parameters

DBMS_DESCRIBE.DESCRIBE_PROCEDURE(

object name IN VARCHARZ2,
reservedl IN VARCHAR2,
reserved? IN VARCHAR2,
overload OUT NUMBER_TABLE,
position OUT NUMBER_TABLE,
level OUT NUMBER_TABLE,
argument name OUT VARCHAR2_TABLE,
datatype OUT NUMBER_TABLE,
default value OUT NUMBER_TABLE,
in_out OUT NUMBER_TABLE,
length OUT NUMBER_TABLE,
precision OUT NUMBER_TABLE,
scale OUT NUMBER_TABLE,
radix OUT NUMBER_TABLE,
spare OUT NUMBER_TABLE);

Table 14-2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter

Description

object_name

reservedl
reserved?2

Name of the procedure being described.

The syntax for this parameter follows the rules used for identifiers in
SQL. The name can be a synonym. This parameter is required and may
not be null. The total length of the name cannot exceed 197 bytes. An
incorrectly specified OBJECT_NAMEan result in one of the following
exceptions:

ORA-20000 - A package was specified. You can only specify a stored
procedure, stored function, packaged procedure, or packaged function.

ORA-20001 - The procedure or function that you specified does not
exist within the given package.

ORA-20002 - The object that you specified is a remote object. This
procedure cannot currently describe remote objects.

ORA-20003 - The object that you specified is invalid and cannot be
described.

ORA-20004 - The object was specified with a syntax error.

Reserved for future use -- must be set to NULL or the empty string.

DBMS_DESCRIBE 14-3

DESCRIBE_PROCEDURE Procedure

Table 14-2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter

Description

overload

position

level

argument_name

datatype

default_value

in_out

A unique number assigned to the procedure’s signature.

If a procedure is overloaded, then this field holds a different value for
each version of the procedure.

Position of the argument in the parameter list.

Position 0 returns the values for the return type of a function.

If the argument is a composite type, such as record, then this parameter
returns the level of the datatype. See the Oracle Call Interface
Programmer’s Guide for a description of the ODESSRall for an example.

Name of the argument associated with the procedure that you are
describing.

Oracle datatype of the argument being described.

The datatypes and their numeric type codes are:

106
250
251
252

placeholder for procedures with no arguments
VARCHAR, VARCHAR, STRING

NUMBER, INTEGER, SMALLINT, REAL, FLOAT, DECIMAL
BINARY_INTEGER, PLS_INTEGER, POSITIVE, NATURAL
LONG

ROWID

DATE

RAW

LONG RAW

CHAR (ANSI FIXED CHAR), CHARACTER

MLSLABEL

PL/SQL RECORD

PL/SQL TABLE

PL/SQL BOOLEAN

1 if the argument being described has a default value; otherwise, the
value is 0.

Describes the mode of the parameter:

0 IN

1 OuUT
2 IN OUT

14-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms

Table 14-2 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Description
length Data length, in bytes, of the argument being described.
precision If the argument being described is of datatype 2 (NUMBER then this

parameter is the precision of that number.

scale If the argument being described is of datatype 2 (NUMBER then this
parameter is the scale of that number.

radix If the argument being described is of datatype 2 (NUMBER then this
parameter is the radix of that number.

spare Reserved for future functionality.

Return Values

All values from DESCRIBE_PROCEDURIEe returned in its OUTparameters. The
datatypes for these are PL/SQL tables, in order to accommodate a variable number
of parameters.

Using DBMS_DESCRIBE: Examples
One use of the DESCRIBE_PROCEDURftocedure is as an external service interface.

For example, consider a client that provides an OBJECT_NAMBf SCOTTACCOUNT _
UPDATE, where ACCOUNT_UPDATiEan overloaded function with specification:

table account (account_ no number, person_id number,
balance number(7,2))
table person (person_id number(4), person_nm varchar2(10))

function ACCOUNT_UPDATE (account no number,

person person%orowtype,

amounts dbms_describe.number_table,

trans date date)

retum accounts.balance%etype;
function ACCOUNT_UPDATE (account no number,

person person%orowtype,

amounts dbms_describe.number_table,

trans_no number)

retum accounts.balance%type;

This procedure might look similar to the following output:

DBMS_DESCRIBE 14-5

DESCRIBE_PROCEDURE Procedure

overload posiion argument level datatype length prec scale rad

1 0 0 2 22 7 2 10

1 1 ACCOUNT 0 2 0 0 0 0
1 2 PERSON 0 250 0 0 0 O
1 1 PERSONID 1 2 22 4 0 10
1 2 PERSONNM 1 1 10 0 0 O
1 3 AMOUNTS 0 251 0 0 0 O
1 1 1 2 22 0 0 O

1 4 TRANS DATE O 12 0 0 0 O
2 0 0 2 22 7 2 10

2 1 ACCOUNT_NO O 2 22 0 0 O
2 2 PERSON 0 2 22 4 0 10
2 3 AMOUNTS 0 251 22 4 0 10
2 1 1 2 0 0 0 O

2 4 TRANS_NO 0 2 0 0 0 O

The following PL/SQL procedure has as its parameters all of the PL/SQL
datatypes:

CREATE OR REPLACE PROCEDURE pl (
pvc2 IN VARCHAR?2,
pvc out VARCHAR,
pstr IN OUT STRING,
pong IN LONG,
prowid IN ROWID,
pchara IN CHARACTER,
pchar IN CHAR,
praw IN RAW,
praw IN LONG RAW,
pbinint IN BINARY_INTEGER,
pplsint IN PLS_INTEGER,
pbool IN BOOLEAN,
pnat IN NATURAL,
ppos IN POSITIVE,
pposn IN POSITIVEN,
pnan IN NATURALN,
pnum IN NUMBER,
pintgr IN INTEGER,
pint IN INT,
psmal IN SMALLINT,
pdec IN DECIMAL,
prea IN REAL,
pfloat IN FLOAT,
pnumer IN NUMERIC,

14-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms

pdp
pdate
pmis
BEGIN
NULL,;
END;

IN DOUBLE PRECISION,
IN DATE,
IN MLSLABEL) AS

If you describe this procedure using the following:

CREATE OR REPLACE PACKAGE describe_it AS

PROCEDURE desc_proc (name VARCHARY);

END desciibe it

CREATE OR REPLACE PACKAGE BODY describe_it AS

PROCEDURE pit value(val VARCHAR?, isize INTEGER) IS

n INTEGER;

BEGIN

n = isize - LENGTHB(val);
IF n <0 THEN

n=_0,
END IF;

DBMS_OUTPUT PUT(val);
FOR i in 1.n LOOP
DBMS_OUTPUTPUT(;

END LOOP;

END prt_value;

PROCEDURE desc_proc (name VARCHAR2) IS

overload
position
c level
arg_name
dy

def val
p_mode
length
precision
scale
radix
spare

DBMS_DESCRIBENUMBER_TABLE;
DBMS_DESCRIBE.NUMBER _TABLE;
DBMS_DESCRIBE.NUMBER _TABLE;
DBMS_DESCRIBE.VARCHAR2_TABLE;
DBMS_DESCRIBE.NUMBER_TABLE;
DBMS_DESCRIBE.NUMBER_TABLE;
DBMS_DESCRIBE.NUMBER_TABLE;
DBMS_DESCRIBE.NUMBER _TABLE;
DBMS_DESCRIBE.NUMBER TABLE;
DBMS_DESCRIBE.NUMBER TABLE;
DBMS_DESCRIBENUMBER_TABLE;
DBMS_DESCRIBENUMBER_TABLE;

DBMS_DESCRIBE

14-7

DESCRIBE_PROCEDURE Procedure

iolx INTEGER = 0,

BEGIN
DBMS_DESCRIBE.DESCRIBE_PROCEDURE(

name,
null,
null,
overload,
position,
c level,
arg_name,
dty,
def va,
p_mode,
length,
precision,
scale,
radix,
spare);

DBMS_OUTPUT.PUT_LINE(Position Name DTY Mode);
LOOP
idx = idx + 1,
prt_value(TO_CHAR(position(idx)), 12);
prt_value(arg_name(idx), 12);
prt_value(TO_CHAR(dty(idx)), 5);
prt_value(TO_CHAR(p_mode(idx)), 5);
DBMS_OUTPUT.NEW_LINE;
END LOOP;
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.NEW_LINE;
DBMS_OUTPUT.NEW_LINE;

END desc _proc;
END describe_it;

Then the results list all the numeric codes for the PL/SQL datatypes:
Posiion Name Datatype_Code Mode

1 PvC2 1 0
2 PvC 1 1
3 PSTR 1 2
4 PLONG 8 0
5 PROWID 11 0

14-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DESCRIBE Subprograms

Usage Notes

PCHARA 9% 0
PCHAR 9% 0
PRAW 23 0
PLRAW 24 0
PBININT 3 0
PPLSINT 3 0
PBOOL 252 0
PNAT 3 0
PPOS 3 0
PPOSN 3 0
PNATN 3 0
PNUM 2 0
PINTGR 2 0
PINT 2 0
PSMALL 2 0
PDEC 2 0
PREAL 2 0
PFLOAT 2 0
PNUMER 2 0
PDP 2 0
PDATE 12 0
PMLS 106 0

There is currently no way from a third generation language to directly bind to an
argument of type record or boolean . For Booleans, there are the following
work-arounds:

Assume function F returns a Boolean. Gis a procedure with one IN Boolean
argument, and His a procedure which has one OUTBoolean argument. Then,
you can execute these functions, binding in DTYINTs (native integer) as
follows, where 0=>FALSE and 1=>TRUE

begin dtyint bind var = to_number(f); end
begin g(to_boolean(dtyint bind var)); end;

declare b boolean; begin h(b); if b then :dtyint bind var = 1;
else :dtyint bind var .= 0; end if, end;

Access to procedures with arguments of type record require writting a
wrapper similar to that in the preceding example (see funciton H).

DBMS_DESCRIBE 14-9

DESCRIBE_PROCEDURE Procedure

14-10 Oracle9i Supplied PL/SQL Packages and Types Reference

15

DBMS_DISTRIBUTED_TRUST_ADMIN

DBMS_DISTRIBUTED_TRUST_ADMIprocedures maintain the Trusted Servers List.
Use these procedures to define whether a server is trusted. If a database is not
trusted, Oracle refuses current user database links from the database.

Oracle uses local Trusted Servers Lists, along with enterprise domain membership
lists stored in the enterprise LDAP directory service, to determine if another
database is trusted. The LDAP directory service entries are managed with the
Enterprise Security Manager Tool in Oracle Enterprise Manager.

Oracle considers another database to be "trusted" if it meets the following criteria:
1. Itisin the same enterprise domain in the directory service as the local database.
2. The enterprise domain is marked as trusted in the directory service.

3. Itis not listed as untrusted in the local Trusted Servers List. Current user
database links will only be accepted from another database if both databases
involved trust each other.

You can list a database server locally in the Trusted Servers List regardless of what
is listed in the directory service. However, if you list a database that is not in the
same domain as the local database, or if that domain is untrusted, the entry will
have no effect.

This functionality is part of the Enterprise User Security feature of the Oracle
Advanced Security Option.

This chapter discusses the following topics:
= Requirements

=« Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

DBMS_DISTRIBUTED_TRUST_ADMIN 15-1

Requirements

Requirements

To execute DBMS_DISTRIBUTED_TRUST_ADMI|he EXECUTE_CATALOG_ROLE
role must be granted to the DBA. To select from the view TRUSTED_SERVER&e
SELECT_CATALOG_ROLBle must be granted to the DBA.

It is important to know whether all servers are trusted or not trusted. Trusting a
particular server with the ALLOW_SERVERrocedure does not have any effect if the
database already trusts all databases, or if that database is already trusted. Similarly,
denying a particular server with the DENY_SERVEIRrocedure does not have any
effect if the database already does not trust any database or if that database is
already untrusted.

The procedures DENY_ALLand ALLOW_ALLdelete all entries (in other words,
server names) that are explicitly allowed or denied using the ALLOW_SERVER
procedure or DENY_SERVERrocedure respectively.

Summary of DBMS_DISTRIBUTED TRUST_ADMIN Subprograms

Table 15-1 DBMS_DISTRIBUTED _TRUST_ADMIN Package Subprograms

Subprogram Description

ALLOW_ALL Procedure Empties the list and inserts a row indicating that all servers
on page 15-2 should be trusted.

ALLOW_SERVER Enables a specific server to be allowed access even though
Procedure on page 15-3 deny all is indicated in the list.

DENY_ALL Procedure on Empties the list and inserts a row indicating that all servers
page 15-3 should be untrusted.

DENY_SERVER Procedure Enables a specific server to be denied access even though allow
on page 15-4 all is indicated in the list.

ALLOW_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers that
are members of a trusted domain in an enterprise directory service and that are in
the same domain are allowed access.

The view TRUSTED_SERVER®ill show "TRUSTEDALL" indicating that the
database trusts all servers that are currently trusted by the enterprise directory
service.

15-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Syntax

Usage Notes

DBMS_DISTRIBUTED_TRUST_ADMINALLOW_ALL;

ALLOW_ALLonly applies to servers listed as trusted in the enterprise directory
service and in the same enterprise domain.

ALLOW_SERVER Procedure

Syntax

Parameters

Usage Notes

This procedure ensures that the specified server is considered trusted (even if you
have previously specified "deny all).

DBMS_DISTRIBUTED_TRUST_ADMINAALLOW_SERVER (
server IN VARCHARY);

Table 15-2 ALLOW_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be trusted.

If the Trusted Servers List contains the entry "deny all ", then this procedure adds a
specification indicating that a specific database (for example, DBX) is to be trusted.

If the Trusted Servers List contains the entry "allow all ", and if there is no "deny
DBX' entry in the list, then executing this procedure causes no change.

If the Trusted Servers List contains the entry "allow all
DBX' entry in the list, then that entry is deleted.

, and if there is a "deny

DENY_ALL Procedure

This procedure empties the Trusted Servers List and specifies that all servers are
denied access.

The view TRUSTED_SERVER®ill show "UNTRUSTEBLL" indicating that no
servers are currently trusted.

DBMS_DISTRIBUTED_TRUST_ADMIN 15-3

DENY_SERVER Procedure

Syntax

DBMS_DISTRIBUTED_TRUST_ADMIN.DENY_ALL;

DENY_SERVER Procedure

Syntax

Parameters

Usage Notes

Example

This procedure ensures that the specified server is considered untrusted (even if

you have previously specified allow all).

DBMS_DISTRIBUTED_TRUST ADMIN.DENY SERVER (
server IN VARCHARY);

Table 15-3 DENY_SERVER Procedure Parameters

Parameter Description

server Unique, fully-qualified name of the server to be untrusted.

If the Trusted Servers List contains the entry allow all , then this procedure adds
an entry indicating that the specified database (for example, DBX) is not to be
trusted.

If the Trusted Servers List contains the entry "deny all ", and if there is no "allow
DBX' entry in the list, then this procedure causes no change.

If the Trusted Servers List contains the entry "deny all ", and if there is an "allow
DBX' entry, then this procedure causes that entry to be deleted.

If you have not yet used the package DBMS_DISTRIBUTED _TRUST_ADMIt
change the trust listing, by default you trust all databases in the same enterprise
domain if that domain it listed as trusted in the directory service:

SELECT * FROM TRUSTED_SERVERS;
TRUST NAME

Trusted Al

1 row selected.

15-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms

Because all servers are currently trusted, you can execute the DENY_SERVER
procedure and specify that a particular server is not trusted:

EXECUTE DBMS_DISTRIBUTED TRUST ADMIN.DENY SERVER
(SALES.US AMERICAS ACME_AUTO.COM);

Statement processed.
SELECT * FROM TRUSTED_SERVERS;

TRUST NAME

Untrusted SALES.US.AMERICAS.ACME_AUTO.COM

1 row selected

By executing the DENY_ALLprocedure, you can choose to not trust any database
server:

EXECUTE DBMS_DISTRIBUTED TRUST_ADMIN.DENY_ALL;
Statement processed.
SELECT * FROM TRUSTED_SERVERS,

TRUST NAME

Untrusted All

1 row selected.

The ALLOW_SERVEPRrocedure can be used to specify that one particular database
is to be trusted:

EXECUTE

DBMS_DISTRIBUTED_TRUST_ADMINALLOW_SERVER
(SALES.US AMERICAS ACME_AUTO.COMY;

Statement processed.

SELECT * FROM TRUSTED_SERVERS,

TRUST NAME

DBMS_DISTRIBUTED_TRUST_ADMIN 15-5

DENY_SERVER Procedure

Trusted SALES.USAMERICASACME_AUTO.COM

1 row selected.

15-6 Oracle9i Supplied PL/SQL Packages and Types Reference

16

DBMS_FGA

The DBMS_FGApackage provides fine-grained security functions. Execute privilege
on DBMS_FGAs needed for administering audit policies. Because the audit function
can potentially capture all user environment and application context values, policy
administration should be executable by privileged users only.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
a fuller discussion and more usage information on DBMS_FGA

This feature is available for only cost-based optimization. The rule-based optimizer
may generate unnecessary audit records since audit monitoring can occur before
row filtering. For both the rule-based optimizer and the cost-based optimizer, you
can refer to DBA_FGA_AUDIT_TRAILto analyze the SQL text and corresponding
bind variables that are issued.

This chapter discusses the following topics:

= Summary of DBMS_FGA Subprograms

DBMS_FGA 16-1

Summary of DBMS_FGA Subprograms

Summary of DBMS_FGA Subprograms

Table 16—1 Summary of DBMS_FGA Subprograms

Subprogram Description

ADD_POLICY Procedure Creates an audit policy using the supplied predicate as the
on page 16-2 audit condition

DROP_POLICY Procedure Drops an audit policy

on page 16-3

ENABLE_POLICY Enables an audit policy

Procedure on page 16-4

DISABLE_POLICY Disables an audit policy

Procedure on page 16-5

ADD_POLICY Procedure

This procedure creates an audit policy using the supplied predicate as the audit

condition.
Syntax
DBMS_FGAADD_POLICY(
object schema VARCHAR2,
object name VARCHARZ,
policy_name VARCHARZ2,
audit_conditon VARCHAR2,
audit_column VARCHAR2,
hander_schema VARCHAR?2,
handler_ module VARCHAR2,
enable BOOLEAN);
Parameters

Table 16-2 ADD_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited

object_name The name of the object to be audited

policy_name The unique name of the policy

audit_condition A condition in a row that indicates a monitoring condition

16-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FGA Subprograms

Usage Notes

Table 16-2 ADD_POLICY Procedure Parameters

Parameter

Description

audit_column

handler_schema

handler_module

enable

The column to be checked for access. The default is all
columns.

The schema that contains the event handler. The default is the
current schema.

The function name of the event handler; includes the package
name if necessary. This is fired only after the first row that
matches the audit condition is processed in the query. If the
procedure fails with exception, the user SQL statement will fail
as well. The default is NULL.

Enables the policy if TRUE, which is the default.

= Anevent record will always be inserted into fga_log$ when the monitored
condition becomes TRUE.

= The audit function must have the following interface:
PROCEDURE <fname> (object_schema VARCHARZ2, object name
VARCHAR?2, policy nhame VARCHAR2) AS ..
where fname is the name of the procedure, schema is the schema of the table

audited, table

is the table audited, and policy is the policy being enforced.

= The audit function is executed as an autonomous transaction.

=« Each audit policy is applied to the query individually. That is, as long as the

rows being returned fit into any of the audit condition defined on the table, an
audit record will be generated, and there will be at most one record generated
for each policy.

DROP_POLICY Procedure

Syntax

This procedure drops an audit policy.

DBMS_FGA.DROP_POLICY(

object schema VARCHAR?2,
object name VARCHAR?2,
policy_name VARCHAR?);

DBMS_FGA 16-3

ENABLE_POLICY Procedure

Parameters

Table 16-3 DROP_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited
object_name The name of the object to be audited
policy_name The unique name of the policy

Usage Notes

The DBMS_FG#Avrocedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_FGArocedures are
part of the DDL transaction.

ENABLE_POLICY Procedure

This procedure enables an audit policy.

Syntax
DBMS_FGA.ENABLE_POLICY(
object schema VARCHAR2 = NULL,
object name VARCHAR2,
policy_name VARCHAR?2,
enable BOOLEAN = TRUE),
Parameters

Table 16-4 ENABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited
object_name The name of the object to be audited
policy_name The unique name of the policy

enable Defaults to TRUEto enable the policy

16-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FGA Subprograms

DISABLE_POLICY Procedure

Syntax

Parameters

This procedure disables an audit policy.

DBMS_FGA.DISABLE POLICY(
object schema VARCHAR?2,
object_ name VARCHARZ,
policy_name VARCHAR?2);

Table 16-5 DISABLE_POLICY Procedure Parameters

Parameter Description

object_schema The schema of the object to be audited
object_name The name of the object to be audited
policy_name The unique name of the policy

DBMS_FGA 16-5

DISABLE_POLICY Procedure

16-6 Oracle9i Supplied PL/SQL Packages and Types Reference

17

DBMS_FLASHBACK

Using DBMS_FLASHBACKyou can flash back to a version of the database at a
specified wall-clock time or a specified system change number (SCN). When DBMS _
FLASHBACHs enabled, the user session uses the Flashback version of the database,
and applications can execute against the Flashback version of the database. DBMS_
FLASHBACHKs automatically turned off when the session ends, either by
disconnection or by starting another connection.

PL/SQL cursors opened in Flashback mode return rows as of the flashback time or
SCN. Different concurrent sessions (connections) in the database can perform
Flashback to different wall-clock times or SCNs. DML and DDL operations and
distributed operations are not allowed while a session is running in Flashback
mode. You can use PL/SQL cursors opened before disabling Flashback to perform
DML.

Under Automatic Undo Management (AUM) mode, you can use retention control
to control how far back in time to go for the version of the database you need. If you
need to perform a Flashback over a 24-hour period, the DBA should set the undo_
retention parameter to 24 hours. This way, the system retains enough undo
information to regenerate the older versions of the data.

When enabling Flashback using a wall-clock time, the database chooses an SCN that
was generated within five minutes of the time specified. For finer grain control of
Flashback, you can enable an SCN. An SCN identifies the exact version of the
database. In a Flashback-enabled session, SYSDATEwill not be affected; it will
continue to provide the current time.

DBMS_FLASHBACE#an be used within logon triggers to enable Flashback without
changing the application code.

You may want to use DBMS_FLASHBACHr the following reasons:

DBMS_FLASHBACK 17-1

= Self-service repair. If you accidentally delete rows from a table, you can recover
the deleted rows.

= Packaged applications such as e-mail and voicemail. You can use Flashback to
restore deleted e-mail by re-inserting the deleted message into the current
message box.

= Decision support system (DSS) and online analytical processing (OLAP)
applications. You can perform data analysis or data modeling to track seasonal
demand, for example.

To use this package, a database administrator must grant EXECUTEprivileges for
DBMS_FLASHBACK

See Also: Oracle9i Application Developer’s Guide - Fundamentals and
Oracle9i SQL Reference for detailed information about DBMS _
FLASHBACK.

This chapter discusses the following topics:

= DBMS_FLASHBACK Error Messages

= Using DBMS_FLASHBACK: Example

=« Summary of DBMS_FLASHBACK Subprograms

17-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_FLASHBACK: Example

DBMS_FLASHBACK Error Messages

Table 17-1 DBMS_FLASHBACK Error Messages

Error Description

8182 In Flashback mode, user cannot perform DML or DDL
operations.

8184 User cannot enable Flashback within another Flashback
session.

8183 User cannot enable Flashback within an uncommitted
transaction.

8185 SYS cannot enable Flashback mode.
User cannot begin read-only or serializable transactions in
Flashback mode.

8180 Time specified is too old.

8181 Invalid system change number specified.

Using DBMS_FLASHBACK: Example

The following example illustrates how Flashback can be used when the deletion of a
senior employee triggers the deletion of all the personnel reporting to him. Using

the Flashback feature, you can recover and re-insert the missing employees.

drop table employee;
drop table keep_scn;

REM keep _scn is a temporary table to store scns that we are interested in

create table keep scn (scn number);
set echo on
create table employee (

)

employee no number(5) primary key,
employee_name varchar2(20),
employee_mgr number(5)
constraint mgr_fkey references employee on delete cascade,
salary number,
hiredate date

REM Populate the company with employees
insert into employee values (1, 'John Doe, nul, 1000000, '54ul-81);

DBMS_FLASHBACK

17-3

Using DBMS_FLASHBACK: Example

insert into employee values (10, Joe Johnson, 1, 500000, '12-aug-84);
insert into employee values (20, ‘Susie Tiger, 10, 250000, '13-dec-90);
insert into employee values (100, 'Scott Tiger, 20, 200000, '3-feb-86);

insert into employee values (200, ‘Charles Smith', 100, 150000, ‘22-mar-88);
insert into employee values (210, ‘Jane Johnson, 100, 100000, '11-apr-87);
insert into employee values (220, Nancy Doe', 100, 100000, '18-sep-93);
insert into employee values (300, ‘Gary Smith, 210, 75000, ‘4-nov-96);
insert into employee values (310, Bob Smith', 210, 65000, ‘3-may-95);
commit;

REM Show the ertire org

select Ipad(', 2%(evell)) | employee_name Name
from employee

connect by prior employee no = employee_mgr
start with employee no = 1

order by level;

REM Skeep for 5 minutes to avoid querying close to the table creation
REM (the mapping of scn>time has 5 minutes granularty)
execute doms_lock sleep(300);

REM Store this snapshot for later access through Flashback
declare

| number;

begin

| == dbms_flashback.get_system_change_number;

insert into keep_scn values ();

commit;

end;

/

REM Scott decides to retire but the transaction is done incorrectly
delete from employee where employee_name = 'Scott Tiger’
commit;

REM notice that all of scotts employees are gone
select Ipad(', 2%(levell)) | employee_name Name
from employee

connect by prior employee_no = employee_mgr
start with employee no = 1

order by level;

REM Flashback to see Scotts organization
declare
restore_scn number;

17-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Using DBMS_FLASHBACK: Example

begin
select scn into restore_scn from keep_scn;
dboms_flashback.enable_at_system change_number (restore_scny;
end;
/

REM Show Scott's org.
select Ipad(', 2*(evel-l)) || employee_name Name
from employee
connect by prior employee_no = employee_mgr
start with employee no =
(select employee no from employee where employee_name = 'Scott Tiger)
order by level;

REM Restore scatt's organization.

declare
scotts_emp number;
scotts_mgr number;
cursor cl is
select employee_no, employee_name, employee_mgr, salary, hiredate
from employee
connect by prior employee_no = employee_mgr
start with employee no =
(select employee no from employee where employee_name = 'Scott Tiger);
cl rec c1 % ROWTYPE;
begin
select employee_no, employee_mgr into scotts_ emp, scotts mgr from employee
where employee name = 'Scott Tiger;
F Open cl in flashback mode *
open cl;
P Disable Hashback *
dbms_flashback disable;
loop
fetch ¢l into cl rec;
exit when c1%NOTFOUND;
F
Note that all the DML operations inside the loop are performed
with Flashback disabled
¥
if (C1_recemployee_mgr = scotts emp) then
insert into employee values (cl_recemployee no,
cl recemployee name,
scotts_mgr,
cl _recsaary,

DBMS_FLASHBACK 17-5

Summary of DBMS_FLASHBACK Subprograms

cl rechiredate);
else
if (1 _rec.employee no '= scotts emp) then
insert into employee values (c1_rec.employee_no,
cl_recemployee name,
cl recemployee mgr,
cl recsalary,
cl rechiredate);
end ff;
end ff;
end loop;
end;
/

REM Show the restored organization.

select Ipad(', 2*(evel-l)) || employee_name Name
from employee

connect by prior employee no = employee_mgr
start with employee no = 1

order by level;

Summary of DBMS_FLASHBACK Subprograms

Table 17-2 DBMS_FLASHBACK Subprograms

Subprogram Description

ENABLE_AT_TIME Enables Flashback for the entire session. The snapshot time is

Procedure on page 17-7 set to the SCN that most closely matches the time specified in
query_time.

ENABLE_AT _SYSTEM_ Takes an SCN as an Oracle number and sets the session

CHANGE_NUMBER snapshot to the specified number.

Procedure on page 17-7 Inside the Flashback mode, all queries will return data

consistent as of the specified wall-clock time or SCN.

GET_SYSTEM_CHANGE_ Returns the current SCN as an Oracle number. You can use the
NUMBER Function on SCN to store specific snapshots.
page 17-8

DISABLE Procedure on Disables the Flashback mode for the entire session.
page 17-8

17-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_FLASHBACK Subprograms

ENABLE_AT_TIME Procedure

Syntax

Parameters

This procedure enables Flashback for the entire session. The snapshot time is set to
the SCN that most closely matches the time specified in query_time.

DBMS_FLASHBACKENABLE AT TIME (

query_time

IN TIMESTAMP);

Table 17-3 ENABLE_AT_TIME Procedure Parameters

Parameter

Description

query_time

This is an input parameter of type TIMESTAMP. A time stamp
can be specified in the following ways:

Using the TIMESTAMP constructor: Example: execute
dbms_flashback.enable_at_time(TIMESTAMP

'2001-01-09 12:31:00". Use the Globalization Support
(NLS) format and supply a string. The format depends on the
Globalization Support settings.

Using the TO_TIMESTAMHAunction: Example: execute
dbms_flashback.enable_at_time(TO_
TIMESTAMP('12-02-2001 14:35:00°, 'DD-MM-YYYY
HH24:MI1:SS"). Y ou provide the format you want to use.
This example shows the TO_TIMESTAMHunction for February
12, 2001, 2:35 PM.

If the time is omitted from query time, it defaults to the
beginning of the day, that is, 12:00 A.M.

Note that if the query time contains a time zone, the time zone
information is truncated.

ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure

Syntax

This procedure takes an SCN as an input parameter and sets the session snapshot to
the specified number.

In the Flashback mode, all queries return data consistent as of the specified
wall-clock time or SCN.

DBMS_FLASHBACKENABLE AT SYSTEM_CHANGE_NUMBER (

DBMS_FLASHBACK 17-7

GET_SYSTEM_CHANGE_NUMBER Function

query_scn IN NUMBERY);

Parameters

Table 17-4 ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure Parameters

Parameter Description

query_scn The system change number (SCN), a version number for the
database that is incremented on every transaction commit.

GET_SYSTEM_CHANGE_NUMBER Function

This function returns the current SCN as an Oracle number datatype. You can
obtain the current change number and stash it away for later use. This helps you
store specific snapshots.

Syntax
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER (
RETURN NUMBERY;
DISABLE Procedure
This procedure disables the Flashback mode for the entire session.
Syntax
DBMS_FLASHBACK DISABLE;
Example

The following example queries the salary of an employee, Joe, on August 30, 2000:

EXECUTE dbms_flashback.enable_at time(30-AUG-2000);
SELECT salary from emp where name = 'Joe’
EXECUTE dbms_flashback disable;

17-8 Oracle9i Supplied PL/SQL Packages and Types Reference

13

DBMS HS PASSTHROUGH

The pass-through SQL feature allows an application developer to send a statement
directly to a non-Oracle system without being interpreted by the Oracle server. This
can be useful if the non-Oracle system allows for operations in statements for which
there is no equivalent in Oracle.

You can run these statements directly at the non-Oracle system using the PL/SQL
package DBMS_HS_PASSTHROUGyY statement executed with this package is
run in the same transaction as regular "transparent" SQL statements.

This chapter discusses the following topics:
= Security

« Summary of DBMS_HS PASSTHROUGH Subprograms

DBMS_HS_PASSTHROUGH 18-1

Security

Security

The DBMS_HS PASSTHROU@#tkage conceptually resides at the non-Oracle
system. Procedures and functions in the package must be called by using the
appropriate database link to the non-Oracle system.

Summary of DBMS_HS PASSTHROUGH Subprograms

Table 18-1 DBMS_HS PASSTHROUGH Package Subprograms

Subprogram

Description

BIND_VARIABLE Procedure
on page 18-3

BIND_VARIABLE_RAW
Procedure on page 18-4

BIND_OUT_VARIABLE
Procedure on page 18-5

BIND_OUT_VARIABLE_RAW
Procedure on page 18-7

BIND_INOUT_VARIABLE
Procedure on page 18-8

BIND_INOUT_VARIABLE_
RAW Procedure on page 18-9

CLOSE_CURSOR Procedure
on page 18-10

EXECUTE_IMMEDIATE
Procedure on page 18-11

EXECUTE_NON_QUERY
Function on page 18-12

FETCH_ROW Function on
page 18-13

GET_VALUE Procedure on
page 18-14

GET_VALUE_RAW Procedure
on page 18-15

OPEN_CURSOR Function on
page 18-16

Binds an IN variable positionally with a PL/SQL program
variable.

Binds IN variables of type RAW

Binds an OUTvariable with a PL/SQL program variable.

Binds an OUTvariable of datatype RAWwith a PL/SQL
program variable.

Binds IN OUTbind variables.

Binds IN OUTbind variables of datatype RAW

Closes the cursor and releases associated memory after the
SQL statement has been run at the non-Oracle system.

Runs a (non-SELECT) SQL statement immediately,
without bind variables.

Runs a (hon-SELECT) SQL statement.

Fetches rows from a query.

Retrieves column value from SELECTstatement, or
retrieves OUThind parameters.

Similar to GET_VALUEbut for datatype RAW

Opens a cursor for running a passthrough SQL statement
at the non-Oracle system.

18-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 18-1 DBMS_HS PASSTHROUGH Package Subprograms (Cont.)

Subprogram Description
PARSE Procedure on Parses SQL statement at non-Oracle system.
page 18-17

BIND_VARIABLE Procedure

This procedure binds an IN variable positionally with a PL/SQL program variable.

Syntax
DBMS_HS PASSTHROUGH.BIND VARIABLE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN <dty>,
name IN VARCHAR2);
Where <dty> is either DATE NUMBERor VARCHAR?2
See Also: To bind RAWariables use BIND_VARIABLE_RAW
Procedure on page 18-4.
Parameters

Table 18-2 BIND_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement; Starts at 1.
val Value that must be passed to the bind variable name.
name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

DBMS_HS_PASSTHROUGH 18-3

BIND_VARIABLE_RAW Procedure

Exceptions

Table 18-3 BIND_VARIABLE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the

cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined: WNDS, RNDS

BIND_VARIABLE_RAW Procedure
This procedure binds IN variables of type RAW

Syntax
DBMS_HS PASSTHROUGH.BIND VARIABLE_RAW (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
va IN RAW,
name IN VARCHAR2);
Parameters

Table 18-4 BIND_VARIABLE RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement; Starts at 1.

val Value that must be passed to the bind variable.

18-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 18-4 BIND_VARIABLE RAW Procedure Parameters

Parameter Description

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Exceptions

Table 18-5 BIND_VARIABLE RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28552 Procedure is not run in right order. (Did you first open the

cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined : WNDS, RNDS

BIND_OUT VARIABLE Procedure
This procedure binds an OUTvariable with a PL/SQL program variable.

Syntax
DBMS_HS_PASSTHROUGH.BIND_OUT_VARIABLE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT <dty>,

name IN VARCHAR2);
Where <dty> is either DATE NUMBERor VARCHAR2

See Also: For binding OUTvariables of datatype RAWsee BIND _
OUT_VARIABLE_RAW Procedure on page 18-7.

DBMS_HS_PASSTHROUGH 18-5

BIND_OUT_VARIABLE Procedure

Parameters

Table 18-6 BIND_OUT_VARIABLE Procedure Parameters

Parameter

Description

(o}

pos

val

name

Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

Position of the bind variable in the SQL statement: Starts at 1.

Variable in which the OUTbind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALURo retrieve the
value of the OUTparameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE

(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Exceptions

Table 18-7 BIND_OUT_VARIABLE Procedure Exceptions

Exception

Description

ORA-28550
ORA-28552

ORA-28553
ORA-28555

The cursor passed is invalid.

Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

The position of the bind variable is out of range.

A NULLvalue was passed for a NOTNULL parameter.

Pragmas

Purity level defined

: WNDS, RNDS

18-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

BIND_OUT VARIABLE_RAW Procedure

Syntax

Parameters

Exceptions

This procedure binds an OUTvariable of datatype RAWwith a PL/SQL program
variable.

DBMS_HS PASSTHROUGH.BIND_OUT_VARIABLE_RAW (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val OUT RAW,
name IN VARCHAR2);

Table 18-8 BIND_OUT_VARIABLE _RAW Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val Variable in which the OUTbind variable stores its value. The
package remembers only the "size" of the variable. After the
SQL statement is run, you can use GET_VALURo retrieve the
value of the OUTparameter. The size of the retrieved value
should not exceed the size of the parameter that was passed
using BIND_OUT_VARIABLE_RAW

name (Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18-9 BIND_OUT_VARIABLE_RAW Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

DBMS_HS_PASSTHROUGH 18-7

BIND_INOUT_VARIABLE Procedure

Table 18-9 BIND_OUT_VARIABLE RAW Procedure Exceptions

Exception Description

ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

ORA-28553 The position of the bind variable is out of range.

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.

Pragmas
Purity level defined : WNDS, RNDS

BIND_INOUT_VARIABLE Procedure
This procedure binds IN OUThind variables.

Syntax
DBMS_HS PASSTHROUGH.BIND_INOUT VARIABLE (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
val IN OUT <dty>,
name IN VARCHAR?);
Where <dty> is either DATE NUMBERor VARCHAR2
See Also: For binding IN OUTvariables of datatype RAWee
BIND_INOUT_VARIABLE_RAW Procedure on page 18-9.
Parameters

Table 18—-10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

pos Position of the bind variable in the SQL statement: Starts at 1.

val This value is used for two purposes:
- To provide the IN value before the SQL statement is run.

- To determine the size of the out value.

18-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Table 18—-10 BIND_INOUT_VARIABLE Procedure Parameters

Parameter

Description

name

(Optional) Name of the bind variable.

For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.

Table 18-11 BIND_INOUT_VARIABLE Procedure Exceptions

Description

The cursor passed is invalid.

Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

The position of the bind variable is out of range.

A NULLvalue was passed for a NOTNULL parameter.

Exceptions
Exception
ORA-28550
ORA-28552
ORA-28553
ORA-28555
Pragmas

Purity level defined : WNDS, RNDS

BIND_INOUT_VARIABLE_RAW Procedure
This procedure binds IN OUThind variables of datatype RAW

Syntax

DBMS_HS PASSTHROUGH.BIND_INOUT VARIABLE (

c

pos
val

name

BINARY_INTEGER NOT NULL,
BINARY_INTEGER NOT NULL,
IN OUT RAW,

VARCHAR?);

DBMS_HS_PASSTHROUGH 18-9

CLOSE_CURSOR Procedure

Parameters
Table 18-12 BIND_INOUT_VARIABLE _RAW Procedure Parameters
Parameter Description
c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed’ using the routines OPEN_
CURSORNd PARSErespectively.
pos Position of the bind variable in the SQL statement: Starts at 1.
val This value is used for two purposes:
- To provide the IN value before the SQL statement is run.
- To determine the size of the out value.
name (Optional) Name the bind variable.
For example, in SELECT * FROM emp WHERE
ename=:ename , the position of the bind variable :enameis 1,
the name is :ename. This parameter can be used if the
non-Oracle system supports "named binds" instead of
positional binds. Passing the position is still required.
Exceptions
Table 18-13 BIND_INOUT_VARIABLE RAW Procedure Exceptions
Exception Description
ORA-28550 The cursor passed is invalid.
ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)
ORA-28553 The position of the bind variable is out of range.
ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined : WNDS, RNDS

CLOSE_CURSOR Procedure

This function closes the cursor and releases associated memory after the SQL
statement has been run at the non-Oracle system. If the cursor was not open, then
the operation is a "no operation".

18-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Syntax

DBMS _HS PASSTHROUGH.CLOSE_CURSOR (

c IN BINARY_INTEGER NOT NULL)

Parameters

Table 18-14 CLOSE_CURSOR Procedure Parameters

Parameter Description

c Cursor to be released.
Exceptions

Table 18-15 CLOSE_CURSOR Procedure Exceptions

Exception Description

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined : WNDS, RNDS

EXECUTE_IMMEDIATE Procedure

This function runs a SQL statement immediately. Any valid SQL command except
SELECTcan be run immediately. The statement must not contain any bind
variables. The statement is passed in as a VARCHAR2n the argument. Internally the
SQL statement is run using the PASSTHROUGS$QL protocol sequence of OPEN _
CURSORPARSE EXECUTE_NON_QUERM.OSE_CURSOR

Syntax

DBMS_HS PASSTHROUGH.EXECUTE._IMMEDIATE (
S IN VARCHAR2 NOT NULL)
RETURN BINARY INTEGER;

DBMS_HS_PASSTHROUGH 18-11

EXECUTE_NON_QUERY Function

Parameters

Table 18-16 EXECUTE_IMMEDIATE Procedure Parameters

Parameter Description

S VARCHARZ/ariable with the statement to be executed

immediately.

Returns

The number of rows affected by the execution of the SQL statement.
Exceptions

Table 18-17 EXECUTE_IMMEDIATE Procedure Exceptions

Exception Description

ORA-28551 SQL statement is invalid.

ORA-28544 Max open cursors.

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.

EXECUTE_NON_QUERY Function

This function runs a SQL statement. The SQL statement cannot be a SELECT
statement. A cursor has to be open and the SQL statement has to be parsed before
the SQL statement can be run.

Syntax
DBMS_HS PASSTHROUGH.EXECUTE. NON_QUERY (
¢ IN BINARY_INTEGER NOT NULL)
RETURN BINARY_INTEGER;
Parameters

Table 18-18 EXECUTE_NON_QUERY Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

18-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Returns

Exceptions

The number of rows affected by the SQL statement in the non-Oracle system

Table 18—-19 EXECUTE_NON_QUERY Procedure Exceptions

Exception Description
ORA-28550 The cursor passed is invalid.
ORA-28552 BIND_VARIABLE procedure is not run in right order. (Did you

first open the cursor and parse the SQL statement?)

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.

FETCH_ROW Function

Syntax

Parameters

This function fetches rows from a result set. The result set is defined with a SQL
SELECTstatement. When there are no more rows to be fetched, the exception NO_
DATA_FOUNIs raised. Before the rows can be fetched, a cursor has to be opened,
and the SQL statement has to be parsed.

DBMS_HS PASSTHROUGH.FETCH ROW (
c IN BINARY_INTEGER NOT NULL,
frt IN BOOLEAN)
RETURN BINARY INTEGER;

Table 18-20 FETCH_ROW Function Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

first (Optional) Reexecutes SELECTstatement. Possible values:
- TRUE: reexecute SELECTstatement.

- FALSE: fetch the next row, or if run for the first time, then
execute and fetch rows (default).

DBMS_HS_PASSTHROUGH 18-13

GET_VALUE Procedure

Returns

Exceptions

Pragmas

The returns the number of rows fetched. The function returns "0" if the last row was
already fetched.

Table 18-21 FETCH_ROW Procedure Exceptions

Exception Description
ORA-28550 The cursor passed is invalid.
ORA-28552 Procedure is not run in right order. (Did you first open the

cursor and parse the SQL statement?)

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.

Purity level defined : WNDS

GET_VALUE Procedure

Syntax

This procedure has two purposes:

a It retrieves the select list items of SELECTstatements, after a row has been
fetched.

= It retrieves the OUThind values, after the SQL statement has been run.

DBMS_HS PASSTHROUGH.GET VALUE (

c IN BINARY INTEGER NOT NULL,
pos IN BINARY_INTEGER NOT NULL,
va OUT <dy>);

Where <dty> is either DATE NUMBERor VARCHAR?2

See Also: For retrieving values of datatype RAWWsee GET _
VALUE_RAW Procedure on page 18-15.

18-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Parameters

Table 18-22 GET_VALUE Procedure Parameters

Parameter

Description

(o}

pos

val

Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.

Position of the bind variable or select list item in the SQL
statement: Starts at 1.

Variable in which the OUTbind variable or select list item
stores its value.

Exceptions

Table 18-23 GET_VALUE Procedure Exceptions

Exception

Description

ORA-1403

ORA-28550

ORA-28552

ORA-28553
ORA-28555

Returns NO_DATA_FOUN&Xception when running the GET _
VALUEafter the last row was fetched (that is, FETCH_ROW
returned "0").

The cursor passed is invalid.

Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)

The position of the bind variable is out of range.

A NULLvalue was passed for a NOTNULL parameter.

Pragmas

Purity level defined : WNDS

GET_VALUE_RAW Procedure

This procedure is similar to GET_VALUEbut for datatype RAW

Syntax

DBMS_HS PASSTHROUGH.GET VALUE RAW (
c IN BINARY_INTEGER NOT NULL,
pos IN BINARY INTEGER NOT NULL,

va OUT RAW);

DBMS_HS_PASSTHROUGH 18-15

OPEN_CURSOR Function

Parameters
Table 18-24 GET_VALUE_RAW Procedure Parameters
Parameter Description
c Cursor associated with the pass-through SQL statement.
Cursor must be opened and parsed, using the routines OPEN_
CURSORNd PARSErespectively.
pos Position of the bind variable or select list item in the SQL
statement: Starts at 1.
val Variable in which the OUTbind variable or select list item
stores its value.
Exceptions
Table 18-25 GET_VALUE_RAW Procedure Exceptions
Exception Description
ORA-1403 Returns NO_DATA_FOUN&Xception when running the GET _
VALUEafter the last row was fetched (that is, FETCH_ROW
returned "0").
ORA-28550 The cursor passed is invalid.
ORA-28552 Procedure is not run in right order. (Did you first open the
cursor and parse the SQL statement?)
ORA-28553 The position of the bind variable is out of range.
ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined : WNDS

OPEN_CURSOR Function

This function opens a cursor for running a pass-through SQL statement at the
non-Oracle system. This function must be called for any type of SQL statement

The function returns a cursor, which must be used in subsequent calls. This call
allocates memory. To deallocate the associated memory, call the procedure CLOSE_
CURSOR

18-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_HS_PASSTHROUGH Subprograms

Syntax

DBMS_HS PASSTHROUGH.OPEN_CURSOR

RETURN BINARY_INTEGER;

Returns

The cursor to be used on subsequent procedure and function calls.
Exceptions

Table 18-26 OPEN_CURSOR Function Exceptions

Exception Description

ORA-28554 Maximum number of open cursor has been exceeded. Increase

Heterogeneous Services’ OPEN_CURSORSitialization
parameter.

Pragmas

Purity level defined : WNDS, RNDS
PARSE Procedure

This procedure parses SQL statement at non-Oracle system.
Syntax

DBMS_HS PASSTHROUGH.GET VALUE RAW (

c IN BINARY_INTEGER NOT NULL,
stmt IN VARCHAR2 NOT NULL);

Parameters

Table 18-27 PARSE Procedure Parameters

Parameter Description

c Cursor associated with the pass-through SQL statement.
Cursor must be opened using function OPEN_CURSOR

stmt Statement to be parsed.

DBMS_HS_PASSTHROUGH 18-17

PARSE Procedure

Exceptions

Table 18-28 GET_VALUE Procedure Exceptions

Exception Description

ORA-28550 The cursor passed is invalid.

ORA-28551 SQL statement is illegal.

ORA-28555 A NULLvalue was passed for a NOTNULL parameter.
Pragmas

Purity level defined : WNDS, RNDS

18-18 Oracle9i Supplied PL/SQL Packages and Types Reference

19

DBMS_IOT

The DBMS_|OTpackage creates a table into which references to the chained rows for
an index-organized table can be placed using the ANALYZEcommand. DBMS_IOT
can also create an exception table into which rows of an index-organized table that
violate a constraint can be placed during the enable_constraint operation.

DBMS_IOTis not loaded during database installation. To install DBMS_1OT, run
dbmsiotc.sql and prvtiotc.sql , available in the admin directory.

This chapter discusses the following topics:

=« Summary of DBMS_IOT Subprograms

DBMS_IOT 19-1

Summary of DBMS_IOT Subprograms

Summary of DBMS_|OT Subprograms

Table 19—1 DBMS _IOT Package Subprograms

Subprogram Description

BUILD_CHAIN_ROWS _ Creates a table into which references to the chained rows for
TABLE Procedure on an index-organized table can be placed using the ANALYZE
page 19-2 command.

BUILD_EXCEPTIONS_ Creates an exception table into which rows of an

TABLE Procedure on index-organized table that violate a constraint can be placed
page 19-3 during the enable_constraint operation.

BUILD_CHAIN_ROWS_TABLE Procedure

The BUILD_CHAIN_ROWS_TABLIprocedure creates a table into which references to
the chained rows for an index-organized table can be placed using the ANALYZE

command.
Syntax
DBMS_IOT.BUILD_CHAIN_ROWS TABLE (
owner IN VARCHAR2,
iot_name IN VARCHARZ,
chainrow_table_ name IN VARCHAR?2 default lOT_CHAINED _ROWS));
Parameters
Table 19-2 BUILD _CHAIN_ROWS_TABLE Procedure Parameters
Parameter Description
owner Owner of the index-organized table.
iot_name Index-organized table name.
chainrow_table_name Intended name for the chained-rows table.
Example

CREATE TABLE I char(16)b char(16), ¢ char(16), d char(240),
PRIMARY KEY(abc)) ORGANIZATION INDEX petihreshold 10 overfiow;
EXECUTE DBMS_IOT.BUILD_CHAIN_ ROWS TABLE(SYS),L’,LC);

A chained-row table is created with the following columns:

19-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_IOT Subprograms

Column Name Null? Type
OWNER_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
HEAD _ROWID ROWID
TIMESTAMP DATE

A CHAR(16)

B CHAR(16)

C CHAR(16)

BUILD_EXCEPTIONS_TABLE Procedure

Syntax

Parameters

The BUILD_EXCEPTIONS_TABLEprocedure creates an exception table into which
rows of an index-organized table that violate a constraint can be placed during the
enable_constraint operation.

A separate chained-rows table and an exception table should be created for each
index-organized table to accommodate its primary key.

Note: This form of chained-rows table and exception table are
required only for servers running with Oracle8, Release 8.0
compatibility.

DBMS_IOT.BUILD_EXCEPTIONS _TABLE (
owner IN VARCHARZ,
iot_name IN VARCHARZ,
exceptions_table name IN VARCHARZ default 'IOT_EXCEPTIONS);

Table 19-3 BUILD _EXCEPTIONS_TABLE Procedure Parameters

Parameter Description
owner Owner of the index-organized table.
iot_name Index-organized table name.

DBMS_IOT 19-3

BUILD_EXCEPTIONS_TABLE Procedure

Table 19-3 BUILD _EXCEPTIONS_TABLE Procedure Parameters

Parameter Description
exceptions_table_ Intended name for exception-table.
name

Example

EXECUTE DBMS_|OT.BUILD_EXCEPTIONS_TABLE(SYS'L,LE);

An exception table for the preceding index-organized table with the following

columns:

Column Name Null? Type

ROW_ID VARCHAR2(30)
OWNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CONSTRAINT VARCHAR2(30)
A CHAR(16)

B CHAR(16)

C CHAR(16)

19-4 Oracle9i Supplied PL/SQL Packages and Types Reference

20

DBMS_JOB

DBMS_JOBubprograms schedule and manage jobs in the job queue.

See Also: For more information on the DBMS_JOBackage and
the job queue, see Oracle9i Database Administrator’s Guide
This chapter discusses the following topics:
= Requirements
= Using the DBMS_JOB Package with Oracle Real Application Clusters
= Summary of DBMS_JOB Subprograms

DBMS_JOB 20-1

Requirements

Requirements

There are no database privileges associated with jobs. DBMS_JORloes not allow a
user to touch any jobs except their own.

Using the DBMS_JOB Package with Oracle Real Application Clusters

For this example, a constant in DBMS_JOBndicates no mapping among jobs and
instances; that is, jobs can be executed by any instance.

DBMS_JOB.SUBMIT
To submit a job to the job queue, use the following syntax:

DBMS_JOB.SUBMIT(JOB OUT BINARY_INTEGER,

WHAT IN VARCHAR?2, NEXT_DATE IN DATE DEFAULTSYSDATE,
INTERVAL IN VARCHAR2 DEFAULT 'NULL,

NO_PARSE IN BOOLEAN DEFAULT FALSE,

INSTANCE IN BINARY_INTEGER DEFAULT ANY_INSTANCE,

FORCE IN BOOLEAN DEFAULT FALSE),

Use the parameters INSTANCEand FORCRo control job and instance affinity. The
default value of INSTANCE:is 0 (zero) to indicate that any instance can execute the
job. To run the job on a certain instance, specify the INSTANCEvalue. Oracle
displays error ORA-23319 if the INSTANCEvalue is a negative number or NULL.

The FORCBRparameter defaults to FALSE. If force is TRUE, any positive integer is
acceptable as the job instance. If FORCHs FALSE, the specified instance must be
running, or Oracle displays error number ORA-23428.

DBMS_JOB.INSTANCE
To assign a particular instance to execute a job, use the following syntax:

DBMS_JOB.INSTANCE(JOB IN BINARY_INTEGER,
INSTANCE IN BINARY_INTEGER,
FORCE IN BOOLEAN DEFAULT FALSE),

The FORCHBparameter in this example defaults to FALSE. If the instance value is 0
(zero), job affinity is altered and any available instance can execute the job despite
the value of force. If the INSTANCEvalue is positive and the FORCBparameter is
FALSE, job affinity is altered only if the specified instance is running, or Oracle
displays error ORA-23428.

20-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms

If the FORCE parameter is TRUE, any positive integer is acceptable as the job
instance and the job affinity is altered. Oracle displays error ORA-23319 if the
INSTANCE value is negative or NULL.

DBMS_JOB.CHANGE
To alter user-definable parameters associated with a job, use the following syntax:

DBMS_JOB.CHANGE(JOB IN BINARY_INTEGER,

WHAT IN VARCHAR2 DEFAULT NULL,
NEXT_DATE IN DATE DEFAULT NULL,

INTERVAL IN VARCHAR2 DEFAULT NULL,
INSTANCE IN BINARY_INTEGER DEFAULT NULL,
FORCE IN BOOLEAN DEFAULT FALSE)

Two parameters, INSTANCEand FORCE,appear in this example. The default value
of INSTANCEis NULL indicating that job affinity will not change.

The default value of FORCHs FALSE. Oracle displays error ORA-23428 if the
specified instance is not running and error ORA-23319 if the INSTANCEnumber is
negative.

DBMS_JOB.RUN

The FORCBparameter for DBMS_JOB.RUNlefaults to FALSE. If force is TRUE,
instance affinity is irrelevant for running jobs in the foreground process. If force is
FALSE, the job can run in the foreground only in the specified instance. Oracle
displays error ORA-23428 if force is FALSEand the connected instance is the
incorrect instance.

DBMS_JOBRUN(
JOB IN BINARY_INTEGER,
FORCE IN BOOLEAN DEFAULT FALSE),

See Also: Oracle9i Real Application Clusters Concepts for more
information

Summary of DBMS_JOB Subprograms

Table 20-1 DBMS_JOB Package Subprograms

Subprogram Description
SUBMIT Procedure on Submits a new job to the job queue.
page 20-4

DBMS_JOB 20-3

SUBMIT Procedure

Table 20-1 DBMS_JOB Package Subprograms (Cont.)

Subprogram Description

REMOVE Procedure on Removes specified job from the job queue.

page 20-6

CHANGE Procedure on Alters any of the user-definable parameters associated with
page 20-6 ajob.

WHAT Procedure on Alters the job description for a specified job.

page 20-7

NEXT_DATE Procedure on Alters the next execution time for a specified job.

page 20-8

INSTANCE Procedure on Assigns a job to be run by a instance.

page 20-8

INTERVAL Procedure on Alters the interval between executions for a specified job.
page 20-9

BROKEN Procedure on Disables job execution.

page 20-10

RUN Procedure on page 20-11 Forces a specified job to run.

USER_EXPORT Procedure on Re-creates a given job for export.
page 20-11

USER_EXPORT Procedure on Re-creates a given job for export with instance affinity.
page 20-12

SUBMIT Procedure

This procedure submits a new job. It chooses the job from the sequence
sys .jobseq

Syntax

DBMS_JOB.SUBMIT (
job OUT BINARY_INTEGER,
what IN VARCHAR2,
next date IN DATE DEFAULT sysdate,
interval IN VARCHAR2 DEFAULT 'nul!,
no parse IN BOOLEAN DEFAULT FALSE,
instance IN BINARY_INTEGER DEFAULT any instance,
force IN BOOLEAN DEFAULT FALSE);

20-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms

Parameters

Usage Notes

Example

Table 20-2 SUBMIT Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Next date when the job will be run.

interval Date function that calculates the next time to run the job. The
default is NULL This must evaluate to a either a future point in
time or NULL

no_parse A flag. The default is FALSE If this is set to FALSE, then Oracle
parses the procedure associated with the job. If this is set to
TRUE then Oracle parses the procedure associated with the job
the first time that the job is run.
For example, if you want to submit a job before you have
created the tables associated with the job, then set this to TRUE

instance When a job is submitted, specifies which instance can run the
job.

force If this is TRUE then any positive integer is acceptable as the job

instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.

The parameters instance

and force are added for job queue affinity. Job queue

affinity gives users the ability to indicate whether a particular instance or any
instance can run a submitted job.

This submits a new job to the job queue. The job calls the procedure DBMS _
DDLANALYZE_OBJECTo generate optimizer statistics for the table
DQUOMCCOUNT.ST he statistics are based on a sample of half the rows of the
ACCOUNT#®ble. The job is run every 24 hours:

VARIABLE jobno number;

BEGIN

DBMS_JOB.SUBMIT(jobno,

‘doms_ddl.analyze_object('TABLE”,
"DQUON", "ACCOUNTS’,

DBMS_JOB 20-5

REMOVE Procedure

"ESTIMATE”, NULL, 50);
SYSDATE, 'SYSDATE + 1);
commit;

END;

/

Statement processed.

print jobno

JOBNO

14144

REMOVE Procedure

This procedure removes an existing job from the job queue. This currently does not
stop a running job.

Syntax
DBMS_JOBREMOVE (
job IN BINARY_INTEGER);
Parameters
Table 20-3 REMOVE Procedure Parameters
Parameter Description
job Number of the job being run.
Example
EXECUTE DBMS_JOB.REMOVE(14144);
CHANGE Procedure
This procedure changes any of the user-settable fields in a job.
Syntax
DBMS_JOB.CHANGE (
job IN BINARY_INTEGER,
what IN VARCHARZ2,

next date IN DATE,
interval IN VARCHAR2,
instance IN BINARY_INTEGER DEFAULT NULL,

20-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms

Parameters

Usage Notes

force

IN BOOLEAN DEFAULT FALSE)

Table 20-4 CHANGE Procedure Parameters

Parameter Description

job Number of the job being run.

what PL/SQL procedure to run.

next_date Date of the next refresh.

interval Date function; evaluated immediately before the job starts
running.

instance When a job is submitted, specifies which instance can run the
job. This defaults to NULL, which indicates that instance
affinity is not changed.

force If this is FALSE, then the specified instance (to which the

instance number change) must be running. Otherwise, the
routine raises an exception.

If this is TRUE then any positive integer is acceptable as the job
instance.

The parameters instance

and force are added for job queue affinity. Job queue

affinity gives users the ability to indicate whether a particular instance or any
instance can run a submitted job.

If the parameters what , next_date , or interval are NULL, then leave that value

EXECUTE DBMS_JOB.CHANGE(14144, null, nul, 'sysdate+3);

This procedure changes what an existing job does, and replaces its environment.

asitis.
Example
WHAT Procedure
Syntax

DBMS_JOBWHAT (
IN BINARY_INTEGER,

job

DBMS_JOB 20-7

NEXT_DATE Procedure

what

Parameters

IN VARCHARY2),

Table 205 WHAT Procedure Parameters

Parameter Description
job Number of the job being run.
what PL/SQL procedure to run.

Some legal values of what (assuming the routines exist) are:
= 'myproc("10-JAN-82", next_date, broken);
= ’'scott.emppackage.give_raise("JENKINS”, 30000.00);

=« ’'dbms_job.remove(job);

NEXT_DATE Procedure

This procedure changes when an existing job next runs.

Syntax
DBMS_JOB.NEXT_DATE (
job IN BINARY_INTEGER,
next date IN DATE);
Parameters
Table 20-6 NEXT_DATE Procedure Parameters
Parameter Description
job Number of the job being run.
next_date Date of the next refresh: it is when the job will be automatically
run, assuming there are background processes attempting to
run it.
INSTANCE Procedure

This procedure changes job instance affinity.

20-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms

Syntax
DBMS_JOB.INSTANCE (
job IN BINARY_INTEGER,
instance IN BINARY_INTEGER,
force IN BOOLEAN DEFAULT FALSE);
Parameters
Table 20—-7 INSTANCE Procedure Parameters
Parameter Description
job Number of the job being run.
instance When a job is submitted, a user can specify which instance can
run the job.
force If this is TRUE then any positive integer is acceptable as the job
instance. If this is FALSE (the default), then the specified
instance must be running; otherwise the routine raises an
exception.
INTERVAL Procedure
This procedure changes how often a job runs.
Syntax
DBMS_JOB.INTERVAL (
job IN BINARY_INTEGER,
interval IN VARCHARY);
Parameters

Table 20-8 INTERVAL Procedure Parameters

Parameter Description

job Number of the job being run.

interval Date function, evaluated immediately before the job starts
running.

DBMS_JOB 20-9

BROKEN Procedure

Usage Notes

If the job completes successfully, then this new date is placed in next_date

interval is evaluated by plugging it into the statement select interval into
next _date from dual;

The interval parameter must evaluate to a time in the future. Legal intervals

include:

Interval Description

'sysdate + 7’ Run once a week.
'next_day(sysdate,"TUESDAY")’ Run once every Tuesday.
‘null Run only once.

If interval evaluates to NULLand if a job completes successfully, then the job is
automatically deleted from the queue.

BROKEN Procedure

This procedure sets the broken flag. Broken jobs are never run.

Syntax
DBMS_JOBBROKEN (
job IN BINARY_INTEGER,
broken IN BOOLEAN,
next date IN DATE DEFAULT SYSDATE);
Parameters

Table 209 Broken Procedure Parameters

Parameter Description

job Number of the job being run.
broken Job broken: IN value is FALSE
next_data Date of the next refresh.

20-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_JOB Subprograms

Note: If you set job as broken while it is running, Oracle resets the
job’s status to normal after the job completes. Therefore, only
execute this procedure for jobs that are not running.

RUN Procedure

This procedure runs job JOBnow. It runs it even if it is broken.

Running the job recomputes next_date . See view user_jobs

Syntax
DBMS_JOBRUN (
job IN BINARY_INTEGER,
force IN BOOLEAN DEFAULT FALSE);
Parameters
Table 20-10 Run Procedure Parameters
Parameter Description
job Number of the job being run.
force If this is TRUE then instance affinity is irrelevant for running
jobs in the foreground process. If this is FALSE, then the job
can be run in the foreground only in the specified instance.
Example
EXECUTE DBMS_JOB.RUN(14144),
Caution: This reinitializes the current session’s packages.
Exceptions

An exception is raised if force is FALSE, and if the connected instance is the wrong
one.

USER_EXPORT Procedure

This procedure produces the text of a call to re-create the given job.

DBMS_JOB 20-11

USER_EXPORT Procedure

Syntax
DBMS_JOB.USER_EXPORT (
job N BINARY_INTEGER,
mycall IN OUT VARCHARY);
Parameters

Table 2011 USER_EXPORT Procedure Parameter

Parameter Description
job Number of the job being run.
mycall Text of a call to recreate the given job.

USER_EXPORT Procedure

This procedure alters instance affinity (8i and after) and preserves the compatibility.

Syntax
DBMS_JOBUSER_EXPORT (
job IN BINARY_INTEGER,
mycal IN OUT VARCHAR?2,
myinst IN OUT VARCHARY);
Parameters

Table 2012 USER_EXPORT Procedure Parameters

Parameter Description

job Number of the job being run.

mycall Text of a call to re-create a given job.
myinst Text of a call to alter instance affinity.

20-12 Oracle9i Supplied PL/SQL Packages and Types Reference

21

DBMS_LDAP

DBMS_LDARrovides functions and procedures to access data from LDAP servers.
To use DBMS_LDAP you must first load it into the database. Use the catldap.sql
script located in the $ORACLE_HOME/rdbms/admin directory.

See Also: Oracle Internet Directory Application Developer’s Guide for
more information on using DBMS_LDAP.

This chapter discusses the following topics:

= Exception Summary

=« Summary of Data Types

=« Summary of DBMS_LDAP Subprograms

DBMS_LDAP 21-1

Exception Summary

Exception Summary

Table 21-1 lists the exceptions generated by DBMS_LDAP.

Table 21-1 DBMS_LDAP Exception Summary

Oracle
Exception Name Error Cause of Exception
general_error 31202 Raised anytime an error is encountered that does not have a specific PL/SQL
exception associated with it. The error string contains the description of the
problem in the local language of the user.
init_failed 31203 Raised by DBMS_LDAIRit if there are some problems.
invalid_ 31204 Raised by all functions and procedures in the DBMS_LDARackage if they are
session passed an invalid session handle.
invalid_auth_ 31205 Raised by DBMS_LDAP.bind_s if the authentication method requested is not
method supported.
invalid_ 31206 Raised by all of the search functions if the scope of the search is invalid.
search_scope
invalid_ 31207 Raised by time based search function: DBMS_LDAP.search_st ifitis given an
search_time_ invalid value for the time limit.
val
invalid_ 31208 Raised by all functions that iterate through a result-set for getting entries from a
message search operation if the message handle given to them is invalid.
count_entry 31209 Raised by DBMS_LDAP.count_entries if it cannot count the entries in a given
error result set.
get_dn_error 31210 Raised by DBMS_LDAP.get_dn if the DN of the entry it is retrieving is NULL
invalid_ 31211 Raised by all the functions that modify/add/rename an entry if they are
entry_dn presented with an invalid entry DN.
invalid_mod_ 31212 Raised by all functions that take a modification array as an argument if they are
array given an invalid modification array.
invalid_mod_ 31213 Raised by DBMS_LDAP.populate_mod_array if the modification option given
option is anything other than MOD_ADD, MOD_DELETE MOD_REPLACE.
invalid_mod_ 31214 Raised by DBMS_LDAP.populate_mod_array if the attribute type that is being
type modified is NULL
invalid_mod_ 31215 Raised by DBMS_LDAP.populate_mod_array if the modification value
value parameter for a given attribute is NULL.
invalid_rdn 31216 Raised by all functions and procedures that expect a valid RDNif the value of the

RDNis NULL.

21-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of Data Types

Table 21-1 DBMS_LDAP Exception Summary

Cause of Exception

Oracle
Exception Name Error
invalid_ 31217
newparent
invalid_ 31218
deleteoldrdn
invalid_ 31219
notypes
invalid_ssl_ 31220
wallet_loc
invalid_ssl_ 31221
wallet_
password
invalid_ssl_ 31222
auth_mode

mts_mode_not_ 31398
supported

Raised by DBMS_LDAP.rename_s if the new parent of an entry being renamed
is NULL.

Raised by DBMS_LDAP.rename_s if the deleteoldrdn parameter is invalid.

Raised by DBMS_LDAP.explode_dn if the notypes parameter is invalid.

Raised by DBMS_LDAP.open_ssl if the wallet location is NULL but the SSL
authentication mode requires a valid wallet.

Raised by DBMS_LDAP.open_ssl if the wallet password given is NULL.

Raised by DBMS_LDAP.open_ssl if the SSL authentication mode is not one of 1,
2,0r3.

Raised by the functions init, bind_s or simple_bind_s if they are ever
invoked in MTS mode.

Summary of Data Types
The DBMS_LDARackage uses the data types shown in Table 21-2.

Table 21-2 DBMS_LDAP Summary of Data Types

Data-Type Purpose

SESSION Holds the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Holds a handle to the message retrieved from the result set. This
is used by all functions that work with entries, attributes, and
values.

MOD_ARRAY Holds a handle into the array of modifications being passed into

either modify_s oradd_s.

TIMEVAL Passes time limit information to the LDAP API functions that
require a time limit.
BER_ELEMENT Holds a handle to a BERstructure used for decoding incoming

messages.

DBMS_LDAP 21-3

Summary of DBMS_LDAP Subprograms

Table 21-2 DBMS_LDAP Summary of Data Types

Data-Type

Purpose

STRING_COLLECTION

BINVAL_COLLECTION
BERVAL_COLLECTION

Holds a list of VARCHARZ2trings which can be passed on to the
LDAP server.

Holds a list of RAW data which represent binary data.

Holds a list of BERVALvalues that are used for populating a
modification array.

Summary of DBMS_LDAP Subprograms

Table 21-3 DBMS_LDAP Subprograms

Function or Procedure

Description

init Function on page 21-6

simple_bind_s Functionon

page 21-7

bind_s Function on
page 21-9

unbind_s Function on
page 21-10

compare_s Function on
page 21-11

search_s Function on
page 21-13

search_st Function on
page 21-15

first_entry Function on
page 21-17

next_entry Function on
page 21-18

Initializes a session with an LDAP server. This actually
establishes a connection with the LDAP server.

Performs simple username/password based authentication to
the directory server.

Performs complex authentication to the directory server.

Closes an active LDAP session.

Tests if a particular attribute in a particular entry has a
particular value.

Performs a synchronous search in the LDAP server. It returns
control to the PL/SQL environment only after all of the search
results have been sent by the server or if the search request is
timed out by the server.

Performs a synchonous search in the LDAP server with a client
side timeout. It returns control to the PL/SQL environment
only after all of the search results have been sent by the server
or if the search request is timed out by the client or the server.

Retrieves the first entry in the result set returned by either
search_s or search_st.

Iterates to the next entry in the result set of a search operation.

21-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Table 21-3 DBMS_LDAP Subprograms (Cont.)

Function or Procedure Description

count_entries Function on Counts the number of entries in the result set. It can also be

page 21-20 used to count the number of entries remaining during a
traversal of the result set using a combination of the functions
first_entry and next_entry.

first_attribute Function on Fetches the first attribute of a given entry in the result set.
page 21-21

next_attribute Function on Fetches the next attribute of a given entry in the result set.
page 21-22

get_dn Function on Retrieves the X.500 distinguished name of given entry in the
page 21-24 result set.

get_values Function on Retrieves all of the values associated for a given attribute in a
page 21-25 given entry.

get_values_len Function Retrieves values of attributes that have a Binary syntax.
on page 21-26

delete_s Function on Removes a leaf entry in the LDAP Directory Information Tree.
page 21-28

modrdn2_s Function on Renames the relative distinguished name of an entry.
page 21-29

err2string Function on Converts an LDAP error code to string in the local language in
page 21-30 which the API is operating.

create_mod_array Allocates memory for array modification entries that are
Function on page 21-31 applied to an entry using the modify_s functions.
populate_mod_array Populates one set of attribute information for add or modify

(String Version) Procedure operations.
on page 21-32

populate_mod_array Populates one set of attribute information for add or modify
(Binary Version) Procedure operations. This procedure call has to happen after DBMS_

on page 21-34 LDAP.create_mod_array is called.

modify_s Function on Performs a sychronous modification of an existing LDAP

page 21-35 directory entry.

add_s Function on Adds a new entry to the LDAP directory synchronously. Before
page 21-37 calling add_s , we have to call DBMS_LDAP.creat_mod__

array and DBMS_LDAP.populate_mod_array first.

free_mod_array Procedure Frees the memory allocated by DBMS_LDAP.create_mod__
on page 21-38 array .

DBMS_LDAP 21-5

init Function

init Function

Syntax

Parameters

Table 21-3 DBMS_LDAP Subprograms (Cont.)

Function or Procedure

Description

count_values Function on
page 21-39

count_values_len Function
on page 21-40

rename_s Function on
page 21-41

explode_dn Function on
page 21-43

open_ssl Function on
page 21-44

Counts the number of values returned by DBMS_LDAP.get_
values .

Counts the number of values returned by DBMS_LDAP.get_
values_len.

Renames an LDAP entry synchronously.

Breaks a DN up into its components.

Establishes an SSL (Secure Sockets Layer) connection over an
existing LDAP connection.

This function initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

DBMS_LDAP.nit (

hostname IN VARCHAR2,
potnum IN PLS_ INTEGER)

RETURN SESSION,;

Table 21-4 init Function Parameters

Parameter

Description

hostname (IN)

portnum (IN)

Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server.
Each host name in the list may include a port number, which is
separated from the host with a colon (:). The hosts are tried in
the order listed, stopping with the first one to which a
successful connection is made.

Contains the TCP port number to connect to. If a host includes
a port number, this parameter is ignored. If this parameter is
not specified and the host name does not contain the port
number, the default port number 389 is assumed.

21-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Return Values

Exceptions

Usage Notes

Table 21-5 init Function Return Values

Value Description
SESSION A handle to an LDAP session that can be used for further calls
into the API.

Table 21-6 init Function Exceptions

Exception Description

init_failed Raised when there is a problem contacting the LDAP server.
ts_mode_not_ Raised if DBMS_LDAP.init is invoked from a user session
supported that is logged onto the database using an MTS service.
general_error For all other errors. The error string associated with the

exception describes the error in detail.

DBMS_LDAP.init is the first function that should be called in order to establish a
session to the LDAP server. DBMS_LDAPInit returns a session handle, a pointer to
an opaque structure that must be passed to subsequent calls pertaining to the
session. This routine returns NULLand raises the INIT_FAILED exception if the
session cannot be initialized. Subsequent to the call to init, the connection must
be authenticated using DBMS_LDAP.bind_s or DBMS_LDAP.simple_bind_s.

See Also:
= "simple_bind_s Function" on page 21-7

=« "bind_s Function" on page 21-9

simple_bind_s Function

This function can be used to perform simple username/password based
authentication to the directory server.

DBMS_LDAP 21-7

simple_bind_s Function

Syntax
DBMS_LDAP.simple_bind s (
d IN SESSION,
dn IN VARCHAR2,
passwd IN VARCHAR2)
RETURN PLS INTEGER;
Parameters

Table 21-7 simple_bind_s Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle.
dn (IN) The distinguished name of the user under which you are

trying to login.

passwd (IN) A text string containing the password.

Return Values

Table 21-8 simple_bind _s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP SUCCES&Sa successful completion. If there was
a problem, one of the exceptions in Table 21-9 is raised.

Exceptions

Table 21-9 simple_bind_s Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.

mts_mode_not_ Raised if DBMS_LDAP.init is invoked from a user session
supported that is logged onto as an MTS service.

general_error For all other errors. The error string associated with this

exception explains the error in detail.

21-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Usage Notes

DBMS_LDAP.simple_bind_s can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init.

bind_s Function

Syntax

Parameters

Return Values

This function performs complex authentication to the directory server.

DBMS _LDAPbind s (
d IN SESSION,
dn IN VARCHAR?,
cred IN VARCHAR?,
meth IN PLS INTEGER)
RETURN PLS INTEGER,

Table 21-10 bind_s Function Parameters

Parameter Description

Id A valid LDAP session handle.

dn The distinguished name of the user under which you are
trying to login.

cred A text string containing the credentials used for authentication.

meth The authentication method.

Table 21-11 bind_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCES® a successful completion. One of the
exceptions in Table 21-12 is raised if there is a problem.

DBMS_LDAP 21-9

unbind_s Function

Exceptions

Table 21-12 bind_s Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

mts_mode_not_ Raised if invoked from a user session that is logged onto an

supported MTS service.

general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes
DBMS_LDAP.bind_s can be used to authenticate a user. It can be called only after a

valid LDAP session handle is obtained from a call to DBMS_LDAP.init.
See Also:
= "init Function" on page 21-6

= "simple_bind_s Function" on page 21-7

unbind_s Function
This function closes an active LDAP session.

Syntax
DBMS_LDAP.unbind_s (
ld IN SESSION)
RETURN PLS_INTEGER;
Parameters

Table 21-13 unbind_s Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

21-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Return Values

Table 21-14 unbind_s Function Return Values

Value Description

PLS_INTEGER SUCCESS on proper completion. One of the exceptions listed
in Table 21-15 is raised otherwise.

Exceptions

Table 21-15 unbind_s Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
general error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

The unbind_s function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources
associated with the session handle before returning. After a call to this function, the
session handle Id is invalid and it is illegal to make any further LDAP API calls
using Id.

See Also:
= "simple_bind_s Function" on page 21-7

=« "bind_s Function" on page 21-9

compare_s Function

This function tests whether a particular attribute in a particular entry has a
particular value.

Syntax

DBMS_LDAP.compare_s (
Id IN SESSION,
dn IN VARCHAR?Z,
ar IN VARCHARZ2,
value IN VARCHAR2)

DBMS_LDAP 21-11

compare_s Function

RETURN PLS_INTEGER;

Parameters

Table 21-16 compare_s Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle

dn (IN) The name of the entry to compare against
attr (IN) The attribute to compare against.

value (IN) A string attribute value to compare against

Return Values

Table 21-17 compare_s Function Return Values

Value Description
PLS_INTEGER COMPARE_TRUE the given attribute that has a matching
value.

COMPARE_FALSE the value of the attribute does not match
the value given.

Exceptions

Table 21-18 compare_s Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

The function compare_s can be used to assert if the value of a given attribute
stored in the directory server matches a certain value.This operation can only be
performed on attributes whose syntax definition allows them to be compared. The
compare_s function can only be called after a valid LDAP session handle has been
obtained from the init function and authenticated using the bind_s or simple_
bind_s functions.

21-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

See Also: "bind_s Function" on page 21-9.

search_s Function

Syntax

Parameters

This function performs a synchronous search in the LDAP server. It returns control
to the PL/SQL environment only after all of the search results have been sent by the
server or if the search request is timed out by the server.

FUNCTION search s (
ld IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
fitter IN VARCHARZ,

atrs IN STRING_COLLECTION,
atronly IN PLS_INTEGER,
res OUT MESSAGE)

RETURN PLS_INTEGER;

Table 21-19 search_s Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

base (IN) The dn of the entry at which to start the search.

scope (IN) One of SCOPE_BASKOx00), SCOPE_ONELEVEL (0x01),
or SCOPE_SUBTREE (0x02), indicating the scope of the
search.

filter (IN) A character string representing the search filter. The value

NULL can be passed to indicate that the filter (objectclass=*)
which matches all entries is to be used.

attrs (IN) A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS (1.1) can be used as the only
string in the array to indicate that no attribute types are
returned by the server. The special constant string ALL_USER_
ATTRS(*) can be used in the attrs array along with the names
of some operational attributes to indicate that all user
attributes plus the listed operational attributes are returned.

DBMS_LDAP 21-13

search_s Function

Table 21-19 search_s Function Parameters

Parameter Description

attrsonly (IN) A boolean value that must be zero if both attribute types and
values are returned, and nonzero if only types are wanted.

res (OUT) This is a result parameter which will contain the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

Return Values
Table 21-20 search_s Function Return Value
Value Description
PLS_INTEGER DBMS_LDAP.SUCCES®Sthe search operation succeeded. An
exception is raised in all other cases.
res (OUT parameter) If the search succeeded and there are entries, this parameter is
set to a nonnull value that can be used to iterate through the
result set.
Exceptions

Table 21-21 search_s Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_

ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception explains the error in detail.

Usage Notes

This function issues a search operation, and does not return control to the user
environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the res parameter. This parameter
is opaque to the caller. Entries, attributes, values, and so on can be extracted by
calling the parsing routines described in the following sections.

21-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

See Also:
= "search_st Function" on page 21-15
=« “first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

search_st Function

Syntax

Parameters

This function performs a synchronous search in the LDAP server with a client-side
timeout. It returns control to the PL/SQL environment only after all of the search
results have been sent by the server or if the search request is timed out by the client
or the server.

DBMS_LDAP.search st (
d IN SESSION,
base IN VARCHAR?,
scope IN PLS INTEGER,
fiter IN VARCHAR?,

attrs IN STRING_COLLECTION,
atronly IN PLS INTEGER,

tv IN TIMEVAL,

res OUT MESSAGE)

RETURN PLS_INTEGER;

Table 21-22 search_st Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

base (IN) The dn of the entry at which to start the search.

scope (IN) One of SCOPE_BASE (0x00), SCOPE_ONELEVEL (0x01),
or SCOPE_SUBTREE (0x02), indicating the scope of the
search.

filter (IN) A character string representing the search filter. The value

NULL can be passed to indicate that the filter (objectclass=*)
which matches all entries is to be used.

DBMS_LDAP 21-15

search_st Function

Table 21-22 search_st Function Parameters

Parameter

Description

attrs (IN)

attrsonly (IN)

tv (IN)

res (OUT)

A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special
constant string NO_ATTRS (1.1) can be used as the only
string in the array to indicate that no attribute types are
returned by the server. The special constant string ALL_USER_
ATTRS (*) can be used in the attrs array along with the
names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are returned.

A boolean value that must be zero if both attribute types and
values are returned, and nonzero if only types are wanted.

The timeout value expressed in seconds and microseconds that
should be used for this search.

This is a result parameter that will contain the results of the
search upon completion of the call. If no results are returned,
*res issetto NULL.

Return Values

Table 21-23 search_st Function Return Values

Value

Description

PLS_INTEGER

res (OUT parameter)

DBMS_LDAP.SUCCESBthe search operation succeeded. An
exception is raised in all other cases.

If the search succeeded and there are entries, this parameter is
set to a NON_NULLvalue that can be used to iterate through the
result set.

Exceptions

Table 21-24 search_st Function Exceptions

Exception

Description

invalid_session

invalid_search_scope

invalid_search_time_
value

Raised if the session handle Id is invalid.

Raised if the search scope is not one of SCOPE_BASE, SCOPE_

ONELEVELor SCOPE_SUBTREE.

Raised if the time value specified for the timeout is invalid.

21-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Usage Notes

Table 21-24 search_st Function Exceptions

Exception Description

general_error For all other errors. The error string associated with this
exception explains the error in detail.

This function is very similar to DBMS_LDAP.search_s, except that it requires a
timeout value.

See Also:
= "search_s Function" on page 21-13
=« “first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

first_entry Function

Syntax

Parameters

This function retrieves the first entry in the result set returned by either search_s
or search_st

DBMS_LDAPSirst entry (
id IN SESSION,
msy IN MESSAGE)

RETURN MESSAGE;

Table 21-25 first_entry Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle.
msg (IN) The search result obtained by a call to one of the synchronous

search routines.

DBMS_LDAP 21-17

next_entry Function

Return Values

Table 21-26 first_entry Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Exceptions

Table 21-27 first_entry Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.
Usage Notes
The function first_entry should always be the first function used to retrieve the

results from a search operation.

See Also:
= "next_entry Function" on page 21-18
= "search_s Function" on page 21-13

= "search_st Function" on page 21-15

next_entry Function
This function iterates to the next entry in the result set of a search operation.

Syntax

DBMS_LDAP.next entry (
ld IN SESSION,
msgy IN MESSAGE)

RETURN MESSAGE;

21-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Parameters

Table 21-28 next_entry Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle.
msg (IN) The search result, as obtained by a call to one of the

synchronous search routines.

Return Values

Table 21-29 next_entry Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to NULLif there was an error and an
exception is raised.

Exceptions

Table 21-30 next_entry Function Exceptions

Exception Description
invalid_session Raised if the session handle, Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.

Usage Notes

The function next_entry should always be called after a call to first_entry.
Also, the return value of a successful call to next_entry should be used as msg
argument used in a subsequent call to next_entry to fetch the next entry in the
list.

See Also:
= "search_s Function" on page 21-13
= "search_st Function" on page 21-15

=« “first_entry Function" on page 21-17

DBMS_LDAP 21-19

count_entries Function

count_entries Function

This function counts the number of entries in the result set. It can also count the
number of entries remaining during a traversal of the result set using a combination

of the functions first_entry and next_entry.
Syntax
DBMS_LDAP.count_entries (
Id IN SESSION,
msg IN MESSAGE)
RETURN PLS INTEGER;
Parameters

Table 21-31 count_entry Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle
msg (IN) The search result, as obtained by a call to one of the

synchronous search routines

Return Values

Table 21-32 count_entry Function Return Values

Value Description

PLS INTEGER Nonzero if there are entries in the result set

-1 if there was a problem.

Exceptions

Table 21-33 count_entry Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.
count_entry_error Raised if there was a problem in counting the entries.

21-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Usage Notes

The count_entries function returns the number of entries contained in a chain
of entries. If an error occurs, such as the res parameter being invalid, -1 is
returned. The count_entries call can also be used to count the number of entries
that remain in a chain if called with a message, entry, or reference returned by

first_ message, next_message, first_entry, next_entry, first_

reference, and next_reference.

See Also:
=« “first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

first_attribute Function

Syntax

Parameters

This function fetches the first attribute of a given entry in the result set.

DBMS_LDAPfirst_attribute (
Id IN SESSION,
msg IN MESSAGE,
ber_elem OUT BER_ELEMENT)
RETURN VARCHARZ;

Table 21-34 first_attribute Function Parameter

Parameter Description
Id (IN) A valid LDAP session handle
msg (IN) The entry whose attributes are to be stepped through, as

returned by first_entry or next_entry

ber_elem (OUT) A handle to a BER ELEMENThat is used to keep track of
which attribute in the entry has been read

DBMS_LDAP 21-21

next_attribute Function

Return Values

Exceptions

Usage Notes

Table 21-35 first_attribute Function Return Values

Value Description

VARCHAR?2 The name of the attribute if it exists.
NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute to iterate
over all of the attributes

Table 21-36 first_attribute Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.

The handle to the BER_ELEMENTeturned as a function parameter to first_
attribute should be used in the next call to next_attribute to iterate through
the various attributes of an entry. The name of the attribute returned from a call to
first_attribute can in turn be used in calls to the functions get_values or
get values_len to get the values of that particular attribute.

See Also: «"first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

= "next_attribute Function" on page 21-22

= "get_values Function" on page 21-25

= "get_values_len Function" on page 21-26

next_attribute Function

Syntax

This function fetches the next attribute of a given entry in the result set.

DBMS_LDAPnext attibute (

21-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Parameters

Return Values

Exceptions

Usage Notes

Id IN SESSION,

msg IN MESSAGE,

ber_elem IN BER_ELEMENT)
RETURN VARCHARZ;

Table 21-37 next_attribute Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle.
msg (IN) The entry whose attributes are to be stepped through, as

returned by first_entry or next_entry

ber_elem (IN) A handle to a BER ELEMENThat is used to keep track of
which attribute in the entry has been read.

Table 21-38 next_attribute Function Return Values

Value Description

VARCHAR2 The name of the attribute, if it exists.

Table 21-39 next_attribute Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.

The handle to the BER_ELEMENTeturned as a function parameter to first_

attribute should be used in the next call to next_attribute to iterate through
the various attributes of an entry. The name of the attribute returned from a call to
next_attribute can in turn be used in calls to get_values or get values_

len to get the values of that particular attribute.

DBMS_LDAP 21-23

get_dn Function

See Also:

=« “first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

= “first_attribute Function" on page 21-21
= "get_values Function" on page 21-25

= "get_values_len Function" on page 21-26

get_dn Function

Syntax

Parameters

Return Values

This function retrieves the X.500 distinguished name of a given entry in the result
set.

The function first_attribute fetches the first attribute of a given entry in the
result set

DBMS _LDAPget dn (
id IN SESSION,
msg IN MESSAGE)
RETURN VARCHAR?Z;

Table 21-40 get_dn Function Parameters

Parameter Description
Id (IN) A valid LDAP session handle.
msg (IN) The entry whose DN is to be returned.

Table 21-41 get_dn Function Return Values

Value Description

VARCHAR2 The X.500 distinguished name of the entry as a PL/SQL string.
NULLIif there was a problem.

21-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Exceptions

Usage Notes

Table 21-42 get_dn Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming msg handle is invalid.
get_dn_error Raised if there was a problem in determining the DN.

The function get_dn can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This be used as an input to explode_dn to
retrieve the individual components of the DN.

See Also: "explode_dn Function" on page 21-43.

get_values Function

Syntax

Parameters

This function retrieves all of the values associated for a given attribute in a given
entry.

DBMS_LDAP.get values (

Id IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR?2)

RETURN STRING_COLLECTION;

Table 21-43 get _values Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

Idapentry (IN) A valid handle to an entry returned from a search result.
attr (IN) The name of the attribute for which values are being sought.

DBMS_LDAP 21-25

get_values_len Function

Return Values

Table 21-44 get values Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
given attribute.

NULLIif there are no values associated with the given attribute.

Exceptions

Table 21-45 get _values Function Exceptions

Exception Description
invalid session Raised if the session handle Id is invalid.
invalid message Raised if the incoming entry handle is invalid.

Usage Notes
The function get_values can only be called after the handle to entry has been first

retrieved by a call to either first_entry or next_entry. The name of the
attribute can be known beforehand, and it can also be determined by a call to
first_attribute or next_attribute. The function get_values always

assumes that the datatype of the attribute it is retrieving is String. For retrieving
binary datatypes, use get_values_len.

See Also:

=« “first_entry Function" on page 21-17

= "next_entry Function" on page 21-18

= "get_values_len Function" on page 21-26

= count_values Function" on page 21-39

get values_len Function
This function retrieves values of attributes that have a Binary syntax.

Syntax

DBMS_LDAP.get values len (
Id IN SESSION,

21-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Parameters

Return Values

Exceptions

Usage Notes

Idapenty IN MESSAGE,
attr IN VARCHAR?)
RETURN BINVAL_COLLECTION,;

Table 21-46 get _values_len Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

Idapentrymsg (IN) A valid handle to an entry returned from a search result.

attr (IN) The srfring name of the attribute for which values are being
sought.

Table 21-47 get _values_len Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL Raw collection containing all the values of the
given attribute.

NULLIif there are no values associated with the given attribute.

Table 21-48 get _values_len Function Exceptions

Exception Description
invalid_session Raised if the session handle Id is invalid.
invalid_message Raised if the incoming entry handle is invalid

The function get_values_len can only be called after the handle to entry has
been retrieved by a call to either first_entry or next_entry. The name of the
attribute can be known beforehand, and it can also be determined by a call to
first_attribute or next_attribute. This function can be used to retrieve
both binary and nonbinary attribute values.

DBMS_LDAP 21-27

delete_s Function

See Also:

=« “first_entry Function" on page 21-17
= "next_entry Function" on page 21-18
= "get_values Function" on page 21-25

= "count_values_len Function" on page 21-40

delete_s Function
This function removes a leaf entry in the LDAP Directory Information Tree.

Syntax
DBMS_LDAPdelete s (
d IN SESSION,
enrydn IN VARCHAR2)
RETURN PLS INTEGER;
Parameters

Table 21-49 delete_s Function Parameters

Parameter Name Description
Id (IN) A valid LDAP session
entrydn (IN) The X.500 distinguished name of the entry to delete.

Return Values

Table 21-50 delete_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESIH the delete operation wa successful.
An exception is raised otherwise.

Exceptions

Table 21-51 delete_s Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.

21-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Usage Notes

Table 21-51 delete_s Function Exceptions

Exception Description
invalid_entry_dn Raised if the distinguished name of the entry is invalid
general_error For all other errors. The error string associated with this

exception explains the error in detail.

The function delete_s can be used to remove only leaf level entries in the LDAP
DIT. A leaf level entry is an entry that does not have any children/LDAP entries
under it. It cannot be used to delete nonleaf entries.

See Also: "modrdn2_s Function" on page 21-29.

modrdn2_s Function

Syntax

Parameters

This function modrdn2_s can be used to rename the relative distinguished name of
an entry.

DBMS_LDAP.modrdn2_s (

Id IN SESSION,
entrydn IN VARCHAR2
newrdn IN VARCHAR2

deleteoldrdn N PLS_INTEGER)
RETURN PLS INTEGER;

Table 21-52 modrdn2_s Function Parameters

Parameter Description

Id (IN) A valid LDAP session handle.

entrydn (IN) The distinguished name of the entry. (This entry must be a leaf
node in the DIT.).

newrdn (IN) The new relative distinguished name of the entry.

deleteoldrdn (IN) A boolean value that if nonzero, indicates that the attribute

values from the old name should be removed from the entry.

DBMS_LDAP 21-29

err2string Function

Return Values

Table 21-53 modrdn2_s Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP.SUCCESH the operation was successful. An
exception is raised otherwise.

Exceptions

Table 21-54 modrdn2_s Function Exceptions

Exception Description

invalid_session Raised if the session handle Id is invalid.
invalid_entry_dn Raised if the distinguished name of the entry is invalid.
invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

This function can be used to rename the leaf nodes of a DIT. It simply changes the
relative distinguished name by which they are known. The use of this function is
being deprecated in the LDAP v3 standard. Please use rename_s, which can
achieve the same foundation.

See Also: "rename_s Function” on page 21-41.

err2string Function

This function converts an LDAP error code to string in the local language in which
the API is operating

Syntax

DBMS_LDAP.en2sting (
Idap er IN PLS INTEGER)
RETURN VARCHAR?Z;

21-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Parameters

Return Values

Exceptions

Usage Notes

Table 21-55 err2string Function Parameters

Parameter Description

Idap_err (IN) An error number returned from one the API calls.

Table 21-56 err2string Function Return Values

Value Description

VARCHAR2 A character string appropriately translated to the local
language which describes the error in detail.

Table 21-57 err2string Function Exceptions

Exception Description

N/A None.

In this release, the exception handling mechanism automatically invokes this if any
of the API calls encounter an error.

create_mod_array Function

Syntax

This function allocates memory for array modification entries that are applied to an
entry using the modify_s or add_s functions.

DBMS_LDAP.create_mod_array (
num IN PLS INTEGER)
RETURN MOD_ARRAY;

DBMS_LDAP 21-31

populate_mod_array (String Version) Procedure

Parameters

Return Values

Exceptions

Usage Notes

Table 21-58 create_mod_array Function Parameters

Parameter Description

num (IN) The number of the attributes that you want to add or modify.

Table 21-59 create_mod_array Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.
NULLIif there was a problem.

Table 21-60 create_mod_array Function Exceptions

Exception Description

N/A No LDAP specific exception is raised

This function is one of the preparation steps for DBMS_LDAP.add_sand DBMS _
LDAP.modify_s. It is required to call DBMS_LDAP.free_mod_array to free
memory after the calls to add_s or modify_s have completed.

See Also:

= "populate_mod_array (String Version) Procedure” on
page 21-32

« "modify_s Function" on page 21-35
=« “"add_s Function" on page 21-37

=« “"free_mod_array Procedure" on page 21-38

populate_mod_array (String Version) Procedure

This procedure populates one set of attribute information for add or modify
operations.

21-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Syntax

Parameters

Return Values

Exceptions

DBMS_LDAP.populate_mod_array (
modpr IN DBMS_LDAP.MOD_ARRAY,
mod op IN PLS INTEGER,
mod_type IN VARCHAR?,
modval IN DBMS_LDAP.STRING_COLLECTION);

Table 21-61 populate_mod_array (String Version) Procedure Parameters

Parameter Description

modptr (IN) The data structure holds a pointer to an LDAP mod array.
Mod_op (IN) This field specifies the type of modification to perform.
Mod_type (IN) This field indicates the name of the attribute type to which the

modification applies.

Modval (IN) This field specifies the attribute values to add, delete, or
replace. It is for the string values only.

Table 21-62 populate_mod_array (String Version) Procedure Return Values

Value Description

N/A -

Table 21-63 populate_mod_array (String Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array.
invalid_mod_option Invalid LDAP mod option.
invalid_mod_type Invalid LDAP mod type.
invalid_mod_value Invalid LDAP mod value.

DBMS_LDAP

21-33

populate_mod_array (Binary Version) Procedure

Usage Notes

This function is one of the preparation steps for DBMS_LDAP.add_sand DBMS _
LDAP.modify_s . It has to happen after DBMS_LDAP.create_mod_array is
called.

See Also:

= create_mod_array Function" on page 21-31
« "modify_s Function" on page 21-35

=« “"add_s Function" on page 21-37

=« “free_mod_array Procedure" on page 21-38

populate_mod_array (Binary Version) Procedure

Syntax

Parameters

This procedure populates one set of attribute information for add or modify
operations. This procedure call has to happen after DBMS_LDAP.create_mod_
array is called.

PROCEDURE populate_mod_array
(modptr IN DBMS_LDAP.MOD_ARRAY,
mod op IN PLS INTEGER,
mod_type IN VARCHAR?2,
modval IN DBMS_LDAP.BERVAL COLLECTION);

Table 21-64 populate_mod_array (Binary Version) Procedure Parameters

Parameter Description

modptr (IN) The data structure holds a pointer to an LDAP mod array.
Mod_op (IN) This field specifies the type of modification to perform.
Mod_typ (IN) This field indicates the name of the attribute type to which the

modification applies.

Modval (IN) This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

21-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Return Values

Exceptions

Usage Notes

Table 21-65 populate_mod_array (Binary Version) Procedure Return Values

Value Description

N/A -

Table 21-66 populate_mod_array (Binary Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array.
invalid_mod_option Invalid LDAP mod option.
invalid_mod_type Invalid LDAP mod type.
invalid_mod_value Invalid LDAP mod value.

This function is one of the preparation steps for DBMS_LDAP.add_sand DBMS _
LDAP.modify_s. It has to happen after DBMS_LDAP.create_mod_array is
called.

See Also:

= "create_mod_array Function" on page 21-31

= "modify_s Function" on page 21-35

= "add_s Function" on page 21-37

=« "free_mod_array Procedure" on page 21-38

modify_s Function

Syntax

This function performs a synchronous modification of an existing LDAP directory
entry.

DBMS_LDAP.modify s (
Id IN DBMS_LDAP.SESSION,
enrydn IN VARCHAR?2,

DBMS_LDAP 21-35

modify_s Function

modptr N DBMS_LDAP.MOD_ARRAY)
RETURN PLS INTEGER;

Parameters

Table 21-67 modify_s Function Parameters

Parameter Description

Id (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

entrydn (IN) Specifies the name of the directory entry whose contents are to
be modified.

modptr (IN) The handle to an LDAP mod structure, as returned by a

successful call to DBMS_LDAP.create_mod_array.

Return Values

Table 21-68 modify_s Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the modification
operation

Exceptions

Table 21-69 modify_s Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
invalid_mod_array Invalid LDAP mod array.

Usage Notes

This function call has to follow successful calls of DBMS_LDAP.create_mod__
array and DBMS_LDAP.populate_mod_array

21-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

See Also:
= create_mod_array Function" on page 21-31

= "populate_mod_array (String Version) Procedure” on
page 21-32

= "add_s Function" on page 21-37

=« “"free_mod_array Procedure" on page 21-38

add_s Function

Syntax

Parameters

Return Values

This function adds a new entry to the LDAP directory sychronously. Before calling
add_s, you mustcall DBMS_LDAP.create_mod_array and DBMS _
LDAP.populate_mod_array

DBMS LDAP.add s (
Id IN DBMS_LDAP.SESSION,
enrydn IN VARCHAR?2,
modptr IN DBMS_LDAP.MOD_ARRAY)
RETURN PLS INTEGER;

Table 21-70 add_s Function Parameters

Parameter Description

Id (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

Entrydn (IN) Specifies the name of the directory entry to be created.

Modptr (IN) The handle to an LDAP mod structure, as returned by

successful call to DBMS_LDAP.create_mod_array.

Table 21-71 add_s Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the modification
operation.

DBMS_LDAP 21-37

free_mod_array Procedure

Exceptions

Table 21-72 add_s Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry_dn Invalid LDAP entry dn.
invalid_mod_array Invalid LDAP mod array.

Usage Notes
The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls of DBMS_LDAP.create_mod_array
and DBMS_LDAP.populate_mod_array.
See Also:

= create_mod_array Function" on page 21-31

= "populate_mod_array (String Version) Procedure” on
page 21-32

« "modify_s Function" on page 21-35

=« “"free_mod_array Procedure" on page 21-38

free_mod_array Procedure
This procedure frees the memory allocated by DBMS_LDAP.create_mod_array.

Syntax

DBMS_LDAPfree_ mod_aray (
modptr IN DBMS_LDAP.MOD_ARRAY);

Parameters

Table 21-73 free_mod_array Procedure Parameters

Parameter Description

modptr (in) The handle to an LDAP mod structure, as returned by
successful call to DBMS_LDAP.create_mod_array.

21-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Return Values

Table 21-74 free_mod_array Procedure Return Value

Value Description

N/A -

Exceptions

Table 21-75 free_mod_array Procedure Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:
= create_mod_array Function" on page 21-31

= "populate_mod_array (String Version) Procedure” on
page 21-32

« "modify_s Function" on page 21-35

=« “"add_s Function" on page 21-37

count_values Function
This function counts the number of values returned by DBMS_LDAP.get_values.

Syntax
DBMS_LDAP.count values (
values IN DBMS_LDAP.STRING_COLLECTION)
RETURN PLS INTEGER;
Parameters

Table 21-76 count_values Function Parameters

Parameter Description

values (IN) The collection of string values.

DBMS_LDAP 21-39

count_values_len Function

Return Values

Table 21-77 count_values Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Exceptions

Table 21-78 count_values Function Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:
= "get_values Function" on page 21-25

= "count_values_len Function" on page 21-40

count_values_len Function
This function counts the number of values returned by DBMS_LDAP.get_values_

len.
Syntax
DBMS_LDAP.count_values len (
values IN DBMS_LDAPBINVAL COLLECTION)
RETURN PLS INTEGER;
Parameters

Table 21-79 count_values_len Function Parameters

Parameter Description

values (IN) The collection of binary values.

21-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Return Values

Table 21-80 count_values_len Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Exceptions

Table 21-81 count _values_len Function Exceptions

Exception Description

N/A No LDAP specific exception is raised.

See Also:
= "get_values_len Function" on page 21-26

= "count_values Function" on page 21-39

rename_s Function
This function renames an LDAP entry synchronously.

Syntax
DBMS_LDAP.rename_s (
Id IN SESSION,
dn IN VARCHARZ2,
newrdn IN VARCHAR2,

newparent IN VARCHAR?2,

deletedldrdn IN PLS_INTEGER,

serverctiis IN LDAPCONTROL,

clientcris IN LDAPCONTROL)
RETURN PLS INTEGER;

DBMS_LDAP 21-41

rename_s Function

Parameters

Table 21-82 rename_s Function Parameters

Parameter Description

Id (IN) A handle to an LDAP session, as returned by a successful call
to DBMS_LDAP.init.

Dn (IN) Specifies the name of the directory entry to be renamed or
moved.

newrdn (IN) Specifies the new RDN.

Newparent (IN) Specifies the DN of the new parent.

Deleteoldrdn (IN) Specifies if the old RDN should be retained. If this value is 1,
then the old RDN is removed.

Serverctrls (IN) Currently not supported.

Clientctrls (IN) Currently not supported.

Return Values

Table 21-83 rename_s Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

Exceptions

Table 21-84 rename_s Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.
invalid_entry_dn Invalid LDAP DN.
invalid_rdn Invalid LDAP RDN.
invalid_newparent Invalid LDAP newparent.
invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

See Also: "modrdn2_s Function" on page 21-29.

21-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

explode_dn Function

Syntax

Parameters

Return Values

Exceptions

This function breaks a DN up into its components.

DBMS_LDAP.explode_dn (
dn IN VARCHAR2,
notypes IN PLS_INTEGER)
RETURN STRING_COLLECTION;

Table 21-85 explode_dn Function Parameters

Parameter Description
dn (IN) Specifies the name of the directory entry to be broken up.
Notypes (IN) Specifies if the attribute tags will be returned. If this value is

not 0, no attribute tags are returned.

Table 21-86 explode_dn Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN cannot be broken up, NULLis
returned.

Table 21-87 explode_dn Function Exceptions

Exception Description
invalid_entry_dn Invalid LDAP DN.
invalid_notypes Invalid LDAP notypes value.

See Also: "get_dn Function" on page 21-24.

DBMS_LDAP 21-43

open_ssl Function

open_ssl Function

Syntax

Parameters

Return Values

This function establishes an SSL (Secure Sockets Layer) connection over an existing
LDAP connection.

DBMS_LDAP.open_ssl (

Id IN SESSION,
sshwr IN VARCHAR?Z,
ssiwallepasswd IN VARCHAR2,
sslauth IN PLS_INTEGER)

RETURN PLS_INTEGER;

Table 21-88 open_ssl Function Parameters

Parameter Description

Id (IN) A handle to an LDAP session, as returned by a successful call to
DBMS_LDAP.init.

Sslwrl (IN) Specifies the wallet location (Required for one-way or two-way
SSL connection.)

sslwalletpasswd Specifies the wallet password (Required for one-way or two-way

(IN) SSL connection.)

sslauth (IN) Specifies the SSL Authentication Mode (1 for no authentication

required, 2 for one way authentication required, 3 for two way
authentication required.

Table 21-89 open_ssl Function Return Values

Value Description

PLS_INTEGER The indication of the success or failure of the operation.

21-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LDAP Subprograms

Exceptions

Table 21-90 open_ssl Function Exceptions

Exception Description

invalid_session Invalid LDAP Session.

invalid_ssl_ Invalid LDAP SSL wallet location.
wallet_loc

invalid_ssl_ Invalid LDAP SSL wallet passwd.
wallet_passwd

invalid_ssl_auth_ Invalid LDAP SSL authentication mode.
mode

Usage Notes
Call DBMS_LDAP.init first to acquire a valid LDAP session.

See Also: "init Function" on page 21-6.

DBMS_LDAP 21-45

open_ssl Function

21-46 Oracle9i Supplied PL/SQL Packages and Types Reference

22

DBMS_LIBCACHE

DBMS_LIBCACHBrepares the library cache on an Oracle instance by extracting
SQL and PL/SQL from a remote instance and compiling this SQL locally without
execution. The value of compiling the cache of an instance is to prepare the
information the application requires to execute in advance of failover or switchover.

Compiling a shared cursor consists of open, parse, and bind operations, plus the
type-checking and execution plan functions performed at the first execution. All of
these steps are executed in advance by the package DBMS_LIBCACHEor SELECT
statements. The open and parse functions are executed in advance for PL/SQL and
DML. For PL/SQL, executing the parse phase has the effect of loading all library
cache heaps other than the MCODE

This chapter discusses the following topics:
= Requirements

=« Summary of DBMS_LIBCACHE Subprograms

DBMS_LIBCACHE 22-1

Requirements

Requirements

To execute DBMS_LIBCACHByou must directly access the same objects as do SQL
statements. You can best accomplish this by utilizing the same user id as the
original system on the remote system. When there are multiple schema users,
DBMS_LIBCACHEhould be called for each. Alternately, DBMS_LIBCACHEnay be
called with the generic user PARSERHowever, this user cannot parse the SQL that
uses objects with access granted though roles. This is a standard PL/SQL security
limitation.

Summary of DBMS_LIBCACHE Subprograms

Table 22—-1 DBMS_SESSION Subprograms

Subprogram Description

COMPILE_CURSORS_FROM _ Extracts SQL in batch from the source instance and
REMOTE Procedure on page 22-2 compiles the SQL at the target instance

COMPILE_CURSORS FROM_REMOTE Procedure

This procedure extracts SQL in batch from the source instance and compiles the SQL at the
target instance.

Syntax

DBMS_LIBCACHE.COMPILE_CURSORS_FROM_REMOTE(LIBC_LINK', {MY_USER}, 1,
1024000);

Parameters

Table 22-2 COMPILE_CURSORS_FROM_REMOTE Procedure Parameters

Parameter Description

Database Link The database link pointing to the instance used for extracting the
Name SQL statements.

Source username Parsing username for the SQL statements extracted.

Execution Lower bound on the number of executions. Below this value
threshold cursors will not be selected for compiling.

22-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LIBCACHE Subprograms

Usage Notes

Table 22—-2 COMPILE_CURSORS_FROM_REMOTE Procedure Parameters

Parameter Description

Sharable memory The lower bound for the size of the shared memory consumed by
threshold the context area on the source instance. Below this value cursors

will not be selected for compiling.

Note the following:

You must provide a Database link name and a Source user name as these
are mandatory parameters. The syntax demonstrates the addition of the two
optional parameters for preparsing all SQL larger than 1MB.

Database link name - The connection may use either a password file or an LDAP
authorization. A default database lirilgc_link , Is created when the catalog
program catlibc.sql , IS executed. There is no actual default value as this
parameter is mandatory for releases vdbims_libcache$def. ACCESS_METHOD

= DB_LINK_METHOD.

Source user name - This parameter allows the package to be executed in the
matching local parsing user id. When using this parameter it is usual to be connected to
the same username locally. If the username is supplied it must be a valid value. The
name is not case sensitive.

Execution threshold - The execution count on a cursor value is reset whenever
the cursor is reloaded. This parameter allows the application to extract and compile
statements with executions for example, greater than 3. The default value is 1. This
means SQL statements that have never executed, including invalid SQL statements, will
not be extracted.

Sharable memory threshold - This parameter allows the application to extract
and compile statements with shared memory for example, greater than 1024000 bytes.
With the default value (1000), you can skip cursors that are invalid and so are never
executed.

DBMS_LIBCACHE 22-3

COMPILE_CURSORS_FROM_REMOTE Procedure

22-4 Oracle9i Supplied PL/SQL Packages and Types Reference

23

DBMS LOB

The DBMS_| OBackage provides subprograms to operate on BLOBs CLOBs
NCLOBsBFILEs , and temporary LOBs. You can use DBMS_LORo access and
manipulation specific parts of a LOBor complete LOBs.

This package must be created under SYS(connect internal). Operations provided by
this package are performed under the current calling user, not under the package
owner SYS

DBMS_LORan read and modify BLOBs CLOBs and NCLOBs it provides read-only
operations for BFILEs . The bulk of the LOBoperations are provided by this
package.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)

This chapter discusses the following topics:

= LOB Locators for DBMS_LOB

= Datatypes, Constants, and Exceptions for DBMS_LOB

= Security for DBMS_LOB

= Rules and Limitations for DBMS_LOB

= Temporary LOBs

= Summary of DBMS_LOB Subprograms

DBMS_LOB 23-1

LOB Locators for DBMS_LOB

LOB Locators for DBMS_LOB

All DBMS_| OBubprograms work based on LOBlocators. For the successful
completion of DBMS_L OBubprograms, you must provide an input locator that
represents a LOBthat already exists in the database tablespaces or external file
system. See also Chapter 1 of Oracle9i Application Developer’s Guide - Large Objects
(LOBs).

To use LOBs in your database, you must first use SQL data definition language
(DDL) to define the tables that contain LOBcolumns.

Internal LOBs

To populate your table with internal LOBs after LOB columns are defined in a table,
you use the SQL data manipulation language (DML) to initialize or populate the
locators in the LOBcolumns.

External LOBs
For an external LOB to be represented by a LOB locator, you must:

= Ensure that a DIRECTORYobject representing a valid, existing physical
directory has been defined, and that physical files (the LOBs you plan to add)
exist with read permission for Oracle. If your operating system uses
case-sensitive path names, then be sure you specify the directory in the correct
format.

= Pass the DIRECTORYobject and the filename of the external LOB you are
adding to the BFILENAME() function to create a LOB locator for your external
LOB.

Once you have completed these tasks, you can insert or update a row containing a
LOB column using the given LOB locator.

After the LOBsare defined and created, you can then SELECTfrom a LOB locator
into a local PL/SQL LOBvariable and use this variable as an input parameter to
DBMS_LOBor access to the LOBvalue.

For details on the different ways to do this, you must refer to the section of the
Oracle9i Application Developer’s Guide - Large Objects (LOBs) that describes Accessing
External LOBs (BFILEs).

23-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Datatypes, Constants, and Exceptions for DBMS_LOB

Temporary LOBs

For temporary LOBs, you must use the OCI, PL/SQL, or another programmatic
interface to create or manipulate them. Temporary LOBs can be either BLOBs
CLOBs or NCLOBs

Datatypes, Constants, and Exceptions for DBMS _LOB

Datatypes
Parameters for the DBMS_LOBubprograms use these datatypes:

Table 23—-1 DBMS_LOB Datatypes

Type Description

BLOB A source or destination binary LOB

RAW A source or destination RAWbuffer (used with BLOB.

CLOB A source or destination character LOB(including NCLOB.

VARCHAR2 A source or destination character buffer (used with CLOBand
NCLOB.

INTEGER Specifies the size of a buffer or LOB the offset into a LOB or the

amount to access.

BFILE A large, binary object stored outside the database.

The DBMS_LOBackage defines no special types. NCLOBis a special case of CLOBs
for fixed-width and varying-width, multibyte national character sets. The clause
ANY_CSin the specification of DBMS_LOBubprograms for CLOB enables them to
accept a CLOBor NCLOBlocator variable as input.

Constants
DBMS_LORlefines the following constants:
fle_readonly CONSTANT BINARY INTEGER = O;

lob_readonly CONSTANT BINARY_INTEGER := 0;
lob_readwite CONSTANT BINARY INTEGER = 1;

lobmaxsize CONSTANT INTEGER = 4294967295,
call CONSTANT PLS_INTEGER =12
session CONSTANT PLS_INTEGER = 10;

DBMS_LOB 23-3

Security for DBMS_LOB

Oracle supports a maximum LOBsize of 4 gigabytes (2%2). However, the amount
and offset parameters of the package can have values between 1 and 4294967295
(2%2-1).

The PL/SQL 3.0 language specifies that the maximum size of a RAWbr VARCHAR2
variable is 32767 bytes.

Note: The value 32767 bytes is represented by maxbufsize inthe
following sections.

Exceptions

Table 23—-2 DBMS_LOB Exceptions

Exception Code Description

invalid_argval 21560 The argument is expecting a nonNULL, valid value but the
argument value passed in is NULL, invalid, or out of range.

access_ermor 22925 You are trying to write too much data to the LOB LOBsize is
limited to 4 gigabytes.

noexist_directory 22285 The directory leading to the file does not exist.

nopriv_directory 22286 The user does not have the necessary access privileges on

the directory alias or the file for the operation.

invalid_directory 22287 The directory alias used for the current operation is not
valid if being accessed for the first time, or if it has been
modified by the DBA since the last access.

operation_failed 22288 The operation attempted on the file failed.

unopened_file 22289 The file is not open for the required operation to be
performed.

open_toomany 22290 The number of open files has reached the maximum limit.

Security for DBMS_LOB

Any DBMS_LOBubprogram called from an anonymous PL/SQL block is executed
using the privileges of the current user. Any DBMS_LOBubprogram called from a
stored procedure is executed using the privileges of the owner of the stored
procedure.

With Oracle8i, when creating the procedure, users can set the AUTHID to indicate
whether they want definer’s rights or invoker’s rights. For example:

23-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Rules and Limitations for DBMS_LOB

CREATE PROCEDURE procl authid definer ...

or

CREATE PROCEDURE procl authid current user ...

See Also: For more information on AUTHID and privileges, see
PL/SQL User’s Guide and Reference

You can provide secure access to BFILEs using the DIRECTOR Yfeature discussed
in BFILENAMEfunction in the Oracle9i Application Developer’s Guide - Large Objects
(LOBs) and the Oracle9i SQL Reference.

Rules and Limitations for DBMS_LOB

= The following rules apply in the specification of subprograms in this package:

length and offset parameters for subprograms operating on BLOBsand
BFILEs must be specified in terms of bytes.

length and offset parameters for subprograms operating on CLOBs
must be specified in terms of characters.

offset and amount parameters are always in characters for
CLOBYNCLOBsand in bytes for BLOBs/BFILEs .

= A subprogram raises an INVALID ARGVAL exception if the following
restrictions are not followed in specifying values for parameters (unless
otherwise specified):

1.

Only positive, absolute offsets from the beginning of LOBdata are
permitted: Negative offsets from the tail of the LOBare not permitted.

Only positive, nonzero values are permitted for the parameters that
represent size and positional quantities, such as amount , offset , newlen ,
nth , and so on. Negative offsets and ranges observed in Oracle SQL string
functions and operators are not permitted.

The value of offset , amount, newlen , nth must not exceed the value
lobmaxsize (4GB-1) in any DBMS_LOBubprogram.

For CLOB consisting of fixed-width multibyte characters, the maximum
value for these parameters must not exceed (lobmaxsize /character_
width_in_bytes) characters.

For example, if the CLOBconsists of 2-byte characters, such as:

DBMS_LOB 23-5

Rules and Limitations for DBMS_LOB

JA16SJISFIXED

Then, the maximum amount value should not exceed:
42949672952 = 2147483647 characters.

= PL/SQL language specifications stipulate an upper limit of 32767 bytes (not
characters) for RAWANd VARCHARDarameters used in DBMS_LOB
subprograms. For example, if you declare a variable to be:

charbuf VARCHAR2(3000)

Then, charbuf can hold 3000 single byte characters or 1500 2-byte fixed width
characters. This has an important consequence for DBMS_L OBubprograms for
CLOBsand NCLOBs

= The %CHARSE®@lause indicates that the form of the parameter with %CHARSET
must match the form of the ANY_CSparameter to which it refers.

For example, in DBMS_LOBubprograms that take a VARCHARDuffer
parameter, the form of the VARCHARDuffer must match the form of the CLOB
parameter. If the input LOBparameter is of type NCLOBthen the buffer must
contain NCHARdJata. Conversely, if the input LOBparameter is of type CLOB
then the buffer must contain CHARdata.

For DBMS_LOBubprograms that take two CLOBparameters, both CLOB
parameters must have the same form; that is, they must both be NCLOBs or
they must both be CLOBs

= If the value of amount plus the offset exceeds 4 GB (that is, lobmaxsize +1)
for BLOBsand BFILEs , and (lobmaxsize/character_width_in_bytes)+1
for CLOBsin calls to update subprograms (that is, APPENDCOPYTRIM, WRITE
and WRITEAPPENBubprograms), then access exceptions are raised.

Under these input conditions, read subprograms, such as READ COMPARE
INSTR, and SUBSTRread until End of Lob/File is reached. For example, for
a READoperation on a BLOBor BFILE , if the user specifies offset value of 3
GB and an amount value of 2 GB, then READreads only ((4GB-1)-3GB) bytes.

= Functions with NULLor invalid input values for parameters return a NULL
Procedures with NULL values for destination LOBparameters raise exceptions.

= Operations involving patterns as parameters, such as COMPARENSTR, and
SUBSTRdJo not support regular expressions or special matching characters
(such as %in the LIKE operator in SQL) in the pattern parameter or
substrings.

23-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Rules and Limitations for DBMS_LOB

The End Of LOBcondition is indicated by the READprocedure using a NO_
DATA_FOUNDBxception. This exception is raised only upon an attempt by the
user to read beyond the end of the LOB/FILE . The READbuffer for the last read
contains 0 bytes.

For consistent LOBupdates, you must lock the row containing the destination
LOBbefore making a call to any of the procedures (mutators) that modify LOB
data.

Unless otherwise stated, the default value for an offset parameter is 1, which
indicates the first byte in the BLOBor BFILE data, and the first character in the
CLOBor NCLOBvalue. No default values are specified for the amount
parameter — you must input the values explicitly.

You must lock the row containing the destination internal LOBbefore calling
any subprograms that modify the LOB such as APPENDCOPYERASE TRIM, or
WRITE These subprograms do not implicitly lock the row containing the LOB

BFILE-Specific Rules and Limitations

The subprograms COMPARHENSTR, READ SUBSTRFILECLOSE,
FILECLOSEALL and LOADFROMFILEperate only on an opened BFILE locator;
that is, a successful FILEOPEN call must precede a call to any of these
subprograms.

For the functions FILEEXISTS , FILEGETNAMEand GETLENGTHa file’s
open/close status is unimportant; however, the file must exist physically, and
you must have adequate privileges on the DIRECTORYobject and the file.

DBMS_LORIloes not support any concurrency control mechanism for BFILE
operations.

In the event of several open files in the session whose closure has not been
handled properly, you can use the FILECLOSEALL subprogram to close all files
opened in the session and resume file operations from the beginning.

If you are the creator of a DIRECTORYor if you have system privileges, then
use the CREATEORREPLACEDROPand REVOKEtatements in SQL with
extreme caution.

If you, or other grantees of a particular directory object, have several open files
in a session, then any of the preceding commands can adversely affect file
operations. In the event of such abnormal termination, your only choice is to
invoke a program or anonymous block that calls FILECLOSEALL, reopen your
files, and restart your file operations.

DBMS_LOB 23-7

Rules and Limitations for DBMS_LOB

= All files opened during a user session are implicitly closed at the end of the
session. However, Oracle strongly recommends that you close the files after both
normal and abnormal termination of operations on the BFILE.

In the event of normal program termination, proper file closure ensures that the
number of files that are open simultaneously in the session remains less than
SESSION_MAX_OPEN_FILES

In the event of abnormal program termination from a PL/SQL program, it is
imperative that you provide an exception handler that ensures closure of all
files opened in that PL/SQL program. This is necessary because after an
exception occurs, only the exception handler has access to the BFILE variable in
its most current state.

After the exception transfers program control outside the PL/SQL program
block, all references to the open BFILEs are lost. The result is a larger open file
count which may or may not exceed the SESSION_MAX_OPEN_FILESalue.

For example, consider a READoperation past the end of the BFILE value, which
generates a NO_DATA_FOUNE&xception:

DECLARE
fl BFILE;
pos INTEGER;
amt BINARY_INTECER;
buf RAW(40);
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 21;
dbms_lob.open(fi, doms_lob.lob_readonly);
amt = 40; pos = 1 + dbms_lob.getlength(fil); buf = %
dbms_lob.read(fil, amt, pos, buf);
dbms_outputput_line(Read F1 past EOF: |
utl_raw.cast to_varchar2(buf));
dbms_lob.close({fil);
END;

ORA-01403: no data found
ORA-06512: at "SYS.DBMS _LOB", line 373
ORA-06512: at line 10

After the exception has occurred, the BFILE locator variable file goes out of
scope, and no further operations on the file can be done using that variable.
Therefore, the solution is to use an exception handler:

DECLARE
fil BFILE;

23-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Temporary LOBs

pos INTEGER,;

amt BINARY_INTEGER;

buf RAW(40y);

BEGIN

SELECT f lob INTO fl FROM lob_table WHERE key value = 21;

dbms_lob.open(fi, doms_lob.lob_readonly);

amt = 40; pos = 1 + dbms_lob.getlength(fil); buf = "

dbms_lob.read(fil, amt, pos, buf);

dboms_outputput_line(Read F1 past EOF: ||
utl_raw.cast to_varchar2(buf));

dbms_lob.close(fil);

exception

WHEN no_data_found

THEN

BEGIN
doms_outputput_line(End of File reached. Closing file);
dbms_lobfileclose(fil);
— or dbms_lob.filecloseall if appropriate
END;
END;
/

Statement processed.
End of File reached. Closing file

In general, you should ensure that files opened in a PL/SQL block using DBMS _
LOBare closed before normal or abnormal termination of the block.

Temporary LOBs

Oracle8i supports the definition, creation, deletion, access, and update of temporary
LOBs. Your temporary tablespace stores the temporary LOBdata. Temporary LOBs
are not permanently stored in the database. Their purpose is mainly to perform
transformations on LOBdata.

A temporary LOBis empty when it is created. By default, all temporary LOBsare
deleted at the end of the session in which they were created. If a process dies
unexpectedly or if the database crashes, then temporary LOBs are deleted, and the
space for temporary LOBs s freed.

In Oracle8i, there is also an interface to let you group temporary LOBs together into
a logical bucket. The duration represents this logical store for temporary LOBs. Each
temporary LOBcan have separate storage characteristics, such as CACHZ NOCACHE
There is a default store for every session into which temporary LOBs are placed if

DBMS_LOB 23-9

Temporary LOBs

you don’t specify a specific duration. Additionally, you are able to perform a free
operation on durations, which causes all contents in a duration to be freed.

There is no support for consistent read (CR), undo, backup, parallel processing, or
transaction management for temporary LOBs. Because CR and rollbacks are not
supported for temporary LOBs, you must free the temporary LOBand start over
again if you encounter an error.

Because CR, undo, and versions are not generated for temporary LOBSs, there is
potentially a performance impact if you assign multiple locators to the same
temporary LOB Semantically, each locator should have its own copy of the
temporary LOB

A copy of a temporary LOBIs created if the user modifies the temporary LOBwhile
another locator is also pointing to it. The locator on which a modification was
performed now points to a new copy of the temporary LOB Other locators no
longer see the same data as the locator through which the modification was made.
A deep copy was not incurred by permanent LOBs in these types of situations,
because CR snapshots and version pages enable users to see their own versions of
the LOBcheaply.

You can gain pseudo-REFsemantics by using pointers to locators in OCI and by
having multiple pointers to locators point to the same temporary LOBlocator, if
necessary. In PL/SQL, you must avoid using more than one locator for each
temporary LOB The temporary LOBlocator can be passed by reference to other
procedures.

Because temporary LOBs are not associated with any table schema, there are no
meanings to the terms in-row and out-of-row temporary LOBs. Creation of a
temporary LOBinstance by a user causes the engine to create and return a locator to
the LOBdata. The PL/SQL DBMS_LORackage, PRO*C, OCI, and other
programmatic interfaces operate on temporary LOBs through these locators just as
they do for permanent LOBs.

There is no support for client side temporary LOBs. All temporary LOBs reside in
the server.

Temporary LOBs do not support the EMPTY_BLOBr EMPTY_CLOBunctions that
are supported for permanent LOBs. The EMPTY_BLOBunction specifies the fact
that the LOBIs initialized, but not populated with any data.

A temporary LOBinstance can only be destroyed by using OCI or the DBMS_LOB
package by using the appropriate FREETEMPORARXY OCIDurationEnd
statement.

23-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Temporary LOBs

A temporary LOBinstance can be accessed and modified using appropriate OCI and
DBMS_LOBtatements, just as for regular permanent internal LOBs. To make a
temporary LOBpermanent, you must explicitly use the OCl or DBMS_LOROPY
command, and copy the temporary LOBinto a permanent one.

Security is provided through the LOBlocator. Only the user who created the
temporary LOBis able to see it. Locators are not expected to be able to pass from
one user’s session to another. Even if someone did pass a locator from one session
to another, they would not access the temporary LOBs from the original session.
Temporary LOBlookup is localized to each user’s own session. Someone using a
locator from somewhere else is only able to access LOBs within his own session that
have the same LOBID. Users should not try to do this, but if they do, they are not
able to affect anyone else’s data.

Oracle keeps track of temporary LOBs for each session in a v$ view called
V$TEMPORARY_LOB®hich contains information about how many temporary
LOBsexist for each session. V$ views are for DBA use. From the session, Oracle can
determine which user owns the temporary LOBs. By using VSTEMPORARY_LOHS
conjunction with DBA_SEGMENTS DBA can see how much space is being used by
a session for temporary LOBs. These tables can be used by DBAs to monitor and
guide any emergency cleanup of temporary space used by temporary LOBs.

Temporary LOBs Usage Notes

1. All functions in DBMS_LOBeturn NULL if any of the input parameters are
NULL All procedures in DBMS_LOBaise an exception if the LOBlocator is input
as NULL

2. Operations based on CLOBsdo not verify if the character set IDs of the
parameters (CLOBparameters, VARCHARDuffers and patterns, and so on)
match. It is the user’s responsibility to ensure this.

3. Data storage resources are controlled by the DBA by creating different
temporary tablespaces. DBAs can define separate temporary tablespaces for
different users, if necessary.

4. Temporary LOBsstill adhere to value semantics in order to be consistent with
permanent LOBsand to try to conform to the ANSI standard for LOBs. As a
result, each time a user does an OCILobLocatatorAssign , or the equivalent
assignment in PL/SQL, the database makes a copy of the temporary LOB

Each locator points to its own LOBvalue. If one locator is used to create a
temporary LOB and then is assigned to another LOBlocator using
OCIlLobLOcatorAssign in OCI or through an assignment operation in

DBMS_LOB 23-11

Temporary LOBs

PL/SQL, then the database copies the original temporary LOBand causes the
second locator to point to the copy.

In order for users to modify the same LOB they must go through the same
locator. In OCI, this can be accomplished fairly easily by using pointers to
locators and assigning the pointers to point to the same locator. In PL/SQL, the
same LOBvariable must be used to update the LOBto get this effect.

The following example shows a place where a user incurs a copy, or at least an
extra roundtrip to the server.

DECLARE
a blob;
b blob;
BEGIN
dbms_lob.createtemporary(b, TRUE);
- the following assignment results in a deep copy
a=Db
END;

The PL/SQL compiler makes temporary copies of actual arguments bound to
OUTor IN OUTparameters. If the actual parameter is a temporary LOB then the
temporary copy is a deep (value) copy.

The following PL/SQL block illustrates the case where the user incurs a deep
copy by passing a temporary LOBas an IN OUTparameter.

DECLARE
a blob;
procedure foo(parm IN OUT blob) is
BEGIN
END;
BEGIN
dbms_lob.createtemporary(a, TRUE);
- the following call results in a deep copy of the blob a

foo(a);
END;

To minimize deep copies on PL/SQL parameter passing, use the NOCOPY
compiler hint where possible.

The duration parameter passed to dbms_lob.createtemporary() is a hint.
The duration of the new temp LOB is the same as the duration of the locator
variable in PL/SQL. For example, in the preceding program block, the program

23-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

variable a has the duration of the residing frame. Therefore at the end of the
block, memory of a will be freed at the end of the function.

If a PL/SQL package variable is used to create a temp LOB, it will have the
duration of the package variable, which has a duration of SESSION

BEGIN
y clob;
END,;
/
BEGIN

doms_lob.createtemporary(packagey, TRUE);

END;

See Also: . PL/SQL User’s Guide and Reference for more
information on NOCOP¥yntax

Exceptions

Table 23-3 DBMS_LOB Exceptions

Exception Code

Description

INVALID ARGVAL 21560
ACCESS ERROR 22925
NO_DATA FOUND

VALUE_ERROR 6502

Value for argument %s is not valid.
Attempt to read or write beyond maximum LOBsize on %s.

EndofLokindicator for looping read operations. This is not a
hard error.

PL/SQL error for invalid values to subprogram’s parameters.

Summary of DBMS_LOB Subprograms

Table 23—-4 DBMS_LOB Subprograms

Subprogram

Description

APPEND Procedure on
page 23-15

CLOSE Procedure on
page 23-17

COMPARE Function on
page 23-18

Appends the contents of the source LOBto the destination
LOB
Closes a previously opened internal or external LOB

Compares two entire LOBs or parts of two LOBs.

DBMS_LOB 23-13

Summary of DBMS_LOB Subprograms

Table 23-4 DBMS_LOB Subprograms (Cont.)

Subprogram

Description

COPY Procedure on
page 23-21

CREATETEMPORARY
Procedure on page 23-23

ERASE Procedure on
page 23-24

FILECLOSE Procedure on
page 23-26

FILECLOSEALL Procedure
on page 23-28

FILEEXISTS Function on
page 23-28

FILEGETNAME Procedure
on page 23-30

FILEISOPEN Function on
page 23-31

FILEOPEN Procedure on
page 23-32

FREETEMPORARY
Procedure on page 23-34

GETCHUNKSIZE Function
on page 23-35

GETLENGTH Function on
page 23-36

INSTR Function on
page 23-37

ISOPEN Function on
page 23-40

ISTEMPORARY Function on
page 23-41

LOADFROMFILE Procedure
on page 23-42

LOADBLOBFROMFILE
Procedure on page 23-44

Copies all, or part, of the source LOBto the destination LOB

Creates a temporary BLOBor CLOBand its corresponding
index in the user’s default temporary tablespace.

Erases all or part of a LOB

Closes the file.

Closes all previously opened files.

Checks if the file exists on the server.

Gets the directory alias and file name.

Checks if the file was opened using the input BFILE
locators.

Opens a file.

Frees the temporary BLOBor CLOBIn the user’s default
temporary tablespace.

Returns the amount of space used in the LOBchunk to store
the LOBvalue.

Gets the length of the LOBvalue.

Returns the matching position of the nth occurrence of the
pattern in the LOB

Checks to see if the LOBwas already opened using the input
locator.
Checks if the locator is pointing to a temporary LOB

Loads BFILE data into an internal LOB

Loads BFILE data into an internal BLOB.

23-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Table 23-4 DBMS_LOB Subprograms (Cont.)

Subprogram

Description

LOADCLOBFROMFILE
Procedure on page 23-47

OPEN Procedure on
page 23-50

READ Procedure on
page 23-51

SUBSTR Function on
page 23-55

TRIM Procedure on
page 23-58

WRITE Procedure on
page 23-60

WRITEAPPEND Procedure

on page 23-62

Loads BFILE data into an internal CLOB

Opens a LOB(internal, external, or temporary) in the
indicated mode.

Reads data from the LOBstarting at the specified offset.
Returns part of the LOBvalue starting at the specified offset.
Trims the LOBvalue to the specified shorter length.

Writes data to the LOBfrom a specified offset.

Writes a buffer to the end of a LOB

APPEND Procedure

This procedure appends the contents of a source internal LOBto a destination LOB
It appends the complete source LOB

Syntax

Parameters

There are two overloaded APPENDprocedures.

DBMS_LOB.APPEND (

dest lob IN OUT NOCOPY BLOB,

src_lob IN

DBMS_LOB.APPEND (

BLOBY);

dest lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,

src_lob IN

CLOB CHARACTER SET dest lob%CHARSET);

Table 23-5 APPEND Procedure Parameters

Parameter

Description

dest lob

Locator for the internal LOBto which the data is to be appended.

DBMS_LOB 23-15

APPEND Procedure

Table 23-5 APPEND Procedure Parameters

Parameter Description

src_lob Locator for the internal LOBfrom which the data is to be read.

Exceptions

Table 23-6 APPEND Procedure Exceptions

Exception Description

VALUE_ERROR Either the source or the destination LOBis NULL

Usage Notes

It is not mandatory that you wrap the LOB operation inside the Open/Close APls.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

Examples
CREATE OR REPLACE PROCEDURE Example_la IS
dest lob BLOB;
src_lob BLOB;
BEGIN
— get the LOB locators
- note that the FOR UPDATE clause locks the row
SELECT b_lob INTO dest lob
FROM lob_table
WHERE key value = 12 FOR UPDATE;
SELECT b _lob INTO src_lob
FROM lob_table
WHERE key value = 21;
DBMS_LOB.APPEND(dest lob, stc_lob);
COMMIT;
EXCEPTION
23-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

WHEN some_exception
THEN handle_exception;
END;

CREATE OR REPLACE PROCEDURE Example 1b IS
dest lob, src lob BLOB;
BEGIN
— get the LOB locators
- note that the FOR UPDATE clause locks the row
SELECT b_lob INTO dest lob
FROM lob_table
WHERE key value = 12 FOR UPDATE;
SELECT b _lob INTO src_lob
FROM lob_table
WHERE key value = 12;
DBMS_LOB.APPEND(dest_lob, src_lob);
COMMIT;
EXCEPTION
WHEN some_exception
THEN handle_exception;

END;
CLOSE Procedure
This procedure closes a previously opened internal or external LOB
Syntax
DBMS_LOB.CLOSE (
lob loc IN OUT NOCOPY BLOB);
DBMS_LOB.CLOSE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS),
DBMS_LOB.CLOSE (
fle loc IN OUT NOCOPY BFILE);
Errors

No error is returned if the BFILE exists but is not opened. An error is returned if the
LOBis not open.

DBMS_LOB 23-17

COMPARE Function

Usage Notes

CLOSErequires a round-trip to the server for both internal and external LOBs. For
internal LOBs, CLOSEriggers other code that relies on the close call, and for
external LOBs (BFILEs), CLOSEactually closes the server-side operating system
file.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and non-LOB data in the transaction are committed, but
the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

COMPARE Function

Syntax

This function compares two entire LOBs or parts of two LOBs. You can only
compare LOBs of the same datatype (LOBs of BLOBtype with other BLOBSs and
CLOBswith CLOBs and BFILEs with BFILESs). For BFILEs , the file must be
already opened using a successful FILEOPEN operation for this operation to
succeed.

COMPAREeturns zero if the data exactly matches over the range specified by the
offset and amount parameters. Otherwise, a nonzero INTEGERIs returned.

For fixed-width n-byte CLOBs if the input amount for COMPARE specified to be
greater than (4294967295/n), then COMPARBatches characters in a range of size
(4294967295/n), or Max(length(clob1), length(clob2)), whichever is lesser.

DBMS_LOB.COMPARE (

lob_1 IN BLOB,

lob_2 IN BLOB,

amount IN INTEGER = 4294967295,
offset_1 IN INTEGER = 1,

offset_2 IN INTEGER = 1)

RETURN INTEGER;

DBMS_LOB.COMPARE (

23-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

ob_1 IN CLOB CHARACTER SET ANY CS,
lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
amount IN INTEGER = 4294967295,

offset_1 IN INTEGER = 1,

offset_2 IN INTEGER = 1)

RETURN INTEGER;

DBMS_LOB.COMPARE (

lob_1 IN BFILE,
lob_2 IN BFILE,
amount IN INTEGER,
offset_1 IN INTEGER = 1,
offset_2 IN INTEGER = 1)

RETURN INTEGER;

Pragmas
pragma restrict_references(COMPARE, WNDS, WNPS, RNDS, RNPS);
Parameters
Table 23-7 COMPARE Function Parameters
Parameter Description
lob 1 LOB locator of first target for comparison.
lob 2 LOB locator of second target for comparison.
amount Number of bytes (for BLOBS) or characters (for CLOBS to compare.
offset 1 Offset ir_1 bytes or characters on the first LOB(origin: 1) for the
comparison.
offset 2 Offset ir_1 bytes or characters on the first LOB(origin: 1) for the
comparison.
Returns
= INTEGER Zero if the comparison succeeds, nonzero if not.
= NULL if
- amount <1

— amount > LOBMAXSIZE

- offset 1 oroffset 2 <1

DBMS_LOB 23-19

COMPARE Function

* offset 1 oroffset 2 > LOBMAXSIZE

Exceptions
Table 23—-8 COMPARE Function Exceptions for BFILE operations
Exception Description
UNOPENED_FILE File was not opened using the input locator.
NOEXIST_DIRECTORY Directory does not exist.
NOPRIV_DIRECTORY You do not have privileges for the directory.
INVALID DIRECTORY Directory has been invalidated after the file was opened.
INVALID_OPERATION File does not exist, or you do not have access privileges on the file.
Examples
CREATE OR REPLACE PROCEDURE Example2a IS
lob_1, lob_2 BLOB;
retval INTEGER;
BEGIN

SELECT b _col INTO lob_ 1 FROM lob_table
WHERE key value = 45;
SELECT b _col INTO lob_ 2 FROM lob_table
WHERE key value = 54;
retval = dbms_lob.compare(lob_1, lob_2, 5600, 33482,
128);
IF retval = 0 THEN
; — process compared code
ELSE
; — process not compared code
END IF;
END;

CREATE OR REPLACE PROCEDURE Example 2b IS

fil 1, fl 2 BFILE;
retval INTEGER;
BEGIN

SELECT f lob INTO fl 1 FROM lob_table WHERE key value
SELECT f lob INTO fl 2 FROM lob_table WHERE key value
dbms_lobfileopen(fil_1, dbms_lobfie_readonly);
dbms_lob-fileopen(fil_2, dbms_lobfie_readonly);
retval = dbms_lob.compare(fil_1, fl 2, 5600,

£ &

23-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

3348276, 2765612);

IF (retval = 0)
THEN

; — process compared code
ELSE

; — process not compared code
END IF;
dbms_lob.fleclose(fil_1);
dbms_lob.fileclose(fil_2);

END;

COPY Procedure

Syntax

This procedure copies all, or a part of, a source internal LOBto a destination internal
LOB You can specify the offsets for both the source and destination LOBs, and the
number of bytes or characters to copy.

If the offset you specify in the destination LOBis beyond the end of the data
currently in this LOB then zero-byte fillers or spaces are inserted in the destination
BLOBor CLOBrespectively. If the offset is less than the current length of the
destination LOB then existing data is overwritten.

It is not an error to specify an amount that exceeds the length of the data in the
source LOB Thus, you can specify a large amount to copy from the source LOB
which copies data from the src_offset to the end of the source LOB

DBMS_LOB.COPY (
destlob IN OUT NOCOPY BLOB,

src_lob IN BLOB,
amount IN INTEGER,
dest_offset IN INTEGER = 1,
src_offset IN INTEGER = 1);

DBMS_LOB.COPY (
dest b IN OUT NOCOPY CLOB CHARACTER SET ANY CS,

src_lob IN CLOB CHARACTER SET dest lob%CHARSET,
amount IN INTEGER,

dest_offset IN INTEGER = 1,

src_offset IN INTEGER = 1);

DBMS_LOB 23-21

COPY Procedure

Parameters

Exceptions

Usage Notes

Table 23—-9 COPY Procedure Parameters

Parameter Description

dest _lob LOB locator of the copy target.

src_lob LOB locator of source for the copy.

amount Number of bytes (for BLOBS) or characters (for CLOBS to copy.

dest_offset Offset in bytes or characters in the destination LOB(origin: 1) for the
start of the copy.

src_offset Offset in bytes or characters in the source LOB(origin: 1) for the start
of the copy.

Table 23—-10 COPY Procedure Exceptions

Exception Description
VALUE_ERROR Any of the input parameters are NULLor invalid.
INVALID_ARGVAL Either:

- src_offset or dest_offset <1

- src_offset or dest_offset > LOBMAXSIZE
-amount <1

- amount > LOBMAXSIZE

It is not mandatory that you wrap the LOB operation inside the Open/Close APls.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

23-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Examples

CREATE OR REPLACE PROCEDURE Example_3a IS
lobd, lobs BLOB;

dest_offset INTEGER = 1

src_offset INTEGER = 1

amt INTEGER = 3000;
BEGIN

SELECT b _col INTO lobd

FROM lob_table
WHERE key value = 12 FOR UPDATE;
SELECT b_col INTO lobs

FROM lob_table
WHERE key value = 21;

DBMS_LOB.COPY(lobd, lobs, amt, dest offset, src_offset);

COMMIT;

EXCEPTION
WHEN some_exception
THEN handle_exception;

END;

CREATE OR REPLACE PROCEDURE Example_3b IS
lobd, lobs BLOB;

dest offset INTEGER = 1

src_offset INTEGER = 1

amt INTEGER = 3000;
BEGIN

SELECT b_col INTO lobd

FROM lob_table
WHERE key_value = 12 FOR UPDATE;
SELECT b_col INTO lobs

FROM lob_table
WHERE key value = 12;

DBMS_LOB.COPY(lohd, lobs, amt, dest offset, src_offset);

COMMIT;

EXCEPTION
WHEN some_exception

THEN handle_exception;
END;

CREATETEMPORARY Procedure

This procedure creates a temporary BLOBor CLOBand its corresponding index in

your default temporary tablespace.

DBMS_LOB 23-23

ERASE Procedure

Syntax

DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT NOCOPY BLOB,
cache IN BOOLEAN,
dur IN PLS_INTEGER = 10);

DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,

cache IN BOOLEAN,
dur IN PLS INTEGER := 10),
Parameters
Table 23-11 CREATETEMPORARY Procedure Parameters
Parameter Description
lob_loc LOB locator.
cache Specifies if LOBshould be read into buffer cache or not.
dur 1 of 2 predefined duration values (SESSIONor CALL) which
specifies a hint as to whether the temporary LOBis cleaned up at
the end of the session or call.
If dur is omitted, then the session duration is used.
Example
DBMS_LOB.CREATETEMPORARY(Dest_Loc, TRUE)
See Also: PL/SQL User’s Guide and Reference for more information
about NOCOPY and passing temporary lobs as parameters.
ERASE Procedure

This procedure erases an entire internal LOBor part of an internal LOB

Note: The length of the LOBIs not decreased when a section of the
LOBis erased. To decrease the length of the LOBvalue, see the
"TRIM Procedure" on page 23-58.

When data is erased from the middle of a LOB zero-byte fillers or spaces are written
for BLOBsor CLOBsrespectively.

23-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Syntax

Parameters

Exceptions

The actual number of bytes or characters erased can differ from the number you
specified in the amount parameter if the end of the LOBvalue is reached before
erasing the specified number. The actual number of characters or bytes erased is
returned in the amount parameter.

DBMS_LOBERASE (

lob_loc IN OUT NOCOPY BLOB,
amount IN OUT NOCOPY INTEGER,
offset IN INTEGER = 1);
DBMS_LOB.ERASE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN OUT NOCOPY INTEGER,
offset IN INTEGER = 1);

Table 23—-12 ERASE Procedure Parameters

Parameter Description

lob_loc Locator for the LOBto be erased.

amount Number of bytes (for BLOBsor BFILES) or characters (for CLOBsor
NCLOBS to be erased.

offset Absolute offset (origin: 1) from the beginning of the LOBin bytes (for

BLOBS9) or characters (CLOBS.

Table 23—-13 ERASE Procedure Exceptions

Exception Description
VALUE_ERROR Any input parameter is NULL
INVALID_ARGVAL Either:

-amount <1 or amount > LOBMAXSIZE
- offset < 1oroffset >LOBMAXSIZE

DBMS_LOB 23-25

FILECLOSE Procedure

Usage Notes

It is not mandatory that you wrap the LOB operation inside the Open/Close APls.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

Example

CREATE OR REPLACE PROCEDURE Example 4 IS
lobd BLOB;
amt INTEGER = 3000,
BEGIN
SELECT b_col INTO lobd
FROM lob_table
WHERE key value = 12 FOR UPDATE;
dbms_lob.erase(dest _lob, amt, 2000);
COMMIT;
END;

See Also: "TRIM Procedure" on page 23-58

FILECLOSE Procedure

This procedure closes a BFILE that has already been opened through the input
locator.

Note: Oracle has only read-only access to BFILEs . This means
that BFILEs cannot be written through Oracle.

Syntax

DBMS_LOB.FILECLOSE (
fle_loc IN OUT NOCOPY BFILE),

23-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Parameters

Exceptions

Example

Table 23-14 FILECLOSE Procedure Parameter

Parameter Description

fle_loc Locator for the BFILE to be closed.

Table 23—-15 FILECLOSE Procedure Exceptions

Exception Description
VALUE_ERROR NULibput value for file_loc
UNOPENED _FILE File was not opened with the input locator.

NOEXIST_DIRECTORY Directory does not exist.
NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID DIRECTORY Directory has been invalidated after the file was opened.
INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

CREATE OR REPLACE PROCEDURE Example 5 IS
fl BFILE;
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 99;
dbms_lob-fileopen(fil);
— file operations
dbms_lob-fileclose(fil);
EXCEPTION
WHEN some_exception
THEN handle_exception;
END;

See Also:
= "FILEOPEN Procedure" on page 23-32
= "FILECLOSEALL Procedure" on page 23-28

DBMS_LOB 23-27

FILECLOSEALL Procedure

FILECLOSEALL Procedure

This procedure closes all BFILEs opened in the session.
Syntax

DBMS_LOB.FLECLOSEALL,
Exceptions

Table 23—-16 FILECLOSEALL Procedure Exception

Exception Description

UNOPENED_FILE No file has been opened in the session.
Example

CREATE OR REPLACE PROCEDURE Example 6 IS

fl BFILE;
BEGIN

SELECT f lob INTO fl FROM lob_table WHERE key_value = 99;
dbms_lob-fileopen(fil);
— file operations
dbms_lob.filecloseall;
EXCEPTION
WHEN some_exception
THEN handle_exception;
END;

See Also:
= "FILEOPEN Procedure" on page 23-32
= "FILECLOSE Procedure" on page 23-26

FILEEXISTS Function

This function finds out if a given BFILE locator points to a file that actually exists
on the server’s file system.

Syntax

DBMS_LOB.FILEEXISTS (
fie_loc IN BFILE)
RETURN INTEGER;

23-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Pragmas

Parameters

Returns

Exceptions

Example

pragma restrict_references(FILEEXISTS, WNDS, RNDS, WNPS, RNPS);

Table 23-17 FILEEXISTS Function Parameter

Parameter Description

fle_loc Locator for the BFILE .

Table 23—18 FILEEXISTS Function Returns

Return Description
0 Physical file does not exist.
1 Physical file exists.

Table 23-19 FILEEXISTS Function Exceptions

Exception Description

NOEXIST_DIRECTORY Directory does not exist.
NOPRIV_DIRECTORY You do not have privileges for the directory.
INVALID DIRECTORY Directory has been invalidated after the file was opened.

CREATE OR REPLACE PROCEDURE Example 7 IS
fl BFILE;
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 12
IF (dbms_lob-fileexists(fil)
THEN
; — fle exists code
ELSE
; — fle does not exist code
END IF;
EXCEPTION

DBMS_LOB

23-29

FILEGETNAME Procedure

WHEN some_exception
THEN handle_exception;
END;

See Also: "FILEISOPEN Function" on page 23-31.

FILEGETNAME Procedure

Syntax

Parameters

Exceptions

Example

This procedure determines the directory alias and filename, given a BFILE locator.
This function only indicates the directory alias name and filename assigned to the
locator, not if the physical file or directory actually exists.

The maximum constraint values for the dir_alias buffer is 30, and for the entire
path name, it is 2000.

DBMS_LOB.FILEGETNAME (
fle loc IN BFILE,
dir ias OUT VARCHAR2,
flename OUT VARCHAR2);

Table 23-20 FILEGETNAME Procedure Parameters

Parameter Description

fle_loc Locator for the BFILE .
dir_alias Directory alias.
flename Name of the BFILE .

Table 23-21 FILEGETNAME Procedure Exceptions

Exception Description
VALUE_ERROR Any of the input parameters are NULLor INVALID .
INVALID_ARGVAL dir_alias or filename are NULL

CREATE OR REPLACE PROCEDURE Example 8 IS

23-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

fl BFILE;
dir_alias VARCHAR2(30);
name VARCHAR2(2000);

BEGIN
IF (dbms_lob-fileexists(fil))
THEN
dbms_lob.flegetname(fil, dir_alias, name);
doms_outputput_line('Opening " || dir_alias || name);
dbms_lob.fileopen(fil, doms_lobfile_readonly);
- fle operations
doms_output fileclose(fil);
END IF;
END;

FILEISOPEN Function

Syntax

Pragmas

Parameters

Returns

This function finds out whether a BFILE was opened with the given FILE locator.

If the input FILE locator was never passed to the FILEOPEN procedure, then the
file is considered not to be opened by this locator. However, a different locator may
have this file open. In other words, openness is associated with a specific locator.

DBMS_LOB.FILEISOPEN (
fleloc IN BFILE)
RETURN INTEGER;

pragma restrict_references(FILEISOPEN, WNDS, RNDS, WNPS, RNPS)

Table 23-22 FILEISOPEN Function Parameter

Parameter Description

fle_loc Locator for the BFILE .

INTEGER 0 = file is not open, 1 = file is open

DBMS_LOB 23-31

FILEOPEN Procedure

Exceptions

Table 23-23 FILEISOPEN Function Exceptions

Exception Description

NOEXIST_DIRECTORY Directory does not exist.
NOPRIV_DIRECTORY You do not have privileges for the directory.
INVALID DIRECTORY Directory has been invalidated after the file was opened.

Example

CREATE OR REPLACE PROCEDURE Example 9 IS
DECLARE
fil BFILE;
pos INTEGER;
pattem VARCHAR2(20);
BEGIN
SELECT f lob INTO fl FROM lob_table
WHERE key value = 12;
— open the fle
IF (dbms_lob.fileisopen(fil))
THEN
pos = dbms_lobinstr(fil, pattem, 1025, 6);
— more file operations
dbms_lob.fileclose((fil);
ELSE
; — reum emor
END IF;
END;

See Also: "FILEEXISTS Function" on page 23-28

FILEOPEN Procedure

This procedure opens a BFILE for read-only access. BFILEs may not be written
through Oracle.

Syntax

DBMS_LOB.FILEOPEN (
fle loc IN OUT NOCOPY BFILE,
open_mode IN BINARY_INTEGER := file_readonly);

23-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Parameters

Exceptions

Example

Table 23-24 FILEOPEN Procedure Parameters

Parameter Description
fle_loc Locator for the BFILE .
open_mode File access is read-only.

Table 23-25 FILEOPEN Procedure Exceptions

Exception Description
VALUE_ERROR file_loc oropen_mode is NULL
INVALID_ARGVAL open_mode is not equal to FILE_READONLY

OPEN_TOOMANY

NOEXIST_DIRECTORY
INVALID_DIRECTORY
INVALID_OPERATION

Number of open files in the session exceeds session_max_open_
files

Directory associated with file_loc does not exist.
Directory has been invalidated after the file was opened.

File does not exist, or you do not have access privileges on the file.

CREATE OR REPLACE PROCEDURE Example 10 IS
fl BFILE;
BEGIN
— open BFILE
SELECT f lob INTO fl FROM lob_table WHERE key value = 99;
IF (dbms_lob-fileexists(fil)
THEN
dbms_lob.fileopen(fil, doms_lobfile_readonly);
— file operation
dbms_lob.fileclose(fil);
END IF;
EXCEPTION
WHEN some_exception
THEN handle_exception;
END;

DBMS_LOB

23-33

FREETEMPORARY Procedure

See Also:
= "FILECLOSE Procedure" on page 23-26
= "FILECLOSEALL Procedure" on page 23-28

FREETEMPORARY Procedure

This procedure frees the temporary BLOBor CLOBIn your default temporary
tablespace. After the call to FREETEMPORARIYie LOBlocator that was freed is
marked as invalid.

If an invalid LOBIlocator is assigned to another LOBlocator using
OClLobLocatorAssign in OCI or through an assignment operation in PL/SQL,
then the target of the assignment is also freed and marked as invalid.

Syntax

DBMS_LOB.FREETEMPORARY (
lob_ loc IN OUT NOCOPY BLOB),

DBMS_LOB.FREETEMPORARY (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY CS);

Parameters

Table 23-26 FREETEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.

Example

DECLARE
a blob;
b blob;
BEGIN
dbms_lob.createtemporary(a, TRUE);
dbms_lob.createtemporary(b, TRUE);

- the following call frees lob a

dbms_lob.freetemporary(a);

- at this point lob locator a is marked as invalid

- the following assignment frees the lob b and marks it as invalid
also

23-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

b =a
END;

GETCHUNKSIZE Function

Syntax

Pragmas

Parameters

Returns

Usage Notes

When creating the table, you can specify the chunking factor, which can be a
multiple of Oracle blocks. This corresponds to the chunk size used by the LOBdata
layer when accessing or modifying the LOBvalue. Part of the chunk is used to store
system-related information, and the rest stores the LOBvalue.

This function returns the amount of space used in the LOBchunk to store the LOB
value.

DBMS_LOB.GETCHUNKSIZE (
lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.GETCHUNKSIZE (
lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

pragma restrict_references(GETCHUNKSIZE, WNDS, RNDS, WNPS, RNPS);

Table 23-27 GETCHUNKSIZE Function Parameters

Parameter Description

lob_loc LOB locator.

The value returned for BLOBsis in terms of bytes. The value returned for CLOBsis
in terms of characters.

Performance is improved if you enter read/write requests using a multiple of this
chunk size. For writes, there is an added benefit, because LOBchunks are versioned,
and if all writes are done on a chunk basis, then no extra or excess versioning is

DBMS_LOB 23-35

GETLENGTH Function

done or duplicated. You could batch up the WRITEuntil you have enough for a
chunk, instead of issuing several WRITEcalls for the same chunk.

GETLENGTH Function

Syntax

Pragmas

Parameters

Returns

This function gets the length of the specified LOB The length in bytes or characters
is returned.

The length returned for a BFILE includes the EOF if it exists. Any 0-byte or space
filler in the LOBcaused by previous ERASEor WRITEoperations is also included in
the length count. The length of an empty internal LOBis 0.

DBMS_LOB.GETLENGTH (
b loc N BLOB)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (
b loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (

fle loc IN BFILE)
RETURN INTEGER;

pragma restrict_references(GETLENGTH, WNDS, WNPS, RNDS, RNPS);

Table 23-28 GETLENGTH Function Parameter

Parameter Description

fle_loc The file locator for the LOBwhose length is to be returned.

The length of the LOBIn bytes or characters as an INTEGER NULL s returned if the
input LOBis NULLor if the input lob_loc is NULL An error is returned in the
following cases for BFILES :

23-36 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

s lob_loc does not have the necessary directory and operating system
privileges

s lob_loc cannot be read because of an operating system read error

Examples
CREATE OR REPLACE PROCEDURE Example 11a IS
lobd BLOB;
length INTEGER,;
BEGIN
— get the LOB locator
SELECT b_lob INTO lobd FROM lob_table
WHERE key value = 42;
length = dbms_lob.getlength(lobd);
IF length IS NULL THEN
dbms_outputput_line(LOB is null.);
ELSE
dbms_outputput_line(The length is ’
| length);
END IF;
END;
CREATE OR REPLACE PROCEDURE Example 11b IS
DECLARE
len INTEGER;
fl BFILE;
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 12;
len = dbms_lob.lengthy(fil);
END;
INSTR Function

This function returns the matching position of the nth occurrence of the pattern in
the LOB starting from the offset you specify.

The form of the VARCHARDuffer (the pattern parameter) must match the form of
the CLOBparameter. In other words, if the input LOBparameter is of type NCLOB
then the buffer must contain NCHARJata. Conversely, if the input LOBparameter is
of type CLOB then the buffer must contain CHARdata.

For BFILEs , the file must be already opened using a successful FILEOPEN
operation for this operation to succeed.

DBMS_LOB 23-37

INSTR Function

Operations that accept RAWor VARCHARDarameters for pattern matching, such as
INSTR, do not support regular expressions or special matching characters (as in the
case of SQL LIKE) in the pattern parameter or substrings.

Syntax
DBMS_LOB.INSTR (
lobloc IN BLOB,
pattemn IN RAW,
offset IN INTEGER = 1,
nth IN INTEGER = 1)
RETURN INTEGER;
DBMS_LOB.INSTR (
obloc IN CLOB CHARACTER SET ANY_CS,
patem IN VARCHAR2 CHARACTER SET lob loc%CHARSET,
offset IN INTEGER = 1,
nth IN INTEGER = 1)
RETURN INTEGER;
DBMS_LOB.INSTR (
fle loc IN BFILE,
paten IN RAW,
offset IN INTEGER = 1,
nth IN INTEGER = 1)
RETURN INTEGER;
Pragmas
pragma restrict references(INSTR, WNDS, WNPS, RNDS, RNPS);
Parameters

Table 23-29 INSTR Function Parameters

Parameter Description

lob_loc Locator for the LOBto be examined.

fle_loc The file locator for the LOB to be examined.

patten Pattern to be tested for. The pattern is a group of RAWbytes for BLOBs

and a character string (VARCHARRfor CLOBsThe maximum size of
the pattern is 16383 bytes.

offset Absolute offset in bytes (BLOBS) or characters (CLOBg at which the
pattern matching is to start. (origin: 1)

23-38 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Returns

Exceptions

Examples

Table 23-29 INSTR Function Parameters

Parameter Description

nth Occurrence number, starting at 1.

Table 23-30 INSTR Function Returns

Return Description

INTEGER Offset of the start of the matched pattern, in bytes or characters.
It returns 0 if the pattern is not found.

NULL Either:
-any one or more of the IN parameters was NULLor INVALID .
-offset < 1oroffset >LOBMAXSIZE
-nth <1.
-nth > LOBMAXSIZE.

Table 23-31 INSTR Function Exceptions for BFILES

Exception Description

UNOPENED _FILE File was not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID DIRECTORY Directory has been invalidated after the file was opened.
INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

CREATE OR REPLACE PROCEDURE Example_12a IS
lobd CLOB;
pattem VARCHAR?2 = 'abcde’;
position INTEGER = 10000;
BEGIN
— get the LOB locator
SELECT b _col INTO lobd

DBMS_LOB 23-39

ISOPEN Function

FROM lob_table
WHERE key value = 21;
position = DBMS_LOB.INSTR(lobd,
pattem, 1025, 6);
IF postion = 0 THEN
dbms_outputput_line(Pattem not found);
ELSE
dbms_outputput _line(The pattem occurs at ’
| position);
END IF;
END;

CREATE OR REPLACE PROCEDURE Example 12b IS
DECLARE
fl BFILE;
pattem VARCHAR2;
pos INTEGER;
BEGIN
— iniiaize pattem
— check for the 6th occurence starting from 1025th byte
SELECT f lob INTO fl FROM lob_table WHERE key value = 12;
dbms_lobfileopen(fil, doms_lobfile_readonly);
pos = dbms lob.instr(fil, pattem, 1025, 6);
dbms_lob-fileclose(fil);
END;

See Also: "SUBSTR Function" on page 23-55

ISOPEN Function

This function checks to see if the LOBwas already opened using the input locator.
This subprogram is for internal and external LOBs.

Syntax

DBMS_LOB.ISOPEN (
lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.ISOPEN (
lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

DBMS_LOB.ISOPEN (
fle_loc IN BFILE)

23-40 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Pragmas

Parameters

Usage Notes

RETURN INTEGER;

pragma restrict_references(ISOPEN, WNDS, RNDS, WNPS, RNPS);

Table 23—-32 ISOPEN Function Parameters

Parameter Description
lob_loc LOB locator.
fle_loc File locator.

For BFILES, openness is associated with the locator. If the input locator was never
passed to OPEN, the BFILE is not considered to be opened by this locator.
However, a different locator may have opened the BFILE . More than one OPENcan
be performed on the same BFILE using different locators.

For internal LOBs, openness is associated with the LOB not with the locator. If
locatorl opened the LOB then locator2 also sees the LOBas open. For internal LOBS,
ISOPENTequires a round-trip, because it checks the state on the server to see if the
LOBis indeed open.

For external LOBs (BFILEs), ISOPENalso requires a round-trip, because that’s
where the state is kept.

ISTEMPORARY Function

Syntax

DBMS_LOB.ISTEMPORARY (
lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (

lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

DBMS_LOB 23-41

LOADFROMFILE Procedure

Pragmas

PRAGMA RESTRICT_REFERENCES(istemporary, WNDS, RNDS, WNPS, RNPS);
Parameters

Table 23-33 ISTEMPORARY Procedure Parameters

Parameter Description

lob_loc LOB locator.

temporary Boolean, which indicates whether the LOB is temporary or not.
Returns

This function returns TRUEin temporary if the locator is pointing to a temporary

LOB It returns FALSE otherwise.
LOADFROMFILE Procedure

This procedure copies all, or a part of, a source external LOB(BFILE) to a
destination internal LOB

You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE . The amount and src_offset
because they refer to the BFILE , are in terms of bytes, and the dest_offset is
either in bytes or characters for BLOBsand CLOBsrespectively.

Note: The input BFILE must have been opened prior to using this
procedure. No character set conversions are performed implicitly
when binary BFILE data is loaded into a CLOB The BFILE data
must already be in the same character set as the CLOBIn the
database. No error checking is performed to verify this.

If the offset you specify in the destination LOBis beyond the end of the data
currently in this LOB then zero-byte fillers or spaces are inserted in the destination
BLOBor CLOBrespectively. If the offset is less than the current length of the
destination LOB then existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE .

23-42 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Syntax

Parameters

Note: If the character set is varying width, UTF-8 for example, the
LOB value is stored in the fixed-width UCS2 format. Therefore, if
you are using DBMS_LOB.LOADFROMFILEthe data in the BFILE
should be in the UCS2 character set instead of the UTF-8 character
set. However, you should use sqgl*loader instead of
LOADFROMFILEo load data into a CLOB or NCLOB because
sql*loader will provide the necessary character set conversions.

DBMS_LOB.LOADFROMFILE (
dest lob IN OUT NOCOPY BLOB,

src_file IN BFILE,

amount IN INTEGER,
dest offset IN INTEGER =1,
src_offset IN INTEGER = 1)

Table 23—-34 LOADFROMFILE Procedure Parameters

Parameter Description

dest _lob LOB locator of the target for the load.

src_file BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE .

dest_offset Offset in bytes or characters in the destination LOB(origin: 1) for the

start of the load.
src_offset Offset in bytes in the source BFILE (origin: 1) for the start of the load.

Usage Requirements

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

DBMS_LOB 23-43

LOADBLOBFROMFILE Procedure

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

Exceptions
Table 23-35 LOADFROMFILE Procedure Exceptions
Exception Description
VALUE_ERROR Any of the input parameters are NULLor INVALID .
INVALID_ARGVAL Either:
- src_offset or dest_offset <1l
- src_offset or dest_offset > LOBMAXSIZE
-amount <1.
- amount > LOBMAXSIZE
Example
CREATE OR REPLACE PROCEDURE Example_2f IS
lobd BLOB;
fis BFILE = BFILENAME(SOME _DIR _OBJ'some fie);
amt INTEGER = 4000;
BEGIN

SELECT b_lob INTO lobd FROM lob_table WHERE key value = 42 FOR UPDATE;
dbms_lobfileopen(fils, dbms_lobfile_readonly);

dbms_lob.loadfromfile(lobd, fils, amt);

COMMIT;

dbms_lob fileclosefils);

LOADBLOBFROMFILE Procedure

This procedure loads data from BFILE to internal BLOB This achieves the same
outcome as LOADFROMFILEand returns the new offsets.

You can specify the offsets for both the source and destination LOBSs, and the
number of bytes to copy from the source BFILE . The amount and src_offset
because they refer to the BFILE , are in terms of bytes, and the dest_offset isin
bytes for BLOBs

If the offset you specify in the destination LOBis beyond the end of the data
currently in this LOB then zero-byte fillers or spaces are inserted in the destination

23-44 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Syntax

Parameters

BLOB If the offset is less than the current length of the destination LOB then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZEwhich you can specify to
continue loading until the end of the BFILE is reached).

DBMS_LOB.LOADBLOBFROMFILE (
dest lob IN OUT NOCOPY BLOB,

src_bfle IN BFILE,
amount IN INTEGER,
dest offset IN OUT INTEGER,
src_offset IN OUT INTEGER);

Table 23-36 LOADBLOBFROMEFILE Procedure Parameters

Parameter Description

dest lob BLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE . You can also use DBMS_

LOB.LOBMAXSIZEto load until the end of the BFILE .

dest_offset (IN)) Offset in bytes in the destination BLOB(origin: 1) for the start of
the write. (OUT) New offset in bytes in the destination BLOB
right after the end of this write, which is also where the next
write should begin.

src_offset (IN) Offset in bytes in the source BFILE (origin: 1) for the start of
the read.(OUT) Offset in bytes in the source BFILE right after the
end of this read, which is also where the next read should begin.

Usage Requirements

It is not mandatory that you wrap the LOBoperation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must close it
before you commit or rollback the transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

DBMS_LOB 23-45

LOADBLOBFROMFILE Procedure

If you do not wrap the LOB operation inside the OPEN/CLOSKEthe functional and
domain indexes are updated each time you write to the LOR This can adversely
affect performance. Therefore, it is recommended that you enclose write operations
to the LOBwithin the OPENor CLOSEstatement.

Constants and Defaults

There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or provide a default value for the IN parameter. Here is a
summary of the constants and the defaults that can be used.

Table 23-37 Suggested Values of the Parameter

Parameter Default Value Description
amount DBMSLOB.LOBMAXSIZE Load the entire file
(IN)
dest_offset 1 (IN) start from the beginning
src_offset 1 (IN) start from the beginning

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER = 4294967295;
Exceptions
Table 23-38 LOADBLOBFROMEFILE Procedure Exceptions
Exception Description
VALUE_ERROR Any of the input parameters are NULLor INVALID .
INVALID_ARGVAL Either:
- src_offset or dest_offset <1l
- src_offset or dest_offset > LOBMAXSIZE
-amount <1.
- amount > LOBMAXSIZE
Example

TBD

23-46 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

LOADCLOBFROMFILE Procedure

Syntax

Parameters

This procedure loads data from a BFILE to an internal CLOB/NCLOBwith necessary
character set conversion and returns the new offsets.

You can specify the offsets for both the source and destination LOBs, and the
number of bytes to copy from the source BFILE . The amount and src_offset
because they refer to the BFILE , are in terms of bytes, and the dest_offset isin
characters for CLOBs

If the offset you specify in the destination LOBis beyond the end of the data
currently in this LOB then zero-byte fillers or spaces are inserted in the destination
CLOB If the offset is less than the current length of the destination LOB then
existing data is overwritten.

There is an error if the input amount plus offset exceeds the length of the data in the
BFILE (unless the amount specified is LOBMAXSIZEwhich you can specify to
continue loading until the end of the BFILE is reached).

DBMS_LOB.LOADCLOBFROMFILE (

dest lob IN OUT NOCOPY BLOB,
src_bfile IN BFILE,
amount IN INTEGER,
dest offset IN OUT INTEGER,
src_offset IN ouT INTEGER,
src_csid IN NUMBER,
lang_context IN OUT INTEGER,
waming ouT INTEGER);

Table 23-39 LOADCLOBFROMEFILE Procedure Parameters

Parameter Description

dest _lob CLOB/NCLOB locator of the target for the load.

src_bfile BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE . Use DBMS _

LOB.LOBMAXSIZEto load until the end of the BFILE .

DBMS_LOB 23-47

LOADCLOBFROMFILE Procedure

Table 23-39 LOADCLOBFROMFILE Procedure Parameters

Parameter

Description

dest_offset

src_offset

src_csid

lang_context

warning

(IN) Offset in characters in the destination CLOB(origin: 1)
for the start of the write. (OUT) The new offset in characters
right after the end of this load, which is also where the next
load should start. It always points to the beginning of the first
complete character after the end of load. If the last character is
not complete, offset goes back to the beginning of the partial
character.

(IN) Offset in bytes in the source BFILE (origin: 1) for the start of

the read.(OUT) Offset in bytes in the source BFILE right after the end
of this read, which is also where the next read should begin.

Character set id of the source (BFILE) file.

(IN) Language context, such as shift status, for the current
load. (OUT) The language context at the time when the
current load stopped, and what the next load should be using if
continuing loading from the same source. This information is
returned to the user so that they can use it for the continuous
load without losing or misinterpreting any source data. For the
very first load or if do not care, simply use the default 0. The
details of this language context is hidden from the user. One
does not need to know what it is or what'’s in it in order to
make the call

(OUT) Warning message. This indicates something abnormal
happened during the loading. It may or may not be caused by the
user’s mistake. The loading is completed as required, and it’s up to the
user to check the warning message. Currently, the only possible
warning is the inconvertible character. This happens when the
character in the source cannot be properly converted to a character in
destination, and the default replacement character (e.g., *?°) is used in
place. The message is defined as warn_inconvertable_char in
DBMSLOB.

Usage Requirements

= The destination character set is always the same as the database character set in
the case of CLOB and national character set in the case of NCLOB.

= csid=0

indicates the default behavior that uses database csid for CLOBand

national csid for NCLOBin the place of source csid . Conversion is still
necessary if it is of varying width

23-48 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

s Itis not mandatory that you wrap the LOBoperation inside the OPEN/CLOSE
operations. If you did not open the LOB before performing the operation, the
functional and domain indexes on the LOB column are updated during the call.
However, if you opened the LOB before performing the operation, you must
close it before you commit or rollback the transaction. When an internal LOB is
closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the OPEN/CLOSEthe functional
and domain indexes are updated each time you write to the LOR This can
adversely affect performance. Therefore, it is recommended that you enclose
write operations to the LOBwithin the OPENor CLOSEstatement.

Constants and Defaults

There is no easy way to omit parameters. You must either declare a variable for
IN/OUT parameter or give a default value for the IN parameter. Here is a summary
of the constants and the defaults that can be used.

Table 23—-40 Suggested Values of the Parameter

Parameter Default Value Description

amount DBMSLOB.LOBMAXLoad the entire file
SIZE (IN)

dest_offset 1 (IN) start from the beginning
src_offset 1 (IN) start from the beginning
csid 0 (IN) default csid, use destination csid
lang_context 0 (IN) default language context
warning 0 (OUT) no warning message, everything is ok

Constants defined in DBMSLOB.SQL

lobmaxsize CONSTANT INTEGER = 4294967295,
wam_inconvertible_char CONSTANT INTEGER =1

default_csid CONSTANT INTEGER =0

default_lang ctx CONSTANT INTEGER =0

no_waming CONSTANT INTEGER =0

DBMS_LOB 23-49

OPEN Procedure

Exceptions
Table 23—-41 LOADCLOBFROMFILE Procedure Exceptions
Exception Description
VALUE_ERROR Any of the input parameters are NULLor INVALID .
INVALID_ARGVAL Either:
- src_offset or dest_offset <1l
- src_offset or dest_offset > LOBMAXSIZE
-amount <1.
- amount > LOBMAXSIZE
Example

TBD

OPEN Procedure

This procedure opens a LOB internal or external, in the indicated mode. Valid
modes include read-only, and read/write. It is an error to open the same LOBtwice.

Note: If the LOBwas opened in read-only mode, and if you try to
write to the LOB then an error is returned. BFILE can only be
opened with read-only mode.

In Oracle8.0, the constant file_readonly was the only valid mode in which to
open a BFILE . For Oracle 8i, two new constants have been added to the DBMS_LOB
package: lob_readonly and lob_readwrite

Syntax

DBMS_LOB.OPEN (
lob loc IN OUT NOCOPY BLOB,
open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (

lob loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
open_mode IN BINARY_INTEGERY);

23-50 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Parameters

Usage Notes

DBMS_LOB.OPEN (
fle loc IN OUT NOCOPY BFILE,
open_mode IN BINARY_INTEGER = fie_readonly);

Table 23—42 OPEN Procedure Parameters

Parameter Description
lob_loc LOB locator.
open_mode Mode in which to open.

OPENrequires a roundtrip to the server for both internal and external LOBs. For
internal LOBs, OPENriggers other code that relies on the OPENall. For external
LOBs (BFILEs), OPENrequires a round-trip because the actual operating system file
on the server side is being opened.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.
However, if you open a LOB, you must close it before you commit or rollback the
transaction; an error is produced if you do not. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed. Hence, all the
changes made to the LOB and nonLOB data in the transaction are committed, but
the domain and function-based indexes are not updated. If this happens, you
should rebuild the functional and domain indexes on the LOB column.

READ Procedure

Syntax

This procedure reads a piece of a LOB and returns the specified amount into the
buffer parameter, starting from an absolute offset from the beginning of the LOB

The number of bytes or characters actually read is returned in the amount
parameter. If the input offset points past the End of LOB, then amount is set to 0,
and a NO_DATA_FOUNE&Xception is raised.

DBMS_LOB.READ (

DBMS_LOB 23-51

READ Procedure

Parameters

Exceptions

lob_loc IN BLOB,

amount IN OUT NOCOPY BINARY INTEGER,

offset N INTEGER,

bufer OUT RAW),
DBMS_LOBREAD (

lob_loc IN CLOB CHARACTER SET ANY _CS,

amount IN OUT NOCOPY BINARY INTEGER,

offset N INTEGER,

bufer OUT VARCHAR2 CHARACTER SET lob Ioc%CHARSET);
DBMS_LOBREAD (

fle loc IN BFILE,

amount N OUT NOCOPY BINARY INTEGER,

offset N INTEGER,

bufer OUT RAW);

Table 23—-43 READ Procedure Parameters

Parameter Description

lob_loc Locator for the LOBto be read.

fle_loc The file locator for the LOB to be examined.

amount Number of bytes (for BLOBS) or characters (for CLOBS to read, or

number that were read.

offset Offset in bytes (for BLOBS) or characters (for CLOB9 from the start of

the LOB(origin: 1).
buffer Output buffer for the read operation.

Table 23—-44 READ Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount, or offset parameters are NULL

23-52 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Exceptions

Usage Notes

Examples

Table 23—-44 READ Procedure Exceptions

Exception Description
INVALID_ARGVAL Either:
-amount <1
- amount > MAXBUFSIZE
-offset <1

- offset > LOBMAXSIZE

- amount is greater, in bytes or characters, than the capacity of
buffer

NO_DATA FOUND End of the LOBis reached, and there are no more bytes or characters
to read from the LOB amount has a value of 0.

Table 23—-45 READ Procedure Exceptions for BFILES

Exception Description

UNOPENED_FILE File is not opened using the input locator.

NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID DIRECTORY Directory has been invalidated after the file was opened.
INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

The form of the VARCHARDuffer must match the form of the CLOBparameter. In
other words, if the input LOBparameter is of type NCLOBthen the buffer must
contain NCHARdJata. Conversely, if the input LOBparameter is of type CLOB then
the buffer must contain CHARdata.

When calling DBMS_LOBREADfrom the client (for example, in a BEGIN/ENDblock
from within SQL*PIlus), the returned buffer contains data in the client’s character
set. Oracle converts the LOBvalue from the server’s character set to the client’s
character set before it returns the buffer to the user.

CREATE OR REPLACE PROCEDURE Example 13a IS

DBMS_LOB 23-53

READ Procedure

src_lob BLOB;
buffer RAW(32767);
amt BINARY_INTEGER = 32767,
pos INTEGER = 2147483647,
BEGIN
SELECT b _col INTO src_lob
FROM lob_table
WHERE key value = 21;
LOOP
dbms _lob.read (src_lob, amt, pos, buffer);
- process the buffer
pos = pos + amt,
END LOOP;
EXCEPTION
WHEN NO_DATA FOUND THEN
dbms_outputput_line(End of data);
END;

CREATE OR REPLACE PROCEDURE Example 13b IS
fl BFILE;
buf RAW(32767);
amt BINARY_INTEGER = 32767;
pos INTEGER = 2147483647,
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 21;
dbms_lob-fileopen(fil, doms_lobfie_readonly);
LOOP
dbms_lob.read(fl, amt, pos, buf);
- process contents of buf
pos = pos + ant,
END LOOP;
EXCEPTION
WHEN NO_DATA FOUND
THEN
BEGIN
dbms_outputputine (End of LOB value reached);
dbms_lob fileclose(fi);
END;
END;

Example for efficient operating system 1/0 that performs better with block 1/0
rather than stream 1/0:

CREATE OR REPLACE PROCEDURE Example_13c IS
fil BFILE;

23-54 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

amt BINARY_INTEGER = 1024; - or n x 1024 for reading n
buf RAW(1024); — blocks at a tme
tmpamt BINARY_INTEGER,;
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 99;
dbms_lobAfileopen(fil, doms_lobfie_readonly);
LOOP
dbms_lob.read(fl, amt, pos, buf);
- process contents of buf
pos = pos + amt,
END LOORP;
EXCEPTION
WHEN NO_DATA FOUND
THEN
BEGIN
dbms_outputputine (End of data reached);
dbms_lob-fileclose(fil);
END;
END;

SUBSTR Function

Syntax

This function returns amount bytes or characters of a LOB starting from an absolute
offset from the beginning of the LOB

For fixed-width n-byte CLOBSs if the input amount for SUBSTRs specified to be
greater than (32767/n), then SUBSTRreturns a character buffer of length (32767/n),
or the length of the CLOB whichever is lesser. For CLOBs in a varying-width
character set, n is 2.

DBMS_LOB.SUBSTR (
lob_loc IN BLOB,

amount IN INTEGER = 32767,
offset IN INTEGER = 1)
RETURN RAW,

DBMS_LOB.SUBSTR (
lob_loc IN CLOB CHARACTER SET ANY CS,
amount IN INTEGER = 32767,
offset IN INTEGER = 1)
RETURN VARCHAR2 CHARACTER SET lob loc%CHARSET:

DBMS_LOB.SUBSTR (

DBMS_LOB 23-55

SUBSTR Function

file_loc IN BFILE,
amount IN INTEGER = 32767,
offset IN INTEGER = 1)
RETURN RAW;
Pragmas
pragma restrict_references(SUBSTR, WNDS, WNPS, RNDS, RNPS);
Parameters
Table 23—-46 SUBSTR Function Parameters
Parameter Description
lob_loc Locator for the LOBto be read.
file_loc The file locator for the LOB to be examined.
amount Number of bytes (for BLOBS) or characters (for CLOBS to be read.
offset Offset in bytes (for BLOBS) or characters (for CLOBSg from the start of
the LOB(origin: 1).
Returns

Table 23—-47 SUBSTR Function Returns

Return Description

RAW Function overloading that has a BLOBor BFILE in parameter.
VARCHAR2 CLOtersion.

NULL Either:

- any input parameter is NULL
-amount <1

- amount > 32767

-offset <1

- offset > LOBMAXSIZE

23-56 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Exceptions

Usage Notes

Examples

Table 23—-48 SUBSTR Function Exceptions for BFILE operations

Exception Description

UNOPENED _FILE File is not opened using the input locator.
NOEXIST_DIRECTORY Directory does not exist.

NOPRIV_DIRECTORY You do not have privileges for the directory.

INVALID DIRECTORY Directory has been invalidated after the file was opened.

INVALID_OPERATION File does not exist, or you do not have access privileges on the file.

The form of the VARCHARDuffer must match the form of the CLOBparameter. In

other words, if the input LOBparameter is of type NCLOBthen the buffer must

contain NCHARdJata. Conversely, if the input LOBparameter is of type CLOB then

the buffer must contain CHARdata.

When calling DBMS_LOBUBSTRfrom the client (for example, in a BEGIN/END

block from within SQL*Plus), the returned buffer contains data in the client’s

character set. Oracle converts the LOBvalue from the server’s character set to the

client’s character set before it returns the buffer to the user.

CREATE OR REPLACE PROCEDURE Example 14a IS

src_lob CLOB;

pos INTEGER = 2147483647,

buf VARCHAR2(32000);
BEGIN

SELECT c lob INTO src_lob FROM lob_table
WHERE key value = 21;
buf := DBMS_LOB.SUBSTR(src_lob, 32767, pos);
— process the data
END;

CREATE OR REPLACE PROCEDURE Example_14b IS
fl BFILE;
pos INTEGER = 2147483647
pattem RAW,
BEGIN
SELECT f lob INTO fl FROM lob_table WHERE key value = 21;

DBMS_LOB

23-57

TRIM Procedure

dbms_lob-fileopen(fil, doms_lobfie_readonly);
pattem = dbms_lob.substr(fil, 255, pos);
dbms_lob.fileclose(fil);

END;

See Also:
s "INSTR Function" on page 23-37
s "READ Procedure” on page 23-51

TRIM Procedure

This procedure trims the value of the internal LOBto the length you specify in the
newlen parameter. Specify the length in bytes for BLOBSs and specify the length in
characters for CLOBs

Note: The TRIM procedure decreases the length of the LOBto the
value specified in the newlen parameter.

If you attempt to TRIM an empty LOB then nothing occurs, and TRIM returns no
error. If the new length that you specify in newlen is greater than the size of the
LOB then an exception is raised.

Syntax
DBMS_LOB.TRIM (
lob_loc IN OUT NOCOPY BLOB,
newlen IN INTEGER);
DBMS_LOB.TRIM (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
newlen IN INTEGER);
Parameters

Table 23—49 TRIM Procedure Parameters

Parameter Description

lob_loc Locator for the internal LOBwhose length is to be trimmed.

newlen New, trimmed length of the LOBvalue in bytes for BLOBsor
characters for CLOBs

23-58 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Exceptions

Usage Notes

Example

Table 23-50 TRIM Procedure Exceptions

Exception Description
VALUE_ERROR lob_loc is NULL
INVALID_ARGVAL Either:

-new_len <0
-new_len >LOBMAXSIZE

It is not mandatory that you wrap the LOB operation inside the Open/Close APls.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you

opened the LOB before performing the operation, you must close it before you

commit or rollback the transaction. When an internal LOB is closed, it updates the

functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional

and domain indexes are updated each time you write to the LOB. This can

adversely affect performance. Therefore, it is recommended that you enclose write

operations to the LOB within the OPENor CLOSEstatement.

CREATE OR REPLACE PROCEDURE Example 15 IS
lob_loc BLOB;
BEGIN
— get the LOB locator
SELECT b_col INTO lob_loc
FROM lob_table
WHERE key value = 42 FOR UPDATE;
dbms_lob.tim(ob_loc, 4000);
COMMIT;
END;

See Also:
= "ERASE Procedure" on page 23-24
=« "WRITEAPPEND Procedure" on page 23-62

DBMS_LOB

23-59

WRITE Procedure

WRITE Procedure

This procedure writes a specified amount of data into an internal LOB starting from
an absolute offset from the beginning of the LOB The data is written from the
buffer parameter.

WRITEreplaces (overwrites) any data that already exists in the LOBat the offset, for
the length you specify.

There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer is written to the LORB If the offset you specify is beyond the end of
the data currently in the LOB then zero-byte fillers or spaces are inserted in the
BLOBor CLOBrespectively.

Syntax
DBMS_LOBWRITE (
lob_loc IN OUT NOCOPY BLOB,
amount IN BINARY_INTEGER,
offset IN INTEGER,
buffer N RAW),
DBMS_LOBWRITE (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN BINARY_INTEGER,
offset N INTEGER,
buffer N VARCHAR?2 CHARACTER SET lob_loc%CHARSET);
Parameters

Table 23-51 WRITE Procedure Parameters

Parameter Description
lob_loc Locator for the internal LOBto be written to.
amount Number of bytes (for BLOBS) or characters (for CLOBS to write, or

number that were written.

offset Offset in bytes (for BLOBS) or characters (for CLOB9 from the start of
the LOB(origin: 1) for the write operation.

buffer Input buffer for the write.

23-60 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Exceptions

Usage Notes

Example

Table 23-52 WRITE Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount, or offset parameters are NULL, out of
range, or INVALID .

INVALID_ARGVAL Either:
-amount <1
- amount > MAXBUFSIZE
-offset <1
- offset > LOBMAXSIZE

The form of the VARCHARDuffer must match the form of the CLOBparameter. In
other words, if the input LOBparameter is of type NCLOBthen the buffer must
contain NCHARdJata. Conversely, if the input LOBparameter is of type CLOB then
the buffer must contain CHARdata.

When calling DBMS_LOBNRITEfrom the client (for example, in a BEGIN/ENDblock
from within SQL*Plus), the buffer must contain data in the client’s character set.
Oracle converts the client-side buffer to the server’s character set before it writes the
buffer data to the LOB

It is not mandatory that you wrap the LOB operation inside the Open/Close APIs.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

CREATE OR REPLACE PROCEDURE Example_16 IS
lob_loc BLOB;
buffer RAW;

DBMS_LOB 23-61

WRITEAPPEND Procedure

amt BINARY_INTEGER = 32767,
pos INTEGER = 2147483647,
i INTEGER;
BEGIN
SELECT b_col INTO lob_loc
FROM lob_table

WHERE key value = 12 FOR UPDATE;
FOR i IN 1.3 LOOP
dbms_lob.wite (lob_loc, amt, pos, buffer);
— fil in more data
pos = pos + amt;
END LOOP;
EXCEPTION
WHEN some_exception
THEN handle_exception;
END;

See Also:
= "APPEND Procedure" on page 23-15
= "COPY Procedure" on page 23-21

WRITEAPPEND Procedure

This procedure writes a specified amount of data to the end of an internal LOB The
data is written from the buffer parameter.

There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only amount bytes or characters
from the buffer are written to the end of the LOB

Syntax

DBMS_LOBWRITEAPPEND (
lob loc IN OUT NOCOPY BLOB,
amount IN BINARY_INTEGER,
buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
amount IN BINARY_INTEGER,
buffer IN VARCHAR2 CHARACTER SET Ilob_loc%CHARSET);

23-62 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOB Subprograms

Parameters
Table 23-53 WRITEAPPEND Procedure Parameters
Parameter Description
lob_loc Locator for the internal LOBto be written to.
amount Number of bytes (for BLOBS) or characters (for CLOBS to write, or
number that were written.
buffer Input buffer for the write.
Exceptions

Table 23-54 WRITEAPPEND Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc , amount, or offset parameters are NULL, out of
range, or INVALID .

INVALID_ARGVAL Either:
-amount <1

- amount > MAXBUFSIZE

Usage Notes

The form of the VARCHARDuffer must match the form of the CLOBparameter. In
other words, if the input LOBparameter is of type NCLOBthen the buffer must
contain NCHARdJata. Conversely, if the input LOBparameter is of type CLOB then
the buffer must contain CHARdata.

When calling DBMS_LOBVRITEAPPENDrom the client (for example, in a
BEGIN/ENDblock from within SQL*Plus), the buffer must contain data in the
client’s character set. Oracle converts the client-side buffer to the server’s character
set before it writes the buffer data to the LOB

It is not mandatory that you wrap the LOB operation inside the Open/Close APls.
If you did not open the LOB before performing the operation, the functional and
domain indexes on the LOB column are updated during the call. However, if you
opened the LOB before performing the operation, you must close it before you
commit or rollback the transaction. When an internal LOB is closed, it updates the
functional and domain indexes on the LOB column.

DBMS_LOB 23-63

WRITEAPPEND Procedure

If you do not wrap the LOB operation inside the Open/Close API, the functional
and domain indexes are updated each time you write to the LOB. This can
adversely affect performance. Therefore, it is recommended that you enclose write
operations to the LOB within the OPENor CLOSEstatement.

Example

CREATE OR REPLACE PROCEDURE Example 17 IS
lob_loc BLOB;
buffer RAW;
amt BINARY_INTEGER = 32767,
i INTEGER,;

BEGIN
SELECT b_col INTO lob_loc

FROM lob_table

WHERE key value = 12 FOR UPDATE;
FOR i IN 1.3 LOOP
- fil the buffer with data to be writen to the lob
dbms_lob.writeappend (lob_loc, amt, buffer);
END LOOP;
END;

See Also:

= "APPEND Procedure" on page 23-15
= "COPY Procedure" on page 23-21

= "WRITE Procedure" on page 23-60

23-64 Oracle9i Supplied PL/SQL Packages and Types Reference

24

DBMS_LOCK

Oracle Lock Management services for your applications are available through
procedures in the DBMS_LOClackage. You can request a lock of a specific mode,
give it a unique name recognizable in another procedure in the same or another
instance, change the lock mode, and release it.

Because a reserved user lock is the same as an Oracle lock, it has all the
functionality of an Oracle lock, such as deadlock detection. Be certain that any user
locks used in distributed transactions are released upon COMMITor an undetected
deadlock may occur.

User locks never conflict with Oracle locks because they are identified with the
prefix "UL". You can view these locks using the Enterprise Manager lock monitor
screen or the appropriate fixed views. User locks are automatically released when a
session terminates.

The lock identifier is a number in the range of 0 to 1073741823.

Some uses of user locks:

= Providing exclusive access to a device, such as a terminal

= Providing application-level enforcement of read locks

= Detecting when a lock is released and cleanup after the application
= Synchronizing applications and enforcing sequential processing
This chapter discusses the following topics:

= Requirements, Security, and Constants for DBMS_LOCK

=« Summary of DBMS_LOCK Subprograms

DBMS_LOCK 24-1

Requirements, Security, and Constants for DBMS_LOCK

Requirements, Security, and Constants for DBMS_LOCK

Requirements

DBMS_LOCIKs most efficient with a limit of a few hundred locks for each session.
Oracle strongly recommends that you develop a standard convention for using
these locks in order to avoid conflicts among procedures trying to use the same
locks. For example, include your company name as part of your lock names.

Security

There might be operating system-specific limits on the maximum number of total
locks available. This must be considered when using locks or making this package
available to other users. Consider granting the EXECUTHBprivilege only to specific
users or roles.

A better alternative would be to create a cover package limiting the number of locks
used and grant EXECUTEprivilege to specific users. An example of a cover package
is documented in the DBMSLOCK.SQIpackage specification file.

Constants

nl_mode constant integer = 1;

ss_mode constant integer = 2; - Also called ‘Intended Share’
sx_mode constant integer = 3; - Also called ‘Intended Exclusive’

s mode constant integer = 4;
ssx_mode constant integer = 5;
Xx_mode constant integer == 6;

These are the various lock modes (nl -> "NulLl", ss -> "Sub Shared", sx -> "Sub
eXclusive", s -> "Shared", ssx -> "Shared Sub eXclusive", x -> "eXclusive").

A sub-share lock can be used on an aggregate object to indicate that share locks are
being aquired on sub-parts of the object. Similarly, a sub-exclusive lock can be used
on an aggregate object to indicate that exclusive locks are being aquired on
sub-parts of the object. A share-sub-exclusive lock indicates that the entire
aggregate object has a share lock, but some of the sub-parts may additionally have
exclusive locks.

Lock Compatibility Rules
When another process holds "held", an attempt to get "get" does the following:

24-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms

Table 24—1 Lock Compatibility

HELD

MODE GET NL GET SS GET SX GET S GET SSX GET X
NL Success Success Success Success Success Success
SS Success Success Success Success Success Fail

SX Success Success Success Fail Fail Fail

S Success Success Fail Success Fail Fail
SSX Success Success Fail Fail Fail Fail

X Success Fail Fail Fail Fail Fail

maxwait constant integer = 32767,

The constant maxwait waits forever.

Summary of DBMS_LOCK Subprograms

Table 24-2 DBMS_LOCK Package Subprograms

Subprogram

Description

ALLOCATE_UNIQUE
Procedure on page 24-3

Allocates a unique lock ID to a named lock.

REQUEST Function on page 24-5

CONVERT Function on

page 24-7

Converts a lock from one mode to another.

RELEASE Function on page 24-8
SLEEP Procedure on page 24-9

Releases a lock.

Requests a lock of a specific mode.

Puts a procedure to sleep for a specific time.

ALLOCATE_UNIQUE Procedure

This procedure allocates a unique lock identifier (in the range of 1073741824 to
1999999999) given a lock name. Lock identifiers are used to enable applications to
coordinate their use of locks. This is provided because it may be easier for
applications to coordinate their use of locks based on lock names rather than lock

numbers.

DBMS_LOCK 24-3

ALLOCATE_UNIQUE Procedure

Syntax

Parameters

If you choose to identify locks by name, you can use ALLOCATE_UNIQUHEo
generate a unique lock identification number for these named locks.

The first session to call ALLOCATE_UNIQUHRvith a new lock name causes a unique
lock ID to be generated and stored in the dbms_lock_allocated table.
Subsequent calls (usually by other sessions) return the lock ID previously
generated.

A lock name is associated with the returned lock ID for at least expiration_secs
(defaults to 10 days) past the last call to ALLOCATE_UNIQUHBuvith the given lock
name. After this time, the row in the dbms_lock allocated table for this lock
name may be deleted in order to recover space. ALLOCATE_UNIQUperforms a
commit.

Caution: Named user locks may be less efficient, because Oracle
uses SQL to determine the lock associated with a given name.

DBMS_LOCKALLOCATE_UNIQUE (
lockname IN VARCHAR?,
lockhandle OUT VARCHAR?,
expiration secs IN INTEGER ~ DEFAULT 864000);

Table 24-3 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description

lockname Name of the lock for which you want to generate a unique ID.

Do not use lock names beginning with ORA$ these are
reserved for products supplied by Oracle Corporation.

24-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms

Table 24-3 ALLOCATE_UNIQUE Procedure Parameters

Parameter Description
lockhandle Returns the handle to the lock ID generated by ALLOCATE_
UNIQUE

You can use this handle in subsequent calls to REQUEST
CONVERTand RELEASE

A handle is returned instead of the actual lock ID to reduce the
chance that a programming error accidentally creates an
incorrect, but valid, lock ID. This provides better isolation
between different applications that are using this package.

LOCKHANDLEan be up to VARCHARZ128).

All sessions using a lock handle returned by ALLOCATE_
UNIQUEwith the same lock name are referring to the same
lock. Therefore, do not pass lock handles from one session to
another.

expiration_specs Number of seconds to wait after the last ALLOCATE_UNIQUE
has been performed on a given lock, before permitting that
lock to be deleted from the DBMS_LOCK_ALLOCATHBble.

The default waiting period is 10 days. You should not delete
locks from this table. Subsequent calls to ALLOCATE_UNIQUE
may delete expired locks to recover space.

Errors

ORA-20000, ORU-10003: Unable to find or insert lock <lockname > into catalog
dbms_lock_allocated

REQUEST Function
This function requests a lock with a given mode. REQUESTs an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUBprocedure.

Syntax
DBMS_LOCK REQUEST(
i IN INTEGER ||
lockhandle IN VARCHAR?2,
lockmode IN INTEGER DEFAULT X_MODE,
fimeout IN INTEGER DEFAULT MAXWAIT,

release_on_commit IN BOOLEAN DEFAULT FALSE,
RETURN INTEGER;

DBMS_LOCK 24-5

REQUEST Function

The current default values, such as X_MODEnd MAXWAITare defined in the DBMS _
LOCKpackage specification.

Parameters

Table 24-4 REQUEST Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUEof the lock mode you
want to change.

lockmode Mode that you are requesting for the lock.

The available modes and their associated integer identifiers
follow. The abbreviations for these locks, as they appear in the
V$ views and Enterprise Manager monitors are in parentheses.

1 - null mode
2 - row share mode (ULRS)
3 - row exclusive mode (ULRX)
4 - share mode (ULS)
5 - share row exclusive mode (ULRSX)
6 - exclusive mode (ULX)
timeout Number of seconds to continue trying to grant the lock.

If the lock cannot be granted within this time period, then the
call returns a value of 1 (timeout).

release_on_commit Set this parameter to TRUEto release the lock on commit or
roll-back.

Otherwise, the lock is held until it is explicitly released or until
the end of the session.

Return Values

Table 24-5 REQUEST Function Return Values

Return Value Description
0 Success
1 Timeout

24-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms

Table 24-5 REQUEST Function Return Values

Return Value Description

2 Deadlock

3 Parameter error

4 Already own lock specified by id or lockhandle
5 Illegal lock handle

CONVERT Function

This function converts a lock from one mode to another. CONVERTS an overloaded
function that accepts either a user-defined lock identifier, or the lock handle
returned by the ALLOCATE_UNIQUprocedure.

Syntax

DBMS_LOCK.CONVERT(
id IN INTEGER ||
lockhandie IN VARCHAR?,
lockmode IN INTEGER,
fmeout IN NUMBER DEFAULT MAXWAIT)
RETURN INTEGER;

Parameters

Table 24-6 CONVERT Function Parameters

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUEof the lock mode you
want to change.

DBMS_LOCK 24-7

RELEASE Function

Table 24-6 CONVERT Function Parameters

Parameter Description

lockmode New mode that you want to assign to the given lock.

The available modes and their associated integer identifiers
follow. The abbreviations for these locks, as they appear in the
V$ views and Enterprise Manager monitors are in parentheses.

1 - null mode

2 - row share mode (ULRS)

3 - row exclusive mode (ULRX)

4 - share mode (ULS)

5 - share row exclusive mode (ULRSX)

6 - exclusive mode (ULX)

timeout Number of seconds to continue trying to change the lock
mode.

If the lock cannot be converted within this time period, then
the call returns a value of 1 (timeout).

Return Values

Table 24—-7 CONVERT Function Return Values

Return Value Description

Success
Timeout
Deadlock
Parameter error

Don’t own lock specified by id or lockhandle

g A W N — O

Illegal lock handle

RELEASE Function
This function explicitly releases a lock previously acquired using the REQUEST
function. Locks are automatically released at the end of a session. RELEASHs an
overloaded function that accepts either a user-defined lock identifier, or the lock
handle returned by the ALLOCATE_UNIQUHprocedure.

24-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOCK Subprograms

Syntax

DBMS_LOCKRELEASE (
id IN INTEGER)
RETURN INTEGER;

DBMS_LOCKRELEASE (

lockhandle IN VARCHAR2)
RETURN INTEGER;

Parameters

Table 24-8 RELEASE Function Parameter

Parameter Description

id or lockhandle User assigned lock identifier, from 0 to 1073741823, or the lock
handle, returned by ALLOCATE_UNIQUEof the lock mode you
want to change.

Return Values

Table 24-9 RELEASE Function Return Values

Return Value Description

0 Success

3 Parameter error

4 Do not own lock specified by id or lockhandle
5 Illegal lock handle

SLEEP Procedure

This procedure suspends the session for a given period of time.
Syntax

DBMS_LOCK.SLEEP (
seconds IN NUMBER);

DBMS_LOCK 24-9

Printing a Check: Example

Parameters

Table 24—-10 SLEEP Procedure Parameters

Parameter Description

seconds Amount of time, in seconds, to suspend the session.

The smallest increment can be entered in hundredths of a
second; for example, 1.95 is a legal time value.

Printing a Check: Example

The following Pro*COBOL precompiler example shows how locks are used to
ensure that there are no conflicts when multiple people need to access a single
device. The DBMS_LOCIWackage is used to ensure exclusive access.

Any cashier can issue a refund to a customer returning goods. Refunds under $50
are given in cash; anything above that is given by check. This code prints the check.
One printer is opened by all the cashiers to avoid the overhead of opening and
closing it for every check. Therefore, lines of output from multiple cashiers can
become interleaved without exclusive access to the printer.

CHECK-PRINT
Get the lock "handle" for the printer lock:

MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE

BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
END; END-EXEC.

Lock the printer in exclusive mode (default mode):

EXEC SQL EXECUTE
BEGIN DBMS_LOCKREQUEST (:LOCKHANDLE);
END; END-EXEC.

We now have exclusive use of the printer, print the check:

Unlock the printer so other people can use it:

EXEC SQL EXECUTE
BEGIN DBMS_LOCKRELEASE (:LOCKHANDLE);

END; END-EXEC.

24-10 Oracle9i Supplied PL/SQL Packages and Types Reference

25

DBMS_LOGMNR

Using LogMiner, you can make queries based on actual data values. For instance,
you could issue a query to select all updates to the table scott.emp or all
deletions performed by user scott . You could also perform a query to show all
updates to scott.emp that increased sal more than a certain amount. Such data
can be used to analyze system behavior and to perform auditing tasks.

The DBMS_L OGMN#ckage contains procedures used to initialize the LogMiner
tool. You use these procedures to list the redo logs to be analyzed and to specify the
SCN or time range of interest. After these procedures complete, the server is ready
to process SQL SELECT statements against the VSLOGMNR_CONTENV&w.

See Also: Oracle9i Database Administrator’s Guide for information
about using LogMiner

This chapter discusses the following topics:

= DBMS _LOGMNR Constants

= Extracting Data Values from Redo Logs

=« Example of Using DBMS_LOGMNR

= Summary of DBMS_LOGMNR Subprograms

DBMS_LOGMNR 25-1

DBMS_LOGMNR Constants

DBMS_LOGMNR Constants

Table 25-1 describes the constants for the ADD_LOGFILEoptions flag in the DBMS _
LOGMNRackage.

Table 25—-1 Constants for ADD_LOGFILE Options Flag

Constant Description

NEW DBMS_LOGMNRWpurges the existing list of redo logs, if any. Places the specified
redo log in the list of redo logs to be analyzed.

ADDFILE DBMS_LOGMNRDDFILE adds the specified redo log to the list of redo logs to be
analyzed. Any attempts to add a duplicate file raise an exception (ORA-1289).

REMOVEFILE DBMS_LOGMRRMOVEFILEemoves the redo log from the list of redo logs to be

analyzed. Any attempts to remove a file that has not been previously added, raise
an exception (ORA-1290).

Table 25-2 describes the constants for the START_LOGMN®&ptions flag in the DBMS_
LOGMNRackage.

Table 25—-2 Constants for START_LOGMNR Options Flag

Constant Description

COMMITTED_DATA_ONLY If set, only DMLs corresponding to committed transactions are returned. DMLs
corresponding to a committed transaction are grouped together. Transactions are
returned in their commit order. If this option is not set, all rows for all transactions
(committed, rolled back, and in-progress) are returned

SKIP_CORRUPTION Directs a SELECToperation from VSLOGMNR_CONTENT&skip any corruptions
in the redo log being analyzed and continue processing. This option works only
when a block in the redo log (and not the header of the redo log) has been
corrupted. Caller should check the INFO column in the VSLOGMNR_CONTENTS
view to determine the corrupt blocks skipped by LogMiner.

DDL_DICT_TRACKING If the dictionary in use is a flat file or in the redo logs, LogMiner ensures that its
internal dictionary is updated if a DDL event occurs. This ensures that correct
SQL_RED@nd SQL_UNDGnformation is maintained for objects that are modified
after the LogMiner dictionary is built.

This option cannot be used in conjunction with the DICT_FROM_ONLINE_
CATALOGption.

DICT_FROM_ONLINE_ Directs LogMiner to use the current "live" database dictionary rather than a
CATALOG dictionary snapshot contained in a flat file or in a redo log.

This option cannot be used in conjunction with the DDL_DICT_TRACKINGoption.

25-2 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_LOGMNR Constants

Table 25—-2 (Cont.) Constants for START_LOGMNR Options Flag

Constant

Description

DICT_FROM_REDO_LOGSIf set, LogMiner expects to find a dictionary in the redo logs that were specified

NO_SQL_DELIMITER

PRINT_PRETTY_SQL
CONTINUOUS_MINE

with the DBMS_LOGMNR.ADD_LOGFIlgocedure.

if set, the SQL delimiter (a semicolon) is not placed at the end of reconstructed SQL
statements.

If set, LogMiner formats the reconstructed SQL statements for ease of reading.

If set, you only need to register one archived redo log. LogMiner automatically
adds and mines any subsequent archived redo logs and also the online catalog.
This is useful when you are mining in the same instance that is generating the redo
logs.

Extracting Data Values from Redo Logs

LogMiner data extraction from redo logs is performed using two mine functions:
DBMS_LOGMNR.MINE_VALURd DBMS_LOGMNR.COLUMN_PRESEN3cribed
later in this chapter.

Example of Using DBMS_LOGMNR

The following example shows how to use the DBMS_LOGMN#tocedures to add
redo logs to a LogMiner session, how to start LogMiner (with a flat file dictionary),
how to perform a select operation from V$LOGMNR_CONTENT®d how to end a
LogMiner session. For complete descriptions of the DBMS_LOGMN#ocedures, see
Summary of DBMS_LOGMNR Subprograms on page 25-4.

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
2 LogFileName => ‘foracleflogsfioglf, -
3 Options => dbms_logmnr.NEW);

SQL> EXECUTE DBMS_LOGMNR.ADD LOGFILE(-
2 LogFileName => ‘foracleflogsflog2f, -
3 Options => dbms_logmnr.,ADDFILE);

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(-
2 DictFleName =>'/oracle/dictionary.ora);

SQL> SELECT sql_redo
2 FROM V$LOGMNR_CONTENTS

SQL> EXECUTE DBMS_LOGMNREND_LOGMNR();

DBMS_LOGMNR 25-3

Summary of DBMS_LOGMNR Subprograms

Summary of DBMS_LOGMNR Subprograms

Table 25-3 describes the procedures in the DBMS_LOGMNRpplied package.

Table 25-3 DBMS_LOGMNR Package Subprograms

Subprogram Description

ADD_LOGFILE Procedure Adds a file to the existing or newly created list of archive files
on page 25-4 to process.

START_LOGMNR Initializes the LogMiner utility.
Procedure on page 25-5

END_LOGMNR Finishes a LogMiner session.
Procedure on page 25-8

MINE_VALUE Function This function may be called for any row returned from

on page 25-8 V$LOGMNR_CONTENTSretrieve the undo or redo column
value of the column specified by the column_name input
parameter to this function.

COLUMN_PRESENT This function may be called for any row returned from

Function on page 25-10 V$LOGMNR_CONTENTSdetermine if undo or redo column
values exist for the column specified by the column_name
input parameter to this function.

ADD_LOGFILE Procedure

Syntax

This procedure adds a file to the existing or newly created list of archive files to
process.

In order to select information from the VSLOGMNR_CONTENV&w, the LogMiner
session must be set up with information about the redo logs to be analyzed. Use the
ADD_LOGFILEprocedure to specify the list of redo logs to analyze.

Note: If you want to analyze more than one redo log, you must
call the ADD_LOGFILEprocedure separately for each redo log.

DBMS_LOGMNR.ADD_LOGFILE(
LogFileName IN VARCHAR?2,
Options IN BINARY_INTEGER default ADDFILE),

25-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms

Parameters

Exceptions

Table 25-4 describes the parameters for the ADD_LOGFILEprocedure.

Table 25-4 ADD_LOGFILE Procedure Parameters

Parameter Description

LogFileName Name of the redo log that must be added to the list of redo logs to

be analyzed by this session.

Options Either:

- Starts a new list (DBMS_LOGMNR.NEW

- Adds afile to an existing list (DBMS_LOGMNR.ADDFI)Eor
- Removes a redo log (DBMS_LOGMNR.REMOVEFILE

See Table 25-1, " Constants for ADD_LOGFILE Options Flag".

ORA-1284: Redo log file specified cannot be opened. Log file or the directory
may be non-existent or inaccessible.

ORA-1285: Error reading the header of the redo log file.

ORA-1286: Redo log file specified is not from the database that produced other
logfiles added for analysis.

ORA-1287: Redo log file specified is from a different database incarnation.

ORA-1289: Redo log file specified is a duplicate of a previously specified log
file.

ORA-1290: Redo log file specified for removal is not a registered log file.

ORA-1337: Redo log file specified has a different compatibility version than the
rest of the logfiles added.

START _LOGMNR Procedure

This procedure starts a LogMiner session.

DBMS_LOGMNR 25-5

START_LOGMNR Procedure

Syntax

Parameters

Note: This procedure fails if you did not previously use the ADD _
LOGFILE procedure to specify a list of redo logs to be analyzed.

DBMS_LOGMNR.START_LOGMNR(

startScn IN NUMBER default 0,

endScn IN NUMBER defautt 0,
startTime IN DATE default '01-jan-1988,,
endTime IN DATE default '01-jan-2988;,
DictFileName IN VARCHAR2 default ”,

Options IN BINARY_INTEGER defauit 0);

Table 25-5 describes the parameters for the DBMS_LOGMNSTART_LOGMNR
procedure.

Table 25-5 START_LOGMNR Procedure Parameters

Parameter Description

startScn

endScn

Only consider redo records with SCNgreater than or equal to the
startSCN specified. This fails if there is no redo log with an SCN
range (that is, the LOW_SCNnd NEXT_SCNassociated with the
redo log as shown in VSLOGMNR_LOGS8ew) containing the
startScn

Only consider redo records with SCNIess than or equal to the
endSCNspecified. This fails if there is no redo log with an SCN
range (that is, the LOW_SCNnd NEXT_SCNassociated with the
redo log as shown in VSLOGMNR_LOGSew) containing the
endScn.

startTime Only consider redo records with timestamp greater than or equal

endTime

to the startTime specified. This fails if there is no redo log with
a time range (that is, the LOW_TIMEand HIGH_TIME associated
with the redo log as shown in VSLOGMNR_LOGS8ew) containing
the startTime . This parameter is ignored if startScn is
specified.

Only consider redo records with timestamp less than or equal to
the endTime specified. This fails if there is no redo log with a
time range (that is, the LOW_TIMEand HIGH_TIME associated
with the redo log as shown in VSLOGMNR_LOGS8ew) containing
the endTime . This parameter is ignored if endScn is specified.

25-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms

Exceptions

Table 25-5 (Cont.) START_LOGMNR Procedure Parameters

Parameter Description

DictFileName This flat file contains a snapshot of the database catalog. It is used

to reconstruct SQL_REDQ@nd SQL_UND@olumns in VSLOGMNR_
CONTENTSas well as to fully translate SEG_NAMESEG_OWNER
SEG_TYPE_NAMEand TABLE_SPACEolumns. The fully
qualified path name for the dictionary file must be specified (This
file must have been created previously through the DBMS_
LOGMNR_BUILD procedure).

You only need to specify this parameter if neither DICT_FROM_
REDO_LOGS&or DICT_FROM_ONLINE_CATALOIS specified.

Options See Table 25-2, " Constants for START_LOGMNR Options Flag".

After executing the START_LOGMNProcedure, you can make use of the following
views:

V$LOGMNR_CONTENTSontains history of information in redo logs

V$LOGMNR_DICTIONARYcontains current information about the dictionary
file

V$LOGMNR_LOGSontains information about the redo logs being analyzed
V$LOGMNR_PARAMETER®nNtains information about the LogMiner session

ORA-1280: The procedure fails with this exception if LogMiner encounters an
internal error

ORA-1281: endScn is less than startScn

ORA-1282: endDate is earlier than startDate

ORA-1283: Invalid option is specified

ORA-1292: No redo log file has been registered with LogMiner

ORA-1293: The procedure fails with this exception for the following reasons:

1. No logfile has (LOW_SCNNEXT_SCNrange containing the startScn
specified.

2. No logfile has (LOW_SCNNEXT_SCNrange containing the endScn
specified.

DBMS_LOGMNR 25-7

END_LOGMNR Procedure

3. No logfile has (LOW_TIMEHIGH_TIME) range containing the startTime
specified.

4. No logfile has (LOW_TIMEHIGH_TIME) range containing the endTime
specified.

= ORA-1294: Dictionary file specified is corrupt.

= ORA-1295: Dictionary specified does not correspond to the same database that
produced the log files being analyzed.

= ORA-1296: Character set specified in the data dictionary does not match, and is
incompatible with, that of the mining database.

= ORA-1297: Redo version mismatch between the dictionary and the registered
redo log files.

= ORA-1299: The specified dictionary is from a different database incarnation.

= ORA-1300: Enabled thread bit vector from the dictionary does not match the
redo log file. Not all redo threads have been registered with LogMiner.

END_LOGMNR Procedure

This procedure finishes a LogMiner session. Because this procedure performs
cleanup operations which may not otherwise be done, you must use it to properly
end a LogMiner session.

Syntax

DBMS_LOGMNR.END LOGMNR;
Parameters

None.
Exceptions

= ORA-1307: No LogMiner session is active. The END_LOGMNprocedure was
called without adding any lodfiles.

MINE_VALUE Function

The MINE_VALUEfunction takes two arguments. The first one specifies whether to
mine the redo (REDO_VALUJEor undo (UNDO_VALUFportion of the data. The
second argument is a string that specifies the fully-qualified name of the column to

25-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms

Syntax

Parameters

Returns

Exceptions

Usage Notes

be mined. The MINE_VALUEfunction always returns a string that can be converted
back to the original datatype.

doms_logmnrmine_value(
sql_redo_undo IN RAW,
column_name IN VARCHAR2 default) RETURN VARCHARZ,

Table 25-6 describes the parameters for the MINE_VALUEfunction.

Table 25-6 MINE_VALUE Function Parameters

Parameter Description

sql_redo_undo The column in VSLOGMNR_CONTENT®m which to extract
data values. This parameter can be thought of as a
self-describing record that contains values corresponding to
several columns in a table.

column_name Fully qualified name (schema.table.column) of the column
for which this function will return information.

Table 25-7 describes the return values for the MINE_VALUEfunction.

Table 25-7 Return Values for MINE_VALUE Function

Return Description

NULL The column is not contained within the self-describing record
or the column value is NULL

NON-NULL The column is contained within the self-describing record; the
value is returned in string format.

= ORA-1302: Specified table or column does not exist.

= To use the MINE_VALUEfunction, you must have successfully started a
LogMiner session.

DBMS_LOGMNR 25-9

COLUMN_PRESENT Function

= The MINE_VALUEfunction must be invoked in the context of a select operation
from the VSLOGMNR_CONTENVE&w.

= The MINE_VALUEfunction does not support LONGLOB ADT, or COLLECTION
datatypes.

= When the column argument is of type DATE the string that is returned is
formatted in canonical form (DD-MON-YYYY HH24:MI:SS.SS) regardless of the
date format of the current session.

COLUMN_PRESENT Function

This function is meant to be used in conjunction with the MINE_VALUEfunction.
If the MINE_VALUEfunction returns a NULL value, it can mean either:

»s The specified column is not present in the redo or undo portion of the data.
m The specified column is present and has a null value.

To distinguish between these two cases, use the COLUMN_PRESENtinction which
returns a 1 if the column is present in the redo or undo portion of the data.
Otherwise, it returns a 0.

Syntax
dbms_logmnr.column_present(
sql_redo_undo IN RAW,
column_name IN VARCHAR2 default) RETURN NUMBER;
Parameters

Table 25-8 describes the parameters for the COLUMN_PRESENtinction.

Table 25-8 COLUMN_PRESENT Function Parameters

Parameter Description

sql_redo_undo The column in VSLOGMNR_CONTENT®m which to extract
data values. This parameter can be thought of as a
self-describing record that contains values corresponding to
several columns in a table.

column_name Fully qualified name (schema.table.column) of the column
for which this function will return information.

25-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR Subprograms

Returns

Exceptions

Usage Notes

Table 25-9 describes the return values for the COLUMN_PRESENtinction.

Table 25-9 Return Values for COLUMN_PRESENT Function

Return Description

0 Specified column is not present in this row of VSLOGMNR _
CONTENTS

1 Column is present in this row of VSLOGMNR_CONTENTS

Returns 1 if the self-describing record (the first parameter)
contains the column specified in the second parameter. This
can be used to distinguish between NULL returns from the
DBMS_LOGMNR.MINE_VALUEnction.

s ORA-1302: Specified table or column does not exist.

= To use the COLUMN_PRESENtnction, you must have successfully started a

LogMiner session.

= The COLUMN_PRESENuinction must be invoked in the context of a select
operation from the VSLOGMNR_CONTENV&w.

= The COLUMN_PRESENuinction does not support LONGLOB ADT, or
COLLECTIONdatatypes.

= When the column argument is of type DATE the string that is returned is
formatted in canonical form (DD-MON-YYYY HH24:MI:SS.SS) regardless of the
date format of the current session.

DBMS_LOGMNR 25-11

COLUMN_PRESENT Function

25-12 Oracle9i Supplied PL/SQL Packages and Types Reference

20

DBMS LOGMNR_CDC_PUBLISH

Oracle Change Data Capture identifies new data that has been added to, modified,
or removed from relational tables and publishes the changed data in a form that is
usable by an application.

This chapter describes how to use the DBMS_LOGMNR_CDC_PUBLISkpplied
package to set up an Oracle Change Data Capture system to capture and publish
data from one or more Oracle relational source tables. Change Data Capture
captures and publishes only committed data.

Typically, a Change Data Capture system has one publisher that captures and
publishes changes for any number of Oracle source (relational) tables. The publisher
then provides subscribers, typically applications, with access to the published data.

See Also: Oracle9i Data Warehousing Guide for more information
about the Oracle Change Data Capture publish and subscribe
model.

This chapter discusses the following topics:

= Publishing Change Data

» Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

DBMS_LOGMNR_CDC_PUBLISH 26-1

Publishing Change Data

Publishing Change Data

The publisher, typically a database administrator, is concerned primarily with the
source of the data and with creating the schema objects that describe the structure
of the capture system: change sources, change sets, and change tables.

Most Change Data Capture systems have one publisher and many subscribers. The
publisher accomplishes the following main objectives:

1. Determine which source table changes need to be published.

2. Use the procedures in the DBMS_LOGMNR_CDC_PUBLIB&tkage to capture
change data and makes it available from the source tables by creating and
administering the change source, change set, and change table objects.

3. Allow controlled access to subscribers by using the SQL GRANTand REVOKE
statements to grant and revoke the SELECTprivilege on change tables for users
and roles.

This is necessary to allow the subscribers, usually applications, to use the
DBMS_LOGMNR_CDC_SUBSCR{B&cedure to subscribe to the change data.

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Through the DBMS_LOGMNR_CDC_PUBLIgatkage, the publisher creates and
maintains change sources, change sets, and change tables, and eventually drops
them when they are no longer useful.

Note: To use the DBMS_LOGMNR_CDC_PUBLIBg&tkage, you
must have the EXECUTE_CATALOG_ROL#frivilege, and you must
have the SELECT_CATALOG_ROL#trivilege to look at all of the
views.

Table 26-1 describes the procedures in the DBMS_LOGMNR_CDC_PUBLIS#pplied
package.

26-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Table 26—-1 DBMS_LOGMNR_CDC_PUBLISH Package Subprograms

Subprogram

Description

CREATE_CHANGE_TABLE
Procedure on page 26-3

ALTER_CHANGE_TABLE
Procedure on page 26-8

DROP_SUBSCRIBER_VIEW
Procedure on page 26-12

DROP_SUBSCRIPTION
Procedure on page 26-13

DROP_CHANGE_TABLE
Procedure on page 26-14

PURGE Procedure on page 26-16

Creates a change table in a specified schema and creates corresponding
Change Data Capture metadata.

Adds or drops columns for an existing change table, or changes the
properties of an existing change table.

Allows the publisher to drop a subscriber view from the subscriber’s
schema. The view must have been created by a prior call to the PREPARE_
SUBSCRIBER_VIEWrocedure.

Allows a publisher to drop a subscription that was created with a prior call
to the GET_SUBSCRIPTION_HANDLRrocedure.

Drops an existing change table when there is no more activity on the table.

Monitors usage by all subscriptions, determines which rows are no longer
needed by subscriptions, and removes the unneeded rows to prevent change
tables from growing endlessly.

CREATE_CHANGE_TABLE Procedure

This procedure creates a change table in a specified schema.

Syntax
The following syntax specifies columns and datatypes using a comma-delimited
string.
DBMS_LOGMNR_CDC_PUBLISH.CREATE_CHANGE_TABLE (
owner IN VARCHAR?2,
change_table name IN VARCHAR?2,
change_set name IN VARCHAR?2,
source_schema IN VARCHAR?2,
source_table IN VARCHAR?,
column_type_list IN VARCHAR?2,
capture_values IN VARCHAR?2,
rs id IN CHAR,
row_id IN CHAR,
user_id IN CHAR,
timestamp IN CHAR,
object id IN CHAR,
source_colmap IN CHAR,
target_colmap IN CHAR,
options_string IN VARCHARY2);

DBMS_LOGMNR_CDC_PUBLISH 26-3

CREATE_CHANGE_TABLE Procedure

Parameters

Table 26-2 CREATE_CHANGE_TABLE Procedure Parameters

Parameter

Description

owner

change_table_
name

change_set_
name

source_schema
source_table

column_type_
list

capture_values

rs_id

row_id

Name of the schema that owns the change table.

Name of the change table that is being created.

Name of an existing change set with which this change table is
associated. Synchronous change tables must specify SYNC_SET.

The schema where the source table is located.
The source table from which the change records are captured.

Comma-delimited list of columns and datatypes that are being
tracked.

Set thi§ parameter to one of the following capture values for update

operations:

= OLD: Captures the original values from the source table.

= NEW: Captures the changed values from the source table.

. B(E;I’H: Captures the original and changed values from the source
table.

Adds a column to the change table that contains the row sequence
number. This parameter orders the operations in a transaction in the
sequence that they were committed in the database. The row sequence
ID (rs_id) parameter is optional for synchronous mode.

Note: For synchronous mode, thers_id parameter reflects an
operations capture order within a transaction, but you cannot use the
rs_id parameter by itself to order committed operations across
transactions.

Set this parameter to Y or N, as follows:

Y: Indicates that you want to add a column to the change table that
will contain the row sequence of the change.

N: Indicates that you do not want to track thers_id column.
Adds a column to the change table that contains the

row ID of the changed row in the source table, as
follows.

Y: Indicates that you want to add a column to the change table that
contains the row ID of the changed row in the source table.

N: Indicates that you do not want to track the row_id column.

26-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Table 26-2 CREATE_CHANGE_TABLE Procedure Parameters

Parameter

Description

user_id

timestamp

object_id

source_colmap

target_colmap

options_string

Adds a column to the change table that contains the user name of the
user who entered a DML statement, as followvs.

Y: Indicates that you want to add a column to the change table that
contains the user name of the user who entered a DML statement.

N: Indicates that you do not want to track users.

Adds a column to the change table that contains the capture
timestamp of the change record, as follows:

Y: Indicates that you want to add a column to the change table that
contains the capture timestamp of the change record.

N: Indicates that you do not want to track timestamps.

Adds a column to the change table that contains the object ID of this
change record. This is a control column for object support. Specify Y
or N, as follows:

Y: Indicates that you want to add a column to the change table that
contains the object ID of this change record.

N: Indicates that you do not want to track object IDs.

Adds a column to the change table as a change column vector that
indicates which source columns actually changed. Specify Y or N, as
follows:

Y: Indicates that you want to add a column to the change table to track
the source columns that have changed.

N: Indicates that you do not want to track which source columns
changed.

Adds a column to the change table as a column vector indicating
which change table user columns actually changed. Specify Y or N, as
follows.

Y: Indicates that you want to add a column to the change table to track
the change table user columns that have changed.

N: Indicates that you do not want to track changes which change table
user columns changed.

A string that contains syntactically correct options to be passed to a

CREATE TABLBDDL statement. The options string is appended to the
generateREATE TABLBDDL statement after the closing

parenthesis that defines the columns of the table. See the Usage Notes
for more information.

DBMS_LOGMNR_CDC_PUBLISH 26-5

CREATE_CHANGE_TABLE Procedure

Exceptions

Table 26-3 CREATE_CHANGE_TABLE Procedure Exceptions

Exception

Description

ORA-31409

ORA-31416

ORA-31417

ORA-31418

ORA-31419

ORA-31420

ORA-31421

ORA-31422
ORA-31438
ORA-31450
ORA-31451

ORA-31452
ORA-31459

ORA-31467

One or more of the input parameters to the CREATE_CHANGE_TABLE
procedure had invalid values. Identify the incorrect parameters and supply
the correct values to the procedure.

The value specified for the source_colmap parameter is invalid. For
synchronous mode, specify either Y or N.

A reserved column name was specified in a column list or column type
parameter. Ensure that the name specified does not conflict with a reserved
column name.

While creating a synchronous change table, the name of the source schema
did not match any existing schema name in the database.

When creating a synchronous change table, the underlying source table did
not exist when the procedure was called.

When creating the first change table, a purge job is submitted to the job
gueue. Submission of this purge job failed.

The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

Owner schema does not exist.
Duplicate change table. Re-create the change table with a unique name.
Invalid value was specified for change_table_name.

Invalid value was specified for the capture_value. Expecting either OLD,
NEW, or BOTH.

Invalid value was specified. Expecting either Y or N.

System triggers for DBMS_LOGMRN_CDC_PUBLI8&tkage are not
installed.

No column found in the source table. The OBJECT_IDflag was setto Y on
the call to CREATE_CHANGE_TABIaad change table belongs to the
synchronous change set. The corresponding object column was not
detected in the source table.

26-6 Oracle9/ Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Usage Notes

Example

A change table is a database object that contains the change data resulting from
DML statements (INSERT, UPDATE, and DELETE) made to a source table. A
given change table can capture changes from only one source table.

A synchronous change table must belong to the SYNC_SET change set.

A change table is a database table that maintains the change data in these two
types of columns:

— Source columns identify the columns from the source table to capture.
Source columns are copies of actual source table columns that reside in the
change table.

— Control columns maintain special metadata for each change row in the
container table. Information such as the DML operation performed, the
capture time (timestamp), and changed column vectors are examples of
control columns.

The publisher can control a change table’s physical properties, tablespace
properties, and so on by specifying the options_string parameter. With the
options_string parameter, you can set any option that is valid for the
CREATE TABLEDDL statement.

Do not attempt to control a change table’s partitioning properties. When
Change Data Capture performs a purge operation to remove rows from a
change set, it automatically manages the change table partitioning for you.

Note: How you define the options_string parameter can have
an effect on the performance and operations in a Change Data
Capture system. For example, if the publisher places several
constraints in the options column, it can have a noticeable effect on
performance. Also, if the publisher uses NOTNULL constraints and
a particular column is not changed in an incoming change row,
then the constraint can cause the entire INSERT operation to fail.

execute DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(OWNER => 'cdcl’, \

CHANGE TABLE NAME => 'emp ct, \
CHANGE_SET_NAME => 'SYNC_SET, \
SOURCE_SCHEMA => 'scott, \
SOURCE _TABLE => ‘'emp, \

DBMS_LOGMNR_CDC_PUBLISH 26-7

ALTER_CHANGE_TABLE Procedure

COLUMN_TYPE_LIST => 'empno number, ename varchar2(10), job varchar2(9), mgr
number, hiredate date, deptno number, \

CAPTURE_VALUES => hoth, \

RS ID => YV, \

ROW_ID => ', \

USER ID => m, \

TIMESTAMP => 'n, \

OBJECT_ID => '\

SOURCE_COLMAP => ", \

TARGET_COLMAP => Y, \

OPTIONS_STRING => NULL);

ALTER_CHANGE_TABLE Procedure

This procedure adds columns to, or drops columns from, an existing change table.

Syntax
The following syntax specifies columns and datatypes as a comma-delimited list.
DBMS_LOGMNR_CDC_PUBLISHALTER CHANGE. TABLE (
owner IN VARCHAR?2,
change_table name IN VARCHAR?2,
operation IN VARCHAR?2,
column_list IN VARCHAR2,
rs id IN CHAR,
row_id IN CHAR,
user_id IN CHAR,
timestamp IN CHAR,
object_id IN CHAR,
source_colmap IN CHAR,
target_colmap IN CHAR);
Parameters

Table 26-4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description

owner Name of the schema that owns the change table.

change_table_ Name of the change table that is being altered.

name

operation Specifies either the value DRORor ADDto indicate whether to add or

drop the columns in the field column_table or column_list.

26-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Table 26-4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description
column_list A comma-delimited list of column names and datatypes for each
column of the source table that should be added to, or dropped from,
the change table.
rs_id Adds or drops the control column that tracks the row sequence (rs_
id). Set this parameter to Y or N, as follows:
Y: Adds or drops a column on the change table that contains the row
sequence (rs_id).
N: Thers_id control column is not changed in the change table.
row_id Adds or drops arow_id column, as follows:
Y: Adds or drops the row_id control column for the change table.
N: The row_id column is not changed in the change table.
user_id Adds or drops the user name control column. Specify Y or N, as
follows:
Y: Adds or drops a column on the change table that contains the user
name (user_id).
N: The user_id column is not changed in the change table.
timestamp Adds or drops the timestamp control column to the change table, as
follows:
Y: Adds or drops a column on the change table that contains the
timestamp.
N: The timestamp control column is not changed in the change table.
object_id Add or drops the object_id column, as follows:

source_colmap

Y: Adds or drops a column on the change table that contains the
object_id

N: The object_id control column is not changed in the change table.

Adds or drops the source_colmap control column from the change
table, as follows:

Y: Adds or drops a column on the change table that contains the
source columns (source_colmap).

N: The source_colmap column is not changed in the change table.

DBMS_LOGMNR_CDC_PUBLISH 26-9

ALTER_CHANGE_TABLE Procedure

Table 26-4 ALTER_CHANGE_TABLE Procedure Parameters

Parameter Description

target_colmap Adds or drops the target_colmap control column from the change
table, as follows:

Y: Adds or drops a column on the change table that contains the target
columns (target_colmap).

N: The target_colmap column is not changed in the change table.

Exceptions

Table 26-5 ALTER_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31403 You issued an ALTER_CHANGE_TABLf@rocedure with an ADD operation
but a column by this name already exists in the specified table.

ORA-31409 One or more of the input parameters to the ALTER_CHANGE_SET
procedure had invalid values. Identify the incorrect parameters and supply
the correct values to the procedure.

ORA-31417 A reserved column name was specified in the column list parameter.
Ensure that the name specified does not conflict with a reserved column
name.

ORA-31421 The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

ORA-31423 You issued the ALTER_CHANGE_TABLW®ith a drop operation and the
specified column does not exist in the change table.

ORA-31454 Illegal value was specified for operation parameter; expecting ADDor DROP

ORA-31455 Nothing to alter. The specified column list is NULL and all optional control
columns are N.

ORA-31456 An internal attempt to invoke a procedure within the DBMS_CDC_UTILITY
package failed. Check the trace logs for more information.

ORA-31459 One or more required system triggers are not installed.

Usage Notes

= You cannot add and drop user columns in the same call to the ALTER_CHANGE_
TABLE procedure; these schema changes require separate calls.

= Do not specify the name of the control columns in the user-column lists.

26-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Example

s The following table describes what happens when you add a column to a

change table:

If the publisher
adds And. . . .

Then . . .

A user column A new
subscription
includes this
column

A user column A new
subscription
does not
include this
newly added
column

A user column (0][s]
subscriptions
exist

A control column There is a new
subscription

A control column —

The subscription window starts at the point the column
was added.

The subscription window starts at the low-water mark
for the change table thus enabling the subscriber to see
the entire table.

The subscription window remains unchanged and the
entire table can be seen.

The subscription window starts at the low-water mark
for the change table. The subscription can see the
control column immediately. All rows that existed in
the change table prior to adding the control column
will have the value NULL for the newly added control
column field.

Any existing subscriptions can see the new control
column when the window is extended (DBMS _
LOGMNR_CDC_PUBLISH.EXTEND_WIND@¥tedure)
such that the low watermark for the window crosses
over the point when the control column was added.

EXECUTE DBMS_LOGMNR_CDC_PUBLISHALTER CHANGE TABLE (OWNER => 'cdcl) \
CHANGE TABLE NAME => 'emp ct \

OPERATION => ADD \
ADD_COLUMN_LIST => ” \
RS ID => 'Y’ \

ROW.ID => N\

USER ID => N’ \
TIMESTAMP => N \
OBJECT ID => N\

DBMS_LOGMNR_CDC_PUBLISH 26-11

DROP_SUBSCRIBER_VIEW Procedure

SOURCE_COLMAP => N' \
TARGET_COLMAP => N);

DROP_SUBSCRIBER_VIEW Procedure

This procedure allows a publisher to drop a subscriber view in the subscriber’s
schema.

Note: This procedure works the same way as the DBMS_LOGMNR _
CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEwbcedure.

Syntax
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW (
subscripion_handle IN NUMBER,
source_schema IN VARCHAR?2,
source_table IN VARCHAR?2)
Parameters
Table 26-6 DROP_SUBSCRIBER_VIEW Procedure Parameters
Parameter Description
subscription_handle Unique number of the subscription handle that was returned by a
previous call to the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_
SUBSCRIPTION_HANDLPprocedure.
source_schema Schema name where the source table resides.
source_table Name of the published source table.
Exceptions

Table 26—7 DROP_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31429 The subscription has not been activated. Check the subscription handle
and correct it, if necessary. Call the DBMS_LOGMNR_CDC _
SUBSCRIBE.ACTIVATE_SUBSCRIPTIONprocedure for this subscription
handle and then try the original command again.

26-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Table 26—7 DROP_SUBSCRIBER _VIEW Procedure Exceptions

Exception Description

ORA-31432 The schema_name.source_table does not exist or does not belong to this
subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.

ORA-31433 The subscriber view does not exist. Either you specified an incorrect
subscriber view or the view is already dropped. Check the name and
specify the name of an existing subscriber view.

Usage Notes

= This procedure provides the publisher with a way to clean up views that have
not been removed by the subscriber. (Typically, subscribers drop the subscriber
views using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW
procedure.)

= The subscriber view you want to drop must have been created with a prior call
to the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure.

= You must use this procedure to drop any subscriber views prior to dropping a
subscription using the DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION
procedure.

Example

EXECUTE sysDBMS_CDC_SUBSCRIBEDROP_SUBSCRIBER VIEW(\
SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>scot, \
SOURCE_TABLE => ‘emp);

DROP_SUBSCRIPTION Procedure

This procedure allows a publisher to drop a subscription that was created with a
prior call to the DBMS_LOGMNR_CDC_SUBSCRIBET_SUBSCRIPTION_HANDLE
procedure.

Note: This procedure works the same way as the DBMS_LOGMNR _
CDC_SUBSCRIBE.DROP_SUBSCRIPTIObNrocedure.

DBMS_LOGMNR_CDC_PUBLISH 26-13

DROP_CHANGE_TABLE Procedure

Syntax

Parameters

Exceptions

Usage Notes

Example

DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION (
subscripton_hande IN NUMBER)

Table 26-8 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description

subscription_handle Unique number of the subscription handle that was returned by a
previous call to the DBMS_LOGMNR_CDC_SUBSCRIBE.GET_
SUBSCRIPTION_HANDLBprocedure.

Table 26-9 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_MpEdedure and
then try the original command again.

= This procedure provides the publisher with a way to drop subscriptions that
have not been dropped by the subscriber. (Typically, subscribers drop
subscriptions using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_
SUBSCRIPTIONprocedure.)

= Prior to dropping a subscription, you must drop the subscriber view using the
DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIBER_\bEdWedure.

EXECUTE DBMS_LOGMNR_CDC_PUBLISH.DROP_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandie);

DROP_CHANGE_TABLE Procedure

This procedure drops an existing change table.

26-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_PUBLISH Subprograms

Syntax

Parameters

Exceptions

DBMS_LOGMNR_CDC_PUBLISH.DROP_CHANGE_TABLE (

owner

IN VARCHARZ,

change table name IN VARCHAR2,

force flag

IN CHAR)

Table 26-10 DROP_CHANGE_TABLE Procedure Parameters

Parameter

Description

owner
change_table_name

force_flag

Name of the schema that owns the change table.
Name of the change table that is being dropped.

Drops the change table, depending on whether or not there are
subscriptions making references to it, as follows:

Y: Drops the change table even if there are subscriptions making
references to it.

N: Drops the change table only if there are no subscribers referencing
it.

Table 26—-11 DROP_CHANGE_TABLE Procedure Exceptions

Exception Description

ORA-31421

The specified change table does not exist. Check the specified change table
name to see that it matches the name of an existing change table.

ORA-31422 Owner schema does not exist.

ORA-31424 The specified change table has active subscriptions, and thus it cannot be
dropped. If you must drop the table, use the force_flag parameter to
immediately drop the change table from all of the subscribers.

ORA-31441 Table is not a change table. You attempted to execute the DROP_CHANGE_
TABLE procedure on a table that is not a change table.

Example

EXECUTE DBMS_LOGMNR_CDC_PUBLISH.DROP_CHANGE TABLE (\
OWNER => ‘cdcl’, \
CHANGE TABLE NAME => 'emp ct \
FORCE_FLAG => N)

DBMS_LOGMNR_CDC_PUBLISH 26-15

PURGE Procedure

PURGE Procedure

This procedure monitors change table usage by all subscriptions, determines which
rows are no longer needed by subscriptions, and removes the unneeded rows to
prevent change tables from growing endlessly.

Syntax
DBMS_LOGMNR_CDC_PUBLISHPURGE ()

Exceptions

Only standard Oracle exceptions (for example, a privilege violation) are returned
during a purge operation.

Usage Notes
= You can run this procedure manually or automatically:

— Run this procedure manually from the command line at any time that you
want to purge data from change tables.

— Run this procedure in a script to routinely perform a purge operation and
proactively control the growth of change tables. You can always remove or
disable (or suspend) the purge operation if you want to prevent it from
running automatically.

= Use this procedure to control the growth of change tables.

= Do not attempt to control a change table’s partitioning properties. When the
DBMS_LOGMNR_CDC_PUBLISH.PUR@Hcedure runs, Change Data Capture
performs partition maintenance automatically.

Example
EXECUTE DBMS_LOGMNR_CDC_PUBLISH.PURGE

26-16 Oracle9i Supplied PL/SQL Packages and Types Reference

27

DBMS LOGMNR_CDC_SUBSCRIBE

This chapter describes how to use the DBMS_LOGMNR_CDC_SUBSCR{iEkage to
view and query the change data that was captured and published with the DBMS _
LOGMNR_CDC_PUBLISbhckage.

A Change Data Capture system usually has one publisher that captures and
publishes changes for any number of Oracle source (relational) tables and many
subscribers. The subscribers, typically applications, use the Oracle supplied
package, DBMS_LOGMNR_CDC_SUBSCRI®Eaccess the published data.

See Also: Oracle9i Data Warehousing Guide for more information
about the Oracle Change Data Capture publish and subscribe
model.

This chapter discusses the following topics:

= Subscribing to Change Data

=« Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

DBMS_LOGMNR_CDC_SUBSCRIBE 27-1

Subscribing to Change Data

Subscribing to Change Data

Once the publisher sets up the system to capture data into change tables and grants
access, subscribers can access and query the published change data for any of the
source tables of interest. Using the procedures in the DBMS _LOGMNR_CDC _
SUBSCRIBEpackage, the subscriber accomplishes the following main objectives:

1. Indicate the change data of interest by creating subscriptions to published
source tables and source columns.

2. Extend the subscription window and create a new subscriber view when the
subscriber is ready to receive a set of change data.

3. Use SELECTstatements to retrieve change data from the subscriber views.

4. Drop the subscriber view and purge the subscription window when finished
processing a block of changes.

5. Drop the subscription when the subscriber no longer needs its change data.

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

The primary role of the subscriber is to use the change data. Through the DBMS _
LOGMNR_CDC_SUBSCRIPpEckage, each subscriber registers interest in a set of
source tables by subscribing to them.

Table 27-1 describes the procedures for the DBMS_LOGMNR_CDC_SUBSCRIBE
package.

Table 27-1 DBMS_LOGMNR_CDC_SUBSCRIBE Package Subprograms

Subprogram Description

GET_SUBSCRIPTION_ Creates a subscription handle that associates the subscription with one
HANDLE Procedure on change set.

page 27-5

SUBSCRIBE Procedure on Specifies the source tables and source columns for which the subscriber
page 27-6 wants to access change data.

ACTIVATE_SUBSCRIPTION Indicates that a subscription is ready to start accessing change data.

Procedure on page 27-9

EXTEND_WINDOW Procedure Sets the subscription window boundaries (low-water and high-water mark)

on page 27-10 so that new change data can be seen.

PREPARE_SUBSCRIBER_VIEW Creates a subscriber view in the subscriber’s schema in which the subscriber

Procedure on page 27-11 can query the change data encompassed by the current subscription
window.

27-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

Table 27-1 DBMS _LOGMNR_CDC_SUBSCRIBE Package Subprograms (Cont.)

Subprogram Description

DROP_SUBSCRIBER_VIEW Drops a subscriber view from the subscriber’s schema.
Procedure on page 27-13

PURGE_WINDOW Procedure Sets the low-water mark for a subscription window to notify the capture

on page 27-14 system that the subscriber is finished processing a set of change data.
DROP_SUBSCRIPTION Drops a subscription that was created with a prior call to the GET_
Procedure on page 27-14 SUBSCRIPTION_HANDLprocedure.

Subscribers call the procedures in the order shown in Table 27-1 unless an error
occurs, at which time the subscribers should exit. Figure 27-1 shows the most
common steps for using the procedures in the DBMS_LOGMNR_CDC_SUBSCRIBE
package.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-3

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

Figure 27-1 Subscription Flow

GET_SUBSCRIPTION_HANDLE [y SUBSCRIBE e ACTIVATE_SUBSCRIPTION-l

—

EXTEND_WINDOW :

PREPARE_SUBSCRIBER_VIEW

SELECT j
DROP_SUBSCRIBER_VIEW

PURGE_WINDOW

v

> Error Condition

v v

DROP_SUBSCRIPTION

In Figure 27-1:

1. Ifyou use the PURGE_WINDOWTrocedure immediately after using an EXTEND_
WINDOWrocedure, then change data is lost without ever being processed.

27-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

2. Ifyou use the EXTEND_WINDOJocedure immediately after using the DROP_
SUBSCRIBER_VIEWsrocedure, you will see the data that you just processed
again and possibly some new data.

3. Ifanerror occurs during any step in the process, the application program
calling the DBMS_LOGMNR_CDC_SUBSCR{B&cedures should detect the error
and exit. For example, if the PREPARE_SUBSCRIBER_VIEWfocedure fails for
any reason, and the application ignores the error and continues, then the
PURGE_WINDOpYocedure will delete data that was never seen or selected by
the subscriber.

GET_SUBSCRIPTION_HANDLE Procedure

Syntax

Parameters

Exception

This procedure creates a subscription handle that associates the subscription with
one change set. Creating a subscription handle is the first step in obtaining a
subscription.

DBMS_LOGMNR_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE(
change_set IN VARCHARZ,
description IN VARCHAR2 = NULL,
subscription_handle OUT NUMBER);

Table 27-2 GET_SUBSCRIPTION_HANDLE Procedure Parameters

Parameter Description

change_set Name of an existing change set to which the application
subscribes. You must set the value to SYNC_SET

description Describes the subscription handle and the purpose for which it is
used.

subscription_handle Unique number of the subscription handle for this subscription.

Table 27-3 GET_SUBSCRIPTION_HANDLE Procedure Exceptions

Exception Description

ORA-31415 Could not find an existing change set with this name.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-5

SUBSCRIBE Procedure

Table 27-3 GET_SUBSCRIPTION_HANDLE Procedure Exceptions (Cont.)

Exception Description

ORA-31457 The maximum number of characters permitted in the description
field was exceeded.

ORA-31458 This is an internal error. Contact Oracle Support Services and
report the error.

Usage Notes
= The GET_SUBSCRIPTION_HANDLprocedure allows a subscriber to register
interest in a change set associated with source tables of interest.

= To see all of the published source tables for which the subscriber has privileges,
query the ALL_PUBLICATIONS view.

= A subscriber can later use a single subscription handle to access the multiple
change tables in the subscription.

= Subscription handles:

— Never get reused and are tracked from the time of creation until they are
dropped with the DROP_SUBSCRIPTIONrocedure.

— Are not shared among subscribers; rather, each subscription handle is
validated against the subscriber’s login ID.

Example

EXECUTE sys.DBMS_CDC_SUBSCRIBE.GET_SUBSCRIPTION_HANDLE(\
CHANGE_SET=>SYNC SET, \
DESCRIPTION=>'Change data for emp'\
SUBSCRIPTION_HANDLE=>:subhandle);

SUBSCRIBE Procedure

This procedure specifies the source tables and source columns for which the
subscriber wants to access change data.

Syntax

There are two versions of syntax for the SUBSCRIBEprocedure, each of which
specifies the subscriber columns and datatypes. If the subscribers know which
publication contains the source columns of interest, the subscribers can use the
version of the procedure that contains the publication ID. If they do not know the

27-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

Parameters

Exceptions

publication ID, the Change Data Capture system will select a publication based on
the supplied source schema and source table.

The following syntax identifies the source table of interest, allowing Change Data
Capture to select any publication that contains all source columns of interest.

DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (
subscription_handie IN NUMBER,

source_schema IN VARCHAR2,
source_table IN VARCHAR?2,
column_list IN VARCHARY2);

The following syntax specifies the publication ID for a specific publication that
contains the source columns of interest.

DBMS_LOGMNR_CDC_SUBSCRIBE.SUBSCRIBE (
subscription_handie IN NUMBER,
publication_id IN NUMBER,
column_list IN VARCHARY2);

Table 27-4 SUBSCRIBE Procedure Parameters

Parameter Description

subscription_ Unique number of the subscription handle that was returned by a

handle previous call to the GET_SUBSCRIPTION_HANDLErocedure.

source_schema Schema name where the source table resides.

source_table Name of a published source table.

column_list A comma-delimited list of columns from the published source
table.

publication_id A valid publication_id, which you can obtain from the ALL_

PUBLISHED_COLUMN&ew.

Table 27-5 SUBSCRIBE Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to
this user or application.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-7

SUBSCRIBE Procedure

Table 27-5 SUBSCRIBE Procedure Exceptions (Cont.)

Exception Description

ORA-31426 The subscription handle has been activated; additional calls to the

SUBSCRIBEprocedure are prohibited. You must subscribe to all of the
desired tables and columns before activating the subscription. Ensure that
the correct subscription handle was specified.

ORA-31427 The subscription represented by the subscription handle already contains

the schema name and source table. Check the values of the
subscription_handle , source_schema , and source_table
parameters. Do not attempt to subscribe to the same table more than once
using the same subscription handle.

ORA-31428 No publication contains all of the specified columns. One or more of the

specified columns cannot be found in a single publication. Consult the
ALL_PUBLISHED_COLUMNS@iew to see the current publications and
change the subscription request to select only the columns that are in the
same publication.

Usage Notes

Example

You can subscribe to any valid publication_id. You can find valid publications
in the ALL_PUBLISHED_COLUMN@iew.

The SUBSCRIBEprocedure allows an application to subscribe to one or more
published source tables and to specific columns in each source table.

To see all of the published source table columns for which the subscriber has
privileges, query the ALL_PUBLISHED_COLUMNS view.

Subscriptions must be created before the application actually needs the data.
The Change Data Capture system does not guarantee that there will be any
change data available at the moment the subscription is created.

Subscribers can subscribe only to published columns from the source table.
Also, all of the columns must come from the same publication. Any control
columns associated with the underlying change table are added to the
subscription automatically.

EXECUTE sys.DBMS_CDC_SUBSCRIBE.SUBSCRIBE(\

SUBSCRIPTION_HANDLE=>:subhandle, \
SOURCE_SCHEMA=>'scott, \
SOURCE_TABLE=>emp, \
COLUMN_LIST=>'empno, ename, hiredate);

27-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

ACTIVATE_SUBSCRIPTION Procedure

Syntax

Parameters

Exceptions

Usage Notes

The ACTIVATE_SUBSCRIPTIONprocedure indicates that a subscription is ready to
start accessing change data.

DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (
subscription_handle IN NUMBER);

Table 27-6 ACTIVATE_SUBSCRIPTION Procedure Parameters

Parameter Description
subscription_ Unique number of the subscription handle that was returned by a
handle previous call to the GET_SUBSCRIPTION_HANDLRrocedure.

Table 27-7 ACTIVATE_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to
this user ID or application.

ORA-31439 The subscription is already active. You can activate a subscription only
once.

= The ACTIVATE_SUBSCRIPTIONprocedure indicates that you are finished
subscribing to tables, and the subscription is ready to start accessing data.

= Once the subscriber activates the subscription:
— No additional source tables can be added to the subscription.

— The Change Data Capture system holds the available data for the source
tables and sets the subscription window to empty.

— The subscriber must use the EXTEND_WINDOWfocedure to see the initial
set of change data.

— The subscription cannot be activated again.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-9

EXTEND_WINDOW Procedure

Example

EXECUTE sys.DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION(\
SUBSCRIPTION_HANDLE=>:subhandle);

EXTEND_WINDOW Procedure

Syntax

Parameters

Exceptions

Usage Notes

This procedure sets the subscription window boundaries (low-water and
high-water mark) so that new change data can be seen.

DBMS_LOGMNR_CDC_SUBSCRIBE.EXTEND WINDOW (
subscription_handle IN NUMBER);

Table 27-8 EXTEND_WINDOW Procedure Parameters

Parameter Description
subscription_ Unique number of the subscription handle that was returned by a
handle previous call to the GET_SUBSCRIPTION_HANDLRrocedure.

Table 27-9 EXTEND_WINDOW Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist or it does not belong to
this user or application.

ORA-31429 The subscription handle must be activated before you use the EXTEND _
WINDOWrocedure. Call the ACTIVATE_SUBSCRIPTIONprocedure for this
subscription handle and then try the original command again.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DROP_SUBSCRIBER_VIEWocedure and then try the original command
again.

= Until you call the EXTEND_WINDOWrocedure to begin capturing change data,
the subscription window remains empty.

27-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

— The first time that you call the EXTEND_WINDOWfocedure, it establishes
the initial boundaries for the subscription window.

— Subsequent calls to the EXTEND_WINDOWfocedure extend the high-water
mark of the subscription window so that new change data can be seen.

Example

EXECUTE sys.DBMS_CDC_SUBSCRIBE.EXTEND WINDOW(\
subscription_handle=>:subhandie);

PREPARE_SUBSCRIBER_VIEW Procedure

This procedure creates a subscriber view in the subscriber’s schema in which the
subscriber can query the change data encompassed by the current subscription

window.
Syntax
DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER _VIEW (
subscription_handle IN NUMBER,
source_schema IN VARCHARZ2,
source_table IN VARCHARZ,
view_name OUT VARCHARY),
Parameters

Table 27-10 PREPARE_SUBSCRIBER_VIEW Procedure Parameters

Parameter Description

subscription_ Unique number of the subscription handle that was returned by a

handle previous call to the GET_SUBSCRIPTION_HANDLRrocedure.

source_schema Schema name where the source table resides.

source_table Name of the published source table that belongs to the subscription
handle.

view_name Name of the newly-created view that will return the change data for

the source table.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-11

PREPARE_SUBSCRIBER_VIEW Procedure

Exceptions

Usage Notes

Table 27-11 PREPARE_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 The specified subscription handle does not exist, or it does not belong to

this user or application.

ORA-31429 The subscription has not been activated. The subscription handle must be

activated before you use the PREPARE_SUBSCRIBER_VIEWfocedure.
Call the ACTIVATE_SUBSCRIPTIONprocedure for this subscription
handle and then try the original command again.

ORA-31430 An earlier subscriber view was not dropped prior to making this call. Call

the DROP_SUBSCRIBER_VIEWocedure and then try the original
command again.

ORA-31432 The schema name or source table does not exist or does not belong to this

subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.

This procedure creates a subscriber view in the subscriber’s schema in which to
display the change data. After the subscriber view is created, the subscriber can
select change data that is within the boundaries defined (by the EXTEND _
WINDOWrocedure) for the subscription window.

The Change Data Capture system determines the name of the subscriber view
and returns the name to the subscriber. The name of the subscriber view is
constant over the life of the subscription. To access the change data, there must
be a view for each source table in the subscription. Applications use a SELECT
statement from these views and retrieve the change data. For the purpose of the
following example, assume that sys.sub9view was the view name returned
by the PREPARE_SUBSCRIBER_VIEWfocedure:

SELECT * FROM sys.sub9view,

If a view already exists with the same view_name (for example, if the previous
view was not dropped with a DROP VIEWDDL statement), an exception
occurs. The PREPARE_SUBSCRIBER_VIEWfocedure checks if the underlying
change table still exists.

27-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

Examples

EXECUTE sys.DBMS_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW(\
SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>'scott, \
SOURCE_TABLE => 'emp, \
VIEW_NAME => viewname);

DROP_SUBSCRIBER_VIEW Procedure

Syntax

Parameters

Exceptions

This procedure drops a subscriber view from the subscriber’s schema.

DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_VIEW (
subscription_handie IN NUMBER,
source_schema IN VARCHAR2,
source_table IN VARCHARY2);

Table 27-12 DROP_SUBSCRIBER_VIEW Procedure Parameters

Parameter Description

subscription_handle Unique number of the subscription handle that was returned by a
previous call to the GET_SUBSCRIPTION_HANDLEBrocedure.

source_schema Schema name where the source table resides.
source_table Name of the published source table that belongs to the subscription
handle.

Table 27-13 DROP_SUBSCRIBER_VIEW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31429 The subscription has not been activated. Check the subscription handle
and correct it, if necessary. Call the ACTIVATE_SUBSCRIPTIONprocedure
for this subscription handle and then try the original command again.

DBMS_LOGMNR_CDC_SUBSCRIBE 27-13

PURGE_WINDOW Procedure

Table 27-13 DROP_SUBSCRIBER_VIEW Procedure Exceptions (Cont.)

Exception Description

ORA-31432 The schema_name.source_table does not exist or does not belong to this
subscription. Check the spelling of the schema_name and source_table
parameters. Verify the specified table exists in the specified schema and is
subscribed to by the subscription handle.

ORA-31433 The subscriber view does not exist. Either you specified an incorrect source
table or its view is already dropped.

Usage Notes
= The subscriber view you want to drop must have been created with a prior call

to the DBMS_LOGMNR_CDC_SUBSCRIBE.PREPARE_SUBSCRIBER_VIEW
procedure.

= You must use this procedure to drop the subscriber view prior to dropping a
subscription using the DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_
SUBSCRIPTIONprocedure.

Example

EXECUTE sysDBMS_CDC_SUBSCRIBEDROP_SUBSCRIBER VIEW(\
SUBSCRIPTION_HANDLE =>:subhandle, \
SOURCE_SCHEMA =>scot, \
SOURCE_TABLE => ‘emp);

PURGE_WINDOW Procedure

The subscriber calls this procedure to notify the capture system it is finished
processing a block of changes. The PURGE_WINDO@Yocedure sets the low-water
mark so that the subscription no longer sees any data, effectively making the
subscription window empty.

Syntax

DBMS_CDC_SUBSCRIBE.PURGE,_WINDOW(
subscription_handle IN NUMBERY);

27-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_CDC_SUBSCRIBE Subprograms

Parameters

Exceptions

Usage Notes

Example

Table 27-14 PURGE_WINDOW Procedure Parameters

Parameter Description
subscription_ Unique number of the subscription handle that was returned by a
handle previous call to the GET_SUBSCRIPTION_HANDLErocedure.

Table 27-15 PURGE_WINDOW Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.

Call the function again with a valid subscription handle.

ORA-31429 The subscription handle must be activated before you use the EXTEND _

WINDOWrocedure. Call the ACTIVATE_SUBSCRIPTIONprocedure for
this subscription handle and then try the original command again.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the

DROP_SUBSCRIBER_VIEW Procedure and then try the original command
again.

When finished with a set of changes, the subscriber purges the subscription
window with the PURGE_WINDOpYocedure. By this action the subscriber
performs the following functions:

— Informs the change capture system that the subscriber is ready to receive
the next batch of change data.

— Enables the system to remove change data that is no longer needed by any
subscribers.

The Change Data Capture system manages the change data to ensure that it is
available as long as there are subscribers who need it.

EXECUTE sys.DBMS_CDC_SUBSCRIBE.PURGE_WINDOW (\
SUBSCRIPTION_HANDLE=>:subhandle);

DBMS_LOGMNR_CDC_SUBSCRIBE 27-15

DROP_SUBSCRIPTION Procedure

DROP_SUBSCRIPTION Procedure

Syntax

Parameters

Exceptions

Usage Notes

Example

This procedure drops a subscription that was created with a prior call to the GET _
SUBSCRIPTION_HANDLIprocedure.

DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (
subscription_handle IN NUMBER);

Table 27-16 DROP_SUBSCRIPTION Procedure Parameters

Parameter Description
subscription_ Unique number of the subscription handle that was returned by a
handle previous call to the GET_SUBSCRIPTION_HANDLRrocedure.

Table 27-17 DROP_SUBSCRIPTION Procedure Exceptions

Exception Description

ORA-31425 Subscription handle does not exist or handle does not belong to this user.
Call the function again with a valid subscription handle.

ORA-31430 The subscriber view was not dropped prior to making this call. Call the
DROP_SUBSCRIBER_VIEWocedure and then try the original command
again.

= Prior to dropping a subscription, you must drop the subscriber view using the
DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIBER_lie'¢¢dure.

EXECUTE DBMS_LOGMNR_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (\
SUBSCRIPTION_HANDLE => :subhandie);

27-16 Oracle9i Supplied PL/SQL Packages and Types Reference

28

DBMS _LOGMNR D

The DBMS_LOGMNR gackage contains the LogMiner procedures, DBMS_LOGMNR_
D.BUILD and DBMS_LOGMNR.SET_TABLESPACEThe DBMS_LOGMNR.BMILD
procedure extracts the dictionary to either the redo logs or to a flat file. This
information is saved in preparation for future analysis of redo logs using the
LogMiner tool. The DBMS_LOGMNR.SET _TABLESPACHrocedure re-creates all
LogMiner tables in an alternate tablespace.

See Also: Oracle9i Database Administrator’s Guide for information
about using LogMiner
This chapter discusses the following topics:
« Summary of DBMS_LOGMNR_D Subprograms
— BUILD Procedure
— SET_TABLESPACE Procedure

DBMS_LOGMNR_D 28-1

Summary of DBMS_LOGMNR_D Subprograms

Summary of DBMS_LOGMNR_D Subprograms

Table 28-1 describes the procedures in the DBMS_LOGMNR sDpplied package.

Table 28—-1 DBMS_LOGMNR_D Package Subprograms

Subprogram Description

BUILD Procedure on Extracts the database dictionary to either a flat file or a file in
page 28-2 the redo logs.

SET_TABLESPACE Re-creates all LogMiner tables in an alternate tablespace.

Procedure on page 28-5

BUILD Procedure
The syntax for the DBMS_LOGMNR.BMILD procedure is as follows:

Syntax
DBMS_LOGMNR_D.BUILD (
dictionary_flename IN VARCHAR2,
dictionary_location IN VARCHARZ,
options IN NUMBER);
Parameters

Table 28-2 describes the parameters for the BUILD procedure.

Table 28-2 BUILD Procedure Parameters

Parameter Description

dictionary_filename Name of the dictionary file

dictionary_location Path to file directory

options Specifies that the dictionary is written to either a flat file
(STORE_IN_FLAT_FILE) or the redo logs (STORE_IN_REDO_
LOGS destination

To extract the dictionary to a flat file, you must supply a filename and location.

To extract the dictionary to the redo logs, specify only the STORE_IN_REDO_LOGS
option. The size of the dictionary may cause it to be contained in multiple redo logs.

In summary, the combinations of parameters used result in the following behavior:

=« If you do not specify any parameters, an error message is returned.

28-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_D Subprograms

s If you specify a filename and location, without any options, the dictionary is
extracted to a flat file with that name.

s If you specify a filename and location, as well as the DBMS_LOGMNR_D.STORE _
IN_FLAT_FILE option, the dictionary is extracted to a flat file with the
specified name.

s If you do not specify a filename and location, but do specify the DBMS _
LOGMNR_D.STORE_IN_REDO_LOGftion, the dictionary is extracted to the
redo logs.

s If you specify a filename and location, as well as the STORE_IN_REDO_LOGS
option, an error is returned.

Exceptions
= ORA-1308: initialization parameter UTL_FILE_DIR is not set.

s ORA-1336 - this error is returned under the following conditions:
1. Dictionary_location does not exist.
2. UTL_FILE_DIR is not set to have access to dictionary_location.

3. Dictionary file is read only.

Usage Notes
= lIdeally, the dictionary file will be created after all dictionary changes to a
database and prior to the creation of any redo logs that are to be analyzed. As of
Oracle9i release 1 (9.0.1), you can use LogMiner to dump the dictionary to the
redo logs, perform DDL operations, and dynamically apply the changes to the
LogMiner dictionary.

=« The DBMS_LOGMNR_D.BUILProcedure will not run if there are any ongoing
DDL operations.

= Touse the DBMS_LOGMNR_D.BUILProcedure, the database whose files you
want to analyze must be mounted and open.

= To monitor progress of the dictionary build, issue the SET SERVEROUTPUDN
command.

= When extracting a dictionary to a flat file, the procedure queries the dictionary
tables of the current database and creates a text-based file containing the
contents of the tables. To extract a dictionary to a flat file, the following
conditions must be met:

DBMS_LOGMNR_D 28-3

BUILD Procedure

— The dictionary file must be created from the same database that generated
the redo logs you want to analyze

— You must specify a directory for use by the PL/SQL procedure. To do so, set
the initialization parameter UTL_FILE_DIR intheinit .ora file. For
example:

UTL FILE DIR = foracle/dictionary

If you do not set this parameter, the procedure will fail.

— You must ensure that no DDL operations occur while the dictionary build is
running. Otherwise, the dictionary file may not contain a consistent
snapshot of the data dictionary.

= To extract a dictionary file to the redo logs, the following conditions must be
met;

— Supplemental logging (at least the minimum level) must be enabled to
ensure that the redo logs contain useful information. See Oracle9i Database
Administrator’s Guide for information about using supplemental logging
with LogMiner.

— The DBMS_LOGMNR_D.BUILprocedure must be run on a system that is
running Oracle9i or later

— Archiving mode must be enabled in order to generate usable redo
— Oracle9i compatibility must be employed
— The mining system must be Oracle9i or later

— Thedictionary redo files must be created from the same database that
generated the redo logs you want to analyze

Example 1. Extracting the Dictionary to a Flat File

The following example extracts the dictionary file to a flat file named
dictionary.ora in a specified path (/oracle/database).

SQL> EXECUTE dbms_logmnr_d.build('dictionary.ora’, -
2 ’foracle/databasef, -
3 options => dbms_logmnr_d.store_in_flat file);

Example 2: Extracting the Dictionary to the Redo Logs
The following example extracts the dictionary to the redo logs.
SQL> EXECUTE dbms_logmnr_d.build (-

28-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGMNR_D Subprograms

2 options => dbms_logmnr_d.store_in_redo_logs);

SET_TABLESPACE Procedure

Parameters

Usage Notes

By default all LogMiner tables are created to use the SYSTEMablespace. However,
it may be desirable to alter LogMiner tables to employ an alternate tablespace. Use
this routine to re-create all LogMiner tables in an alternate tablespace.

Table 28-3 describes the parameters for the SET_TABLESPACHrocedure.

Table 28-3 SET_TABLESPACE Parameters

Parameter Description

new_tablespace A string naming a preexistent tablespace. To re-create all
LogMiner tables to employ this tablespace, supply only this
parameter.

dictionary_ A string naming a preexistent tablespace. This parameter

tablespace places LogMiner Dictionary data in a tablespace different from

that where LogMiner spill data is to be written. This parameter
overrides the new_tablespace parameter with respect to
LogMiner Dictionary tables.

spill_tablespace A string naming a preexistent tablespace. This parameter
places LogMiner spill data in a tablespace different from that
where LogMiner Dictionary data is to be written. This
parameter overrides the new_tablespace parameter with
respect to LogMiner spill tables.

= There can be no LogMiner sessions running at the time this procedure is run,
nor can LogMiner have been terminated abnormally prior to this procedure
being run. Either situation can cause unpredictable results.

= Though the intent is that this routine is to be run only once to configure
LogMiner for use by other products, it can be run multiple times should it be
necessary to redefine the tablespaces that are to be employed. However, the
previous usage note is still enforced. Because the techniques required to force
layered products to terminate their LogMiner sessions may be non-trivial,
Oracle Corporation does not recommend that this routine be used more than
once.

DBMS_LOGMNR_D 28-5

SET_TABLESPACE Procedure

= Certain layered products require that this routine be used to alter the tablespace
of all LogMiner tables before the layered product will operate.

= Certain performance optimizations can be made when LogMiner tables do not
employ the SYSTEMablespace. Specifically, certain easily repeatable
operations, such as memory spill, LogMiner dictionary load, and index creation
will not be logged. This would have unacceptable implications with respect to
the SYSTEMablespace in the event of a database recovery.

= Users of this routine must supply an existing tablespace. Information about
tablespaces and how to create them is available in Oracle9i Database Concepts
and Oracle9i SQL Reference.

Example: Using the DBMS_LOGMNR_D.SET_TABLESPACE Procedure

The following example shows creation of an alternate tablespace and execution of
the DBMS_LOGMNR.SET_TABLESPACHrocedure.

SQL> CREATE TABLESPACE logmnrts$ datafile ‘/usr/oracle/dbsflogmnits’
2 SIZE 25 M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

SQL> EXECUTE dbms_logmnr_d.set_tablespace(logmnits$);

28-6 Oracle9i Supplied PL/SQL Packages and Types Reference

29

DBMS_LOGSTDBY

The DBMS_LOGSTDBYackage provides procedures for configuring and managing
the logical standby database environment.

See Also: Oracle9i Data Guard Concepts and Administration for
more information about logical standby databases.

This chapter discusses the following topics:
=« Configuring and Managing the Logical Standby Environment

=« Summary of DBMS_LOGSTDBY Subprograms

DBMS_LOGSTDBY 29-1

Configuring and Managing the Logical Standby Environment

Configuring and Managing the Logical Standby Environment

The DBMS_LOGSTDBYackage provides procedures to help you manage the logical
standby environment. The procedures in the DBMS_L OGSTDBYackage help you to
accomplish the following main objectives:

= Allow controlled access to tables in the standby database that may require
maintenance

= Provide a way to skip applying archived redo logs to selected tables or entire
schemas in the standby database, and describe how exceptions should be
handled

= Manage initialization parameters used by log apply services

= Ensure supplemental logging is enabled properly and build the LogMiner
dictionary

Summary of DBMS_LOGSTDBY Subprograms

Table 29-1 describes the procedures of the DBMS_LOGSTDRBYackage.

Table 29—-1 DBMS_LOGSTDBY Package Subprograms

Subprograms Description

APPLY_SET Procedure on page 29-3 Allows you to set the values of specific
initialization parameters to configure and
maintain log apply services

APPLY_UNSET Procedure on page 29-7 Resets the value of specific initialization
parameters to the system default values.

BUILD Procedure on page 29-8 Ensures supplemental logging is enabled
properly and builds the LogMiner dictionary
GUARD_BYPASS_ OFF Procedure on Re-enables the database guard that you
page 29-9 bypassed previously with the GUARD_
BYPASS_ONbrocedure
GUARD_BYPASS_ON Procedure on Allows the current session to bypass the
page 29-9 database guard so that tables in a logical
standby database can be modified
INSTANTIATE_TABLE Procedure on Creates and populates a table in the standby
page 29-10 database from a corresponding table in the

primary database

29-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Table 29—1 (Cont.) DBMS_LOGSTDBY Package Subprograms

Subprograms Description

SKIP Procedure on page 29-11 Allows you to specify what database operations
that are done on the primary database will not
be applied to the logical standby database

SKIP_ERROR Procedure on page 29-18 Specifies criteria to follow if an error is
encountered. You can choose to stop log apply
services or ignore the error

SKIP_TRANSACTION Procedure on Specifyies transaction identification information

page 29-21 to skip (ignore) applying specific transactions to
the logical standby database

UNSKIP Procedure on page 29-22 Modifies the options set in the SKIP procedure

UNSKIP_ERROR Procedure on Modifies the options set in the SKIP_ERROR

page 29-23 procedure

UNSKIP_TRANSACTION Procedure on Modifies the options set in the SKIP_

page 29-23 TRANSACTIONprocedure

APPLY_SET Procedure

Syntax

Parameters

Use this procedure to set and modify the values of initialization parameters that
configure and manage log apply services in a logical standby database
environment. Log apply services cannot be running when you use this procedure.

DBMS_LOGSTDBY.APPLY_SET (
parameter IN VARCHAR,
value IN VARCHARY);

Table 29-2 describes the parameters for the APPLY_SETprocedure.

Table 29-2 DBMS_LOGSTDBY.APPLY _SET Procedure Parameters

Parameter Description

APPLY_DELAY Specifies an apply delay interval (in minutes) to the
managed recovery operation on the standby database.

Use the APPLY_DELAYparameter with the APPLY_UNSET
procedure after a failover scenario, when the primary
database is not expected to return.

DBMS_LOGSTDBY 29-3

APPLY_SET Procedure

Table 29—2 (Cont.) DBMS_LOGSTDBY.APPLY _SET Procedure Parameters

Parameter

Description

MAX_SGA

MAX_SERVERS

MAX_EVENTS_RECORDED

Number of megabytes for the system global area (SGA)
allocation for log apply services cache. The default value is
one quarter of the value set for the SHARED_POOL_SIZE
initialization parameter.

Number of parallel query servers specifically reserved for
log apply services. By default, log apply services use all
available parallel query servers to read the log files and
apply changes. See Oracle9i Database Reference for more
information about parallel query servers.

Number of events that will be stored in the DBA_
LOGSTDBY_EVENT®&ble, which stores logical standby
event information.

29-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Table 29—2 (Cont.) DBMS_LOGSTDBY.APPLY _SET Procedure Parameters

Parameter

Description

TRANSACTION_CONSISTENCY_evel of transaction consistency maintained between the

RECORD_SKIP_ERRORS

primary and standby databases. Specify one of the
following values:

FULL: Transactions are applied to the logical standby
database in the exact order in which they were committed
on the primary database. (Transactions are applied in
commit SCN order.) This option results in the lowest
performance. This is the default parameter setting.

NONETransactions are applied out of order. This results in
the best performance of the three modes. However, this
setting might give you inconsistent results on the standby
database. If applications that are reading the logical
standby database make no assumptions about transaction
order, this option works well. For example, on the primary
database, one transaction added a new customer and a
second transaction added a new order for that customer.
On the standby database, those transactions may be
reversed. The order for the new customer might be added
first. If you then run a reporting application on the standby
database which expects to find a customer for the new
order, the reporting application might fail because
constraints are not checked and triggers are not fired.

READ_ONLXYTransactions are committed out of order
(which provides better performance), but periodically
enforced in order apply. SQL SELECTstatements, executed
on the standby database, always return consistent results
based on the last consistent SCN known to the apply
engine. The apply engine periodically refreshes an SCN
maintained in SGA which represents a consistent state.
Queries executed on the standby database, automatically
use Oracle Flashback to the maintained SCN. This is
beneficial when the logical standby database is being used
to generate reports. Any Oracle Flashback restrictions
apply to this mode.

Controls whether skipped errors (as described by the
SKIP_ERRORprocedure) are recorded in the DBA _
LOGSTDBY_EVENT®&ble. Specify one of the following
values:

TRUE Skipped errors are recorded in the DBA_LOGSTDBY _
EVENTStable. This is the default parameter setting.

FALSE Skipped errors are not recorded in the DBA _
LOGSTDBY_EVENT®&ble.

DBMS_LOGSTDBY 29-5

APPLY_SET Procedure

Table 29—2 (Cont.) DBMS_LOGSTDBY.APPLY _SET Procedure Parameters

Parameter Description

RECORD_SKIP_DDL Controls whether skipped DDL statements are recorded in
the DBA_LOGSTDBY_EVENTSble. Specify one of the
following values:

TRUE Skipped DDL statements are recorded in the DBA _
LOGSTDBY_EVENT®ble. This is the default parameter
setting.

FALSE Skipped DDL statements are not recorded in the
DBA_LOGSTDBY_EVENT&ble.

RECORD_APPLIED_DDL Controls whether DDL statements that have been applied
to the logical standby database are recorded in the DBA _
LOGSTDBY_EVENT®ble. Specify one of the following
values:

TRUE Indicates that DDL statements applied to the logical
standby database are recorded in the DBA_LOGSTDBY _
EVENTStable. This is the default parameter setting.

FALSE Indicates that applied DDL statements are not
recorded.

Exceptions
Table 29-3 describes the exceptions for the APPLY_SETprocedure.

Table 29-3 DBMS_LOGSTDBY.APPLY _SET Procedure Exceptions

Exception Description
ORA-16104 Invalid option
ORA-16103 Logical standby database must be stopped

Usage Notes

= Although the default values provided by the system for initialization
parameters are adequate for most applications, you might want to use the
APPLY_SETprocedure when you need to perform tuning and maintenance
tasks. For example, use the APPLY_SETprocedure when you want to override
default initialization parameter values to tune log apply services.

= Log apply services must not be applying archived redo log data to the standby
database when you modify initialization parameters with the APPLY_SET

29-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Example

procedure. The initialization parameter values that you set using this procedure
do not become active until you start log apply services.

s When a primary database is no longer available after failover, use the DBMS _

LOGSTDBY.APPLY_UNSET(APPLY_DELAY’) procedure to remove the setting
provided by the initialization parameter file.

s Usethe APPLY_UNSET Procedure to reverse (undo) the actions of the
APPLY_SETprocedure.

If parallel queries are routinely being performed by applications, a certain number
of parallel servers should be reserved for those queries. To allocate 30 parallel query
servers for logical standby log apply services, enter the following statement:

SQL> EXECUTE DBMS _LOGSTDBY.APPLY_SET(MAX SERVERS, 30);
Thus, if the PARALLEL_MAX_SERVERSarameter is set to 50, 30 servers will be

available for logical standby processing and 20 parallel query servers will be
allocated for parallel query processing.

Note: If you start log apply services while a parallel query is
running, you may get an error.

APPLY_UNSET Procedure

Syntax

Parameters

Use the APPLY_UNSETprocedure to reverse or undo the settings that you made
with the APPLY_SETprocedure. The APPLY_UNSETprocedure resets the specified
initialization parameter value to the system default value. The initialization
parameter default value does not become active until log apply services are started.

DBMS_LOGSTDBY.APPLY_UNSET (
parameter IN VARCHARY);

The APPLY_UNSETprocedure supports the same initialization parameters shown
for the APPLY_SETprocedure.

See Also: Table 29-2 for the APPLY_SETprocedure parameters

DBMS_LOGSTDBY 29-7

BUILD Procedure

Usage Notes

s Log apply services must not be applying archived redo log data to the standby
database when you modify initialization parameters with the APPLY_UNSET
procedure.

s Use the APPLY_SETprocedure to set the values of initialization parameters.

Example
To unset the number of parallel query servers for log apply services, enter the
following statement:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET(MAX_SERVERS);

Assuming that the PARALLEL_MAX_SERVERSitialization parameter is set to 50,
this statement will result in 50 parallel query servers being available for parallel
guery processing. This is because, by default, log apply services use all available
parallel query servers to read the log files and apply changes.

Note: If you start log apply services while a parallel query is
running, you may get an error.

BUILD Procedure

Use this procedure on the primary database to preserve important metadata
(LogMiner dictionary) information in the redo logs. If supplemental logging has not
been set correctly, this procedure sets it up and enables it automatically.

Syntax

DBMS_LOGSTDBY.BUILD;
Parameters

None.
Exceptions

None.

Usage Notes

= Supplemental log information includes extra information in the archived redo
logs that helps log apply services to uniquely identify and correctly maintain
tables in a logical standby database.

29-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

s LogMiner dictionary information allows log apply services to interpret data in
the redo logs.

GUARD_BYPASS OFF Procedure

Syntax

Parameters

Exceptions

Usage Notes

Example

Use the GUARD_BYPASS_OFF procedureto re-enable the database guard that
you bypassed previously with the GUARD_BYPASS_ ON Procedureprocedure.

DBMS_LOGSTDBY.GUARD_BYPASS OFF;

None.

None.

= Seethe GUARD_BYPASS ON Procedureprocedure for information about
bypassing the database guard and performing maintenance on a table in the logical
standby database.

Enter the following statement to return the current session to the state it was in
before the GUARD_BYPASS ON Procedurewas executed.

SQL> EXECUTE DBMS_LOGSTDBY.GUARD BYPASS OFF;

Typically, you need to use this command only after executing the GUARD_BYPASS _
ON Procedure to bypass the database guard.

GUARD_BYPASS ON Procedure

By default, tables in a logical standby database are protected from modifications.
However, you can use the GUARD_BYPASS_QNocedure to bypass the database
guard and make modifications to the logical standby database. For example, to perform
maintenance or correct problems on a table in the logical standby database.
Applications should not execute transactions against the database when you use
this procedure, because triggers are not run and constraints are not checked.

DBMS_LOGSTDBY 29-9

INSTANTIATE_TABLE Procedure

Syntax

DBMS_LOGSTDBY.GUARD BYPASS ON;
Parameters

None.
Exceptions

None.

Usage Notes
= This procedure affects the current session only.

= When you bypass the database guard with the GUARD_BYPASS_Qitocedure,
triggers are not run and constraints are not checked.

= Do not allow applications to execute when the use the GUARD_BYPASS ON
procedure to bypass the database guard. This environment is intended only for
maintenance reasons, such as to correct problems or to perform maintenance
such as rebuilding indexes or refreshing materialized views.

Example

Enter the following statement to allow modifications to tables in the logical standby
database.

SQL> EXECUTE DBMS _LOGSTDBY.GUARD BYPASS ON;

INSTANTIATE_TABLE Procedure

This procedure creates and populates a table in the standby database from a
corresponding table in the primary database. The table requires the name of the
database link (dblink) as an input parameter.

Use the INSTANTIATE_TABLE procedure to:
= Add atable to a standby database

= Re-create a table in a standby database
Syntax

DBMS_LOGSTDBY.INSTANTIATE_TABLE (
table_name IN VARCHAR?,

29-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

schema_name IN VARCHAR?,
dblink IN VARCHAR?);
Parameters
Table 29-4 describes the parameters for the INSTANTIATE_TABLE procedure.
Table 29-4 DBMS_LOGSTDBY.INSTANTIATE_TABLE Procedure Parameters
Parameter Description
table_name Name of the table to be created or re-created in the standby
database.
schema_name Name of the schema.
dblink Name of the database link account that has privileges to read and
lock the table in the primary database.
Exceptions

None.

Usage Notes

= Use this procedure to create and populate a table in a way that keeps the data
on the standby database transactionally consistent with the primary database.

= This procedure assumes that the metadata has been maintained correctly.

= This table is not safe until the redo log that was current on the primary database
at the time of execution is applied to the standby database.

Example
Enter this statement to create and populate a new table on the standby database.
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE TABLE (myschema’, ‘mytable’, ‘mycbiink);

SKIP Procedure

By default, all SQL statements executed on a primary database are applied to a
logical standby database. If only a subset of activity on a primary database is of
interest for replication, the SKIP procedure defines filters that prevent the
application of SQL statements on the logical standby database. While skipping
(ignoring) SQL statements is the primary goal of filters, it is also possible to
associate a stored procedure with a filter so that runtime determinations can be

DBMS_LOGSTDBY 29-11

SKIP Procedure

made whether to skip the statement, execute this statement, or execute a
replacement statement.

Before calling this procedure, log apply services must be halted. This is done by
issuing an ALTER DATABASE STOP LOGICAL STANDBY APBtatement. Once
all desired filters have been specified, issue an ALTER DATABASE START
LOGICAL STANDBY APPL3tatement to start log apply services using the new
filter settings.

Syntax
DBMS_LOGSTDBY.SKIP (
statement_option IN VARCHAR?2,
schema_name IN VARCHAR?,
object name IN VARCHAR?2,
proc_name IN VARCHARY);
Parameters

Table 29-5 describes the parameters for the SKIP procedure.

Table 29-5 DBMS_LOGSTDBY.SKIP Procedure Parameters

Parameter Description

statement_option Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 29-6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

schema_name The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the
statement_option parameter. If not applicable, this value must
be set to NULL

object_ nam e The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the
statement_option . If not applicable, this value must be set to
NULL

29-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Table 29-5 (Cont.) DBMS_LOGSTDBY.SKIP Procedure Parameters

Parameter Description

proc_name Name of a stored procedure to call when log apply services
determines that a particular statement matches the filter defined
by the statement_option , schema_name, and object_name

parameters. Specify the procedure in the following format:

schema"."package"."procedure

This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.

Log apply services calls the stored procedure with the following
call signature:

= IN STATEMENT VARCHAR2The SQL statement that
matches the filter

= IN STATEMENT_TYPE VARCHARZThe statement_
option of the filter

n IN SCHEMA VARCHAR2The schema_name of the filter, if
applicable

= IN NAME VARCHAR2 The object_name of the filter, if
applicable

= IN XIDUSN NUMBER:- Transaction ID part 1
= IN XIDSLT NUMBER- Transaction ID part 2
= IN XIDSQN NUMBER- Transaction ID part 3

= OUT SKIP_ACTION NUMBER Action to be taken by log
apply services upon completion of this routine. Valid values
are:

SKIP_ACTION_APPLY -- Execute the statement
SKIP_ACTION_SKIP -- Skip the statement

SKIP_ACTION_REPLACE- Execute the replacement
statement supplied in the NEW_STATEMENUtput parameter

= OUT NEW_STATEMENT VARCHARMe statement to
execute in place of the original statement. Use of this option
requires that SKIP_ACTION be set to SKIP_ACTION_
REPLACEOtherwise, set this option to NULL

DBMS_LOGSTDBY 29-13

SKIP Procedure

Caution: Atomic execution cannot be guaranteed if hardware or
software failures stop log apply services. In a failure situation, a
statement maybe executed more than once.

These stored procedures are not supported with DBMS _
LOGSTDBY.SKIP('DML'...) . If multiple wildcards match a
given database statement object defined by the statement_

option parameter, only one of the matching stored procedures will
be called (alphabetically, by procedure).

Skip Statement Options

Table 29-6 lists the supported values for the statement_option parameter of the
SKIP procedure. The left column of the table lists the keywords that may be used to
identify the set of SQL statements to the right of the keyword. Any of the SQL
statements in the right column, however, are also valid values. Note that keywords
are generally defined by database object.

Table 29—-6 Supported Values for statement_option Parameter

Keyword Associated SQL Statements
NON_SCHEMA_DDL All DDL that does not pertain to a particular schema
SCHEMA_DLL All DDL that pertains to a particular schema

DML Sequence operations such as sequence.nextval
CLUSTER CREATE CLUSTER

AUDIT CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT
DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DIMENSION CREATE DIMENSION

ALTER DIMENSION
DROP DIMENSION

DIRECTORY CREATE DIRECTORY
DROP DIRECTORY

29-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Table 29—6 (Cont.) Supported Values for statement_option Parameter

Keyword Associated SQL Statements
INDEX CREATE INDEX

ALTER INDEX

DROP INDEX
PROCEDURE CREATE FUNCTION

CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION

DROP LIBRARY

DROP PACKAGE

DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK STATEMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE
SESSION Logons
SYNONYM CREATE SYNONYM
DROP SYNONYM
SYSTEM AUDIT AUDITSQL_statements
NOAUDITSQL _statements
SYSTEM GRANT GRABbYBtem_privileges_and_roles

REVOKEBystem_privileges_and_roles

DBMS_LOGSTDBY 29-15

SKIP Procedure

Table 29—6 (Cont.) Supported Values for statement_option Parameter

Keyword Associated SQL Statements
TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE
TABLESPACE CREATE TABLESPACE

DROP TABLESPACE
TRUNCATE TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGERwith ENABLEand DISABLE clauses
DROP TRIGGER
ALTER TABLEwith ENABLE ALL TRIGGERSlause
ALTER TABLEwith DISABLE ALL TRIGGERSlause

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE
DROP TYPE
DROP TYPE BODY

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

1 Java schema objects (sources, classes, and resources) are considered the same as procedure for
purposes of skipping (ignoring) SQL statements.

Exceptions
Table 29-7 describes an exception for the SKIP procedure.
Table 29—-7 DBMS_LOGSTDBY.SKIP Procedure Exceptions
Exception Description
ORA-16203 "Unable to interpret skip procedure return values."
Indicates that a SKIP procedure has either generated an exception
or has returned ambiguous values. You can identify the offending
procedure by examining the DBA_LOGSTDBY_EVENT8ew.
29-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Usage Notes

Example

s Use the SKIP procedure with caution, particularly when skipping DDL
statements. If a CREATETABLE statement is skipped, for example, you must
also specify other DDL statements that refer to that table in the SKIP procedure.
Otherwise, the statements will fail and cause an exception. When this happens,
log apply services stop running.

s See the UNSKIP Procedure for information about reversing (undoing) the
settings of the SKIP procedure.

The following example shows how to use the SKIP procedure to skip (ignore) a
schema on the logical standby database.

Example 1 Skip a Schema

To skip changes for a given schema, you must prevent log apply services from
creating new objects in the schema and from modifying existing objects in the
schema. In addition, the tablespace that supports the schema must not change. The
following example demonstrates this using the SKIP procedure in a situation where
schema smith has some number of tables defined in tablespace bones that we wish to
ignore.

BEGIN

DBMS_LOGSTDBY.SKIP(SCHEMA _DDL', 'SMITH, %, nuil;
DBMS_LOGSTDBY.SKIP(DML', 'SMITH, %, null;
DBMS_LOGSTDBY.SKIP(TABLESPACE, null, null, 'SMITH.PROTECT BONES);

END;

In the previous example, wildcards were used for the object_ name parameter to
indicate that the filter applies to all objects. In the last call to the SKIP procedure,
the PROTECT_BONESocedure was supplied so that TABLESPACEould prevent
tablespace operations on BONESThe following example is the definition for the
PROTECT_BONESrocedure:

CREATE OR REPLACE PROCEDURE PROTECT BONES (statement IN VARCHARZ,
statement_type IN VARCHAR2,
schema IN VARCHARZ?,
name IN VARCHAR2,
xidusn IN NUMBER,
xidstt IN NUMBER,
xidsgn IN NUMBER,

DBMS_LOGSTDBY 29-17

SKIP_ERROR Procedure

skip_action OUT NUMBER,
new_statement OUT VARCHAR2) AS
BEGIN
- Init
new_statement = NULL;

— Guaranteed to be either CREATE, DROP, or TRUNCATE TABLESPACE
IF statement LIKE %TABLESPACE BONES%'
THEN
— Skip the statement
skip_action := DBMS_LOGSTDBY.SKIP_ACTION_SKIP;
ELSE
— Apply the statement
skip_action := DBMS_LOGSTDBY.SKIP_ACTION_APPLY;
END IF;
END protect_bones;

SKIP_ERROR Procedure

Upon encountering an error, the logical standby feature uses the criteria contained
in this procedure to determine if the error should cause log apply services to stop.
All errors to be skipped are stored in system tables that describe how exceptions
should be handled.

Syntax
DBMS_LOGSTDBY.SKIP_ERROR (
statement_option IN VARCHAR?2,
schema_name IN VARCHAR?,
object name IN VARCHAR?2,
proc_name IN VARCHARY);
Parameters

Table 29-8 describes the parameters for the SKIP_ERRORprocedure.

29-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Table 29-8 DBMS_LOGSTDBY.SKIP_ERROR Procedure Parameters

Parameter

Description

statement_option

schema_name

object_name

Either a keyword that identifies a set of SQL statements or a
specific SQL statement. The use of keywords simplifies
configuration since keywords, generally defined by the database
object, identify all SQL statements that operate on the specified
object. Table 29-6 shows a list of keywords and the equivalent
SQL statements, either of which is a valid value for this
parameter.

The name of one or more schemas (wildcards are permitted)
associated with the SQL statements identified by the
statement_option parameter. If not applicable, this value must
be set to NULL

The name of one or more objects (wildcards are permitted)
associated with the SQL statements identified by the
statement_option . If not applicable, this value must be set to
NULL

DBMS_LOGSTDBY 29-19

SKIP_ERROR Procedure

Exceptions

Usage Notes

Table 29-8 (Cont.) DBMS_LOGSTDBY.SKIP_ERROR Procedure Parameters

Parameter Description
proc_name Name of a stored procedure to call when log apply services
determines a particular statement matches the filter defined by
the statement_option , schema_name, and object_name
parameters. Specify the procedure in the following format:
'schema.package.procedure’
This procedure returns a value that directs log apply services to
perform one of the following: execute the statement, skip the
statement, or execute a replacement statement.
Log apply services calls the stored procedure with the following
call signature:
= IN STATEMENT VARCHAR(4000})- The first 4K of the
statement
= IN STATEMENT_TYPE VARCHARZ2The statement_
option of the filter
n IN SCHEMA VARCHAR2The schema_name of the filter, if
applicable
= IN NAME VARCHAR2 The object_name of the filter, if
applicable
= IN XIDUSN NUMBER:- Transaction ID part 1
= IN XIDSLT NUMBER- Transaction ID part 2
= IN XIDSQN NUMBER- Transaction ID part 3
= IN ERROR VARCHAR(4000)- Text of error to be recorded
(optional)
= OUT NEW_ERROR VARCHAR(4000Null or modified error
text
None.

= Astored procedure provided to the SKIP_ERRORprocedure is called when log
apply services encounter an error that could shut down the application of redo
logs to the standby database.

Running this stored procedure affects the error being written in the STATUS
column of the DBA_LOGSTDBY_EVENT&ble. The STATUS CODEolumn

29-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

remains unchanged. If the stored procedure is to have no effect, that is, apply
will be stopped, then the NEW_ERROR written to the events table. To truely
have no effect, set NEW_ERRO#® ERRORnN the procedure.

If the stored procedure requires that a shutdown be avoided, then you must set
NEW_ERROf® NULL

Example
DBMS_LOGSTDBY.SKIP_ERROR(DDL,, ‘joe’, ‘apptemp’, null);

SKIP_TRANSACTION Procedure

This procedure provides a way to skip (ignore) applying transactions to the logical
standby database. You can skip specific transactions by specifying transaction
identification information.

You may want to use the SKIP_TRANSACTIONprocedure to:

= Skip a transaction that has already failed and that might otherwise cause log
apply services to stop.

= Skip a transaction that may logically corrupt data.

If log apply services stop due to a particular transaction (for example, a DDL
transaction), you can specify that transaction ID and then continue to apply. You can
call this procedure multiple times for as many transactions as you want log apply
services to ignore.

Note: Do not let the primary and logical standby databases
diverge when skipping transactions. If possible, you should
manually execute a compensating transaction in place of the
skipped transaction.

Syntax
DBMS_LOGSTDBY.SKIP_TRANSACTION (
XIDUSN NUMBER STRING,
XIDSLT NUMBER STRING,
XIDSQN NUMBER STRING);
Parameters

Table 29-9 describes the parameters for the SKIP_TRANSACTIONprocedure.

DBMS_LOGSTDBY 29-21

UNSKIP Procedure

Usage Notes

Exceptions

Table 29-9 DBMS_LOGSTDBY.SKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER Transaction ID sequence number of the transaction being skipped.

= View the last statement in DBA_LOGSTDBY_EVENTS determine the reason
that log apply services stopped processing transactions to the logical standby
database. Examine the statement and error condition provided.

= Usethe DBA LOGSTDBY_SKIP_TRANSACTIOMNew to list the transactions that
are going to be skipped by log apply services.

None.

UNSKIP Procedure

Syntax

Parameters

This procedure reverses the actions of the SKIP procedure by finding the record,
matching all the parameters, and removing the record from the system table. The
match must be exact, and multiple skip actions can be undone only by a matching
number of unskip actions. You cannot undo multiple skip actions using wildcard

characters.

DBMS_LOGSTDBY.UNSKIP (

statement_option IN VARCHAR?2,
schema_name IN VARCHAR?2,
object name IN VARCHARY2);

The parameter information for the UNSKIP procedure is the same as that described
for the SKIP procedure. See Table 29-5 for complete parameter information.

29-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_LOGSTDBY Subprograms

Exceptions

None.

UNSKIP_ERROR Procedure

Syntax

Parameters

Exceptions

Example

This procedure reverses or undoes the actions of the SKIP_ERROR procedure by
finding the record, matching all the parameters, and removing the record from the
system table. The match must be exact, and multiple skip actions can be undone
only by a matching number of unskip actions. You cannot undo multiple skip
actions with just one unskip procedure call.

DBMS_LOGSTDBY.UNSKIP_ERROR (

statement_option IN VARCHAR?2,
schema_name IN VARCHAR?2,
object name IN VARCHARY2);

The parameter information for the UNSKIP_ERRORrocedure is the same as that
described for the SKIP_ERRORprocedure. See Table 29-8 for complete parameter
information.

None.

DBMS_LOGSTDBY.UNSKIP_ERROR;

UNSKIP_TRANSACTION Procedure

Syntax

This procedure reverses the actions of the SKIP_TRANSACTIONprocedure. The
match must be exact, and multiple skip transaction actions can be undone only by a
matching number of unskip transaction actions. You cannot undo multiple skip
transaction actions using wildcard characters.

DBMS_LOGSTDBY.UNSKIP_TRANSACTION (
XIDUSN NUMBER STRING,
XIDSLT NUMBER STRING,

DBMS_LOGSTDBY 29-23

UNSKIP_TRANSACTION Procedure

XIDSQN NUMBER STRING);

Parameters
Table 29-10 describes the parameters for the UNSKIP_TRANSACTIONbrocedure.

Table 29-10 DBMS_LOGSTDBY.UNSKIP_TRANSACTION Procedure Parameters

Parameter Description

XIDUSN NUMBER Transaction ID undo segment number of the transaction being
skipped.

XIDSLT NUMBER Transaction ID slot number of the transaction being skipped.

XIDSQN NUMBER 'Lr_ansaé:tion ID sequence number of the transaction being
skipped.

Usage Notes

= Usethe DBA LOGSTDBY_SKIP_TRANSACTIOMNew to list the transactions that
are going to be skipped by log apply services.

Exceptions
None.

29-24 Oracle9i Supplied PL/SQL Packages and Types Reference

30

DBMS_METADATA

With DBMS_METADATYou can retrieve complete database object definitions
(metadata) from the dictionary by specifying:

The type of object, for example, tables, indexes, or procedures
Optional selection criteria, such as owner or name

Parse items (attributes of the returned objects that are to be parsed and returned
separately).

Optional transformations on the output. By default the output is represented in
XML, but callers can specify transformations (into SQL DDL, for example),
which are implemented by XSLT (Extensible Stylesheet Language
Transformation) stylesheets stored in the database or externally.

DBMS_METADAT@vovides the following retrieval interfaces:

For programmatic use: OPEN,SET_FILTER, SET_COUNT,GET_QUERYSET_
PARSE_ITEM, ADD_TRANSFORMET_TRANSFORM_PARAMETCH_xxx and
CLOSEFEretrieve multiple objects.

For use in SQL queries and for browsing: GET_XMland GET_DDLreturn
metadata for a single named object. The GET_DEPENDENT_XMGET _
DEPENDENT_DDIGET_GRANTED_XMand GET_GRANTED_DODhterfaces
return metadata for one or more dependent or granted objects.

This chapter discusses the following topics:

Summary of DBMS_METADATA Subprograms

DBMS_METADATA 30-1

Summary of DBMS_METADATA Subprograms

Summary of DBMS_METADATA Subprograms

Table 30-1 provides a summary of DBMS_METADATsubprograms.

Table 30-1 DBMS_METADATA Subprograms

Subprogram Description

OPEN Procedure on page 30-2 Specifies the type of object to be retrieved, the version of
its metadata, and the object model.

SET_FILTER Procedure on Specifies restrictions on the objects to be retrieved, for

page 30-6 example, the object name or schema.

SET_COUNT Procedure on Specifies the maximum number of objects to be retrieved

page 30-12 in a single FETCH_xxx call.

GET_QUERY Procedure on Returns the text of the queries that are used by FETCH_

page 30-12 XXX .

SET_PARSE_ITEM Procedure Enables output parsing by specifying an object attribute to

on page 30-13 be parsed and returned.

ADD_TRANSFORM Procedure Specifies a transform that FETCH_xxx applies to the XML

on page 30-15 representation of the retrieved objects.

SET_TRANSFORM_PARAM Specifies parameters to the XSLT stylesheet identified by

Procedure on page 30-17 transform_handle.

FETCH_xxx Procedure on Returns metadata for objects meeting the criteria

page 30-21 established by OPEN, SET_FILTER, SET_COUNT, ADD_
TRANSFORM, and so on.

CLOSE Procedure on Invalidates the handle returned by OPENand cleans up the

page 30-24 associated state.

GET_XML and GET_DDL Returns the metadata for the specified object as XML or

Functions on page 30-28 DDL.

GET_DEPENDENT_XML and Returns the metadata for one or more dependent objects,
GET_DEPENDENT_DDL specified as XML or DDL.
Functions on page 30-31

GET_GRANTED_XML and Returns the metadata for one or more granted objects,
GET_GRANTED_DDL specified as XML or DDL.
Functions on page 30-33

OPEN Procedure

OPENspecifies the type of object to be retrieved, the version of its metadata, and the
object model. The return value is an opaque context handle for the set of objects to
be used in subsequent calls.

30-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Syntax

Parameters

DBMS_METADATA.OPEN (

IN VARCHARZ,

IN VARCHAR2 DEFAULT 'COMPATIBLE,
IN VARCHAR2 DEFAULT 'ORACLE,)

RETURN NUMBER;

object_type

version
model

Table 30-2 provides descriptions of the parameters for the OPENprocedure.

Table 30—2 Open() Parameters

Parameter

Description

object_type

The type of object to be retrieved. Table 30-3 lists the valid type
names and their meanings. These object types will be
supported for the ORACLE model of metadata (see model in
this table) in Oracle9i. Future models may support a different
set of object types.

The "Attributes" column specifies some object type attributes.
Schema objects, such as tables, belong to schemas. Named
objects have unique names (if they are schema objects, the
name is unique to the schema). Dependent objects, such as
indexes, are defined with reference to a base schema object.
Granted objects are granted or assigned to a user or role and
therefore have a named grantee.

These differences are relevant when choosing object selection
criteria. See "SET_FILTER Procedure" on page 30-6 for more
information.

version

The version of metadata to be extracted. Database objects or
attributes that are incompatible with the version will not be
extracted. Legal values for this parameter are:

COMPATIBLEHdefault)—the version of the metadata
corresponds to the database compatibility level. Note that
database compatibility must be setto 9.0.1 or higher.

LATEST—the version of the metadata corresponds to the
database version.

A specific database version, for example, 9.0.1

model

Specifies which view to use, because the API can support
multiple views on the metadata. Only the ORACLE model is
supported in Oracle9i.

DBMS_METADATA 30-3

OPEN Procedure

Table 30-3 provides the name, meaning, attributes, and notes for the DBMS _
METADAT Avackage object types. In the attributes column, S represents a schema
object, N represents a named object, D represents a dependent object, and G
represents a granted object.

Table 30-3 DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

ASSOCIATION associate statistics D

AUDIT audits of SQL statements DG Modeled as dependent, granted object.
The base object name is the statement
audit option name (for example,
ALTERSYSTEM There is no base
object schema. The grantee is the user
or proxy whose statements are
audited.

AUDIT_OBJ audits of schema objects D None

CLUSTER clusters SN None

COMMENT comments D None

CONSTRAINT constraints SND Does not include:
= primary key constraint for IOT
s column NOT NULL constraints
= certain REFSCOPEand WITH

ROWILCxonstraints for tables with
REFcolumns

CONTEXT application contexts N None

DB_LINK database links SN Modeled as schema objects because
they have owners. For public links, the
owner is PUBLIC. For private links,
the creator is the owner.

DEFAULT_ROLE default roles G Granted to a user by ALTERUSER

DIMENSION dimensions SN None

DIRECTORY directories N None

FUNCTION stored functions SN None

INDEX indexes SND None

INDEXTYPE indextypes SN None

30-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Table 30-3 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes

JAVA_SOURCE Java sources SN None

LIBRARY external procedure SN None

libraries

MATERIALIZED_VIEW materialized views SN None

MATERIALIZED _ materialized view logs D None

VIEW_LOG

OBJECT_GRANT object grants DG None

OPERATOR operators SN None

OUTLINE stored outlines N None

PACKAGE stored packages SN By default, both package specification
and package body are retrieved. See
"SET_FILTER Procedure” on page 30-6.

PACKAGE_SPEC package specifications SN None

PACKAGE_BODY package bodies SN None

PROCEDURE stored procedures SN None

PROFILE profiles N None

PROXY proxy authentications G Granted to a user by ALTERUSER

REF_CONSTRAINT referential constraint SND None

ROLE roles N None

ROLE_GRANT role grants G None

ROLLBACK_SEGMENT rollback segments N None

SEQUENCE sequences SN None

SYNONYM synonyms See notes. Private synonyms are schema objects.

Public synonyms are not, but for the
purposes of this API, their schema
name is PUBLIC. The name of a
synonym is considered to be the
synonym itself. For example, in
CREATE PUBLIC SYNONYM FOO
FOR BARthe resultant object is
considered to have name FOOand
schema PUBLIC.

DBMS_METADATA 30-5

SET_FILTER Procedure

Table 30-3 (Cont.) DBMS_METADATA: Object Types

Type Name Meaning Attributes Notes
SYSTEM_GRANT system privilege grants G None
TABLE tables SN None
TABLESPACE tablespaces N None
TABLESPACE_QUOTA tablespace quotas G Granted with ALTERUSER
TRIGGER triggers SND None
TRUSTED_DB_LINK trusted links N None
TYPE user-defined types SN By default, both type and type body
are retrieved. See "SET_FILTER
Procedure" on page 30-6.
TYPE_SPEC type specifications SN None
TYPE_BODY type bodies SN None
USER users N None
VIEW views SN None
XMLSCHEMA XML schema SN The object’s name is its URL (which
may be longer than 30 characters). Its
schema is the user who registered it.
Returns
An opaqgue handle to the class of objects. This handle is used as input to SET_
FILTER, SET_COUNT,ADD_TRANSFORMET_QUERYSET_ PARSE_ITEM,
FETCH_xxx, and CLOSE
Exceptions

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INVALID_OBJECT_PARAMThe version or model parameter was not valid
for the object_type

SET_FILTER Procedure

SET_FILTER specifies restrictions on the objects to be retrieved, for example, the
object name or schema.

30-6 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Syntax

Parameters

DBMS_METADATASET FILTER (

hande IN NUMBER,

name IN VARCHAR?2,

value IN VARCHAR2)
DBMS_METADATA.SET _FILTER (

hande IN NUMBER,

name IN VARCHAR?2,

value IN BOOLEAN DEFAULT TRUE);

Table 304 describes the parameters for the SET_FILTER procedure.

Table 30-4 SET_FILTER Parameters

Parameter Description
handle The handle returned from OPEN
name The name of the filter. For each filter, Table 30-5 lists the

object_type itapplies to, its name, its datatype (text or
Boolean) and its meaning or effect (including its default value,
if any).

value The value of the filter.

Table 30-5 describes the object type, name, datatype, and meaning of the filters
available with the SET_FILTER procedure.

DBMS_METADATA 30-7

SET_FILTER Procedure

Table 30-5 SET_FILTER: Filters

Object Type Name Datatype

Meaning

Named objects NAME text

Objects with this exact name are selected.

NAME_EXPR text

The filter value is the right-hand side of a SQL
comparison, that is, a SQL comparison operator
(=,!=, and so on) and the value compared against.
The value must contain parentheses and quotation
marks where appropriate. In PL/SQL and SQL*Plus,
two single quotes (not a double quote) are needed to
represent an apostrophe. For example:

‘IN ("DEPT”,”"EMP”Y’

The filter value is combined with the object attribute
corresponding to the object name to produce a
WHEREondition in the query that fetches the
objects. In the preceding example, objects named
DEPTand EMPare retrieved.

By default, all named objects of object_type are
selected.

Schema objects SCHEMA text

Obijects in this schema are selected.

SCHEMA_EXPR text

The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
object attribute corresponding to the object schema
to produce a WHEREondition in the query that
fetches the objects. See NAME_EXPRor syntax
details.

Default:

- if BASE_OBJECT_SCHEM#specified, then
objects in that schema are selected;

- otherwise, objects in the current schema are
selected.

See "Security" on page 30-10.

PACKAGE,
TYPE

SPECIFICATION Boolean

If TRUE retrieve the package or type specification.
Defaults to TRUE

BODY Boolean

If TRUE retrieve the package or type body. Defaults
to TRUE

30-8 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Table 30-5 (Cont.) SET_FILTER: Filters

Object Type

Name

Datatype

Meaning

TABLE

TABLESPACE

text

Obijects in this tablespace (or having a partition in
this tablespace) are selected.

TABLESPACE_
EXPR

text

The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
attribute corresponding to the object’s tablespace (or
in the case of a partitioned table, the partition’s
tablespaces) to produce a WHERI[Eondition in the
query that fetches the objects. See NAME_EXPRor
syntax details. By default, objects in all tablespaces
are selected.

Dependent Objects

BASE_OBJECT_
NAME

text

Objects are selected that are defined or granted on
objects with this name. Specify SCHEMAor triggers
on schemas. Specify DATABASHor database
triggers. Column-level comments cannot be selected
by column name; the base object name must be the
name of the table, view, or materialized view
containing the column.

BASE_OBJECT_
SCHEMA

text

Objects are selected that are defined or granted on
objects in this schema. If BASE_OBJECT_NAME
specified with a value other than SCHEMAr
DATABASEthis defaults to the current schema.

INDEX, TRIGGER

SYSTEM_
GENERATED

Boolean

If TRUE select indexes or triggers even if they are
system-generated. If FALSE omit system-generated
indexes or triggers. Defaults to TRUE

Granted Objects

GRANTEE

text

Objects are selected that are granted to this user or
role. Specify PUBLIC for grants to PUBLIC.

OBJECT_GRANT

GRANTOR

text

Object grants are selected that are granted by this
user.

DBMS_METADATA 30-9

SET_FILTER Procedure

Table 30-5 (Cont.) SET_FILTER: Filters

Object Type

Name Datatype

Meaning

SYNONYM, JAVA _
SOURCE,
XMLSCHEMA

LONGNAME text

A name longer than 30 characters. Objects with this
exact name are selected. If the object name is 30
characters or less, the NAMHEilter must be used.

LONGNAME_EXPRtext

The filter value is the right-hand side of a SQL
comparison. The filter value is combined with the
attribute corresponding to the object’s long hame to
produce a WHEREondition in the query that fetches
the objects. See NAME_EXPRor syntax details. By
default, no filtering is done on the long name of an
object.

All objects

CUSTOM_FILTER text

The text of a WHEREondition. The condition is
appended to the query that fetches the objects. By
default, no custom filter is used. The other filters are
intended to meet the needs of the majority of users.
Use CUSTOM_FILTERw~hen no defined filters exists
for your purpose. Of necessity such a filter depends
on the detailed structure of the UDTs and views
used in the query that are defined in
admin/catmeta.sql . Because filters may change
from version to version, upward compatibility is not
guaranteed.

Exceptions

Security

INVALID_ARGVAL. A NULLor invalid value was supplied for an input

parameter. The error message text identifies the parameter.

INVALID_OPERATION. SET_FILTER was called after the first call to FETCH_

xxx for the OPENcontext. After the first call to FETCH_xxx is made, no further
calls to SET_FILTER for the current OPENcontext are permitted.

INCONSISTENT_ARGSThe filter name is not valid for the object type

associated with the OPENcontext, or the filter value is the wrong datatype.

With SET_FILTER, you can specify the schema of objects to be retrieved, but
security considerations may override this specification. If the caller is SYSor has
SELECT_CATALOG_ROIl _Ehen any object can be retrieved; otherwise, only the
following can be retrieved:

Schema objects owned by the caller

30-10 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

s Public synonyms
s System privileges granted to the caller or to PUBLIC

s Grants on objects for which the caller is owner, grantor or grantee (either
explicitly or as PUBLIC).

If you request objects that you are not privileged to retrieve, no exception is raised;
the object is not retrieved, as if it did not exist.

Usage Notes

= You can use the same text expression filter multiple times with different values.
All the filter conditions will be applied to the query. For example, to get objects
with names between Felix and Oscar, do the following:

doms_metadata.set fiter(handle, NAME_EXPR’;/>="FELIX");
doms_metadata.set fiter(handle, NAME_EXPR’<="OSCAR");

= For dependent objects such as triggers, grants, and indexes, the following
conditions apply:

— When connected as a nonprivileged user — If BASE_OBJECT_NAMB
specified as a filter, BASE_OBJECT_SCHEMefaults to the current schema:

dbms_metadata.set fiter(h BASE_OBJECT NAME,EMP);
— When connected as a privileged user with SELECT_CATALOG_ROLE —
The schema defaults to BASE_OBJECT_SCHEMAspecified; otherwise it

defaults to the current schema. For example, to see all indexes in SCOTT
that are defined on SCOTT.EMPthe filters are:

doms_metadata.set fiter(h,BASE_OBJECT_NAME'EMP);
dbms_metadata.set fiter(h/BASE_OBJECT SCHEMA!'SCOTT);

To see indexes in other schemas:
dbms_metadata.set fiter(h,SCHEMA _EXPR'LIKE "%");
Some indexes and triggers are system generated (such as indexes used to

enforce unique constraints). Set the SYSTEM_GENERATHDter to FALSEso that
you do not retrieve them.

DBMS_METADATA 30-11

SET_COUNT Procedure

SET_COUNT Procedure

Syntax

Parameters

Exceptions

SET_COUNTEpecifies the maximum number of objects to be retrieved in a single
FETCH_xxx call. By default, each call to FETCH_xxx returns one object. With SET_
COUN;Tyou can override this default. If FETCH_xxx is called from a client,
specifying a count value greater than 1 can result in fewer server round trips and,
therefore, improved performance. Note that the procedure stops when NULL is
returned, but not if less than the maximum number of objects is returned.

DBMS_METADATA.SET COUNT (
handle IN NUMBER,
valte IN NUMBER);

Table 30-6 describes the parameters for the SET_COUNTProcedure.

Table 30-6 SET_COUNT Parameters

Parameter Description
handle The handle returned from OPEN
value The number of objects to retrieve.

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INVALID _OPERATION. SET_COUNTwvas called after the first call to FETCH_
xxx for the OPENcontext. After the first call to FETCH_xxx is made, no further
calls to SET_COUNTor the current OPENcontext are permitted.

GET_QUERY Procedure

Syntax

GET_QUERYeturns the text of the queries that are used by FETCH_xxx. This
function assists in debugging.

DBMS_METADATAGET QUERY (
hande IN NUMBER)
RETURN VARCHAR2;

30-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Parameters

Returns

Exceptions

Table 30-7 describes the parameters for the GET_QUERYrocedure.

Table 30—-7 GET_QUERY Parameters

Parameter Description

handle The handle returned from OPEN

The text of the queries that will be used by FETCH_ xxx.

s INVALID_ARGVAL. A NULLor invalid value was supplied for the handle
parameter.

SET_PARSE_ITEM Procedure

Syntax

Parameters

SET_PARSE_ITEMenables output parsing by specifying an object attribute to be
parsed and returned. It should only be used in conjunction with FETCH_DDL

DBMS_METADATA.SET_PARSE ITEM (
hande IN NUMBER,
name IN VARCHAR?);

Table 30-8 describes the parameters for the SET_PARSE_ITEMprocedure.

Table 30-8 SET_PARSE_ITEM Parameters

Parameter Description
handle The handle returned from OPEN
name The name of the object attribute to be parsed and returned. See

Table 30-9 for the attribute object type, name, and meaning.

Table 30-9 describes the object type, name, and meaning of the items available in
the SET_PARSE_ITEMprocedure.

DBMS_METADATA 30-13

SET_PARSE_ITEM Procedure

Table 30-9 SET_PARSE_ITEM: Parse Iltems

Object Type

Name Meaning

All objects

VERB For every row in the sys .ku$_ddls nested table returned by
fetch_ddl the verb in the corresponding ddIText is returned. If
the ddIText is a SQL DDL statement, then the SQL verb (for
example, CREATEGRANTAUDIT) is returned. If the ddIText is a
procedure call (for example., DBMS_RL\DD_POLICY_CONTEXT
then the package.procedure-name is returned.

OBJECT_TYPE If the ddIText is a SQL DDL statement whose verb is CREATEor
ALTER the object type as used in the DDL statement is returned,
for example, TABLE, PACKAGE BODY, and so on. Otherwise, an
object type name from Table 30-3, " DBMS_METADATA: Object
Types" is returned.

SCHEMA The object schema is returned. If the object is not a schema object,
NULLis returned.

NAME The object name is returned. If the object is not a named object,
NULL s returned.

TABLE,
INDEX

TABLESPACE The tablespace name of the table or index is returned.

TRIGGER

ENABLE If the trigger is enabled, ENABLEis returned. If the trigger is
disabled, DISABLE is returned.

Exceptions

Usage Notes

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INVALID _OPERATION. SET_PARSE_ITEMwas called after the first call to
FETCH_xxx for the OPENcontext. After the first call to FETCH_xxx is made, no
further calls to SET_PARSE_ITEMare permitted.

= INCONSISTENT_ARGSThe attribute name is not valid for the object type
associated with the OPENcontext.

By default fetch_ddl returns object metadata as creation DDL. By calling SET _

PARSE_ITEM, you can request that individual attributes of the object be returned
also, to avoid the tedious process of parsing SQL text. This is useful when fetching
objects based on the value of a returned object, for example, fetching indexes for a
returned table.

30-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

You can call SET_PARSE_ITEMmultiple times to ask for multiple items to be
parsed and returned. Parsed items are returned in the sys.ku$_parsed_items
nested table. An example of using sys.ku$_parsed_items is shown within
Example: Retrieving Payroll Tables and their Indexes as DDL on page 30-24.

See Also:

s "FETCH_xxx Procedure" on page 30-21

s Oracle9i Database Utilities for information about using the
Metadata API

ADD TRANSFORM Procedure

ADD_TRANSFOR#pecifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects. It is possible to add more than one
transform.

Syntax

DBMS_METADATA.ADD_TRANSFORM (
handle IN NUMBER,
name IN VARCHAR?2,
encoding IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

Parameters
Table 30-10 describes the parameters for the ADD_TRANSFORMocedure.

Table 30-10 ADD_TRANSFORM Parameters

Parameters Description

handle The handle returned from OPEN.

DBMS_METADATA 30-15

ADD_TRANSFORM Procedure

Table 30—-10 (Cont.) ADD_TRANSFORM Parameters

Parameters Description

name The name of the transform. If the name is DDL, creation DDL
will be generated using XSLT stylesheets stored within the
Oracle dictionary. If the name contains a period (.), colon (:) or
forward slash (/), it is interpreted as the URL of a
user-supplied XSLT stylesheet. See Oracle9i XML Database
Developer’s Guide - Oracle XML DB.

encoding The name of NLS character set (see National Language
Support Guide) in which the stylesheet pointed to by name is
encoded. This is only valid if the name is a URL. If left NULL
and the URL is external to the database (e.g,
/usr/williams/xsl/mystylesheet.xsl), UTF-8 encoding is
assumed. If left NULL and the URL is internal to the database,
that is, it begins with /oradb/, then the database character set
is assumed to be the encoding.

Returns
An opague handle to the transform. This handle is used as input to SET_
TRANSFORM_PARANMOote that this handle is different from the handle returned by
OPENl it refers to the transform, not the set of objects to be retrieved.

Exceptions

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INVALID_OPERATION. ADD_TRANSFORWMas called after the first call to
FETCH_xxx for the OPENcontext. After the first call to FETCH_xxx is made, no
further calls to ADD_TRANSFORMr the current OPENcontext are permitted.

Usage Notes

With no transforms added, objects are returned by default as XML documents. You
call ADD_TRANSFORIUd specify an XSLT stylesheet to transform the returned
documents.

You can call ADD_TRANSFORMore than once to apply multiple transforms to the
returned XML documents. FETCH_xxx will apply the transforms in the order in
which they were specified, the output of the first transform being used as input to
the second, and so on.

The encoding parameter must be specified if either of the following is true:

30-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

s The XSL stylesheet pointed to by an external URL is encoded in a character set
that is not a subset of UTF-8

s The XSL stylesheet pointed to by a database-internal URL is encoded in a
character set that is not a subset of the database character set.

An example of the latter might be if the database-internal URL pointed to an
NCLOB or NVARCHAR column. Normally, this need not be specified, although
explicitly setting it to US7ASCII (if applicable) results in slightly better XML parsing
performance.

Note: The output of the DDL transform is not an XML document.
Therefore, no transform should be added after the DDL transform.

SET_TRANSFORM_PARAM Procedure

Syntax

Parameters

SET_TRANSFORM_PARApktcifies parameters to the XSLT stylesheet identified by
transform_handle. Use it to modify or customize the output of the transform.

DBMS_METADATA.SET_TRANSFORM_PARAM (
transform_handle IN NUMBER,
name IN VARCHAR?2,
value IN VARCHARY);
DBMS_METADATA.SET_TRANSFORM_PARAM (
ransform_handle IN NUMBER,
name IN VARCHAR?2,
value IN BOOLEAN DEFAULT TRUE),

Table 30-11 describes the parameters for the SET_TRANSFORM_PARANbcedure.

Table 30—-11 SET_TRANSFORM_PARAM Parameters

Parameters Description

transform_handle Either (1) the handle returned from ADD_TRANSFORIdIr (2)
the enumerated constant SESSION_TRANSFORMat
designates the DDL transform for the whole session. Note that
the handle returned by OPENs not a valid transform handle.

DBMS_METADATA 30-17

SET_TRANSFORM_PARAM Procedure

Table 30—11 (Cont.) SET_TRANSFORM_PARAM Parameters

Parameters Description

name The name of the parameter. Table 30-12 lists the transform
parameters defined for the DDL transform, specifying the

object_type

it applies to, its datatype (in this case, always

Boolean) and its meaning or effect (including its default value,

if any).

value The value of the transform.

Table 30-12 describes the object type, name, datatype, and meaning of the
parameters for the DDL transform in the SET_TRANSFORM_PARANkbcedure.

Table 30—12 SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type Name Datatype Meaning
All objects PRETTY Boolean If TRUE format the output with indentation and
line feeds. Defaults to TRUE
SQLTERMINATOR Boolean If TRUE append a SQL terminator (; or/)to
each DDL statement. Defaults to FALSE
TABLE SEGMENT_ATTRIBUTES Boolean If TRUE emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE
STORAGE Boolean If TRUE emit storage clause. (Ignored if
SEGMENT_ATTRIBUTEB FALSE) Defaults to
TRUE.
TABLESPACE Boolean If TRUE emit tablespace. (Ignored if SEGMENT_

ATTRIBUTESIs FALSE) Defaults to TRUE

30-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Table 30—12 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type

Name

Datatype

Meaning

TABLE

CONSTRAINTS

Boolean

If TRUE emit all non-referential table
constraints. Defaults to TRUE

REF_CONSTRAINTS

Boolean

If TRUE emit all referential constraints (foreign
key and scoped refs). Defaults to TRUE

CONSTRAINTS_AS_ALTER

Boolean

If TRUE emit table constraints as separate
ALTER TABLE®@and, if necessary, CREATE
INDEX) statements. If FALSE, specify table
constraints as part of the CREATE TABLE
statement. Defaults to FALSE Requires that
CONSTRAINTS be TRUE.

OID

Boolean

If TRUE emit the OID clause for object tables.
Defaults to FALSE

SIZE_BYTE_KEYWORD

Boolean

If TRUE emit the BYTEkeyword as part of the
size specification of CHARand VARCHAR2
columns that use byte semantics. If FALSE omit
the keyword. Defaults to FALSE.

INDEX

SEGMENT_ATTRIBUTES

Boolean

If TRUE emit segment attributes (physical
attributes, storage attributes, tablespace,
logging). Defaults to TRUE

STORAGE

Boolean

If TRUE emit storage clause. (Ignored if
SEGMENT_ATTRIBUTER FALSE) Defaults to
TRUE

TABLESPACE

Boolean

If TRUE emit tablespace. (Ignored if SEGMENT _
ATTRIBUTESIs FALSE) Defaults to TRUE

TYPE

SPECIFICATION

Boolean

If TRUE emit the type specification. Defaults to
TRUE

BODY

Boolean

If TRUE emit the type body. Defaults to TRUE

PACKAGE

SPECIFICATION

Boolean

If TRUE emit the package specification. Defaults
to TRUE

BODY

Boolean

If TRUE emit the package body. Defaults to
TRUE

DBMS_METADATA 30-19

SET_TRANSFORM_PARAM Procedure

Table 30—12 (Cont.) SET_TRANSFORM_PARAM: Transform Parameters for the DDL Transform

Object Type

Name Datatype

Meaning

VIEW

FORCE Boolean

If TRUE use the FORCEkeyword in the CREATE
VIEWstatement. Defaults to TRUE

All objects

DEFAULT Boolean

Calling SET_TRANSFORM_PARAWth this
parameter set to TRUEhas the effect of resetting
all parameters for the transform to their default
values. Setting this FALSE has no effect. There is
no default.

INHERIT Boolean

If TRUE inherits session-level parameters.
Defaults to FALSE If an application calls ADD_
TRANSFORM add the DDL transform, then by
default the only transform parameters that apply
are those explicitly set for that transform handle.
This has no effect if the transform handle is the
session transform handle.

Exceptions

Usage Notes

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INVALID_OPERATION. SET_TRANSFORM_PARAW4s called after the first call
to FETCH_xxx for the OPENcontext. After the first call to FETCH_xxx is made,
no further calls to SET_TRANSFORM_PARAK permitted.

= INCONSISTENT_ARGSThe transform parameter name is not valid for the
object type associated with the OPENcontext.

XSLT allows parameters to be passed to stylesheets. You call SET_TRANSFORM _
PARAMo specify the value of a parameter to be passed to the stylesheet identified
by transform_handle. The most general way to specify stylesheet parameter
values is as text strings. However, for the DDL transform, it is convenient to expose
some parameters as Booleans. Consequently, two variants of the procedure are

provided.

The GET_DDLfunction allows the casual browser to extract the creation DDL for an
object. So that you can specify transform parameters, this package defines an
enumerated constant SESSION_TRANSFORA4 the handle of the DDL transform at
the session level. You can call SET_TRANSFORM_PARAIsing DBMS _
METADATA.SESSION_TRANSFORM the transform handle to set transform

30-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

parameters for the whole session. GET_DDLinherits these parameters when it
invokes the DDL transform.

Note: The enumerated constant must be prefixed with the
package name DBMS_METADATA.SESSION_TRANSFORM

FETCH_xxx Procedure

FETCH_xxx returns metadata for objects meeting the criteria established by OPEN
SET_FILTER, SET_COUNJTADD_TRANSFORIghd so on. See "Usage Notes" on
page 30-22 for the variants.

Syntax
The FETCHfunctions and procedures are:

DBMS_METADATAFETCH XML (
hande IN NUMBER)
RETURN sysXMLType;

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for a description of XMLType

DBMS_METADATAFETCH_DDL (
hande IN NUMBER)
RETURN sysku$ ddis;

The following types comprise the return nested table type sys.ku$_ddls

TYPE sysku$ parsed item AS OBJECT (
item VARCHAR2(30),
value VARCHAR2(4000),
objectrov NUMBER);
TYPE sysku$ parsed items IS TABLE OF sysku$ parsed item;
TYPE sysku$ ddl AS OBJECT (
ddText CLOB,
parseditems sysku$_parsed items);
TYPE sysku$ ddss IS TABLE OF sysku$ ddl;

DBMS_METADATAFETCH CLOB (
hande IN NUMBER)

RETURN CLOB;

DBMS_METADATAFETCH CLOB (
hande IN NUMBER,

DBMS_METADATA 30-21

FETCH_xxx Procedure

doc IN OUT NOCOPY CLOB);

Parameters
Table 30-13 describes the parameters for the FETCH_xxx procedure.
Table 30-13 FETCH_xxx Parameters
Parameters Description
handle The handle returned from OPEN
doc (procedure fetch_ The metadata for the objects or NULLIif all objects have been
clob) returned.
Returns
The metadata for the objects or NULL if all objects have been returned.
Exceptions

Most exceptions raised during execution of the query are propagated to the caller.
Also, the following exceptions may be raised:

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= INCONSISTENT_OPERATIONEIther (1) FETCH_XMlwas called when the DDL
transform had been specified, or (2) FETCH_DID was called when the DDL
transform had not been specified.

Usage Notes

These functions and procedures return metadata for objects meeting the criteria
established by calls to OPENSET_FILTER, SET_COUNJTADD_TRANSFORIhd so
on. Each call to FETCH_xxx returns the number of objects specified by SET_COUNT
(or less, if fewer objects remain in the underlying cursor) until all objects have been
returned. After the last object is returned, subsequent calls to FETCH_xxx return
NULL and cause the stream created by OPENo be transparently closed.

There are several different FETCH_xxx functions and procedures:

» FETCH_XMlreturns the XML metadata for an object as an XMLType. It assumes
that if any transform has been specified, the transform will produce an XML
document. In particular, it assumes that the DDL transform has not been
specified.

30-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

s FETCH_DDLreturns the creation DDL in a sys.ku$ ddls nested table. It
assumes that the DDL transform has been specified. Each row of the sys.ku$
ddIs nested table contains a single DDL statement in the ddIText column; if
requested, parsed items for the DDL statement will be returned in the
parseditems column. Multiple DDL statements may be returned under the
following circumstances:

s When you call SET_COUNTo specify a count greater than 1

s When an object is transformed into multiple DDL statements. For example,
A TYPEobiject can be transformed into both CREATE TYPEnd CREATE
TYPE BODYtatements. A TABLEobject can be transformed into a CREATE
TABLE, zero or more CREATE INDEXtatements, and zero or more ALTER
TABLE statements.

=« FETCH_CLOBImply returns the object, transformed or not, as a CLOB.

FETCH_CLORomes in both function and procedure variants. The procedure
variant returns the object by reference inan IN OUT NOCOParameter.

All LOBs returned by FETCH_ xxx are temporary LOBs. You must free the LOB. The
same applies to the XMLType object.

If SET_PARSE_ITEMwas called, FETCH_DID returns attributes of the DDL
statement in a sys.ku$_parsed_items nested table, which is a column in the
returned sys.ku$_ddls nested table. Each row of the sys.ku$_parsed_items
nested table corresponds to an item specified by SET_PARSE_ITEMand contains
the following columns:

= item —The name of the attribute as specified in the name parameter to SET_

PARSE_ITEM.

= value —The attribute value, or NULL if the attribute is not present in the DDL
statement.

= oObject-row —For future use.

The order of the rows is undetermined; to find a particular item you must search
the table for a match on item .

If SET_PARSE_ITEMwas not called, NULL is returned as the value of the sys.ku$_
parsed_items nested table.

When Variants of FETCH_xxx Are Called

It is expected that the same variant of FETCH_xxx will be called for all objects
selected by OPENthat is, that programs will not intermix calls to FETCH_XML

DBMS_METADATA 30-23

CLOSE Procedure

FETCH_DDl.and FETCH_CL® using the same OPENhandle. The effect of calling
different variants is undefined; it may not do what you expect.

CLOSE Procedure

CLOSEinvalidates the handle returned by OPENand cleans up the associated state.
Syntax

DBMS_METADATA.CLOSE (

hande IN NUMBER);

Parameters

Table 30-14 describes the parameters for the CLOSEprocedure.

Table 30—14 CLOSE Parameters

Parameter Description

handle The handle returned from OPEN
Exceptions

= INVALID_ARGVAL. The value for the handle parameter is NULL or invalid.

Usage Notes
You can prematurely terminate the stream of objects established by OPEN

= Ifacall to FETCH_xxx returns NULL, indicating no more objects, a call to
CLOSEHis made transparently. In this case, you can still call CLOSEon the
handle and not get an exception. (The call to CLOSEis not required.)

=« If you know that only one specific object will be returned, you should explicitly
call CLOSEafter the single FETCH_xxx call to free resources held by the handle.

Example: Retrieving Payroll Tables and their Indexes as DDL

This example retrieves the creation DDL for all tables in the current schema whose
names begin with PAYROLL For each table it also returns the creation DDL for the
indexes defined on the table. The returned DDL is written to an output file.

CREATE OR REPLACE PACKAGE dbms_metadata_example AS

PROCEDURE get _payrol_tables;

30-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

END;

/

CREATE OR REPLACE PACKAGE BODY dbms metadata_example AS
— Global Variables

fleHande UTL_FILEFLE TYPE;

— Exception initialization

fle_not found EXCEPTION,;
PRAGMA EXCEPTION_INIT(fle_not_found, -1309);

— Package-private routine to wite a CLOB to an output fie.
PROCEDURE write_lob(doc IN CLOB) IS

outString varchar2(32760);

cloblen number,

offset number = 1;

amount number,
BEGIN

cloblen = dbms_lob.getliength(doc);
WHILE cloblen > 0

LOOP
IF cloblen > 32760 THEN
amount = 32760,
ELSE
amount = cloblen;
END IF;

outSting = dbms_lob.substr({doc, amount, offset);
utlfile.put(fleHandle, outString);
utl file.flush(fleHandle);
ofiset = offset + amount
cloblen = cloblen - amount;

END LOOP;

RETURN,;

END;

— Public routines
— GET_PAYROLL TABLES: Fetch DDL for payrol tables and their indexes.

PROCEDURE get payrol tables IS

DBMS_METADATA

30-25

CLOSE Procedure

tableOpenHandle
indexOpenHandle
tableTransHandle
indexTransHandle
schemaName
tableName
tableDDLs
tableDDL
parseditems
indexDDL

BEGIN

NUMBER,;
NUMBER,
NUMBER;
NUMBER,;
VARCHAR2(30);
VARCHAR2(30);
sysku$ _ddis;
sysku$_ddl;
sysku$ _parsed items;
CLOB;

— open the output file.. note that the 1st param. (dir. path) must be
— included in the database’s UTL_FILE DIR init. parameter.

BEGIN

fleHandle = utl_file.fopen(/private/xml, 'ddl.out, ‘w, 32760);

EXCEPTION

WHEN OTHERS THEN
RAISE file_not_found;

END;

— Open a handle for tables in the cument schema.
tableOpenHandle = dbms_metadata.open(TABLE);

— Call 'set_count to request retrieval of one table at a time.
— This cal is not actually necessary because 1 is the default.
dbms_metadata.set_count(tableOpenHandle, 1);

- Retiieve tables whose name starts with 'PAYROLL. When the filter is

- 'NAME_EXPR), the fiter value sting must include the SQL operator. This

— gves the caller flexibiity to use LIKE, IN, NOT IN, subqueries, and so on.
dbms_metadata.set fiter(tableOpenHandle, 'NAME_EXPR', 'LIKE "PAYROLL%");

— Tell Metadata API to parse out each table’s schema and name separately

- so we can use them to set up the calls to refrieve its indexes.
dbms_metadata.set_parse_item(tableOpenHandle, 'SCHEMA);
dbms_metadata.set_parse_item(tableOpenHandle, 'NAME);

— Add the DDL transform so we get SQL creation DDL
tableTransHandle := dbms_metadata.add_transform(tableOpenHandle, 'DDL);

— Tell the XSL stylesheet we don't want physical storage information (Storage,

30-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

- tablespace, efc), and that we want a SQL terminator on each DDL. Notice that
- these calls use the transform handle, not the open handle.
dbms_metadata.set_transform_param(table TransHandle,
'SEGMENT_ATTRIBUTES', FALSE);
dbms_metadata.set transform_param(tableTransHandle,
'SQLTERMINATOR', TRUE);

— Ready to start fetching tables. We use the FETCH DDL interface (rather than

— FETCH_ XML or FETCH_CLOB). This interface retums a SYSKU$ DDLS; a table of
- SYSKU$ DDL objects. This is a table because some object types retum

— multiple DDL statements (ke types / pkgs which have create header and

- body statements). Each KU$ DDL has a CLOB containing the 'CREATE TABLE'

- statement plus a nested table of the parse items specified. In our case,

— we asked for two parse items; Schema and Name.

LOOP
tableDDLs = dbms_metadata.fetch_ddl(tableOpenHandle);
EXIT WHEN tableDDLs IS NULL; - Get out when no more payroll tables

- In our case, we know there is only one row in tableDDLs (@ KU$ DDLS thl obj)
— for the cument table. Sometimes tables have multiple DDL statements,

— for example, if constraints are applied as ALTER TABLE statements,

— but we didnt ask for that option.

— So, rather than wriing code to loop through tableDDLs,

— well just work with the 1st row.

— First, wite the CREATE TABLE text to our output file, then retrieve the
— parsed schema and table names.

tableDDL = tableDDLs(1);

write_lob(tableDDL.ddltext);

parseditems := tableDDL.parseditems;

— Must check the name of the retumed parse items as ordering isn't guaranteed
FOR i IN 1.2 LOOP
IF parseditems(j)ittm = 'SCHEMA'
THEN
schemaName = parseditems(j).value;
ELSE
tableName = parseditems(j).value;
END IF;
END LOOP;

— Then use the schema and table names to set up a 2nd stream for retrieval of

- the cument table’s indexes.
— (Note that we dont have to specify a SCHEMA fiter for the indexes,

DBMS_METADATA

30-27

GET_XML and GET_DDL Functions

- Because SCHEMA defaulis to the value of BASE_OBJECT_SCHEMA)
indexOpenHandle = dbms_metadata.open(INDEX);
dbms_metadata.set fiter(indexOpenHandle,BASE_OBJECT_SCHEMA',schemaName);
dbms_metadata.set fiter(indexOpenHandie,BASE_OBJECT_NAME'tableName);

Add the DDL transform and set the same transform options we did for tables
indexTransHandle := dbms_metadata.add_transform(indexOpenHandle, 'DDL);
dbms_metadataset transform_param(indexTransHandle,

'SEGMENT_ATTRIBUTES), FALSE);
dbms_metadata.set_transform_param(indexTransHandle,
'SQLTERMINATOR', TRUE);

Retrieve index DDLs as CLOBs and wite them to the output file.
LOOP
indexDDL = dbms_metadata.fetch_clob(indexOpenHandle);
EXIT WHEN indexDDL IS NULL;
write_lob(indexDDL);
END LOOP;

Free resources allocated for index stream.
dbms_metadata.close(indexOpenHandle);

END LOOP;

— Free resources allocated for table stream and close output file.
dbms_metadata.close(tableOpenHandie);
utlfile fclose(fleHandle);
RETURN,;

END; - of procedure get payrol tables

END dbms_metadata_example;
/

GET_XML and GET_DDL Functions

GET_XML and GET_DDL return the metadata for the specified object as XML or
DDL.

Syntax

DBMS_METADATA.GET_XML (
object type IN VARCHARZ,
name IN VARCHAR?2,
schema IN VARCHAR2 DEFAULT NULL,

30-28 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Parameters

Returns

version
model
transform

RETURN CLOB;

IN VARCHAR2 DEFAULT 'COMPATIBLE,
IN VARCHARZ2 DEFAULT 'ORACLE,
IN VARCHAR2 DEFAULT NULL)

DBMS_METADATA.GET DDL (

object_type

name
schema
version
model
transform

RETURN CLOB;

IN VARCHAR?Z,
IN VARCHARZ,
IN VARCHAR2 DEFAULT NULL,
IN VARCHAR2 DEFAULT 'COMPATIBLE,
IN VARCHARZ2 DEFAULT 'ORACLE,
IN VARCHAR2 DEFAULT 'DDL’)

Table 30-15 describes the parameters for the GET_xxx function.

Table 30—15 GET_xxx Parameters

Parameter

Description

object_type

The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter.

name An object name (case-sensitive). If object_type is SYNONYM
andnameis longer than 30 characters, theame will be treated as a
LONGNAMiter. SeeTable 30-5

schema A schema name (case sensitive). The default is the current
schema if object_type refers to a schema object; otherwise
the default is NULL.

version The version of metadata to be extracted. This parameter takes
the same values as the OPENversion parameter.

model The object model to use. This parameter takes the same values
as the OPENmodel parameter.

transform The name of a transformation on the output. This parameter

takes the same values as the ADD_TRANSFORMmMe
parameter. For GET_XMLthis must not be DDL

The metadata for the specified object as XML or DDL.

DBMS_METADATA 30-29

GET_XML and GET_DDL Functions

Exceptions

s INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

s« OBJECT_NOT_FOUNDhe specified object was not found in the database.

Usage Notes

These functions provide a simple way to return the metadata for a single object.
Conceptually each GET_xxx call is comprised of an OPENone or two SET_FILTER
calls, optionally an ADD_TRANSFORMIFETCH_xxx and a CLOSE The object
type parameter has the same semantics as in OPEN The schema and name
parameters are used for filtering. If a transform is specified, schema-level transform
flags are inherited.

This function can only be used to fetch named objects. It cannot be used to fetch
objects of type OBJECT_GRAN®r SYSTEM_GRANToO fetch these objects, use the
programmatic interface.

Example 1. Fetching the XML Representation of SCOTT.EMP

To generate complete, uninterrupted output, set the PAGESIZEto 0 and set LONGto
some large number, as shown, before executing your query.

set pagesize 0
set long 90000
SELECT DBMS_METADATAGET_XML

(
TABLE,EMP',SCOTT)
FROM DUAL;

Example 2. Fetching the DDL for all Complete Tables in the Current Schema, Filtering Out Nested
Tables and Overflow Segments

This example fetches the DDL for all “complete” tables in the current schema,
filtering out nested tables and overflow segments. The example uses SET_
TRANSFORM_PARANith the handle value = DBMS_METADATA.SESSION_
TRANSFORMheaning “for the current session”) to specify that storage clauses are
not to be returned in the SQL DDL. Afterwards, the example resets the session-level
parameters to their defaults. (To generate complete, uninterrupted output, set the
PAGESIZEto 0 and set LONGto some large number, as shown, before executing

your query.)

set pagesize 0
set long 90000

30-30 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

execute DBMS_METADATA.SET_TRANSFORM_PARAM(
DBMS_METADATA.SESSION_TRANSFORM,'STORAGE ' false);
SELECT DBMS_METADATA.GET_DDL(TABLE u.table_name)
FROM USER ALL TABLES u
WHERE u.nested=NO'
AND (uiot_type is null or u.iot type=10T);
execute DBMS_METADATA.SET_TRANSFORM_PARAM(
DBMS_METADATA.SESSION_TRANSFORM,DEFAULT);

GET_DEPENDENT XML and GET_DEPENDENT_DDL Functions
The GET_DEPENDENT_XMind GET_DEPENDENT_D[Ofunctions return metadata

Syntax

Parameters

for one or more dependent objects.

DBMS_METADATA.GET DEPENDENT XML (
object_type IN VARCHAR?,
base_object name IN VARCHAR2,
base_object schema IN VARCHAR2 DEFAULT NULL,

version IN VARCHAR2 DEFAULT 'COMPATIBLE,

model IN VARCHAR2 DEFAULT 'ORACLE,

transform IN VARCHAR2 DEFAULT NULL,

object_count IN NUMBER ~ DEFAULT 10000)
RETURN CLOB;

DBMS_METADATA.GET DEPENDENT DDL (
object type IN VARCHAR?,
base_object name IN VARCHAR2,
base object schema IN VARCHAR2 DEFAULT NULL,

version IN VARCHAR2 DEFAULT ‘COMPATIBLE',

model IN VARCHAR2 DEFAULT 'ORACLE,

transform IN VARCHAR2 DEFAULT DDL,

object_count IN NUMBER ~ DEFAULT 10000)
RETURN CLOB;

Table 30-16 describes the parameters for the GET_DEPENDENT _xxfunction.

DBMS_METADATA

30-31

GET_DEPENDENT_XML and GET_DEPENDENT_DDL Functions

Table 30—16 GET_DEPENDENT_xxx Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter. See
Table 30-2, " Open() Parameters". The attributes of the object
type must be appropriate to the function. For GET_
DEPENDENT _xxxt must be a dependent object.

base_object_name The base object name, which will be used internally in a BASE_
OBJECT_NAMHilter.

base_object_schema The base object schema, which will be used internally in a
BASE_OBJECT_SCHEMAter. The default is the current user.

version The version of metadata to be extracted. This parameter takes
the same values as the OPENversion parameter.

model The object model to use. This parameter takes the same values
as the OPENmodel parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORMmMe
parameter. For GET_DEPENDENT _XMhis must not be DDL

object_count The maximum number of objects to return.

Returns
The metadata for the objects as XML or DDL.

Exceptions

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

=« OBJECT_NOT_FOUNDhe specified object was not found in the database.

Usage Notes

The GET_DEPENDENT _xxfunctions allow you to fetch metadata for dependent
objects with a single call. For some object types, you can use more than one
function. For example, you can use GET_xxx to fetch an index by its name or you
can use GET_DEPENDENT_xxxo fetch the same index by specifying the table on
which it is defined.

30-32 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

An arbitrary number of dependent objects may match the input criteria for GET _
DEPENDENT _xxxYou can specify an object count when fetching these objects,
although the default count of 10000 should usually be adequate.

If the DDL transform is specified, session-level transform parameters are inherited.

If you invoke these functions from SQL*Plus, you should use the SETLONGand
SETPAGESIZEcommands to generate complete, uninterrupted output.

Example: Fetch the DDL For All Object Grants On SCOTT.EMP

SQL> SET PAGESIZE 0

SQL> SET LONG 90000

SQL> SELECT DBMS_METADATA.GET_DEPENDENT_DDL(OBJECT_GRANT,
> 'EMP, 'SCOTT) FROM DUAL;

GET_GRANTED_XML and GET_GRANTED_DDL Functions

Syntax

Parameters

The GET_GRANTED_XMind GET_GRANTED_DDfunctions return metadata for
one or more granted objects.

DBMS_METADATAGET GRANTED_XML (

object_type IN VARCHAR?,

grantee IN VARCHAR2 DEFAULT NULL,

version IN VARCHAR2 DEFAULT 'COMPATIBLE,

model IN VARCHAR2 DEFAULT 'ORACLE,

transform IN VARCHAR2 DEFAULT NULL,

object_count IN NUMBER ~ DEFAULT 10000)
RETURN CLOB;

DBMS METADATA.GET _GRANTED_DDL (

object type IN VARCHAR?,

grantee IN VARCHAR2 DEFAULT NULL,

version IN VARCHAR2 DEFAULT 'COMPATIBLE',

model IN VARCHAR2 DEFAULT 'ORACLE,

transform IN VARCHAR2 DEFAULT DDL,

object_count IN NUMBER ~ DEFAULT 10000)
RETURN CLOB;

Table 30-17 describes the parameters for the GET_GRANTED_xxxXunction.

DBMS_METADATA 30-33

GET_GRANTED_XML and GET_GRANTED_DDL Functions

Returns

Exceptions

Usage Notes

Table 30—-17 GET_GRANTED_xxx Parameters

Parameter Description

object_type The type of object to be retrieved. This parameter takes the
same values as the OPEN object_type parameter. See
Table 30-2, " Open() Parameters". The attributes of the object
type must be appropriate to the function. For GET_GRANTED_
XxX it must be a granted object

grantee The grantee. It will be used internally in a GRANTEEHilter. The
default is the current user.

version The version of metadata to be extracted. This parameter takes
the same values as the OPENversion parameter.

model The object model to use. This parameter takes the same values
as the OPENmodel parameter.

transform The name of a transformation on the output. This parameter
takes the same values as the ADD_TRANSFORMmMe
parameter. For GET_GRANTED_XMhis must not be DDL

object_count The maximum number of objects to return.

The metadata for the objects as XML or DDL.

= INVALID_ARGVAL. A NULLor invalid value was supplied for an input
parameter. The error message text identifies the parameter.

= OBJECT_NOT_FOUNDhe specified object was not found in the database.

The GET_GRANTED_xxx{unctions allow you to fetch metadata for dependent
objects with a single call.

An arbitrary number of granted objects may match the input criteria for GET _
GRANTED_xxx You can specify an object count when fetching these objects,
although the default count of 10000 should usually be adequate.

If the DDL transform is specified, session-level transform parameters are inherited.

If you invoke these functions from SQL*Plus, you should use the SETLONGand
SETPAGESIZEcommands to generate complete, uninterrupted output.

30-34 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_METADATA Subprograms

Example: Fetch the DDL For All System Grants Granted to SCOTT

SQL> SET PAGESIZE 0

SQL> SET LONG 90000

SQL> SELECT DBMS_METADATA.GET GRANTED DDL(SYSTEM GRANT,SCOTT)
> FROM DUAL;

DBMS_METADATA 30-35

GET_GRANTED_XML and GET_GRANTED_DDL Functions

30-36 Oracle9i Supplied PL/SQL Packages and Types Reference

31

DBMS_ MGWADM

DBMS_MGWAM@Kfines the Messaging Gateway administrative interface. The
package and object types are owned by SYS.

Note: You must run the catmgw.sql script to load the
Messaging Gateway packages and types into the database. Refer to
the Oracle9i Application Developer’s Guide - Advanced Queuing for
information on loading database objects.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing contains information about using DBMS_MGWADM
The following topics are discussed in this chapter:
=« Summary of DBMS_MGWADM Object Types and Methods
= DBMS MGWADM Constants
= MQSeries System Properties
=« Summary of DBMS_MGWADM Subprograms

= Summary of Database Views

DBMS_MGWADM 31-1

Summary of DBMS_MGWADM Object Types and Methods

Summary of DBMS_MGWADM Object Types and Methods

Table 31-1 DBMS_MGWADM Object Types

Object Type Description

MGW_PROPERTY Type on Specifies a named property

page 31-2

MGW_ Constructs a new MGW_PROPERT NStance
PROPERTY.CONSTRUCT

Method on page 31-3

MGW Constructs a new MGW_PROPERT Mtance initialized using

PROPERTY.CONSTRUCT parameters
Method on page 31-3

MGW_PROPERTIES Type Specifies an array of properties

on page 31-4

MGW_MQSERIES _ Specifies basic properties for an MQSeries messaging system
PROPERTIES Type on link

page 31-5

MGW_MQSERIES_ Constructs a new MGW_MQSERIES_PROPERTIEStance

PROPERTIES.CONSTRUCT
Method on page 31-6

MGW_MQSERIES_ Constructs a new MGW_MQSERIES_PROPERTIEStance for
PROPERTIES.ALTER _ altering the properties of an existing messaging link
CONSTRUCT Method on

page 31-7

MGW_PROPERTY Type

This type specifies a named property. MGW_PROPERTSYused to specify optional
properties for messaging links and foreign queues.

Syntax

TYPE SYSMGW_PROPERTY IS OBJECT(
name VARCHAR2(100),
value VARCHAR2(1000));

31-2 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Object Types and Methods

Attributes

Table 31-2 MGW_PROPERTY Attributes

Attribute Description
name Property name
value Property value

MGW_PROPERTY.CONSTRUCT Method

Syntax

This method constructs a new MGW_PROPER T tance. All attributes are assigned
a value of NULL.

STATIC FUNCTION CONSTRUCT
RETURN SYSMGW_PROPERTY;

MGW_PROPERTY.CONSTRUCT Method

Syntax

Parameters

This method constructs a new MGW_PROPERTtance initialized using the given
parameters.

STATIC FUNCTION CONSTRUCT(
p_name IN VARCHARZ,
p_value IN VARCHAR2)

RETURN SYSMGW_PROPERTY;

Table 31-3 MGW_PROPERTY.CONSTRUCT Parameters

Parameter Description
p_name Property name
p_value Property value

DBMS_MGWADM 31-3

MGW_PROPERTIES Type

MGW_PROPERTIES Type

Syntax

Usage Notes

This type specifies an array of properties.

TYPE SYSMGW_PROPERTIES AS VARRAY (100) OF SYSMGW_PROPERTY;

Unless noted otherwise, Messaging Gateway uses named properties as follows:

= Names with the' MGWPROP$_'prefix are reserved. They are used for special
purposes and are invalid when used as a normal property name.

= A property name can exist only once in a property list; that is, a list can contain
only one value for a given name. The name is treated in a case-insensitive
manner.

= Ingeneral, a property list is order-independent and the property names may
appear in any order. An alter property list is an exception.

= To alter an existing property list, a new property list may be used where each
new property modifies the original list in one of the following ways: adds a
new property, modifies a property, removes a property, or removes all
properties.

The alter list is processed in order, from the first element to the last element. Thus
the order in which the elements appear in the alter list is meaningful, especially
when the alter list is used to remove properties from an existing list.

The property name and value are used to determine how that element affects the
original list. The following rules apply:

=« Add/Modify Property
MGW_PROPERTY.NAME = <property name>
MGW_PROPERTY.VALUE = <property value>
If a property of the given name already exists, the current value is replaced with the
new value; otherwise the new property is added to the end of the list.
= Remove Property

MGW_PROPERTY.NAME = 'MGWPROP$ REMOVE'
MGW_PROPERTY.VALUE = <name of property to remove>

31-4 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Object Types and Methods

No action is taken if the property name does not exist in the original list.

Remove All Properties

MGW_PROPERTY.NAME = 'MGWPROP$ REMOVE_ALL
MGW_PROPERTY.VALUE = not used

The DBMS_MGWADp#itkage defines constants to represent the reserved property
names. Refer to the MGWPROP_< censtants.

MGW_MQSERIES_PROPERTIES Type

Syntax

Attributes

This type specifies basic properties for an MQSeries messaging system link.

TYPE SYSMGW_MQSERIES PROPERTIES IS OBJECT (

gueue_manager VARCHAR2(64),
hostname VARCHAR2(64),
port INTEGER,
channel VARCHAR2(64),
interface_type INTEGER,
max_connections INTEGER,
usemame VARCHAR2(64),
password VARCHAR2(64),

inbound_log_queue VARCHAR2(64),
outbound _log_queue VARCHAR2(64));

Table 31-4 MGW_MQSERIES_PROPERTIES Attributes

Attribute Description
gueue_manager The name of the MQSeries queue manager
hostname The host on which the MQSeries messaging system resides. If

hostname is NULL, an MQSeries bindings connection is used.
If nonnull, a client connection is used and requires that a port
and channel be specified.

port The port number. This is used only for client connections; that

is, when hostname is NULL.

DBMS_MGWADM 31-5

MGW_MQSERIES_PROPERTIES.CONSTRUCT Method

Table 31-4 MGW_MQSERIES_PROPERTIES Attributes

Attribute

Description

channel

interface_type

max_connections

username

password

inbound_log_queue

outbound_log_queue

The channel used when establishing a connection to the queue
manager. This is used only for client connections; that is, when
hostname is NULL.

The type of messaging interface to use. Values: DBMS_
MGWADM.MQSERIES_BASE_JAVA_INTERFAGEthe
MQSeries Base Java interface.

The maximum number of messaging connections to the
MQSeries messaging system

The user name used for authentication to the MQSeries
messaging system

The password used for authentication to the MQSeries
messaging system

The message provider (native) name of the MQSeries queue
used for propagation recovery purposes when the messaging
link is used for inbound propagation; that is, when queues
associated with this link serve as a propagation source. The
gueue must be created using MQSeries administration tools.

The message provider (native) name of the MQSeries queue
used for propagation recovery purposes when the messaging
link is used for outbound propagation; that is, when queues
associated with this link serve as a propagation destination.
The queue must be created using MQSeries administration
tools.

MGW_MQSERIES_PROPERTIES.CONSTRUCT Method

Syntax

This method constructs a new MGW_MQSERIES_PROPERTIESStance. All
attributes are assigned a value of NULL.

STATIC FUNCTION CONSTRUCT
RETURN SYSMGW_MQSERIES_PROPERTIES ;

31-6 Oracle9i Supplied PL/SQL Packages and Types Reference

DBMS_MGWADM Constants

MGW_MQSERIES_PROPERTIES.ALTER_CONSTRUCT Method

This method constructs a new MGW_MQSERIES PROPERTIEStance for altering
the properties of an existing messaging link. All attributes having a VARCHARZ2lata
type are assigned a value of DBMS_MGWADM.NO_CHAN@Eributes of other data
types are assigned a value of NULL.

Syntax

STATIC FUNCTION ALTER CONSTRUCT
RETURN SYSMGW_MQSERIES_PROPERTIES ;

DBMS_MGWADM Constants

Table 31-5 DBMS_MGWADM Constants—Propagation Types

Name Type Description

OUTBOUND_PROPAGATION CONSTANT BINARY_INTEGERegpresents the propagation type for AQ to
non-Oracle propagation. The propagation
source is a local AQ queue and the
destination is a queue in a foreign
(non-Oracle) messaging system.

INBOUND_PROPAGATION CONSTANT BINARY_INTEGERRepresents the propagation type for
non-Oracle to AQ propagation. The
propagation source is a queue in a foreign
(non-Oracle) messaging system and the
destination is a local AQ queue.

Table 31-6 DBMS_MGWADM Constants—Queue Domain Types

Name Type Description

DOMAIN_QUEUE CONSTANT BINARY_INTEGERRepresents a queue destination. A JMS
gueue (point-to-point model) is classified as
a queue.

DOMAIN_TOPIC CONSTANT BINARY_INTEGER; Represents a topic destination. A JMS topic
(publish-subscribe model) is classified as a
topic.

DBMS_MGWADM 31-7

DBMS_MGWADM Constants

Table 31-7 DBMS_MGWADM Constants—Force Values

Name Type Description
NO_FORCE CONSTANT BINARY_INTEGER;Represents a normal, nonforced action
FORCE CONSTANT BINARY_INTEGER; Represents a forced action

Table 31-8 DBMS_MGWADM Constants—Shutdown Modes

Name Type Description
SHUTDOWN_NORMAL CONSTANT BINARY_INTEGERepresents the normal shutdown mode
SHUTDOWN_IMMEDIATE CONSTANT BINARY_INTEGERRepresents the immediate shutdown mode

Table 31-9 DBMS_MGWADM Constants—Cleanup Actions

Name Type Description

CLEAN_STARTUP_STATE CONSTANT BINARY_INTEGERRepresents the cleanup action for gateway
startup state recovery

Table 31-10 DBMS_MGWADM Constants—Logging Levels

Name Type Description

BASIC_LOGGING CONSTANT BINARY_INTEGER; Represents the detail of logging information
_written to the log file. The logging level

TRACE_LITE_LOGGING CONSTANT BINARY_INTEGER; ranges from BASIC_LOGGINGor standard

TRACE_HIGH_LOGGING CONSTANT BINARY_INTEGER(the least) information to TRACE_DEBUG_

LOGGINGIor the greatest information.
TRACE_DEBUG_LOGGING CONSTANT BINARY_INTEGER;

Table 31-11 DBMS_MGWADM Constants—MQSeries Interface Types

Name Type Description
MQSERIES_BASE_JAVA_ CONSTANT BINARY_INTEGER; Represents the Base Java interface for the
INTERFACE MQSeries messaging system

MQSERIES_JMS_INTERFACE CONSTANT BINARY_INTEGERRepresents the JMS interface for the
MQSeries messaging system

31-8 Oracle9i Supplied PL/SQL Packages and Types Reference

MQSeries System Properties

Table 31-12 DBMS_MGWADM Constants—Named Property Constants

Name Type

Description

MGWPROP_PREFIX CONSTANT VARCHARZ;

MGWPROP_REMOVE CONSTANT VARCHAR?Z;

MGWPROP_REMOVE_ALL CONSTANT VARCHARZ;

A constant (MGWPROP¥for the reserved
property name prefix

A constant (MGWPROP$_REMOQYtE the
reserved property name used to remove an
existing property

A constant (MGWPROP$_REMOVE_Afdr
the reserved property name used to remove
all properties

Table 31-13 DBMS_MGWADM Constants—Other Constants

Name Type

Description

NO_CHANGE CONSTANT VARCHARZ,

Indicates that an existing value should be
preserved (not changed). This is used for
certain APIs where the desire is to change
one or more parameters but leave others
unchanged.

MQSeries System Properties

The following sections discuss properties of MQSeries related to links and queues.
Refer to IBM MQSeries documentation for more information.

Basic Link Properties (MGW_MQSERIES_PROPERTIES)

Table 31-14 summarizes the basic configuration properties for an MQSeries
messaging link. (Refer to "Notes on Table 31-14" on page 31-10 for an explanation of
the numbers in parentheses.) The table indicates which properties are optional
(NULLallowed), which can be altered, and if alterable, which values can be

dynamically changed.

Table 31-14 MQSeries Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?
queue_manager no no --
hostname yes (1) no -

DBMS_MGWADM 31-9

Optional Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?
port yes (1) no -
channel yes (1) no -
interface_type yes (2) no -
max_connections yes (3) yes yes
username yes yes yes
password yes yes yes
inbound_log_queue yes (4) yes(4) yes
outbound_log_queue yes (5) yes(5) yes

Notes on Table 31-14

1.

If the hostname is NULL, the port and channel must be NULL If the hostname is
nonnull, the port and channel must be nonnull. If the hostname is NULL, an
MQSeries bindings connection is used; otherwise a client connection is used.

If NULL, a default value of DBMS_MGWADM.MQSERIES_BASE_JAVA _
INTERFACEis used.

If NULL, a default value of 1 is used.

The inbound log queue can be NULL if the link is not used for inbound
propagation. The log queue can be altered only when no inbound propagation
subscriber references the link.

The outbound log queue can be NULL if the link is not used for outbound
propagation. The log queue can be altered only when no outbound propagation
subscriber references the link.

Optional Link Properties

This section describes optional configuration properties supported for an MQSeries
messaging link. These properties are specified by using the options parameter of
DBMS_MGWADM.CREATE_MSGSYSTEM_hiNKDBMS_MGWADM.ALTER _
MSGSYSTEM_LINK

31-10 Oracle9i Supplied PL/SQL Packages and Types Reference

MQSeries System Properties

MQ_ccsid

MQ_ReceiveExit

MQ_SendExit

MQ_SecurityExit

This property specifies the character set identifier to be used. This should be the
character set’s integer value (for example, 819) rather than a descriptive string. If
not set, the MQSeries default character set 819 is used.

Default: 819
Alterable: yes

Dynamic: no

This property specifies the fully qualified Java classname of a class implementing
the MQReceiveExit interface. If not set, no default is used. This class must be in
the CLASSPATHbf the Messaging Gateway agent.

Default: none
Alterable: yes

Dynamic: no

This property specifies the fully qualified Java classname of a class implementing
the MQSendExit interface. If not set, no default is used. This class must be in the
CLASSPATHf the Messaging Gateway agent.

Default: none
Alterable: yes

Dynamic: no

This property specifies the fully qualified Java classname of a class implementing
the MQSecurityExit interface. If not set, no default is used. This class must be in
the CLASSPATHf the Messaging Gateway agent.

Default: none
Alterable: yes

Dynamic: no

DBMS_MGWADM 31-11

Optional Queue Properties

Optional Queue Properties

This section describes optional configuration properties supported for a registered
gueue of an MQSeries messaging link. These properties are specified by using the
options parameter of DBMS MGWADM.REGISTER_FOREIGN_QUEUE

MQ_openOptions

This property specifies the value used for the openOptions argument of the
MQSeries Base Java MQQueueManager.accessQueue method. No value is
required but if one is given, the Messaging Gateway agent adds MQOO_OUTPUd®
the specified value for an enqueue (put) operation. MQOO_INPUT_SHAREBadded
for a dequeue (get) operation.

Default: MQOO_OUTPUGr an enqueue/put operation; MQOO_INPUT_SHARHDr a
dequeue/get operation

Alterable: no

Dynamic: no

Summary of DBMS_MGWADM Subprograms

Table 31-15 DBMS_MGWADM Subprograms

Subprogram Description
ALTER_AGENT Procedure on Alters Messaging Gateway agent parameters
page 31-13

DB_CONNECT_INFO Procedure on Configures connection information used by the
page 31-14 Messaging Gateway agent for connections to the
Oracle database

STARTUP Procedure on page 31-15 Starts the Messaging Gateway agent

SHUTDOWN Procedure on Shuts down the Messaging Gateway agent

page 31-16

CLEANUP_GATEWAY Procedure on Cleans up Messaging Gateway

page 31-17

SET_LOG_LEVEL Procedure on Dynamically alters the Messaging Gateway agent
page 31-18 logging level

CREATE_MSGSYSTEM_LINK Creates a messaging system link to an MQSeries
Procedure on page 31-18 messaging system

31-12 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Table 31-15 DBMS_MGWADM Subprograms

Subprogram

Description

ALTER_MSGSYSTEM_LINK
Procedure on page 31-19

REMOVE_MSGSYSTEM_LINK
Procedure on page 31-21

REGISTER_FOREIGN_QUEUE
Procedure on page 31-21

UNREGISTER_FOREIGN_QUEUE
Procedure on page 31-22

ADD_SUBSCRIBER Procedure on
page 31-23

ALTER_SUBSCRIBER Procedure on
page 31-26

REMOVE_SUBSCRIBER Procedure
on page 31-28

RESET_SUBSCRIBER Procedure on
page 31-29

SCHEDULE_PROPAGATION
Procedure on page 31-30

UNSCHEDULE_PROPAGATION
Procedure on page 31-32

ALTER_PROPAGATION_
SCHEDULE Procedure on page 31-32

ENABLE_PROPAGATION_
SCHEDULE Procedure on page 31-33

DISABLE_PROPAGATION_
SCHEDULE Procedure on page 31-34

Alters the properties of an MQSeries messaging
system link

Removes a messaging system link for a non-Oracle
messaging system

Registers a non-Oracle queue entity in Messaging
Gateway

Removes a hon-Oracle queue entity in Messaging
Gateway

Adds a subscriber used to consume messages from a
source queue for propagation to a destination

Alters the parameters of a subscriber used to
consume messages from a source queue for
propagation to a destination

Removes a subscriber used to consume messages
from a source queue for propagation to a destination
Resets the propagation error state for a subscriber
Schedules message propagation from a source to a
destination

Removes a propagation schedule

Alters a propagation schedule

Enables a propagation schedule

Disables a propagation schedule

ALTER_AGENT Procedure

This procedure alters Messaging Gateway agent parameters.

DBMS_MGWADMALTER AGENT (

DBMS_MGWADM 31-13

DB_CONNECT_INFO Procedure

max_connectons IN BINARY_INTEGER DEFAULT NULL,
max_memory IN BINARY INTEGER DEFAULT NULL);

Parameters

Table 31-16 ALTER_AGENT Procedure Parameters

Parameter Description

max_connections The maximum number of messaging connections to the Oracle
database used by the gateway agent. If NULL, the current
value is unchanged. If nonnull, the value must be 1 or greater.

max_memory The maximum heap size, in MB, used by the gateway agent. If
NULL, the current value is unchanged. If nonnull, the value
must be 64 or greater.

Usage Notes

The default values for configuration parameters are set when Messaging Gateway is
installed.

The max_memory parameter changes take effect the next time the gateway agent is
active. If the agent is currently active, the gateway must be shut down and started
for the changes to take effect.

The max_connections parameter specifies the maximum number of JDBC
messaging connections created and used by the AQ driver. This parameter is
dynamically changed for a larger value only. In release 9.2, the gateway agent must
be shut down and restarted before a smaller value takes effect.

DB_CONNECT _INFO Procedure

This procedure configures connection information used by the Messaging Gateway
agent for connections to the Oracle database.

Syntax
DBMS_MGWADM.DB_CONNECT_INFO (
usemame IN VARCHAR2,
password IN VARCHAR?,
database IN VARCHAR2 DEFAULT NULL);

31-14 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Parameters

Table 31-17 DB_CONNECT_INFO Procedure Parameters

Parameter Description

username The user name used for connections to the Oracle database.
NULL s not allowed

password The password used for connections to the Oracle database.
NULL s not allowed

database The database connect string used by the gateway agent. NULL
indicates that a local connection should be used.

Usage Notes

The gateway agent connects to the Oracle database as the user configured by this
API. An Oracle administrator should create the user, grant it the role MGW_AGENT _
ROLE, and then call this procedure to configure Messaging Gateway. The MGW _
AGENT_ROLEs used to grant this user special privileges needed to access gateway
configuration information stored in the database, enqueue or dequeue messages to
and from Oracle queues, and perform certain AQ administration tasks.

STARTUP Procedure

This procedure starts the Messaging Gateway agent. It must be called before any
propagation activity can take place.

Syntax
DBMS_MGWADM.STARTUP(
instance IN BINARY_INTEGER DEFAULT 0,
force IN BINARY_INTEGER DEFAULT dbms_mgwadmNO_FORCE);
Parameters

Table 31-18 STARTUP Procedure Parameters

Parameter Description

instance Specifies which instance can execute the job queue job used to
start the Messaging Gateway agent. If this is zero, then the job
can be run by any instance.

DBMS_MGWADM 31-15

SHUTDOWN Procedure

Table 31-18 STARTUP Procedure Parameters

Parameter Description

force If this is dbms_mgwadm.FORCEthen any positive integer is
acceptable as the job instance. If this is dbms_mgwadm.NO_
FORCHthe default), then the specified instance must be
running; otherwise the routine raises an exception.

Usage Notes

The Messaging Gateway agent cannot be started until an agent user has been
configured using DB_CONNECT _INFO

This procedure submits a job queue job, which starts the Messaging Gateway agent
when executed. The instance and force parameters are used for job queue
affinity, which you use to indicate whether a particular instance or any instance can
run a submitted job.

SHUTDOWN Procedure

This procedure shuts down the Messaging Gateway agent. No propagation activity
occurs until the gateway is started.

Syntax

DBMS_MGWADM.SHUTDOWN (
sdmode IN BINARY_INTEGER DEFAULT DBMS_MGWADM.SHUTDOWN_NORMAL);

Parameters

Table 31-19 SHUTDOWN Procedure Parameters

Parameter Description

sdmode The shutdown mode. Values:

= SHUTDOWN_NORMAL normal shutdown. The gateway
agent may attempt to complete any propagation work
currently in progress.

= SHUTDOWN_IMMEDIAT®&r immediate shutdown. The
gateway terminates any propagation work currently in
progress and shuts down immediately.

31-16 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Usage Notes

In release 9.2, the sdmode parameter is ignored and all shutdown modes behave the
same way.

CLEANUP_GATEWAY Procedure

Syntax

Parameters

Usage Notes

This procedure cleans up Messaging Gateway. The procedure performs cleanup or
recovery actions that may be needed when the gateway is left in some abnormal or
unexpected condition. The MGW_GATEWxMw lists gateway status and
configuration information that pertains to the cleanup actions.

DBMS_MGWADM.CLEANUP_GATEWAY(
acon IN BINARY INTEGER);

Table 31-20 CLEANUP_GATWAY Procedure Parameters

Parameter Description

action The cleanup action to be performed. Values:
CLEAN_STARTUP_STAT#r gateway startup state recovery.

The CLEAN_STARTUP_STATE&ction involves recovery tasks that set the gateway to
a known state when the gateway agent has crashed or some other abnormal event
occurs so that the gateway cannot be started. This should only be done when the
gateway agent has been started but appears to have crashed or has been
nonresponsive for an extended period of time.

Conditions or indications where this action may be needed:

» The MGW_GATEW#XM¥W shows that the AGENT_STATUSalue is something
other than NOT_STARTEDr START_SCHEDULEDand the AGENT_PINGvalue
is UNREACHABLbr an extended period of time.

The cleanup tasks include:

= Removing the queued job used to start the external gateway agent process.

DBMS_MGWADM 31-17

SET_LOG_LEVEL Procedure

Setting certain configuration information to a known state. For example, setting
the agent status to NOT_STARTED.

The following considerations apply:

This fails if the agent status is NOT_STARTEDr START_SCHEDULED.

This fails if no shutdown attempt has been made prior to calling this procedure,
except if the agent status is STARTING.

This attempts to contact (ping) the gateway agent. If successful, the assumption
is that the agent is active and this procedure fails. If the agent does not respond
after several attempts have been made, the cleanup tasks are performed.

This procedure takes several seconds, possibly up to one minute, if the gateway
agent never responds to the ping attempts. This is expected behavior under
conditions where this particular cleanup action is appropriate and necessary.

SET _LOG_LEVEL Procedure

This procedure dynamically alters the Messaging Gateway agent logging level. The
Messaging Gateway agent must be running.

Syntax

DBMS_MGWADM.SET LOG LEVEL (

Parameters

log level IN BINARY_INTEGER);

Table 31-21 SET_LOG_LEVEL Procedure Parameters

Parameter Description

log_level Level at which the Messaging Gateway agent logs information;

refer to the DBMS_MGWADM.<>_LOGGIblihstants. BASIC _
LOGGINGgenerates the least information while TRACE_
DEBUG_LOGGINGenerates the most information.

CREATE_MSGSYSTEM_LINK Procedure

This procedure creates a messaging system link to an MQSeries messaging system.

31-18 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Syntax
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
inkname IN VARCHARZ,
propertes IN sys.mgw_mqseries_properties,
options IN sysmgw_properties DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);
Parameters

Table 31-22 CREATE_MSGSYSTEM_LINK Procedure Parameters

Parameter Description

linkname A user-defined name to identify the message system link
properties Basic properties of an MQSeries messaging system link
options Optional link properties. NULLIf there are none. These are less

frequently used configuration properties supported by the
messaging system.

comment A user-specified description. NULLif one is not desired

Usage Notes

Refer to "Basic Link Properties (MGW_MQSERIES PROPERTIES)" on page 31-9 for
more information about messaging link properties.

ALTER_MSGSYSTEM_LINK Procedure

This procedure alters the properties of an MQSeries messaging system link.

Syntax

DBMS_MGWADMALTER_MSGSYSTEM_LINK (
inkname IN VARCHAR2,
propertes IN - SYSMGW_MQSERIES_PROPERTIES,
options IN SYSMGW_PROPERTIES DEFAULT NULL,
comment IN VARCHAR2 DEFAULT DBMS MGWADM.NO_CHANGE);

DBMS_MGWADM 31-19

ALTER_MSGSYSTEM_LINK Procedure

Parameters

Table 31-23 ALTER_MSGSYSTEM_LINK Procedure Parameters

Parameters Description
linkname The messaging system link name
properties Basic properties for an MQSeries messaging system link. If

NULL, no link properties are changed.

options Optional link properties. NULLif no options are changed. If
nonnull, the properties specified in this list are combined with
the current options properties to form a new set of link options.

comment An optional description or NULL if not desired. If DBMS _
MGWADM.NO_CHANiGEpecified, the current value is not
changed.

Usage Notes

In release 9.2, the MGW_MQSERIES_PROPERTIES.MAX_CONNECTIp&8meter

specifies the maximum number of messaging connections created and used for that
messaging link. This parameter is dynamically changed for a larger value only. The
gateway agent must be shut down and restarted before a smaller value takes effect.

To retain an existing value for a messaging link property with a VARCHAR2lata
type, specify DBMS_MGWADM.NO_CHANSBEhat particular property. To preserve
an existing value for a property of another data type, specify NULL for that property.

The options parameter specifies a set of properties used to alter the current option
properties. Each property affects the current property list in a particular manner;
add a new property, replace an existing property, remove an existing property, or
remove all properties.

Some properties cannot be modified and this procedure will fail if you try. Other
properties can be modified only under certain conditions, depending on the current
configuration; for example, when there are no propagation subscribers or schedules
that have a source or destination associated with the link.

For properties that can be changed, a few are dynamic, while others require
Messaging Gateway to be shut down and restarted before they take effect.

Refer to "Basic Link Properties (MGW_MQSERIES PROPERTIES)" on page 31-9 for
more information on messaging link properties.

31-20 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

REMOVE_MSGSYSTEM_LINK Procedure

Syntax

Parameters

Usage Notes

This procedure removes a messaging system link for a non-Oracle messaging
system.

DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK(
inkname IN VARCHAR?),

Table 31-24 REMOVE_MSGSYSTEM_LINK Procedure Parameters

Parameters Description

linkname The messaging system link name

All registered queues associated with this link must be removed before the
messaging system link can be removed. This fails if there is a registered foreign
(non-Oracle) queue that references this link.

REGISTER_FOREIGN_QUEUE Procedure

Syntax

This procedure registers a non-Oracle queue entity in Messaging Gateway.

DBMS_MGWADMREGISTER_FOREIGN_QUEUE(

name IN VARCHARZ,

inkname IN VARCHAR2,

provider_queue IN VARCHAR2 DEFAULT NULL,
domain IN INTEGER DEFAULT NULL,
options IN sysmgw_properties DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);

DBMS_MGWADM 31-21

UNREGISTER_FOREIGN_QUEUE Procedure

Parameters

Usage Notes

Table 31-25 REGISTER_FOREIGN_QUEUE Procedure Parameters

Parameters Description

name The registered queue name. This name identifies the foreign
gueue within Messaging Gateway and need not match the
name of the queue in the foreign messaging system.

linkname The link name for the messaging system on which this queue

provider_queue

domain

options

comment

exists

The message provider (native) queue name. If NULL, the value
provided for the name parameter is used as the provider queue
name.

The domain type of the queue. Values:

= NULLIif the domain type is automatically determined
based on the messaging system of the queue

= DOMAIN_QUEUr a queue (point-to-point model)
= DOMAIN_TOPICfor a topic (publish-subscribe model)

Optional queue properties

A user-specified description. Can be NULL

This procedure does not create the physical queue in the non-Oracle messaging
system. The non-Oracle queue must be created using the administration tools for

that messaging system.

In release 9.2, domain is not used and must be NULL because the domain type can
be automatically determined for the messaging systems currently supported.

Refer to "Basic Link Properties (MGW_MQSERIES PROPERTIES)" on page 31-9 for
more information on messaging link properties.

UNREGISTER_FOREIGN_QUEUE Procedure

Syntax

This procedure removes a non-Oracle queue entity in Messaging Gateway.

DBMS_MGWADM.UNREGISTER_FOREIGN QUEUE(

31-22 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

name IN VARCHAR?Z,
linkname IN VARCHARY);

Parameters

Table 31-26 UNREGISTER_FOREIGN_QUEUE Procedure Parameters

Parameter Description

name The queue name

linkname The link name for the messaging system on which the queue
exists

Usage Notes
This procedure does not remove the physical queue in the non-Oracle messaging
system.

All subscribers and schedules referencing this queue must be removed before it can
be unregistered. This fails if a subscriber or propagation schedule references the
non-Oracle queue.

ADD_SUBSCRIBER Procedure

This procedure adds a subscriber used to consume messages from a source queue
for propagation to a destination.

Syntax

DBMS_MGWADM.ADD_SUBSCRIBER(
subscriber_id IN VARCHARZ,
propagation_type IN BINARY_INTEGER,

gueue_name IN VARCHARZ2,
destination IN VARCHARZ,
rule IN VARCHAR2 DEFAULT NULL,

transformation IN VARCHAR2 DEFAULT NULL,
exception_queue IN VARCHAR2 DEFAULT NULL);

DBMS_MGWADM 31-23

ADD_SUBSCRIBER Procedure

Parameters

Table 31-27 ADD_SUBSCRIBER Procedure Parameters

Parameter

Description

subscriber_id

propagation_type

queue_name

destination

rule

transformation

exception_queue

Specifies a user-defined name that identifies this subscriber.

Specifies the type of message propagation. Values:

= DBMS_MGWADM.OUTBOUND_PROPAGA®DIOND to
non-Oracle propagation

= DBMS_MGWADM.INBOUND_PROPAGATW®NoN-Oracle
to AQ propagation

Specifies the source queue to which this subscriber is being
added. The syntax and interpretation of this parameter depend
on the value specified for propagation_type.

Specifies the destination queue to which messages consumed
by this subscriber are propagated. The syntax and
interpretation of this parameter depend on the value specified
for propagation_type.

Specifies an optional subscription rule used by the subscriber
to dequeue messages from the source queue. This is NULLif no
rule is needed. The syntax and interpretation of this parameter
depend on the value specified for propagation_type.

Specifies the transformation needed to convert between the AQ
payload and a gateway-defined ADT. The type of
transformation needed depends on the value specified for
propagation_type.

If no transformation is provided (a NULLvalue is specified), the
gateway makes a best effort to propagate messages based on
the AQ payload type and the capabilities of the non-Oracle
messaging system. For example, the gateway automatically
propagates messages for an AQ queue having a RAWpayload
and non-Oracle messaging systems that support a ‘bytes’
message body.

Specifies a queue used for exception message logging
purposes. This queue must be on the same messaging system
as the propagation source. If NULL, an exception queue is not
used and propagation stops if a problem occurs. The syntax
and interpretation of this parameter depend on the value
specified for propagation_type.

The source queue and exception queue cannot be the same
queue.

31-24 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Usage Notes

For OUTBOUND_PROPAGATIOpNarameters are interpreted as follows:

gueue_name - specifies the local AQ queue that is the propagation source. This
must have a syntax of schema.queue .

destination - specifies the foreign queue to which messages are propagated.
This must have a syntax of registered_queue@message_link.

rule - specifies an optional AQ subscriber rule. This is NULLif no rule is
needed.

transformation - specifies the transformation used to convert the AQ
payload to a gateway-defined ADT.

The gateway propagation dequeues messages from the AQ queue using the
transformation to convert the AQ payload to a known gateway-defined ADT.
The message is then enqueued in the foreign messaging system based on the
gateway ADT.

exception_queue - specifies the name of a local AQ queue to which
messages are moved if an exception occurs. This must have a syntax of
schema.queue .

For INBOUND_PROPAGATIONyarameters are interpreted as follows:

gueue_name - specifies the foreign queue that is the propagation source. This
must have a syntax of registered_queue@message_link.

destination - specifies the local AQ queue to which message are propagated.
This must have a syntax of schema.queue.

rule - specifies an optional subscriber rule that is valid for the foreign
messaging system. This is NULLif no rule is needed.

transformation - specifies the transformation used to convert a
gateway-defined ADT to the AQ payload type.

The gateway propagation dequeues messages from the foreign messaging
system and converts the message body to a known gateway-defined ADT. The
transformation is used to convert the gateway ADT to an AQ payload type
when the message is enqueued to the AQ queue.

exception_queue - specifies the name of a foreign queue to which messages
are moved if an exception occurs. This must have a syntax of registered_
gqueue@message_link.

DBMS_MGWADM 31-25

ALTER_SUBSCRIBER Procedure

For OUTBOUND_PROPAGATIO#|ocal subscriber is added to the AQ queue. The
subscriber is of the form ag$_agent('MGW_<subscriber_id>",NULL,NULL).

For INBOUND_PROPAGATIONwhether or not a subscriber is needed depends on
the requirements of the non-Oracle messaging system.

For OUTBOUND_PROPAGATIOMe exception queue has the following
considerations:

The user is responsible for creating the AQ queue to be used as the exception
queue.

The payload type of the source and exception queue must match.

The exception queue must be created as a queue type of NORMAL_QUEUther
than EXCEPTION_QUEUEENqueue restrictions prevent the gateway
propagation from using an AQ queue of type EXCEPTION_QUEUBs a gateway
exception queue.

For INBOUND_PROPAGATIONhe exception queue has the following
considerations:

The exception queue must be a registered non-Oracle queue.

The source and exception queues must use the same messaging system link.

ALTER_SUBSCRIBER Procedure

This procedure alters the parameters of a subscriber used to consume messages
from a source queue for propagation to a destination.

Syntax

DBMS_MGWADMALTER_SUBSCRIBER (

subscriber_id IN VARCHAR2,

rule IN VARCHAR2 DEFAULT DBMS_MGWADM.NO_CHANGE,
fransformation IN VARCHAR2 DEFAULT DBMS MGWADM.NO_CHANGE,
exception_queue IN VARCHAR2 DEFAULT DBMS_MGWADMNO_CHANGE);

31-26 Oracle9i Supplied PL/SQL Packages and Types Reference

Summary of DBMS_MGWADM Subprograms

Parameters

Usage Notes

Table 31-28 ALTER_SUBSCRIBER Procedure Parameters

Parameter Description
subscriber_id Identifies the subscriber to be altered
rule Specifies an optional subscription rule used by the subscriber

to dequeue messages from the source queue. The syntax and
interpretation of this parameter depend on the subscriber’s
propagation type.

A NULLvalue indicates that no subscription rule is needed. If
DBMS_MGWADM.NO_CHANG@E,current value is unchanged.

transformation Specifies the transformation needed to convert between the AQ
payload and a gateway-defined ADT. The type of
transformation needed depends on the subscriber’s
propagation type.

A NULLvalue indicates that no transformation is needed. If
DBMS_MGWADM.NO_CHANG@,current value is unchanged.

exception_queue Specifies a queue used for exception message logging
purposes. This queue must be on the same messaging system
as the propagation source. If no exception queue is associated
with the subscriber, propagation stops if a problem occurs. The
syntax and interpretation of this parameter depend on the
subscriber’s propagation type.

A NULLvalue indicates that no exception queue is used. If
DBMS_MGWADM.NO_CHANGIE,current value is unchanged.

The source queue and exception queue cannot be the same
queue.

For a subscriber hav