
Oracle9 i

Data Cartridge Developer's Guide

Release 2 (9.2)

March 2002

Part No. A96595-01

Oracle9i Data Cartridge Developer’s Guide, Release 2 (9.2)

Part No. A96595-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: William Gietz

Graphic Designer: Valarie Moore

Contributing Author: C. Dupree

Contributors: A. Yoaz

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are “restricted computer software”
and use, duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and SQL*Plus, Oracle7, Oracle8i, Oracle9i, PL/SQL, and Oracle Store
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments ... xix

Preface .. xxi

What’s New in Data Cartridges? .. xxxi

1 What Is a Data Cartridge?

What Are Data Cartridges? ... 1-2
Why Build Data Cartridges? ... 1-3

Data Cartridge Domains.. 1-4
Extending the Server—Services and Interfaces .. 1-6
Extensibility Services ... 1-7

Extensible Type System ... 1-7
Object Types... 1-8
Collection Types .. 1-8
Relationship Types (REF)... 1-9
Large Objects.. 1-9

Extensible Server Execution Environment.. 1-10
Extensible Indexing .. 1-11
Extensible Optimizer.. 1-13

Extensibility Interfaces .. 1-14
DBMS Interfaces ... 1-14
Cartridge Basic Service Interfaces .. 1-14
Data Cartridge Interfaces .. 1-14

iv

Cartridges as Software Components ... 1-15
The Structure of a Data Cartridge .. 1-15
Object Type Specification .. 1-16
Object Type Body Code ... 1-16
External Library Linkage Specification ... 1-16
External Library Code.. 1-17
Installing a Data Cartridge .. 1-17

2 Roadmap to Building a Data Cartridge

Development Process ... 2-2
Installation and Use.. 2-4
Requirements and Guidelines for Data Cartridge Constituents... 2-5

Schema.. 2-5
Globals.. 2-5
Error Message Names or Error Codes ... 2-6
Cartridge Installation Directory ... 2-6
Files ... 2-6
Shared Library Names for External Procedures .. 2-7

Deployment Checklist ... 2-7
Naming Conventions ... 2-8

Need for Naming Conventions ... 2-8
Unique Name Format ... 2-9

Cartridge Registration.. 2-10
Directory Structure and Standards .. 2-10
Cartridge Upgrades.. 2-11
Import and Export .. 2-11
Cartridge Versioning.. 2-11

Internal Versioning.. 2-11
External Versioning... 2-12

Internationalization .. 2-12
External Access .. 2-12
Internal Access ... 2-12
Invoker’s Rights ... 2-13
Test and Debug Services... 2-13

Administration .. 2-13

v

Configuration... 2-13
Suggested Development Approach ... 2-14

3 Defining Object Types

Objects and Object Types ... 3-2
Assigning an OID to an Object Type.. 3-3
Constructor Methods.. 3-5
Object Comparison... 3-5

4 Methods: Using C/C++ and Java

External Procedures .. 4-2
Using Shared Libraries .. 4-2
Registering an External Procedure .. 4-3
How PL/SQL Calls an External Procedure... 4-4
Configuration Files for External Procedures ... 4-6

Passing Parameters to an External Procedure.. 4-7
Specifying Datatypes.. 4-7
Using the Parameters Clause .. 4-9
Using the WITH CONTEXT Clause... 4-10

OCIExtProcGetEnv ... 4-10
Doing Callbacks.. 4-11

Restrictions on Callbacks... 4-11
OCI Access Functions for External Procedures... 4-12

OCIExtProcAllocCallMemory .. 4-13
OCIExtProcRaiseExcp.. 4-13
OCIExtProcRaiseExcpWithMsg ... 4-13

Common Potential Errors .. 4-14
Calls to External Functions.. 4-14
RPC Time Out ... 4-14

Debugging External Procedures .. 4-14
Using Package DEBUG_EXTPROC ... 4-15
Debugging C Code in DLLs on Windows NT Systems .. 4-15

Guidelines for Using External Procedures with Data Cartridges ... 4-15
Java Methods ... 4-16

vi

5 Methods: Using PL/SQL

Methods .. 5-2
Implementing Methods ... 5-2
Invoking Methods... 5-4
Referencing Attributes in a Method... 5-5

 PL/SQL Packages.. 5-5
Pragma RESTRICT_REFERENCES ... 5-6
Privileges Required to Create Procedures and Functions .. 5-7
Debugging PL/SQL Code .. 5-8

Notes for C and C++ Programmers ... 5-9
Common Potential Errors.. 5-9

Signature Mismatches... 5-9
RPC Time Out .. 5-10
Package Corruption... 5-10

6 Working with Multimedia Datatypes

Overview... 6-2
DDL for LOBs .. 6-2
LOB Locators.. 6-3
EMPTY_BLOB and EMPTY_CLOB Functions.. 6-4
Using the OCI to Manipulate LOBs .. 6-6
Using DBMS_LOB to Manipulate LOBs.. 6-10
LOBs in External Procedures .. 6-11
LOBs and Triggers... 6-12
Using Open/Close as Bracketing Operations for Efficient Performance 6-12

Errors and Restrictions Regarding Open/Close Operations ... 6-13

7 g Building Domain Indexes

Introduction to Extensible Indexing ... 7-2
What is Indexing? ... 7-2
Index Structures .. 7-3

The Relationship between Logical and Physical Structures.. 7-3
The Need for Index Structures that Encompass Unstructured Data 7-3

Kinds of Indexes.. 7-4

vii

B-tree ... 7-4
Hash... 7-5
k-d tree .. 7-6
Point Quadtree... 7-8

Why is Extensible Indexing Necessary?.. 7-9
The Extensible Indexing API.. 7-10

Concepts: Extensible Indexing.. 7-13
Overview .. 7-13
Example: A Text Indextype.. 7-15

Indextypes ... 7-17
Creating Indextypes.. 7-17
Dropping Indextypes.. 7-18
Commenting on Indextypes .. 7-18

ODCI Index Interface ... 7-18
Index Definition Methods .. 7-19
Index Maintenance Methods ... 7-20
Index Scan Methods.. 7-20
Index Metadata Method ... 7-22
Transaction Semantics during Index Method Execution .. 7-22
Transaction Semantics for Index Definition Routines ... 7-23
Consistency Semantics during Index Method Execution.. 7-23
Privileges During Index Method Execution.. 7-23

Domain Indexes .. 7-24
Domain Index Operations.. 7-24
Domain Indexes on Index-Organized Tables.. 7-25
Domain Index Metadata... 7-27
Export/Import of Domain Indexes... 7-27
Moving Domain Indexes Using Transportable Tablespaces .. 7-28

Operators ... 7-28
Operator Bindings ... 7-28
Creating operators... 7-29
Invoking Operators ... 7-30
Operator Privileges ... 7-31

Operators and Indextypes... 7-31
Operators in the WHERE Clause .. 7-32

viii

Operators Outside the WHERE Clause.. 7-35
Ancillary Data .. 7-37

Object Dependencies, Drop Semantics, and Validation.. 7-40
Dependencies ... 7-40
Drop Semantics .. 7-41
Object Validation ... 7-41

Privileges.. 7-41
Partitioned Domain Indexes ... 7-42

Dropping a Local Domain Index.. 7-44
Altering a Local Domain Index... 7-44
Summary of Index States ... 7-44
DML Operations with Local Domain Indexes.. 7-45
Table Operations That Affect Indexes ... 7-45
ODCIIndex Interfaces for Partitioning Domain Indexes .. 7-46
Domain Indexes and SQL*Loader.. 7-47

8 Query Optimization

Overview... 8-2
Statistics.. 8-4

User-Defined Statistics.. 8-4
User-Defined Statistics for Partitioned Objects... 8-5

Selectivity ... 8-5
User-Defined Selectivity ... 8-5

Cost ... 8-6
User-Defined Cost ... 8-7

Defining Statistics, Selectivity, and Cost Functions... 8-8
User-Defined Statistics Functions... 8-10
User-Defined Selectivity Functions.. 8-11
User-Defined Cost Functions for Functions.. 8-13
User-Defined Cost Functions for Domain Indexes.. 8-14

Using User-Defined Statistics, Selectivity, and Cost.. 8-16
User-Defined Statistics ... 8-16

Column Statistics ... 8-17
Domain Index Statistics .. 8-18

User-Defined Selectivity .. 8-19

ix

User-defined Operators .. 8-19
Standalone Functions.. 8-19
Package Functions... 8-19
Type Methods .. 8-20
Default Selectivity ... 8-20

User-Defined Cost .. 8-21
User-defined Operators .. 8-21
Standalone Functions.. 8-21
Package Functions... 8-21
Type Methods .. 8-22
Default Cost.. 8-22

Declaring a NULL Association for an Index or Column .. 8-23
How Statistics Are Affected by DDL Operations .. 8-23

Predicate Ordering.. 8-24
Dependency Model .. 8-24
Restrictions and Suggestions ... 8-25

Parallel Query ... 8-25
Distributed Execution .. 8-25
Performance... 8-26

9 Using Cartridge Services

Cartridge Services — Introduction.. 9-2
Cartridge Handle .. 9-3

Client Side Usage.. 9-3
Cartridge Side Usage ... 9-3
Service Calls... 9-3
Error Handling.. 9-4

Memory Services... 9-4
Maintaining Context .. 9-5

Durations ... 9-6
Globalization Support ... 9-6

Globalization Support Language Information Retrieval .. 9-7
String Manipulation ... 9-7

Parameter Manager Interface ... 9-7
Input Processing ... 9-8

x

Parameter Manager Behavior Flag... 9-9
Key Registration.. 9-9
Parameter Storage and Retrieval .. 9-9
Parameter Manager Context ... 9-10

File I/O... 9-10
String Formatting .. 9-10

10 Design Considerations

Designing the Types ... 10-2
Structured and Unstructured Data .. 10-2
Using Nested Tables or VARRAYs .. 10-2

Nested Tables ... 10-2
VARRAYs ... 10-3

Choosing a Language in Which to Write Methods.. 10-3
Invokers Rights — Why, When, How ... 10-4

Callouts ... 10-4
When to Callout .. 10-4
When to Callback.. 10-5
Callouts and LOB.. 10-5
Saving and Passing State ... 10-5

Designing Indexes .. 10-6
Influencing Index Performance .. 10-6
Influencing Index Performance .. 10-6
When to Use IOTs... 10-6
Can Index Structures Be Stored in LOBs... 10-6
External Index Structures .. 10-7
Multi-Row Fetch ... 10-7

Designing Operators .. 10-8
Functional and Index Implementations .. 10-8

Talking to the Optimizer ... 10-8
Weighing Cost and Selectivity.. 10-8

Design for maintenance... 10-10
How to Make Your Cartridge Extensible .. 10-11
How to Make Your Cartridge Installable.. 10-11

Miscellaneous .. 10-11

xi

How to Write Portable Cartridge Code... 10-11

11 User-Defined Aggregate Functions

The ODCIAggregate Interface: Overview ... 11-3
Creating a User-Defined Aggregate .. 11-4
Using a User-Defined Aggregate ... 11-5
Parallel Evaluation of User-Defined Aggregates .. 11-6
Handling Large Aggregation Contexts ... 11-7

External Context and Parallel Aggregation.. 11-8
External Context and User-Defined Analytic Functions .. 11-9

Summary of Steps to Support External Context ... 11-9
User-Defined Aggregates and Materialized Views .. 11-9
User-Defined Aggregates and Analytic Functions ... 11-10

Reusing the Aggregation Context for Analytic Functions ... 11-10
Example: Creating and Using a User-Defined Aggregate ... 11-11

12 Pipelined and Parallel Table Functions

Overview .. 12-2
Concepts ... 12-3

Table Functions ... 12-3
Pipelined Table Functions ... 12-4
Pipelined Table Functions with REF CURSOR Arguments ... 12-5

Errors and Restrictions ... 12-6
Parallel Execution of Table Functions ... 12-6

Pipelined Table Functions... 12-7
Implementation Choices for Pipelined Table Functions... 12-7
Declarations of Pipelined Table Functions ... 12-8
Implementing the Native PL/SQL Approach.. 12-8
Pipelining Between PL/SQL Table Functions.. 12-9
Implementing the Interface Approach .. 12-10

Scan Context... 12-10
Start Routine... 12-10
Fetch Routine ... 12-11
Close Routine ... 12-11
Example: Pipelined Table Functions: Interface Approach .. 12-12

xii

Describe Routine.. 12-12
Querying Table Functions ... 12-14

Multiple Calls to Table Functions ... 12-15
PL/SQL ... 12-15

Performing DML Operations Inside Table Functions ... 12-16
Performing DML Operations on Table Functions ... 12-16
Handling Exceptions in Table Functions .. 12-17

Parallel Table Functions... 12-17
Inputting Data with Cursor Variables ... 12-17

Using Multiple REF CURSOR Input Variables ... 12-18
Explicitly Opening a REF CURSOR for a Query .. 12-18
PL/SQL REF CURSOR Arguments to Java and C/C++ Functions 12-18

Input Data Partitioning.. 12-21
Parallel Execution of Leaf-level Table Functions ... 12-23

Input Data Streaming for Table Functions .. 12-23
Parallel Execution: Partitioning and Clustering... 12-25

Parallelizing Creation of a Domain Index ... 12-25
Transient and Generic Types .. 12-27

13 Power Demand Cartridge Example

Feature Requirements .. 13-2
Modeling the Application ... 13-9

Sample Queries ... 13-10
Queries and Extensible Indexing... 13-13

Queries Not Benefiting from Extensible Indexing... 13-14
Queries Benefiting from Extensible Indexing... 13-14

Creating the Domain Index... 13-15
Creating the Schema to Own the Index... 13-15
Creating the Object Type (PowerDemand_Typ).. 13-16
Defining the Object Type Methods .. 13-17
Creating the Functions and Operators .. 13-19
Creating the Indextype Implementation Methods .. 13-22

Type Definition .. 13-23
ODCIGetInterfaces Method ... 13-25
ODCIIndexCreate Method ... 13-25

xiii

ODCIIndexDrop Method ... 13-27
ODCIIndexStart Method (for Specific Queries) .. 13-28
ODCIIndexStart Method (for Any Queries) .. 13-30
ODCIIndexFetch Method... 13-32
ODCIIndexClose Method... 13-33
ODCIIndexInsert Method .. 13-34
ODCIIndexDelete Method ... 13-35
ODCIIndexUpdate Method ... 13-36
ODCIIndexGetMetadata Method ... 13-37

Creating the Indextype .. 13-39
Defining a Type and Methods for Extensible Optimizing ... 13-40

Creating the Statistics Table (PowerCartUserStats) .. 13-40
Creating the Extensible Optimizer Methods .. 13-41

Type Definition.. 13-42
ODCIGetInterfaces Method ... 13-43
ODCIStatsCollect Method (for PowerDemand_Typ columns).................................. 13-44
ODCIStatsDelete Method (for PowerDemand_Typ columns)................................... 13-46
ODCIStatsCollect Method (for power_idxtype Domain Indexes)............................. 13-48
ODCIStatsDelete Method (for power_idxtype Domain Indexes).............................. 13-49
ODCIStatsSelectivity Method (for Specific Queries) ... 13-50
ODCIStatsSelectivity Method (for Any Queries) ... 13-58
ODCIStatsIndexCost Method (for Specific Queries) ... 13-60
ODCIStatsIndexCost Method (for Any Queries).. 13-60
ODCIStatsFunctionCost Method .. 13-62

Associating the Extensible Optimizer Methods with Database Objects 13-63
Analyzing the Database Objects... 13-64

Testing the Domain Index ... 13-64
Creating and Populating the Power Demand Table ... 13-65
Querying Without the Index... 13-67
Creating the Index .. 13-68
Querying with the Index ... 13-69

14 PSBTREE: An Example of Extensible Indexing

Introduction ... 14-2
Design of the indextype .. 14-2

xiv

Implementing Operators ... 14-3
Create Functional Implementations... 14-3

Functional Implementation of EQ (EQUALS)... 14-3
Functional Implementation of LT (LESS THAN) ... 14-3
Functional Implementation of GT (GREATER THAN) ... 14-3

Create Operators ... 14-4
Operator EQ ... 14-4
Operator LT .. 14-4
Operator GT ... 14-4

Implementing the Index Routines... 14-4
The C Code ... 14-15

General Notes .. 14-15
Common Error Processing Routine ... 14-15
Implementation Of The ODCIIndexInsert Routine ... 14-16
Implementation of the ODCIIndexDelete Routine .. 14-19
Implementation of the ODCIIndexUpdate Routine .. 14-21
Implementation of the ODCIIndexStart Routine ... 14-24
Implementation of the ODCIIndexFetch Routine.. 14-29
Implementation of the ODCIIndexClose Routine.. 14-32

Implementing the Indextype .. 14-34
Usage examples ... 14-34

Explain Plan Output... 14-35

15 Reference: Cartridge Services Using Java

File Installation.. 15-2
Cartridge Services—Maintaining Context ... 15-3

ContextManager.. 15-4
Class Interface .. 15-4
Variable ... 15-4
Constructors ... 15-4
Methods .. 15-4

CountException() .. 15-5
CountException(String) ... 15-6
InvalidKeyException() ... 15-7
InvalidKeyException(String)... 15-8

xv

16 Reference: Extensibility Constants, Types, and Mappings

System Defined Constants .. 16-2
ODCIIndexAlter Options .. 16-3
ODCIArgDesc.ArgType Bits... 16-4
ODCIEnv.CallProperty Values... 16-5
ODCIIndexInfo.Flags Bits ... 16-6
ODCIPredInfo.Flag Bits ... 16-7
ODCIFuncInfo.Flags Bits... 16-8
ODCIQueryInfo.Flags Bits .. 16-9
ODCIStatsOptions.Flags Bits .. 16-10
ODCIStatsOptions.Options Bits ... 16-11
ScnFlg (Function with Index Context) Values.. 16-12
Status Values ... 16-13

System Defined Types.. 16-15
ODCIArgDesc ... 16-16
ODCIArgDescList... 16-17
ODCIRidList.. 16-18
ODCIColInfo ... 16-19
ODCIColInfoList... 16-20
ODCIColStats .. 16-21
ODCIColStatsList ... 16-22
ODCICost... 16-23
ODCIEnv.. 16-24
ODCIFuncInfo... 16-25
ODCIIndexInfo ... 16-26
ODCIPredInfo ... 16-27
ODCIIndexCtx .. 16-28
ODCIObject ... 16-29
ODCIObjectList... 16-30
ODCIPartInfo .. 16-31
ODCIQueryInfo .. 16-32
ODCIStatsOptions .. 16-33
ODCITabStats.. 16-34
ODCITableFunctionStats... 16-35
Mappings of Constants and Types .. 16-36

xvi

Mappings in PL/SQL.. 16-36
Mappings in C.. 16-36
Mappings in Java ... 16-36

Constants Definitions ... 16-37
Constants for Return Status ... 16-37
Constants for ODCIPredInfo.Flags ... 16-37
 Constants for ODCIQueryInfo.Flags ... 16-37
Constants for ScnFlg (Func with Index Context) .. 16-37
Constants for ODCIFuncInfo.Flags... 16-37
Constants for ODCIArgDesc.ArgType... 16-38
Constants for ODCIStatsOptions.Options ... 16-38
Constants for ODCIStatsOptions.Flags .. 16-38
Constants for ODCIIndexAlter parameter alter_option .. 16-38
Constants for ODCIIndexInfo.IndexInfoFlags .. 16-38
Constants for ODCIEnv.CallProperty .. 16-38

17 Reference: Extensible Indexing Interface

Extensible Indexing — System Defined Interface Routines .. 17-2
ODCIGetInterfaces ... 17-3
ODCIIndexAlter.. 17-4
ODCIIndexClose ... 17-7
ODCIIndexCreate ... 17-8
ODCIIndexDelete ... 17-11
ODCIIndexDrop.. 17-12
ODCIIndexExchangePartition .. 17-14
ODCIIndexFetch ... 17-15
ODCIIndexGetMetadata.. 17-17
ODCIIndexInsert... 17-20
ODCIIndexMergePartition.. 17-21
ODCIIndexSplitPartition ... 17-22
ODCIIndexStart .. 17-23
ODCIIndexTruncate ... 17-26
ODCIIndexUpdate.. 17-28

xvii

18 Reference: Extensible Optimizer Interface

Note on the New Interfaces .. 18-2
The Extensible Optimizer Interface .. 18-2

EXPLAIN PLAN ... 18-2
INDEX Hint ... 18-3
ORDERED_PREDICATES Hint ... 18-3
Example.. 18-3

User-Defined ODCIStats Functions .. 18-5
ODCIGetInterfaces... 18-6
ODCIStatsCollect (Column) ... 18-7
ODCIStatsCollect (Index) ... 18-9
ODCIStatsDelete (Column).. 18-11
ODCIStatsDelete (Index) .. 18-13
ODCIStatsFunctionCost .. 18-15
ODCIStatsIndexCost.. 18-16
ODCIStatsSelectivity ... 18-19

19 Reference: User-Defined Aggregates Interface

ODCIAggregateInitialize .. 19-2
ODCIAggregateIterate... 19-3
ODCIAggregateMerge... 19-4
ODCIAggregateTerminate .. 19-5
ODCIAggregateDelete... 19-6
ODCIAggregateWrapContext... 19-7

20 Reference: Pipelined and Parallel Table Functions

ODCITableStart... 20-2
ODCITableFetch ... 20-3
ODCITableClose ... 20-5
ODCITableDescribe ... 20-6

A Example: Pipelined Table Functions: Interface Approach

C Implementation ... A-1
SQL Declarations for C Implementation... A-1

xviii

C Implementation of the ODCITable Methods .. A-3
Java Implementation ... A-12

SQL Declarations for Java Implementation ... A-12
Java Implementation of the ODCITable Methods .. A-13

Index

xix

Send Us Your Comments

Oracle9 i Data Cartridge Developer’s Guide, Release 2 (9.2)

Part No. A96595-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xx

xxi

Preface

The Oracle9i Data Cartridge Developer's Guide describes how to build and use data
cartridges to create custom extensions to the Oracle server’s indexing and

optimizing capabilities.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xxii

Audience
Oracle9i Data Cartridge Developer’s Guide is intended for developers who want to

learn how to build and use data cartridges to customize the indexing and

optimizing functionality of the Oracle server to suit exotic kinds of data.

To use this document, you need to be familiar with using Oracle and should have a

background in an Oracle-supported programming language such as C, C++, or Java

used to write external procedures.

Organization
This document contains:

Introduction
Chapter 1, "What Is a Data Cartridge?" and Chapter 2, "Roadmap to Building a Data

Cartridge" provide basic information and lay the groundwork for a comprehensive

example used throughout the later chapters.

Building Data Cartridges
Chapters 3 through 9 lay out the components that go into building a data cartridge.

Advanced Topics
Chapters 10, 11, and 12 discuss design considerations, user-defined aggregate

functions, and pipelined and parallel table functions.

Scenarios and Examples
Chapters 13 and 14 elaborate the Power Utility example scenario developed in

Chapter 3, to illustrate extensible indexing. Appendix A supplements Chapter 12

with two extended examples of how to implement a table function, in C and in Java.

Reference
Chapters 15 through 20 provide reference information on data cartridge-specific

APIs.

Related Documentation
For information on cartridge services using C, see the chapter on cartridge services

in the Oracle Call Interface Programmer’s Guide.

xxiii

Many books in the documentation set use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

xxiv

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

xxv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

xxvi

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and

provides examples of their use.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

Convention Meaning Example

xxvii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_NAMETNSListener

Convention Meaning Example

xxviii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xxix

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

xxx

xxxi

What’s New in Data Cartridges?

This chapter describes features relating to data cartridges that are new in Oracle9i
Release 2 (9.2).

xxxii

Oracle9 i New Features for Data Cartridges

Note About the New Features
Oracle9i adds partitioned, local domain indexes and a number of other new features

of interest to developers of data cartridges. To support local domain indexes in

particular, both the Extensible Indexing interface (the ODCIIndex* routines) and

the Extensible Optimizer interface (the ODCIStats* routines) have undergone

some changes: new routines have been added, and most of the existing routines

have acquired an additional parameter of the new system-defined type ODCIEnv.

Existing code that uses the Oracle8i version of the ODCIIndex* and ODCIStats*
interfaces does not need to be changed to run under Oracle9i unless you want to

use new features that require the new interfaces. Some new features—for example,

user-defined aggregate functions and table functions—do not require the new

interfaces, but local domain indexes do.

To implement local domain indexes, you must adopt the new ODCIIndex*
interface. This means that, if you have existing code based on the Oracle8i version

of the interface, you must migrate that code in its entirety to the Oracle9i version of

the interfaces: you cannot simply supplement it with calls to a few new functions

and leave the rest of the code unchanged. And, if you do adopt the Oracle9i
ODCIIndex* interface, you can use only the Oracle9i ODCIStats* interface with

it: you cannot use the Oracle8i version.

Oracle supports both the Oracle8i and Oracle9i versions of the ODCIIndex* and

ODCIStats* interfaces. The string you return in the ODCIObjectList parameter

of ODCIGetInterfaces tells the system which version your code implements.

(Details on using this routine are explained in the reference chapters on the

Extensible Indexing and Extensible Optimizer interfaces later in this book.)

To sum up: If you have Oracle8i code, that code will still work. To continue to use

the Oracle8i interface, do not implement Oracle9i versions of any of the

ODCIIndex* or ODCIStats* routines.

List of New Features in Oracle9 i Release 2 (9.2)
■ Restriction removed

It is now possible to create and rebuild domain indexes and local domain index

partitions in parallel.

■ Table function enhancement

A table function can now return the generic collection type SYS.AnyDataSet.

xxxiii

List of New Features in Oracle9 i Release 1 (9.0.1)
■ Local domain indexes

Discrete domain indexes, called local domain indexes, can be built on the

partitions of a range-partitioned table. Local domain indexes are

equipartitioned with the underlying table: all keys refer only to rows stored in

the local domain index's corresponding table partition.

■ Collection of user-defined statistics for partitioned tables

The extensible optimizer supports collection of user-defined

statistics—partition level and aggregate—for partitioned tables.

■ New package DBMS_ODCI

New package DBMS_ODCI contains a utility to help better estimate the cost of

user-defined functions.

■ Support for a NULL association of a statistics type

Instances of an indextype or object inherit an association of a statistics type.

Now you can replace this with a NULL association for occasions when the

benefit of using a better plan may not outweigh the added cost of compiling the

cost or selectivity functions implemented by the statistics type.

See Also: "Pipelined Table Functions" on page 12-7

Note: The partitioning scheme provided with Oracle9i makes it

possible to create local domain indexes. This scheme may be

changed in future releases of Oracle to be more transparent.

Domain-index creators who adopt the present scheme should be

aware that later on they may need to change to a new syntax and

semantics for partitioning of indexes.

See Also: Chapter 7, "g Building Domain Indexes"

See Also: Chapter 8, "Query Optimization"

See Also: Chapter 8, "Query Optimization"

See Also: Chapter 8, "Query Optimization"

xxxiv

■ User-defined aggregate functions

Custom aggregate functions can be defined for working with complex data.

■ Table functions

Table functions can be used in the FROM clause of a query to return a collection

(either a nested table or a varray) of rows as output. A table function can use

parallel execution, and result rows from can be pipelined—that is, iteratively

returned.

■ Generic and transient datatypes

External procedures can be given fields or parameters of a generic type that can

contain values of any scalar or user-defined type, making it unnecessary to

implement multiple versions of the same external procedure just to handle

multiple datatypes.

See Also:

■ Chapter 11, "User-Defined Aggregate Functions"

■ Chapter 19, "Reference: User-Defined Aggregates Interface"

See Also:

■ Chapter 12, "Pipelined and Parallel Table Functions"

■ Chapter 20, "Reference: Pipelined and Parallel Table Functions"

See Also: Chapter 12, the section "Transient and Generic Types"

Part I
Introduction

Chapter 1, "What Is a Data Cartridge?"

Chapter 2, "Roadmap to Building a Data Cartridge"

What Is a Data Cartridge? 1-1

1
What Is a Data Cartridge?

In addition to the efficient and secure management of data ordered under the

relational model, Oracle now also provides support for data organized under the

object model. Object types and other features such as large objects (LOBs), external

procedures, extensible indexing and query optimization can be used to build

powerful, reusable server-based components called data cartridges.

This chapter introduces the following introductory information about data

cartridges:

■ What Are Data Cartridges?

■ Why Build Data Cartridges?

■ Extending the Server—Services and Interfaces

■ Extensibility Services

■ Extensibility Interfaces

■ Cartridges as Software Components

What Are Data Cartridges?

1-2 Oracle9i Data Cartridge Developer’s Guide

What Are Data Cartridges?
Within the framework of the Oracle Extensibility Architecture, data cartridges are the

mechanism for extending the capabilities of the Oracle server. What does this mean?

First, Oracle lets you capture the business logic and processes associated with

domain-specific data in user-defined datatypes. In some cases, where the data

cartridge provides new behavior without needing new attributes, the vehicle of

implementation may be packages rather than formal types. Once you have defined

these types using either of these approaches, Oracle enables you to determine the

manner in which the server interprets, stores, retrieves, and indexes the data.

Ultimately, data cartridges are the means to package this functionality as software

components that can then be plugged into a server to extend its capabilities into a

new domain.

This is all possible because the database has itself been made extensible. That is, you

can now customize the indexing and query optimization mechanisms of the

database management system for user-defined business objects and rich types.

Where the native implementation of indexing and query optimization service could

be improved for some specialized processing you require, you can provide your

own implementations of these services. You use the extensibility interfaces to

register your implementations with the server. Registering them causes the server to

use your implementations instead its own when doing your specialized processing.

This is all possible because the database has itself been made extensible. That is, you

can now customize the database management system so that it treats user-defined

business objects and rich types on a par with native types with regard to server

mechanisms such as indexing and query optimization.

The extensibility interfaces consist of functions that the server calls as needed to

execute pieces of the custom indexing or optimizing behavior implemented for a

data cartridge. The interfaces are defined by Oracle; you, the cartridge developer,

must actually implement the functions (also frequently called interfaces) to embody

the specialized behavior you require. In general, you implement the functions as

static methods of an object type. An object type that implements the extensible

indexing interface is called an indextype; an object type that implements the

extensible optimizing interface is called a statistics type.

The key characteristics of data cartridges are as follows:

■ Data cartridges are server-based. Their constituents reside on the server or are

accessed from the server. The bulk of processing for data cartridges occurs at

the server, or is dispatched from the server in the form of an external procedure.

Why Build Data Cartridges?

What Is a Data Cartridge? 1-3

■ Data cartridges extend the server. They define new types and behavior to provide

componentized, solution-oriented capabilities previously unavailable in the

server. Users of data cartridges can freely use the new types in their application

to get the new behavior. Having loaded an Image data cartridge, the user can

define a table Person with a column Photo of type Image .

■ Data cartridges are integrated with the server. The extensions made to the server by

defining new types are integrated with the server engine so that the optimizer,

query parser, indexer and other server mechanisms recognize and respond to

the extensions. The Oracle Extensibility Framework defines a set of interfaces

that enable data cartridges to integrate with the components of the server

engine. For example, the interface to the indexing engine allows for

domain-specific indexing. Optimizer interfaces similarly allow data cartridges

to define domain-specific ways of assessing the CPU and I/O cost of accessing

cartridge data.

■ Data cartridges are packaged. A data cartridge is installed as a unit. Once installed,

the data cartridge handles all access issues arising out of the possibility that its

target users might be in different schemas, have different privileges and so on.

Why Build Data Cartridges?

The Need to Handle Complex Data Objects
Over the years, virtually every industry has evolved sophisticated models to handle

complex data objects that make up the essence of their business. By data objects, we

mean both the structures that relate different units of information and the

operations that are performed on them.

The simple names given these data objects often conceal considerable complexity of

the expertise they embody. For example, the banking industry has many different

types of bank accounts. Each bank account has customer demographic information,

balance information, transaction information, and rules that embody its behavior

(deposit, withdrawal, interest accrual, and so forth).

As the following sections describe, data cartridges allow you to leverage this

expertise by encapsulating this business logic in software components that integrate

with the Oracle server. The notion of adding logic to data in a database has been

available for some time by way of stored procedures. With the addition of

object-relational extensions, the Oracle server can now be enhanced by application

programmers and independent software vendors to support a new generation of

data types, processes, and logic in order to model business objects.

Why Build Data Cartridges?

1-4 Oracle9i Data Cartridge Developer’s Guide

The Need to Operate on Complex and Multimedia Datatypes
At the same time as business models have led to the development of increasingly

complex data objects, the revolution in information technology has made it

necessary to work with new kinds of data: satellites images, X-rays, animal sounds,

seismic vibrations, chemical models — all these complex and multimedia datatypes

are now forms of information that have to be stored and retrieved, queried and

analyzed.

Today’s web-based applications routinely include many different kinds of complex

data. The ability to extend the database to include application-specific data types as

well as the business logic associated with these types requires a new class of

networked, content-rich, multitiered, distributed applications. As the following

sections describe, data cartridges allow you to meet this need by combining scalar

and unstructured datatypes in domain-specific components. You can further

combine these components to provide both horizontal (across industries) and

vertical (niche specific) functionality.

Data Cartridge Domains
The complexity of data objects, which may entail the need to handle specialized

data, gives rise to application domains. Put another way: a data cartridge is typically

domain-specific. Domains are characterized by content and scope.

In terms of content, a data cartridge can accommodate either scalar data or complex

and multimedia forms of data. Scalar data is data that can be modeled using native

SQL types such as INTEGER, NUMBER, or CHAR. Complex forms of data include

matrixes, temperature and magnetic grids, and compound documents. Multimedia

types include video, voice, and image data.

In terms of scope, a data cartridge can have broad horizontal (cross-industry)

coverage or it can be specialized for a specific type of business. For example, a data

cartridge for general storage and retrieval of textual data is cross-industry in scope,

whereas a data cartridge for the storage and retrieval of legal documents for

litigation support is industry-specific.

Table 1–1 shows a way of classifying data cartridge domains according to their

content (type of data) and scope (cross-industry or industry-specific), with some

examples.

Why Build Data Cartridges?

What Is a Data Cartridge? 1-5

Oracle enables you to utilize built-in scalar datatypes to construct more complex user-defined types. The Object-Relational Database Management System has evolved to the point that Oracle now provides foundational cartridges that package multimedia and complex data which can be used as bases for applications across many different industries:

Following from this, you can see that another way of viewing the relationship of

cartridges to domains is to view basic multimedia datatypes as forming a

foundation that can be extended in specific ways by specific industries. For

example, Table 1–3 shows cartridges that could be built for medical applications:

A cartridge providing basic services may be deployed across many industries, as a

text cartridge may be utilized within both law and medicine. A cartridge can also

Table 1–1 Data Cartridge Domains by Content and Scope

Content Scope: Cross-Industry Uses
Scope: Industry-Specific
Extensions

Scalar Data Statistical conversion Financial and Petroleum

Multimedia and Complex
Data

Text Image

Audio/Video Spatial Legal

Medical Broadcasting Utilities

Table 1–2 Oracle Cartridges as Bases for Development

Cartridge Database Model Behavior

Time Ordered list of tuples Compute Rolling Averages,
Compare Time Periods,
Construct Calendars...

Text Tokenized serial byte stream Display, Compress,
Reformat, Index...

Image Structured large object Compress, Crop, Scale,
Rotate, Reformat...

Spatial Geometric objects such as
points, lines, polygons

Project, Rotate, Transform,
Map...

Video Structured large object of
serial (dynamic) image data

Compress, Play, Rewind,
Pause...

Table 1–3 Medicine-Specific Extensions to Basic Cartridges

Text Image Audio Video Spatial

Records MRI Heartbeat Teaching Demographic
Analysis

Extending the Server—Services and Interfaces

1-6 Oracle9i Data Cartridge Developer’s Guide

leverage domain expertise across an industry, as an image cartridge may provide

basic functionality for both X-rays and Sonar within medicine. These cartridges can

in turn be further extended for more specialized vertical applications. For instance,

any of the cartridges mentioned previously could be specialized by being extended

by other cartridges:

In other words, you can develop a cartridge for both horizontal and vertical market

penetration.

In summary: data cartridges allow you to define new datatypes and behavior which

can then provide, in component form, solution-oriented capabilities previously

unavailable in the server. In some cases, where the data cartridge provides new

behavior without needing new attributes, the data cartridge may provide PL/SQL

packages but not new datatype definitions. Users of data cartridges can freely use

the new datatypes in their application to take advantage of the new behavior. For

example, after an image data cartridge is installed, you can define a table called

Person with a Photo column of type Image

Extending the Server—Services and Interfaces
The Oracle server provides services for basic data storage, query processing,

optimization, and indexing. Various applications use these services to access

database capabilities. However, data cartridges have specialized needs because they

incorporate domain-specific data. To accommodate these specialized applications,

the basic services have been made extensible.

That is, where some aspects of a standard Oracle service are not adequate for the

processing a data cartridge requires, you as the data cartridge developer can

provide services that are specially tuned to your cartridge. Every data cartridge can

provide its own implementations of these services. These specialized

implementations are registered with the server using the Oracle extensibility

interfaces.

For example, suppose you want to build a spatial data cartridge for geographical

information systems (GIS) applications. In this case, you may need to implement

routines that create a spatial index, insert an entry into the index, update the index,

delete from the index, and perform any other required operations. To do this you

Table 1–4 Examples of Extensions to a Basic Cartridge

Image

Image -> MRI -> Brain MRI -> Neonatal Brain MRI

Extensibility Services

What Is a Data Cartridge? 1-7

would register your implementations with the Oracle server using extensible

indexing interface, and then the server will invoke your implementation every time

indexing operations were needed for spatial data. In effect, you extend the indexing

service of the server.

Extensibility Services
Figure 1–1 shows the standard services implemented by the Oracle server. This

section describes some of these services, not to provide exhaustive descriptions but

to highlight major Oracle capabilities as they relate to data cartridge development.

Figure 1–1 Oracle Services

Extensible Type System
The Oracle universal data server provides both native and extensible type system

services. Historically, mainstream applications have focused on accessing and

modifying corporate data that is stored in tables composed of native SQL datatypes,

such as INTEGER, NUMBER, DATE, and CHAR. Oracle adds support for new types,

including:

■ User-defined objects

■ Collections:

– VARRAY (varying length array)

– Multi-set (nested table)

■ REF (relationship)

Data
Cartridge

Oracle8 Universal
Data Server Extensibility Interfaces

Data
Cartridge

Oracle9 i Universal
Data Server Extensibility Interfaces

. . .
Query

Processing
Data

Indexing
Server

Execution

Database and Extensibility Services

Type
System

Extensibility Services

1-8 Oracle9i Data Cartridge Developer’s Guide

■ Internal large object types:

– BLOB (binary large object)

– CLOB (character large object)

■ BFILE (external file)

This section discusses these new types.

Object Types
An object type differs from native SQL datatypes in that it is user-defined and it

specifies both the underlying persistent data (attributes) and the related behaviors

(methods). Object types are used to extend the modeling capabilities provided by

the native datatypes. You can use object types to make better models of complex

entities in the real world by binding data attributes to semantic behaviors.

An object type can have one or more attributes. Each attribute has a name and a

type. The type of an attribute can be a native SQL type, a LOB, a collection, another

object type, or a REF type. The syntax for defining object types is discussed in

Chapter 3.

A method is a procedure or a function that is part of an object type definition.

Methods can access and manipulate attributes of the related object type. Methods

can run within the execution environment of the Oracle server. Methods can also be

dispatched outside the server as part of the extensible server execution

environment.

Collection Types
Collections are SQL datatypes that contain multiple elements. Each element, or

value, for a collection is the same datatype. In Oracle, collections of complex types

can be VARRAYs or nested tables.

A VARRAY contains a variable number of ordered elements. The VARRAY datatype

can be used for a column of a table or an attribute of an object type. The element

type of a VARRAY can be either a native datatype, such as NUMBER, or an object type.

A nested table can be created using Oracle SQL to provide the semantics of an

unordered collection. As with a VARRAY, a nested table can be used to define a

column of a table or an attribute of an object type.

Extensibility Services

What Is a Data Cartridge? 1-9

Relationship Types (REF)
If you create an object table in Oracle, you can obtain a reference that acts as a

database pointer to an associated row object. References are important for

navigating among object instances, particularly in client-side applications.

The REF operator obtains a reference to a row object. Because REFs rely on the

underlying object identity, you can use REF only with an object stored as a row in

an object table or objects composed from an object view.

For further information about the REF operator and examples of its use, see the

chapter on object types in the PL/SQL User’s Guide and Reference.

Large Objects
Oracle provides large object (LOB) types to handle the storage demands of images,

video clips, documents, and other forms of non-structured data. For an extensive

coverage of Large Objects, please see Oracle9i Application Developer’s Guide - Large
Objects (LOBs). Large objects are stored in a way that optimizes space utilization

and provides efficient access. Large objects are composed of locators and the related

binary or character data. The LOB locators are stored in-line with other table

columns and, for internal LOBs (BLOB, CLOB, and NCLOB), the data can be in a

separate database storage area. For external LOBs (BFILE), the data is stored

outside the database tablespaces in operating system files. A table can contain

multiple LOB columns (in contrast to the limit of one LONG RAW column for each

table). Each LOB column can be stored in a separate tablespace, and even on

different secondary storage devices.

Oracle SQL data definition language (DDL) extensions let you create, modify, and

delete tables and object types that contain large objects (LOBs). The Oracle SQL data

manipulation language (DML) includes statements to insert and delete complete

LOBs. There is also an extensive set of statements for piece-wise reading, writing,

and manipulating of LOBs with PL/SQL and the Oracle Call Interface (OCI)

software.

For internal LOB types, both the locators and related data participate fully in the

transactional model of the Oracle server. The data for BFILEs does not participate

in transactions; however, BFILE locators are fully supported by Oracle server

transactions. For more information about LOBs and transactions, see the Oracle9i
Application Developer’s Guide - Large Objects (LOBs).

Unlike scalar quantities, a LOB value cannot be indexed using built-in indexing

schemes. However, you can use the various LOB APIs to build modules, including

methods of object types, to access and manipulate LOB content. The extensible

Extensibility Services

1-10 Oracle9i Data Cartridge Developer’s Guide

indexing framework lets you define the semantics of data residing in LOBs and

manipulate the data using these semantics.

Oracle provides you a variety of interfaces and environments to access and

manipulate LOBs, which are described in great detail in Oracle9i Application
Developer’s Guide - Large Objects (LOBs).The use of LOBs to store and manipulate

binary and character data to represent your domain is discussed Chapter 6,

"Working with Multimedia Datatypes".

Extensible Server Execution Environment
The Oracle type system decouples the implementation of a member method for an

object type from the specification of the method. Components of an Oracle data

cartridge can be implemented using any of the popular programming languages. In

Oracle, methods, functions, and procedures can be developed using PL/SQL,

external C language routines, or Java. Thus, the database server runtime

environment can be extended by user-defined methods, functions, and procedures.

In Oracle, Java offers data cartridge developers a powerful implementation choice

for data cartridge behavior. In addition, PL/SQL offers a data cartridge developer a

powerful procedural language that supports all the object extensions for SQL. With

PL/SQL, program logic can execute on the server and perform traditional

procedural language operations such as loops, if-then-else clauses, and array access.

While PL/SQL and Java are powerful, certain computation-intensive operations

such as a Fast Fourier Transform or an image format conversion are handled more

efficiently by C programs. With the Oracle Server, you can call C language

programs from the server. Such programs are executed as in a separate address

space than the server. This ensures that the database server is insulated from any

program failures that might occur in external procedures and, under no

circumstances, can an Oracle database be corrupted by such failures.

With certain reasonable restrictions, external procedures can call back to the Oracle

Server using OCI. Callbacks are particularly useful for processing LOBs. For

example, by using callbacks an external procedure can perform piece-wise reads or

writes of LOBs stored in the database. External procedures can also use callbacks to

manipulate domain indexes stored as Index-Organized Tables in the database.

Extensibility Services

What Is a Data Cartridge? 1-11

Figure 1–2 External Program Executing in Separate Address Space

Extensible Indexing
Typical database management systems support a few types of access methods

(B+Trees, Hash Indexes) on a limited set of data types (numbers, strings, and so on).

For simple data types such as integers and small strings, all aspects of indexing can

be easily handled by the database system. In recent years, however, databases are

being used to store different types of data such as text, spatial, image, video and

audio that require content-based retrieval. This raises the need for indexing

complex data types and also specialized indexing techniques.

Complex data types have application-specific formats, indexing requirements, and

selection predicates. For example, there are many different means of document

encoding (ODA, XML, plain text) and information retrieval techniques (keyword,

full-text boolean, similarity, probabilistic, and so on). Similarly, R-trees are an

efficient method of indexing spatial data. No database server can be built with

support for all possible kinds of complex data and indexing. Oracle’s solution is to

build an extensible server which lets you define new index types as required.

Such user-defined indexes are called domain indexes because they index data in an

application-specific domain. The cartridge is responsible for defining the index

structure, maintaining the index content during load and update operations, and

Oracle Address Space External Address Space

Listener

extproc

/sh_libs/extlib.so

Oracle9 i

 Inter-Language
Method Service

Oracle
Database

PL/SQL

JAVA

SQL

C

Extensibility Services

1-12 Oracle9i Data Cartridge Developer’s Guide

searching the index during query processing. The physical index can be stored in

the Oracle database as tables or externally as a file.

A domain index is a schema object. It is created, managed, and accessed by routines

implemented as methods of a user-defined object type, called an indextype. The

routines that an indextype must implement, and the kinds of things that the

routines must do, are described in this document. Actual implementation of the

routines is specific to an application and so must be done by the cartridge

developer. Once a new indextype is implemented by a data cartridge, Oracle uses

the indextype’s specialized implementation of these routines for the data cartridge

instead of the indexing implementation native to the server.

With extensible indexing, the application

■ Defines the structure of the domain index,

■ Stores the index data either inside or outside the Oracle database, and

■ Manages, retrieves and uses the index data to evaluate user queries.

When the database system handles the physical storage of domain indexes, data

cartridges

■ Define the format and content of an index. This enables cartridges to define an

index structure that can accommodate a complex data object.

■ Build, delete, and update a domain index. The cartridge handles building and

maintaining the index structures. Note that this is a significant departure from

the medicine indexing features provided for simple SQL data types. Also, since

an index is modeled as a collection of tuples, in-place updating is directly

supported.

■ Access and interpret the content of an index. This capability enables the data

cartridge to become an integral component of query processing. That is, the

content-related clauses for database queries are handled by the data cartridge.

Typical relational and object-relational database management systems do not

support extensible indexing. Consequently, many applications maintain file-based

indexes for complex data residing in relational database tables. A considerable

amount of code and effort is required to maintain consistency between external

indexes and the related relational data, support compound queries (involving

tabular values and external indexes), and to manage a system (backup, recovery,

allocate storage, and so on) with multiple forms of persistent storage (files and

databases). By supporting extensible indexes, the Oracle Server significantly

reduces the level of effort needed to develop solutions involving high-performance

access to complex datatypes.

Extensibility Services

What Is a Data Cartridge? 1-13

Extensible Optimizer
The extensible optimizer functionality allows authors of user-defined functions and

indexes to create statistics collection, selectivity, and cost functions. This

information is used by the optimizer in choosing a query plan. The cost-based

optimizer is thus extended to use the user-supplied information; the rule-based

optimizer is unchanged.

The optimizer generates an execution plan for a SQL statement. An execution plan

includes an access method for each table in the FROMclause, and an ordering (called

the join order) of the tables in the FROM clause. System-defined access methods

include indexes, hash clusters, and table scans. The optimizer chooses a plan by

generating a set of join orders or permutations, computing the cost of each, and

selecting the one with the lowest cost. For each table in the join order, the optimizer

computes the cost of each possible access method and join method and chooses the

one with the lowest cost. The cost of the join order is the sum of the access method

and join method costs. The costs are calculated using algorithms which together

compose the cost model. A cost model can include varying level of detail about the

physical environment in which the query is executed. Our present cost model

includes only the number of disk accesses with minor adjustments to compensate

for the lack of detail. The optimizer uses statistics about the objects referenced in the

query to compute the costs. The statistics are gathered using the ANALYZE
command. The optimizer uses these statistics to calculate cost and selectivity. The

selectivity of a predicate is the fraction of rows in a table that will be chosen by the

predicate. It is a number between 0 and 100 (expressed as percentage).

Extensible indexing functionality allows users to define new operators, index types,

and domain indexes. For such user-defined operators and domain indexes, the

extensible optimizer functionality will allow users to control the three main

components used by the optimizer to select an execution plan: statistics, selectivity,
and cost.

Note: Oracle Corporation recommends that you use the DBMS_
STATS package instead of the SQL ANALYZE statement to collect

optimizer statistics. In a future release, functionality to collect

optimizer statistics will be removed from ANALYZE.

See Oracle9i Supplied PL/SQL Packages and Types Reference for

information about DBMS_STATS.

Extensibility Interfaces

1-14 Oracle9i Data Cartridge Developer’s Guide

Extensibility Interfaces
Extensibility interfaces fall into the following classes:

■ DBMS interfaces

■ Cartridge basic service interfaces

■ Data cartridge interfaces

DBMS Interfaces
The DBMS interfaces are the simplest kind of extensibility services. DBMS interfaces

are made available through extensions to SQL or to the Oracle Call Interface (OCI).

For example, the extensible type manager utilizes the CREATE TYPE syntax in SQL.

Similarly, extensible indexing uses DDL and DML support for specifying and

manipulating indexes.

Cartridge Basic Service Interfaces
Generic interfaces provide basic services like memory management, context

management, internationalization, and cartridge-specific management. These

cartridge basic interface services are used by data cartridges to implement behavior

for new datatypes in the context of the server's execution environment. These

services provide helper routines that make it easy for data cartridge developers to

write robust, portable server-side methods.

Data Cartridge Interfaces
Sometimes the DBMS needs to call the data cartridge functions for implementations

provided by the data cartridge developer. So, for user-defined indexing, the DBMS

must use the implementation of the index interface whenever an index search or

fetch operation is performed. For user-defined query optimization, the query

optimizer must call functions implemented by the data cartridge to compute cost of

user-defined operators or functions.

These standard data cartridge functions are similar to callback functions that the

DBMS can invoke. In the future, data cartridge interfaces will be made available to

enable the data cartridge to include the specifications for such functions.

Cartridges as Software Components

What Is a Data Cartridge? 1-15

Cartridges as Software Components
The accumulated expertise that underlies a set of data objects comprises a

knowledge base that can be marketed as a standalone cartridge, or as a cartridge

that could be extended in different ways by different users. But how does one

achieve this? The data and rules that apply to the software components are often

spread across many different applications. With data cartridges, you gather the

definition and rules together for use throughout the data processing environment.

Packaging domain-specific component expertise in a data cartridge allows the

cartridge to access the corporate information repository and add both

organizational and operational value to the data. Such software components are

applications that can be "plugged" into other software components, and which are

themselves "pluggable".

Their constituents reside at the server or are accessed from the server. Most

processing for data cartridges occurs at the server or is dispatched from the server

in the form of an external procedure.

The Structure of a Data Cartridge
A data cartridge generally defines one or more object types. Object types from this

and potentially other data cartridges can provide users with new or extended

capabilities conveniently packaged. A data cartridge includes both the definition of

object types and the code that implements their capabilities. A data cartridge can be

used as the foundation for the definition of other data cartridges.

Each object type includes two components. The order in which these components

are made available to the server (that is, the order in which they are defined) is

important. The major components include:

■ Object type specification

■ Object type body code

In addition, a data cartridge may use the extended server execution environment.

The use of external procedures involves two additional components:

■ External library linkage specification

■ External library code

Simple data cartridges consist of these components, which are described in this

section. More complex data cartridges will use the extensibility services and

interfaces (see Chapter 9, "Using Cartridge Services"). Complex Data Cartridges

contain domain operators and domain indextypes (see Chapter 7, "g Building

Cartridges as Software Components

1-16 Oracle9i Data Cartridge Developer’s Guide

Domain Indexes"), and optimization functions (see Chapter 8, "Query

Optimization").

Object Type Specification
A data cartridge consists of one or more of these domain-specific objects packaged

and integrated with the server. Each domain-specific type is an object type (or ODT,

for object data type) and includes both of the following:

■ Attribute data that holds object state information

Attributes can be defined using built-in datatypes or other object types.

■ Methods that incorporate the object’s behavior

Methods can be simple (such as adding two numbers) or complex (such as

computing prices of financial derivatives), and can be coded either in PL/SQL

or in a third-generation language (3GL) such as C.

The object type specification gives the object a name, and it defines the types of

persistent data, called attributes, that an instance of this object will include. It also

specifies names, return values, and argument types of the related behaviors, or

methods. Much like a C++ class definition in a header (.h) prefix file, the type

specification lays out the object framework (attributes and method signatures), but

does not include the actual method code that performs the functions. The object

type specifications for the various object types defined by your data cartridge will

be written in SQL and stored in a SQL script that will be input to the server at

cartridge installation time.

Object Type Body Code
The type body provides the code that implements the object type's methods. Method

code can be implemented in PL/SQL, Java, C, C++, or any other 3GL. Most simple

methods can be written in PL/SQL and Java. (See the PL/SQL User’s Guide and
Reference for a complete discussion of PL/SQL syntax.)

Code written in C, C++, and other 3GLs must be packaged in a runtime or dynamic

link library. This is described in "External Library Linkage Specification" on

page 1-16 and "External Library Code" on page 1-17.

External Library Linkage Specification
If the implementation of your methods is in C, C++, or some other 3GL, the

methods must be packaged within a runtime or dynamic link library. The external

Cartridges as Software Components

What Is a Data Cartridge? 1-17

library linkage specification is necessary to tell the server about this library,

including its location, the binding of the type's methods to the library's entry points,

and the methods’ parameters.

Any 3GL code dispatched through the external library linkage specification will run

in a separate process from the Oracle server. As such, the dispatch involves

communication overhead. In deciding which methods should be implemented in

external libraries, you should be aware of this overhead. In general, the cost of

dispatch is less significant for methods that are complex or computation intensive.

External Library Code
The external library is the runtime or dynamic link library that contains any 3GL

method code. You implement the 3GL methods in a language such as C, and then

use operating-system-specific commands to build a shared-object library on UNIX

platforms or a DLL on Windows NT systems.

Installing a Data Cartridge
Data cartridges are packaged so that their constituents (type definitions, PL/SQL

packages, external procedures, users, roles, synonyms, and so forth) can be installed

into or de-installed from the Oracle universal data server as a unit.

See Also: Oracle Universal Installer Concepts Guide

Cartridges as Software Components

1-18 Oracle9i Data Cartridge Developer’s Guide

Roadmap to Building a Data Cartridge 2-1

2
Roadmap to Building a Data Cartridge

This chapter describes a recommended development process, including

relationships and dependencies among parts of the process. Topics include:

■ Development Process

■ Installation and Use

■ Requirements and Guidelines for Data Cartridge Constituents

■ Cartridge Installation Directory

■ Deployment Checklist

Development Process

2-2 Oracle9i Data Cartridge Developer’s Guide

Development Process
The simplest questions are the most profound: Who? What? When? Where? How?
You could say that this chapter is concerned with the when and where of how. But

before we examine the road-map to building data cartridges, it would be wise to

give a moment to viewing the project as a whole.

What
The very first step in developing a data cartridge is to establish the domain-specific

value you intend to provide. Clearly define the new capabilities the cartridge will

make available. More specifically: What are the objects that cartridge will expose to

users as a means to accessing to these capabilities?

Who
Who are the intended users of this cartridge? Are they other developers — in which

case the extensibility of the cartridge is of crucial importance. Are they end- users —

in which case the cartridge must be highly attuned to the domain in question.

Building a cartridge is a non-trivial project that should be founded in a business

model that clearly distinguishes who these users are.

Being realistic about the complexity of building a data cartridge, raises the question

of who it is that will perform the task. Are all the necessary skills present in the

development team? Most essentially, the developers (be they one or many) must be

able to bridge the object-relational database management system with the domain.

When and Where
What are the deliverables? How much time is there for development? Is there a

software development process? The project is much more likely to succeed if there

are clearly defined expectations and milestones. This chapter should aid you in

mapping out a realistic development path.

How
Choose and design objects so that their names and semantics are familiar in the

developer’s and users’ domain. Given the complexity of the project, you should

consider using one of the standard object-oriented design methodologies.

In defining a collection of objects, give care to the interface between the SQL side of

object methods and the 3GL code that incorporates your value-added technology.

Keep this interface as simple as possible by limiting the number of methods that call

out to library routines and by allowing the 3GL code to do a block of work

independently. Avoid defining hundreds of calls into low-level library entry points.

Development Process

Roadmap to Building a Data Cartridge 2-3

With this interface defined, you can proceed along parallel paths, as illustrated in

Figure 2–1. You can complete the paths sequentially or alternately work among the

paths until you complete all three.

Figure 2–1 Cartridge Development Process

Define key objects

Package existing 3GL
code in a DLL

Write SQL and PL/SQL
for object’s

type specification

Simple

Inventory Domain

Installation Script(s)
and User’s Guide

Test

Define Index typesBuild regular indexes

NoYes

Multi-domain
queries

Cost of I/O
only significant

factor

NoYes

Implement Extensible
Optimizer

Yes

Use existing optimizer

No

Inventory Access
Methods

Installation and Use

2-4 Oracle9i Data Cartridge Developer’s Guide

The ’leftmost’ of these parallel paths packages any existing 3GL code that performs

operations relevant to your domain in a DLL, possibly with new entry points on top

of old code. The DLL will be called by the SQL component of the object's method

code. Where possible, this code should all be tested in a standalone fashion using a

3GL test program.

The ’middle’ path defines and writes the object's type specification and the PL/SQL

components of the object's method code. Some methods may be written entirely in

PL/SQL, while others may call into the external library. If your application requires

an external library, provide the library definition and the detailed bindings to

library entry routines.

The direction you take at the choice point results from the simplicity or complexity

of the access methods you need to deploy, which in turn derives from the nature of

the data as represented by columns in the table. If you the methods you need to

query your data are relatively simple, you can build regular indexes. By contrast,

dealing with complex data means you will need to define complex index types as

the basis for making use of Oracle’s extensible indexing technology. If you are in

addition faced with implementing multi-domain queries, you should choose to

make use of Oracle’s extensible optimizer technology.

It may be that you do not have execute queries on multiple domains. If I/O is the

only significant factor affecting performance, you can make use of standard

optimizing techniques. If, however, there are other factors in play, you may still

need to utilize the extensible optimizer.

Finally, you will want to test the application and create the necessary installation

scripts.

Installation and Use
Before you can use a data cartridge, you must install it. Installation is the process of

assembling the sub-components so that the server can locate them and understand

the object type definitions.

Putting the sub-components in place involves defining object types and tables in the

server (usually accomplished by running SQL scripts), putting dynamic link

libraries in the location expected by the linkage specification, and copying on-line

documentation, help files, and error message files to a managed location.

Telling the server about the object types involves running SQL scripts that load the

individual object types defined by the cartridge. This step must be done from a

privileged account.

Requirements and Guidelines for Data Cartridge Constituents

Roadmap to Building a Data Cartridge 2-5

Finally, users of the cartridge must be granted the necessary privileges to use it.

Requirements and Guidelines for Data Cartridge Constituents
The following requirements and guidelines apply to certain database objects

associated with the data cartridge.

Schema
The database components that make up each cartridge must be installed in a

schema of the same name as the cartridge name. If a cartridge needs multiple

schemas, the first 10 characters of the schema must be the same as the cartridge

name. Note that the maximum permissible length of schema names in Oracle is 30

bytes (30 characters in single-byte languages.)

The following database components of a data cartridge must be placed in the

cartridge schema:

■ Type names

■ Table names

■ View names

■ Directory names

■ Library names

■ Package names

The choice of a schema name determines the Oracle username, because the schema

name and username are always the same in Oracle.

Globals
Some database-level constituents of cartridges may be global in scope, and so not

within the scope of a particular user (schema) but visible to all users. Examples of

such globals are:

■ Roles

■ Synonyms

■ Sequences

Requirements and Guidelines for Data Cartridge Constituents

2-6 Oracle9i Data Cartridge Developer’s Guide

All globals should start with the cartridge name. For example, a global role for the

Acme video cartridge should have a unique global name like C$ACMEVID1ROL1,

and not merely ROL1.

Error Message Names or Error Codes
Currently, error codes 20000-20999 are reserved for user errors or application errors.

When a cartridge encounters an error, it should generate an error of the form ORA
20000: %s, where %s is a place holder for a cartridge-specific error message.

Cartridge developers must ensure that their error messages are unique. You can

ensure uniqueness by having all cartridge-specific error messages consist of a

cartridge message name in the format C$pppptttm-nnnn plus message text. For

example, an error raised by the Acme video cartridge might reported as:

ORA 20000: C$ACMEVID1-0001: No such file

In this example:

■ ORA 20000 is the server error code.

■ C$ACMEVID1 is the cartridge name.

■ 0001 is the number assigned by Acme for this specific error.

■ No such file is the description of the error, as written by Acme.

Cartridge Installation Directory
In many cases, a cartridge installation directory is desirable. All the operating

system-level components of the cartridge, such as shared libraries, configuration

files, and so on, can be put under a directory that is specific to a vendor or

organization.

This directory name should be the same as the prefix chosen by the organization,

and the directory should be created under the root directory for the platform. For

example, if the Acme Cartridge Company needs to store any files, libraries, or

directories, it must create a directory /ACME, and then store any files in

cartridge-specific subdirectories.

Files
Message files that associate cartridge error or message numbers with message text

can be put in one or more cartridge-specific subdirectories.

Configuration files can be placed in a cartridge-specific subdirectory. For example:

Deployment Checklist

Roadmap to Building a Data Cartridge 2-7

/ACME/VID1/Config

Shared Library Names for External Procedures
Use one of the following guidelines for each shared library (.so or .dll file):

■ Place it in the cartridge installation directory. In this case, ensure that all library

names are unique.

■ Place it in a directory other than the cartridge installation directory. In this case,

the file name should start with the cartridge name without the C$ part. If there

are multiple such libraries, the name should start with the first seven letters of

the cartridge name without the C$ part.

Deployment Checklist
At the deployment level, you will face a number of common issues. The most optimal

approach to these problems will depend on the particular needs of your application.

We list the tasks that we think should form the basis of your checklist, and in some

cases propose solutions.

■ You will need a way to install and de-install your cartridge components. This

includes libraries, database objects, flat files, programs, configuration tools,

administration tools, and other objects. Explore whether your cartridge might

be able to utilize the Oracle Universal Installer.

■ You should allow for installation of multiple versions of a cartridge to provide

backward compatibility and availability. Make use of Oracle’s migration

facilities as part of your larger strategy.

■ You will need to track which cartridges are installed in order to install data

cartridges that depend on other data cartridge, or to handle different versions of

installed components.

■ You will need to provide an upgrade path for migrating to newer versions of

cartridges. Make use of Oracle’s migration facilities as part of your larger

strategy.

■ To be able to limit access to cartridge components to specific users and roles,

deploy Oracle’s security mechanisms together with a blend of procedures that

operate under invoker’s and definer’s rights depending on the need.

See Also: Oracle Universal Installer Concepts Guide

Deployment Checklist

2-8 Oracle9i Data Cartridge Developer’s Guide

■ You will need to be able to keep track of which users have access to a cartridge

(for ease of administration). Consider making use of a table with appropriate

triggers.

■ How do you know where cartridges are installed? This is more of a

security/administration concern than a requirement. There is currently no easy

way of knowing which cartridges are installed in a particular database or what

users have access to the cartridge or any of its components.

Naming Conventions
This section discusses how the components of a data cartridge should be named. It

is intended for independent software vendors (ISVs) and others who are creating

cartridges to be used by others.

The naming conventions in this chapter assume a single-byte character set. See

"Internationalization" on page 2-12 for a discussion of using other character sets.

Need for Naming Conventions
In a production environment, an Oracle database may have multiple data cartridges

installed. These data cartridges may be from different development groups or

vendors, and may have been developed in isolation. Each data cartridge consists of

various schema objects inside the database, as well as other components visible at

the operating system level, such as external procedures in shared libraries. If

multiple data cartridges tried to use the same names for schema objects or

operating system-level entities, the result would be incorrect and inconsistent

behavior.

Furthermore, because exception conditions during the runtime operation of data

cartridges can cause the Oracle server to return errors, it is important to prevent

conflicts between error or message codes of different data cartridges. These conflicts

can arise if, for example, two cartridges use the same error code for different error

Note: Most examples in this manual do not follow the naming

conventions, because they are intended to be as simple and generic

as possible. However, as your familiarity with the technology

increases and you consider building data cartridges to be used by

others, you should understand and follow these naming

conventions.

See Also: Chapter 9, the section "Globalization Support"

Deployment Checklist

Roadmap to Building a Data Cartridge 2-9

conditions. Having unique error and message codes ensures that the origin of the

exception condition can be readily identified.

Unique Name Format
To prevent multiple data cartridge components from having the same name, Oracle

recommends the following convention to ensure unique naming of data cartridges.

Naming is to be done for each vendor or supplier. That is, each organization

developing data cartridges must choose an unique name, and Oracle will provide a

name reservation service.

Each organization should choose an reserve a prefix. Oracle will add C$ to the start

of the string chosen by the organization, to ensure a unique prefix. This prefix can

then be used to name the database schema in which the database components of the

data cartridge reside, or to name the directory in which the operating-system

components of the data cartridge are placed.

Data cartridges and their components should have names of the following format:

C$pppptttm.ccccccccc

The following table describes the parts of this naming convention format.

Oracle recommends that except for the dollar sign ($) as the second character, all

characters in the name should be alphanumeric (letters and numbers, with

underscores and hyphens permitted).

Table 2–1 Data Cartridge Naming Conventions

Part Explanation Example

C$ Recommended by Oracle for all data cartridges.

pppp Prefix selected by the data cartridge creator.
(Must be exactly four characters.)

ACME

ttt Type of cartridge, using an abbreviation
meaningful to the creator. Three characters.

AUD (for audio)

m Miscellaneous information indicator, to allow a
designation meaningful to the creator. One
character.

1 (perhaps a version
number)

. (period) Period required if specifying an object in full
schema.object form.

ccccccccc Component name. Variable length. mf_set_volume
(method function
adjusting volume)

Deployment Checklist

2-10 Oracle9i Data Cartridge Developer’s Guide

For example, Acme Cartridge Company chooses and registers a prefix of ACME. It

provides an audio data cartridge and a video data cartridge, and chooses AUD and

VID as the type codes, respectively. It has no other information to include in the

cartridge name, and so it chooses an arbitrary number 1 for the miscellaneous

information indicator. As a result, the two cartridge names are:

■ C$ACMEAUD1

■ C$ACMEVID1

For each cartridge, a separate schema must be created, and Acme uses the cartridge

name is the schema name. Thus, all database components of the audio cartridge

must be created under the schema C$ACMEAUD1, and all database components of

the video cartridge must be created under the schema C$ACMEVID1. Examples of

some components might include:

■ C$ACMEVID1.mf_rewind

■ C$ACMEVID1.vid_ops_package

■ C$ACMEVID1.vid_stream_lib

Each organization is responsible for specific naming requirements after the C$pppp
portion of the object name. For example, Acme Cartridge Company must ensure

that all of its cartridges have unique names and that all components within a

cartridge have unique names.

Cartridge Registration
In order to make a naming scheme work, you need to have a registration process

that will handle the administration of names of components that make up a data

cartridge.

Directory Structure and Standards
You need some directory standard to know where to put your binaries, support

files, messages files, administration files, and libraries.

You also need to define a database user who will install your cartridges. One

possible solution is to use EXDSYS, for External Data Cartridge System user.

Deployment Checklist

Roadmap to Building a Data Cartridge 2-11

Cartridge Upgrades
Administrators need a safe way to upgrade a cartridge and its related metadata to a

newer version of the cartridge. You also require a process for upgrading data and

removing obsolete data. This may entail installation support (Enterprise Manager)

and database support for moving to newer database cartridge types

Administrators also require a means to update tables using cartridge types when a

cartridge changes.

Import and Export
To import and export objects, you need to understand how Oracle’s import and

export facilities handle Oracle objects. In particular, you need to know how types

are handled and whether the type methods are imported and exported, and also

whether user-defined methods are supported.

Cartridge Versioning
There are two types of cartridge versioning problems that need to be addressed.

They are:

■ Internal Versioning

■ External Versioning

Internal Versioning
Internal versioning is the harder problem. Ideally, you would like a mechanism to

support multiple versions of a cartridge in the database. This would provide

backward compatibility and also make for high availability.

Note:

The EXDSYS user is a user with special privileges required for

running cartridges. This user could be installed as part of cartridge

installation, but would better be part of the database installation. To

do this, you will need to move this process into a standard database

creation script.

Your long range planning should consider ways to integrate

directory structure with the Network Computer Architecture

(NCA).

Deployment Checklist

2-12 Oracle9i Data Cartridge Developer’s Guide

Types are amenable to changing methods, but not to changing the type attributes

themselves. This implies that upgrades are complicated for types that change over

time. You may need a way to use multiple versions of type, and some method to

insure that administrators can gradually update your technology.

External Versioning
External versioning is the easier of the two versioning problems. You need to be

able to track a cartridge version number and be able to take action accordingly

upon installation or configuration based on versioning information.

Internationalization
You may want to internationalize your cartridges. This means they will need to be

able to support multiple languages and have access to Globalization Support

facilities for messages and parsing. For details on Globalization Support, see the

Oracle9i Globalization Support Guide. It includes a chapter on the Globalization

Support data cartridge service.

It is recommended that the names for data cartridge components be chosen using

the ASCII character set.

If you must name the data cartridge components in a character set other than

ASCII, Oracle will still assign you a four-character unique prefix. This will,

however, increase the number of bytes required to hold the prefix. The names of all

Oracle schema objects must fit into 30 bytes. In ASCII, this equals 30 characters. If

you have, for example, a six-byte character set and request a four-character prefix

string, Oracle may truncate your request to a smaller number of characters.

External Access
■ How do administrators know who has access to a cartridge?

Administrators need to administer access rights to internal and external

components such as programs and data files to specific users and roles.

Internal Access
■ How do administrators restrict access to certain tables, types, views, and other

cartridge components to individual users and roles?

Administrators for security reasons must be allowed to restrict access to types

on an individual basis.

Deployment Checklist

Roadmap to Building a Data Cartridge 2-13

For instance, some data cartridges, such as Oracle’s Image Cartridge, have few

security issues. These cartridges may grant privileges to every user in the

database. Other cartridges that are more complex may need differing security

models. In building complex data cartridges, you will need a way to identify

the various components that make up a cartridge and also an instance of a

cartridge and be able to grant and revoke security roles on identifiable

components.

It may be that Oracle will provide a visual tool will identify components of a

cartridge and allow roles be assigned to each component.

Invoker’s Rights
Invoker’s rights is a special privilege that allows the system to access database

objects that it wouldn’t normally have access to. This has been the case for the

special SYSuser. It also will need to be done for cartridges under whatever user you

use (such as EXDSYS).

If you don’t have invoker’s rights, then any types you construct in a central user

space (such as EXDSYS) will have to grant privileges to public, which is not

necessarily desirable.

Test and Debug Services
You will need a way to test and debug your cartridges.Please refer to the guides

which pertains to your operating environment (PL/SQL, Java, C/C++)

Administration

Configuration
Data Cartridges need a front end to handle deployment issues, such as installation,

as well as configuration tools. While each data cartridge may have differing security

needs, a basic front end that allows a user to install, configure, and administer data

cartridge components is necessary.

This front end may just be some form of knowledge base or on-line documentation.

In any case, it should be on-line, easily navigable, and contain templates exhibiting

standards and starting points.

Deployment Checklist

2-14 Oracle9i Data Cartridge Developer’s Guide

Suggested Development Approach
In developing a data cartridge, it is best to take a systematic approach, starting with

small, easy tasks and building incrementally toward a comprehensive solution.This

section presents a suggested approach.

To create a prototype data cartridge:

1. Read this book and try the examples on disk and in example chapter.

2. Create the prototype of your own data cartridge, creating a single object type

and a few data elements and methods. You can add object types, data elements,

and methods, specific indextypes, and user-defined operators as you expand

the cartridge’s capabilities.)

3. Begin by implementing your methods entirely in SQL, and add callouts to 3GL

code (if any) later.

4. Test and debug your cartridge.

After you have the prototype working, you may want to follow a development

process that includes these steps:

1. Identify your areas of domain expertise.

2. Identify those areas of expertise that are relevant to persistent data.

3. Consider the feasibility of packaging one or more of these areas as a new data

cartridge or as an extension to an existing cartridge.

4. Use an object-oriented methodology to help decide what object types to include

in data cartridges.

5. Build and test the cartridges, one at a time.

Part II
Building Data Cartridges

Chapter 3, "Defining Object Types"

Chapter 4, "Methods: Using C/C++ and Java"

Chapter 5, "Methods: Using PL/SQL"

Chapter 6, "Working with Multimedia Datatypes"

Chapter 7, "g Building Domain Indexes"

Chapter 8, "Query Optimization"

Chapter 9, "Using Cartridge Services"

Defining Object Types 3-1

3
Defining Object Types

This chapter provides an example of starting with a schema for a data cartridge.

Object types are crucial to building data cartridges in that they enable domain-level

abstractions to be captured in the database.

Topics include:

■ Objects and Object Types

■ Assigning an OID to an Object Type

■ Constructor Methods

■ Object Comparison

See Also: The following manuals contain additional information

about creating and using object types:

■ Oracle9i Application Developer’s Guide - Object-Relational Features

■ Oracle9i Database Concepts

■ Oracle9i Application Developer’s Guide - Fundamentals

■ PL/SQL User’s Guide and Reference.

Objects and Object Types

3-2 Oracle9i Data Cartridge Developer’s Guide

Objects and Object Types
In the Oracle ORDBMS ("Object-Relational Database Management System"), you

use object types to model real-world entities. An object type has attributes, which

reflect the entity’s structure, and methods, which implement the operations on the

entity. Attributes are defined using built-in types or other object types. Methods are

functions or procedures written in PL/SQL or an external language like C and

stored in the database.

A typical use for an object type is to impose structure on some part of the data kept

in the database. For example, an object type named DataStream could be used by a

cartridge to store large amounts of data in a character LOB (a data type for large

objects). This object type has attributes such as an identifier, a name, a date, and so

on. The following statement defines the DataStream datatype:

CREATE OR REPLACE TYPE DataStream AS OBJECT (
 id INTEGER,
 name VARCHAR2(20),
 createdOn DATE,
 data CLOB,
 MEMBER FUNCTION DataStreamMin RETURN pls_integer,
 MEMBER FUNCTION DataStreamMax RETURN pls_integer,
 MAP MEMBER FUNCTION DataStreamToInt return integer,
 PRAGMA restrict_references(DataStreamMin, WNDS, WNPS),
 PRAGMA restrict_references(DataStreamMax, WNDS, WNPS));

A method is a procedure or function that is part of the object type definition and

that can operate on the object type data attributes. Such methods are called member
methods, and they take the keyword MEMBER when you specify them as a

component of the object type. The DataStream type definition declares three

methods. The first two, DataStreamMin and DataStreamMax , calculate the

minimum and maximum values, respectively, in the data stream stored inside the

character LOB.

The third method (DataStreamToInt), a map method, governs comparisons

between instances of data stream type.

The pragma (compiler directive) RESTRICT_REFERENCES is necessary for security,

and is discussed in the following sections.

See Also: "Object Comparison" on page 3-5 for information about

map methods

Assigning an OID to an Object Type

Defining Object Types 3-3

After declaring the type, define the type body. The body contains the code for type

methods. The following example shows the type body definition for the

DataStream type. It defines the member function methods (DataStreamMin and

DataStreamMax) and the map method (DataStreamToInt).

CREATE OR REPLACE TYPE BODY DataStream IS
 MEMBER FUNCTION DataStreamMin RETURN pls_integer IS
 a pls_integer := DS_Package.ds_findmin(data);

BEGIN RETURN a; END;
 MEMBER FUNCTION DataStreamMax RETURN pls_integer IS
 b pls_integer := DS_Package.ds_findmax(data);

BEGIN RETURN b; END;
 MAP MEMBER FUNCTION DataStreamToInt RETURN integer IS
 c integer := id;

BEGIN RETURN c; END;
END;

DataStreamMin and DataStreamMax involve calling routines in a PL/SQL

package called DS_Package . Since these methods are likely to be

compute-intensive (they process numbers stored in the CLOB to determine

minimum and maximum values), they are defined as external procedures and

implemented in C. The external dispatch is routed through a PL/SQL package

named DS_Package . Such packages are discussed in Oracle9i Supplied PL/SQL
Packages and Types Reference.

The third method (DataStreamToInt), the map method, is implemented in

PL/SQL. Because we have a identifier (id) attribute in DataStream , this method

can return the value of the identifier attribute. (Most map methods, however, are

more complex than DataStreamToInt .).

Assigning an OID to an Object Type
The CREATE TYPE statement has an optional keyword OID, which associates a

user-specified object identifier (OID) with the type definition. This feature was

available effective with release 8.0.3; however, it was not documented because it is

intended for use primarily by Oracle product developers and by developers of data

See Also:

■ Chapter 6, "Working with Multimedia Datatypes", for information
about using LOBs with data cartridges

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for general
information about LOBs

Assigning an OID to an Object Type

3-4 Oracle9i Data Cartridge Developer’s Guide

cartridges. However, it should be used by anyone who creates an object type that

will be used in more than one database.

Each type has an OID. If you create an object type and do not specify an OID, Oracle

generates an OID and assigns it to the type. Oracle uses the OID internally for

operations pertaining to that type. Using the same OID for a type is important if you

plan to share instances of the type across databases for such operations as

export/import and distributed queries.

For example, assume that you want to create a type named SpecialPerson and

then instantiate that type in two different databases with tables named

SpecialPersonTable1 and SpecialPersonTable2 . The RDBMS needs to

know that the SpecialPerson type is the same type in both instances, and

therefore the type must be defined using the same OID in both databases. If you do

not specify an OID with CREATE TYPE, a unique identifier is created automatically

by the RDBMS.

The syntax for specifying an OID for an object type is as follows:

CREATE OR REPLACE TYPE type_name OID ’oid’ AS OBJECT (attribute datatype
[,...]);

In the following example, the SELECT statement generates an OID, and the CREATE
TYPE statement uses the OID in creating an object type named mytype. Be sure to

use the SELECT statement to generate a different OID for each object type to be

created, because this is the only way to guarantee that each OID is valid and

globally unique.

SQLPLUS> SELECT SYS_OP_GUID() FROM DUAL;
SYS_OP_GUID()

19A57209ECB73F91E03400400B40BBE3
1 row selected.

Note: Most other Oracle documentation refers to the use of OIDs
with rows in object tables. In CREATE TYPE with OID, an OID is

assigned to the type itself. Of course, each row created in a table

with a column of the specified type will also still have a

row-specific OID.

Object Comparison

Defining Object Types 3-5

SQLPLUS> CREATE TYPE mytype OID '19A57209ECB73F91E03400400B40BBE3'
 2> AS OBJECT (attrib1 NUMBER);
Statement processed.

Constructor Methods
The system implicitly defines a constructor method for each object type that you

define. The name of the constructor method is the same as the name of the object

type. The parameters of the constructor method are exactly the data attributes of the

object type, and they occur in the same order as the attribute definition for the

object type. At present, only one constructor method can be defined, and thus you

cannot define other constructor methods.

For example, when the system executes the following statement to create a type

named rational_type, it also implicitly creates a constructor method for this object

type.

CREATE TYPE rational_type (
 numerator integer,
 denominator integer);

When you instantiate an object of rational_type, you invoke the constructor method.

For example:

CREATE TABLE some_table (
 c1 integer, c2 rational_type);
INSERT INTO some_table
 VALUES (42, rational_type(223, 71));

Object Comparison
SQL performs comparison operations on objects. Comparisons can be explicit, using

the comparison operators (=, <, >, <>, <=, >=, !=) and the BETWEEN and IN
predicates. Comparisons can be implicit, as in the GROUP BY, ORDER BY, DISTINCT ,

and UNIQUE clauses.

Comparison of objects makes use of special member functions of the object type:

map methods and order methods. To perform object comparison, you must

implement either a map method or order method in the CREATE TYPE and CREATE
TYPE BODY statements.

For example, the type body for the DataStream type, implements the map member

function for DataStream comparison as:

Object Comparison

3-6 Oracle9i Data Cartridge Developer’s Guide

MAP MEMBER FUNCTION DataStreamToInt RETURN integer IS
 c integer := id;

BEGIN RETURN c; END;

This definition of the map member function relies on the presence of the id attribute

of the DataStream type to map instances to integers. Whenever a comparison

operation is required between objects of type DataStream, the map function

DataStreamToInt () is called implicitly by the system.

The object type rational_type does not have a simple id attribute like that for

DataStream. For rational_type, the map member function is slightly more

complicated. Because a map function can return any of the built-in types; rational_
type can return a value or type REAL:

MAP MEMBER FUNCTION RationalToReal RETURN REAL IS
 BEGIN
 RETURN numerator/denominator;
 END;
...

If you have not defined a map or order function for an object type, only equality

comparisons are allowed on objects of that type. Oracle SQL performs the

comparison by doing a field-by-field comparison of the attributes of that type.

Methods: Using C/C++ and Java 4-1

4
Methods: Using C/C++ and Java

This chapter describes how to use C, C++, and Java to implement the methods of a

data cartridge. Methods are procedures and functions that define the operations

permitted on data defined using the data cartridge.

This chapter focuses on issues related to developing and debugging external

procedures, including:

■ External Procedures

■ Using Shared Libraries

■ Registering an External Procedure

■ How PL/SQL Calls an External Procedure

■ Configuration Files for External Procedures

■ OCIExtProcGetEnv

■ Doing Callbacks

■ OCI Access Functions for External Procedures

■ Common Potential Errors

■ Debugging External Procedures

■ Guidelines for Using External Procedures with Data Cartridges

■ Java Methods

External Procedures

4-2 Oracle9i Data Cartridge Developer’s Guide

External Procedures
PL/SQL is powerful language for database programming. However, because some

methods can be complex, it may not be possible to code such a method optimally

using PL/SQL. For example, a routine to perform numerical integration will

probably run faster if it is implemented in C than if it is implemented in PL/SQL.

To support such special-purpose processing, PL/SQL provides an interface for

calling routines written in other languages. This makes the strengths and

capabilities of 3GLs like C available through calls from a database server. Such a

3GL routine, called an external procedure, is stored in a shared library, registered

with PL/SQL, and called from PL/SQL at runtime to perform special-purpose

processing. Details on external procedures and their use can be found in the PL/SQL
User’s Guide and Reference.

External procedures are an important tool for data cartridge developers. They can

be used not only to write fast, efficient, computation-intensive routines for cartridge

types, but also to integrate existing code with the database as data cartridges.

Shared libraries already written and available in other languages, such as a

Windows NT DLL with C routines to perform format conversions for audio files,

can be called directly from a method in a type implemented by an audio cartridge.

Similarly, you can use external procedures to process signals, drive devices, analyze

data streams, render graphics, or process numerical data.

Using Shared Libraries
A shared library is an operating system file, such as a Windows DLL or a Solaris

shared object, that stores the coded implementation of external procedures. Access

to the shared library from Oracle occurs by using an alias library, which is a schema

object that represents the library within PL/SQL. For security, creation of an alias

library requires DBA privileges. To create the alias library (such as DS_Lib in the

following example), you must decide on the operating system location for the

library, log in as a DBA or as a user with the CREATE LIBRARY PRIVILEGE, and

then enter a statement such as the following:

CREATE OR REPLACE LIBRARY DS_Lib AS
 '/data_cartridge_dir/libdatastream.so';

This example creates the alias library schema object in the database. After the alias

library is created, you can refer to the shared library by the name DS_Lib from

PL/SQL.

Registering an External Procedure

Methods: Using C/C++ and Java 4-3

The example just given specifies an absolute path for the library. If you have copies

of the library on multiple systems, to support distributed execution of external

procedures by designated (or "dedicated") agents, you can use an environment

variable to specify the location of the libraries more generally. For example:

CREATE OR REPLACE LIBRARY DS_Lib AS
 '${DS_LIB_HOME}/libdatastream.so' AGENT 'agent_link';

This statement uses the environment variable ${DS_LIB_HOME} to specify a

common point of reference or root directory from which the library can be found on

all systems. The string following the AGENT keyword specifies the agent (actually, a

database link) that will be used to run any external procedure declared to be in

library DS_Lib .

Registering an External Procedure
To call an external procedure, you must not only tell PL/SQL the alias library in

which to find the external procedure, but also how to call the procedure and what

arguments to pass to it.

Earlier, the type DataStream was defined, and certain methods of type DataStream
were defined by calling functions from a package DS_Package. Also, this package

was specified. The following statement defines the body of this package (DS_
Package).

CREATE OR REPLACE PACKAGE BODY DS_Package AS
 FUNCTION DS_Findmin(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmin" LIBRARY DS_Lib LANGUAGE C WITH CONTEXT;
 FUNCTION DS_Findmax(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmax" LIBRARY DS_Lib LANGUAGE C WITH CONTEXT;
 END;

In the PACKAGE BODY declaration clause of this example, the package functions are

tied to external procedures in a shared library. The EXTERNALclause in the function

declaration registers information about the external procedure, such as its name

(found after the NAME keyword), its location (which must be an alias library,

following the LIBRARY keyword), the language in which the external procedure is

written (following the LANGUAGE keyword), and so on. For a description of the

See Also: For more information on using dedicated external

procedure agents to run an external procedure, see PL/SQL User’s
Guide and Reference

How PL/SQL Calls an External Procedure

4-4 Oracle9i Data Cartridge Developer’s Guide

parameters that can accompany an EXTERNAL clause, see the PL/SQL User’s Guide
and Reference.

The final part of the EXTERNAL clause in the example is the WITH CONTEXT
specification. This means that a context pointer is passed to the external procedure.

The context pointer is opaque to the external procedure, but is available so that the

external procedure can call back to the Oracle server, to potentially access more data

in the same transaction context. The WITH CONTEXT clause is discussed in "Using

the WITH CONTEXT Clause" on page 4-10.

Although the example describes external procedure calls from object type methods,

a data cartridge can use external procedures from a variety of other places in

PL/SQL. External procedure calls can appear in:

■ Anonymous blocks

■ Standalone and packaged subprograms

■ Methods of an object type

■ Database triggers

■ SQL statements (calls to packaged functions only)

How PL/SQL Calls an External Procedure
To call an external procedure, PL/SQL must know the DLL or shared library in

which the procedure resides. PL/SQL looks up the alias library in the EXTERNAL
clause of the subprogram that registered the external procedure. The data

dictionary is used to determine the actual path to the operating system shared

library or DLL.

PL/SQL alerts a Listener process, which in turn spawns (launches) a

session-specific agent. Unless some other particular agent has been designated,

either in the CREATE LIBRARY statement for the procedure’s specified library or in

the agent argument of the CREATE PROCEDURE statement, the default agent

extproc is launched. The Listener hands over the connection tothe agent. PL/SQL

passes the agent the name of the DLL, the name of the external procedure, and any

parameters passed in by the caller.

See Also: Oracle9i Application Developer’s Guide - Fundamentals, the

chapter on external procedures, for information on how to format

the call specification when passing an object type to a C routine

How PL/SQL Calls an External Procedure

Methods: Using C/C++ and Java 4-5

The rest of this account assumes that the agent launched is the default agent

extproc . For more information on using dedicated external procedure agents to

run an external procedure, see PL/SQL User’s Guide and Reference.

After receiving the name of the DLL and the external procedure, extproc loads the

DLL and runs the external procedure. Also, extproc handles service calls (such as

raising an exception) and callbacks to the Oracle server. Finally, extproc passes to

PL/SQL any values returned by the external procedure. Figure 4–1 shows the flow

of control.

Figure 4–1 How an External Procedure is Called

After the external procedure completes, extproc remains active throughout your

Oracle session. (When you log off, extproc is killed.) Thus, you incur the cost of

spawning extproc only once, no matter how many calls you make. Still, you

should call an external procedure only when the computational benefits outweigh

the cost.

Note: The Listener must start extproc on the system that runs

the Oracle server. Starting extproc on a different system is not

supported.

Oracle Address Space External Address Space

Listener

extproc

/data_cartridge_dir/libdatastream.so

Oracle9 i PL/SQL

Oracle
Database

Configuration Files for External Procedures

4-6 Oracle9i Data Cartridge Developer’s Guide

Configuration Files for External Procedures
The configuration files listener.ora and tnsnames.ora must have appropriate entries

so that the Listener can dispatch the external procedures.

The Listener configuration file listener.ora must have a SID_DESC entry for the

external procedure. For example:

Listener configuration file
This file is generated by stkconf.tsc

CONNECT_TIMEOUT_LISTENER = 0

LISTENER = (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=ipc)(KEY=o8))
 (ADDRESS=(PROTOCOL=tcp)(HOST=unix123)(PORT=1521))
)

SID_LIST_LISTENER = (SID_LIST=
(SID_DESC=(SID_NAME=o8)(ORACLE_HOME=/rdbms/u01/app/oracle/product/8.0
.3))

(SID_DESC=(SID_NAME=extproc)(ORACLE_HOME=/rdbms/u01/app/oracle/product/
8.0.3)(PROGRAM=extproc))
)

This listener.ora example assumes the following:

■ The Oracle instance is called o8.

■ The system or node on which the Oracle server runs is named unix123.

■ The installation directory for the Oracle server is /rdbms/u01.

■ The port number for Oracle TCP/IP communication is the default Listener port

1521.

The tnsnames.ora file (network substrate configuration file) must also be updated to

refer to the external procedure. For example:

o8 =
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=unix123)(PORT=1521))(CONNECT_
DATA=(SID=o8)))

See Also: For information about administering extproc and

external procedure calls, see the Oracle9i Database Administrator’s
Guide.

Configuration Files for External Procedures

Methods: Using C/C++ and Java 4-7

extproc_connection_data =
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=o8))(CONNECT_DATA=(SID=extproc)))

This tnsnames.ora example assumes that IPC mechanisms are used to communicate

with the external procedure. You can also use, for example, TCP/IP for

communication, in which case the PROTOCOL parameter must be set to tcp.

For more information about configuring the listener.ora and tnsnames.ora files, see

the Oracle9i Database Administrator’s Guide.

Passing Parameters to an External Procedure
Passing parameters to an external procedure is complicated by several

circumstances:

■ The set of PL/SQL datatypes does not correspond one-to-one with the set of C

datatypes.

■ PL/SQL parameters can be null, whereas C parameters cannot. (Unlike C,

PL/SQL includes the RDBMS concept of nullity.)

■ The external procedure might need the current length or maximum length of

CHAR, LONG RAW, RAW, and VARCHAR2 parameters.

■ The external procedure might need character set information about CHAR,
VARCHAR2, and CLOB parameters.

■ PL/SQL might need the current length, maximum length, or null status of

values returned by the external procedure.

In the following sections, you learn how to specify a parameter list that deals with

these circumstances.

An example of parameter passing is shown in "Doing Callbacks" on page 4-11,

where the package function DS_Findmin(data CLOB) calls the C routine c_findmin
and the CLOB argument is passed to the C routine as an OCILobLocator *.

Specifying Datatypes
You do not pass parameters to an external procedure directly. Instead, you pass

them to the PL/SQL subprogram that registered the external procedure. So, you

must specify PL/SQL datatypes for the parameters. For guidance, see Table 4–1.

Each PL/SQL datatype maps to a default external datatype. (In turn, each external

datatype maps to a C datatype.)

Configuration Files for External Procedures

4-8 Oracle9i Data Cartridge Developer’s Guide

In some cases, you can use the PARAMETERS clause to override the default datatype

mappings. For example, you can re-map the PL/SQL datatype BOOLEAN from

external datatype INT to external datatype CHAR.

To avoid errors when declaring C prototype parameters, refer to Table 4–2, which

shows the C datatype to specify for a given external datatype and PL/SQL

parameter mode. For example, if the external datatype of an OUT parameter is

CHAR, specify the datatype char * in your C prototype.

Table 4–1 Parameter Datatype Mappings

PL/SQL Type Supported External Types Default External Type

BINARY_INTEGER,
BOOLEAN,
PLS_INTEGER

CHAR, UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, INT, UNSIGNED
INT, LONG, UNSIGNED LONG, SB1,
UB1, SB2, UB2, SB4, UB4, SIZE_
T

INT

NATURAL,
NATURALN,
POSITIVE,
POSITIVEN,
SIGNTYPE

CHAR, UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, INT, UNSIGNED
INT, LONG, UNSIGNED LONG, SB1,
UB1, SB2, UB2, SB4, UB4, SIZE_
T

UNSIGNED INT

FLOAT,
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR,
CHARACTER,
LONG,
ROWID,
VARCHAR,
VARCHAR2

STRING STRING

LONG RAW,
RAW

RAW RAW

BFILE,
BLOB,
CLOB

OCILOBLOCATOR OCILOBLOCATOR

Configuration Files for External Procedures

Methods: Using C/C++ and Java 4-9

Using the Parameters Clause
You can optionally use the PARAMETERS clause to pass additional information

about PL/SQL formal parameters and function return values to an external

procedure. You can also use this clause to reposition parameters.

Table 4–2 External Datatype Mappings

External Datatype

IN,

RETURN

IN by Reference,

RETURN by Reference IN OUT, OUT

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

SIZE_T size_t size_t * size_t *

SB1 sb1 sb1 * sb1 *

UB1 ub1 ub1 * ub1 *

SB2 sb2 sb2 * sb2 *

UB2 ub2 ub2 * ub2 *

SB4 sb4 sb4 * sb4 *

UB4 ub4 ub4 * ub4 *

FLOAT float float * float *

DOUBLE double double * double *

STRING char * char * char *

RAW unsigned char * unsigned char * unsigned char *

OCILOBLOCATOR OCILobLocator * OCILobLocator * OCILobLocator **

OCIExtProcGetEnv

4-10 Oracle9i Data Cartridge Developer’s Guide

Using the WITH CONTEXT Clause
Once launched, an external procedure may need to access the database. For

example, DS_Findmin does not copy the entire CLOB data over to c_findmin, because

doing so would vastly increase the amount of stack that the C routine needs.

Instead, the PL/SQL function just passes a LOB locator to the C routine, with the

intent that the database will be re-accessed from C to read the actual LOB data.

When the C routine reads the data, it can use the OCI buffering and streaming

interfaces associated with LOBs (see the Oracle Call Interface Programmer’s Guide for

details), so that only incremental amounts of stack are needed. Such re-access of the

database from an external procedure is known as a callback.

To be able to call back to a database, you need to use the WITH CONTEXT clause to

give the external procedure access to the database environment, service, and error

handles. When an external procedure is called using WITH CONTEXT, the

corresponding C routine automatically gets as its first parameter an argument of

type OCIExtProcContext *. (The order of the parameters can be changed using

the PARAMETERSclause.) You can use this context pointer to fetch the handles using

the OCIExtProcGetEnv call, and then call back to the database. This procedure is

shown in "Doing Callbacks" on page 4-11.

OCIExtProcGetEnv
This service routine enables OCI callbacks to the database during an external

procedure call. Use the OCI handles obtained by this function only for callbacks. If

you use them for standard OCI calls, the handles establish a new connection to the

database and cannot be used for callbacks in the same transaction. In other words,

during an external procedure call, you can use OCI handles for callbacks or a new

connection but not for both.

The C prototype for this function follows:

sword OCIExtProcGetEnv(
 OCIExtProcContext *with_context,
 OCIEnv **envh,
 OCISvcCtx **svch,
 OCIError **errh);

See Also: For more information about the PARAMETERS clause,

see the PL/SQL User’s Guide and Reference.

Doing Callbacks

Methods: Using C/C++ and Java 4-11

The parameter with_context is the context pointer, and the parameters envh, svch,

and errh are the OCI environment, service, and error handles, respectively. The

return values OCIEXTPROC_SUCCESSand OCIEXTPROC_ERRORindicate success or

failure.

"Doing Callbacks" on page 4-11 shows how OCIExtProcGetEnv might be used in

callbacks. For a working example, see the script extproc.sql in the PL/SQL demo

directory. (For the location of this directory, see your Oracle installation or user's

guide.) This script demonstrates the calling of an external procedure. The

companion file extproc.c contains the C source code for the external procedure. To

run the demo, follow the instructions in extproc .sql . You must use the

SCOTT/TIGER account, which must have CREATE LIBRARY privileges.

Doing Callbacks
An external procedure executing on the Oracle server can call the access function

OCIExtProcGetEnv to obtain OCI environment and service handles. With the

OCI, you can use callbacks to execute SQL statements and PL/SQL subprograms,

fetch data, and manipulate LOBs. Moreover, callbacks and external procedures

operate in the same user session and transaction context, so they have the same user

privileges.

The following example is a version of c_findmin that is simplified to illustrate

callbacks. The complete listing is available on the disk that is included with this kit.

Static OCIEnv *envhp;
Static OCISvcCtx *svchp;
Static OCIError *errhp;
Int c_findmin (OCIExtProcContext *ctx, OCILobLocator *lobl) {
sword retval;
retval = OCIExtProcGetEnv (ctx, &envhp, &svchp, &errhp);
if ((retval != OCI_SUCCESS) && (retval != OCI_SUCCESS_WITH_INFO))
 exit(-1);
 /* Use lobl to read the CLOB, compute the minimum, and store the value
 in retval. */
return retval;
}

Restrictions on Callbacks
With callbacks, the following SQL statements and OCI routines are not supported:

■ Transaction control statements such as COMMIT

OCI Access Functions for External Procedures

4-12 Oracle9i Data Cartridge Developer’s Guide

■ Data definition statements such as CREATE

■ Object-oriented OCI routines such as OCIRefClear

■ Polling-mode OCI routines such as OCIGetPieceInfo

■ All these OCI routines:

OCIEnvInit
OCIInitialize
OCIPasswordChange
OCIServerAttach
OCIServerDetach
OCISessionBegin
OCISessionEnd
OCISvcCtxToLda
OCITransCommit
OCITransDetach
OCITransRollback
OCITransStart

■ Also, with OCI routine OCIHandleAlloc , the following handle types are not

supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

OCI Access Functions for External Procedures
When called from an external procedure, a service routine can raise exceptions,

allocate memory, and get OCI handles for callbacks to the server. To use the

functions, you must specify the WITH CONTEXT clause, which lets you pass a

context structure to the external procedure. The context structure is declared in

header file ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext;

This section describes how service routines use the context information. For more

information and examples of usage, see the chapter on external procedures in

theOracle9i Application Developer’s Guide - Fundamentals.

OCI Access Functions for External Procedures

Methods: Using C/C++ and Java 4-13

OCIExtProcAllocCallMemory
This service routine allocates n bytes of memory for the duration of the external

procedure call. Any memory allocated by the function is freed as soon as control

returns to PL/SQL.

The C prototype for this function follows:

dvoid *OCIExtProcAllocCallMemory(
 OCIExtProcContext *with_context,
 size_t amount);

The parameters with_context and amount are the context pointer and number of

bytes to allocate, respectively. The function returns an untyped pointer to the

allocated memory. A return value of zero indicates failure.

OCIExtProcRaiseExcp
This service routine raises a predefined exception, which must have a valid Oracle

error number in the range 1..32767. After doing any necessary cleanup, the external

procedure must return immediately. (No values are assigned to OUT or IN OUT
parameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
 OCIExtProcContext *with_context,
 size_t error_number);

The parameters with_context and error_number are the context pointer and Oracle

error number. The return values OCIEXTPROC_SUCCESSand OCIEXTPROC_ERROR
indicate success or failure.

OCIExtProcRaiseExcpWithMsg
This service routine raises a user-defined exception and returns a user-defined error

message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
 OCIExtProcContext *with_context,
 size_t error_number,
 text *error_message,
 size_t len);

Note: Do not use any other function to allocate or free memory.

Common Potential Errors

4-14 Oracle9i Data Cartridge Developer’s Guide

The parameters with_context , error_number , and error_message are the

context pointer, Oracle error number, and error message text. The parameter len
stores the length of the error message. If the message is a null-terminated string, len
is zero. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR
indicate success or failure.

Common Potential Errors
This section presents several kinds of errors you might make in running external

procedures.

Calls to External Functions
Can't Find DLL
ORA-06520: PL/SQL: Error loading external library
ORA-06522: Unable to load DLL
ORA-06512: at "<name>", line <number>
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

You may have specified the wrong path or wrong name for the DLL file, or you may

have tried to use a DLL on a network mounted drive (a remote drive).

RPC Time Out
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "<name>", line <number>
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

This error might occur after you exit a debugger while debugging a shared library

or DLL. Simply disconnect your client and reconnect to the database.

Debugging External Procedures
Usually, when an external procedure fails, its C prototype is faulty. That is, the

prototype does not match the one generated internally by PL/SQL. This can happen

if you specify an incompatible C datatype. For example, to pass an OUT parameter

of type REAL, you must specify float *. Specifying float, double *, or any other C

datatype will result in a mismatch.

Guidelines for Using External Procedures with Data Cartridges

Methods: Using C/C++ and Java 4-15

In such cases, you might get a lost RPC connection to external procedure agent

error, which means that agent extproc terminated abnormally because the

external procedure caused a core dump. To avoid errors when declaring C

prototype parameters, refer to Table 4–2

Using Package DEBUG_EXTPROC
To help you debug external procedures, PL/SQL provides the utility package

DEBUG_EXTPROC. To install the package, run the script dbgextp .sql , which you

can find in the PL/SQL demo directory.

To use the package, follow the instructions in dbgextp.sql. Your Oracle account

must have EXECUTE privileges on the package and CREATE LIBRARY privileges.

Debugging C Code in DLLs on Windows NT Systems
If you are developing on a Windows NT system, you may perform the following

additional actions to debug external procedures:

1. Invoke the Windows NT Task Manager (press Ctrl+Alt+Del.and select Task

Manager).

2. In the Processes display, select ExtProc.exe.

3. Right click, and select Debug.

4. Select OK in the message box.

At this point, if you have built your DLL in a debug fashion with Microsoft

Visual C++, Visual C++ is activated.

5. In the Visual C++ window, select Edit > Breakpoints.

6. Use the breakpoint identified in dbgextp.sql in the PL/SQL demo directory.

Guidelines for Using External Procedures with Data Cartridges
In future releases, extproc might be a multithreaded process. Therefore, be sure to

write thread-safe external procedures. That way, they will continue to run properly

if extproc becomes multithreaded. In particular, avoid using static variables,

Note: DEBUG_EXTPROC works only on platforms with debuggers

that can attach to a running process.

Java Methods

4-16 Oracle9i Data Cartridge Developer’s Guide

which can be shared by routines running in separate threads. Otherwise, you might

get unexpected results.

For help in creating a dynamic link library, look in the RDBMS subdirectory

/public, where a template makefile can be found.

When calling external procedures, never write to IN parameters or overflow the

capacity of OUT parameters. (PL/SQL does no runtime checks for these error

conditions.) Likewise, never read an OUT parameter or a function result. Also,

always assign a value to IN OUT and OUT parameters and to function results.

Otherwise, your external procedure will not return successfully.

If you include the WITH CONTEXT and PARAMETERS clauses, you must specify the

parameter CONTEXT, which shows the position of the context pointer in the

parameter list. If you omit the PARAMETERS clause, the context pointer is the first

parameter passed to the external procedure.

If you include the PARAMETERSclause and the external procedure is a function, you

must specify the parameter RETURN (not RETURNproperty) in the last position.

For every formal parameter, there must be a corresponding parameter in the

PARAMETERS clause. Also, make sure that the datatypes of parameters in the

PARAMETERS clause are compatible with those in the C prototype because no

implicit conversions are done.

A parameter for which you specify INDICATOR or LENGTH has the same parameter

mode as the corresponding formal parameter. However, a parameter for which you

specify MAXLEN, CHARSETID, or CHARSETFORM is always treated like an IN
parameter, even if you also specify BY REFERENCE.

With a parameter of type CHAR, LONG RAW, RAW, or VARCHAR2, you must use the

property LENGTH. Also, if that parameter is IN OUT or OUT and null, you must set

the length of the corresponding C parameter to zero.

Java Methods
In order to utilize Java Data Cartridges, it is important that you know how to load

Java class definitions, about how to call stored procedures, and about context

management. For details on these issues, see Chapters 1 and 2 of the Oracle9i Java
Stored Procedures Developer’s Guide.. Information on ODCI classes can also be found

in Chapter 15 of this manual.

Methods: Using PL/SQL 5-1

5
Methods: Using PL/SQL

This chapter describes how to use PL/SQL to implement the methods of a data

cartridge. Methods are procedures and functions that define the operations

permitted on data defined using the data cartridge. Topics include:

■ Methods

■ PL/SQL Packages

■ Pragma RESTRICT_REFERENCES

■ Privileges Required to Create Procedures and Functions

■ Debugging PL/SQL Code

Methods

5-2 Oracle9i Data Cartridge Developer’s Guide

Methods
A method is procedure or function that is part of the object type definition, and that

can operate on the attributes of the type. Such methods are also called member
methods, and they take the keyword MEMBER when you specify them as a

component of the object type.

See the Oracle9i Database Concepts manual for information about:

■ Method specification

■ Method names

■ Method name overloading

Map methods, which govern comparisons between object types, are discussed in

the previous sections.

The following sections show simple examples of implementing a method, invoking

a method, and referencing an attribute in a method. For further explanation and

more detailed examples, see the chapter on object types in the PL/SQL User’s Guide
and Reference.

Implementing Methods
To implement a method, create the PL/SQL code and specify it within a CREATE
TYPE BODY statement.

For example, consider the following definition of an object type named rational_type:

CREATE TYPE rational_type AS OBJECT
(numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION rat_to_real RETURN REAL,
 MEMBER PROCEDURE normalize,
 MEMBER FUNCTION plus (x rational_type)
 RETURN rational_type);

The following definition is shown merely because it defines the function gcd , which

is used in the definition of the normalize method in the CREATE TYPE BODY
statement later in this section.

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- Find greatest common divisor of x and y. For example, if
-- (8,12) is input, the greatest common divisor is 4.
-- This will be used in normalizing (simplifying) fractions.
-- (You need not try to understand how this code works, unless

Methods

Methods: Using PL/SQL 5-3

-- you are a math wizard. It does.)
--
 ans INTEGER;
BEGIN
 IF (y <= x) AND (x MOD y = 0) THEN
 ans := y;
 ELSIF x < y THEN
 ans := gcd(y, x); -- Recursive call
 ELSE
 ans := gcd(y, x MOD y); -- Recursive call
 END IF;
 RETURN ans;
END;

The following statement implements the methods (rat_to_real , normalize ,

and plus) for the object type rational_type :

CREATE TYPE BODY rational_type
(MAP MEMBER FUNCTION rat_to_real RETURN REAL IS
 -- The rat-to-real function converts a rational number to
 -- a real number. For example, 6/8 = 0.75
 BEGIN
 RETURN numerator/denominator;
 END;

 -- The normalize procedure simplifies a fraction.
 -- For example, 6/8 = 3/4
 MEMBER PROCEDURE normalize IS
 divisor INTEGER := gcd(numerator, denominator);
 BEGIN
 numerator := numerator/divisor;
 denominator := denominator/divisor;
 END;

 -- The plus function adds a specified value to the
 -- current value and returns a normalized result.
 -- For example, 1/2 + 3/4 = 5/4
 --
 MEMBER FUNCTION plus(x rational_type)
 RETURN rational_type IS
 -- Return sum of SELF + x
 BEGIN
 r = rational_type(numerator*x.demonimator +
 x.numerator*denominator,
 denominator*x.denominator);

Methods

5-4 Oracle9i Data Cartridge Developer’s Guide

 -- Example adding 1/2 to 3/4:
 -- (3*2 + 1*4) / (4*2)
 -- Now normalize (simplify). Here, 10/8 = 5/4
 r.normalize;
 RETURN r;
 END;
END;

Invoking Methods
To invoke a method, use the following syntax:

<object_name>.<method_name>([parameter_list])

In SQL statements only, you can use the following syntax:

<correlation_variable>.<method_name>([parameter_list])

The following PL/SQL example invokes a method named get_emp_sal:

DECLARE
 employee employee_type;
 salary number;
 ...
BEGIN
 salary := employee.get_emp_sal();
 ...
END;

An alternative way to invoke a method is by using the SELF built-in parameter.

Because the implicit first parameter of each method is the name of the object on

whose behalf the method is invoked, the following example performs the same

action as the line after BEGIN in the preceding example:

salary := get_emp_sal(SELF => employee);

In this example, employee is the name of the object on whose behalf the get_emp_
sal method is invoked.

Note: If an object type has no methods, no CREATE TYPE BODY
statement for that object type is required.

PL/SQL Packages

Methods: Using PL/SQL 5-5

Referencing Attributes in a Method
As shown in the example in “Implementing Methods” on page 3-1, member

methods can reference the attributes and member methods of the same object type

without using a qualifier. A built-in reference is always provided to the object on

whose behalf the method is invoked. This reference is called SELF.

Consider the following trivial example, in which two statements set the value of

variable var1 to 42:

CREATE TYPE a_type AS OBJECT (
 var1 INTEGER,
 MEMBER PROCEDURE set_var1);
CREATE TYPE BODY a_type (
 MEMBER PROCEDURE set_var1 IS
 BEGIN
 var1 := 42;
 SELF.var1 := 42;
 END set_var1;
);

In this example, var1 := 42 and SELF.var1 := 42 are in effect the same statement.

Because var1 is the name of an attribute of the object type a_type and because set_
var1 is a member method of this object type, no qualification is required to access

var1 in the method code. However, for code readability and maintainability, you can

use the keyword SELF in this context to make the reference to var1 more clear.

 PL/SQL Packages
A package is a group of PL/SQL types, objects, and stored procedures and

functions. The specification part of a package declares the public types, variables,

constants, and subprograms that are visible outside the immediate scope of the

package. The body of a package defines the objects declared in the specification, as

well as private objects that are not visible to applications outside the package.

The following example shows the package specification for the package named DS_
package. This package contains the two stored functions ds_findmin and ds_findmax,

which implement the DataStreamMin and DataStreamMax functions defined for the

DataStream object type.

CREATE OR REPLACE PACKAGE DS_package AS
FUNCTION ds_findmin(data clob) RETURN pls_integer;
FUNCTION ds_findmax(data clob) RETURN pls_integer;
PRAGMA restrict_references(ds_findmin, WNDS, WNPS);

Pragma RESTRICT_REFERENCES

5-6 Oracle9i Data Cartridge Developer’s Guide

PRAGMA restrict_references(ds_findmax, WNDS, WNPS);
END;

For the DataStream type and type body definitions, see Chapter 2, "Roadmap to

Building a Data Cartridge".

For more information about PL/SQL packages, see the chapter about using

procedures and packages in the Oracle9i Supplied PL/SQL Packages and Types
Reference.

Pragma RESTRICT_REFERENCES
To execute a SQL statement that calls a member function, Oracle must know the

purity level of the function, that is, the extent to which the function is free of side

effects. The term side effect, in this context, refers to accessing database tables,

package variables, and so forth for reading or writing. It is important to control side

effects because they can prevent the proper parallelization of a query, produce

order-dependent (and therefore indeterminate) results, or require impermissible

actions such as the maintenance of package state across user sessions.

A member function called from a SQL statement can be restricted so that it cannot:

■ Insert into, update, or delete database tables

■ Be executed remotely or in parallel if it reads or writes the values of packaged

variables

■ Write the values of packaged variables unless it is called from a SELECT,
VALUES, or SET clause

■ Call another method or subprogram that violates any of these rules

■ Reference a view that violates any of these rules

For more information about the rules governing purity levels and side effects, see

the PL/SQL User’s Guide and Reference.

You use the pragma (compiler directive) RESTRICT_REFERENCES to enforce these

rules. For example, the purity level of the DataStreamMax method of type

DataStream is asserted to be write no database state (WNDS) and write no package state
(WNPS) in the following way:

CREATE TYPE DataStream AS OBJECT (

PRAGMA RESTRICT_REFERENCES (DataStreamMax, WNDS, WNPS)
 ...);

Privileges Required to Create Procedures and Functions

Methods: Using PL/SQL 5-7

Member methods that call external procedures cannot do so directly but must route

the calls through a package. The reason is that currently the arguments to external

procedures cannot be object types. A member function automatically gets a SELF
reference (a reference to that specific instance of the object type) as its first

argument. Therefore, member methods in objects types cannot call out directly to

external procedures.

Collecting all external calls into a package makes for a better design. The purity

level of the package must also be asserted. Therefore, when the package named DS_
Package is declared and all external procedure calls from type DataStream are

routed through this package, the purity level of the package is also declared, as

follows:

CREATE OR REPLACE PACKAGE DS_Package AS
 ...
PRAGMA RESTRICT_REFERENCES (ds_findmin, WNDS, WNPS)
 ...
END;

In addition to WNDS and WNPS, it is possible to specify two other constraints: read no
database state (RNDS) and read no package state (RNPS). These two constraints are

normally useful if you have parallel queries.

Each constraint is independent of the others and does not imply another. Choose

the set of constraints based on application-specific requirements. For more

information about controlling side effects using the RESTRICT_REFERENCES
pragma, see the Oracle9i Application Developer’s Guide - Fundamentals.

You can also specify the keyword DEFAULTinstead of a method or procedure name,

in which case the pragma applies to all member functions of the type (or procedures

of the package). For example:

PRAGMA RESTRICT_REFERENCES (DEFAULT, WNDS, WNPS)

Privileges Required to Create Procedures and Functions
To create a standalone procedure or function, or package specification or body, you

must have the CREATE PROCEDURE system privilege to create a procedure or

package in your schema, or the CREATE ANY PROCEDURE system privilege to create

a procedure or package in another user’s schema.

For the compilation of the procedure or package, the owner of the procedure or

package must have been explicitly granted the necessary object privileges for all

Debugging PL/SQL Code

5-8 Oracle9i Data Cartridge Developer’s Guide

objects referenced within the body of the code. The owner cannot have obtained
required privileges through roles.

For more information about privilege requirements for creating procedures and

functions, see the chapter about using procedures and packages in the Oracle9i
Application Developer’s Guide - Fundamentals.

Debugging PL/SQL Code
One of the simplest ways to debug PL/SQL code is to try each method, block, or

statement interactively using SQL*Plus, and fix any problems before proceeding to

the next statement. If you need more information on an error message, enter the

statement SHOW ERRORS. Also consider displaying statements for runtime

debugging, such as those of the general form:

Location in module: <location>
Parameter name: <name>
Parameter value: <value>

You can debug stored procedures and packages using the DBMS_OUTPUT package.

You insert PUT and PUTLINE statements in your code to output the value of

variables and expressions to your terminal. The DBMS_OUTPUT package is

described in the Oracle9i Supplied PL/SQL Packages and Types Reference and the

PL/SQL User’s Guide and Reference.

To debug stored procedures and packages, though not object type methods at present,
you can use Procedure Builder, which is a part of the Oracle Developer/2000 tool

set. Procedure Builder lets you execute PL/SQL stored procedures and triggers in a

controlled debugging environment, and you can set breakpoints, list the values of

variables, and perform other debugging tasks. See the Oracle9i Java Stored Procedures
Developer’s Guide

A PL/SQL tracing tool provides more information about exception conditions in

application code. You can use this tool to trace the execution of server-side PL/SQL

statements. Object type methods cannot be traced directly, but you can trace any

PL/SQL functions or procedures that a method calls. The tracing tool also provides

information about exception conditions in the application code. The trace output is

written to the Oracle server trace file.

Debugging PL/SQL Code

Methods: Using PL/SQL 5-9

Notes for C and C++ Programmers
If you are a C or C++ programmer, several PL/SQL conventions and requirements

may differ from your expectations. Note the following about PL/SQL:

■ = means equal (not assign).

■ := means assign (as in Algol).

■ VARRAYs begin at index 1 (not 0).

■ Comments begin with two hyphens (--), not with // or /*.

■ The IF statement requires the THEN keyword.

■ The IF statement must be concluded with the END IF keyword (which comes

after the ELSE clause, if there is one).

■ There is no PRINTF statement. The comparable feature is the DBMS_
OUTPUT.PUT_LINE statement. In this statement, literal and variable text is

separated using the double vertical bar (||).

■ A function must have a return value, and a procedure cannot have a return

value.

■ If you call a function, it must be on the right side of an assignment operator.

■ Many PL/SQL keywords cannot be used as variable names.

Common Potential Errors
This section presents several kinds of errors you may make in creating a data

cartridge.

Signature Mismatches
13/19 PLS-00538: subprogram or cursor '<name>' is declared in an object
 type specification and must be defined in the object type body
15/19 PLS-00539: subprogram '<name>' is declared in an object type body
 and must be defined in the object type specification

Note: Only the database administrator has access to this trace file.

The tracing tool is described in the Oracle9i Application Developer’s
Guide - Fundamentals.

See Also: PL/SQL User’s Guide and Reference.

Debugging PL/SQL Code

5-10 Oracle9i Data Cartridge Developer’s Guide

If you see either or both of these messages, you have made an error with the

signature for a procedure or function. In other words, you have a mismatch

between the function or procedure prototype that you entered in the object

specification, and the definition in the object body.

Ensure that parameter orders, parameter spelling (including case), and function

returns are identical. Use copy-and-paste to avoid errors in typing.

RPC Time Out
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "<name>", line <number>
ORA-06512: at "<name>", line <number>
ORA-06512: at line 34

This error might occur after you exit the debugger for the DLL. Restart the program

outside the debugger.

Package Corruption
ERROR at line 1:
ORA-04068: existing state of packages has been discarded
ORA-04063: package body "<name>" has errors
ORA-06508: PL/SQL: could not find program unit being called
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

This error might occur if you are extending an existing data cartridge; it indicates

that the package has been corrupted and must be recompiled.

Before you can perform the recompilation, you must delete all tables and object

types that depend upon the package that you will be recompiling. To find the

dependents on a Windows NT system, use the Oracle Administrator toolbar. Click

the Schema button, log in as sys\change_on_install, and find packages and tables

that you created. Drop these packages and tables by entering SQL statements of the

following form into the SQL*Plus interface:

DROP TYPE <type_name>;
DROP TABLE <table_name> CASCADE CONSTRAINTS;

The recompilation can then be done using a SQL statement of the following form:

ALTER TYPE <type_name> COMPILE BODY;
or
ALTER TYPE <type_name> COMPILE SPECIFICATION;

Working with Multimedia Datatypes 6-1

6
Working with Multimedia Datatypes

This chapter includes the following topics:

■ Overview

■ DDL for LOBs

■ LOB Locators

■ EMPTY_BLOB and EMPTY_CLOB Functions

■ Using the OCI to Manipulate LOBs

■ Using DBMS_LOB to Manipulate LOBs

■ LOBs in External Procedures

■ LOBs and Triggers

■ Using Open/Close as Bracketing Operations for Efficient Performance

Overview

6-2 Oracle9i Data Cartridge Developer’s Guide

Overview
Some data cartridges need to handle large amounts of raw binary data, such as

graphic images or sound waveforms, or character data, such as text or streams of

numbers. Oracle supports large objects (LOBs) to handle these kinds of data.

Internal LOBs are stored in the database tablespaces in way that optimizes space

and provides efficient access. Internal LOBs participate in the transactional model of

the server. External LOBs are stored in operating system files outside the database

tablespaces. External LOBs do not participate in transactions.

Internal LOBs can store binary data (BLOBs), single-byte character data (CLOBs), or

fixed-width single-byte or multibyte character data (NCLOBs). An NCLOBconsists of

character data that corresponds to the national character set defined for the Oracle

database. Varying-width character data is not supported in Oracle. External LOBs
store only binary data (BFILEs). Together, internal and external LOBs provide

considerable flexibility in handling large amounts of data.

Data stored in a LOB is called the LOB’s value. To the Oracle server, a LOB's value

is unstructured and cannot be queried. You must unpack and interpret a LOB's
value in cartridge-specific ways.

LOBs can be manipulated using the Oracle Call Interface (OCI) or the PL/SQL

DBMS_LOB package. You can write functions (including methods on object types

that can contain LOBs) to manipulate parts of LOBs. Details on LOBs can be found

in the Oracle9i Application Developer’s Guide - Large Objects (LOBs).

DDL for LOBs
LOB definition can involve the CREATE TYPE and the CREATE TABLE statements.

For example, the following statement specifies a CLOB within a datatype named lob_
type:

CREATE OR REPLACE TYPE lob_type AS OBJECT (
 id INTEGER,
 data CLOB);

The following statement creates an object table (lob_table) in which each row is an

instance of lob_type data:

CREATE TABLE lob_table OF lob_type;

The following statement stores LOBs in a regular table, as opposed to an object table

as in the preceding statement:

LOB Locators

Working with Multimedia Datatypes 6-3

CREATE TABLE lob_table1 (
 id INTEGER,
 b_lob BLOB,
 c_lob CLOB,
 nc_lob NCLOB,
 b_file BFILE);

When creating LOBs in tables, you can set the LOB storage, buffering, and caching

properties. See the Oracle9i SQL Reference manual and the Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for information about using LOBs in the

following DDL statements:

■ CREATE TABLE and ALTER TABLE

– LOB columns

– LOB storage clause

– NOCACHE and NOLOGGING options

■ CREATE TYPE and ALTER TYPE

– BLOB, CLOB and BFILE datatypes

LOB Locators
LOBs can be stored with other row data or separate from row data. Regardless of

the storage location, each LOB has a locator, which can be viewed as a handle or

pointer to the actual location. Selecting a LOB returns the LOB locator instead of the

LOB value.

The following PL/SQL code selects the LOB locator for b_lob and place it a PL/SQL

local variable named image1:

DECLARE
 image1 BLOB;
 image_no INTEGER := 101;
BEGIN
 SELECT b_lob INTO image1 FROM lob_table
 WHERE key_value = image_no;
 ...
END;

When you use an API function to manipulate the LOB value, you refer to the LOB
using the locator. The PL/SQL DBMS_LOB package contains useful routines to

manipulate LOBs, such as PUT_LINE and GETLENGTH:

EMPTY_BLOB and EMPTY_CLOB Functions

6-4 Oracle9i Data Cartridge Developer’s Guide

BEGIN
 DBMS_OUTPUT.PUT_LINE('Size of the Image is: ',
 DBMS_LOB.GETLENGTH(image1));
END;

In the OCI, LOB locators are mapped to LOBLocatorPointers (OCILobLocator *).

The OCI LOB interface and the PL/SQL DBMS_LOB package are described briefly in

this chapter. The OCI is described in more detail in the Oracle Call Interface
Programmer’s Guide. The DBMS_LOB API is described in the Oracle9i Application
Developer’s Guide - Large Objects (LOBs).

For a BFILE , the LOBcolumn has its own distinct locator, which refers to the LOB's
value that is stored in an external file in the server's file system. This implies that

two rows in a table with a BFILE column may refer to the same file or two distinct

files. A BFILE locator variable in a PL/SQL or OCI program behaves like any other

automatic variable. With respect to file operations, it behaves like a file descriptor

available as part of the standard I/O library of most conventional programming

languages.

EMPTY_BLOB and EMPTY_CLOB Functions
You can use the special functions EMPTY_BLOB and EMPTY_CLOB in INSERT or

UPDATE statements of SQL DML to initialize a NULL or non-NULL internal LOB to

empty. These are available as special functions in Oracle SQL DML, and are not part

of the DBMS_LOB package.

Before you can start writing data to an internal LOB using OCI or the DBMS_LOB
package, the LOB column must be made non-null, that is, it must contain a locator

that points to an empty or populated LOB value. You can initialize a BLOB column's

value to empty by using the function EMPTY_BLOB in the VALUES clause of an

INSERT statement. Similarly, a CLOB or NCLOB column's value can be initialized by

using the function EMPTY_CLOB.

Syntax

FUNCTION EMPTY_BLOB() RETURN BLOB;
FUNCTION EMPTY_CLOB() RETURN CLOB;

Parameters

Note: The parentheses are required syntax for both functions.

EMPTY_BLOB and EMPTY_CLOB Functions

Working with Multimedia Datatypes 6-5

None.

Return Values

EMPTY_BLOB returns an empty locator of type BLOB and EMPTY_CLOB returns an

empty locator of type CLOB, which can also be used for NCLOBs.

Pragma

None.

Exceptions

An exception is raised if you use these functions anywhere but in the VALUES
clause of a SQL INSERT statement or as the source of the SET clause in a SQL

UPDATE statement.

Examples

The following example shows EMPTY_BLOB used with SQL DML:

INSERT INTO lob_table VALUES (1001, EMPTY_BLOB(), 'abcde', NULL);
UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value = 1001;
INSERT INTO lob_table VALUES (1002, NULL, NULL, NULL);

The following example shows the correct and erroneous usage of EMPTY_BLOB and

EMPTY_CLOB in PL/SQL programs:

DECLARE
 loba BLOB;
 lobb CLOB;
 read_offset INTEGER;
 read_amount INTEGER;
 rawbuf RAW(20);
 charbuf VARCHAR2(20);
BEGIN
 loba := EMPTY_BLOB();
 read_amount := 10; read_offset := 1;
 -- the following read will fail
 dbms_lob.read(loba, read_amount, read_offset, rawbuf);

 -- the following read will succeed;
 UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value =
 1002 RETURNING c_lob INTO lobb;
dbms_lob.read(lobb, read_amount, read_offset, charbuf);
 dbms_output.put_line('lobb value: ' || charbuf);

Using the OCI to Manipulate LOBs

6-6 Oracle9i Data Cartridge Developer’s Guide

Using the OCI to Manipulate LOBs
The OCI includes functions that you can use to access data stored in BLOBs, CLOBs,
NCLOBs, and BFILEs . These functions are mentioned briefly in Table 6–1. For

detailed documentation, including parameters, parameter types, return values, and

example code, see the Oracle Call Interface Programmer’s Guide.

Table 6–1 OCI Functions for Manipulating LOBs

Function Description

OCILobAppend() Appends LOB value to another LOB.

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobCopy() Copies a portion of a LOB into another LOB.

OCILobDisableBuffering() Disables the buffering subsystem use.

OCILobEnableBuffering() Uses the LOB buffering subsystem for subsequent read and
write operations of LOB data.

OCILobErase() Erases part of a LOB, starting at a specified offset.

OCILobFileClose() Closes an open BFILE .

OCILobFileCloseAll() Closes all open BFILEs .

OCILobFileExists() Tests to see if a BFILE exists.

OCILobFileGetName() Returns the name of a BFILE .

OCILobFileIsOpen() Tests to see if a BFILE is open.

OCILobFileOpen() Opens a BFILE .

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobFlushBuffer() Flushes changes made to the LOB buffering subsystem to
the database (server)

OCILobGetLength() Returns the length of a LOB or a BFILE .

OCILobIsEqual() Tests to see if two LOB locators refer to the same LOB.

OCILobLoadFromFile() Loads BFILE data into an internal LOB.

OCILobLocatorIsInit() Tests to see if a LOB locator is initialized.

OCILobLocatorSize() Returns the size of a LOB locator.

Using the OCI to Manipulate LOBs

Working with Multimedia Datatypes 6-7

Table 6–2 compares the OCI and PL/SQL (DBMS_LOB package) interfaces in terms

of LOB access.

OCILobRead() Reads a specified portion of a non-null LOB or a BFILE into
a buffer.

OCILobTrim() Truncates a LOB.

OCILobWrite() Writes data from a buffer into a LOB, writing over existing
data.

Table 6–2 OCI and PL/SQL (DBMS_LOB) Interfaces Compared

OCI (ociap.h) PL/SQL DBMS_LOB (dbmslob.sql)

N/A DBMS_LOB.COMPARE()

N/A DBMS_LOB.INSTR()

N/A DBMS_LOB.SUBSTR()

OCILobAppend DBMS_LOB.APPEND()

OCILobAssign N/A [use PL/SQL assign operator]

OCILobCharSetForm N/A

OCILobCharSetId N/A

OCILobCopy DBMS_LOB.COPY()

OCILobDisableBuffering N/A

OCILobEnableBuffering N/A

OCILobErase DBMS_LOB.ERASE()

OCILobFileClose DBMS_LOB.FILECLOSE()

OCILobFileCloseAll DBMS_LOB.FILECLOSEALL()

OCILobFileExists DBMS_LOB.FILEEXISTS()

OCILobFileGetName DBMS_LOB.FILEGETNAME()

OCILobFileIsOpen DBMS_LOB.FILEISOPEN()

OCILobFileOpen DBMS_LOB.FILEOPEN()

OCILobFileSetName N/A (use BFILENAME operator)

Table 6–1 OCI Functions for Manipulating LOBs (Cont.)

Function Description

Using the OCI to Manipulate LOBs

6-8 Oracle9i Data Cartridge Developer’s Guide

The following example shows a LOB being selected from the database into a locator.

This example assumes that the type lob_type has two attributes (id of type INTEGER
and data of type CLOB) and that a table (lob_table) of this type (lob_type) has been

created.

/*---*/
/* Select lob locators from a CLOB column */
/* We need the 'FOR UPDATE' clause because we need to write to the LOBs. */
/*---*/
static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCIDefine *defnp1;
static OCIBind *bndhp;

sb4 select_locator(int rowind)
{
 sword retval;
 boolean flag;
 int colc = rowind;
 OCILobLocator *clob;
 text *sqlstmt = (text *)"SELECT DATA FROM LOB_TABLE WHERE ID = :1 FOR
UPDATE";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),

OCILobFlushBuffer N/A

OCILobGetLength DBMS_LOB.GETLENGTH()

OCILobIsEqual N/A [use PL/SQL equal operator]

OCILobLoadFromFile DBMS_LOB.LOADFROMFILE()

OCILobLocatorIsInit N/A [always initialize]

OCILobRead DBMS_LOB.READ()

OCILobTrim DBMS_LOB.TRIM()

OCILobWrite DBMS_LOB.WRITE()

Table 6–2 OCI and PL/SQL (DBMS_LOB) Interfaces Compared (Cont.)

OCI (ociap.h) PL/SQL DBMS_LOB (dbmslob.sql)

Using the OCI to Manipulate LOBs

Working with Multimedia Datatypes 6-9

 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }

 if (OCIStmtBindByPos(stmthp, bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtBindByPos()\n");
 return OCI_ERROR;
 }

 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *) &clob, (sb4) -1, (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos()\n");
 return OCI_ERROR;
 }

 /* Execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 report_error();
 return OCI_ERROR;
 }

 /* Now test to see if the LOB locator is initialized */
 retval = OCILobLocatorIsInit(envhp, errhp, clob, &flag);
 if ((retval != OCI_SUCCESS) && (retval != OCI_SUCCESS_WITH_INFO))
 {
 (void) printf("Select_Locator --ERROR: OCILobLocatorIsInit(), retval =
%d\n", retval);
 report_error();
 checkerr(errhp, retval);
 return OCI_ERROR;
 }

Using DBMS_LOB to Manipulate LOBs

6-10 Oracle9i Data Cartridge Developer’s Guide

 if (!flag)
 {
 (void) printf("Select_Locator --ERROR: LOB Locator is not initialized.\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}
A sample program (populate.c) that uses the OCI to populate a CLOB with the

contents of a file is included on the disk.

Using DBMS_LOB to Manipulate LOBs
The DBMS_LOB package can be used to manipulate LOBs from PL/SQL.

The routines that can modify BLOB, CLOB, and NCLOB values are:

■ APPEND() -- append the contents of the source LOB to the destination LOB

■ COPY() -- copy all or part of the source LOB to the destination LOB

■ ERASE() -- erase all or part of a LOB

■ LOADFROMFILE() -- load BFILE data into an internal LOB

■ TRIM() -- trim the LOB value to the specified shorter length

■ WRITE() -- write data to the LOB from a specified offset

The routines that read or examine LOB values are:

■ GETLENGTH() -- get the length of the LOB value

■ INSTR() -- return the matching position of the nth occurrence of the pattern in

the LOB

■ READ() -- read data from the LOB starting at the specified offset

■ SUBSTR() -- return part of the LOB value starting at the specified offset

The read-only routines specific to BFILEs are:

■ FILECLOSE() -- close the file

■ FILECLOSEALL() -- close all previously opened files

■ FILEEXISTS () -- test to see if the file exists on the server

■ FILEGETNAME() -- get the directory alias and file name

LOBs in External Procedures

Working with Multimedia Datatypes 6-11

■ FILEISOPEN () -- test to see if the file was opened using the input BFILE
locators

■ FILEOPEN() -- open a file

The following example calls the TRIM procedure to trim a CLOB value to a smaller

length is shown in the following example. This example assumes that the type lob_
type has two attributes (id of type INTEGER and data of type CLOB) and that a table

(lob_table) of this type (lob_type) has been created.

PROCEDURE Trim_Clob IS
 clob_loc CLOB;
BEGIN
 -- get the LOB Locator
 SELECT data into clob_loc FROM lob_table
 WHERE id = 179 FOR UPDATE;
 -- call the TRIM Routine
 DBMS_LOB.TRIM(clob_loc, 834004);
 COMMIT;
END;

Because this example deals with CLOB data, the second argument (834004) to DBMS_
LOB.TRIM specifies the number of characters. If the example dealt with BLOB data,

this argument would be interpreted as the number of bytes.

LOBs in External Procedures
LOB locators can be passed as arguments to an external procedure. The

corresponding C routine gets an argument of type OCILobLocator *. For example,

a PL/SQL external procedure could be defined as:

FUNCTION DS_Findmin(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmin" LIBRARY DS_Lib LANGUAGE C;

When this function is called, it invokes a routine (c_findmin) with the signature:

int c_findmin (OCILobLocator *)

This routine in a shared library associated with DS_Lib. In order to use the pointer

OCILobLocator * to get data from the LOB (for example, using OCILobRead ()),

you must reconnect to the database by performing a callback. External procedures

and callbacks are discussed in “Doing Callbacks” on page 5-10.

LOBs and Triggers

6-12 Oracle9i Data Cartridge Developer’s Guide

LOBs and Triggers
You cannot write to a LOB (:old or :new value) in any kind of trigger.

In regular triggers, you can read the :old value but you cannot read the :new value.

In INSTEAD OF triggers, you can read the :old and the :new values.

You cannot specify LOB type columns in an OF clause, because BFILE types can be

updated without updating the underlying table on which the trigger is defined.

Using OCI functions or the DBMS_LOB package to update LOB values or LOB
attributes of object columns will not fire triggers defined on the table containing the

columns or the attributes.

Using Open/Close as Bracketing Operations for Efficient Performance
The Open/Close functions let you indicate the beginning and end of a series of

LOB operations so that large-scale operations, such updating indexes, can be

performed once the Close function is called. This means that once the Open call is

made, the index would not be updated each time the LOB is modified, and that

such updating would not resume until the Close call.

You do not have to wrap all LOBoperations inside the Open/Close operations, but

this function can be very useful for cartridge developers.

For one thing, if the you do not wrap LOB operations inside an Open/Close call,

then each modification to the LOB will implicitly open and close the LOB, thereby

firing any triggers. But if do you wrap the LOB operations inside a pair of

Open/Close operations, then the triggers will not be fired for each LOB
modification. Instead, one trigger will be fired at the time the Close call is made.

LIkewise, extensible indexes will not be updated until the user calls Close . This

means that any extensible indexes on the LOB are not valid between the

Open/Close calls.

You need to apply this technology carefully since state, reflecting the changes to the

LOB, is not saved between the Open and the Close operations. Once you have

called Open, Oracle no longer keeps track of what portions of the LOB value were

modified, nor of the old and new values of the LOB that result from any

modifications. The LOB value is still updated directly for each OCILob* or DBMS_
LOB operation, and the usual read consistency mechanism is still in place.

Moreover, you may want extensible indexes on the LOB to be updated as LOB

modifications are made because in that case, the extensible LOB indexes are always

valid and may be used at any time.

Using Open/Close as Bracketing Operations for Efficient Performance

Working with Multimedia Datatypes 6-13

The API enables you to find out if the LOB is “open” or not. In all cases openness is

associated with the LOB, not the locator. The locator does not save any information

as to whether the LOB to which it refers is open.

Errors and Restrictions Regarding Open/Close Operations
Note that it is an error to commit the transaction before closing all previously

opened LOBs. At transaction rollback time, all LOBs that are still open will be

discarded, which means that they will not be closed thereby firing the triggers).

Only 32 LOBs may be open at any one time. An error will be returned when the

33rd LOB is opened. Assigning an already opened locator to another locator does

not incur a round trip to the server and does not count as opening a new LOB (both

locators refer to the same LOB).

It is an error to Open/Close the same LOB twice either with different locators or

with the same locator. It is an error to close a LOB that has not been opened.

Example
Assume loc1 is refers to an opened LOB and is assigned to loc2 . If loc2 is

subsequently used to modify the LOB value, the modification is grouped together

with loc1 ’s modifications (that is, there is only one entry in the LOB manager’s

state, not one for each locator). Once the LOB is closed (through loc1 or loc2), the

triggers are fired and all updates made to the LOB through any locator are

committed. After the close of the LOB, if the user tries to use either locator to modify

the LOB, the operation will be performed as Open/operation/Close . Note that

consistent read is still maintained for each locator. This discussion is merely

showing that the LOB, not the locator, is opened and closed. No matter how many

copies of the locator are made, the triggers for the LOB are fired only once on the

first Close call.

For example:

open (loc1);
loc2 := loc1;
write (loc1);
write (loc2);
open (loc2); /* error because the LOB is already open */
close (loc1); /* triggers are fired and all LOB updates made prior to this
 statement by any locator are incorporated in the extensible
 index */
write (loc2); /* implicit open, write, implicit close */

Using Open/Close as Bracketing Operations for Efficient Performance

6-14 Oracle9i Data Cartridge Developer’s Guide

g Building Domain Indexes 7-1

7
g Building Domain Indexes

This chapter describes extensible indexing, including:

■ Introduction to Extensible Indexing

■ The Extensible Indexing API

■ Partitioned Domain Indexes

Introduction to Extensible Indexing

7-2 Oracle9i Data Cartridge Developer’s Guide

Introduction to Extensible Indexing
What is extensible indexing? Why is it important to you as a cartridge developer?

How should you go about implementing it?

To answer these questions we first need to understand the modes of indexing

provided by the Oracle, which in turn requires that we first consider the role of

indexing in information management systems.

What is Indexing?
The impetus to index data arises because of the need to locate specific information

and then to retrieve it as efficiently as possible. If you could keep the entire dataset

in main memory (equivalent to a person memorizing a book), there would be no

need for indexing. Since this is not possible, and since disk access times are much

slower than main memory access times, you are forced to wrestle with the art of

indexing.

If you think of the form of indexing with which we are most familiar — the index at

the back of a technical book — you will note that every index token has three

characteristics which refer to the item being indexed:

■ Identity — the token must allow us to identify the item in such a way that it is

distinguished from the rest of the mass of the data. But this is not simply a

representative relationship. By defining an index item you filter the

information, implicitly providing a logical structure for the indexed

information.

This has many implications. For one, it means that the same data can be subject

to different indexing schemes. For another, it means that the indexing scheme

provides a pathway of access to the information. The index in the back of the

book gives you access to the entire range of topics covered in the book.

Provided that its structure meets your needs, its presorting of the data means

that you do not have to sift through every iota of information.

■ Location —the token must allow us to locate the information. In the case of a

book, this is a page number, and may also include a chapter designation. This is

not very precise since we still have to search the page for the item. In contrast to

the normal index, conversation analysis makes use of line numbers because of

the need for greater precision in locating the item:

10296 HELEN: If you really loved me you wouldn’t go to war.
10297 PARIS: If you really loved me you wouldn’t stand in the way of my
 duty.

Introduction to Extensible Indexing

g Building Domain Indexes 7-3

■ Storage — the index token has to be located somewhere, and the information

that it maps also has to be stored. In the case of books, a page is normally the

unit of storage in both cases, but the nature of the storage is different. While the

body text is stored as sentences, the index tokens have an altogether different

structure.

The upshot is that you can retrieve the information much quicker than if you had to

page through the entire book (equivalent to sequential scanning of a file)! However,

note that while indexing speeds up retrieval, it slows down inserts because you

have to update the index.

Index Structures
An index can be any structure which can be used to represent information that can

be used to efficiently evaluate a query.

The Relationship between Logical and Physical Structures
There is no single structure that is optimal for all applications.

■ If you want to discover if any Regions contain a city named Metropolis, you

will deploy an equality operator that will return an exact match (or not).

■ If you are interested how many time-periods have power demands between

two stipulated numbers, you will use an operator that can process a range of

data.

In each case, you will want to organize the data in a different index structure since

different queries require that information be indexed in different ways. As we will

discuss in the following sections, a Hash structure is best suited for determining

exact match, whereas a B-tree is much better suited for range queries.

Moreover, these are not the only kind of queries. What if you want to discover

whether Power Station A or B can best service Quadrant 3, or to determine the

overlapping coverage zones derived from different distributions of power stations?

In these cases, you will want to create operators (inRangeOf , servesArea , and so

on) that meet your specific requirements. Unfortunately, you cannot do this by

means of either Hash or B-tree indexes.

The Need for Index Structures that Encompass Unstructured Data
The limitation of Hash and B-tree indexes is important because one criterion that

distinguishes cartridges from other database applications is that data often

incorporates many different kinds of information. While database systems are

Introduction to Extensible Indexing

7-4 Oracle9i Data Cartridge Developer’s Guide

accomplished in processing scalar values, they cannot encompass the

domain-specific data of interest to cartridge developers. Information in these

contexts may be made up of text, images, audio, video — and combinations of these

that comprise domain-specific datatypes.

One way to resolve this problem is to create an index that serves as an intermediate

structure. This is a logical extension of the basic idea underlying software-based

indexing, namely that pointers refer to data (records, pages, files). In this scheme,

keywords used to index video may be stored as an index. Going one step further, an

intermediate structure may itself be indexed, as you might index abstracts (capsule

text descriptions) of films.The advantage of this approach is that it may be easier to

construct an index based on textual description of film than it is to index video

footage. Employing this strategy you can scan the index without ever referring to

the primary data (the film).

Unfortunately, intermediate structures in which text or scalars are used to represent

unstructured data cannot satisfy all requirements. For one thing, they are always

slower than direct indexing of the data because they introduce a level of indirection.

More importantly, if the task is to analyze the density of bone in x-rays, or to

categorize primate gestures, or to record the radio emissions of stars, there is no

efficient substitute for direct indexing of unstructured data.

Kinds of Indexes

B-tree
While there is no single kind of index that can satisfy all needs, the B-tree index

comes closest to meeting the requirement. Here we describe the Knuth variation in

which the index consists of two parts: a sequence set that provides fast sequential

access to the data, and an index set that provides direct access to the sequence set.

Introduction to Extensible Indexing

g Building Domain Indexes 7-5

Figure 7–1 B-tree Index Structure

While the nodes of a B-tree will generally not contain the same number of data

values, and will usually contain a certain amount of unused space, the B-tree

algorithm ensures that it remains balanced (the leaf nodes will all be at the same

level).

Hash
Hashing gives fast direct access to a specific stored record based on a given field

value. Each record is placed at a location whose address is computed as some

function of some field of that record. The same function is used both at the time of

insertion and retrieval.

The problem with hashing is that the physical ordering of records has little if any

relation to their logical ordering. Also, there may be large unused areas on the disk.

x Sequence set
(with pointers to
data records)

Index set

x xx x

x x

x x

Introduction to Extensible Indexing

7-6 Oracle9i Data Cartridge Developer’s Guide

Figure 7–2 Hash Index Structure

k-d tree
Our sample scenario integrates geographic data with other kinds of data. Insofar as

we are interested in points that can be defined with two dimensions (latitude and

longitude), such as geographic location of power stations, we can use a variation on

the k-d tree known as the 2-d tree.

In this structure, each node is a datatype with fields for information, the two

co-ordinates, a left-link and a right-link which can point to two children.

S300 Blake 30 Paris

10

12

3 4

7 8

2

S200 Jones 10 Paris

5

S500 Adams 30 Athens

6

11

S100 Smith 30 London

9

S400 Clark 20 London

10

Introduction to Extensible Indexing

g Building Domain Indexes 7-7

Figure 7–3 2-d Index Structure

The structure allows for range queries. That is, if the user specifies a point (xx, xx)

and a distance, the query will return the set of all points within the specified

distance of the point.

2-d trees are very easy to implement. However,the fact that a 2-d tree containing k
nodes may have a height of k means that insertion and querying may be complex.

A (XX, XX)

A (XX, XX)

B (XX, XX)

C (XX, XX)

A (XX, XX)

B (XX, XX)

Introduction to Extensible Indexing

7-8 Oracle9i Data Cartridge Developer’s Guide

Point Quadtree

Figure 7–4 Point Quadtree Index Structure

A

A B

A B C

Introduction to Extensible Indexing

g Building Domain Indexes 7-9

The point quadtree is also used to represent point data in a two dimensional spaces.

But these structures divide regions into four parts while 2-d trees divide regions

into two. The fields of the record type for this node are comprised of an attribute for

information, two co-ordinates, and four compass points (NW, SW, NE, SE) that can

therefore point to four children.

Like 2-d trees, point quadtrees are very easy to implement. Also like 2-d trees, the

fact that a point quadtree containing k nodes may have a height of k means that

insertion and querying may be complex. Each comparison requires comparisons on

at least two co-ordinates. However, in practice the lengths from root to leaf tend to

be shorter in point quadtrees.

Why is Extensible Indexing Necessary?
The fact is that Oracle provides a limited number of kinds of indexes, so that if (for

instance) you wish to utilize either a k-d tree or the point quadtree, you will have to

implement this yourself. As you consider your need to access your data, you need

to keep in mind the following restrictions that pertain to the standard kinds of

indexes:

Inability to Index Unstructured Data
 Oracle’s standard modes of indexing do not permit indexing a column that

contains LONG or LOB values.

Inability to Index Attributes of Column Objects
You may not be able to index a column object using Oracle’s standard indexing

schemes or the elements of a collection type.

Inability to Index Values Derived from Domain-specific Operations
Oracle object types may be compared using either a map function or an order

function. If the object utilizes a map function, then you can define a function-based

index that can be used implicitly to evaluate relational predicates. However, if an

order function is used, you will not be able to use this to construct an index.

Further, you cannot utilize functions in predicates in which the range of the

parameters is infinite. Function-based indexes allow you to include a function in a

predicate, provided you can precompute the function values for all the rows.

Typically the index would store the rowid and the functional value. Queries that

apply relational operators to values based on derived values utilize the index.

The Extensible Indexing API

7-10 Oracle9i Data Cartridge Developer’s Guide

However, you can use function-based indexes only if the function is so designed

that there are a finite number of input combinations. Put another way: you cannot

use function-based indexes in cases in which the input parameters do not have a

limited cardinality.

The Extensible Indexing API
This SQL-based interface lets you define domain-specific operators and indexing

schemes, and integrate these into the Oracle server.

Oracle provides a set of pre-defined operators which include arithmetic operators

(+, -, *, /), comparison operators (=, >, <) and logical operators (NOT, AND, OR).

These operators take as input one or more arguments (or operands) and return a

result. They are represented by special characters (+) or keywords (AND).

Like built-in operators, user-defined operators (such as Contains) take a set of

operands as input and return a result. The implementation of the operator is

provided by the user. After a user has defined a new operator, it can be used in SQL

statements like any other built-in operator.

For instance, suppose you define a new operator Contains , which takes as input a

text document and a keyword, and returns 1 if the document contains the specified

keyword. You can then write an SQL query as:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle and UNIX’)=1;

Oracle uses indexes to efficiently evaluate some built-in operators. For example, a

B-tree index can be used to evaluate the comparison operators =, > and <. Similarly,

user-defined domain indexes can be used to efficiently evaluate user-defined

operators.

Typical database management systems support a few types of access methods

(B+Trees, Hash Index) on some set of data types (numbers, strings, and so on). In

recent years, databases are more and more being used to store different types of

data, such as text, spatial, image, video and audio. In these complex domains, there

is a need for indexing complex data types and also specialized indexing techniques.

For instance, R-trees are an efficient method of indexing spatial data. No database

server can be built with support for all possible kinds of complex data and

indexing. The solution is to provide an extensible server which lets the user define

new index types.

The framework to develop new index types is based on the concept of cooperative

indexing where an application and the Oracle server cooperate to build and

maintain indexes for data types such as text, spatial and On-line-Analytical

The Extensible Indexing API

g Building Domain Indexes 7-11

Processing (OLAP). The application software, in the form of a cartridge, is

responsible for defining the index structure, maintaining the index content during

load and update operations, and searching the index during query processing. The

index structure itself can either be stored in an Oracle database as an

Index-Organized Table, or externally as a file.

The extensible indexing framework consists of the following components:

■ Indextype: A schema object Indextype specifies the routines that manage all

aspects of an application-specific index, namely, index definition, index

maintenance, and index scan operations. This schema object enables the Oracle

Server to establish a user-defined index on a column of a table or attribute of an

Object. It encapsulates the set of routines that together manage and access the

user-defined index.

■ Domain Index: Using the Indextype schema object, an application-specific

index can be created. Such an index is called a domain index since it is used for

indexing data in application-specific domains. A domain index is an instance of

an index which is created, managed, and accessed by routines supplied by an

indextype. This is in contrast to B-tree indexes maintained by Oracle internally,

which are simply referred to as indexes.

■ Operators: Queries and data manipulation statements can involve

application-specific operators, like the Overlaps operator in the spatial

domain. In general, user-defined operators can be bound to functions.

However, operators can also be evaluated using indexes. For instance, the

equality operator can be evaluated using a hash index. An indextype provides

index-based implementation for the operators listed in the indextype definition.

■ Index-Organized tables: This feature enables applications to define, build,

maintain, and access indexes for complex objects using a table metaphor. To the

application, an index is modeled as a table, where each row is an index entry. In

addition, this feature extends the current sorted access method to handle

indexing content-rich objects by providing improved handling of duplicate

index entries. For detailed information on index-organized tables see Oracle9i
Database Administrator’s Guide.

To illustrate the role of each of these components, let us consider a text domain

application. Suppose a new indextype TextIndexType be defined as part of the

text cartridge. It contains routines for managing and accessing the text index. The

text index is an inverted index storing the occurrence list for each token in each of

the text documents. The text cartridge also defines the Contains operator for

performing content-based search on textual data. It provides both a functional

The Extensible Indexing API

7-12 Oracle9i Data Cartridge Developer’s Guide

implementation (a simple number function) and an index implementation (using

the text index) for the Contains operator.

Now, let Employees be an employee table with a resume column containing

textual data.

CREATE TABLE Employees
(name VARCHAR(128), id INTEGER, resume VARCHAR2(1024));

A domain index can be created on resume column as follows:

CREATE INDEX ResumeTextIndex ON Employees(resume)
INDEXTYPE IS TextIndexType;

The Oracle server invokes the routine corresponding to the create method in the

TextIndexType , which results in the creation of an index-organized table to store

the occurrence list of all tokens in the resumes (essentially, the inverted index data).

The inverted index modeled by ResumeTextIndex is automatically maintained by

invoking routines defined in TextIndexType , whenever an Employees row is

inserted, updated, or deleted.

Content-based search on the resume column can be performed as follows:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle and UNIX’)=1;

Index-based implementation of the Contains operator can take advantage of the

previously built inverted index. Specifically, the Oracle server can invoke routines

specified in TextIndexType to search the domain index for identifying candidate

rows, and then do further processing such as filtering, selection, and fetching of

rows. Note that the preceding query can also be evaluated using the non-index

implementation of the Contains operator, if the Oracle server chooses to not use

the index defined on resume column. In such a case, the filtering of rows will be

done by applying the non-index implementation on each resume instance of the

table.

In summary, the extensible indexing interface will

■ Allow encapsulating application-specific index management routines as an

indextype schema object,

■ Support defining a domain index (an application-specific index) on table

columns, and

■ Provide efficient processing of application-specific operators.

This interface will enable a domain index to operate essentially the same way as any

other Oracle Server index, the primary difference being that the Oracle Server will

The Extensible Indexing API

g Building Domain Indexes 7-13

invoke application code specified as part of the indextype to create, drop, truncate,

modify, and search a domain index.

It should be noted that an index designer may choose to store the index data in files,

rather than in index-organized tables. The SQL interface for extensible indexing

makes no restrictions on the location of the index data, only that the application

adhere to the protocol for index definition, maintenance and search operations.

Concepts: Extensible Indexing
This section describes the key concepts of the Extensible Indexing Framework.

Overview
For simple data types such as integers and small strings, all aspects of indexing can

be easily handled by the database system. This is not the case for documents,

images, video clips and other complex data types that require content-based

retrieval (CBR). The essential reason is that complex data types have application

specific formats, indexing requirements, and selection predicates. For example,

there are many different document encodings (such as ODA, SGML, plain text) and

information retrieval (IR) techniques (keyword, full-text boolean, similarity,

probabilistic, and so on). To effectively accommodate the large and growing number

of complex data objects, the database system must support application specific

indexing. The approach that we employ to satisfy this requirement is termed

extensible indexing.

With Extensible indexing,

■ The application defines the structure of the domain index

■ The application stores the index data either inside the Oracle database (for

example, in the form of index-organized tables) or outside the Oracle database

■ The application manages, retrieves and uses the index data to evaluate user

queries

In effect, the application controls the structure and semantic content of the domain

index. The database system interacts with the application to build, maintain, and

employ the domain index. It is highly desirable for the database to handle the

physical storage of domain indexes. In the following discussion, we implicitly make

the assumption that the index is stored in an index-organized table. Note however,

that the extensible indexing paradigm does not impose this requirement. The index

could be stored in one or more external files.

The Extensible Indexing API

7-14 Oracle9i Data Cartridge Developer’s Guide

To illustrate the notion of extensible indexing, we consider a textual database

application with IR functionality. For such applications, document indexing

involves parsing the text and inserting the words, or tokens, into an inverted index.

Such index entries typically have the following logical form

(token, <docid, data>)

where token is the key, docid is a unique identifier (such as object identification) for

the related document, and data is a segment containing IR specific quantities. For

example, a probabilistic IR scheme could have a data segment with token frequency

and occurrence list attributes. The occurrence list identifies all locations within the

related document where the token appears. Assuming an IR scheme such as this,

each index entry would be of the form:

(token, <docid, frequency, occlist> ..)

The following sample index entry for the token Archimedes illustrates the

associated logical content.

(Archimedes, <5, 3, [7 62 225]>, <26, 2, [33, 49]>, ...);

In this sample index entry, the token "Archimedes" appears in document 5 at 3

locations(7, 62, and 225), and in document 26 at 2 locations(33 and 49). Note that the

index would contain one entry for every document with the word "Archimedes".

IR applications can use domain indexes to locate documents that satisfy some given

selection criteria. After consulting the index, the documents of interest are retrieved

with the related docid values. It should be noted that the occurrence lists are

required for queries that contain proximity expressions (for example, the phrase

"Oracle Corporation").

When the database system handles the physical storage of domain indexes,

applications must be able to:

■ Define the format and content of an index. This enables applications to define

an index structure that can accommodate a complex data object.

■ Build, delete, and update a domain index. With this capability, the application

software handles building and maintaining the index structures. Note that this

is a significant departure from the "automatic" indexing features provided for

simple SQL data types. Also, since an index is modeled as a collection of tuples,

in-place updating is directly supported.

■ Access and interpret the content of an index. This capability enables the

application software to become an integral component of query processing.

The Extensible Indexing API

g Building Domain Indexes 7-15

That is, the content-related clauses for database queries are handled by

application software.

In the following section, we illustrate the extensible indexing framework by

building a text domain index.

Example: A Text Indextype
This section presents an example of adding a text indexing scheme to Oracle

RDBMS using the extensible indexing framework. It describes:

■ Defining a new indexing scheme using text indextype.

■ Use of text indextype by the end user to index and operate on textual data.

Text Indextype Designer
’The sequence of steps required to define the Text Indextype are:

■ Define and code functions to support functional implementation of operators

which would eventually be supported by the text indextype.

The text cartridge intends to support an operator Contains , that takes as

parameters a text value and a key and returns a number value indicating whether

the text contained the key. The functional implementation of this operator is a

regular function defined as:

CREATE FUNCTION TextContains(Text IN VARCHAR2, Key IN VARCHAR2)
RETURN NUMBER AS
BEGIN
.......
END TextContains;

■ Create a new operator, and define its specification, namely, the argument and

return datatypes, and the functional implementation

CREATE OPERATOR Contains
 BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER USING TextContains;

■ Define a type that implements the index interface ODCIIndex . This involves

implementing routines for index definition, index maintenance, and index scan

operations.

The index definition routines (ODCIIndexCreate , ODCIIndexAlter ,

ODCIIndexDrop , ODCIIndexTruncate) build the text index when index is

created, alter the index information when index is altered, remove the index

information when the index is dropped, and truncate the text index when the

base table is truncated.

The Extensible Indexing API

7-16 Oracle9i Data Cartridge Developer’s Guide

The index maintenance routines (ODCIIndexInsert , ODCIIndexDelete ,

ODCIIndexUpdate) maintain the text index when the table rows are inserted,

deleted, or updated.

The index scan routines (ODCIIndexStart , ODCIIndexFetch ,

ODCIIndexClose) implement access to the text index to retrieve rows of the

base table that satisfy the operator predicate. In this case, the Contains (...) =1,

whose arguments are passed to the index scan routines. The index scan routines

scan the text index and return the qualifying rows to the system.

CREATE TYPE TextIndexMethods
(
FUNCTION ODCIIndexCreate(...)
...
);
CREATE TYPE BODY TextIndexMethods
(
...
);

■ Create the Text Indextype schema object. The Indextype definition also

specifies all the operators supported by the new indextype and specifies the

type that implements the index interface.

CREATE INDEXTYPE TextIndexType
FOR Contains(VARCHAR2, VARCHAR2)
USING TextIndexMethods;

End User of Text Indextype
Suppose that the text indextype presented in the previous section has been defined

in the system. You can define text indexes on text columns and use the associated

Contains operator to query text data.

Consider the Employees table defined as follows:

CREATE TABLE Employees
(name VARCHAR2(64), id INTEGER, resume VARCHAR2(2000));

A text domain index can be built on the resume column as follows:

CREATE INDEX ResumeIndex ON Employees(resume) INDEXTYPE IS TextIndexType;

The text data in the resume column can be queried as:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) =1;

The Extensible Indexing API

g Building Domain Indexes 7-17

The query execution will use the text index on resume to efficiently evaluate the

Contains predicate.

The following sections describe the concepts of indextypes, domain indexes and

operators in greater detail.

Indextypes
The purpose of an indextype is to enable efficient search and retrieval functions for

complex domains such as text, spatial, image, and OLAP using external software.

An indextype is analogous to the sorted or bit-mapped indextype that are supplied

internally within the Oracle Server. The essential difference is that the

implementation for an indextype is provided by application software, as opposed to

the Oracle Server internal routines.

Interface A set of routine specifications. It does not refer to a separate schema object

but rather a logical set of documented method specifications.

ODCIIndex Interface The set of index definition, maintenance and scan routine

specifications.

The interface specifies all the routines which have to be implemented by the index

designer. The routines are implemented as type methods.

Creating Indextypes
After the type implementing the ODCIIndex interface has been defined, a new

indextype can be created by specifying the list of operators supported by the

indextype and referring to the type that implements the index interface.

Using the information retrieval example, the DDL statement for defining the new

indextype TextIndexType which supports the Contains operator and whose

implementation is provided by the type TextIndexMethods (implemented in the

previous section) is as follows:

CREATE INDEXTYPE TextIndexType
FOR Contains (VARCHAR2, VARCHAR2)
USING TextIndexMethods;

In addition to the ODCIIndex interface routines, the implementation type must

always implement the ODCIGetInterfaces routine. This function returns the list

of names of the interface routines implemented by the type and tells the server the

version of these routines. The ODCIGetInterfaces routine is invoked by Oracle

when CREATE INDEXTYPE is executed. If the indextype implements the Oracle9i

The Extensible Indexing API

7-18 Oracle9i Data Cartridge Developer’s Guide

version of the routines, ODCIGetInterfaces must specify ’SYS.ODCIINDEX2’
in the OUT parameter. If the indextype implements the Oracle8i version of the

routines, ODCIGetInterfaces must specify ’SYS.ODCIINDEX1’ in the OUT
parameter. (The Oracle8i routines lack the ODCIEnv parameter added to many of

the routines in Oracle9i.)

Dropping Indextypes
A corresponding DROP statement is supported to remove the definition of an

indextype. For our example, this statement would be of the following form:

DROP INDEXTYPE TextIndexType;

The default DROP behavior is DROP RESTRICT semantics, that is, if one or more

domain indexes exist that uses the indextype then the DROPoperation is disallowed.

User can override the default behavior with the FORCE option, which drops the

indextype and marks dependent domain indexes (if any) invalid. For more details

on object dependencies and drop semantics see "Object Dependencies, Drop

Semantics, and Validation" on page 7-40.

Commenting on Indextypes
The COMMENT statement can be used to supply information about an indextype or

operator. For example:

COMMENT ON INDEXTYPE
Ordsys.TextIndexType IS 'implemented by the type TextIndexMethods to support the
Contains operator';

Comments on indextypes can be viewed in these data dictionary views:

■ USER_INDEXTYPE_COMMENTS

■ ALL_INDEXTYPE_COMMENTS

■ DBA_INDEXTYPE_COMMENTS

To place a comment on an indextype, the indextype must be in your own schema or

you must have the COMMENT ANY INDEXTYPE privilege.

ODCI Index Interface
The ODCIIndex (Oracle Data Cartridge Interface Index) interface consists of the

following classes of methods:

■ Index Definition methods

The Extensible Indexing API

g Building Domain Indexes 7-19

■ Index Maintenance methods

■ Index Scan methods

■ Index Metadata method

Index Definition Methods
Index definition methods allow specification of CREATE, ALTER, DROP, and

TRUNCATE behaviors.

ODCIIndexCreate
The ODCIIndexCreate procedure is called when a CREATE INDEX statement is

issued that references the indextype. Upon invocation, any physical parameters

specified as part of the CREATE INDEX... PARAMETERS (...) statement are passed in

along with the description of the index.

A typical action of this procedure is to create tables/files to store index data.

Further, if the base table is not empty, this routine should build the index for the

existing data in the indexed columns.

ODCIIndexAlter
The ODCIIndexAlter procedure is invoked when a domain index is altered using

an ALTER INDEX statement. The description of the domain index to be altered is

passed in along with any specified physical parameters.

In addition, this procedure is allowed to handle ALTER with REBUILD option,

which supports rebuilding of domain index. The precise behavior in these two cases

is defined by the person who implements indextype.

The ODCIIndexAlter routine is also invoked when a domain index is renamed

using the ALTER INDEX ... RENAME command.

ODCIIndexTruncate
The ODCIIndexTruncate procedure is called when a TRUNCATE statement is

issued against a table that contains a column or OBJECT type attribute indexed by

the indextype. After this procedure executes, the domain index should be empty.

ODCIIndexDrop
The ODCIIndexDrop procedure is invoked when a domain index is destroyed

using a DROP INDEX statement.

The Extensible Indexing API

7-20 Oracle9i Data Cartridge Developer’s Guide

Index Maintenance Methods
Index maintenance methods allow specification of index INSERT, UPDATE, and

DELETE behaviors.

ODCIIndexInsert
The ODCIIndexInsert procedure in the indextype is called when a record is

inserted in a table that contains columns or OBJECT attributes indexed by the

indextype. The new values in the indexed columns are passed in as arguments

along with the corresponding row identifier.

ODCIIndexDelete
The ODCIIndexDelete procedure in the indextype is called when a record is

deleted from a table that contains columns or OBJECT attributes indexed by the

indextype. The old values in the indexed columns are passed in as arguments along

with the corresponding row identifier.

ODCIIndexUpdate
The ODCIIndexUpdate procedure in the indextype is called when a record is

updated in a table that contains columns or OBJECT attributes indexed by the

indextype. The old and new values in the indexed columns are passed in as

arguments along with the row identifier.

Index Scan Methods
Index scan methods allow specification of an index-based implementation for

evaluating predicates containing operators.

An index scan is specified through three routines, ODCIIndexStart ,

ODCIIndexFetch , and ODCIIndexClose . These perform initialization, fetch rows

(or identifiers of rows) that satisfy the predicate, and clean up after all rows are

returned.

ODCIIndexStart
ODCIIndexStart () is invoked to initialize any data structures and start an index

scan. The index related information and the operator related information are passed

in as arguments.

A typical action performed when ODCIIndexStart () is invoked is to parse and

execute SQL statements that query the tables storing the index data. It could also

generate some set of result rows to be returned later when ODCIIndexFetch () is

invoked.

The Extensible Indexing API

g Building Domain Indexes 7-21

Since the index and operator related information are passed in as arguments to

ODCIIndexStart () and not to the other index scan routines (ODCIIndexFetch ()

and ODCIIndexClose ()), any information needed in the later routines must be

saved. This is referred to as the state that has to be shared among the index scan

routines. There are two ways of doing this:

■ Return State: If the state to be maintained is small, it can be returned back to

Oracle RDBMS through an output SELF argument.

■ Return Handle: If the state to be maintained is large (for example, a subset of

the results), cursor-duration memory can be allocated to save the state. In this

case, a handle to the memory can be returned to Oracle RDBMS through the

output SELF parameter.

In both cases, Oracle RDBMS will pass the SELF value to subsequent

ODCIIndexFetch () and ODCIIndexClose () calls which can then use the value to

access the relevant context information.

There are two modes of evaluating the operator predicate to return the result set of

rows.

■ Precompute All: Compute the entire result set in ODCIIndexStart (). Iterate

over the results returning a row at a time in ODCIIndexFetch (). This mode is

required for operators involving some sort of ranking over the entire collection.

Evaluating such operators would require looking at the entire result set to

compute the ranking, relevance, and so on for each candidate row.

■ Incremental Computation: Compute one result row at a time as part of

ODCIIndexFetch (). This mode is applicable for operators which can

determine the candidate rows one at a time without having to look at the entire

result set.

The choice of evaluating modes as well as what gets saved is left to the index

designer. In either case, the Oracle RDBMS simply executes the ODCIIndexStart ()

routine as part of processing query containing operators which returns the context

as an output SELF value.The returned value is passed back to subsequent

ODCIIndexFetch () and ODCIIndexClose () calls.

See Also: The chapter on Cartridge Services in the Oracle Call
Interface Programmer’s Guide for information on memory services

and maintaining context

The Extensible Indexing API

7-22 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexFetch
ODCIIndexFetch () returns the "next" row identifier of the row that satisfies the

operator predicate.The operator predicate is specified in terms of the operator

expression (name and arguments) and a lower and upper bound on the operator

return values. Thus, a ODCIIndexFetch () call returns the row identifier of the

rows for which the operator return value falls within the specified bounds. A NULL
is returned to indicate end of index scan. The fetch method supports returning a

batch of rows in each call. The state returned by ODCIIndexStart () or a previous

call to ODCIIndexFetch () is passed in as an argument.

ODCIIndexClose
ODCIIndexClose () is invoked when the cursor is closed or reused. In this call the

Indextype can perform any clean-ups or other needed functions. The current state is

passed in as an argument.

Index Metadata Method
The optional ODCIIndexGetMetadata routine, if it is implemented, is called by

the export utility to write implementation-specific metadata into the export dump

file. This metadata might be policy information, version information, individual

user settings, and so on, which are not stored in the system catalogs. The metadata

is written to the dump files as anonymous PL/SQL blocks that get executed at

import time immediately prior to the creation of the associated index.

Transaction Semantics during Index Method Execution
The index interface routines (with the exception of index definition methods,

namely, ODCIIndexCreate() , ODCIIndexAter() , ODCIIndexTruncate() ,

ODCIIndexDrop()) are invoked under the same transaction that triggered these

actions. Thus, the changes made by these routines are atomic and are committed or

aborted based on the parent transaction. To achieve this, there are certain

restrictions on the nature of the actions that can be performed in the different

indextype routines.

■ Index definition routines have no restrictions.

■ Index maintenance routines can only execute DML statements. However, the

DML statements cannot update the base table on which the domain index is

created.

■ Index scan routines can only execute SQL query statements.

For example, if an INSERT statement caused the ODCIIndexInsert() routine to

be invoked, ODCIIndexInsert() runs under the same transaction as INSERT.

The Extensible Indexing API

g Building Domain Indexes 7-23

The ODCIIndexInsert() routine can execute any number of DML statements (for

example, insert into index-organized tables). If the original transaction aborts, all

the changes made by the indextype routines are rolled back.

However, if the indextype routines cause changes external to the database (like

writing to external files), transaction semantics are not assured.

Transaction Semantics for Index Definition Routines
The index definition routines do not have any restrictions on the nature of actions

within them. Consider ODCIIndexCreate() to understand this difference. A

typical set of actions to be performed in ODCIIndexCreate() could be:

1. Create an index-organized table

2. Insert data into the index-organized table

3. Create a secondary index on a column of the index-organized table

To allow ODCIIndexCreate() to execute an arbitrary sequence of DDL and DML

statements, we consider each statement to be an independent operation.

Consequently, the changes made by ODCIIndexCreate() are not guaranteed to

be atomic. The same is true for other index-definition routines.

Consistency Semantics during Index Method Execution
The index maintenance (and scan routines) execute with the same snapshot as the

top level SQL statement performing the DML (or query) operation. This enables the

index data processed by the index method to be consistent with the data in the base

tables.

Privileges During Index Method Execution
Indextype routines always execute as the owner of the index. To support this, the

index access driver will dynamically change user mode to index owner before

invoking the indextype routines.

For certain operations, indextype routines may require to store information in tables

owned by indextype designer. Indextype implementation must code those actions

in a separate routine which will be executed using definer’s privileges. For more

information on syntax, see CREATE TYPE in the Oracle9i SQL Reference.

The Extensible Indexing API

7-24 Oracle9i Data Cartridge Developer’s Guide

Domain Indexes
This section describes the domain index operations and how metadata associated

with the domain index can be obtained.

Domain Index Operations

Creating a Domain Index
A domain index can be created on a column of a table just like a B-tree index.

However, an indextype must be explicitly specified. For example:

CREATE INDEX ResumeTextIndex ON Employees(resume)
INDEXTYPE IS TextIndexType
PARAMETERS (’:Language English :Ignore the a an’);

The INDEXTYPE clause specifies the indextype to be used. The PARAMETERS clause

identifies any parameters for the domain index, specified as a string. This string is

passed uninterpreted to the ODCIIndexCreate routine for creating the domain

index. In the preceding example, the parameters string identifies the language of

the text document (thus identifying the lexical analyzer to use) and the list of stop

words which are to be ignored while creating the text index.

Altering a Domain Index
A domain index can be altered using ALTER INDEX statement. For example:

ALTER INDEX ResumeTextIndex PARAMETERS (’:Ignore on’);

The parameter string is passed uninterpreted to ODCIIndexAlter() routine,

which takes appropriate actions to alter the domain index. In the preceding

example, additional stop words to ignore in the text index are specified.

The ALTER statement can be used to rename a domain index.

ALTER INDEX ResumeTextIndex RENAME TO ResumeTIdx;

The ODCIIndexAlter() routine is invoked, which takes appropriate actions to

rename the domain index.

In addition, the ALTER statement can be used to rebuild a domain index.

ALTER INDEX ResumeTextIndex REBUILD PARAMETERS (’:Ignore of’);

The same ODCIIndexAlter() routine is called but with additional information

about the ALTER option.

The Extensible Indexing API

g Building Domain Indexes 7-25

When the end user executes an ALTER INDEX <domain_index> UPDATE
BLOCK REFERENCES for a domain index on an index-organized table (IOT),

ODCIIndexAlter() is called with the AlterIndexUpdBlockRefs bit set. This

gives the cartridge developer the opportunity to update guesses (as to the block

locations of rows) stored in the domain index in logical rowids.

Truncating a Domain Index
There is no explicit statement for truncating a domain index. However, when the

corresponding table is truncated the truncate procedure specified as part of the

indextype is invoked. For example:

TRUNCATE TABLE Employees;

will result in truncating ResumeTextIndex by calling ODCIIndexTruncate ()

routine.

Dropping a Domain Index
To drop an instance of a domain index, the DROP INDEX statement is used. For our

example, this statement would be of the form:

DROP INDEX ResumeTextIndex;

This results in calling the ODCIIndexDrop () routine and passing information about

the index.

Domain Indexes on Index-Organized Tables

Storing rowids in a UROWID column When the base table of a domain index is an

index-organized table, and you want to store rowids for the base table in a table of

your own, you should store the rowids in a UROWID column if you will be testing

rowids for equality.

If the rowids are stored in a VARCHAR column instead, comparisons for equality of

the text of the rowids from the base table and your own table will fail even when

the rowids pick out the same row. This is because a domain index on an

index-organized table uses logical instead of physical rowids, and, unlike physical

rowids, logical rowids for the same row can have different textual representations.

(Two logical rowids are equivalent when they have the same primary key,

regardless of the guesses stored with them.)

A UROWID (univeral rowid) column can contain both physical and logical rowids.

Storing rowids for an IOT in a UROWID column ensures that the equality operator

The Extensible Indexing API

7-26 Oracle9i Data Cartridge Developer’s Guide

will succeed on two logical rowids that have the same primary key information but

different primary keys.

If you create an index storage table with a rowid column by performing a CREATE
TABLE AS SELECT from the IOT base table, then a UROWID column of the correct

size is created for you in your index table. If you create a table with a rowid column,

then you need to explicitly declare your rowid column to be of type UROWID(x),

where x is the size of the UROWID column. The size chosen should be large enough

to hold any rowid from the base table and so should be a function of the primary

key from the base table. The following query can be used to determine a suitable

size for the UROWID column:

 SELECT (SUM(column_length + 3) + 7)
 FROM user_ind_columns ic, user_indexes i
 WHERE ic.index_name = i.index_name
 AND i.index_type = IOT - TOP
 AND ic.table_
 name = <base_table>;

You can use the IndexOnIOT bit of IndexInfoFlags in the ODCIIndexInfo
structure to determine if the base table is an IOT.

Doing an ALTER INDEX REBUILDon index storage tables raises the same issues as

doing a CREATE TABLE if you drop your storage tables and re-create them. If, on

the other hand, you reuse your storage tables, no additional work should be

necessary if your base table is an IOT.

DML on Index Storage Tables If a UROWID column is maintained in the index storage

table, then you may need to change the type of the rowid bind variable in DML

INSERT, UPDATE, DELETE statements so that it will work for all kinds of rowids.

Converting the rowid argument passed in to a character array and then binding it

as a SQLT_STR works well for both physical and universal rowids. This strategy

may enable you to more easily code your indextype to work with both regular

tables and IOTs.

Start, Fetch, and Close Operations on Index Storage Tables If you use an index

scan-context structure to pass context between Start , Fetch , and Close , you will

need to alter this structure. In particular, if you store the rowid define variable for

the query in a buffer in this structure, then you will need to allocate the maximum

size for a UROWIDin this buffer (3800 bytes for universal rowids in byte format, 5072

for universal rowids in character format) unless you know the size of the primary

key of the base table in advance or wish to determine it at run-time. You will also

The Extensible Indexing API

g Building Domain Indexes 7-27

need to store a bit in the context to indicate if the base table is an IOT, since

ODCIIndexInfo is not available in Fetch .

As with DML operations, setting up the define variable as a SQLT_STR works well

for both physical and universal rowids. When physical rowids are fetched from the

index table, you can be sure that their length is 18 characters. Universal rowids,

however, may be up to 5072 characters long, and so a string length function must be

used to correctly determine the actual length of a fetched universal rowid.

Indexes on Non-Unique Columns All values of a primary key column must be unique,

so a domain index defined upon a non-unique column of a table cannot use this

column as the primary key of an underlying IOT used to store the index. To work

around this, you can add a column in the IOT, holding the index data, to hold a

unique sequence number. Whenever a column value is inserted in the table, you

should generate a unique sequence number to go with it. The indexed column

together with the sequence number can be used as the primary key of the IOT.

(Note that the sequence-number column cannot be a UROWID because UROWID
columns cannot be part of a primary key for an IOT.) This approach also preserves

the fast access to primary key column values that is a major benefit of IOTs.

Domain Index Metadata
For B-tree indexes, users can query the USER_INDEXES view to get index

information. To provide similar support for domain indexes, indextype designers

can add any domain-specific metadata in the following manner:

■ The indextype designer can define one or more tables that will contain this meta

information. The key column of this table must be a unique identifier for the

index. This unique key could be the index name (schema.index). The

remainder of the column definitions are at the discretion of the index designer.

■ Views can be created that join the system defined metadata tables with the

index meta tables to provide a comprehensive set of information for each

instance of a domain index. It is the responsibility of the indextype designer to

provide the view definition.

Export/Import of Domain Indexes
Like B-tree and bitmap indexes, domain indexes are exported and subsequently

imported when their base tables are exported. However, domain indexes can have

implementation-specific metadata associated with them that are not stored in the

system catalogs. For example, a text domain index can have associated policy

information, a list of irrelevant words, and so on. Export/Import provides a

The Extensible Indexing API

7-28 Oracle9i Data Cartridge Developer’s Guide

mechanism to opaquely move this metadata from the source platform to target

platform.

To move the domain index metadata, the indextype needs to implement the

ODCIIndexGetMetadata interface routine (see the reference chapters for details).

This interface routine gets invoked when a domain index is being exported. The

domain index information is passed in as a parameter. It can return any number of

anonymous PL/SQL blocks that are written into the dump file and executed on

import. If present, these anonymous PL/SQL blocks are executed immediately

before the creation of the associated domain index.

Note that the ODCIIndexGetMetadata is an optional interface routine. It is

needed only if the domain index has extra metadata to be moved.

Moving Domain Indexes Using Transportable Tablespaces
The transportable tablespaces feature enables you to move tablespaces from one

Oracle database into another. You can use transportable tablespaces to move

domain index data as an alternative to exporting and importing it.

Moving data using transportable tablespaces can be much faster than performing

either an export/import or unload/load of the data because transporting a

tablespace only requires copying datafiles and integrating tablespace structural

information. Also, you do not need to rebuild the index afterward as you do when

loading or importing.

Operators
A user-defined operator is a top-level schema object. It is identified by a name

which is in the same namespace as tables, views, types and standalone functions.

Operator Bindings
An operator binding associates an operator with the signature of a function that

implements the operator. A signature consists of a list of the datatypes of the

arguments of the function, in order of occurrence, and the function’s return type.

Binding an operator to a certain signature enables Oracle to pick out the function to

execute when the operator is invoked. An operator can be implemented by more

than one function as long as each function has a different signature. For each such

function, you must define a corresponding binding.

See Also: Oracle9i Database Administrator’s Guide for information

about using transportable tablespaces

The Extensible Indexing API

g Building Domain Indexes 7-29

Thus, any operator has an associated set of one or more bindings. Each binding can

be evaluated using a user-defined function of any of these kinds:

■ Standalone function

■ Package function

■ OBJECT member method

An operator created in a schema can be evaluated using functions defined in the

same or different schemas. The operator bindings can be specified at the time of

creating the operator. It is ensured that the signatures of the bindings are unique.

Creating operators
An operator can be created by specifying the operator name and its bindings.

For example, an operator Contains can be created in the Ordsys schema with two

bindings and the corresponding functions that provide the implementation in the

Text and Spatial domains.

CREATE OPERATOR Ordsys.Contains
BINDING
(VARCHAR2, VARCHAR2) RETURN NUMBER USING text.contains,
(Spatial.Geo, Spatial.Geo) RETURN NUMBER USING Spatial.contains;

Dropping Operators
An existing operator and all its bindings can be dropped using the DROP OPERATOR
statement. For example:

DROP OPERATOR Contains;

The default DROP behavior is DROP RESTRICT semantics. Namely, if there are any

dependent indextypes for any of the operator bindings, then the DROP operation is

disallowed.

However, users can override the default behavior by using the FORCE option. For

example,

Note: Although the return data type is specified as part of

operator binding declaration, it is not considered to determine the

uniqueness of the binding, However, the specified function must

have the same argument and return datatypes as the operator

binding.

The Extensible Indexing API

7-30 Oracle9i Data Cartridge Developer’s Guide

DROP OPERATOR Contains FORCE;

drops operator Contains and all its bindings and marks any dependent indextype

objects invalid

Commenting on Operators
The COMMENT statement can be used to supply information about an indextype or

operator. For example:

COMMENT ON OPERATOR
Ordsys.TextIndexType IS 'a number indicating whether the text contains the key';

Comments on operators can be viewed in these views in the data dictionary:

■ USER_OPERATOR_COMMENTS

■ ALL_OPERATOR_COMMENTS

■ DBA_OPERATOR_COMMENTS

To place a comment on an operator, the operator must be in your own schema or

you must have the COMMENT ANY OPERATOR privilege.

Invoking Operators

Operator Usage
User-defined operators can be invoked anywhere built-in operators can be used,

that is, wherever expressions can occur. For example, user-defined operators can be

used in the following:

■ the select list of a SELECT command

■ the condition of a WHERE clause

■ the ORDER BY and GROUP BY clauses

Operator Execution
When an operator is invoked, the evaluation of the operator is accomplished by

executing a function bound to it. The function is selected based on the datatypes of

the arguments to the operator. If no function bound to the operator matches the

signature with which the operator is invoked (perhaps after some implicit type

conversions), an error is raised.

The Extensible Indexing API

g Building Domain Indexes 7-31

Examples
Consider the operator created with the following statement:

CREATE OPERATOR Ordsys.Contains
BINDING
(VARCHAR2, VARCHAR2) RETURN NUMBER
USING text.contains,
(spatial.geo, spatial.geo) RETURN NUMBER
USING spatial.contains;

Consider the operator Contains being used in the following SQL statements:

SELECT * FROM Employee
WHERE Contains(resume, ’Oracle’)=1 AND Contains(location, :bay_area)=1;

The invocation of the operator Contains(resume, ’Oracle’) is transformed

into the execution of the function text.contains(resume, ’Oracle’) since

the signature of the function matches the datatypes of the operator arguments.

Similarly, the invocation of the operator Contains(location , :bay_area) is

transformed into the execution of the function spatial.contains(location ,
:bay_area) .

The following statement would raise an error since none of the operator bindings

satisfy the argument datatypes:

SELECT * FROM Employee
WHERE Contains(salary, 10000)=1;

Operator Privileges
System privileges for operator schema objects are:

■ CREATE OPERATOR

■ CREATE ANY OPERATOR

■ DROP ANY OPERATOR

See the Oracle9i SQL Reference for details.

To use a user-defined operator in an expression, you must own the operator or have

EXECUTE privilege on it.

Operators and Indextypes
An operator can be optionally supported by one or more user-defined indextypes.

An indextype can support one or more operators. This means that a domain index

The Extensible Indexing API

7-32 Oracle9i Data Cartridge Developer’s Guide

of this indextype can be used in efficiently evaluating these operators. For example,

B-tree indexes can be used to evaluate the relational operators like =, < and >.

Operators can also be bound to regular functions. For example, an operator Equal

can be bound to a function eq(number, number) that compares two numbers.

The DDL for this would be:

CREATE OPERATOR Equal
BINDING(NUMBER, NUMBER) RETURN NUMBER USING eq;

Thus, an indextype designer should first design the set of operators to be supported

by the indextype. For each of these operators, a functional implementation should

be provided.

The list of operators supported by an indextype are specified when the indextype

schema object is created (as described previously).

Operators that occur in a WHERE clause are evaluated differently than operators

occurring elsewhere in a SQL statement. Both kinds of cases are considered in the

following sections.

Operators in the WHERE Clause
Operators appearing in the WHEREclause can be evaluated efficiently by performing

an index scan using the scan methods provided as part of the implementation of an

indextype. This involves recognizing operator predicates of a certain form, selection

of a domain index, setting up an appropriate index scan, and finally, executing

index scan methods. Let’s consider each one of these steps in detail.

Operator Predicates
An indextype supports efficient evaluation of operator predicates that can be

represented by a range of lower and upper bounds on the operator return values.

Specifically, predicates of the form:

op(...) relop <value expression>, where relop in {<, <=, =, >=,>}

op(...) LIKE <value_expression>

are possible candidates for index scan-based evaluation.

Use of the operators in any expression, for example

op(...) + 2 = 3

precludes index scan-based evaluation.

Predicates of the form,

The Extensible Indexing API

g Building Domain Indexes 7-33

op() is NULL

are not evaluated using an index scan. They are evaluated using the functional

implementation.

Finally, any other operator predicates which can internally be converted into one of

the preceding forms by Oracle can also make use of the index scan based

evaluation.

Operator Resolution
An index scan-based evaluation of an operator is a possible candidate for predicate

evaluation only if the operator occurring in the predicate (as described in the

preceding section) operates on a column or object attribute indexed using an

indextype. The final decision to choose between the indexed implementation and

the functional implementation is made by the optimizer. The optimizer takes into

account the selectivity and cost while generating the query execution plan.

For example, consider the query

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) = 1;

The optimizer can choose to use a domain index in evaluating the Contains
operator if

■ The resume column has an index defined on it

■ The index is of type TextIndexType

■ TextIndexType supports the appropriate Contains () operator

If any of these conditions do not hold, a complete scan of the Employees table is

performed and the functional implementation of Contains is applied as a

post-filter. If these conditions are met, the optimizer uses selectivity and cost

functions to compare the cost of index-based evaluation with the full table scan and

appropriately generates the execution plan.

Consider a slightly different query,

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) =1 AND id =100;

In this query, the Employees table could be accessed through an index on the id
column or one on the resume column. The optimizer estimates the costs of the two

plans and picks the cheaper one, which could be to use the index on id and apply

the Contains operator on the resulting rows. In this case, the functional

implementation of Contains () is used and the domain index is not used.

The Extensible Indexing API

7-34 Oracle9i Data Cartridge Developer’s Guide

Index Scan Setup
If a domain index is selected for the evaluation of an operator predicate, an index

scan is set-up. The index scan is performed by the scan methods

(ODCIIndexStart (), ODCIIndexFetch (), ODCIIndex Close ()) specified as part

of the corresponding indextype implementation. The ODCIIndexStart () method

is invoked with the operator related information including name and arguments

and the lower and upper bounds describing the predicate. After the

ODCIIndexStart () call, a series of fetches are performed to obtain row identifiers

of rows satisfying the predicate, and finally the ODCIIndex Close () is called when

the SQL cursor is destroyed.

Execution Model for Index Scan Methods
The index scan routines must be implemented with an understanding of how the

routines’ invocations are ordered and how multiple sets of invocations can be

interleaved.

As an example, consider the following query:

SELECT * FROM Emp1, Emp2 WHERE
Contains(Emp1.resume, ’Oracle’) =1 AND Contains(Emp2.resume, ’Unix’) =1
AND Emp1.id = Emp2.id;

If the optimizer decides to use the domain indexes on the resume columns of both

tables, the indextype routines may be invoked in the following sequence:

start(ctx1, ...); /* corr. to Contains(Emp1.resume, ’Oracle’) */
start(ctx2, ...); /* corr. to Contains(Emp2.resume, ’Unix’);
fetch(ctx1, ...);
fetch(ctx2, ...);
fetch(ctx1, ...);
...
close(ctx1);
close(ctx2);

Thus, the same indextype routine may be invoked but for different instances of

operators. At any time, many operators are being evaluated through the same

indextype routines. In case of a routine that does not need to maintain any state

across calls because all the information is obtained through its parameters (as with

the create routine), this is not a problem. However, in case of routines needing to

maintain state across calls (like the fetch routine, which needs to know which row to

return next), the state should be maintained in the SELF parameter that is passed in

to each call. The SELF parameter (which is an instance of the implementation type)

can be used to store either the entire state (if it is not too big) or a handle to the

cursor-duration memory that stores the state.

The Extensible Indexing API

g Building Domain Indexes 7-35

Operators Outside the WHERE Clause
Using a Functional Implementation
Operators occurring in expressions other than in the WHERE clause are evaluated

using the functional implementation. For example,

SELECT Contains(resume, ’Oracle’) FROM Employee;

would be executed by scanning the Employee table and invoking the functional

implementation for Contains on each instance of resume. The function is invoked

by passing it the actual value of the resume (text data) in the current row. Note that

this function would not make use of any domain indexes that may have been built

on the resume column.

However, it is possible to have a functional implementation for an operator that

makes use of a domain index. The following sections discuss how functions that use

domain indexes can be written and how they are invoked by the system.

Creating Index-based Functional Implementation
For many domain-specific operators, such as Contains , the functional

implementation can work in two ways:

1. If the operator is operating on a column (or OBJECT attribute) that has a

domain index of a particular indextype, the function can evaluate the operator

by looking at the index data rather than the actual argument value.

For example, when Contains(resume , ’Oracle’) is invoked on a particular

row of the Employee table, it is easier for the function to look up the text

domain index defined on the resume column and evaluate the operator based

on the row identifier for the row containing the resume - rather than work on

the resume text data argument.

2. If the operator is operating on a column that does not have an appropriate

domain index defined on it or if the operator is invoked with literal values

(non-columns), the functional implementation evaluates the operator based on

only the argument values. This is the default behavior for all operator bindings.

To achieve both the behaviors of (1) and (2), the functional implementation is

provided using a regular function which has three additional arguments—that is,

additional to the original arguments to the operator. The additional arguments are:

■ Index context—containing domain index information and the row identifier of

the row on which the operator is being evaluated

■ Scan context—a context value to share state with subsequent invocations of the

same operator (operating on other rows of the table)

The Extensible Indexing API

7-36 Oracle9i Data Cartridge Developer’s Guide

■ Scan flag—indicates whether the current call is the last invocation during which

all clean up operations should be done

For example, the index-based functional implementation for the Contains
operator is provided by the following function.

CREATE FUNCTION TextContains (Text IN VARCHAR2, Key IN VARCHAR2,
indexctx IN ODCIIndexCtx, scanctx IN OUT TextIndexMethods, scanflg IN NUMBER)
RETURN NUMBER AS
BEGIN
.......
END TextContains;

The Contains operator is bound to the functional implementation as follows:

CREATE OPERATOR Contains
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
WITH INDEX CONTEXT, SCAN CONTEXT TextIndexMethods
USING TextContains;

The WITH INDEX CONTEXTclause specifies that the functional implementation can

make use of any applicable domain indexes. The SCAN CONTEXT specifies the

datatype of the scan context argument. It must be the same as the implementation

type of the relevant indextype that supports this operator.

Operator Resolution
Oracle invokes the functional implementation for the operator if the operator

appears outside the WHERE clause. If the functional implementation is index-based

(that is, defined to use an indextype), the additional index information is passed in

as arguments only if the operator’s first argument is a column (or object attribute)

with a domain index of the appropriate indextype defined on it.

For example, in the query

SELECT Contains(resume, ’Oracle & Unix’) FROM Employees;

the Operator Contains is evaluated using the index-based functional

implementation by passing the index information about the domain index on the

resume column instead of the resume data.

Operator Execution
To execute the index-based functional implementation, Oracle RDBMS sets up the

arguments in the following manner:

The Extensible Indexing API

g Building Domain Indexes 7-37

■ The initial set of arguments are the same as those specified by the user for the

operator.

■ If the first argument is not a column, the ODCIIndexCtx attributes are set to

NULL.

■ If the first argument is a column, the ODCIIndexCtx attributes are set up as

follows.

– If there are no applicable domain indexes, the ODCIIndexInfo attribute is

set to NULL, else it is set up with the information about the domain index.

– The rowid attribute holds the row identifier of the row being operated on.

■ The scan context is passed as NULL to the first invocation of the operator. Since

it is an IN /OUT parameter, the return value from the first invocation is passed

in to the second invocation and so on.

■ The scan flag is set to RegularCall for all normal invocations of the operator.

After the last invocation, the functional implementation is invoked once more,

at which time any cleanup actions can be performed. During this call, the scan

flag is set to CleanupCall and all other arguments except the scan context are

set to NULL.

When index information is passed in, the implementation can compute the operator

value by doing a domain index lookup using the row identifier as key. The index

metadata is used to identify the index structures associated with the domain index.

The scan context is typically used to share state with the subsequent invocations of

the same operator.

Ancillary Data
Apart from filtering rows, an operator occurring in the WHERE clause might need to

support returning ancillary data. Ancillary data is modeled as an operator (or

multiple operators) with a single literal number argument. It has a functional

implementation that has access to state generated by the index scan-based

implementation of the primary operator occurring in the WHERE clause.

For example, in the following query,

SELECT Score(1) FROM Employees
WHERE Contains(resume, ’OCI & UNIX’, 1) =1;

Contains is the primary operator and can be evaluated using an index scan which,

in addition to determining the rows that satisfy the predicate, also computes a score

value for each row. The functional implementation for the Score operator simply

The Extensible Indexing API

7-38 Oracle9i Data Cartridge Developer’s Guide

accesses the state generated by the index scan to obtain the score for a given row

identified by its row identifier. The literal argument 1 associates the ancillary

operator Score to the corresponding primary operator Contains which generates

the ancillary data.

In summary, ancillary data is modeled as independent operator(s) and is invoked

by the user with a single number argument that ties it with the corresponding

primary operator. Its functional implementation makes use of either the domain

index or the state generated by the primary operator occurring in the WHERE clause.

The functional implementation is invoked with extra arguments: the index context

containing the domain index information, and the scan context which provides

access to the state generated by the primary operator. The following sections discuss

how operators modeling ancillary data are defined and invoked.

Creating Operator Binding that Computes Ancillary Data
An indextype designer needs to specify that an operator binding computes ancillary

data. Such a binding is referred to as a primary binding. For example, a primary

binding for Contains can be defined as follows:

CREATE OPERATOR Contains
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
WITH INDEX CONTEXT, SCAN TextIndexMethods COMPUTE ANCILLARY DATA
USING TextContains;

This definition registers two bindings for Contains , namely:

■ CONTAINS(VARCHAR2, VARCHAR2)—This can be used as before.

■ CONTAINS(VARCHAR2, VARCHAR2, NUMBER)—When ancillary data is required

elsewhere in SQL query, the operator can be invoked with the preceding

signature. The NUMBER argument is used to associate the corresponding

ancillary operator binding.

However, the indextype designer needs to define a single functional

implementation:

TextContains(VARCHAR2, VARCHAR2, ODCIIndexCtx, TextIndexMethods, NUMBER).

Creating Operator Binding that Models Ancillary Data
An indextype designer has to implement the functional implementation for

ancillary data operators in a manner similar to the index-based functional

implementation. As discussed earlier, the function takes extra arguments. After the

function is defined, the indextype designer can bind it to the operator with an

The Extensible Indexing API

g Building Domain Indexes 7-39

additional ANCILLARY TO attribute, which indicates that the functional

implementation needs to share state with the primary operator binding. The binding

that is used for modeling ancillary data is referred to as the ancillary operator

binding.

For example, let the TextScore () function contain code to evaluate the Score
ancillary operator.

CREATE FUNCTION TextScore (Text IN VARCHAR2, Key IN VARCHAR2,
indexctx IN ODCIIndexCtx, scanctx IN OUT TextIndexMethods, scanflg IN NUMBER)
RETURN NUMBER AS
BEGIN
.......
END TextScore;

An ancillary operator binding can be created as follows:

CREATE OPERATOR Score
BINDING (NUMBER) RETURN NUMBER
ANCILLARY TO Contains(VARCHAR2, VARCHAR2)
USING TextScore;

■ The ANCILLARY TOclause specifies that it shares state with the implementation

of corresponding primary operator binding CONTAINS(VARCHAR2,
VARCHAR2).

■ Note that the functional implementation for the ancillary operator binding must

have the same signature as the functional implementation for the primary

operator binding.

■ The ancillary operator binding is invoked with a single literal number

argument, such as Score (1), Score (2), and so on.

Operator Resolution
The operators corresponding to ancillary data are invoked by the user with a single

number argument.

Note: The number argument must be a literal in both the ancillary

operation and the primary operator invocation. This is required so

that the operator association can be done at the query compilation

time.

The Extensible Indexing API

7-40 Oracle9i Data Cartridge Developer’s Guide

The corresponding primary operator invocation in the query is determined by

matching it with the number passed in as the last argument to the primary operator.

After the matching primary operator invocation is found (it is an error to find zero

or more than one matching primary operator invocation):

■ The arguments to the primary operator are also made operands to the ancillary

operator.

■ The ancillary and primary operator executions are passed in the same scan

context.

For example, consider the query

SELECT Score(1) FROM Employees
WHERE Contains(resume, ’ Oracle & Unix’, 1) =1;

The invocation of Score is determined to be ancillary to Contains based on the

number argument 1, and the functional implementation for Score gets the

following operands: (resume , ’Oracle&Unix’ , indexctx , scanctx,
scanflg) , where scanctx is shared with the invocation of Contains .

Operator Execution
The execution involves using an index scan to process the Contains operator. For

each of the rows returned by the fetch () call of the index scan, the functional

implementation of Score is invoked by passing it the ODCIIndexCtx argument,

which contains the index information, row identifier, and a handle to the index scan

state. The functional implementation can use the handle to the index scan state to

compute the score.

Object Dependencies, Drop Semantics, and Validation

Dependencies
The dependencies among various objects are as follows:

■ Functions, Packages, and Object Types: Referenced by Operators and

Indextypes.

■ Operators: Referenced by Indextypes, DML and Query SQL Statements.

■ Indextypes: Referenced by Domain Indexes.

■ Domain Indexes: Referenced (used implicitly) by DML and Query SQL

Statements

The Extensible Indexing API

g Building Domain Indexes 7-41

Thus, the order in which these objects must be created, or their definitions exported

for future Import are:

■ Functions, Packages, and Object Types, followed by Operators, followed by

Indextypes.

Drop Semantics
The drop behavior for an object is as follows:

■ RESTRICT semantics: If there are any dependent objects the drop operation is

disallowed.

■ FORCE semantics: The object is dropped even in the presence of dependent

objects and the dependent objects if any are recursively marked invalid.

The following table shows the default and explicit drop options supported for

operators and indextypes. The other schema objects are included for completeness

and the corresponding drop behavior already available in Oracle.

Object Validation
Invalid objects are automatically revalidated, if possible, the next time they are

referenced.

Privileges
■ To create an operator and its bindings, you must have EXECUTEprivilege on the

function, operator, package, or the type referenced in addition to CREATE
OPERATOR or CREATE ANY OPERATOR privilege.

■ To create an indextype, you must have EXECUTE privilege on the type that

implements the indextype in addition to CREATE INDEXTYPE or CREATE ANY
INDEXTYPE privilege. Also, you must have EXECUTE privileges on the

operators that the indextype supports.

Schema Object Default Drop Behavior Explicit Options Supported

Function FORCE None

Package FORCE None

Object Types RESTRICT FORCE

Operator RESTRICT FORCE

Indextype RESTRICT FORCE

Partitioned Domain Indexes

7-42 Oracle9i Data Cartridge Developer’s Guide

■ To alter an indextype in your own schema, you must have CREATE
INDEXTYPE system privilege.

■ To alter an indextype or operator in another user’s schema, you must have the

ALTER ANY INDEXTYPE or ALTER ANY OPERATOR system privilege.

■ To create a domain index, you must have EXECUTE privilege on the indextype

in addition to CREATE INDEX or CREATE ANY INDEX privileges.

■ To alter a domain index, you must have EXECUTE privilege on the indextype.

■ To use the operators in queries or DML statements, you must have EXECUTE
privilege on the operator and the associated function/package/type.

■ To change the implementation type, you must have EXECUTE privilege on the

new implementation type.

Partitioned Domain Indexes
A domain index can be built to have discrete index partitions that correspond to the

partitions of a range-partitioned table. Such an index is called a local domain index,

as opposed to a global domain index, which has no index partitions. The term local
domain index refers to a partitioned index as a whole, not to the partitions that

comprise a local domain index.

A local domain index is equipartitioned with the underlying table: all keys in a local

domain index refer only to rows stored in its corresponding table partition; none

refer to rows in other partitions.

Currently, local domain indexes can be created only for range-partitioned tables.

Local domain indexes cannot be built for hash-partitioned tables or IOTs.

A local (as opposed to a global) domain index can index only a single column; it

cannot index an expression.

You provide for using local domain indexes in the indextype, with the CREATE
INDEXTYPE statement. For example:

CREATE INDEXTYPE TextIndexType
 FOR Contains (VARCHAR2, VARCHAR2)
 USING TextIndexMethods
 WITH LOCAL RANGE PARTITION;

This statement specifies that the implementation type TextIndexType is capable

of creating/maintaining local domain indexes. The clause WITH LOCAL RANGE
PARTITION specifies the partitioning method for the base table.

Partitioned Domain Indexes

g Building Domain Indexes 7-43

The CREATE INDEX statement creates and partitions the index. Here is the syntax:

CREATE INDEX [schema.]index
 ON [schema.]table [t.alias] (indexed_column)
 INDEXTYPE IS indextype
 [LOCAL [PARTITION [partition [PARAMETERS ('string')]]] [...]]
 [PARAMETERS ('string')];

The LOCAL [PARTITION] clause indicates that the index is a local index on a

partitioned table. You can specify partition names or allow Oracle to generate them.

In the PARAMETERS clause, specify the parameter string that is passed

uninterpreted to the appropriate ODCI indextype routine. The maximum length of

the parameter string is 1000 characters.

When you specify this clause at the top level of the syntax, the parameters become

the default parameters for the index partitions. If you specify this clause as part of

the LOCAL [PARTITION] clause, you override any default parameters with

parameters for the individual partition. The LOCAL [PARTITION] clause can

specify multiple partitions.

Once the domain index is created, Oracle invokes the appropriate ODCI routine. If

the routine does not return successfully, the domain index is marked FAILED . The

only operations supported on an failed domain index are DROP INDEX and (for

non-local indexes) REBUILD INDEX .

The following example creates local domain index ResumeIndex :

CREATE INDEX ResumeIndex ON Employees(Resume)
 INDEXTYPE IS TextIndexType LOCAL;

There are these restrictions on creating a local domain index:

■ The index_expr list can specify only a single column.

■ You cannot specify a bitmap or unique domain index.

Note: The given syntax for CREATE INDEX differs from the

syntax shown in Oracle9i SQL Reference, which omits the LOCAL
[PARTITION] clause. Use this syntax to create a local domain

index.

Partitioned Domain Indexes

7-44 Oracle9i Data Cartridge Developer’s Guide

Dropping a Local Domain Index
A specified index partition cannot be dropped explicitly. To drop a local index

partition, the entire local domain index must be dropped:

DROP INDEX ResumeIndex;

Altering a Local Domain Index
The ALTER INDEX statement can be used to perform the following operations on a

local domain index:

■ Rename the top level index

■ Modify the default parameter string for all the index objects

■ Modify the parameter string associated with a specific partition

■ Rename an index partition

■ Rebuild an index partition

The ALTER INDEXTYPE statement enables you to change properties and the

implementation type of an indextype without having to drop and re-create the

indextype and then rebuild all dependent indexes.

Summary of Index States
Like a domain index, a partition of a local domain index can be in one or more of

several states:

See Also: Oracle9i SQL Reference for complete syntax of the SQL

statements mentioned in this section

State Description

IN_PROGRESS The index or the index partition is in this state before and during
the execution of the ODCIndex DDL interface routines. The state
is generally transitional and temporary. However, if the routine
ends prematurely, the index could remain marked IN_
PROGRESS.

FAILED If the ODCIIndex interface routine doing DDL operations on
the index returns an error, the index or index partition is marked
FAILED .

Partitioned Domain Indexes

g Building Domain Indexes 7-45

DML Operations with Local Domain Indexes
DML operations cannot be performed on the underlying table if an index partition

of a local domain index is in any of these states: IN_PROGRESS, FAILED , or

UNUSABLE.

Table Operations That Affect Indexes
The following tables list operations that can be performed on the underlying table

of an index and describe the effect, if any, on the index.

UNUSABLE Same as for regular indexes: An index on a partitioned table is
marked UNUSABLE as a result of certain partition maintenance
operations. Note that, for partitioned indexes, UNUSABLE is
associated only with an index partition, not with the index as a
whole.

INVALID or VALID An index gets marked INVALID if an object that the index
directly or indirectly depends upon is dropped or invalidated.
This property is associated only with an index, never with an
index partition.

Table Operation Description

DROP table Drops the table. Drops all the indexes and their corresponding
partitions

TRUNCATE table Truncates the table. Truncates all the indexes and the index
partitions

ALTER TABLE Operation Description

Base table operations that do not involve partition maintenance

Modify Partition Unusable
local indexes

Marks the local index partition associated with the table
partition as UNUSABLE

Modify Partition Rebuild
Unusable local indexes

Rebuilds the local index partitions that are marked
UNUSABLE and are associated with this table partition

Add Partition Adds a new table partition. Also adds a new local index
partition.

State Description

Partitioned Domain Indexes

7-46 Oracle9i Data Cartridge Developer’s Guide

ODCIIndex Interfaces for Partitioning Domain Indexes
The set of ODCIIndex interfaces that needs to be implemented for a domain index

depends on whether the index is to be partitioned and, if so, in what way. There are

two possibilities:

■ Non-partitioned domain index

■ Local range-partitioned indexes

The ODCIIndex interfaces that must be implemented for each option are listed in

the following sections. Those in the first group must be implemented for any

domain index, partitioned or not. Those in the other group need be implemented

only to provide support for local range-partitioned indexes.

ODCIIndex Interfaces Required for any Domain Index
ODCIIndexGetInterface()

ODCIIndexAlter()

Drop Partition Drops a range table partition. Also drops the associated local
index partition

Truncate Partition Truncate the table partition. Also truncates the associated
local index partition

Base table operations that involve partition maintenance

Move Partition Moves the base table partition to another tablespace.
Corresponding local index partitions are marked UNUSABLE

Split Partition Splits a table partition into two partitions. Corresponding
local index partition is also split. If the resulting partitions are
non-empty, the index partitions are marked UNUSABLE

Merge Partition Merges two table partitions into one partition. Corresponding
local index partitions should also merge. If the resulting
partition contains data, the index partition is marked
UNUSABLE

Exchange Partition
Excluding Indexes

Exchanges a table partition with a non-partitioned table.
Local index partitions and global indexes are marked
UNUSABLE

Exchange Partition
Including Indexes

Exchanges a table partition with a non-partitioned table.
Local index partition is exchanged with global index on the
non-partitioned table. Index partitions remain USABLE

ALTER TABLE Operation Description

Partitioned Domain Indexes

g Building Domain Indexes 7-47

ODCIIndexCreate()

ODCIIndexDrop()

ODCIIndexTruncate()

ODCIIndexInsert()

ODCIIndexDelete()

ODCIIndexUpdate()

ODCIIndexStart()

ODCIIndexFetch()

ODCIIndexClose()

ODCIIndex Interfaces Required for Local Range-Partitioned Indexes
ODCIIndexExchangePartition()

ODCIIndexMergePartition()

ODCIIndexSplitPartition()

Domain Indexes and SQL*Loader
SQL*Loader conventional path loads are supported for tables on which domain

indexes are defined, but direct path loads are not. To do a direct path load, first drop

the domain index, do the direct path load in SQL*Loader, and then re-create the

domain indexes.

Partitioned Domain Indexes

7-48 Oracle9i Data Cartridge Developer’s Guide

Query Optimization 8-1

8
Query Optimization

This chapter describes query optimization, including:

■ Overview

■ Defining Statistics, Selectivity, and Cost Functions

■ Using User-Defined Statistics, Selectivity, and Cost

■ Predicate Ordering

Overview

8-2 Oracle9i Data Cartridge Developer’s Guide

Overview
Query Optimization is the process of choosing the most efficient way to execute a

SQL statement. When the cost-based optimizer was offered for the first time with

Oracle7, Oracle supported only standard relational data. The introduction of objects

extended the supported datatypes and functions. The Extensible Indexing feature

discussed in the previous chapter, introduces user-defined access methods.

The extensible optimizer feature allows authors of user-defined functions and

indexes to create statistics collection, selectivity, and cost functions that are used by

the optimizer in choosing a query plan. The optimizer cost model is extended to

integrate information supplied by the user to assess CPU and the I/O cost, where

CPU cost is the number of machine instructions used, and I/O cost is the number of

data blocks fetched.

Specifically, you now can:

■ Associate cost functions and default costs with domain indexes (partitioned or

unpartitioned), indextypes, packages, and standalone functions. The optimizer

can obtain the cost of scanning a single partition of a domain index, multiple

domain index partitions, or an entire index.

■ Associate selectivity functions and default selectivity with methods of object

types, package functions, and standalone functions. The optimizer can estimate

user-defined selectivity for a single partition, multiple partitions, or the entire

table involved in a query.

■ Associate statistics collection functions with domain indexes and columns of

tables. The optimizer can collect user-defined statistics at both the partition

level and the object level for a domain index or a table.

■ Order predicates with functions based on cost.

■ Select a user-defined access method (domain index) for a table based on access

cost.

■ Use the DBMS_STATS package or the ANALYZE command to invoke

user-defined statistics collection and deletion functions.

See Also:

■ Oracle9i Database Concepts for an introduction to optimization

■ Oracle9i Database Performance Guide and Reference for

information about using hints in SQL statements

Overview

Query Optimization 8-3

■ Use new data dictionary views to include information about the statistics

collection, cost, or selectivity functions associated with columns, domain

indexes, indextypes or functions.

■ Add a hint to preserve the order of evaluation for function predicates.

Please note that only the cost-based optimizer has been enhanced; Oracle has not

altered the operation of the rule-based optimizer.

The optimizer generates an execution plan for SQL queries and DML

statements—SELECT, INSERT, UPDATE, or DELETE statements. For simplicity, we

describe the generation of an execution plan in terms of a SELECT statement, but

the process for DML statements is similar.

An execution plan includes an access method for each table in the FROM clause, and

an ordering, called the join order, of the tables in the FROM clause. System-defined

access methods include indexes, hash clusters, and table scans. The optimizer

chooses a plan by generating a set of join orders, or permutations, by computing the

cost of each, and then by selecting the process with the lowest cost. For each table in

the join order, the optimizer computes the cost of each possible access method and

join method and chooses the one with the lowest cost. The cost of the join order is

the sum of the access method and join method costs. The costs are calculated using

algorithms which together comprise the cost model. The cost model includes varying

level of detail about the physical environment in which the query is executed.

The optimizer uses statistics about the objects referenced in the query to compute

the selectivity and costs. The statistics are gathered using the ANALYZE command.

The selectivity of a predicate is the fraction of rows in a table that is chosen by the

predicate. It is a number between 0 and 1.

The Extensible Indexing feature allows users to define new operators, indextypes,

and domain indexes. For user-defined operators and domain indexes, the Extensible
Optimizer feature enables you to control the three main components used by the

optimizer to select an execution plan:

Note: Oracle Corporation recommends that you use the DBMS_
STATS package instead of the ANALYZE command to collect

optimizer statistics. In a future release, functionality to collect

optimizer statistics will be removed from ANALYZE.

See Oracle9i Supplied PL/SQL Packages and Types Reference for

information about DBMS_STATS.

Overview

8-4 Oracle9i Data Cartridge Developer’s Guide

■ Statistics

■ Selectivity

■ Cost

In the following sections, we describe each of these components in greater detail.

Statistics
Statistics are collected using the SQL ANALYZEstatement. Statistics can be collected

for tables and indexes. In general, the more accurate the statistics, the better the

execution plan generated by the optimizer. We call the statistics generated by the

current ANALYZE command standard statistics. However, the standard ANALYZE
statement cannot generate statistics on a domain index because the database does

not know the index storage structure.

User-Defined Statistics
The Extensible Optimizer feature lets you define statistics collection functions for

domain indexes and columns as well as for partitions of a domain index or table.

The extension to the ANALYZE command has the effect that whenever a domain

index is analyzed, a call is made to the user-specified statistics collection function.

The database does not know the representation and meaning of the user-collected

statistics.

In addition to domain indexes, Oracle supports user-defined statistics collection

functions for individual columns of a table, and for user-defined datatypes. In the

former case, whenever a column is analyzed, the user-defined statistics collection

function is called to collect statistics in addition to any standard statistics that the

database collects. If a statistics collection function exists for a datatype, it is called

for each column of the table being analyzed that has the required type.

Thus, the Extensible Optimizer feature extends ANALYZE to allow user-defined

statistics collection functions for domain indexes, indextypes, datatypes, individual

table columns, and partitions.

Note: Oracle Corporation recommends that you use the DBMS_
STATS package instead of the ANALYZE command to collect

optimizer statistics. In a future release, functionality to collect

optimizer statistics will be removed from ANALYZE.

See Oracle9i Supplied PL/SQL Packages and Types Reference for

information about DBMS_STATS.

Overview

Query Optimization 8-5

The cost of evaluating a user-defined function depends on the algorithm and the

statistical properties of its arguments. It is not practical to store statistics for all

possible combinations of columns that could be used as arguments for all functions.

Therefore, Oracle maintains only statistics on individual columns. It is also possible

that function costs depend on the different statistical properties of each argument.

Every column could require statistics for every argument position of every

applicable function. Oracle does not support such a proliferation of statistics and

cost functions because it would decrease performance.

A user-defined function to drop statistics is required whenever there is a

user-defined statistics collection function; it is called by ANALYZE DELETE.

User-Defined Statistics for Partitioned Objects
Since domain indexes cannot be partitioned in Oracle9i, a user-defined statistics

collection function collects only global statistics on the non-partitioned index.

When an ANALYZE command specifies a list of partitions, the information is not

passed to user-defined statistics collection functions.

Selectivity
The optimizer uses statistics to calculate the selectivity of predicates. The selectivity

is the fraction of rows in a table or partition that is chosen by the predicate. It is a

number between 0 and 1. The selectivity of a predicate is used to estimate the cost

of a particular access method; it is also used to determine the optimal join order. A

poor choice of join order by the optimizer could result in a very expensive execution

plan.

Currently, the optimizer uses a standard algorithm to estimate the selectivity of

selection and join predicates. However, the algorithm does not always work well in

cases in which predicates contain functions or type methods. In addition, predicates

can contain user-defined operators about which the optimizer does not have any

information. In that case the optimizer cannot compute an accurate selectivity.

User-Defined Selectivity
For greater control over the optimizer’s selectivity estimation, this feature lets you

specify user-defined selectivity functions for predicates containing user-defined

operators, standalone functions, package functions, or type methods. The

user-defined selectivity function is called by the optimizer whenever it encounters a

predicate with one of the following forms:

operator(...) relational_operator <constant>

Overview

8-6 Oracle9i Data Cartridge Developer’s Guide

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

where

■ operator(...) is a user-defined operator, standalone function, package

function, or type method,

■ relational_operator is one of {<, <=, =, >=, >} , and

■ <constant> is a constant value expression or bind variable.

For such cases, users can define selectivity functions associated with

operator(...) . The arguments to operator can be columns, constants, bind

variables, or attribute references. When optimizer encounters such a predicate, it

calls the user-defined selectivity function and passes the entire predicate as an

argument (including the operator, function, or type method and its arguments, the

relational operator relational_operator , and the constant expression or bind

variable). The return value of the user-defined selectivity function must be

expressed as a percent, and be between 0 and 100 inclusive; the optimizer ignores

values outside this range.

Wherever possible, the optimizer uses user-defined selectivity values. However, this

is not possible in the following cases:

■ The user-defined selectivity function returns an invalid value (less than 0 or

greater than 100)

■ There is no user-defined selectivity function defined for the operator, function,

or method in the predicate

■ The predicate does not have one of the preceding forms: for example,

operator(...) + 3 relational_operator <constant>

In each of these cases, the optimizer uses heuristics to estimate the selectivity.

Cost
The optimizer estimates the cost of various access paths to choose an optimal plan.

For example, it computes the CPU and I/O cost of using an index and a full table

scan to choose between the two. However, with regard to domain indexes, the

optimizer does not know the internal storage structure of the index, and so it cannot

compute a good estimate of the cost of a domain index.

Overview

Query Optimization 8-7

User-Defined Cost
For greater flexibility, the cost model has been extended to let you define costs for

domain indexes, index partitions, and user-defined standalone functions, package

functions, and type methods. The user-defined costs can be in the form of default

costs that the optimizer looks up, or they can be full-fledged cost functions which

the optimizer calls to compute the cost.

Like user-defined selectivity statistics, user-defined cost statistics are optional. If no

user-defined cost is available, the optimizer uses heuristics to compute an estimate.

However, in the absence of sufficient useful information about the storage

structures in user-defined domain indexes and functions, such estimates can be

very inaccurate and result in the choice of a sub-optimal execution plan.

User-defined cost functions for domain indexes are called by the optimizer only if a

domain index is a valid access path for a user-defined operator (for details

regarding when this is true, see the discussion of user-defined indexing in the

previous chapter). User-defined cost functions for functions, methods and domain

indexes are only called when a predicate has one of the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

where

■ operator(...) is a user-defined operator, standalone function, package

function, or type method,

■ relational_operator is one of {<, <=, =, >=, >} , and

■ <constant> is a constant value expression or bind variable.

This is, of course, identical to the conditions for user-defined selectivity functions.

User-defined cost functions can return three cost values, each value representing the

cost of a single execution of a function or domain index implementation:

■ CPU— the number of machine cycles executed by the function or domain index

implementation. This does not include the overhead of invoking the function.

■ I/O — the number of data blocks read by the function or domain index

implementation. For a domain index, this does not include accesses to the

Oracle table. The multiblock I/O factor is not passed to the user-defined cost

functions.

Defining Statistics, Selectivity, and Cost Functions

8-8 Oracle9i Data Cartridge Developer’s Guide

■ NETWORK— the number of data blocks transmitted. This is valid for distributed

queries as well as functions and domain index implementations. For Oracle this

cost component is not used and is ignored; however, as described in the

following sections, the user is required to stipulate a value so that backward

compatibility is facilitated when this feature is introduced.

The optimizer computes a composite cost from these cost values.

The package DBMS_ODCI contains a function estimate_cpu_units to help get

the CPU and I/O cost from input consisting of the elapsed time of a user function.

estimate_cpu_units measures CPU units by multiplying the elapsed time by

the processor speed of the machine and returns the approximate number of CPU

instructions associated with the user function. (For a multiprocessor machine,

estimate_cpu_units considers the speed of a single processor.)

Optimizer Parameters
The cost of a query is a function of the cost values discussed in the preceding

section. The settings of optimizer initialization parameters determine which cost to

minimize. If optimizer_mode is first_rows , the resource cost of returning a

single row is minimized, and the optimizer mode is passed to user-defined cost

functions. Otherwise, the resource cost of returning all rows is minimized.

Defining Statistics, Selectivity, and Cost Functions
You can compute and store user-defined statistics for domain indexes and columns.

These statistics are in addition to the standard statistics that are already collected by

ANALYZE. User-defined selectivity and cost functions for functions and domain

indexes can use both standard and user-defined statistics in their computation. The

internal representation of these statistics need not be known to Oracle, but you must

provide methods for their collection. You are solely responsible for defining the

representation of such statistics and for maintaining them. Note that user-collected

statistics are used only by user-defined selectivity and cost functions; the optimizer

uses only its standard statistics.

User-defined statistics collection, selectivity, and cost functions must be defined in a

user-defined type. Depending on the functionality you want it to support, this type

must implement as methods some or all of the functions defined in the system

interface ODCIStats (Oracle Data Cartridge Interface Statistics), described in

Chapter 18.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

information about package DBMS_ODCI

Defining Statistics, Selectivity, and Cost Functions

Query Optimization 8-9

The following example shows a type definition (or the outline of one) that

implements all the functions in the ODCIStats interface.

CREATE TYPE my_statistics AS OBJECT (

 -- Function to get current interface
 FUNCTION ODCIGetInterfaces(ifclist OUT ODCIObjectList) RETURN NUMBER,

 -- User-defined statistics functions
 FUNCTION ODCIStatsCollect(col ODCIColInfo, options ODCIStatsOptions,
 statistics OUT RAW, env ODCIEnv) RETURN NUMBER,
 FUNCTION ODCIStatsCollect(ia ODCIIndexInfo, options ODCIStatsOptions,
 statistics OUT RAW, env ODCIEnv) RETURN NUMBER,
 FUNCTION ODCIStatsDelete(col ODCIColInfo, statistics OUT RAW, env ODCIEnv)
 RETURN NUMBER,
 FUNCTION ODCIStatsDelete(ia ODCIIndexInfo, statistics OUT RAW, env ODCIEnv)
 RETURN NUMBER,

 -- User-defined selectivity function
 FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args
 ODCIArgDescList, start <function_return_type>,
 stop <function_return_type>, <list of function arguments>,
 env ODCIEnv) RETURN NUMBER,

 -- User-defined cost function for functions and type methods
 FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost,
 args ODCIArgDescList, <list of function arguments>) RETURN NUMBER,

 -- User-defined cost function for domain indexes
 FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER,
 cost OUT ODCICost, qi ODCIQueryInfo, pred ODCIPredInfo,
 args ODCIArgDescList, start <operator_return_type>,
 stop <operator_return_type>, <list of operator value arguments>,
 env ODCIEnv) RETURN NUMBER
)

The object type that you define, referred to as a statistics type, need not implement

all the functions from ODCIStats . User-defined statistics collection, selectivity, and

cost functions are optional, so a statistics type may contain only a subset of the

functions in ODCIStats . Table 8–1 lists the type methods and default statistics

associated with different kinds of schema objects.

Defining Statistics, Selectivity, and Cost Functions

8-10 Oracle9i Data Cartridge Developer’s Guide

The types of the parameters of statistics type methods are system-defined ODCI
(Oracle Data Cartridge Interface) datatypes. These are described in Chapter 17 and

Chapter 18.

The selectivity and cost functions must not change any database or package state.

Consequently, no SQL DDL or DML operations are permitted in the selectivity and

cost functions. If such operations are present, the functions will not be called by the

optimizer.

User-Defined Statistics Functions
There are two user-defined statistics collection functions, one for collecting statistics

and the other for deleting them.

The first, ODCIStatsCollect , is used to collect user-defined statistics; its interface

depends on whether a column or domain index is being analyzed. It is called when

analyzing a column of a table or a domain index and takes two parameters:

■ col for the column being analyzed, or

ia for the domain index being analyzed;

■ options for options specified in the ANALYZE command (for example, the

sample size when ANALYZE ESTIMATE is used).

As mentioned, the database does not interpret statistics collected by

ODCIStatsCollect . You can store output in a user-managed format or in a

Table 8–1 Statistics Type Methods and Default Statistics for Various Schema Objects

ASSOCIATE
STATISTICS
WITH Statistics Type Methods Used

Default Statistics
Used

column ODCIStatsCollect, ODCIStatsDelete

object type ODCIStatsCollect, ODCIStatsDelete,
ODCIStatsFunctionCost, ODCIStatsSelectivity

cost, selectivity

function ODCIStatsFunctionCost, ODCIStatsSelectivity cost, selectivity

package ODCIStatsFunctionCost, ODCIStatsSelectivity cost, selectivity

index ODCIStatsCollect, ODCIStatsDelete,
ODCIIndexCost

cost

indextype ODCIStatsCollect, ODCIStatsDelete,
ODCIIndexCost

cost

Defining Statistics, Selectivity, and Cost Functions

Query Optimization 8-11

dictionary table (described in the Extensible Optimizer reference chapter) provided

for the purpose. The statistics collected by the ODCIStatsCollect functions are

returned in the output parameter, statistics , as a RAW datatype.

When an ANALYZE DELETE command is issued, user-collected statistics are deleted

by calling the ODCIStatsDelete function whose interface depends on whether

the statistics for a column or domain index are being dropped. It takes a single

parameter: col , for the column whose user-defined statistics need to be deleted, or

ia , for the domain index whose statistics are to be deleted.

If a user-defined ODCIStatsCollect function is present in a statistics type, the

corresponding ODCIStatsDelete function must also be present.

The return values of the ODCIStatsCollect and ODCIStatsDelete functions

must be Success (indicating success), Error (indicating an error), or Warning
(indicating a warning); these return values are defined in a system package

ODCIConst (described in the Extensible Optimizer reference).

User-Defined Selectivity Functions
You will recall that user-defined selectivity functions are used only for predicates of

the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

A user-defined selectivity function, ODCIStatsSelectivity , takes five sets of

input parameters that describe the predicate:

■ pred describing the function operator and the relational operator

relational_operator ;

■ args describing the start and stop values (that is, <constant >) of the function

and the actual arguments to the function (operator());

■ start whose datatype is the same as that of the function’s return value,

describing the start value of the function;

■ stop whose datatype is the same as that of the function’s return value,

describing the stop value of the function;

■ and a list of function arguments whose number, position, and type must match

the arguments of the function operator .

Defining Statistics, Selectivity, and Cost Functions

8-12 Oracle9i Data Cartridge Developer’s Guide

The computed selectivity is returned in the output parameter sel as a number

between 0 and 100 (inclusive) that represents a percentage. The optimizer ignores

numbers less than 0 or greater than 100 as invalid values.

The return value of the ODCIStatsSelectivity function must be

■ Success indicating success, or

■ Error indicating an error, or

■ Warning indicating a warning.

As an example, consider a function myFunction defined as follows:

myFunction (a NUMBER, b VARCHAR2(10)) return NUMBER

A user-defined selectivity function for the function myFunction would be as

follows:

ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args ODCIArgDescList,
 start NUMBER, stop NUMBER, a NUMBER, b VARCHAR2(10), env ODCIEnv)
 return NUMBER

If the function myFunction is called with literal arguments, for example,

myFunction (2, ’TEST’) > 5

then the selectivity function is called as follows:

ODCIStatsSelectivity(<ODCIPredInfo constructor>, sel,
 <ODCIArgDescList constructor>, 5, NULL, 2, ’TEST’, <ODCIEnv flag>)

If, on the other hand, the function myFunction is called with some

non-literals—for example:

myFunction(Test_tab.col_a, ’TEST’)> 5

where col_a is a column in table Test_tab , then the selectivity function is called

as follows:

ODCIStatsSelectivity(<ODCIPredInfo constructor>, sel,
 <ODCIArgDescList constructor>, 5, NULL, NULL, ’TEST’, <ODCIEnv flag>)

In other words, the start, stop, and function argument values are passed to the

selectivity function only if they are literals; otherwise they are NULL. The

ODCIArgDescList descriptor describes all its following arguments.

Defining Statistics, Selectivity, and Cost Functions

Query Optimization 8-13

User-Defined Cost Functions for Functions
As already mentioned, user-defined cost functions are only used for predicates of

the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

You can define a function, ODCIStatsFunctionCost , for computing the cost of

standalone functions, package functions, or type methods. This function takes three

sets of input parameters describing the predicate:

■ func describing the function operator ;

■ args describing the actual arguments to the function operator ;

■ and a list of function arguments whose number, position, and type must match

the arguments of the function operator .

The ODCIStatsFunctionCost function returns its computed cost in the cost
parameter. As mentioned, the returned cost can have two components — CPU and

I/O — which are combined by the optimizer to compute a composite cost. The costs

returned by user-defined cost functions must be positive whole numbers. Invalid

values are ignored by the optimizer.

The return value of the ODCIStatsFunctionCost function must be

■ Success indicating success, or

■ Error indicating an error, or

■ Warning indicating a warning.

Consider a function myFunction defined as follows:

myFunction (a NUMBER, b VARCHAR2(10)) return NUMBER

A user-defined cost function for the function myFunction would be coded as

follows:

ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost,
 args ODCIArgDescList, a NUMBER, b VARCHAR2(10), env ODCIEnv) return NUMBER

If the function myFunction is called with literal arguments—for example,

myFunction(2, ’TEST’) > 5,

Defining Statistics, Selectivity, and Cost Functions

8-14 Oracle9i Data Cartridge Developer’s Guide

then the cost function is called as follows:

ODCIStatsFunctionCost(<ODCIFuncInfo constructor>, cost,
 <ODCIArgDescList constructor>, 2, ’TEST’, <ODCIEnv flag>)

If, on the other hand, the function myFunction is called with some

non-literals—for example,

myFunction(Test_tab.col_a, ’TEST’) > 5

where col_a is a column in table Test_tab , then the cost function is called as

follows:

ODCIStatsFunctionCost(<ODCIFuncInfo constructor>, cost,
 <ODCIArgDescList constructor>, NULL, ’TEST’, <ODCIEnv flag>)

In other words, function argument values are passed to the cost function only if

they are literals; otherwise they are NULL. The ODCIArgDescList descriptor

describes all its following arguments.

User-Defined Cost Functions for Domain Indexes
User-defined cost functions for domain indexes are used for the same type of

predicates mentioned previously, except that operator must be a user-defined

operator for which a valid domain index access path exists.

The ODCIStatsIndexCost function takes these sets of parameters:

■ ia describing the domain index

■ sel representing the user-computed selectivity of the predicate

■ cost giving the computed cost

■ qi containing additional information about the query

■ pred describing the predicate

■ args describing the start and stop values (that is, <constant >) of the operator

and the actual arguments to the operator operator

■ start , whose datatype is the same as that of the operator’s return value,

describing the start value of the operator

■ stop whose datatype is the same as that of the operator’s return value,

describing the stop value of the operator

Defining Statistics, Selectivity, and Cost Functions

Query Optimization 8-15

■ a list of operator value arguments whose number, position, and type must

match the arguments of the operator operator . The value arguments of an

operator are the arguments excluding the first argument.

■ env , an environment flag set by the server to indicate which call is being made

in cases where multiple calls are made to the same routine. The flag is reserved

for future use; currently it is always set to 0.

The computed cost of the domain index is returned in the output parameter, cost .

ODCIStatsIndexCost returns

■ Success indicating success, or

■ Error indicating an error, or

■ Warning indicating a warning.

Consider an operator

Contains(a_stringVARCHAR2(2000) ,b_stringVARCHAR2(10))

that returns 1 or 0 depending on whether or not the string b_string is contained

in the string a_string . Further, assume that the operator is implemented by a

domain index. A user-defined index cost function for this domain index would be

coded as follows:

ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER, cost OUT ODCICost,
 qi ODCIQueryInfo, pred ODCIPredInfo, args ODCIArgDescList,
 start NUMBER, stop NUMBER, b_string VARCHAR2(10), env ODCIEnv) return NUMBER

Note that the first argument, a_string , of Contains does not appear as a

parameter of ODCIStatsIndexCost . This is because the first argument to an

operator must be a column for the domain index to be used, and this column

information is passed in through the ODCIIndexInfo parameter. Only the

operator arguments after the first (the "value" arguments) must appear as

parameters to the ODCIStatsIndexCost function.

If the operator is called—for example:

Contains(Test_tab.col_c,’TEST’) <= 1

then the index cost function is called as follows:

ODCIStatsIndexCost(<ODCIIndexInfo constructor>, sel, cost,
 <ODCIQueryInfo constructor>, <ODCIPredInfo constructor>,
 <ODCIArgDescList constructor>, NULL, 1, ’TEST’, <ODCIEnv flag>)

Using User-Defined Statistics, Selectivity, and Cost

8-16 Oracle9i Data Cartridge Developer’s Guide

In other words, the start, stop, and operator argument values are passed to the

index cost function only if they are literals; otherwise they are NULL. The

ODCIArgDescList descriptor describes all its following arguments.

Using User-Defined Statistics, Selectivity, and Cost
Statistics types act as interfaces for user-defined functions that influence the choice

of an execution plan by the optimizer. However, for the optimizer to be able to use a

statistics type requires a mechanism to bind the statistics type to a database object

(column, standalone function, object type, index, indextype or package; you cannot

associate a statistics type with a partition of a table or a partition of a domain

index). Creating this association is the job of the ASSOCIATE STATISTICS
command. The following sections describe this command in more detail.

User-Defined Statistics
User-defined statistics functions are relevant for columns (both standard SQL

datatypes and object types) and domain indexes. The functions

ODCIStatsSelectivity , ODCIStatsFunctionCost , and

ODCIStatsIndexCost are not used for user-defined statistics, so statistics types

used only to collect user-defined statistics need not implement these functions. The

following sections describe how column and index user-defined statistics are

collected.

User-collected statistics can either be stored in some predefined dictionary tables or

users could create their own tables. The latter approach requires that privileges on

these tables be administered properly, backup and restoration of these tables be

done along with other dictionary tables, and point-in-time recovery considerations

be resolved.

Statistics are stored in a predefined system table for use by user-defined selectivity

and cost functions. Three system views of this table are available:

■ DBA_USTATS

■ ALL_USTATS

■ USER_USTATS

See Also: Oracle9i Database Reference for information about the *_
USTATS views

Using User-Defined Statistics, Selectivity, and Cost

Query Optimization 8-17

Column Statistics
Consider a table Test_tab defined as follows:

CREATE TABLE Test_tab (
 col_a NUMBER,
 col_b typ1,
 col_c VARCHAR2(2000)
)

where typ1 is an object type. Suppose that stat is a statistics type that implements

ODCIStatsCollect and ODCIStatsDelete functions. User-defined statistics are

collected by the ANALYZE command for the column col_b if we bind a statistics

type with the column as follows:

ASSOCIATE STATISTICS WITH COLUMNS Test_tab.col_b USING stat

A list of columns can be associated with the statistics type stat . Note that Oracle

supports only associations with top-level columns, not attributes of object types; if

you wish, the ODCIStatsCollect function can collect individual attribute

statistics by traversing the column.

Another way to collect user-defined statistics is to declare an association with a

datatype as follows:

ASSOCIATE STATISTICS WITH TYPES typ1 USING stat_typ1

which declares stat_typ1 as the statistics type for the type typ1 . When the table

Test_tab is analyzed with this association, user-defined statistics are collected for

the column col_b using the ODCIStatsCollect function of statistics type stat_
typ1 .

Individual column associations always have precedence over associations with

types. Thus, in the preceding example, if both ASSOCIATE STATISTICScommands

are issued, ANALYZE would use the statistics type stat (and not stat_typ1) to

collect user-defined statistics for column col_b . It is also important to note that

standard statistics, if possible, are collected along with user-defined statistics.

User-defined statistics are deleted using the ODCIStatsDelete function from the

same statistics type that was used to collect the statistics.

Associations defined by the ASSOCIATE STATISTICS command are stored in a

dictionary table called ASSOCIATION$.

Only user-defined datatypes can have statistics types associated with them; you

cannot declare associations for standard SQL datatypes.

Using User-Defined Statistics, Selectivity, and Cost

8-18 Oracle9i Data Cartridge Developer’s Guide

Domain Index Statistics
A domain index has an indextype. A statistics type for a domain index is defined by

associating it either with the index or its indextype. Consider the following example

using the table Test_tab we defined earlier:

CREATE INDEX Test_indx ON Test_tab(col_a)
INDEXTYPE IS indtype PARAMETERS(’example’);

CREATE OPERATOR userOp BINDING (NUMBER) RETURN NUMBER
USING userOp_func;

CREATE INDEXTYPE indtype
FOR userOp(NUMBER)
USING imptype;

Here, indtype is the indextype, userOp is a user-defined operator supported by

indtype , userOp_func is the functional implementation of userOp , and

imptype is the implementation type of the indextype indtype .

A statistics type stat_Test_indx can be associated with the index Test_indx as

follows:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx

When the domain index Test_indx is analyzed, user-defined statistics for the

index are collected by calling the ODCIStatsCollect function of stat_Test_
indx .

If a statistics type association is not defined for a specific index, Oracle looks for a

statistics type association for the indextype of the index. In the preceding example, a

statistics type stat_indtype can be associated with the indextype indtype as

follows:

ASSOCIATE STATISTICS WITH INDEXTYPES indtype USING stat_indtype

When the domain index Test_indx is analyzed and no statistics type association

has been defined for the index Test_indx , then user-defined statistics for the

index are collected by calling the ODCIStatsCollect function of stat_indtype .

Thus, individual domain index associations always have precedence over

associations with the corresponding indextypes.

Domain index statistics are dropped using the ODCIStatsDelete function from

the same statistics type that was used to collect the statistics.

Using User-Defined Statistics, Selectivity, and Cost

Query Optimization 8-19

User-Defined Selectivity
Selectivity functions are used by the optimizer to compute the selectivity of

predicates in a query. The predicates must have one of the appropriate forms and

can contain user-defined operators, standalone functions, package functions, or

type methods. Selectivity computation for each is described in the following

sections.

User-defined Operators
Consider the example laid out earlier, and suppose that the following association is

declared:

ASSOCIATE STATISTICS WITH FUNCTIONS userOp_func USING stat_userOp_func

Now, if the following predicate

userOp(Test_tab.col_a) = 1

is encountered, the optimizer calls the ODCIStatsSelectivity function (if

present) in the statistics type stat_userOp_func that is associated with the

functional implementation of the userOp_func of the userOp operator.

Standalone Functions
If the association

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_MyFunction

is declared for a standalone function myFunction , then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_
myFunction for the following predicate (for instance):

myFunction(Test_tab.col_a, ’TEST’) = 1.

Package Functions
If the association

ASSOCIATE STATISTICS WITH PACKAGES Demo_pack USING stat_Demo_pack

is declared for a package Demo_pack, then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_Demo_
pack for the following predicate (for instance):

Demo_pack.myDemoPackFunction(Test_tab.col_a, ’TEST’) = 1

Using User-Defined Statistics, Selectivity, and Cost

8-20 Oracle9i Data Cartridge Developer’s Guide

where myDemoPackFunction is a function in Demo_pack.

Type Methods
If the association

ASSOCIATE STATISTICS WITH TYPES Example_typ USING stat_Example_typ

is declared for a type Example_typ , then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_
Example_typ for the following predicate (for instance):

myExampleTypMethod(Test_tab.col_b) = 1

where myExampleTypMethod is a method in Example_typ .

Default Selectivity
An alternative to selectivity functions is user-defined default selectivity. The default

selectivity is a value (between 0% and 100%) that is looked up by the optimizer

instead of calling a selectivity function. Default selectivities can be used for

predicates with user-defined operators, standalone functions, package functions, or

type methods.

The following command:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction DEFAULT SELECTIVITY 20

declares that the following predicate, for instance,

myFunction(Test_tab.col_a) = 1

always has a selectivity of 20 percent (or 0.2) regardless of the parameters of

myFunction, or the comparison operator "=", or the constant "1". The optimizer

uses this default selectivity instead of calling a selectivity function.

An association can be declared using either a statistics type or a default selectivity,

but not both. Thus, the following statement is illegal:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_myFunction
 DEFAULT SELECTIVITY 20

The following are some more examples of default selectivity declarations:

ASSOCIATE STATISTICS WITH PACKAGES Demo_pack DEFAULT SELECTIVITY 20
ASSOCIATE STATISTICS WITH TYPES Example_typ DEFAULT SELECTIVITY 20

Using User-Defined Statistics, Selectivity, and Cost

Query Optimization 8-21

User-Defined Cost
The optimizer uses user-defined cost functions to compute the cost of predicates in

a query. The predicates must have one of the forms listed earlier and can contain

user-defined operators, standalone functions, package functions, or type methods.

In addition, user-defined cost functions are also used to compute the cost of domain

indexes. Cost computation for each is described in the following sections.

User-defined Operators
Consider the example outlined in the preceding section, and suppose that the

following associations are declared:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx
ASSOCIATE STATISTICS WITH FUNCTIONS userOp USING stat_userOp_func

Consider the following predicate:

userOp(Test_tab.col_a) = 1.

If the domain index Test_indx implementing userOp is being evaluated, the

optimizer calls the ODCIStatsIndexCost function (if present) in the statistics

type stat_Test_indx . If the domain index is not used, however, the optimizer

calls the ODCIStatsFunctionCost function (if present) in the statistics type

stat_userOp to compute the cost of the functional implementation of the operator

userOp .

Standalone Functions
If the association

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_myFunction

is declared for a standalone function myFunction , then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_
myFunction for the following predicate (for instance):

myFunction(Test_tab.col_a, ’TEST’) = 1

User-defined function costs do not influence the choice of access methods; they are

only used for ordering predicates (described in the Extensible Optimizer reference).

Package Functions
If the association

Using User-Defined Statistics, Selectivity, and Cost

8-22 Oracle9i Data Cartridge Developer’s Guide

ASSOCIATE STATISTICS WITH PACKAGES Demo_pack USING stat_Demo_pack;

is declared for a package Demo_pack, then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_Demo_
pack for the following predicate (for instance):

Demo_pack.myDemoPackFunction(Test_tab.col_a) = 1

where myDemoPackFunction is a function in Demo_pack.

Type Methods
If the association

ASSOCIATE STATISTICS WITH TYPES Example_typ USING stat_Example_typ;

is declared for a type Example_typ , then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_
Example_typ for the following predicate:

myExampleTypMethod(Test_tab.col_b) = 1

where myExampleTypMethod is a method in Example_typ .

Default Cost
Like default selectivity, default costs can be used for predicates with user-defined

operators, standalone functions, package functions, or type methods. So, the

following command

ASSOCIATE STATISTICS WITH INDEXES Test_indx DEFAULT COST (100, 5, 0)

declares that using the domain index Test_indx to implement the following

predicate (to select one example)

userOp(Test_tab.col_a) = 1

always has a CPU cost of 100, I/O of 5, and network of 0 (the network cost is

ignored in Oracle) regardless of the parameters of userOp , the comparison operator

"=", or the constant "1". The optimizer uses this default cost instead of calling an

ODCIStatsIndexCost cost function.

You can declare an association using either a statistics type or a default cost but not

both. Thus, the following statement is illegal:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx
 DEFAULT COST (100, 5, 0)

Using User-Defined Statistics, Selectivity, and Cost

Query Optimization 8-23

The following are some more examples of default cost declarations:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH PACKAGES Demo_pack DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH TYPES Example_typ DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH INDEXTYPES indtype DEFAULT COST (100, 5, 0)

Declaring a NULL Association for an Index or Column
An association of a statistics type defined for an indextype or object type is

inherited by index instances of that indextype and by columns of that object type.

An inherited association can be overridden by explicitly defining a different

association for an index instance or column, but there may be occasions when you

would prefer an index or column not to have any association at all. For example, for

a particular query the benefit of a better plan may not outweigh the additional

compilation time incurred by invoking the cost or selectivity functions. For cases

like this, you can use the ASSOCIATE command to declare a NULL association for a

column or index.

ASSOCIATE STATISTICS WITH COLUMNS <columns> NULL;
ASSOCIATE STATISTICS WITH INDEXES <indexes> NULL;

If the NULL association is specified, the schema object does not inherit any statistics

type from the column type or the indextype. A NULL association also precludes

default values.

How Statistics Are Affected by DDL Operations
Partition-level and schema object-level aggregate statistics are affected by DDL

operations in the same way as standard statistics. Table 8–2 summarizes the effects.

Table 8–2 Effects of DDL on Statistics

Operation Effect on Partition Statistics Effect on Global Statistics

ADD PARTITION None No Action

DROP PARTITION Statistics deleted Statistics recalculated

SPLIT PARTITION Statistics deleted None

MERGE PARTITION Statistics deleted None

TRUNCATE PARTITION Statistics deleted None

Predicate Ordering

8-24 Oracle9i Data Cartridge Developer’s Guide

If statistics for any partition are deleted, aggregate statistics for that object are

deleted, and the aggregate statistics for the table or the index are recalculated.

If an existing partition is exchanged, or dropped with an ALTER TABLE DROP
PARTITION statement, and the _minimal_stats_aggregation parameter is set

to FALSE, the statistics for that partition are deleted, and the aggregate statistics of

the table or index are recalculated.

Predicate Ordering
In the absence of an ORDERED_PREDICATES hint (discussed on page 18-3),

predicates (except those used for index keys) are evaluated in the order specified by

the following rules:

■ Predicates without any user-defined functions, type methods, or subqueries are

evaluated first, in the order specified in the WHERE clause.

■ Predicates with user-defined functions and type methods which have

user-computed costs are evaluated in increasing order of their cost.

■ Predicates with user-defined functions and type methods that have no

user-computed cost are evaluated next, in the order specified in the WHERE
clause.

■ Predicates not specified in the WHERE clause (for example, predicates

transitively generated by the optimizer) are evaluated next.

■ Predicates with subqueries are evaluated last in the order specified in the

WHERE clause.

Dependency Model
The dependency model reflects the actions that are taken when you issue any of the

SQL commands described in Table 8–3.

EXCHANGE PARTITION Statistics deleted Statistics recalculated

REBUILD PARTITION None None

MOVE PARTITION None None

RENAME PARTITION None None

Table 8–2 Effects of DDL on Statistics

Operation Effect on Partition Statistics Effect on Global Statistics

Restrictions and Suggestions

Query Optimization 8-25

Restrictions and Suggestions
A statistics type is an ordinary object type. Since an object type must have at least

one attribute, a statistics type also must have at least one attribute. This will be a

dummy attribute, however, since it will never be set or accessed.

Parallel Query
In Oracle9i domain indexes are non-partitioned and serial. The optimizer computes

the composite cost of a domain index access path assuming a serial execution.

Distributed Execution
Oracle’s distributed implementation does not support adding functions to the

remote capabilities list. All functions referencing remote tables are executed as

filters. The placement of the filters occurs outside the optimizer. The cost model

Table 8–3 Dependency Model for DDLs

Command Action

DROP statistics_type if an association is defined with statistics_type, the
command fails, otherwise the type is dropped

DROP statistics_type FORCE calls DISASSOCIATE FORCE for all objects associated
with the statistics_type ; drops statistics_type

DROP object calls DISASSOCIATE, drops object_type if
DISASSOCIATE succeeds

ALTER TABLE DROP COLUMN if association is present for the column, this calls
DISASSOCIATE FORCE with column; if no entry in
ASSOCIATION$ but there are entries in type USATS$,
then ODCIStatsDelete for the columns is invoked

DISASSOCIATE if user-defined statistics collected with the statistics
type are present, the command fails

DISASSOCIATE FORCE deletes the entry in ASSOCIATION$ and calls
ODCIStatsDelete

ANALYZE TABLE DELETE
STATISICS

the ODCIStatsDelete function is invoked; if any
errors are raised, ANALYZE fails and the error is
reported

ASSOCIATE if an association or user-defined statistics are present
for the associated object, the command fails

Restrictions and Suggestions

8-26 Oracle9i Data Cartridge Developer’s Guide

reflects this implementation and does not attempt to optimize placement of these

predicates.

Since predicates are not shipped to the remote site, you cannot use domain indexes

on remote tables. Therefore, the DESCRIBE protocol is unchanged, and remote

domain indexes are not visible from the local site.

Performance
The cost of execution of the queries remains the same with the extensible optimizer

if the same plan is chosen. If a different plan is chosen, the execution time should be

better assuming that the user-defined cost, selectivity, and statistics collection

functions are accurate. In light of this, you are strongly encouraged to provide

statistics collection, selectivity, and cost functions for user-defined structures

because the optimizer defaults can be inaccurate and lead to an expensive execution

plan.

Using Cartridge Services 9-1

9
Using Cartridge Services

This chapter describes how to use cartridge services, including:

■ Cartridge Services — Introduction

■ Cartridge Handle

■ Memory Services

■ Memory Services

■ Maintaining Context

■ Globalization Support

■ Parameter Manager Interface

■ File I/O

■ String Formatting

Cartridge Services — Introduction

9-2 Oracle9i Data Cartridge Developer’s Guide

Cartridge Services — Introduction
This chapter describes a set of services that will help you create data cartridges in

the Oracle Extensibility framework.

Using Oracle Cartridge Services offers you these advantages:

Portability
Oracle Cartridge Services offers you the flexibility to work across different machine

architectures

Flexibility Within Oracle Environments
Another type of flexibility is offered to you in terms of the fact that all cartridge

services will work with your Oracle Database irrespective of the configuration of

operations that has been purchased by your client.

Language Independence
The use of the Globalization Support services lets you internationalize your

cartridge. Language independence means that you can have different instances of

your cartridge operating in different language environments.

Tight Integration with the Server
Various cartridge services have been designed to facilitate access with Oracle

ORDBMS. This offers far superior performance to client -side programs attempting

to perform the same operations.

Guaranteed Compatibility
Oracle is a rapidly evolving technology and it is likely that your clients might be

operating with different releases of Oracle. The cartridge services will operate with

all versions of Oracle database.

Integration of Different Cartridges
The integration of cartridge services lets you produce a uniform integration of

different data cartridges.

The following sections provide a brief introduction to the set of services that you

can use as part of your data cartridge. The APIs that describe these interfaces are

described in Chapter 9, "Using Cartridge Services"

Cartridge Handle

Using Cartridge Services 9-3

Cartridge Handle
Cartridge services require various handles that are encapsulated inside two types of

OCI handles -

■ Environment handle (OCIEnv or OCI_HTYPE_ENV).

Various cartridge services are required at the process level when no session is

available. The OCIInitialize () should use the OCI_OBJECT option for

cartridge service.

■ User Session handle (OCISession or OCI_HTYPE_SESSION).

In a callout, the services can be used when the handle is allocated even without

opening a connection back to the database.

All cartridge service calls take a dvoid * OCI handle as one of the arguments that

may be either an environment or a session handle. While most service calls are

allowed with either of the handles, certain calls may not be valid with one of the

handles. For example, it may be an error to allocate OCI_DURATION_SESSIONwith

an environment handle. An error will typically be returned in an error handle.

Client Side Usage
Most of the cartridge service can also be used on the client side code. Refer to

individual services for restrictions. To use cartridge service on the client side, the

OCI environment has to be initialized with OCI_OBJECT option. This is

automatically effected in a cartridge.

Cartridge Side Usage
Most of the services listed in this document can be used in developing a database

cartridge, but please refer to documentation of each individual service for

restrictions. New service calls are available to obtain the session handle in a callout.

The session handle is available without opening a connection back to the server.

Service Calls
Before using any service, the OCI environment handle must be initialized. All the services
take an OCI environment (or user_session) handle as an argument. Errors are returned in an
OCI error handle.The sub handles required for various service calls are not allocated

along with the OCI environment handle. Services which need to initialize an

environment provide methods to initialize it.

Memory Services

9-4 Oracle9i Data Cartridge Developer’s Guide

The following example demonstrates the initialization of these handles:

{
OCIEnv *envhp;
OCIError *errhp;
(void) OCIInitialize(OCI_OBJECT, (dvoid *)0, 0, 0, 0);
(void) OCIEnvInit(&envhp, OCI_OBJECT, (size_t)0, (dvoid **)0);
(void) OCIHandleAlloc((dvoid *)envhp, (dvoid **)errhp, OCI_HTYPE_ERROR, (size_
t)0, (dvoid **)0);
/* ... use the handles ... */
(void) OCIHandleFree((dvoid *)errhp, OCI_HTYPE_ERROR);
}

Error Handling
Routines that return errors will generally return OCI_SUCCESS or OCI_ERROR.
Some routines may return OCI_SUCCESS_WITH_INFO, OCI_INVALID_HANDLE, or

OCI_NO_DATA. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is returned, then an

error code, an error facility, and possibly an error message can be retrieved by

calling OCIErrorGet :

{
OCIError *errhp;
ub4 errcode;
text buffer[512];
(void) OCIErrorGet((dvoid *)errhp, 1, (text *)NULL, &errcode, buffer,
 sizeof(buffer), OCI_HTYPE_ERROR);
}

Memory Services
Memory management is one of the services that is required by cartridge developers.

The memory service allows the client to allocate or free memory chunks. Each

memory chunk is associated with a duration. This allows clients to automatically

free all memory associated with a duration (at the end of the duration). The

duration determines the heap that is used to allocate the memory. The memory

service predefines three kinds of durations: call (OCI_DURATION_CALL), statement

(OCI_DURATION_STATEMENT) and session (OCI_DURATION_SESSION).

The client can also create a user duration. The client has to explicitly start and

terminate a user duration. Thus, the client can control the ’length’ of a user

duration. Like the predefined durations, a user duration can be used to specify the

Maintaining Context

Using Cartridge Services 9-5

allocation duration (for example, memory chunks are freed at the end of the user

duration).

Each user duration has a parent duration. A user duration terminates implicitly

when its parent duration terminates. A parent duration can be call, statement,

transaction, session or any other user duration. Memory allocated in the user

duration comes from the heap of its parent duration.

The Oracle RDBMS memory manager already supports a variety of memory

models. Currently callouts support memory for the duration of that callout. With

the extension of row sources to support external indexing, there is a need for

memory of durations greater than a callout.

The following functionality is supported:

■ Allocate (permanent and freeable) memory of following durations

– call to agent process

– statement

– session

– shared attributes (metadata) for cartridges

■ Ability to re-allocate memory

■ Ability to create a subduration memory, a sub heap which gets freed up when

the parent heap gets freed up. Memory for this sub heap can be allocated and

freed.

■ Ability to specify zeroed memory

■ Ability to allocate large contiguous memory

Maintaining Context
Context management allows the clients to store values across calls. Cartridge

services provide a mechanism for saving and restoring context.

Most operating systems which support threads have the concept of thread context.

Threads can store thread specific data in this context (or state) and retrieve it at any

point. This provides a notion of thread global variable. Typically a pointer which

points to the root of a structure is stored in the context.

When the row source mechanism is externalized, you will need a mechanism to

maintain state between multiple calls to the same row source.

Globalization Support

9-6 Oracle9i Data Cartridge Developer’s Guide

There is a need to maintain session, statement and process states. Session state

includes information about multiple statements that are open, message files based

on sessions’ Globalization Support settings, and so on. Process state includes shared

metadata (including systemwide metadata), message files, and so on. Depending on

whether the cartridge application is truly multi threaded, information sharing can

be at a process level or system level.

Since a user can be using multiple cartridges at any time, the state must be

maintained for each cartridge. This is done by requiring the user to supply a key for

each duration.

Durations
There are various predefined types of durations supported on memory and context

management calls. An additional parameter in all these calls is a context.

■ OCI_DURATION_CALL. The duration of this operation is that of a callout.

■ OCI_DURATION_STATEMENT. The duration of this operation is the external row

source.

■ OCI_DURATION_SESSION. The duration of this operation is the user session.

■ OCI_DURATION_PROCESS. The duration of this is agent process.

Globalization Support
To support multilingual application, Globalization Support functionality is required

for cartridges and callouts. NLSRTL is a multiplatform, multilingual library current

used in RDBMS and provides consistent Globalization Support behavior to all

Oracle products.

Globalization Support basic services will provide the following language and

cultural sensitive functionality:

■ Locale information retrieval.

■ String manipulation in the format of multibyte and wide-char.

■ Character set conversion including Unicode support.

■ Messaging mechanism.

Parameter Manager Interface

Using Cartridge Services 9-7

Globalization Support Language Information Retrieval
An Oracle locale consists of language, territory and character set definitions. The

locale determines conventions such as native day and month names; and date, time,

number, and currency formats. An internationalized application will obey a user’s

locale setting and cultural convention. For example, in a German locale setting,

users will expect to see day and month names in German spelling. The following

interface provides a simple way to retrieve local sensitive information.

String Manipulation
Two types of data structure are supported for string manipulation: multibyte string

and wide char string. Multibyte string is in native Oracle character set encoding,

and functions operated on it take the string as a whole unit. Wide char string

function provides more flexibility in string manipulation and supports

character-based and string-based operations.

The wide char data type we use here is Oracle-specific and not to be confused with

the wchar_t defined by the ANSI/ISO C standard. The Oracle wide char is always

4 bytes in all the platforms, while wchar_t is dependent on the implementation

and platform. The idea of Oracle wide char is to normalize multibyte characters to

have a fixed-width for easy processing. Round-trip conversion between Oracle wide

char and native character set is guaranteed.

The string manipulation can be classified into the following categories:

■ Conversion of string between multibyte and wide char.

■ Character classifications.

■ Case conversion.

■ Display length calculation.

■ General string manipulation, such as compare, concatenation and searching.

Parameter Manager Interface
The parameter manager provides a set of routines to process parameters from a file

or a string. Routines are provided to process the input and to obtain key and value

pairs. These key and value pairs are stored in memory and routines are provided

which can access the values of the stored parameters.

The input processing routines match the contents of the file or the string against an

existing grammar and compare the key names found in the input against the list of

Parameter Manager Interface

9-8 Oracle9i Data Cartridge Developer’s Guide

known keys that the user has registered. The behavior of the input processing

routines can be configured depending on the bits that are set in the flag argument.

The parameters can be retrieved either one at a time or all at once by calling a

function that iterates over the stored parameters.

Input Processing
Parameters consist of a key, or parameter name, type, and a value and must be

specified in the following format:

key = value

Parameters can optionally accept lists of values which may be surrounded by

parentheses. The following two formats are acceptable for specifying a value list:

key = (value1 value2 ... valuen)
key = value1 value2 ... valuen

A value can be a string, integer, OCINumber, or Boolean. A boolean value starting

with 'y ' or 't ' maps to TRUE and a boolean value starting with 'n' or 'f ' maps to

FALSE. The matching for boolean values is case insensitive.

The parameter manager views certain characters as “special characters” which are

not parsed literally. The special characters and their meanings are indicated in

Table 9–1.

If a special character must be treated literally, then it must either be prefaced by the

escape character or the entire string must be surrounded by single or double quotes.

Table 9–1 Special Characters and their Meanings

Character Meaning

Comment (only for files)

(Start a list of values

) End a list of values

" Start or end of quoted string

' Start or end of quoted string

= Separator of keyword and value

\ Escape character

Parameter Manager Interface

Using Cartridge Services 9-9

A key string can contain alphanumeric characters only. A value can contain any

characters. However, the value cannot contain special characters unless they are

quoted or escaped.

Parameter Manager Behavior Flag
The routines to process a file or a string take a behavior flag that can alter certain

default characteristics of the parameter manager. The following bits can be set in the

flag to produce the new behavior:

■ OCI_EXTRACT_CASE_SENSITIVE. All comparisons are case sensitive. The

default is to use case insensitive comparisons.

■ OCI_EXTRACT_UNIQUE_ABBREVS. Unique abbreviations are allowed for keys.

The default is that unique abbreviations are not allowed.

■ OCI_EXTRACT_APPEND_VALUES. If a value or values are already stored for a

particular key, then any new values for this key should be appended. The

default is to return an error.

Key Registration
Before invoking the input processing routines (OCIExtractFromFile or

OCIExtractFromString), all of the keys must be registered by calling

OCIExtractSetNumKeys followed by OCIExtractSetKey .

OCIExtractSetKey requires the following information for each key:

■ Name of the key

■ Type of the key (integer , string , boolean , OCINumber)

■ OCI_EXTRACT_MULTIPLE is set for the flag value if multiple values are

allowed (default: only one value allowed)

■ Default value to be used for the key (may be NULL)

■ Range of allowable integer values given by the starting and ending value,

inclusive (may be NULL)

■ List of allowable string values (may be NULL)

Parameter Storage and Retrieval
The results of processing the input into a set of keys and values are stored. The

validity of the parameters is checked before storing the parameters in memory. The

values are checked to see if they are of the proper type. In addition, if you wish, the

File I/O

9-10 Oracle9i Data Cartridge Developer’s Guide

values can be checked to see if they fall within a certain range of integer values or

are members of a list of enumerated string values. Also, if you do not specify that a

key can accept multiple values, then an error will be returned if a key is specified

more than once in a particular input source. Also, an error will be returned if the

key is unknown.

After the processing is completed, the value(s) for a particular key can be queried.

Separate routines are available to retrieve a string value, an integer value, an

OCINumber value, and a boolean value.

It is possible to retrieve all parameters at once. The function OCIExtractToList
must first be called to generate a list of parameters that is created from the

parameter structures stored in memory. OCIExtractToList will return the

number of unique keys stored in memory, and then OCIExtractFromList can be

called to return the list of values associated with each key.

Parameter Manager Context
The parameter manager maintains its own context within the OCI environment

handle. This context stores all the processed parameter information and some

internal information. It must be initialized with a call to OCIExtractInit and

cleaned up with a call to OCIExtractTerm .

File I/O
The OCI file I/O package is designed to make it easier for you to write portable

code that interacts with the file system by providing a consistent view of file I/O

across multiple platforms.

You need to be aware of two issues when using this package in a data cartridge

environment. The first issue is that this package does not provide any security when

opening files for writing or when creating new files in a directory other than the

security provided by the operating system protections on the file and directory. The

second issue is that this package will not support the use of file descriptors across

calls in a multithreaded server environment.

String Formatting
The OCI string formatting package facilitates writing portable code that handles

string manipulation by means of the OCIFormatString routine. This is an

improved and portable version of sprintf that incorporates additional

String Formatting

Using Cartridge Services 9-11

functionality and error checking that the standard sprintf does not. This

additional functionality includes:

■ Arbitrary argument selection.

■ Variable width and precision specification.

■ Length checking of the buffer.

■ Oracle Globalization Support for internationalization.

String Formatting

9-12 Oracle9i Data Cartridge Developer’s Guide

Part III
Advanced Topics

Chapter 10, "Design Considerations"

Chapter 11, "User-Defined Aggregate Functions"

Chapter 12, "Pipelined and Parallel Table Functions"

Design Considerations 10-1

10
Design Considerations

This chapter describes various design considerations, including:

■ Designing the Types

■ Callouts

■ Designing Indexes

■ Designing Operators

■ Talking to the Optimizer

■ Design for maintenance

■ Miscellaneous

Designing the Types

10-2 Oracle9i Data Cartridge Developer’s Guide

Designing the Types

Structured and Unstructured Data
Structured data is data that can be represented to Oracle in the form of an object

type. Unstructured data—that is, data of type RAW or BLOB—cannot be interpreted

by Oracle. The choice whether to model cartridge data as structured or

unstructured depends on the following considerations:

1. Structured data can be shared by different applications since the structure is

published in Oracle.

2. Structured types provide strong type checking whereas unstructured data does

not.

3. Structured data is easily queried whereas unstructured data is not. One has to

publish user-defined functions to facilitate querying the unstructured data.

4. Constraints are easily supported on structured data but not on unstructured

data.

5. Indexes are easily supported on structured data, whereas, on unstructured data,

indexes on user-defined functions would need to be created, or extensible

indexes would need to be defined.

6. Structured data needs to be marshalled by Oracle to be retrieved to client as a

value, whereas, unstructured data is easily retrievable as a value.

Using Nested Tables or VARRAYs
Unlike nested tables, VARRAYs are an ordered set of items. Physically, VARRAYs are

stored as RAWor LOBcolumns, whereas nested tables are stored in tables. Following

are some considerations to weigh in choosing which sort of collection better suits

your purpose.

Nested Tables
■ Nested tables can be queryed since elements are represented as rows.

■ Indexes may be created on columns of nested tables for faster searches.

■ Constraints may be specified for nested tables.

■ Clustering of nested elements belonging to a common parent row is possible

when the storage table is specified as an Index Organized Table, furthermore,

Designing the Types

Design Considerations 10-3

specifying key compression reduces the overhead of the system assigned

NESTED_TABLE_ID values.

■ When stored as a Heap Organized Table, creating an index on the NESTED_
TABLE_ID column enhances retrieval of nested tables.

■ Retrieving the nested table as a value for a given parent incurs the overhead of

selecting and marshalling the individual rows to form the collection value.

■ Even though parent tables may be partitioned, storage tables corresponding to

their nested tables cannot be partitioned.

VARRAYs
■ A VARRAYs is better suited for retrieval as a value since that is s how it is stored.

■ Support for indexing, specification of constraints on VARRAYs is not available.

■ Querying of VARRAYs is sub-optimal since rows have to materialized from

collection value.

■ Partitioning of VARRAYs stored as LOBs is permitted when the parent table is

partitioned.

Based on the preceding implications, if the ability to query of update individual

collection elements is important, then nested tables are a better choice to model

your collection data. On the other hand, if your application is requires fetching the

entire collection as a whole and then operating on it, modeling the collection data as

a VARRAY will yield better retrieval performance.

Choosing a Language in Which to Write Methods
When writing methods for object types, you have the choice of implementing them

in PL/SQL, C/C++, or Java. PL/SQL and Java methods run in the address space of

the server. C/C++ methods are dispatched as external procedures and run outside

the address space of the server.

The best implementation choice varies with the situation. Here are some guidelines:

1. A callout involving C or C++ is generally fastest if the processing is

substantially CPU-bound. However, callouts incur the cost of dispatch, and if

the amount of processing in C/C++ is not large then the cost of dispatch does

not amortize very well.

2. PL/SQL tends to offer the best price-performance for methods that are not

computation-intensive. The other implementation options are typically favored

Callouts

10-4 Oracle9i Data Cartridge Developer’s Guide

over PL/SQL if you have a large body of code already implemented in another

language that you want to use a part of the data cartridge

3. Java is a relatively open implementation choice. The interpreted nature of Java

implies that for high performance applications, some sort of compilation of

methods written in Java will be needed.

Invokers Rights — Why, When, How
Until release 8.1.5, stored procedures and SQL methods could only execute with the

privileges of the definer. Such definer-rights routines are bound to the schema in

which they reside, and this remains the default. Under this condition, a routine

executes with the rights of the definer of the function, not the user invoking it.

However, this is a limitation if the function statically or dynamically issues SQL

statements.

For example, if the function had a static cursor that performs a SELECT from USER_
TABLES, the USER_TABLES it would retrieve would be that of the definer

irrespective of which user was using the function. For the function to be used

against data not owned by the definer, explicit GRANTs had to be issued from the

owner to the definer, or the function needed to be defined in the same schema

where the data resided. The former course creates security and administration

problems; the latter forces the function to be redefined in each schema that needs to

use it.

The invoker-rights mechanism permits a function to execute with the privileges of

the invoker. This permits cartridges to live within a schema dedicated to the

cartridge and to be used by other schemas without requiring privileges be granted

to operate on objects in the schema where the cartridge resides.

Callouts

When to Callout
You should consider utilizing callouts in the following circumstances:

■ When it would be impractical or impossible to code the algorithm you require

in SQL.

■ When the performance gains of a compiled language (such as C or C++)

outweigh the extproc callout overhead

■ When you wish to leverage existing 3GL code

Callouts

Design Considerations 10-5

When to Callback
You should consider utilizing callbacks in the following circumstances:

■ When you need data that was not passed as an argument to the call out.

■ When it isn’t practical to pass the data to the call out (for example, the number

and size of the parameters exceeds that which is allowed or performs well).

Consider making a single callout which does multiple callbacks rather than

multiple callouts (for example, instead of a factorial callout which takes a single

number and computes a the factorial for it, consider making a callout which takes a

VARRAY and repeatedly calls back to get next number to compute the factorial for.

You always do performance testing to see at what at point the multi-call back

approach out-performs the multi-callout approach.

Callouts and LOB
■ It may be to your advantage to code your callout so that it is independent of

LOB type (BFILE /BLOB).

■ The PL/SQL layer of your cartridge can "open" your BFILE so that no

BFILE -specific logic is required in your callout (other than error recovery from

OCILob calls that do not operate on BFILEs).

■ With the advent of temporary LOBs in Oracle8i release 8.1.5, you need to be

aware of the deep copy that can occur when assignments and calls are done

with temporary LOBs. Use "NOCOPY" (BY REFERENCE) on BLOB parameters as

appropriate.

Saving and Passing State
External procedures under Oracle 8.0 have a "state-less" model. All Statement

handles opened during the invocation of an external procedure are closed implicitly

at the end of the call.

In Oracle9i, we allow "state" (OCI Statement handles and so forth, and associated

state in the DBMS) to be saved and used across invocations of external procedures

in a session. B y default cartridges are still stateless, however, OCIMemory services

and OCIContext services can be used with OCI_DURATION_SESSION or other

appropriate duration to save state. Statement handles created in one external

procedure invocation can get re-used in another. The Data Cartridge developer

needs to explicitly free these handles. It is recommended that this is done as soon as

the statement handle is no longer needed. All state maintained for the statement in

Designing Indexes

10-6 Oracle9i Data Cartridge Developer’s Guide

the OCI handles and in the DBMS would get freed as a result. This should help in

improving the scalability of the Data Cartridge.

Designing Indexes

Influencing Index Performance
It is wrong to assume that creating domain index is always the best course. If, after

careful consideration, you determine that you need to create domain index, you

should keep the following factors in mind. For one, if the domain index is complex,

the functional implementation will work better

■ When the data size is small

■ When the result is a large percentage of the total data size.

Judicious use of the extensible optimizer can lead to good performance.

Influencing Index Performance
Naming of internal components can be an issue. Naming of internal data objects for

a domain index implementation and are typically based on names you provide for

table and indexes. The problem is that the derived names for the internal objects

should not conflict with any other user defined object or system object. You may

have to develop some policy that restricts names, or implement some metadata

managementschemetoavoiderrorsduringDROP,CREATE,andsoon.

When to Use IOTs
You can create only one index on IOTs in 8.0.x releases. However, if most of your

data is in the index, using an IOT is more efficient than storing your data in both a

table and an additional index.

You can create secondary indexes on IOTs in Oracle9i. These offer a big advantage if

you are accessing the data multiple ways.

Can Index Structures Be Stored in LOBs
Index structures can be stored in LOBs but take care to tune the LOB for best

performance. If you are accessing a particular LOBfrequently, create your table with

the CACHE option and place the LOB index in a separate tablespace. If you are

updating a LOB frequently, TURN OFF LOGGING and read/write in multiples of

Designing Indexes

Design Considerations 10-7

CHUNKsize. If you are accessing a particular portion of a LOBfrequently, buffer your

reads/writes using LOB buffering or your own buffering scheme.

External Index Structures
With the extensible indexing framework, the meaning and representation of a

user-defined index is left to the cartridge developer. We do provide basic index

implementations such as IOTs. In certain cases, binary or character LOBs can also be

used to store complex index structures. IOTs, BLOBs and CLOBs all live within the

database. In addition to them, you may also store a user-defined index as a

structure external to the database, say in a BFILE .

The external index structure gives you the most flexibility in representing your

index. An external index structure is particularly useful if you have already

invested in the development of in-memory indexing structures. For example, an

operating system file may store index data, which is read into a memory mapped

file at run time. Such a case can be handled as a BFILE in the external index

routines.

External index structures may also provide superior performance, although, this

gain comes at some cost. Index structures external to the database do not participate

in the transaction semantics of the database, which, in the case of index structures

inside the database, make data and concomitant index updates atomic. This means

that if an update to the data causes an update for the external index to be invoked

through the extensible indexing interface, any failures may cause the data updates

to be rolled back but not the index updates. The database can only roll back what is

internal to it: external index structures cannot be rolled back in synchronization

with a database rollback.

External index structures are perhaps most useful for read-only access. Their

semantics become complex if updates to data are involved.

Multi-Row Fetch
ODCIIndexFetch(self IN [OUT] <impltype>, nrows IN NUMBER, rids OUT ODCIRidList)
RETURN NUMBER

When the ODCIIndexFetch routine is called, the ROWIDs of all the rows that

satisfy the operator predicate are returned. The maximum number of rows that can

be returned by the ODCIIndexFetch routine is nrows (nrows being an argument

to the ODCIIndexFetch routine). The value of nrows is decided by Oracle based

on some internal factors. If you have a better idea of the number of rows that ought

to be returned to achieve optimal query performance, you can determine that this

Designing Operators

10-8 Oracle9i Data Cartridge Developer’s Guide

number of rows is returned in the ODCIRidList VARRAY instead of nrows . Note

that the number of values in the ODCIRidList has to be less than or equal to

nrows .

You, as cartridge designer, are in the best position to make a judgement regarding

the number of rows to be returned. For example, if in the index the number of (say

1500) rowids are stored together and nrows = 2000, then it may be optimal to return

1500 rows in lieu of 2000 rows. Otherwise the user would have to retrieve 3000

rowids, return 2000 if them and note which 1000 rowids were not returned.

If you not have any specific optimization in mind, you can use the value of nrows
to determine the number of rows to be returned. Currently the value of nrows has

been set to 2000.

Anyone implementing indexes which use callouts should use multirow fetch to fetch

the largest number of rows back to the server. This offsets the cost of making the

callout.

Designing Operators

Functional and Index Implementations
All indexes should contain an indexed and functional implementation of the

operator, in case the optimizer chooses not to use the indexed implementation.

You can, however, use the indexing structures to produce the functional result.

Talking to the Optimizer

Weighing Cost and Selectivity

Estimating Cost
In Oracle9i only the CPU and I/O costs are considered.

Cost for functions The cost of executing a C function can be determined using

common profilers or tools. For SQL queries, an explain plan of the query would

give a rough estimate of the cost of the query. In addition the tkprof utility can be

used to gather information about the CPU and the I/O cost involved in the

operation. The cost of executing a callout could also be determined by using it in a

SQL query which "selects from dual" and then estimating its cost from the tkprof
utility.

Talking to the Optimizer

Design Considerations 10-9

Cost for Indexes The cost of the index is a function of the selectivity of the predicate

(which is passed as an argument to the cost function) * the total number of data

blocks in the index structures. Hence the index cost function should be one which

increases with the increase in selectivity of the predicate. With a selectivity of 100%,

the cost of accessing the index should be the cost of accessing all the data in all the

structures that comprise the domain index.

The total cost of accessing the index is the cost of performing the

ODCIIndexStart , N * ODCIIndexFetch and ODCIIndexClose operators,

where N is the number of times the ODCIIndexFetch routine will be called based

on the selectivity of the predicate. The cost of ODCIIndexStart ,

ODCIIndexFetch and ODCIIndexClose functions can be determined as

discussed in the previous section.

Estimating Selectivity

Selectivity for Functions The selectivity of a predicate is the percentage of rows

returned by the predicate divided by the total number of rows in the table(s).

The selectivity function should use the statistics collected for the table to determine

what percentage of rows of the table will be returned by the predicate with the

given list of arguments. For example, to compute the selectivity of a predicate

IMAGE_GREATER_THAN (Image SelectedImage) which determines the images

that are greater than the Image SelectedImage , a histogram of the sizes of the

images in the database can be a useful statistics to compute the selectivity.

Collecting Statistics
Statistics can affect the calculation of selectivity for predicates and also the cost of

domain indexes.

Statistics for Tables The statistics collected for a table can affect the computation of

selectivity of a predicate. So statistics that can help the user make a better

judgement about the selectivity of a predicate should be collected for a

table/column. Knowing the predicates that would operate on the data will be

helpful to determine what statistics would be good to collect.

Some example of statistics that can be useful in spatial domain for example could be

the average/min/max number of elements in a VARRAY that contains the nodes of

the spatial objects.

Note that standard statistics are collected in addition to the user defined statistics

when the ANALYZE command is invoked.

Design for maintenance

10-10 Oracle9i Data Cartridge Developer’s Guide

Statistics for Indexes When a domain index is analyzed statistics for the underlying

objects which constitute the domain index should be analyzed. For example if the

domain index is comprised of tables, the statistics collection function should

ANALYZE the tables when the domain index is analyzed. The cost of accessing the

domain index can be influenced by the statistics that have been collected for the

index. For example the cost of accessing a domain index could be approximated to

the selectivity * the total number of data blocks (in the various tables) being

accessed when the domain index is accessed.

To accurately define cost, selectivity and statistics functions, a good understanding

of the domain is required. The preceding guidelines are meant to help you

understand some of the issues you need to take into account while working on the

cost, selectivity and statistics functions. In general it may be a good idea to start of

by using the default cost and selectivity and observe how the queries of interest

behave.

Design for maintenance
■ Carefully design your object types and methods. Object types are difficult to

upgrade once they are in use by applications.

■ Use OIDs in all of your object types so users can import/export data easily

across databases.

■ It is easy to add a method to a type, but hard to remove it.

■ You are likely get more use out of the cartridge and the existing tool stack if you

support functions against a traditional relational model in addition to an object

model.

■ Expose significant and frequently used data from your complex objects in object

types as attributes so that you can build an index on them.

■ If your cartridge maintains a large number of objects, views, tables, and so on,

consider making a metadata table to maintain the relationships among the

Note: Oracle Corporation recommends that you use the DBMS_
STATS package instead of the ANALYZE command to collect

optimizer statistics. In a future release, functionality to collect

optimizer statistics will be removed from ANALYZE.

See Oracle9i Supplied PL/SQL Packages and Types Reference for

information about DBMS_STATS.

Miscellaneous

Design Considerations 10-11

objects for the user. This will ease the complexity of developing and

maintaining the cartridge when it is in use.

How to Make Your Cartridge Extensible
■ Keep your interface simple, and document it thoroughly.

■ Use OO concepts appropriately.

■ Ensure that your methods do not have side affects

How to Make Your Cartridge Installable
■ Include a README with your cartridge to tell users how to install the cartridge

■ Make the cartridge installable in one step in the database, if possible:

sqlplus @imginst

■ Tell users how to start the listener if you are using callouts.

■ Tell users how to setup extproc . Most users have never heard of extproc and

many users have never set up a listener. This is the primary problem when

deploying cartridges.

■ Using the software packager, you can easily create custom SQL install scripts by

using the ’instantiate_file’ action. This is a great feature that enables

you to substitute variables in your files when they are installed and it leaves

your user with scripts and files that are customized for their machine.

Miscellaneous

How to Write Portable Cartridge Code
You should:

■ Use the datatypes in oratypes.h

■ Use OCI calls where ever possible.

■ Use the switches which enforce ANSI C conformance when possible

■ Use ANSI C function prototypes

Miscellaneous

10-12 Oracle9i Data Cartridge Developer’s Guide

■ Build and test on your target platforms as early in your development cycle as

possible (flush out platform specific code and allow as much time to redesign as

possible).

You should avoid:

■ Storing endian (big/little) specific data

■ Storing floating point data (IEEE/VAX/other)

■ Operating System-specific calls (if they can’t be avoided, isolate them in a layer

specific to the operating system; however, if the calls you require are not in the

OCI, and also are not in POSIX, then you are likely to encounter intractable

problems)

■ int <-> size_t implicit casts on a 64 bit platform

User-Defined Aggregate Functions 11-1

11
User-Defined Aggregate Functions

Oracle provides a number of pre-defined aggregate functions such as MAX, MIN, SUM
for performing operations on a set of rows. These pre-defined aggregate functions

can be used only with scalar data. However, you can define your own custom

implementations of these functions, or define entirely new aggregate functions, to

use with complex data—for example, with multimedia data stored using object

types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like Oracle’s

own built-in aggregates. Once such functions are registered with the server, Oracle

simply invokes the aggregation routines that you supplied instead of the native

ones.

User-defined aggregates can be used with scalar data too. For example, it may be

worthwhile to implement special aggregate functions for working with complex

statistical data associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You

implement them using ODCIAggregate interface routines. This chapter explains

how.

This chapter contains these major sections:

■ "The ODCIAggregate Interface: Overview"

■ "Creating a User-Defined Aggregate"

■ "Using a User-Defined Aggregate"

■ "Parallel Evaluation of User-Defined Aggregates"

■ "User-Defined Aggregates and Materialized Views"

■ "User-Defined Aggregates and Analytic Functions"

■ "Example: Creating and Using a User-Defined Aggregate"

11-2 Oracle9i Data Cartridge Developer’s Guide

See Also: Chapter 19, "Reference: User-Defined Aggregates

Interface" for a description of the ODCIAggregate interface

The ODCIAggregate Interface: Overview

User-Defined Aggregate Functions 11-3

The ODCIAggregate Interface: Overview
You create a user-defined aggregate function by implementing a set of routines

collectively referred to as the ODCIAggregate routines. You implement the

routines as methods within an object type, so the implementation can be in any

Oracle-supported language for type methods, such as PL/SQL, C/C++ or Java.

When the object type is defined and the routines are implemented in the type body,

you use the CREATE FUNCTION statement to create the aggregate function.

Each of the four ODCIAggregate routines required to define a user-defined

aggregate function codifies one of the internal operations that any aggregate

function performs, namely:

■ Initialize

■ Iterate

■ Merge

■ Terminate

For example, consider the aggregate function AVG() in the following statement:

SELECT AVG(T.Sales)
FROM AnnualSales T
GROUP BY T.State;

To perform its computation, the aggregate function AVG() goes through steps like

these:

1. Initialize: Initializes the computation:

runningSum = 0; runningCount = 0;

2. Iterate: Processes each successive input value:

runningSum += inputval; runningCount++;

3. Terminate: Computes the result:

return (runningSum/runningCount);

In this example, the Initialize step initializes the aggregation context—the rows over

which aggregation is performed. The Iterate step updates the context, and the

Terminate step uses the context to return the resultant aggregate value.

If AVG() were a user-defined function, the object type that embodies it would

implement a method for a corresponding ODCIAggregate routine for each of these

Creating a User-Defined Aggregate

11-4 Oracle9i Data Cartridge Developer’s Guide

steps. The variables runningSum and runningCount , which determine the state

of the aggregation in the example, would be attributes of that object type.

Sometimes a fourth step may be necessary to merge two aggregation contexts and

create a new context:

4. Merge: Combine the two aggregation contexts and return a single context:

runningSum = runningSum1 + runningSum2;
runningCount = runningCount1 + runningCount2

This operation combines the results of aggregation over subsets in order to obtain

the aggregate over the entire set. This extra step can be required during either serial

or parallel evaluation of an aggregate. If needed, it is performed before the Terminate
step.

The four ODCIAggregate routines corresponding to the preceding steps are:

Creating a User-Defined Aggregate
The process of creating a user-defined aggregate function has two steps. Here is an

overview of the steps, using the SpatialUnion() aggregate function defined by

the spatial cartridge. The function computes the bounding geometry over a set of

input geometries.

Routine Description

ODCIAggregateInitialize This routine is invoked by Oracle to initialize the computation of
the user-defined aggregate. The initialized aggrgegation context
is passed back to Oracle as an object type instance.

ODCIAggregateIterate This routine is repeatedly invoked by Oracle. On each
invocation, a new value (or a set of new values) is passed as
input. The current aggregation context is also passed in. The
routine processes the new value(s) and returns the updated
aggregation context back to Oracle. This routine is invoked for
every non-NULLvalue in the underlying group. (NULLvalues are
ignored during aggregation and are not passed to the routine.)

ODCIAggregateMerge This routine is invoked by Oracle to combine two aggregation
contexts. This routine takes the two contexts as inputs, combines
them, and returns a single aggregation context.

ODCIAggregateTerminate This routine is invoked by Oracle as the final step of
aggregation. The routine takes the aggregation context as input
and returns the resulting aggregate value.

Using a User-Defined Aggregate

User-Defined Aggregate Functions 11-5

Step 1: Implement the ODCIAggregate interface
The ODCIAggregate routines are implemented as methods within an object type

SpatialUnionRoutines . The actual implementation could be in any

Oracle-supported language for type methods, such as PL/SQL, C/C++ or Java.

CREATE TYPE SpatialUnionRoutines(
STATIC FUNCTION ODCIAggregateInitialize(...) ...,
MEMBER FUNCTION ODCIAggregateIterate(...) ... ,
MEMBER FUNCTION ODCIAggregateMerge(...) ...,
MEMBER FUNCTION ODCIAggregateTerminate(...)
);

CREATE TYPE BODY SpatialUnionRoutines IS
...
END;

Step 2: Create the User-Defined Aggregate
This step creates the SpatialUnion() aggregate function by specifying its

signature and the object type that implements the ODCIAggregate interface.

CREATE FUNCTION SpatialUnion(x Geometry) RETURN Geometry
AGGREGATE USING SpatialUnionRoutines;

Using a User-Defined Aggregate
User-defined aggregates can be used just like built-in aggregate functions in SQL

DML and query statements. They can appear in the SELECT list, ORDER BY clause,

or as part of the predicate in the HAVING clause.

For example, the following query can be used to compute state boundaries by

aggregating the geometries of all counties belonging to the same state:

SELECT SpatialUnion(geometry)
FROM counties
GROUP BY state

User-defined aggregates can be used in the HAVINGclause to eliminate groups from

the output based on the results of the aggregate function. In the following example,

MyUDAG() is a user-defined aggregate:

SELECT groupcol, MyUDAG(col)
FROM tab

Parallel Evaluation of User-Defined Aggregates

11-6 Oracle9i Data Cartridge Developer’s Guide

GROUP BY groupcol
HAVING MyUDAG(col) > 100
ORDER BY MyUDAG(col);

User-defined aggregates can take DISTINCT or ALL (default) options on the input

parameter. DISTINCT causes duplicate values to be ignored while computing an

aggregate.

The SELECTstatement containing a user-defined aggregate can also include GROUP
BY extensions such as ROLLUP, CUBE and grouping sets. For example:

SELECT ..., MyUDAG(col)
FROM tab
GROUP BY ROLLUP(gcol1, gcol2);

The ODCIAggregateMerge interface is invoked to compute superaggregate values

in such rollup operations.

Parallel Evaluation of User-Defined Aggregates
Like built-in aggregate functions, user-defined aggregates can be evaluated in

parallel. However, the aggregate function must be declared to be parallel-enabled,

as follows:

CREATE FUNCTION MyUDAG(...) RETURN ...
PARALLEL_ENABLE AGGREGATE USING MyAggrRoutines;

The aggregation contexts generated by aggregating subsets of the rows within the

parallel slaves are sent back to the next parallel step (either the query coordinator or

the next slave set), which then invokes the Merge routine to merge the aggregation

contexts and, finally, invokes the Terminate routine to obtain the aggregate value.

See Also: Oracle9i Data Warehousing Guide for information about

GROUP BY extensions such as ROLLUP, CUBE and grouping sets

Handling Large Aggregation Contexts

User-Defined Aggregate Functions 11-7

The sequence of calls in this scenario is as follows:

Handling Large Aggregation Contexts
When the implementation type methods are implemented in an external language

(such as C or Java), the aggregation context must be passed back and forth between

the Oracle server process and the external function's language environment each

time an implementation type method is called.

Passing a large aggregation context can have an adverse effect on performance. To

avoid this, you can store the aggregation context in external memory, allocated in

the external function's execution environment, and pass just a reference or key to

the context instead of the context itself. The key should be stored in the

implementation type instance (the self); you can then pass the key between the

Oracle server and the external function.

Passing a key to the context instead of the context itself keeps the implementation

type instance small so that it can be transferred quickly. Another advantage of this

strategy is that the memory used to hold the aggregation context is allocated in the

function's execution environment (for example, extproc), and not in the Oracle

server.

Usually you should allocate the memory to hold the aggregation context in

ODCIAggregateInitialize and store the reference to it in the implementation

type instance. In subsequent calls, the external memory and the aggregation context

that it contains can be accessed using the reference. The external memory should

usually be freed in ODCIAggregateTerminate . ODCIAggregateMerge should

free the external memory used to store the merged context (the second argument of

ODCIAggregateMerge) after the merge is done.

Merge

Terminate

Iterate

Iterate

Initialize

Initialize

Handling Large Aggregation Contexts

11-8 Oracle9i Data Cartridge Developer’s Guide

External Context and Parallel Aggregation
With parallel execution of queries with user-defined aggregates, the entire

aggregation context comprising all partial aggregates computed by slave processes

must sometimes be transmitted to another slave or to the master process. You can

implement the optional routine ODCIAggregateWrapContext to collect all the

partial aggregates. If a user-defined aggregate is being evaluated in parallel, and

ODCIAggregateWrapContext is defined, Oracle invokes the routine to copy all

external context references into the implementation type instance.

The ODCIAggregateWrapContext method should copy the aggregation context

from external memory to the implementation type instance and free the external

memory. To support ODCIAggregateWrapContext , the implementation type

must contain attributes to hold the aggregation context and another attribute to

hold the key that identifies the external memory.

When the aggregation context is stored externally, the key attribute of the

implementation type should contain the reference identifying the external memory,

and the remaining attributes of the implementation type should be NULL. After

ODCIAggregateWrapContext is called, the key attribute should be NULL, and the

other attributes should hold the actual aggregation context.

The following example shows an aggregation context type that contains references

to external memory and is also able to store the entire context when needed.

CREATE TYPE MyAggrRoutines AS OBJECT
(
-- The 4 byte key that is used to look up the external context.
-- When NULL, it implies that the entire context value is self-contained:
-- the context value is held by the rest of the attributes in this object.
key RAW(4),
-- The following attributes correspond to the actual aggregation context. If
-- the key value is non-null, these attributes are all NULL. However, when
-- the context object is self-contained (for example, after a call to
-- ODCIAggregateWrapContext), these attributes hold the context value.
ctxval GeometrySet,
ctxval2 ...
);

Each of the implementation type's member methods should begin by checking

whether the context is inline (contained in the implementation type instance) or in

external memory. If the context is inline (for example, because it was sent from

another parallel slave), it should be copied to external memory so that it can be

passed by reference.

User-Defined Aggregates and Materialized Views

User-Defined Aggregate Functions 11-9

Implementation of ODCIAggregateWrapContext is optional. It should be

implemented only when external memory is used to hold the aggregation context,

and the user-defined aggregate is evaluated in parallel (that is, declared as

PARALLEL_ENABLE). If the user-defined aggregate is not evaluated in parallel,

ODCIAggregateWrapContext is not needed.

If the ODCIAggregateWrapContext method is not defined, Oracle assumes that

the aggregation context is not stored externally and does not try to call the method.

External Context and User-Defined Analytic Functions
When user-defined aggregates are used as analytic functions, the aggregation

context can be reused from one window to the next. In these cases, the flag

argument of the ODCIAggregateTerminate function has its ODCI_AGGREGATE_
REUSE_CTX bit set to indicate that the external memory holding the aggregation

context should not be freed. Also, the ODCIAggregateInitialize method is

passed the implementation type instance of the previous window, so you can access

and just re-initialize the external memory allocated previously instead of having to

allocate memory again.

Summary of Steps to Support External Context
1. ODCIAggregateInitialize - If the implementation type instance passed is

not null, use the previously allocated external memory (instead of allocating

external memory) and reinitialize the aggregation context.

2. ODCIAggregateTerminate - Free external memory only if the bit ODCI_
AGGREGATE_REUSE_CTX of the flag argument is not set.

3. ODCIAggregateMerge - Free external memory associated with the merged

aggregation context.

4. ODCIAggregateWrapContext - Copy the aggregation context from the

external memory into the implementation type instance and free the external

memory.

5. All member methods - First determine if the context is stored externally or

inline. If the context is inline, allocate external memory and copy the context

there.

User-Defined Aggregates and Materialized Views
A materialized view definition can contain user-defined aggregates as well as

built-in aggregate operators. For example :

User-Defined Aggregates and Analytic Functions

11-10 Oracle9i Data Cartridge Developer’s Guide

CREATE MATERIALIZED VIEW MyMV AS
SELECT gcols, MyUDAG(c1) FROM tab GROUP BY (gcols);

For the materialized view to be enabled for query rewrite, the user-defined

aggregates in the materialized view must be declared as DETERMINISTIC. For

example:

CREATE FUNCTION MyUDAG(x NUMBER) RETURN NUMBER
DETERMINISTIC
AGGREGATE USING MyImplType;

CREATE MATERIALIZED VIEW MyMV
ENABLE QUERY REWRITE AS
SELECT gcols, MyUDAG(c1) FROM tab GROUP BY (gcols);

If a user-defined aggregate is dropped or re-created, all dependent materialized

views are marked invalid.

User-Defined Aggregates and Analytic Functions
Analytic functions (formerly called window, or windowing functions) enable you to

compute various cumulative, moving, and centered aggregates over a set of rows

called a window. The syntax provides for defining the window. For each row in a

table, analytic functions return a value computed on the other rows contained in the

given row’s window. These functions provide access to more than one row of a table

without a self-join.

User-defined aggregates can be used as analytic functions. For example:

SELECT Account_number, Trans_date, Trans_amount,
 MyAVG (Trans_amount) OVER
 (PARTITION BY Account_number ORDER BY Trans_date
 RANGE INTERVAL '7' DAY PRECEDING) AS mavg_7day
FROM Ledger;

Reusing the Aggregation Context for Analytic Functions
When a user-defined aggregate is used as an analytic function, the aggregate is

calculated for each row's corresponding window. Generally, each successive

window contains largely the same set of rows, such that the new aggregation

See Also: Oracle9i Data Warehousing Guide for information about

materialized views

Example: Creating and Using a User-Defined Aggregate

User-Defined Aggregate Functions 11-11

context (the new window) differs by only a few rows from the old aggregation

context (the previous window). You can implement an optional

routine—ODCIAggregateDelete —that enables Oracle to more efficiently reuse

the aggregation context. If the aggregation context cannot be reused, all the rows it

contains must be reiterated to rebuild it.

To reuse the aggregation context, any new rows that were not in the old context

must be iterated over to add them, and any rows from the old context that do not

belong in the new context must be removed.

The optional routine ODCIAggregateDelete removes from the aggregation

context rows from the previous context that are not in the new (current) window.

Oracle calls this routine for each row that must be removed. For each row that must

be added, Oracle calls ODCIAggregateIterate .

If the new aggregation context is a superset of the old one—in other words, contains

all the rows from the old context, such that none need to be deleted—then Oracle

reuses the old context even if ODCIAggregateDelete is not implemented.

Example: Creating and Using a User-Defined Aggregate
This example illustrates creating a simple user-defined aggregate function

SecondMax() that returns the second-largest value in a set of numbers.

Creating SecondMax()
1. Implement the type SecondMaxImpl to contain the ODCIAggregate routines.

create type SecondMaxImpl as object
(
 max NUMBER, -- highest value seen so far
 secmax NUMBER, -- second highest value seen so far
 static function ODCIAggregateInitialize(sctx IN OUT SecondMaxImpl)
 return number,
 member function ODCIAggregateIterate(self IN OUT SecondMaxImpl,
 value IN number) return number,
 member function ODCIAggregateTerminate(self IN SecondMaxImpl,
 returnValue OUT number, flags IN number) return number,

See Also:

■ "Handling Large Aggregation Contexts" on page 11-7 for information
about storing the aggregation context externally

■ Oracle9i Data Warehousing Guide for information about analytic
functions

Example: Creating and Using a User-Defined Aggregate

11-12 Oracle9i Data Cartridge Developer’s Guide

 member function ODCIAggregateMerge(self IN OUT SecondMaxImpl,
 ctx2 IN SecondMaxImpl) return number
);
/

2. Implement the type body for SecondMaxImpl .

create or replace type body SecondMaxImpl is
static function ODCIAggregateInitialize(sctx IN OUT SecondMaxImpl)
return number is
begin
 sctx := SecondMaxImpl(0, 0);
 return ODCIConst.Success;
end;

member function ODCIAggregateIterate(self IN OUT SecondMaxImpl, value IN number)
return number is
begin
 if value > self.max then
 self.secmax := self.max;
 self.max := value;
 elsif value > self.secmax then
 self.secmax := value;
 end if;
 return ODCIConst.Success;
end;

member function ODCIAggregateTerminate(self IN SecondMaxImpl, returnValue OUT
number, flags IN number) return number is
begin
 returnValue := self.secmax;
 return ODCIConst.Success;
end;

member function ODCIAggregateMerge(self IN OUT SecondMaxImpl, ctx2 IN
SecondMaxImpl) return number is
begin
 if ctx2.max > self.max then
 if ctx2.secmax > self.secmax then
 self.secmax := ctx2.secmax;
 else
 self.secmax := self.max;
 end if;
 self.max := ctx2.max;
 elsif ctx2.max > self.secmax then

Example: Creating and Using a User-Defined Aggregate

User-Defined Aggregate Functions 11-13

 self.secmax := ctx2.max;
 end if;
 return ODCIConst.Success;
end;
end;
/

3. Create the user-defined aggregate.

CREATE FUNCTION SecondMax (input NUMBER) RETURN NUMBER
PARALLEL_ENABLE AGGREGATE USING SecondMaxImpl;

Using SecondMax()
SELECT SecondMax(salary), department_id
 FROM employees
 GROUP BY department_id
 HAVING SecondMax(salary) > 9000;

Example: Creating and Using a User-Defined Aggregate

11-14 Oracle9i Data Cartridge Developer’s Guide

Pipelined and Parallel Table Functions 12-1

12
Pipelined and Parallel Table Functions

This chapter describes table functions. It also explains the generic datatypes

ANYTYPE, ANYDATA, and ANYDATASET, which are likely to be used with table

functions.

Major topics covered are:

■ Overview of Table Functions

■ Pipelined Table Functions

■ Parallel Table Functions

■ Input Data Streaming for Table Functions

■ Transient and Generic Types

Overview

12-2 Oracle9i Data Cartridge Developer’s Guide

Overview
Table functions are functions that produce a collection of rows (either a nested table

or a varray) that can be queried like a physical database table. You use a table

function like the name of a database table, in the FROM clause of a query.

A table function can take a collection of rows as input. An input collection

parameter can be either a collection type or a REF CURSOR.

Execution of a table function can be parallelized, and returned rows can be

streamed directly to the next process without intermediate staging. Rows from a

collection returned by a table function can also be pipelined—that is, iteratively

returned as they are produced instead of in a batch after all processing of the table

function’s input is completed.

Streaming, pipelining, and parallel execution of table functions can improve

performance:

■ By enabling multithreaded, concurrent execution of table functions

■ By eliminating intermediate staging between processes

■ By improving query response time: With non-pipelined table functions, the

entire collection returned by a table function must be constructed and returned

to the server before the query can return a single result row. Pipelining enables

rows to be returned iteratively, as they are produced. This also reduces the

memory that a table function requires, as the object cache does not need to

materialize the entire collection.

■ By iteratively providing result rows from the collection returned by a table

function as the rows are produced instead of waiting until the entire collection

is staged in tables or memory and then returning the entire collection

Figure 12–1 shows a typical data-processing scenario in which data goes through

several (in this case, three) transformations, implemented by table functions, before

finally being loaded into a database. In this scenario, the table functions are not

parallelized, and the entire result collection must be staged after each

transformation.

Concepts

Pipelined and Parallel Table Functions 12-3

Figure 12–1 Typical Data Processing with Unparallized, Unpipelined Table Functions

By contrast, Figure 12–2 shows how streaming and parallel execution can

streamline the same scenario.

Figure 12–2 Data Processing Using Pipelining and Parallel Execution

Concepts

Table Functions
Table functions return a collection type instance and can be queried like a table by

calling the function in the FROM clause of a query. Table functions use the TABLE
keyword.

The following example shows a table function GetBooks that takes a CLOBas input

and returns an instance of the collection type BookSet_t . The CLOB column stores

a catalog listing of books in some format (either proprietary or following a standard

such as XML). The table function returns all the catalogs and their corresponding

book listings.

The collection type BookSet_t is defined as:

CREATE TYPE Book_t AS OBJECT
(name VARCHAR2(100),
 author VARCHAR2(30),
 abstract VARCHAR2(1000));

T1 Stage 1OLTP DSST2 Stage 2 T3

T1OLTP Data
Warehouse

T2 T3

T1 T2 T3

T1 T2 T3

Concepts

12-4 Oracle9i Data Cartridge Developer’s Guide

CREATE TYPE BookSet_t AS TABLE OF Book_t;

The CLOBs are stored in a table Catalogs :

CREATE TABLE Catalogs
(name VARCHAR2(30),
 cat CLOB);

Function GetBooks is defined as follows:

CREATE FUNCTION GetBooks(a CLOB) RETURN BookSet_t;

The following query returns all the catalogs and their corresponding book listings.

SELECT c.name, Book.name, Book.author, Book.abstract
 FROM Catalogs c, TABLE(GetBooks(c.cat)) Book;

Pipelined Table Functions
Data is said to be pipelined if it is consumed by a consumer (transformation) as

soon as the producer (transformation) produces it, without being staged in tables or

a cache before being input to the next transformation.

Pipelining enables a table function to return rows faster and can reduce the memory

required to cache a table function’s results.

A pipelined table function can return the table function’s result collection in subsets.

The returned collection behaves like a stream that can be fetched from on demand.

This makes it possible to use a table function like a virtual table.

Pipelined table functions can be implemented in two ways:

■ Native PL/SQL approach: The consumer and producers can run on separate

execution threads (either in the same or different process context) and

communicate through a pipe or queuing mechanism. This approach is similar

to co-routine execution.

■ Interface approach: The consumer and producers run on the same execution

thread. Producer explicitly returns the control back to the consumer after

producing a set of results. In addition, the producer caches the current state so

that it can resume where it left off when the consumer invokes it again.

The interface approach requires you to implement a set of well-defined interfaces in

a procedural language.

Concepts

Pipelined and Parallel Table Functions 12-5

The co-routine execution model provides a simpler, native PL/SQL mechanism for

implementing pipelined table functions, but this model cannot be used for table

functions written in C or Java. The interface approach, on the other hand, can. The

interface approach requires the producer to save the current state information in a

“context” object before returning so that this state can be restored on the next

invocation.

In the rest of this chapter, the term table function is used to refer to a pipelined table

function—that is, a table function that returns a collection in an iterative, pipelined

way.

Pipelined Table Functions with REF CURSOR Arguments
A pipelined table function can accept any argument that regular functions accept. A

table function that accepts a REF CURSOR as an argument can serve as a

transformation function. That is, it can use the REF CURSORto fetch the input rows,

perform some transformation on them, and then pipeline the results out (using

either the interface approach or the native PL/SQL approach).

For example, the following code sketches the declarations that define a

StockPivot function. This function converts a row of the type (Ticker,
OpenPrice, ClosePrice) into two rows of the form (Ticker, PriceType,
Price). Calling StockPivot for the row ("ORCL", 41, 42) generates two rows:

("ORCL", "O", 41) and ("ORCL", "C", 42).

Input data for the table function might come from a source such as table

StockTable :

CREATE TABLE StockTable (
 ticker VARCHAR(4),
 open_price NUMBER,
 close_price NUMBER
);

Here are the declarations. See Appendix A for a complete implementation of this

table function using the interface approach, in both C and Java.

-- Create the types for the table function's output collection
-- and collection elements

CREATE TYPE TickerType AS OBJECT
(
 ticker VARCHAR2(4),
 PriceType VARCHAR2(1),
 price NUMBER

Concepts

12-6 Oracle9i Data Cartridge Developer’s Guide

);

CREATE TYPE TickerTypeSet AS TABLE OF TickerType;

-- Define the ref cursor type

CREATE PACKAGE refcur_pkg IS
 TYPE refcur_t IS REF CURSOR RETURN StockTable%ROWTYPE;
END refcur_pkg;
/

-- Create the table function

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
PIPELINED ... ;
/

Here is an example of a query that uses the StockPivot table function:

SELECT * FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable)));

In the preceding query, the pipelined table function StockPivot fetches rows from

the CURSOR subquery SELECT * FROM StockTable , performs the

transformation, and pipelines the results back to the user as a table. The function

produces two output rows (collection elements) for each input row.

Note that when a CURSOR subquery is passed from SQL to a REF CURSOR function

argument as in the preceding example, the referenced cursor is already open when

the function begins executing.

Errors and Restrictions
■ The following cursor operations are not allowed for REF CURSOR variables

based on table functions:

■ SELECT FOR UPDATE

■ WHERE CURRENT OF

Parallel Execution of Table Functions
With parallel execution of a function that appears in the SELECT list, execution of

the function is pushed down to and conducted by multiple slave scan processes.

These each execute the function on a segment of the function’s input data.

For example, the query

Pipelined Table Functions

Pipelined and Parallel Table Functions 12-7

SELECT f(col1) FROM tab;

is parallelized if f is a pure function. The SQL executed by a slave scan process is

similar to:

SELECT f(col1) FROM tab WHERE ROWID BETWEEN :b1 AND :b2;

Each slave scan operates on a range of rowids and applies function f to each

contained row. Function f is then executed by the scan processes; it does not run

independently of them.

Unlike a function that appears in the SELECT list, a table function is called in the

FROM clause and returns a collection. This affects the way that table function input

data is partitioned among slave scans because the partitioning approach must be

appropriate for the operation that the table function performs. (For example, an

ORDER BY operation requires input to be range-partitioned, whereas a GROUP BY
operation requires input to be hash partitioned.)

A table function itself specifies in its declaration the partitioning approach that is

appropriate for it. (See "Input Data Partitioning" on page 12-21.) The function is

then executed in a two-stage operation. First, one set of slave processes partitions

the data as directed in the function’s declaration; then a second set of slave scans

executes the table function in parallel on the partitioned data.

For example, the table function in the following query has a REF CURSOR
parameter:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM tab)));

The scan is performed by one set of slave processes, which redistributes the rows

(based on the partitioning method specified in the function declaration) to a second

set of slave processes that actually executes function f in parallel.

Pipelined Table Functions

Implementation Choices for Pipelined Table Functions
As noted previously, two approaches are supported for implementing pipelined

table functions: the interface approach and the PL/SQL approach.

The interface approach requires the user to supply a type that implements a

predefined Oracle interface consisting of start, fetch, and close operations. The type

is associated with the table function when the table function is created. During

query execution, the fetch method is invoked repeatedly to iteratively retrieve the

Pipelined Table Functions

12-8 Oracle9i Data Cartridge Developer’s Guide

results. With the interface approach, the methods of the implementation type

associated with the table function can be implemented in any of the supported

internal or external languages (including PL/SQL, C/C++, and Java).

With the PL/SQL approach, a single PL/SQL function includes a special instruction

to pipeline results (single elements of the collection) out of the function instead of

returning the whole collection as a single value. The native PL/SQL approach is

simpler to implement because it requires writing only one PL/SQL function.

The approach used to implement pipelined table functions does not affect the way

they are used. Pipelined table functions are used in SQL statements in exactly the

same way regardless of the approach used to implement them.

Declarations of Pipelined Table Functions
You declare a pipelined table function by specifying the PIPELINED keyword. This

keyword indicates that the function will return rows iteratively. The return type of

the pipelined table function must be a collection type (a nested table or a varray).

The following example shows declarations of pipelined table functions

implemented using the interface approach. The interface routines for functions

GetBooks and StockPivot have been implemented in the types BookMethods
and StockPivotImpl , respectively.

CREATE FUNCTION GetBooks(cat CLOB) RETURN BookSet_t PIPELINED USING BookMethods;

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t)
 RETURN TickerTypeSet PIPELINED USING StockPivotImpl;

The following examples show declarations of the same table functions implemented

using the native PL/SQL approach:

CREATE FUNCTION GetBooks(cat CLOB) RETURN BookSet_t PIPELINED IS ...;

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
PIPELINED IS... ;

Implementing the Native PL/SQL Approach
In PL/SQL, the PIPE ROW statement causes a table function to pipe a row and

continue processing. The statement enables a PL/SQL table function to return rows

as soon as they are produced. (For performance, the PL/SQL runtime system

provides the rows to the consumer in batches.) For example:

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet

Pipelined Table Functions

Pipelined and Parallel Table Functions 12-9

PIPELINED IS
 out_rec TickerType := TickerType(NULL,NULL,NULL);
 in_rec p%ROWTYPE;
BEGIN
 LOOP
 FETCH p INTO in_rec;
 EXIT WHEN p%NOTFOUND;
 -- first row
 out_rec.ticker := in_rec.Ticker;
 out_rec.PriceType := 'O';
 out_rec.price := in_rec.OpenPrice;
 PIPE ROW(out_rec);
 -- second row
 out_rec.PriceType := 'C';
 out_rec.Price := in_rec.ClosePrice;
 PIPE ROW(out_rec);
 END LOOP;
 CLOSE p;
 RETURN;
END;
/

In the example, the PIPE ROW(out_rec) statement pipelines data out of the

PL/SQL table function.

The PIPE ROW statement may be used only in the body of pipelined table

functions; an error is raised if it is used anywhere else. The PIPE ROW statement

can be omitted for a pipelined table function that returns no rows.

A pipelined table function must have a RETURN statement that does not return a

value. The RETURN statement transfers the control back to the consumer and

ensures that the next fetch gets a NO_DATA_FOUND exception.

Pipelining Between PL/SQL Table Functions
With serial execution, results are pipelined from one PL/SQL table function to

another using an approach similar to co-routine execution. For example, the

following statement pipelines results from function g to function f :

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g()))));

Parallel execution works similarly except that each function executes in a different

process (or set of processes).

Pipelined Table Functions

12-10 Oracle9i Data Cartridge Developer’s Guide

Implementing the Interface Approach
To use the interface approach, you must define an implementation type that

implements the ODCITable interface. This interface consists of start, fetch and close

routines (and an optional describe method discussed later) whose signatures are

specified by Oracle and which you implement as methods of the type.

Oracle invokes the methods to perform the following steps in the execution of a

query containing a table function:

1. Start: Initialize the scan context parameter. This is then used during the second

phase.

2. Fetch: Produce a subset of the rows in the result collection. This routine is

invoked as many times as necessary to return the entire collection.

3. Close: Clean up (for example, release memory) after the last fetch .

Scan Context
In order for the fetch method to produce the next set of rows, a table function needs

to be able to maintain context between successive invocations of the interface

routines to fetch another set of rows. This context, called the scan context, is defined

by the attributes of the implementation type. A table function preserves the scan

context by modeling it in an object instance of the implementation type.

Start Routine
The start routine ODCITableStart is the first routine that is invoked to begin

retrieving rows from a table function. This routine typically performs the setup

needed for the scan. The scan context is created (as an object instance sctx) and

returned to Oracle. The signature of the method is:

STATIC FUNCTION ODCITableStart(sctx OUT <imptype>, <args>)
RETURN NUMBER;

The arguments to the table function, specified by the user in the SELECT statement,

are passed in as parameters to this routine.

Note that any REF CURSOR arguments of a table function must be declared as SYS_

REFCURSOR type in the declaration of the ODCITableStart method: ordinary REF CURSOR

types cannot be used as formal argument types in ODCITableStart . Ordinary REF

CURSOR types can only be declared in a package, and types defined in a package

cannot be used as formal argument types in a type method. To use a REF CURSORtype

in ODCITableStart , you must use the system-defined SYS_REFCURSOR type.

Pipelined Table Functions

Pipelined and Parallel Table Functions 12-11

Fetch Routine
The fetch routine ODCITableFetch is invoked one or more times by Oracle to retrieve

all the rows in the table function’s result set. The scan context is passed in as a

parameter. This routine returns the next subset of one or more rows.

The fetch routine is called by Oracle repeatedly until all the rows have been

returned by the table function. Returning more rows in each invocation of fetch()
reduces the number of fetch calls that need to be made and thus improves

performance. The table function should return a null collection to indicate that all

rows have been returned. The signature of the fetch routine is:

MEMBER FUNCTION ODCITableFetch(self IN OUT <imptype>, nrows IN NUMBER,
rws OUT <coll-type>) RETURN NUMBER;

The nrows parameter indicates the number of rows that are required to satisfy the

current OCI call. For example, if the current OCI call is an OCIStmtFetch that

requested 100 rows, and 20 rows have aready been returned, then the nrows

parameter will be equal to 80. The fetch function is allowed to return a different

number of rows. The main purpose of this parameter is to prevent

ODCITableFetch from returning more rows than actually required. If

ODCITableFetch returns more rows than the value of this parameter, the rows are

cached and returned in subsequent OCIStmtFetch calls, or they are discarded if

the OCI statement handle is closed before they are all fetched.

Close Routine
The close routine ODCITableClose is invoked by Oracle after the last fetch

invocation. The scan context is passed in as a parameter. This routine performs the

necessary cleanup operations. The signature of the close routine is:

MEMBER FUNCTION ODCITableClose(self IN <imptype>)
RETURN NUMBER;

Pipelined Table Functions

12-12 Oracle9i Data Cartridge Developer’s Guide

Figure 12–3 Flowchart of Table Function Row Source Execution

Example: Pipelined Table Functions: Interface Approach
Two complete implementations of the StockPivot table function are given in

Appendix A. Both use the interface approach. One implements the ODCITable
interface in C and one in Java.

Describe Routine
Sometimes it is not possible to define the structure of the return type from the table

function statically. For example, the shape of the rows may be different in different

queries and may depend on the actual arguments with which the table function is

invoked. Such table functions can be declared to return AnyDataSet . AnyDataSet
is a generic collection type. It can be used to model any collection (of any element

type) and has an associated set of APIs (both PL/SQL and C) that enable you to

construct AnyDataSet instances and access the elements.

The following example shows a table function declared to return an AnyDataSet
collection whose structure is not fixed at function creation time:

CREATE FUNCTION AnyDocuments(VARCHAR2) RETURN ANYDATASET
PIPELINED USING DocumentMethods;

Is result
null?

Process Result

ODCITableFetch

ODCITableStart

No

Yes

ODCITableClose

Pipelined Table Functions

Pipelined and Parallel Table Functions 12-13

You can implement a describe interface to find out the format of the elements in the

result collection when the format depends on the actual parameters to the table

function. The routine, ODCITableDescribe , is invoked by Oracle at query

compilation time to retrieve the specific type information. Typically, the routine uses

the user arguments to figure out the shape of the return rows. The format of

elements in the returned collection is conveyed to Oracle by returning an instance of

AnyType .

The AnyType instance specifies the actual structure of the returned rows in the

context of the specific query. Like AnyDataSet , AnyType has an associated set of

PL/SQL and C interfaces with which to construct and access the metadata

information.

The signature of the describe routine is as follows:

STATIC FUNCTION ODCITableDescribe(rtype OUT ANYTYPE, <args>)
 RETURN NUMBER;

For example, suppose that the following query of the AnyDocuments function

could return information on either books or magazines.

SELECT * FROM
 TABLE(AnyDocuments(’http://.../documents.xml’)) x
 WHERE x.Abstract like ’%internet%’;

The following sample implementation of the ODCITableDescribe method

consults the DTD of the XML documents at the specified location to return the

appropriate AnyType value (book or magazine). The AnyType instance is

constructed by invoking the constructor APIs with the field name and datatype

information.

CREATE TYPE Mag_t AS OBJECT
(name VARCHAR2(100),
 publisher VARCHAR2(30),
 abstract VARCHAR2(1000)
);

STATIC FUNCTION ODCITableDescribe(rtype OUT ANYTYPE,
 url VARCHAR2)
IS BEGIN
 Contact specified web server and retrieve document...
 Check XML doc schema to determine if books or mags...

See Also: "Transient and Generic Types" on page 12-27 for

information on AnyDataSet and AnyType

Pipelined Table Functions

12-14 Oracle9i Data Cartridge Developer’s Guide

 IF books THEN
 rtype=AnyType.AnyTypeGetPersistent(’SYS’,’BOOK_T’);
 ELSE
 rtype=AnyType.AnyTypeGetPersistent(’SYS’,’MAG_T’);
 END IF;
END;

When Oracle invokes the describe method, it uses the type information (returned in

the AnyType OUT argument) to resolve references in the command line, such as the

reference to the x.Abstract attribute in the preceding query. This functionality is

applicable only when the returned type is a named type (and therefore has named

attributes).

Another feature of ODCITableDescribe is its ability to describe SELECT list

parameters (for example, using OCI interfaces) when executing a SELECT * query.

The information retrieved reflects one SELECT list item for each top-level attribute

of the type returned by ODCITableDescribe .

Since the ODCITableDescribe method is called at compile time, the table

function should have at least one argument which has a value at compile time (for

example, a constant). By using the table function with different arguments, you can

get different return types from the function. For example:

-- Issue a query for books
SELECT x.Name, x.Author
FROM TABLE(AnyDocuments(’Books.xml’)) x;

-- Issue a query for magazines
SELECT x.Name, x.Publisher
FROM TABLE(AnyDocuments(’Magazines.xml’)) x;

The describe functionality is available only if the table function is implemented

using the interface approach. A native PL/SQL implementation of a table function

that returns ANYDATASET will return rows whose structure is opaque to the server.

Querying Table Functions
Pipelined table functions are used in the FROM clause of SELECT statements in the

same way regardless of whether they are implemented using the native PL/SQL or

the interface approach. The result rows are retrieved by Oracle iteratively from the

table function implementation. For example:

SELECT x.Ticker, x.Price
FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable))) x
WHERE x.PriceType=’C’;

Pipelined Table Functions

Pipelined and Parallel Table Functions 12-15

Multiple Calls to Table Functions
Multiple invocations of a table function, either within the same query or in separate

queries result in multiple executions of the underlying implementation. That is, in

general, there is no buffering or reuse of rows.

For example,

SELECT * FROM TABLE(f(...)) t1, TABLE(f(...)) t2
 WHERE t1.id = t2.id;

SELECT * FROM TABLE(f());

SELECT * FROM TABLE(f());

However, if the output of a table function is determined solely by the values passed

into it as arguments, such that the function always produces exactly the same result

value for each respective combination of values passed in, you can declare the

function DETERMINISTIC, and Oracle will automatically buffer rows for it. Note,

though, that the database has no way of knowing whether a function marked

DETERMINISTIC really is DETERMINISTIC, and if one is not, results will be

unpredictable.

PL/SQL
PL/SQL REF CURSOR variables can be defined for queries over table functions. For

example:

OPEN c FOR SELECT * FROM TABLE(f(...));

Cursors over table functions have the same fetch semantics as ordinary cursors. REF
CURSOR assignments based on table functions do not have a special semantics.

However, the SQL optimizer will not optimize across PL/SQL statements. For

example:

BEGIN
 OPEN r FOR SELECT * FROM TABLE(f(CURSOR(SELECT * FROM tab)));
 SELECT * BULK COLLECT INTO rec_tab FROM TABLE(g(r));

Note: A table function returns a collection. In some cases, such as

inside a PL/SQL block, you may need a CAST operator around the

table function.

Pipelined Table Functions

12-16 Oracle9i Data Cartridge Developer’s Guide

END;

will not execute as well as:

SELECT * FROM TABLE(g(CURSOR(SELECT * FROM
 TABLE(f(CURSOR(SELECT * FROM tab))))));

This is so even ignoring the overhead associated with executing two SQL

statements and assuming that the results can be pipelined between the two

statements.

Performing DML Operations Inside Table Functions
A table function must be declared with the autonomous transaction pragma in

order for the function to execute DML statements. This pragma causes the function

to execute in an autonomous transaction not shared by other processes.

Use the following syntax to declare a table function with the autonomous

transaction pragma:

CREATE FUNCTION f(p SYS_REFCURSOR) return CollType PIPELINED IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN ... END;

During parallel execution, each instance of the table function creates an

independent transaction.

Performing DML Operations on Table Functions
Table functions cannot be the target table in UPDATE, INSERT, or DELETE
statements. For example, the following statements will raise an error:

UPDATE F(CURSOR(SELECT * FROM tab)) SET col = value;
INSERT INTO f(...) VALUES ('any', 'thing');

However, you can create a view over a table function and use INSTEAD OFtriggers

to update it. For example:

CREATE VIEW BookTable AS
 SELECT x.Name, x.Author
 FROM TABLE(GetBooks('data.txt')) x;

The following INSTEAD OF trigger is fired when the user inserts a row into the

BookTable view:

CREATE TRIGGER BookTable_insert

Parallel Table Functions

Pipelined and Parallel Table Functions 12-17

INSTEAD OF INSERT ON BookTable
REFERENCING NEW AS n
FOR EACH ROW
BEGIN
 ...
END;
INSERT INTO BookTable VALUES (...);

INSTEAD OF triggers can be defined for all DML operations on a view built on a

table function.

Handling Exceptions in Table Functions
Exception handling in table functions works just as it does with ordinary

user-defined functions.

Some languages, such as C and Java, provide a mechanism for user-supplied

exception handling. If an exception raised within a table function is handled, the

table function executes the exception handler and continues processing. Exiting the

exception handler takes control to the enclosing scope. If the exception is cleared,

execution proceeds normally.

An unhandled exception in a table function causes the parent transaction to roll

back.

Parallel Table Functions
For a table function to be executed in parallel, it must have a partitioned input

parameter. Parallelism is turned on for a table function if, and only if, both the

following conditions are met:

■ The function has a PARALLEL_ENABLE clause in its declaration

■ Exactly one REF CURSOR is specified with a PARTITION BY clause

If the PARTITION BY clause is not specified for any input REF CURSORas part

of the PARALLEL_ENABLE clause, the SQL compiler cannot determine how to

partition the data correctly.

Inputting Data with Cursor Variables
You can pass a set of rows to a PL/SQL function in a REF CURSOR parameter. For

example:

FUNCTION f(p1 IN SYS_REFCURSOR) RETURN ... ;

Parallel Table Functions

12-18 Oracle9i Data Cartridge Developer’s Guide

Results of a subquery can be passed to a function directly:

SELECT * FROM TABLE(f(CURSOR(SELECT empno FROM tab)));

In the preceding example, the CURSOR keyword is required to indicate that the

results of a subquery should be passed as a REF CURSOR parameter.

Using Multiple REF CURSOR Input Variables
PL/SQL functions can accept multiple REF CURSOR input variables:

CREATE FUNCTION g(p1 pkg.refcur_t1, p2 pkg.refcur_t2) RETURN...
 PIPELINED ... ;

Function g can be invoked as follows:

SELECT * FROM TABLE(g(CURSOR(SELECT empno FROM tab),
 CURSOR(SELECT * FROM emp));

You can pass table function return values to other table functions by creating a REF
CURSOR that iterates over the returned data:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g(...)))));

Explicitly Opening a REF CURSOR for a Query
You can explicitly open a REF CURSOR for a query and pass it as a parameter to a

table function:

BEGIN
 OPEN r FOR SELECT * FROM TABLE(f(...));
 -- Must return a single row result set.
 SELECT * INTO rec FROM TABLE(g(r));
END;

PL/SQL REF CURSOR Arguments to Java and C/C++ Functions

Note: Support for passing REF CURSOR arguments to C and Java

external functions is not provided in the initial Oracle9i release.

Until support is provided, examples that show this feature will not

work.

Parallel Table Functions

Pipelined and Parallel Table Functions 12-19

Parallel and pipelined table functions can be written in C/C++ and Java as well as

PL/SQL. Unlike PL/SQL, C/C++ and Java do not support the REF CURSOR type,

but you can still pass a REF CURSOR argument to C/C++ and Java functions.

If a table function is implemented as a C callout, then an IN REF CURSOR
argument passed to the callout is automatically available as an executed OCI

statement handle. You can use this handle like any other executed statement handle.

A REF CURSOR argument to a callout passed as an IN OUT parameter is converted

to an executed statement handle on the way in to the callout, and the statement

handle is converted back to a REF CURSOR on the way out. (The inbound and

outbound statement handles may be different.)

If a REF CURSORtype is used as an OUTargument or a return type to a callout, then

the callout must return the statement handle, which will be converted to a REF
CURSOR for the caller.

The following code shows a sample callout.

CREATE OR replace PACKAGE p1 AS
 TYPE rc IS REF cursor;
 END;

CREATE OR REPLACE LIBRARY MYLIB AS 'mylib.so';

CREATE OR REPLACE FUNCTION MyCallout (stmthp p1.rc)
 RETURN binary_integer AS LANGUAGE C LIBRARY MYLIB
 WITH CONTEXT
 PARAMETERS (context, stmthp ocirefcursor, RETURN sb4);

sb4 MyCallout (OCIExtProcContext *ctx, OCIStmt ** stmthp)
 OCIEnv *envhp; /* env. handle */
 OCISvcCtx *svchp; /* service handle */
 OCIError *errhp; /* error handle */
 OCISession *usrhp; /* user handle */

 int errnum = 29400; /* choose some oracle error number */
 char errmsg[512]; /* error message buffer */
 size_t errmsglen; /* Length of error message */
 OCIDefine *defn1p = (OCIDefine *) 0;
 OCINumber *val=(OCINumber *)0;

 OCINumber *rval = (OCINumber *)0;
 sword status = 0;
 double num=0;
 val = (OCINumber*) OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));

Parallel Table Functions

12-20 Oracle9i Data Cartridge Developer’s Guide

 /* Get OCI handles */
 if (GetHandles(ctx, &envhp, &svchp, &errhp, &usrhp,&rval))
 return -1;
 /* Define the fetch buffer */
 psdro_checkerr(NULL, errhp, OCIDefineByPos(*stmthp, &defn1p, errhp, (ub4) 1,
 (dvoid *) &num, (sb4) sizeof(num),
 SQLT_FLT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 /* Fetch loop */
 while ((status = OCIStmtFetch(*stmthp, errhp, (ub4) 1, (ub4) OCI_FETCH_NEXT,
 (ub4) OCI_DEFAULT)) == OCI_SUCCESS ||
 status == OCI_SUCCESS_WITH_INFO)
 {
 printf("val=%lf\n",num);
 }
 return 0;
}

If the function is written as a Java callout, the IN REF CURSOR argument is

automatically converted to an instance of the Java ResultSet class.

For a callout implemented in Java, IN REF CURSOR to ResultSet mapping is

available only if you use a FAT JDBC driver based on OCI. This mapping is not

available for a thin JDBC driver. As with an executed statement handle in a C

callout, when a REF CURSOR is either an IN OUT argument, an OUT argument, or a

return type for the function, a Java ResultSet is converted back to a PL/SQL REF
CURSOR on its way out to the caller.

A predefined weak REF CURSOR type SYS_REFCURSOR is also supported. With

SYS_REFCURSOR, you do not need to first create a REF CURSOR type in a package

before you can use it. This weak REF CURSOR type can be used in the

ODCITableStart method, which, as a type method, cannot accept a package type.

To use a strong REF CURSOR type, you still must create a PL/SQL package and

declare a strong REF CURSOR type in it. Also, if you are using a strong REF
CURSOR type as an argument to a table function, then the actual type of the REF
CURSOR argument must match the column type, or an error is generated.

To partion a weak REF CURSOR argument, you must partition by ANY: a weak REF
CURSOR argument cannot be partitioned by RANGE or HASH). Oracle recommends

that you not use weak REF CURSOR arguments to table functions.

Parallel Table Functions

Pipelined and Parallel Table Functions 12-21

Input Data Partitioning
The table function declaration can specify data partitioning for exactly one REF
CURSOR parameter. The syntax to do this is as follows:

CREATE FUNCTION f(p <ref cursor type>) RETURN rec_tab_type PIPELINED
PARALLEL_ENABLE(PARTITION p BY [{HASH | RANGE} (<column list>) | ANY]) IS

BEGIN ... END;

The PARTITION…BY phrase in the PARALLEL_ENABLE clause specifies which one

of the input cursors to partition and what columns to use for partitioning.

When explicit column names are specified in the column list, the partitioning

method can be RANGE or HASH. The input rows will be hash- or range-partitioned

on the columns specified.

The ANY keyword enables you to indicate that the function behavior is independent

of the partitioning of the input data. When this keyword is used, the runtime

system randomly partitions the data among the slaves. This keyword is appropriate

for use with functions that take in one row, manipulate its columns, and generate

output row(s) based on the columns of this row only.

For example, the pivot-like function StockPivot shown takes as input a row of

the type:

(Ticker varchar(4), OpenPrice number, ClosePrice number)

and generates rows of the type:

(Ticker varchar(4), PriceType varchar(1), Price number).

So the row ("ORCL", 41, 42) generates two rows ("ORCL", "O", 41) and

("ORCL", "C", 42).

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN rec_tab_type PIPELINED
 PARALLEL_ENABLE(PARTITION p BY ANY) IS
 ret_rec rec_type;
BEGIN
 FOR rec IN p LOOP
 ret_rec.Ticker := rec.Ticker;
 ret_rec.PriceType := "O";
 ret_rec.Price := rec.OpenPrice;
 PIPE ROW(ret_rec);

 ret_rec.Ticker := rec.Ticker; -- Redundant; not required
 ret_rec.PriceType := "C";
 ret_rec.Price := rec.ClosePrice;

Parallel Table Functions

12-22 Oracle9i Data Cartridge Developer’s Guide

 push ret_rec;
 END LOOP;
 RETURN;
END;

The function f can be used to generate another table from Stocks table in the

following manner:

INSERT INTO AlternateStockTable
 SELECT * FROM
 TABLE(StockPivot(CURSOR(SELECT * FROM StockTable)));

If the StockTable is scanned in parallel and partitioned on OpenPrice , then the

function StockPivot is combined with the data-flow operator doing the scan of

StockTable and thus sees the same partitioning.

If, on the other hand, the StockTable is not partitioned, and the scan on it does

not execute in parallel, the insert into AlternateStockTable also runs

sequentially. Here is a slightly more complex example:

INSERT INTO AlternateStockTable
 SELECT *
 FROM TABLE(f(CURSOR(SELECT * FROM Stocks))),
 TABLE(g(CURSOR(...)))
 WHERE <join condition>;

where g is defined to be:

CREATE FUNCTION g(p refcur_pkg.refcur_t) RETURN ... PIPELINED
 PARALLEL_ENABLE (PARTITION p BY ANY)
BEGIN ... END;

If function g runs in parallel and is partitioned by ANY, then the parallel insert can

belong in the same data-flow operator as g.

Whenever the ANY keyword is specified, the data is partitioned randomly among

the slaves. This effectively means that the function is executed in the same slave set

which does the scan associated with the input parameter.

No redistribution or repartitioning of the data is required here. In the case when the

cursor p itself is not parallelized, the incoming data is randomly partitioned on the

columns in the column list. The round-robin table queue is used for this

partitioning.

Input Data Streaming for Table Functions

Pipelined and Parallel Table Functions 12-23

Parallel Execution of Leaf-level Table Functions
To use parallel execution with a leaf-level table function—that is, a function to

perform a unitary operation that does not involve a REF CURSOR—arrange things

so as to create a need for a REF CURSOR.

For example, suppose that you want a function to read a set of external files in

parallel and return the records they contain. To provide work for a REF CURSOR,
you might first create a table and populate it with the filenames. A REF CURSOR
over this table can then be passed as a parameter to the table function

(readfiles). The following code shows how this might be done:

CREATE TABLE filetab(filename VARCHAR(20));

INSERT INTO filetab VALUES('file0');
INSERT INTO filetab VALUES('file1');
.
.
.
INSERT INTO filetab VALUES('fileN');

SELECT * FROM
 TABLE(readfiles(CURSOR(SELECT filename FROM filetab)));

CREATE FUNCTION readfiles(p pkg.rc_t) RETURN coll_type
 PARALLEL_ENABLE(PARTITION p BY ANY) IS
 ret_rec rec_type;
BEGIN
 FOR rec IN p LOOP
 done := FALSE;
 WHILE (done = FALSE) LOOP
 done := readfilerecord(rec.filename, ret_rec);
 PIPE ROW(ret_rec);
 END LOOP;
 END LOOP;
 RETURN;
END;

Input Data Streaming for Table Functions
The way in which a table function orders or clusters rows that it fetches from cursor

arguments is called data streaming. A function can stream its input data in any of

the following ways:

Input Data Streaming for Table Functions

12-24 Oracle9i Data Cartridge Developer’s Guide

■ Place no restriction on the ordering of the incoming rows

■ Order them on a particular key column or columns

■ Cluster them on a particular key

Clustering causes rows that have the same key values to appear together but does

not otherwise do any ordering of rows.

You control the behavior of the input stream using the following syntax:

FUNCTION f(p <ref cursor type>) RETURN tab_rec_type [PIPELINED]
 {[ORDER | CLUSTER] BY <column list>}
 PARALLEL_ENABLE({PARTITION p BY
 [ANY | (HASH | RANGE) <column list>]})
IS
BEGIN ... END;

Input streaming may be specified for either sequential or parallel execution of a

function.

If an ORDER BY or CLUSTER BY clause is not specified, rows are input in a

(random) order.

The following example illustrates the syntax for ordering the input stream. In the

example, function f takes in rows of the kind (Region, Sales) and returns rows

of the form (Region, AvgSales) , showing average sales for each region.

CREATE FUNCTION f(p <ref cursor type>) RETURN tab_rec_type PIPELINED
 CLUSTER BY Region
 PARALLEL_ENABLE(PARTITION p BY Region) IS
 ret_rec rec_type;
 cnt number;
 sum number;
BEGIN
 FOR rec IN p LOOP
 IF (first rec in the group) THEN
 cnt := 1;

Note: The semantics of ORDER BY are different for parallel

execution from the semantics of the ORDER BY clause in a SQL

statement. In a SQL statement, the ORDER BY clause globally

orders the entire data set. In a table function, the ORDER BY clause

orders the respective rows local to each instance of the table

function running on a slave.

Parallelizing Creation of a Domain Index

Pipelined and Parallel Table Functions 12-25

 sum := rec.Sales;
 ELSIF (last rec in the group) THEN
 IF (cnt <> 0) THEN
 ret_rec.Region := rec.Region;
 ret_rec.AvgSales := sum/cnt;
 PIPE ROW(ret_rec);
 END IF;
 ELSE
 cnt := cnt + 1;
 sum := sum + rec.Sales;
 END IF;
 END LOOP;
 RETURN;
END;

Parallel Execution: Partitioning and Clustering
Partitioning and clustering are easily confused, but they do different things. For

example, sometimes partitioning can be sufficient without clustering in parallel

execution.

Consider a function SmallAggr that performs in-memory aggregation of salary for

each department_id , where department_id can be either 1, 2, or 3. The input

rows to the function can be partitioned by HASH on department_id such that all

rows with department_id equal to 1 go to one slave, all rows with department_
id equal to 2 go to another slave, and so on.

The input rows do not need to be clustered on department_id to perform the

aggregation in the function. Each slave could have a 1x3 array SmallSum[1..3] in

which the aggregate sum for each department_id is added in memory into

SmallSum[department_id] . On the other hand, if the number of unique values

of department_id were very large, you would want to use clustering to compute

department aggregates and write them to disk one department_id at a time.

Parallelizing Creation of a Domain Index
Creating a domain index can be a lengthy process because of the large amount of

data that a domain index typically handles. You can exploit the parallel-processing

capabilities of table functions to alleviate this bottleneck. This section shows how

you can use table functions to create domain indexes in parallel.

Typically, the ODCIIndexCreate routine does the following steps:

Parallelizing Creation of a Domain Index

12-26 Oracle9i Data Cartridge Developer’s Guide

■ Creates table(s) for storing the index data

■ Fetches the relevant data (typically, keycols and rowid) from the base table,

transforms it, and inserts relevant transformed data into the table created for

storing the index data.

■ Builds secondary indexes on the tables that store the index data, for faster

access during query.

The second step mentioned—fetching relevant data and inserting it into the index

data table—is the bottleneck in creating domain indexes. You can speed up this step

by encapsulating these operations in a parallel table function and invoking the

function from the ODCIIndexCreate function.

For example, a table function IndexLoad() might be defined to do this as follows:

CREATE FUNCTION IndexLoad(ia ODCIIndexInfo, parms VARCHAR2,
 p refcur-type)
RETURN status_code_type
PARALLEL_ENABLE(PARTITION p BY ANY)
PRAGMA AUTONOMOUS_TRANSACTION
IS
BEGIN
 FOR rec IN p LOOP
 - process each rec and determine the index entry
 - derive name of index storage table from parameter ia
 - insert into table created in ODCIIndexCreate
 END LOOP;
 COMMIT; -- explicitly commit the autonomous txn
 RETURN ODCIConst.Success;
END;

where p is a cursor of the form:

SELECT /*+ PARALLEL (<base_table>, <par_degree>) */ <keycols> ,rowid
 FROM <base_table>

The <par_degree> value can be explicitly specified; otherwise, it is derived from

the parallel degree of the base table.

Another function, like the function IndexMerge() defined in the following

example, is needed as well to merge the results from the several instances of

IndexLoad() .

CREATE FUNCTION IndexMerge(p refcur-type)
RETURN NUMBER
IS

Transient and Generic Types

Pipelined and Parallel Table Functions 12-27

BEGIN
 FOR rec IN p LOOP
 IF (rec != ODCIConst.Success)
 RETURN Error;
 END LOOP;
 RETURN Success;
END;

Now the steps in ODCIIndexCreate would be:

■ Create metadata structures for the index (that is, tables to store the index data)

■ Explicitly commit the transaction so that the IndexLoad() function can see the

committed data

■ Invoke IndexLoad() in parallel:

status := ODCIIndexMerge(CURSOR(SELECT * FROM TABLE(
 ODCIIndexLoad(ia, parms,
 CURSOR(SELECT <key_cols>, ROWID
 FROM <basetable>)
))))

(Note that the cursor definition for the IndexLoad() function is merely a

typical example; you are free to define your own form of cursor.)

■ Create secondary index structures.

Transient and Generic Types
Oracle has three special SQL datatypes that enable you to dynamically encapsulate

and access type descriptions, data instances, and sets of data instances of any other

SQL type, including object and collection types. You can also use these three special

types to create anonymous (that is, unnamed) types, including anonymous

collection types.

The three SQL types are implemented as opaque types. In other words, the internal

structure of these types is not known to the database: their data can be queried only

by implementing functions (typically 3GL routines) for the purpose. Oracle

provides both an OCI and a PL/SQL API for implementing such functions.

Transient and Generic Types

12-28 Oracle9i Data Cartridge Developer’s Guide

The three generic SQL types are:

Each of these three types can be used with any built-in type native to the database

as well as with object types and collection types, both named and unnamed. The

types provide a generic way to work dynamically with type descriptions, lone

instances, and sets of instances of other types. Using the APIs, you can create a

transient ANYTYPE description of any kind of type. Similarly, you can create or

convert (cast) a data value of any SQL type to an ANYDATA and can convert an

ANYDATA (back) to a SQL type. And similarly again with sets of values and

ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic

types to encapsulate descriptions and data of standard types and pass the

encapsulated information into parameters of the generic types. In the body of the

procedure, you can detail how to handle the encapsulated data and type

descriptions of whatever type.

You can also store encapsulated data of a variety of underlying types in one table

column of type ANYDATAor ANYDATASET. For example, you can use ANYDATAwith

Advanced Queuing to model queues of heterogenous types of data. You can query

the data of the underlying datatypes like any other data.

Type Description

SYS.ANYTYPE A type description type. A SYS.ANYTYPE can contain a type
description of any SQL type, named or unnamed, including
object types and collection types.

An ANYTYPEcan contain a type description of a persistent
type, but an ANYTYPE itself is transient: in other words,
the value in an ANYTYPE itself is not automatically stored
in the database. To create a persistent type, use a CREATE
TYPE statement from SQL.

SYS.ANYDATA A self-describing data instance type. A SYS.ANYDATA
contains an instance of a given type, with data, plus a
description of the type. In this sense, a SYS.ANYDATA is
self-describing. An ANYDATA can be persistently stored in
the database.

SYS.ANYDATASET A self-describing data set type. A SYS.ANYDATASET type
contains a description of a given type plus a set of data
instances of that type. An ANYDATASET can be
persistently stored in the database.

Transient and Generic Types

Pipelined and Parallel Table Functions 12-29

Corresponding to the three generic SQL types are three OCI types that model them.

Each has a set of functions for creating and accessing the respective type:

■ OCIType , corresponding to SYS.ANYTYPE

■ OCIAnyData , corresponding to SYS.ANYDATA

■ OCIAnyDataSet , corresponding to SYS.ANYDATASET

See Also: Oracle Call Interface Programmer’s Guide for the

OCIType , OCIAnyData , and OCIAnyDataSet APIs and details on

how to use them. See Oracle9i Supplied PL/SQL Packages and Types
Reference for information about the interfaces to the ANYTYPE,
ANYDATA, and ANYDATASET types and about the DBMS_TYPES
package, which defines constants for built-in and user-defined

types, for use with ANYTYPE, ANYDATA, and ANYDATASET.

Transient and Generic Types

12-30 Oracle9i Data Cartridge Developer’s Guide

Part IV
Scenarios and Examples

Chapter 13, "Power Demand Cartridge Example"—An example of a cartridge coded

in PL/SQL

Chapter 14, "PSBTREE: An Example of Extensible Indexing"—An example of

extensible indexing coded in C

Power Demand Cartridge Example 13-1

13
Power Demand Cartridge Example

This chapter explains the power demand sample data cartridge that is discussed

throughout this book. The power demand cartridge includes a user-defined object

type, extensible indexing, and optimization. This chapter covers the following

topics:

■ "Modeling the Application" on page 13-9, including the technical and business

scenario

■ "Queries and Extensible Indexing" on page 13-13, describing kinds of queries

that benefit from domain indexes

■ "Creating the Domain Index" on page 13-15, explaining how the index and

related structures for the example were created.

■ "Defining a Type and Methods for Extensible Optimizing" on page 13-40,

explaining how the methods for the extensible optimizer were created.

■ "Testing the Domain Index" on page 13-64, explaining how to test the domain

index and see if it is causing more efficient execution of queries than would

occur without an index

This chapter does not explain in detail the concepts related to the features

illustrated. For information about extensible indexing, see Chapter 7, "g Building

Domain Indexes". For information about extensible query optimization, see

Chapter 8, "Query Optimization". For information about cartridge services, see

Chapter 9, "Using Cartridge Services".

This chapter divides the example into segments and provides commentary. The

entire cartridge definition is available online in file extdemo1.sql in the Oracle

demo directory.

Feature Requirements

13-2 Oracle9i Data Cartridge Developer’s Guide

Feature Requirements
A power utility, Power-To-The-People, develops a sophisticated model to decide how

to deploy its resources. The region served by the utility is represented by a grid laid

over a geographic area.

This region may be surrounded by other regions some of whose power needs are

supplied by other utilities. As pictured, every region is composed of geographic

quadrants referred to as "cells" on a 10x10 grid. There are a number of ways of

identifying cells — by spatial coordinates (longitude/latitude), by a matrix

numbering (1,1; 1,2;...), and by numbering them sequentially:

Brandon

Clinton

Pearl

Ridgeland

Vicksburg
Jackson

Feature Requirements

Power Demand Cartridge Example 13-3

Figure 13–1 Regional Grid Cells in Numbered Sequence

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Feature Requirements

13-4 Oracle9i Data Cartridge Developer’s Guide

Within the area represented by each cell, the power used by consumers in that area

is recorded each hour. For example, the power demand readings for a particular

hour might be represented by Table 13–1 (cells here represented on a matrix):

The power stations also receives reports from two other sources:

■ Sensors on the ground provide temperature readings for every cell

By analyzing the correlation between historical power demand from cells and

the temperature readings for those regions, the utility is able to determine with

a close approximation what the demand will be, given specific temperatures.

■ Satellite cameras provide images regarding current conditions that are converted

into grayscale images that match the grid:

Table 13–1 Sample Power Demand Readings for an Hour

- 1 2 3 4 5 6 7 8 9 10

1 23 21 25 23 24 25 27 32 31 30

2 33 32 31 33 34 32 23 22 21 34

3 45 44 43 33 44 43 42 41 45 46

4 44 45 45 43 42 26 19 44 33 43

5 45 44 43 42 41 44 45 46 47 44

6 43 45 98 55 54 43 44 33 34 44

7 33 45 44 43 33 44 34 55 46 34

8 87 34 33 32 31 34 35 38 33 39

9 30 40 43 42 33 43 34 32 34 46

10 43 42 34 12 43 45 48 45 43 32

Feature Requirements

Power Demand Cartridge Example 13-5

Figure 13–2 Grayscale Representation of Satellite Image

These images are designed so that ’lighter is colder’. Thus, the image shows a cold

front moving into the region from the south-west. By correlating the data provided

by the grayscale images with temperature readings taken at the same time, the

utility has been able to determine what the power demand is given weather

conditions viewed from the stratosphere.

The reason that this is important is that a crucial part of this modeling has to do

with noting the rapidity and degree of change in the incoming reports as weather

changes and power is deployed. The following diagram shows same cold front at a

second recording:

Feature Requirements

13-6 Oracle9i Data Cartridge Developer’s Guide

Figure 13–3 Grayscale Representation of Weather Conditions at Second Recording

By analyzing the extent and speed of the cold front, the utility is able to project what

the conditions are likely to be in the short and medium term:

Feature Requirements

Power Demand Cartridge Example 13-7

Figure 13–4 Grayscale Representation of Conditions as Projected

By combing this data about these conditions, and other anomalous situations (such

as the failure of a substation) the utility must be able to organize the most optimal

deployment of its resources. The following drawing reflects the distribution of

substations across the region:

Feature Requirements

13-8 Oracle9i Data Cartridge Developer’s Guide

Figure 13–5 Distribution of Power Stations Across the Region

The distribution of power stations means that the utility can redirect its deployment

of electricity to the areas of greatest need. The following figure gives a pictorial

representation of the overlap between three stations:

Brandon

Clinton

Pearl

Ridgeland

Vicksburg
Jackson

Modeling the Application

Power Demand Cartridge Example 13-9

Figure 13–6 Areas Served by Three Power Stations

Depending on fluctuating requirements, the utility must be able to decide how to

deploy its resources, and even whether to purchase power from a neighboring

utility in the event of shortfall.

Modeling the Application
The following Class Diagram describes the application objects using the Unified

Modelling Language (UML) notation.

Modeling the Application

13-10 Oracle9i Data Cartridge Developer’s Guide

Figure 13–7 Use Case Diagram for Power Demand Cartridge

Sample Queries
Modelling the application in this way, makes possible the following specific queries:

■ Find the cell (geographic quadrant) with the highest demand for a specified

time-period.

*1
Hourly Demand Status

calcTotalGridDemand
getMaxCellDemand
getMinCellDemand
isEqualToSpecificCell
isEqualToAnyCell

Date
Time
TotalGridDemand
MaxCellDemand
MinCellDemand

retrieves, stores

*1

is associated with

Cell Demand Reading

CellNo
Demand

Cell

CellNo

Meter

Power Cartridge User

Regional Grid

Grid No

Locator

NW
NE
SW
SE

has

has

1

100

has

1

2

reads
dem

and
for

1

1

Grid Coordinate

x
y

1

1

reads
temperature

for

provides
matching

image

has
Cell Temperature Reading

Temperature

Sensor
senses

Satellite Image

GreyScaleValue

Camera photographs 1

1

11
11

1*

11

Modeling the Application

Power Demand Cartridge Example 13-11

■ Find the time-period with the highest total demand.

■ Find all cells where demand is greater than some specified value.

■ Find any cell at any time where the demand equals some specified value.

■ Find any time-period for which 3 or more cells had/have a demand greater

than some specified

■ Find the time-period for which there was the greatest disparity (difference)

between the cell with the minimum demand and the cell with the maximum

demand.

■ Find the times for which 10 or more cells had demand not less than some

specified value.

■ Find the times for which the average cell demand was greater than some

specified value. (Note: it is assumed that the average is easily computable by

TotalPowerDemand/100.)

■ Find the time-periods for which the median cell demand was greater than some

specified value. (Note: It is assumed that the median value is not easily

computable).

■ Find all time-periods for which the total demand rose 10 percent or more over

the preceding time's total demand.

These queries are, of course, only a short list of the possible information that could

be gleaned from the system. For instance, it is obvious that the developer of such an

application would want to build queries that are based on the information derived

from prior queries:

■ What is the percentage change in demand for a particular cell as compared to a

previous time-period?

■ Which cells demonstrate rapid increase / decrease in demand measured as

percentages greater / lesser than specified values?

The Power Demand cartridge as implemented is described in the following class

diagram.

Modeling the Application

13-12 Oracle9i Data Cartridge Developer’s Guide

Figure 13–8 Use Case Diagram for Power Demand Cartridge

The utility gets ongoing reports from weather centers about current conditions and

from power stations about ongoing power utilization for specific geographical areas

(represented by cells on a 10x10 grid). It then compares this information to historical

data in order to predict demand for power in the different geographic areas for

given time periods.

*1
Hourly Demand Status

calcTotalGridDemand
getMaxCellDemand
getMinCellDemand
isEqualToSpecificCell
isEqualToAnyCell

Date
Time
TotalGridDemand
MaxCellDemand
MinCellDemand

retrieves, stores

*1

is associated with

Cell Demand Reading

CellNo
Demand

Cell

CellNo

Meter

Power Cartridge User

Regional Grid

Grid No

Locator

NW
NE
SW
SE

has

has

1

100

has

1

2

reads
dem

and
for

1

1

Grid Coordinate

x
y

1

1 has

Queries and Extensible Indexing

Power Demand Cartridge Example 13-13

Each service area for the utility is considered as a 10x10 grid of cells, where each

cell’s boundaries are associated with spatial coordinates (longitude/latitude). The

geographical areas represented by the cells can be uniform or can have different

shapes and sizes. Within the area represented by each cell, the power used by

consumers in that area is recorded each hour. For example, the power demand

readings for a particular hour might be represented by Table 13–2.

The numbers in each cell reflect power demand (in some unit of measurement

determined by the electric utility) for the hour for that area. For example, the

demand for the first cell (1,1) was 23, the demand for the second cell (1,2) was 21,

and so on. The demand for the last cell (10, 10) was 32.

The utility uses this data for many monitoring and analytical applications. Readings

for individual cells are monitored for unusual surges or decreases in demand. For

example, the readings of 98 for (6,3) and 87 for (8,1) might be unusually high, and

the readings of 19 for (4,7) and 12 for (10,4) might be unusually low. Trends are also

analyzed, such as significant increases or decreases in demand for each

neighborhood, for each station, and overall, over time.

Queries and Extensible Indexing
Before you use extensible indexing, you should first ask whether the users of the

table will benefit from having the domain index. That is, will they execute queries

Table 13–2 Sample Power Demand Readings for an Hour

- 1 2 3 4 5 6 7 8 9 10

1 23 21 25 23 24 25 27 32 31 30

2 33 32 31 33 34 32 23 22 21 34

3 45 44 43 33 44 43 42 41 45 46

4 44 45 45 43 42 26 19 44 33 43

5 45 44 43 42 41 44 45 46 47 44

6 43 45 98 55 54 43 44 33 34 44

7 33 45 44 43 33 44 34 55 46 34

8 87 34 33 32 31 34 35 38 33 39

9 30 40 43 42 33 43 34 32 34 46

10 43 42 34 12 43 45 48 45 43 32

Queries and Extensible Indexing

13-14 Oracle9i Data Cartridge Developer’s Guide

that could run just as efficiently using a standard Oracle index, or using no index at

all.

Queries Not Benefiting from Extensible Indexing
A query does not require a domain index if both of the following are true:

■ The desired information can be made an attribute (column) of the table and a

standard index can be defined on that column.

■ The operations in queries on the data are limited to those operations supported

by the standard index, such as equals , lessthan , greaterthan , max, and

min for a b-tree index.

In the PowerDemand_Typ object type cartridge example, the values for three

columns (TotGridDemand , MaxCellDemand , and MinCellDemand) are set by

functions, after which the values do not change. (For example, the total grid power

demand for 13:00 on 01-Jan-1998 does not change after it has been computed.) For

queries that use these columns, a standard b-tree index on each column is sufficient

and recommended for operations like equals , lessthan , greaterthan , max,

and min .

Examples of queries that would not benefit from extensible indexing (using the

power demand cartridge) include:

■ Find the cell with the highest power demand for a specific time.

■ Find the time when the total grid power demand was highest.

■ Find all cells where the power demand is greater than a specified value.

■ Find the times for which the average cell demand or the median cell demand

was greater than a specified value.

To make this query run efficiently, define two additional columns in the

PowerDemand_Typ object type (AverageCellDemand and

MedianCellDemand), and create functions to set the values of these columns.

(For example, AverageCellDemand is TotGridDemand divided by 100.)

Then, create b-tree indexes on the AverageCellDemand and

MedianCellDemand columns.

Queries Benefiting from Extensible Indexing
A query benefits from a domain index if the data being queried against cannot be

made a simple attribute of a table or if the operation to be performed on the data is

not one of the standard operations supported by Oracle indexes.

Creating the Domain Index

Power Demand Cartridge Example 13-15

Examples of queries that would benefit from extensible indexing (using the power

demand cartridge) include:

■ Find the first cell for a specified time where the power demand was equal to a

specified value.

By asking for the first cell, the query goes beyond a simple true-false check (such

as finding out whether any cell for a specified time had a demand equal to a

specified value), and thus benefits from a domain index.

■ Find the time for which there was the greatest disparity (difference) between

the cell with the minimum demand and the cell with the maximum demand.

■ Find all times for which 3 or more cells had a demand greater than a specified

value.

■ Find all times for which 10 or more cells had a demand not less than a specified

value.

■ Find all times for which the total grid demand rose 10 percent or more over the

preceding time’s total grid demand.

Creating the Domain Index
This section explains the parts of the power demand cartridge as they relate to

extensible indexing. Explanatory text and code segments are mixed.

The entire cartridge definition is available online as extdemo1.sql in the standard

Oracle demo directory (location is platform-dependent).

Creating the Schema to Own the Index
Before you create a domain index, create a database user (schema) to own the index.

In the power demand example, the user PowerCartUser is created and granted

the appropriate privileges. All database structures related to the cartridge are

created under this user (that is, while the cartridge developer or DBA is connected

to the database as PowerCartUser).

set echo on
connect sys/knl_test7 as sysdba;
drop user PowerCartUser cascade;
create user PowerCartUser identified by PowerCartUser;

-- INITIAL SET-UP

Creating the Domain Index

13-16 Oracle9i Data Cartridge Developer’s Guide

-- grant privileges --
grant connect, resource to PowerCartUser;
-- do we need to grant these privileges --
grant create operator to PowerCartUser;
grant create indextype to PowerCartUser;
grant create table to PowerCartUser;

Creating the Object Type (PowerDemand_Typ)
The object type PowerDemand_Typ is used to store the hourly power grid readings.

This type is used to define a column in the table in which the readings are stored.

First, two types are defined for later use:

■ PowerGrid_Typ , to define the cells in PowerDemand_Typ

■ NumTab_Typ, to be used in the table in which the index entries are stored

CREATE OR REPLACE TYPE PowerGrid_Typ as VARRAY(100) of NUMBER;
CREATE OR REPLACE TYPE NumTab_Typ as TABLE of NUMBER;

The PowerDemand_Typ type includes:

■ Three attributes (TotGridDemand , MaxCellDemand , MinCellDemand) that

are set by three member procedures

■ Power demand readings (100 cells in a grid)

■ The date/time of the power demand readings. (Every hour, 100 areas transmit

their power demand readings.)

CREATE OR REPLACE TYPE PowerDemand_Typ AS OBJECT (
 -- Total power demand for the grid
 TotGridDemand NUMBER,
 -- Cell with maximum/minimum power demand for the grid
 MaxCellDemand NUMBER,
 MinCellDemand NUMBER,
 -- Power grid: 10X10 array represented as Varray(100)
 -- using previously defined PowerGrid_Typ
 CellDemandValues PowerGrid_Typ,
 -- Date/time for power-demand samplings: Every hour,
 -- 100 areas transmit their power demand readings.
 SampleTime DATE,
 --
 -- Methods (Set...) for this type:
 -- Total demand for the entire power grid for a

Creating the Domain Index

Power Demand Cartridge Example 13-17

 -- SampleTime: sets the value of TotGridDemand.
 Member Procedure SetTotalDemand,
 -- Maximum demand for the entire power grid for a
 -- SampleTime: sets the value of MaxCellDemand.
 Member Procedure SetMaxDemand,
 -- Minimum demand for the entire power grid for a
 -- SampleTime: sets the value of MinCellDemand.
 Member Procedure SetMinDemand
);
/

Defining the Object Type Methods
The PowerDemand_Typ object type has methods that set the first three attributes in

the type definition:

■ TotGridDemand , the total demand for the entire power grid for the hour in

question (identified by SampleTime)

■ MaxCellDemand , the highest power demand value for all cells for the

SampleTime

■ MinCellDemand , the lowest power demand value for all cells for the

SampleTime

The logic for each procedure is not complicated. SetTotDemand loops through the

cell values and creates a running total. SetMaxDemand compares the first two cell

values and saves the higher as the current highest value; it then examines each

successive cell, comparing it against the current highest value and saving the higher

of the two as the current highest value, until it reaches the end of the cell values.

SetMinDemand uses the same approach as SetMaxDemand, but it continually

saves the lower value in comparisons to derive the lowest value overall.

CREATE OR REPLACE TYPE BODY PowerDemand_Typ
IS
 --
 -- Methods (Set...) for this type:
 -- Total demand for the entire power grid for a
 -- SampleTime: sets the value of TotGridDemand.
 Member Procedure SetTotalDemand
 IS
 I BINARY_INTEGER;
 Total NUMBER;
 BEGIN
 Total :=0;

Creating the Domain Index

13-18 Oracle9i Data Cartridge Developer’s Guide

 I := CellDemandValues.FIRST;
 WHILE I IS NOT NULL LOOP
 Total := Total + CellDemandValues(I);
 I := CellDemandValues.NEXT(I);
 END LOOP;
 TotGridDemand := Total;
 END;

 -- Maximum demand for the entire power grid for a
 -- SampleTime: sets the value of MaxCellDemand.
 Member Procedure SetMaxDemand
 IS
 I BINARY_INTEGER;
 Temp NUMBER;
 BEGIN
 I := CellDemandValues.FIRST;
 Temp := CellDemandValues(I);
 WHILE I IS NOT NULL LOOP
 IF Temp < CellDemandValues(I) THEN
 Temp := CellDemandValues(I);
 END IF;
 I := CellDemandValues.NEXT(I);
 END LOOP;
 MaxCellDemand := Temp;
 END;

 -- Minimum demand for the entire power grid for a
 -- SampleTime: sets the value of MinCellDemand.
 Member Procedure SetMinDemand
 IS
 I BINARY_INTEGER;
 Temp NUMBER;
 BEGIN
 I := CellDemandValues.FIRST;
 Temp := CellDemandValues(I);
 WHILE I IS NOT NULL LOOP
 IF Temp > CellDemandValues(I) THEN
 Temp := CellDemandValues(I);
 END IF;
 I := CellDemandValues.NEXT(I);
 END LOOP;
 MinCellDemand := Temp;
 END;
END;
/

Creating the Domain Index

Power Demand Cartridge Example 13-19

Creating the Functions and Operators
The power demand cartridge is designed so that users can query the power grid for

relationships of equality , greaterthan , or lessthan . However, because of the

way the cell demand data is stored, the standard operators (=, >, <) cannot be used.

Instead, new operators must be created, and a function must be created to define

the implementation for each new operator (that is, how the operator is to be

interpreted by Oracle).

For this cartridge, each of the three relationships can be checked in two ways:

■ Whether a specific cell in the grid satisfies the relationship. (For example, are

there grids where cell (3,7) has demand equal to 25?)

These operators have names in the form Power_XxxxxSpecific (such as

Power_EqualsSpecific), and the implementing functions have names in the

form Power_XxxxxSpecific_Func .

■ Whether any cell in the grid satisfies the relationship. (For example, are there

grids where any cell has demand equal to 25?)

These operators have names in the form Power_XxxxxAny (such as Power_
EqualsAny), and the implementing functions have names in the form Power_
XxxxxAny_Func .

For each operator-function pair, the function is defined first and then the operator

as using the function. The function is the implementation that would be used if

there were no index defined. This implementation must be specified so that the

Oracle optimizer can determine costs, decide whether the index should be used,

and create an execution plan.

Table 13–3 shows the operators and implementing functions:

Table 13–3 Operators and Implementing Functions

Operator Implementing Function

Power_EqualsSpecific Power_EqualsSpecific_Func

Power_EqualsAny Power_EqualsAny_Func

Power_LessThanSpecific Power_LessThanSpecific_Func

Power_LessThanAny Power_LessThanAny_Func

Power_
GreaterThanSpecific

Power_GreaterThanSpecific_Func

Power_GreaterThanAny Power_GreaterThanAny_Func

Creating the Domain Index

13-20 Oracle9i Data Cartridge Developer’s Guide

Each function and operator returns a numeric value of 1 if the condition is true (for

example, if the specified cell is equal to the specified value), 0 if the condition is not

true, or null if the specified cell number is invalid.

The following statements create the implementing functions (Power_xxx_Func),

first the specific and then the any implementations.

CREATE FUNCTION Power_EqualsSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN
 IF (object.CellDemandValues(cell) = value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_GreaterThanSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN
 IF (object.CellDemandValues(cell) > value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_LessThanSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN

Creating the Domain Index

Power Demand Cartridge Example 13-21

 IF (object.CellDemandValues(cell) < value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_EqualsAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) = value) THEN
 RETURN 1;
 END IF;
 END LOOP;
 RETURN 0;
 END;
/
CREATE FUNCTION Power_GreaterThanAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) > value) THEN
 RETURN 1;
 END IF;
 END LOOP;
 RETURN 0;
 END;
/
CREATE FUNCTION Power_LessThanAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) < value) THEN
 RETURN 1;
 END IF;

Creating the Domain Index

13-22 Oracle9i Data Cartridge Developer’s Guide

 END LOOP;
 RETURN 0;
 END;
/

The following statements create the operators (Power_xxx). Each statement

specifies an implementing function.

CREATE OPERATOR Power_Equals BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_EqualsSpecific_Func;
CREATE OPERATOR Power_GreaterThan BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_GreaterThanSpecific_Func;
CREATE OPERATOR Power_LessThan BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_LessThanSpecific_Func;

CREATE OPERATOR Power_EqualsAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_EqualsAny_Func;
CREATE OPERATOR Power_GreaterThanAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_GreaterThanAny_Func;
CREATE OPERATOR Power_LessThanAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_LessThanAny_Func;

Creating the Indextype Implementation Methods
The power demand cartridge creates an object type for the indextype that specifies

methods for the domain index. These methods are part of the ODCIIndex (Oracle

Data Cartridge Interface Index) interface, and they collectively define the behavior

of the index in terms of the methods for defining, manipulating, scanning, and

exporting the index.

Table 13–4 shows the method functions (all but one starting with ODCIIndex)

created for the power demand cartridge.

Table 13–4 Indextype Methods

Method Description

ODCIGetInterfaces Returns the list of names of the interfaces implemented by the
type.

Creating the Domain Index

Power Demand Cartridge Example 13-23

Type Definition
The following statement creates the power_idxtype_im object type. The methods

of this type are the ODCI methods to define, manipulate, and scan the domain

index. The curnum attribute is the cursor number used as context for the scan

routines (ODCIIndexStart , ODCIIndexFetch , and ODCIIndexClose).

CREATE OR REPLACE TYPE power_idxtype_im AS OBJECT
(
 curnum NUMBER,

ODCIIndexCreate Creates a table to store index data. If the base table containing
data to be indexed is not empty, this method builds the index
for existing data.

This method is called when a CREATE INDEX statement is
issued that refers to the indextype. Upon invocation, any
parameters specified in the PARAMETERS clause are passed in
along with a description of the index.

ODCIIndexDrop Drops the table that stores the index data. This method is called
when a DROP INDEX statement specifies the index.

ODCIIndexStart Initializes the scan of the index for the operator predicate. This
method is invoked when a query is submitted involving an
operator that can be executed using the domain index.

ODCIIndexFetch Returns the ROWID of each row that satisfies the operator
predicate.

ODCIIndexClose Ends the current use of the index. This method can perform
any necessary clean-up.

ODCIIndexInsert Maintains the index structure when a record is inserted in a
table that contains columns or object attributes indexed by the
indextype.

ODCIIndexDelete Maintains the index structure when a record is deleted from a
table that contains columns or object attributes indexed by the
indextype.

ODCIIndexUpdate Maintains the index structure when a record is updated
(modified) in a table that contains columns or object attributes
indexed by the indextype.

ODCIIndexGet
Metadata

Allows the export and import of implementation-specific
metadata associated with the index.

Table 13–4 Indextype Methods (Cont.)

Method Description

Creating the Domain Index

13-24 Oracle9i Data Cartridge Developer’s Guide

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexCreate (ia sys.ODCIIndexInfo, parms VARCHAR2,
 env sys.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDrop(ia sys.ODCIIndexInfo, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(sctx IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmppos NUMBER, cmpval NUMBER, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(sctx IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmpval NUMBER, env sys.ODCIEnv)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT sys.ODCIRidList,
 env sys.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexClose (env sys.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexInsert(ia sys.ODCIIndexInfo, rid VARCHAR2,
 newval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDelete(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexUpdate(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ,
 newval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexGetMetadata(ia sys.ODCIIndexInfo,
 expversion VARCHAR2,
 newblock OUT PLS_INTEGER,
 env sys.ODCIEnv)
 RETURN VARCHAR2
);
/

The CREATE TYPE statement is followed by a CREATE TYPE BODY statement that

specifies the implementation for each member function:

CREATE OR REPLACE TYPE BODY power_idxtype_im
IS
...

Creating the Domain Index

Power Demand Cartridge Example 13-25

Each type method is described in a separate section, but the method definitions

(except for ODCIIndexGetMetadata , which returns a VARCHAR2 string) have the

following general form:

 STATIC FUNCTION function-name (...)
 RETURN NUMBER
 IS
 ...
 END;

ODCIGetInterfaces Method
The ODCIGetInterfaces function returns the list of names of the interfaces

implemented by the type. To specify the Oracle9i version of these interfaces, the

ODCIGetInterfaces routine must return ’SYS.ODCIINDEX2’ in the OUT
parameter.

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS
 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject('SYS','ODCIINDEX2'));
 return ODCIConst.Success;
 END ODCIGetInterfaces;

ODCIIndexCreate Method
The ODCIIndexCreate function creates the table to store index data. If the base

table containing data to be indexed is not empty, this method inserts the index data

entries for existing data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so forth. The PARAMETERS string specified in the CREATE INDEX statement is

also passed in as a parameter to the function.

Note: In Oracle8i, function ODCIGetInterfaces specified

SYS.ODCIINDEX1 in the ODCIObjectList parameter to specify

the Oracle8i version of the ODCIIndex routines. To continue to use

existing Oracle8i code that is not updated for any Oracle9i changes

to the routines, continue to have function ODCIGetInterfaces
specify SYS.ODCIINDEX1.

Creating the Domain Index

13-26 Oracle9i Data Cartridge Developer’s Guide

 STATIC FUNCTION ODCIIndexCreate (ia sys.ODCIIndexInfo, parms VARCHAR2,
 env sys.ODCIEnv)
 RETURN NUMBER IS
 i INTEGER;
 r ROWID;
 p NUMBER;
 v NUMBER;
 stmt1 VARCHAR2(1000);
 stmt2 VARCHAR2(1000);
 stmt3 VARCHAR2(1000);
 cnum1 INTEGER;
 cnum2 INTEGER;
 cnum3 INTEGER;
 junk NUMBER;

The SQL statement to create the table for the index data is constructed and

executed. The table includes the ROWID of the base table (r), the cell position

number (cpos) in the grid from 1 to 100, and the power demand value in that cell

(cval).

BEGIN
 -- Construct the SQL statement.
 stmt1 := 'CREATE TABLE ' || ia.IndexSchema || '.' || ia.IndexName ||
 '_pidx' || '(r ROWID, cpos NUMBER, cval NUMBER)';

 -- Dump the SQL statement.
 dbms_output.put_line('ODCIIndexCreate>>>>>');
 sys.ODCIIndexInfoDump(ia);
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt1);

 -- Execute the statement.
 cnum1 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum1, stmt1, dbms_sql.native);
 junk := dbms_sql.execute(cnum1);
 dbms_sql.close_cursor(cnum1);

The function populates the index by inserting rows into the table. The function

"unnests" the VARRAY attribute and inserts a row for each cell into the table. Thus,

each 10 X 10 grid (10 rows, 10 values for each row) becomes 100 rows in the table

(one row for each cell).

 -- Now populate the table.
 stmt2 := ' INSERT INTO '|| ia.IndexSchema || '.' ||
 ia.IndexName || '_pidx' ||
 ' SELECT :rr, ROWNUM, column_value FROM THE' ||

Creating the Domain Index

Power Demand Cartridge Example 13-27

 ' (SELECT CAST (P.'|| ia.IndexCols(1).ColName||'.CellDemandValues
 AS NumTab_Typ)'||
 ' FROM ' || ia.IndexCols(1).TableSchema || '.' ||
 ia.IndexCols(1).TableName || ' P' ||
 ' WHERE P.ROWID = :rr)';

 -- Execute the statement.
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt2);

 -- Parse the statement.
 cnum2 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum2, stmt2, dbms_sql.native);

 stmt3 := 'SELECT ROWID FROM '|| ia.IndexCols(1).TableSchema
 || '.' || ia.IndexCols(1).TableName;
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt3);
 cnum3 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum3, stmt3, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum3, 1, r);
 junk := dbms_sql.execute(cnum3);

 WHILE dbms_sql.fetch_rows(cnum3) > 0 LOOP
 -- Get column values of the row. --
 dbms_sql.column_value_rowid(cnum3, 1, r);
 -- Bind the row into the cursor for the next insert. --
 dbms_sql.bind_variable_rowid(cnum2, ':rr', r);
 junk := dbms_sql.execute(cnum2);
 END LOOP;

The function concludes by closing the cursors and returning a success status.

 dbms_sql.close_cursor(cnum2);
 dbms_sql.close_cursor(cnum3);
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexDrop Method
The ODCIIndexDrop function drops the table that stores the index data. This

method is called when a DROP INDEX statement is issued.

 STATIC FUNCTION ODCIIndexDrop(ia sys.ODCIIndexInfo, env sys.ODCIEnv)
 RETURN NUMBER IS
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;

Creating the Domain Index

13-28 Oracle9i Data Cartridge Developer’s Guide

 BEGIN
 -- Construct the SQL statement.
 stmt := 'drop table ' || ia.IndexSchema || '.' || ia.IndexName
 || '_pidx';

 dbms_output.put_line('ODCIIndexDrop>>>>>');
 sys.ODCIIndexInfoDump(ia);
 dbms_output.put_line('ODCIIndexDrop>>>>>'||stmt);

 -- Execute the statement.
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexStart Method (for Specific Queries)
The first definition of the ODCIIndexStart function initializes the scan of the

index to return all rows that satisfy the operator predicate. For example, if a query

asks for all instances where cell (3,7) has a value equal to 25, the function initializes

the scan to return all rows in the index-organized table for which that cell has that

value. (This definition of ODCIIndexStart differs from the definition in the next

section in that it includes the cmppos parameter for the position of the cell.)

The self parameter is the context that is shared with the ODCIIndexFetch and

ODCIIndexClose functions. The ia parameter contains the index information (an

object instance of type SYS.ODCIINDEXINFO), and the op parameter contains the

operator information (an object instance of type SYS.ODCIOPERINFO). The strt
and stop parameters are the lower and upper boundary points for the operator

return value. The cmppos parameter is the cell position and cmpval is the value in

the cell specified by the operator (Power_XxxxxSpecific).

 STATIC FUNCTION ODCIIndexStart(sctx IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmppos NUMBER, cmpval NUMBER, env sys.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 rid ROWID;
 nrows INTEGER;
 relop VARCHAR2(2);
 stmt VARCHAR2(1000);

Creating the Domain Index

Power Demand Cartridge Example 13-29

 BEGIN
 dbms_output.put_line('ODCIIndexStart>>>>>');
 sys.ODCIIndexInfoDump(ia);
 sys.ODCIPredInfoDump(op);
 dbms_output.put_line('start key : '||strt);
 dbms_output.put_line('stop key : '||stop);
 dbms_output.put_line('compare position : '||cmppos);
 dbms_output.put_line('compare value : '||cmpval);

The function checks for errors in the predicate.

 -- Take care of some error cases.
 -- The only predicates in which btree operators can appear are
 -- op() = 1 OR op() = 0
 if (strt != 1) and (strt != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

 if (stop != 1) and (stop != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

The function generates the SQL statement to be executed. It determines the operator

name and the lower and upper index value bounds (the start and stop keys). The

start and stop keys can both be 1 (= TRUE) or both be 0 (= FALSE).

 -- Generate the SQL statement to be executed.
 -- First, figure out the relational operator needed for the statement.
 -- Take into account the operator name and the start and stop keys.
 -- For now, the start and stop keys can both be 1 (= TRUE) or
 -- both be 0 (= FALSE).
 if op.ObjectName = 'POWER_EQUALS' then
 if strt = 1 then
 relop := '=';
 else
 relop := '!=';
 end if;
 elsif op.ObjectName = 'POWER_LESSTHAN' then
 if strt = 1 then
 relop := '<';
 else
 relop := '>=';
 end if;
 elsif op.ObjectName = 'POWER_GREATERTHAN' then
 if strt = 1 then

Creating the Domain Index

13-30 Oracle9i Data Cartridge Developer’s Guide

 relop := '>';
 else
 relop := '<=';
 end if;
 else
 raise_application_error(-20101, 'Unsupported operator');
 end if;

 stmt := 'select r from '||ia.IndexSchema||'.'||ia.IndexName||'_pidx'||
 ' where cpos '|| '=' ||''''||cmppos||''''||
 ' and cval '||relop||''''||cmpval||'''';

 dbms_output.put_line('ODCIIndexStart>>>>>' || stmt);
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum, 1, rid);
 nrows := dbms_sql.execute(cnum);

The function stores the cursor number in the context, which is used by the

ODCIIndexFetch function, and sets a success return status.

 -- Set context as the cursor number.
 self := power_idxtype_im(cnum);

 -- Return success.
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexStart Method (for Any Queries)
This definition of the ODCIIndexStart function initializes the scan of the index to

return all rows that satisfy the operator predicate. For example, if a query asks for

all instances where any cell has a value equal to 25, the function initializes the scan

to return all rows in the index-organized table for which that cell has that value.

(This definition of ODCIIndexStart differs from the definition in the preceding

section in that it does not include the cmppos parameter.)

The self parameter is the context that is shared with the ODCIIndexFetch and

ODCIIndexClose functions. The ia parameter contains the index information (an

object instance of type SYS.ODCIINDEXINFO), and the op parameter contains the

operator information (an object instance of type SYS.ODCIOPERINFO). The strt
and stop parameters are the lower and upper boundary points for the operator

return value. The cmpval parameter is the value in the cell specified by the

operator (Power_Xxxxx).

Creating the Domain Index

Power Demand Cartridge Example 13-31

 STATIC FUNCTION ODCIIndexStart(sctx IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmpval NUMBER, env sys.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 rid ROWID;
 nrows INTEGER;
 relop VARCHAR2(2);
 stmt VARCHAR2(1000);
 BEGIN
 dbms_output.put_line('ODCIIndexStart>>>>>');
 sys.ODCIIndexInfoDump(ia);
 sys.ODCIPredInfoDump(op);
 dbms_output.put_line('start key : '||strt);
 dbms_output.put_line('stop key : '||stop);
 dbms_output.put_line('compare value : '||cmpval);

The function checks for errors in the predicate.

 -- Take care of some error cases.
 -- The only predicates in which btree operators can appear are
 -- op() = 1 OR op() = 0
 if (strt != 1) and (strt != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

 if (stop != 1) and (stop != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

The function generates the SQL statement to be executed. It determines the operator

name and the lower and upper index value bounds (the start and stop keys). The

start and stop keys can both be 1 (= TRUE) or both be 0 (= FALSE).

 -- Generate the SQL statement to be executed.
 -- First, figure out the relational operator needed for the statement.
 -- Take into account the operator name and the start and stop keys.
 -- For now, the start and stop keys can both be 1 (= TRUE) or
 -- both be 0 (= FALSE).
 if op.ObjectName = 'POWER_EQUALSANY' then
 relop := '=';
 elsif op.ObjectName = 'POWER_LESSTHANANY' then
 relop := '<';
 elsif op.ObjectName = 'POWER_GREATERTHANANY' then

Creating the Domain Index

13-32 Oracle9i Data Cartridge Developer’s Guide

 relop := '>';
 else
 raise_application_error(-20101, 'Unsupported operator');
 end if;

 -- This statement returns the qualifying rows for the TRUE case.
 stmt := 'select distinct r from '||ia.IndexSchema||'.'||ia.IndexName||
 '_pidx'||' where cval '||relop||''''||cmpval||'''';
 -- In the FALSE case, we need to find the complement of the rows.
 if (strt = 0) then
 stmt := 'select distinct r from '||ia.IndexSchema||'.'||
 ia.IndexName||'_pidx'||' minus '||stmt;
 end if;

 dbms_output.put_line('ODCIIndexStart>>>>>' || stmt);
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum, 1, rid);
 nrows := dbms_sql.execute(cnum);

The function stores the cursor number in the context, which is used by the

ODCIIndexFetch function, and sets a success return status.

 -- Set context as the cursor number.
 self := power_idxtype_im(cnum);

 -- Return success.
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexFetch Method
The ODCIIndexFetch function returns a batch of ROWIDs for the rows that satisfy

the operator predicate. Each time ODCIIndexFetch is invoked, it returns the next

batch of rows (rids parameter, a collection of type SYS.ODCIRIDLIST) that satisfy

the operator predicate. The maximum number of rows that can be returned on each

invocation is specified by the nrows parameter.

Oracle invokes ODCIIndexFetch repeatedly until all rows that satisfy the operator

predicate have been returned.

 MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT sys.ODCIRidList,
 env sys.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 idx INTEGER := 1;

Creating the Domain Index

Power Demand Cartridge Example 13-33

 rlist sys.ODCIRidList := sys.ODCIRidList();
 done boolean := FALSE;

The function loops through the collection of rows selected by the

ODCIIndexStart function, using the same cursor number (cnum) as in the

ODCIIndexStart function, and returns the ROWIDs.

 BEGIN
 dbms_output.put_line('ODCIIndexFetch>>>>>');
 dbms_output.put_line('Nrows : '||round(nrows));

 cnum := self.curnum;

 WHILE not done LOOP
 if idx > nrows then
 done := TRUE;
 else
 rlist.extEND;
 if dbms_sql.fetch_rows(cnum) > 0 then
 dbms_sql.column_value_rowid(cnum, 1, rlist(idx));
 idx := idx + 1;
 else
 rlist(idx) := null;
 done := TRUE;
 END if;
 END if;
 END LOOP;

 rids := rlist;
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexClose Method
The ODCIIndexClose function closes the cursor used by the ODCIIndexStart
and ODCIIndexFetch functions.

 MEMBER FUNCTION ODCIIndexClose (env sys.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 BEGIN
 dbms_output.put_line('ODCIIndexClose>>>>>');

 cnum := self.curnum;
 dbms_sql.close_cursor(cnum);
 RETURN ODCICONST.SUCCESS;

Creating the Domain Index

13-34 Oracle9i Data Cartridge Developer’s Guide

 END;

ODCIIndexInsert Method
The ODCIIndexInsert function is called when a record is inserted in a table that

contains columns or OBJECT attributes indexed by the indextype. The new values

in the indexed columns are passed in as arguments along with the corresponding

row identifier.

 STATIC FUNCTION ODCIIndexInsert(ia sys.ODCIIndexInfo, rid VARCHAR2,
 newval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER AS
 cid INTEGER;
 i BINARY_INTEGER;
 nrows INTEGER;
 stmt VARCHAR2(1000);
 BEGIN
 dbms_output.put_line(' ');
 dbms_output.put_line('ODCIIndexInsert>>>>>'||
 ' TotGridDemand= '||newval.TotGridDemand ||
 ' MaxCellDemand= '||newval.MaxCellDemand ||
 ' MinCellDemand= '||newval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Construct the statement.
 stmt := ' INSERT INTO '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' ||' VALUES (:rr, :pos, :val)';

 -- Execute the statement.
 dbms_output.put_line('ODCIIndexInsert>>>>>'||stmt);
 -- Parse the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);

 -- Iterate over the rows of the Varray and insert them.
 i := newval.CellDemandValues.FIRST;
 WHILE i IS NOT NULL LOOP
 -- Bind the row into the cursor for insert.
 dbms_sql.bind_variable(cid, ':pos', i);
 dbms_sql.bind_variable(cid, ':val', newval.CellDemandValues(i));
 -- Execute.
 nrows := dbms_sql.execute(cid);
 dbms_output.put_line('ODCIIndexInsert>>>>>('||
 'RID' ||' , '||

Creating the Domain Index

Power Demand Cartridge Example 13-35

 i || ' , '||
 newval.CellDemandValues(i)|| ')');
 i := newval.CellDemandValues.NEXT(i);
 END LOOP;
 dbms_sql.close_cursor(cid);
 RETURN ODCICONST.SUCCESS;
 END ODCIIndexInsert;

ODCIIndexDelete Method
The ODCIIndexDelete function is called when a record is deleted from a table

that contains columns or object attributes indexed by the indextype. The old values

in the indexed columns are passed in as arguments along with the corresponding

row identifier.

 STATIC FUNCTION ODCIIndexDelete(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER AS
 cid INTEGER;
 stmt VARCHAR2(1000);
 nrows INTEGER;
 BEGIN
 dbms_output.put_line(' ');
 dbms_output.put_line('ODCIIndexDelete>>>>>'||
 ' TotGridDemand= '||oldval.TotGridDemand ||
 ' MaxCellDemand= '||oldval.MaxCellDemand ||
 ' MinCellDemand= '||oldval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Construct the statement.
 stmt := ' DELETE FROM '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' WHERE r=:rr';
 dbms_output.put_line('ODCIIndexDelete>>>>>'||stmt);

 -- Parse and execute the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);
 nrows := dbms_sql.execute(cid);
 dbms_sql.close_cursor(cid);

 RETURN ODCICONST.SUCCESS;
 END ODCIIndexDelete;

Creating the Domain Index

13-36 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexUpdate Method
The ODCIIndexUpdate function is called when a record is updated in a table that

contains columns or object attributes indexed by the indextype. The old and new

values in the indexed columns are passed in as arguments along with the row

identifier.

 STATIC FUNCTION ODCIIndexUpdate(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ, newval PowerDemand_Typ, env sys.ODCIEnv)
 RETURN NUMBER AS
 cid INTEGER;
 cid2 INTEGER;
 stmt VARCHAR2(1000);
 stmt2 VARCHAR2(1000);
 nrows INTEGER;
 i NUMBER;
 BEGIN
 dbms_output.put_line(' ');
 dbms_output.put_line('ODCIIndexUpdate>>>>> Old'||
 ' TotGridDemand= '||oldval.TotGridDemand ||
 ' MaxCellDemand= '||oldval.MaxCellDemand ||
 ' MinCellDemand= '||oldval.MinCellDemand) ;
 dbms_output.put_line('ODCIIndexUpdate>>>>> New'||
 ' TotGridDemand= '||newval.TotGridDemand ||
 ' MaxCellDemand= '||newval.MaxCellDemand ||
 ' MinCellDemand= '||newval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Delete old entries.
 stmt := ' DELETE FROM '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' WHERE r=:rr';
 dbms_output.put_line('ODCIIndexUpdate>>>>>'||stmt);

 -- Parse and execute the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);
 nrows := dbms_sql.execute(cid);
 dbms_sql.close_cursor(cid);

 -- Insert new entries.
 stmt2 := ' INSERT INTO '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' VALUES (:rr, :pos, :val)';
 dbms_output.put_line('ODCIIndexUpdate>>>>>'||stmt2);

 -- Parse and execute the statement.

Creating the Domain Index

Power Demand Cartridge Example 13-37

 cid2 := dbms_sql.open_cursor;
 dbms_sql.parse(cid2, stmt2, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid2, ':rr', rid);

 -- Iterate over the rows of the Varray and insert them.
 i := newval.CellDemandValues.FIRST;
 WHILE i IS NOT NULL LOOP
 -- Bind the row into the cursor for insert.
 dbms_sql.bind_variable(cid2, ':pos', i);
 dbms_sql.bind_variable(cid2, ':val', newval.CellDemandValues(i));
 nrows := dbms_sql.execute(cid2);
 dbms_output.put_line('ODCIIndexUpdate>>>>>('||
 'RID' || ' , '||
 i || ' , '||
 newval.CellDemandValues(i)|| ')');
 i := newval.CellDemandValues.NEXT(i);
 END LOOP;
 dbms_sql.close_cursor(cid2);

 RETURN ODCICONST.SUCCESS;
 END ODCIIndexUpdate;

ODCIIndexUpdate is the last method defined in the CREATE TYPE BODY
statement, which ends as follows:

END;
/

ODCIIndexGetMetadata Method
The optional ODCIIndexGetMetadata function, if present, is called by the Export

utility in order to write implementation-specific metadata (which is not stored in

the system catalogs) into the export dump file. This metadata might be policy

information, version information, user settings, and so on. This metadata is written

to the dump file as anonymous PL/SQL blocks that are executed at import time,

immediately before the associated index is created.

This method returns strings to the Export utility that comprise the code of the

PL/SQL blocks. The Export utility repeatedly calls this method until a zero-length

string is returned, thus allowing the creation of any number of PL/SQL blocks of

arbitrary complexity. Normally, this method calls functions within a PL/SQL

package in order to make use of package-level variables, such as cursors and

iteration counters, that maintain state across multiple calls by Export.

Creating the Domain Index

13-38 Oracle9i Data Cartridge Developer’s Guide

For information about the Export and Import utilities, see the Oracle9i Database
Utilities manual.

In the power demand cartridge, the only metadata that is passed is a version string

of V1.0, identifying the current format of the index-organized table that underlies

the domain index. The power_pkg .getversion function generates a call to the

power_pkg .checkversion procedure, to be executed at import time to check that

the version string is V1.0.

STATIC FUNCTION ODCIIndexGetMetadata(ia sys.ODCIIndexInfo, expversion
VARCHAR2, newblock OUT PLS_INTEGER, env sys.ODCIEnv)
 RETURN VARCHAR2 IS

BEGIN
-- Let getversion do all the work since it has to maintain state across calls.

 RETURN power_pkg.getversion (ia.IndexSchema, ia.IndexName, newblock);

EXCEPTION
 WHEN OTHERS THEN
 RAISE;

END ODCIIndexGetMetaData;

The power_pkg package is defined as follows:

CREATE OR REPLACE PACKAGE power_pkg AS
 FUNCTION getversion(idxschema IN VARCHAR2, idxname IN VARCHAR2,
 newblock OUT PLS_INTEGER) RETURN VARCHAR2;
 PROCEDURE checkversion (version IN VARCHAR2);
END power_pkg;
/
SHOW ERRORS;

CREATE OR REPLACE PACKAGE BODY power_pkg AS

-- iterate is a package-level variable used to maintain state across calls
-- by Export in this session.

iterate NUMBER := 0;

FUNCTION getversion(idxschema IN VARCHAR2, idxname IN VARCHAR2,
 newblock OUT PLS_INTEGER) RETURN VARCHAR2 IS

BEGIN

Creating the Domain Index

Power Demand Cartridge Example 13-39

-- We are generating only one PL/SQL block consisting of one line of code.
 newblock := 1;

 IF iterate = 0
 THEN
-- Increment iterate so we'll know we're done next time we're called.
 iterate := iterate + 1;

-- Return a string that calls checkversion with a version 'V1.0'
-- Note that export adds the surrounding BEGIN/END pair to form the anon.
-- block... we don't have to.

 RETURN 'power_pkg.checkversion(''V1.0'');';
 ELSE
-- reset iterate for next index
 iterate := 0;
-- Return a 0-length string; we won't be called again for this index.
 RETURN '';
 END IF;
END getversion;

PROCEDURE checkversion (version IN VARCHAR2) IS

 wrong_version EXCEPTION;

BEGIN
 IF version != 'V1.0' THEN
 RAISE wrong_version;
 END IF;
END checkversion;

END power_pkg;

Creating the Indextype
The power demand cartridge creates the indextype for the domain index. The

specification includes the list of operators supported by the indextype. It also

identifies the implementation type containing the OCDI index routines.

CREATE OR REPLACE INDEXTYPE power_idxtype
FOR
 Power_Equals(PowerDemand_Typ, NUMBER, NUMBER),
 Power_GreaterThan(PowerDemand_Typ, NUMBER, NUMBER),
 Power_LessThan(PowerDemand_Typ, NUMBER, NUMBER),
 Power_EqualsAny(PowerDemand_Typ, NUMBER),

Defining a Type and Methods for Extensible Optimizing

13-40 Oracle9i Data Cartridge Developer’s Guide

 Power_GreaterThanAny(PowerDemand_Typ, NUMBER),
 Power_LessThanAny(PowerDemand_Typ, NUMBER)
USING power_idxtype_im;

Defining a Type and Methods for Extensible Optimizing
This section explains the parts of the power demand cartridge as they relate to

extensible optimization. Explanatory text and code segments are mixed.

Creating the Statistics Table (PowerCartUserStats)
The table PowerCartUserStats is used to store statistics about the hourly power

grid readings. These statistics will be used by the method

ODCIStatsSelectivity (described later) to estimate the selectivity of operator

predicates. Because of the types of statistics collected, it is more convenient to use a

separate table instead of letting Oracle store the statistics.

The PowerCartUserStats table contains the following columns:

■ The table and column for which statistics are collected

■ The cell for which the statistics are collected

■ The minimum and maximum power demand for the given cell over all power

grid readings

■ The number of non-null readings for the given cell over all power grid readings

CREATE TABLE PowerCartUserStats (
 -- Table for which statistics are collected
 tab VARCHAR2(30),
 -- Column for which statistics are collected
 col VARCHAR2(30),
 -- Cell position
 cpos NUMBER,
 -- Minimum power demand for the given cell
 lo NUMBER,
 -- Maximum power demand for the given cell
 hi NUMBER,
 -- Number of (non-null) power demands for the given cell
 nrows NUMBER
);
/

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-41

Creating the Extensible Optimizer Methods
The power demand cartridge creates an object type that specifies methods that will

be used by the extensible optimizer. These methods are part of the ODCIStats
(Oracle Data Cartridge Interface STATisticS) interface and they collectively define

the methods that are called when an ANALYZE command is issued or when the

optimizer is deciding on the best execution plan for a query.

Table 13–5 shows the method functions created for the power demand cartridge.

(Names of all but one of the functions begin with the string ODCIStats.)

Table 13–5 Extensible Optimizer Methods

Method Description

ODCIGetInterfaces Returns the list of names of the interfaces implemented by the
type.

ODCIStatsCollect Collects statistics for columns of type PowerDemand_Typ or
domain indexes of indextype power_idxtype.

This method is called when an ANALYZE statement is issued
that refers to a column of the PowerDemand_Typ type or an
index of the power_idxtype indextype. Upon invocation, any
options specified in the ANALYZE statement are passed in
along with a description of the column or index.

ODCIStatsDelete Deletes statistics for columns of type PowerDemand_Typ or
domain indexes of indextype power_idxtype.

This method is called when an ANALYZE statement is issued
to delete statistics for a column of the appropriate type or an
index of the appropriate indextype.

ODCIStatsSelectivity Computes the selectivity of a predicate involving an operator
or its functional implementation.

This method is called by the optimizer when a predicate of the
appropriate type appears in the WHERE clause of a query.

ODCIStatsIndexCost Computes the cost of a domain index access path.

This method is called by the optimizer to get the cost of a
domain index access path assuming the index can be used for
the query.

ODCIStatsFunctionCost Computes the cost of a function.

This method is called by the optimizer to get the cost of
executing a function. The function need not necessarily be an
implementation of an operator.

Defining a Type and Methods for Extensible Optimizing

13-42 Oracle9i Data Cartridge Developer’s Guide

Type Definition
The following statement creates the power_statistics object type. This object

type’s ODCI methods are used to collect and delete statistics about columns and

indexes, compute selectivities of predicates with operators or functions, and to

compute costs of domain indexes and functions. The curnum attribute is a dummy

attribute that is not used.

CREATE OR REPLACE TYPE power_statistics AS OBJECT
(
 curnum NUMBER,
 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsCollect(col sys.ODCIColInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsDelete(col sys.ODCIColInfo, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsCollect(ia sys.ODCIIndexInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsDelete(ia sys.ODCIIndexInfo, env sys.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, cell NUMBER, value NUMBER, env sys.ODCIEnv)
 RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsSelectivity, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, value NUMBER, env sys.ODCIEnv) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsSelectivity, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmppos NUMBER, cmpval NUMBER, env sys.ODCIEnv)
 RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsIndexCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmpval NUMBER, env sys.ODCIEnv) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsIndexCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, cell NUMBER, value NUMBER, env sys.ODCIEnv)

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-43

 RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsFunctionCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, value NUMBER, env sys.ODCIEnv) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsFunctionCost, WNDS, WNPS)
);
/

The CREATE TYPE statement is followed by a CREATE TYPE BODY statement that

specifies the implementation for each member function:

CREATE OR REPLACE TYPE BODY power_statistics
IS
...

Each member function is described in a separate section, but the function

definitions have the following general form:

 STATIC FUNCTION function-name (...)
 RETURN NUMBER IS
 END;

ODCIGetInterfaces Method
The ODCIGetInterfaces function returns the list of names of the interfaces

implemented by the type. There is only one set of the extensible optimizer interface

routines, called SYS.ODCISTATS, but the server supports multiple versions of them

for backward compatibility. In Oracle9i, most of the routines have a new ODCIEnv
argument, and several underlying system types used by other arguments have been

enhanced. To specify the Oracle9i version of the routines, function

ODCIGetInterfaces must specify SYS.ODCISTATS2 in the OUT,
ODCIObjectList parameter.

STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS

Note: In Oracle8i, function ODCIGetInterfaces specified

SYS.ODCISTATS1 in the ODCIObjectList parameter to specify

the Oracle8i version of the ODCIStats routines. To continue to use

existing Oracle8i code that is not updated for any Oracle9i changes

to the routines, continue to have function ODCIGetInterfaces
specify SYS.ODCISTATS1.

Defining a Type and Methods for Extensible Optimizing

13-44 Oracle9i Data Cartridge Developer’s Guide

 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject(’SYS’,’ODCISTATS2’));
 RETURN ODCIConst.Success;
 END ODCIGetInterfaces;

ODCIStatsCollect Method (for PowerDemand_Typ columns)
The ODCIStatsCollect function collects statistics for columns whose datatype is

the PowerDemand_Typ object type. The statistics are collected for each cell in the

column over all power grid readings. For a given cell, the statistics collected are the

minimum and maximum power grid readings, and the number of non-null

readings.

The function takes the column information as an object parameter whose type is

SYS.ODCICOLINFO. The type attributes include the table name, column name, and

so on. Options specified in the ANALYZE command used to collect the column

statistics are also passed in as parameters. For example, if ANALYZE ESTIMATE is

used, then the percentage or number of rows specified in the ANALYZE command is

passed in to ODCIStatsCollect . Since the power demand cartridge uses a table

to store the statistics, the output parameter rawstats is not used in this cartridge.

 STATIC FUNCTION ODCIStatsCollect(col sys.ODCIColInfo,
 options sys.ODCIStatsOptions,
 rawstats OUT RAW, env sys.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;

 cval NUMBER;
 colname VARCHAR2(30) := rtrim(ltrim(col.colName, ’"’), ’"’);
 statsexists BOOLEAN := FALSE;
 pdemands PowerDemand_Tab%ROWTYPE;
 user_defined_stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE tab = tname
 AND col = cname;
 CURSOR c2 IS
 SELECT * FROM PowerDemand_Tab;

 BEGIN
 sys.ODCIColInfoDump(col);
 sys.ODCIStatsOptionsDump(options);

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-45

 IF (col.TableSchema IS NULL OR col.TableName IS NULL
 OR col.ColName IS NULL) THEN
 RETURN ODCIConst.Error;
 END IF;

 dbms_output.put_line(’ODCIStatsCollect>>>>>’);
 dbms_output.put_line(’**** Analyzing column ’
 || col.TableSchema
 || ’.’ || col.TableName
 || ’.’ || col.ColName);

 -- Check if statistics exist for this column
 FOR user_defined_stats IN c1(col.TableName, colname) LOOP
 statsexists := TRUE;
 EXIT;
 END LOOP;

The function checks whether statistics for this column already exist. If so, it

initializes them to NULL; otherwise, it creates statistics for each of the 100 cells and

initializes them to NULL.

 IF not statsexists THEN
 -- column statistics don’t exist; create entries for
 -- each of the 100 cells
 cnum := dbms_sql.open_cursor;
 FOR i in 1..100 LOOP
 stmt := ’INSERT INTO PowerCartUserStats VALUES(’
 || ’’’’ || col.TableName || ’’’, ’
 || ’’’’ || colname || ’’’, ’
 || to_char(i) || ’, ’
 || ’NULL, NULL, NULL)’;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 END LOOP;
 dbms_sql.close_cursor(cnum);
 ELSE
 -- column statistics exist; initialize to NULL
 cnum := dbms_sql.open_cursor;
 stmt := ’UPDATE PowerCartUserStats’
 || ’ SET lo = NULL, hi = NULL, nrows = NULL’
 || ’ WHERE tab = ’ || col.TableName
 || ’ AND col = ’ || colname;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

Defining a Type and Methods for Extensible Optimizing

13-46 Oracle9i Data Cartridge Developer’s Guide

 END IF;

The function collects statistics for the column by reading rows from the table that is

being analyzed. This is done by constructing and executing a SQL statement.

 -- For each cell position, the following statistics are collected:
 -- maximum value
 -- minimum value
 -- number of rows (excluding NULLs)
 cnum := dbms_sql.open_cursor;
 FOR i in 1..100 LOOP
 FOR pdemands IN c2 LOOP
 IF i BETWEEN pdemands.sample.CellDemandValues.FIRST AND
 pdemands.sample.CellDemandValues.LAST THEN
 cval := pdemands.sample.CellDemandValues(i);
 stmt := ’UPDATE PowerCartUserStats SET ’
 || ’lo = least(’ || ’NVL(’ || to_char(cval) || ’, lo), ’
 || ’NVL(’ || ’lo, ’ || to_char(cval) || ’)), ’
 || ’hi = greatest(’ || ’NVL(’ || to_char(cval) || ’, hi), ’
 || ’NVL(’ || ’hi, ’ || to_char(cval) || ’)), ’
 || ’nrows = decode(nrows, NULL, decode(’
 || to_char(cval) || ’, NULL, NULL, 1), decode(’
 || to_char(cval) || ’, NULL, nrows, nrows+1)) ’
 || ’WHERE cpos = ’ || to_char(i)
 || ’ AND tab = ’’’ || col.TableName || ’’’’
 || ’ AND col = ’’’ || colname || ’’’’;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 END IF;
 END LOOP;
 END LOOP;

The function concludes by closing the cursor and returning a success status.

 dbms_sql.close_cursor(cnum);

 rawstats := NULL;

 return ODCIConst.Success;

 END;

ODCIStatsDelete Method (for PowerDemand_Typ columns)
The ODCIStatsDelete function deletes statistics of columns whose datatype is

the PowerDemand_Typ object type.

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-47

The function takes the column information as an object parameter whose type is

SYS.ODCICOLINFO. The type attributes include the table name, column name, and

so on.

 STATIC FUNCTION ODCIStatsDelete(col sys.ODCIColInfo, env sys.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;

 colname VARCHAR2(30) := rtrim(ltrim(col.colName, ’"’), ’"’);
 statsexists BOOLEAN := FALSE;
 user_defined_stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE tab = tname
 AND col = cname;
 BEGIN
 sys.ODCIColInfoDump(col);

 IF (col.TableSchema IS NULL OR col.TableName IS NULL
 OR col.ColName IS NULL) THEN
 RETURN ODCIConst.Error;
 END IF;

 dbms_output.put_line(’ODCIStatsDelete>>>>>’);
 dbms_output.put_line(’**** Analyzing (delete) column ’
 || col.TableSchema
 || ’.’ || col.TableName
 || ’.’ || col.ColName);

The function verifies that statistics for the column exist by checking the statistics

table. If statistics were not collected, then there is nothing to be done. If, however,

statistics are present, it constructs and executes a SQL statement to delete the

relevant rows from the statistics table.

 -- Check if statistics exist for this column
 FOR user_defined_stats IN c1(col.TableName, colname) LOOP
 statsexists := TRUE;
 EXIT;
 END LOOP;

 -- If user-defined statistics exist, delete them
 IF statsexists THEN
 stmt := ’DELETE FROM PowerCartUserStats’

Defining a Type and Methods for Extensible Optimizing

13-48 Oracle9i Data Cartridge Developer’s Guide

 || ’ WHERE tab = ’’’ || col.TableName || ’’’’
 || ’ AND col = ’’’ || colname || ’’’’;
 cnum := dbms_sql.open_cursor;
 dbms_output.put_line(’ODCIStatsDelete>>>>>’);
 dbms_output.put_line(’ODCIStatsDelete>>>>>’ || stmt);
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

ODCIStatsCollect Method (for power_idxtype Domain Indexes)
The ODCIStatsCollect function collects statistics for domain indexes whose

indextype is power_idxtype . In the power demand cartridge, this function simply

analyzes the index-organized table that stores the index data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so on. Options specified in the ANALYZE command used to collect the index

statistics are also passed in as parameters. For example, if ANALYZE ESTIMATE is

used, then the percentage or number of rows is passed in. The output parameter

rawstats is not used.

 STATIC FUNCTION ODCIStatsCollect (ia sys.ODCIIndexInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW, env sys.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;
 BEGIN
 -- To analyze a domain index, simply analyze the table that
 -- implements the index

 sys.ODCIIndexInfoDump(ia);
 sys.ODCIStatsOptionsDump(options);

 stmt := ’ANALYZE TABLE ’
 || ia.IndexSchema || ’.’ || ia.IndexName || ’_pidx’
 || ’ COMPUTE STATISTICS’;

 dbms_output.put_line(’**** Analyzing index ’
 || ia.IndexSchema || ’.’ || ia.IndexName);

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-49

 dbms_output.put_line(’SQL Statement: ’ || stmt);

 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 rawstats := NULL;

 RETURN ODCIConst.Success;
 END;

ODCIStatsDelete Method (for power_idxtype Domain Indexes)
The ODCIStatsDelete function deletes statistics for domain indexes whose

indextype is power_idxtype . In the power demand cartridge, this function simply

deletes the statistics of the index-organized table that stores the index data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so on.

 STATIC FUNCTION ODCIStatsDelete(ia sys.ODCIIndexInfo, env sys.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;
 BEGIN
 -- To delete statistics for a domain index, simply delete the
 -- statistics for the table implementing the index

 sys.ODCIIndexInfoDump(ia);

 stmt := ’ANALYZE TABLE ’
 || ia.IndexSchema || ’.’ || ia.IndexName || ’_pidx’
 || ’ DELETE STATISTICS’;

 dbms_output.put_line(’**** Analyzing (delete) index ’
 || ia.IndexSchema || ’.’ || ia.IndexName);
 dbms_output.put_line(’SQL Statement: ’ || stmt);

 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

Defining a Type and Methods for Extensible Optimizing

13-50 Oracle9i Data Cartridge Developer’s Guide

 RETURN ODCIConst.Success;
 END;

ODCIStatsSelectivity Method (for Specific Queries)
The first definition of the ODCIStatsSelectivity function estimates the

selectivity of operator or function predicates for Specific queries. For example, if

a query asks for all instances where cell (3,7) has a value equal to 25, the function

estimates the percentage of rows in which the given cell has the specified value.

(This definition of ODCIStatsSelectivity differs from the definition in the next

section in that it includes the cell parameter for the position of the cell.)

The pred parameter contains the function information (the functional

implementation of an operator in an operator predicate); this parameter is an object

instance of type SYS.ODCIPREDINFO. The selectivity is returned as a percentage in

the sel output parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function

as well as the start and stop values of the function. For example, an argument might

be a column in which case the argument descriptor will contain the table name,

column name, and so forth. The strt and stop parameters are the lower and

upper boundary points for the function return value. If the function in a predicate

contains a literal of type PowerDemand_Typ , the object parameter will contain

the value in the form of an object constructor. The cell parameter is the cell

position and the value parameter is the value in the cell specified by the function

(PowerXxxxxSpecific_Func).

The selectivity is estimated by using a technique similar to that used for simple

range predicates. For example, a simple estimate for the selectivity of a predicate

like

 c > v

is (M-v)/(M-m) where m and M are the minimum and maximum values,

respectively, for the column c (as determined from the column statistics), provided

the value v lies between m and M.

The get_selectivity function computes the selectivity of a simple range

predicate given the minimum and maximum values of the column in the predicate.

It assumes that the column values in the table are uniformly distributed between

the minimum and maximum values.

CREATE FUNCTION get_selectivity(relop VARCHAR2, value NUMBER,
 lo NUMBER, hi NUMBER, ndv NUMBER)
 RETURN NUMBER AS

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-51

 sel NUMBER := NULL;
 ndv NUMBER;
BEGIN
 -- This function computes the selectivity (as a percentage)
 -- of a predicate
 -- col <relop> <value>
 -- where <relop> is one of: =, !=, <, <=, >, >=
 -- <value> is one of: 0, 1
 -- lo and hi are the minimum and maximum values of the column in
 -- the table. This function performs a simplistic estimation of the
 -- selectivity by assuming that the range of distinct values of
 -- the column is distributed uniformly in the range lo..hi and that
 -- each distinct value occurs nrows/(hi-lo+1) times (where nrows is
 -- the number of rows).

 IF ndv IS NULL OR ndv <= 0 THEN
 RETURN 0;
 END IF;

 -- col != <value>
 IF relop = ’!=’ THEN
 IF value between lo and hi THEN
 sel := 1 - 1/ndv;
 ELSE
 sel := 1;
 END IF;

 -- col = <value>
 ELSIF relop = ’=’ THEN
 IF value between lo and hi THEN
 sel := 1/ndv;
 ELSE
 sel := 0;
 END IF;

 -- col >= <value>
 ELSIF relop = ’>=’ THEN
 IF lo = hi THEN
 IF value <= lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (hi-value)/(hi-lo) + 1/ndv;

Defining a Type and Methods for Extensible Optimizing

13-52 Oracle9i Data Cartridge Developer’s Guide

 ELSIF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;

 -- col < <value>
 ELSIF relop = ’<’ THEN
 IF lo = hi THEN
 IF value > lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (value-lo)/(hi-lo);
 ELSIF value < lo THEN
 sel := 0;
 ELSE
 sel := 1;
 END IF;

 -- col <= <value>
 ELSIF relop = ’<=’ THEN
 IF lo = hi THEN
 IF value >= lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (value-lo)/(hi-lo) + 1/ndv;
 ELSIF value < lo THEN
 sel := 0;
 ELSE
 sel := 1;
 END IF;

 -- col > <value>
 ELSIF relop = ’>’ THEN
 IF lo = hi THEN
 IF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-53

 END IF;
 ELSIF value between lo and hi THEN
 sel := (hi-value)/(hi-lo);
 ELSIF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;

 END IF;

 RETURN least(100, ceil(100*sel));

END;
/

The ODCIStatsSelectivity function estimates the selectivity for function

predicates which have constant start and stop values. Further, the first argument of

the function in the predicate must be a column of type PowerDemand_Typ and the

remaining arguments must be constants.

 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, cell NUMBER, value NUMBER, env sys.ODCIEnv)
 RETURN NUMBER IS
 fname varchar2(30);
 relop varchar2(2);
 lo NUMBER;
 hi NUMBER;
 nrows NUMBER;
 colname VARCHAR2(30);
 statsexists BOOLEAN := FALSE;
 stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(cell NUMBER, tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE cpos = cell
 AND tab = tname
 AND col = cname;
 BEGIN
 -- compute selectivity only when predicate is of the form:
 -- fn(col, <cell>, <value>) <relop> <val>
 -- In all other cases, return an error and let the optimizer
 -- make a guess. We also assume that the function "fn" has
 -- a return value of 0, 1, or NULL.

Defining a Type and Methods for Extensible Optimizing

13-54 Oracle9i Data Cartridge Developer’s Guide

 -- start value
 IF (args(1).ArgType != ODCIConst.ArgLit AND
 args(1).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- stop value
 IF (args(2).ArgType != ODCIConst.ArgLit AND
 args(2).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- first argument of function
 IF (args(3).ArgType != ODCIConst.ArgCol) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- second argument of function
 IF (args(4).ArgType != ODCIConst.ArgLit AND
 args(4).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- third argument of function
 IF (args(5).ArgType != ODCIConst.ArgLit AND
 args(5).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 colname := rtrim(ltrim(args(3).colName, ’"’), ’"’);

The first (column) argument of the function in the predicate must have statistics

collected for it (by issuing the ANALYZE command which will call

ODCIStatsCollect for the column). If statistics have not been collected,

ODCIStatsSelectivity returns an error status.

 -- Check if the statistics table exists (we are using a
 -- user-defined table to store the user-defined statistics).
 -- Get user-defined statistics: MIN, MAX, NROWS
 FOR stats IN c1(cell, args(3).TableName, colname) LOOP
 -- Get user-defined statistics: MIN, MAX, NROWS
 lo := stats.lo;
 hi := stats.hi;
 nrows := stats.nrows;
 statsexists := TRUE;

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-55

 EXIT;
 END LOOP;

 -- If no user-defined statistics were collected, return error
 IF not statsexists THEN
 RETURN ODCIConst.Error;
 END IF;

Each Specific function predicate corresponds to an equivalent range predicate.

For example, the predicate:

 Power_EqualsSpecific_Func(col, 21, 25) = 0

which checks that the reading in cell 21 is not equal to 25, corresponds to the

equivalent range predicate:

 col[21] != 25

The ODCIStatsSelectivity function finds the corresponding range predicates

for each Specific function predicate. There are several boundary cases where the

selectivity can be immediately determined.

 -- selectivity is 0 for "fn(col, <cell>, <value>) < 0"
 IF (stop = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0) THEN
 sel := 0;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 0 for "fn(col, <cell>, <value>) > 1"
 IF (strt = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0) THEN
 sel := 0;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 100% for "fn(col, <cell>, <value>) >= 0"
 IF (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredExactMatch) = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) > 0) THEN
 sel := 100;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 100% for "fn(col, <cell>, <value>) <= 1"
 IF (stop = 1 AND

Defining a Type and Methods for Extensible Optimizing

13-56 Oracle9i Data Cartridge Developer’s Guide

 bitand(pred.Flags, ODCIConst.PredExactMatch) = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) > 0) THEN
 sel := 100;
 RETURN ODCIConst.Success;
 END IF;

 -- get function name
 IF bitand(pred.Flags, ODCIConst.PredObjectFunc) > 0 THEN
 fname := pred.ObjectName;
 ELSE
 fname := pred.MethodName;
 END IF;

 -- convert prefix relational operator to infix:
 -- "Power_EqualsSpecific_Func(col, <cell>, <value>) = 1"
 -- becomes "col[<cell>] = <value>"

 -- Power_EqualsSpecific_Func(col, <cell>, <value>) = 0
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] != <value>
 IF (fname LIKE upper(’Power_Equals%’) AND
 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’!=’;

 -- Power_LessThanSpecific_Func(col, <cell>, <value>) = 0
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] >= <value>
 ELSIF (fname LIKE upper(’Power_LessThan%’) AND
 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’>=’;

 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) = 0
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] <= <value>
 ELSIF (fname LIKE upper(’Power_GreaterThan%’) AND

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-57

 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’<=’;

 -- Power_EqualsSpecific_Func(col, <cell>, <value>) = 1
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) >= 1
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] = <value>
 ELSIF (fname LIKE upper(’Power_Equals%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’=’;

 -- Power_LessThanSpecific_Func(col, <cell>, <value>) = 1
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) >= 1
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] < <value>
 ELSIF (fname LIKE upper(’Power_LessThan%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’<’;

 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) = 1
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) >= 1
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] > <value>
 ELSIF (fname LIKE upper(’Power_GreaterThan%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’>’;

 ELSE
 RETURN ODCIConst.Error;

 END IF;

After the Specific function predicate is transformed into a simple range

predicate, ODCIStatsSelectivity calls get_selectivity to compute the

Defining a Type and Methods for Extensible Optimizing

13-58 Oracle9i Data Cartridge Developer’s Guide

selectivity for the range predicate (and thus, equivalently, for the Specific
function predicate). It returns with a success status.

 sel := get_selectivity(relop, value, lo, hi, nrows);
 RETURN ODCIConst.Success;
 END;

ODCIStatsSelectivity Method (for Any Queries)
The second definition of the ODCIStatsSelectivity function estimates the

selectivity of operator or function predicates for Any queries. For example, if a

query asks for all instances where any cell has a value equal to 25, the function

estimates the percentage of rows in which any cell has the specified value. (This

definition of ODCIStatsSelectivity differs from the definition in the preceding

section in that it does not include the cell parameter.)

The pred parameter contains the function information (the functional

implementation of an operator in an operator predicate); this parameter is an object

instance of type SYS.ODCIPREDINFO. The selectivity is returned as a percentage in

the sel output parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function

as well as the start and stop values of the function. For example, an argument might

be a column in which case the argument descriptor will contain the table name,

column name, and so forth. The strt and stop parameters are the lower and

upper boundary points for the function return value. If the function in a predicate

contains a literal of type PowerDemand_Typ , the object parameter will contain

the value in the form of an object constructor. The value parameter is the value in

the cell specified by the function (Power_XxxxxAny_Func).

The selectivity for Any queries can be calculated as the complement of the

probability that none of the cells has the specified value. Thus, if s[i] is the

selectivity of the i th cell having the given value, then the selectivity of the Any
function predicate can be estimated as:

 1 - (1-s[1])(1-s[2])...(1-s[100])

assuming that the value of each cell is independent of the values in other cells. This

means that this version of the ODCIStatsSelectivity function (for Any queries)

can compute its selectivity by calling the first definition of the

ODCIStatsSelectivity function (for Specific queries).

 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, value NUMBER, env sys.ODCIEnv)

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-59

 RETURN NUMBER IS
 cellsel NUMBER;
 i NUMBER;
 specsel NUMBER;
 newargs sys.ODCIArgDescList
 := sys.ODCIArgDescList(NULL, NULL, NULL,
 NULL, NULL);
 BEGIN
 -- To compute selectivity for the ANY functions, call the
 -- selectivity function for the SPECIFIC functions. For example,
 -- the selectivity of the ANY predicate
 --
 -- Power_EqualsAnyFunc(object, value) = 1
 --
 -- is computed as
 --
 -- 1 - (1-s[1])(1-s[2])...(1-s[100])
 --
 -- where s[i] is the selectivity of the SPECIFIC predicate
 --
 -- Power_EqualsSpecific_Func(object, i, value) = 1
 --

 sel := 1;
 newargs(1) := args(1);
 newargs(2) := args(2);
 newargs(3) := args(3);
 newargs(4) := sys.ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL);
 newargs(5) := args(4);
 FOR i in 1..100 LOOP
 cellsel := NULL;
 specsel := power_statistics.ODCIStatsSelectivity(pred, cellsel,
 newargs, strt, stop, object, i, value, env);
 IF specsel = ODCIConst.Success THEN
 sel := sel * (1 - cellsel/100);
 END IF;
 END LOOP;

 sel := (1 - sel) * 100;
 RETURN ODCIConst.Success;
 END;

Defining a Type and Methods for Extensible Optimizing

13-60 Oracle9i Data Cartridge Developer’s Guide

ODCIStatsIndexCost Method (for Specific Queries)
The first definition of the ODCIStatsIndexCost function estimates the cost of the

domain index for Specific queries. For example, if a query asks for all instances

where cell (3,7) has a value equal to 25, the function estimates the cost of the domain

index access path to evaluate this query. (This definition of ODCIStatsIndexCost
differs from the definition in the next section in that it includes the cmppos
parameter for the position of the cell.)

The ia parameter contains the index information (an object instance of type

SYS.ODCIINDEXINFO). The sel parameter is the selectivity of the operator

predicate as estimated by the ODCIStatsSelectivity function for Specific
queries. The estimated cost is returned in the cost output parameter. The qi
parameter contains some information about the query and its environment (for

example, whether the ALL_ROWS or FIRST_ROWS optimizer mode is being used).

The pred parameter contains the operator information (an object instance of type

SYS.ODCIPREDINFO). The args parameter contains descriptors of the value

arguments of the operator as well as the start and stop values of the operator. The

strt and stop parameters are the lower and upper boundary points for the

operator return value. The cmppos parameter is the cell position and cmpval is the

value in the cell specified by the operator (Power_XxxxxSpecific).

In the power demand cartridge, the domain index cost for Specific queries is the

same as the domain index cost for Any queries, so this version of the

ODCIStatsIndexCost function simply calls the second definition of the function

(described in the next section).

 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmppos NUMBER, cmpval NUMBER, env sys.ODCIEnv)
 RETURN NUMBER IS
 BEGIN
 -- This is the cost for queries on a specific cell; simply
 -- use the cost for queries on any cell.
 RETURN ODCIStatsIndexCost(ia, sel, cost, qi, pred, args,
 strt, stop, cmpval, env);
 END;

ODCIStatsIndexCost Method (for Any Queries)
The second definition of the ODCIStatsIndexCost function estimates the cost of

the domain index for Any queries. For example, if a query asks for all instances

where any cell has a value equal to 25, the function estimates the cost of the domain

index access path to evaluate this query. (This definition of ODCIStatsIndexCost

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-61

differs from the definition in the preceding section in that it does not include the

cmppos parameter.)

The ia parameter contains the index information (an object instance of type

SYS.ODCIINDEXINFO). The sel parameter is the selectivity of the operator

predicate as estimated by the ODCIStatsSelectivity function for Any queries.

The estimated cost is returned in the cost output parameter. The qi parameter

contains some information about the query and its environment (for example,

whether the ALL_ROWS or FIRST_ROWS optimizer mode is being used). The pred
parameter contains the operator information (an object instance of type

SYS.ODCIPREDINFO). The args parameter contains descriptors of the value

arguments of the operator as well as the start and stop values of the operator. The

strt and stop parameters are the lower and upper boundary points for the

operator return value. The cmpval parameter is the value in the cell specified by

the operator (Power_XxxxxAny).

The index cost is estimated as the number of blocks in the index-organized table

implementing the index multiplied by the selectivity of the operator predicate times

a constant factor.

 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmpval NUMBER, env sys.ODCIEnv)
 RETURN NUMBER IS
 ixtable VARCHAR2(40);
 numblocks NUMBER := NULL;
 get_table user_tables%ROWTYPE;
 CURSOR c1(tab VARCHAR2) IS
 SELECT * FROM user_tables WHERE table_name = tab;
 BEGIN
 -- This is the cost for queries on any cell.

 -- To compute the cost of a domain index, multiply the
 -- number of blocks in the table implementing the index
 -- with the selectivity

 -- Return if we don’t have predicate selectivity
 IF sel IS NULL THEN
 RETURN ODCIConst.Error;
 END IF;

 cost := sys.ODCICost(NULL, NULL, NULL, NULL);

 -- Get name of table implementing the domain index

Defining a Type and Methods for Extensible Optimizing

13-62 Oracle9i Data Cartridge Developer’s Guide

 ixtable := ia.IndexName || ’_pidx’;

 -- Get number of blocks in domain index
 FOR get_table IN c1(upper(ixtable)) LOOP
 numblocks := get_table.blocks;
 EXIT;
 END LOOP;

 IF numblocks IS NULL THEN
 -- Exit if there are no user-defined statistics for the index
 RETURN ODCIConst.Error;
 END IF;

 cost.CPUCost := ceil(400*(sel/100)*numblocks);
 cost.IOCost := ceil(1.5*(sel/100)*numblocks);
 RETURN ODCIConst.Success;
 END;

ODCIStatsFunctionCost Method
The ODCIStatsFunctionCost function estimates the cost of evaluating a

function (Power_XxxxxSpecific_Func or Power_XxxxxAny_Func).

The func parameter contains the function information; this parameter is an object

instance of type SYS.ODCIFUNCINFO. The estimated cost is returned in the output

cost parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function.

If the function contains a literal of type PowerDemand_Typ as its first argument,

the object parameter will contain the value in the form of an object constructor.

The value parameter is the value in the cell specified by the function

(PowerXxxxxSpecific_Func or Power_XxxxxAny_Func).

The function cost is simply estimated as some default value depending on the

function name. Since the functions don’t read any data from disk, the I/O cost is set

to zero.

 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, value NUMBER, env sys.ODCIEnv)
 RETURN NUMBER IS
 fname VARCHAR2(30);
 BEGIN
 cost := sys.ODCICost(NULL, NULL, NULL, NULL);

 -- Get function name

Defining a Type and Methods for Extensible Optimizing

Power Demand Cartridge Example 13-63

 IF bitand(func.Flags, ODCIConst.ObjectFunc) > 0 THEN
 fname := func.ObjectName;
 ELSE
 fname := func.MethodName;
 END IF;

 IF fname LIKE upper(’Power_LessThan%’) THEN
 cost.CPUCost := 5000;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSIF fname LIKE upper(’Power_Equals%’) THEN
 cost.CPUCost := 7000;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSIF fname LIKE upper(’Power_GreaterThan%’) THEN
 cost.CPUCost := 5000;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSE
 RETURN ODCIConst.Error;
 END IF;
 END;

Associating the Extensible Optimizer Methods with Database Objects
In order for the optimizer to use the methods defined in the power_statistics
object type, they have to be associated with the appropriate database objects. The

following statements do this.

-- Associate statistics type with types, indextypes, and functions
ASSOCIATE STATISTICS WITH TYPES PowerDemand_Typ USING power_statistics;
ASSOCIATE STATISTICS WITH INDEXTYPES power_idxtype USING power_statistics;
ASSOCIATE STATISTICS WITH FUNCTIONS
 Power_EqualsSpecific_Func,
 Power_GreaterThanSpecific_Func,
 Power_LessThanSpecific_Func,
 Power_EqualsAny_Func,
 Power_GreaterThanAny_Func,
 Power_LessThanAny_Func
 USING power_statistics;

Testing the Domain Index

13-64 Oracle9i Data Cartridge Developer’s Guide

Analyzing the Database Objects
Analyzing tables, columns, and indexes ensures that the optimizer has the relevant

statistics to estimate accurate costs for various access paths and choose a good plan.

Further, the selectivity and cost functions defined in the power_statistics
object type rely on the presence of statistics. The following statements analyze the

database objects and verify that statistics were indeed collected.

-- Analyze the table
ANALYZE TABLE PowerDemand_Tab COMPUTE STATISTICS;

-- Verify that user-defined statistics were collected
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
ORDER BY cpos;

-- Delete the statistics
ANALYZE TABLE PowerDemand_Tab DELETE STATISTICS;

-- Verify that user-defined statistics were deleted
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
ORDER BY cpos;

-- Re-analyze the table
ANALYZE TABLE PowerDemand_Tab COMPUTE STATISTICS;

-- Verify that user-defined statistics were re-collected
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
ORDER BY cpos;

Testing the Domain Index
This section explains the parts of the power demand example that perform some

simple tests of the domain index. These tests consist of:

■ Creating the power demand table (PowerDemand_Tab) and populating it with

a small amount of data

■ Executing some queries before the index is created (and showing the execution

plans without an index being used)

Testing the Domain Index

Power Demand Cartridge Example 13-65

The execution plans show that a full table scan is performed in each case.

■ Creating the index on the grid

■ Executing the same queries after the index is created (and showing the

execution plans with the index being used)

The execution plans show that Oracle is using the index and not performing full

table scans, thus resulting in more efficient execution.

The statements in this section are available online in the example file (tkqxpwr.sql).

Creating and Populating the Power Demand Table
The power demand table is created with two columns:

■ region , to allow the electric utility to use the grid scheme in multiple areas or

states. Each region (for example, New York, New Jersey, Pennsylvania, and so

on) is represented by a 10x10 grid.

■ sample , a collection of samplings (power demand readings from each cell in

the grid), defined using the PowerDemand_Typ object type.

CREATE TABLE PowerDemand_Tab (
 -- Region for which these power demand readings apply
 region NUMBER,
 -- Values for each "sampling" time (for a given hour)
 sample PowerDemand_Typ
);

Several rows are inserted, representing power demand data for two regions (1 and

2) for several hourly timestamps. For simplicity, values are inserted only into the

first 5 positions of each grid (the remaining 95 values are set to null).

-- The next INSERT statements "cheat" by supplying
-- only 5 grid values (instead of 100).

-- First 5 INSERT statements are for region 1 (1 AM to 5 AM on
-- 01-Feb-1998).

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(55,8,13,9,5),
 to_date('02-01-1998 01','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(56,8,13,9,3),

Testing the Domain Index

13-66 Oracle9i Data Cartridge Developer’s Guide

 to_date('02-01-1998 02','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(55,8,13,9,3),
 to_date('02-01-1998 03','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(54,8,13,9,3),
 to_date('02-01-1998 04','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(54,8,12,9,3),
 to_date('02-01-1998 05','MM-DD-YYYY HH'))
);

-- Also insert some rows for region 2.

INSERT INTO PowerDemand_Tab VALUES(2,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(9,8,11,16,5),
 to_date('02-01-1998 01','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(2,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(9,8,11,20,5),
 to_date('02-01-1998 02','MM-DD-YYYY HH'))
);

Finally, the values for TotGridDemand , MaxCellDemand , and MinCellDemand
are computed and set for each of the newly inserted rows, and these values are

displayed.

DECLARE
CURSOR c1 IS SELECT Sample, Region FROM PowerDemand_Tab FOR UPDATE;
s PowerDemand_Typ;
r NUMBER;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO s,r;
 EXIT WHEN c1%NOTFOUND;
 s.SetTotalDemand;
 s.SetMaxDemand;

Testing the Domain Index

Power Demand Cartridge Example 13-67

 s.SetMinDemand;
 dbms_output.put_line(s.TotGridDemand);
 dbms_output.put_line(s.MaxCellDemand);
 dbms_output.put_line(s.MinCellDemand);
 UPDATE PowerDemand_Tab SET Sample = s WHERE CURRENT OF c1;
 END LOOP;
 CLOSE c1;
END;
/

-- Examine the values.
SELECT region, P.Sample.TotGridDemand, P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand,
 to_char(P.sample.sampletime, 'MM-DD-YYYY HH')
 FROM PowerDemand_Tab P;

Querying Without the Index
The queries is this section are executed by applying the underlying function

(PowerEqualsSpecific_Func) for every row in the table, because the index has

not yet been defined.

The example file includes queries that check, both for a specific cell number and for

any cell number, for values equal to, greater than, and less than a specified value.

For example, the equality queries are as follows:

SET SERVEROUTPUT ON

-- Query, referencing the operators (without index)

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,10) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,10) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand

Testing the Domain Index

13-68 Oracle9i Data Cartridge Developer’s Guide

 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,1,25) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,1,25) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,8) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,8) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_EqualsAny(P.Sample,9) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_EqualsAny(P.Sample,9) = 1;

The execution plans show that a full table scan is performed in each case:

OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS FULL POWERDEMAND_TAB

Creating the Index
The index is created on the sample column in the power demand table.

Testing the Domain Index

Power Demand Cartridge Example 13-69

CREATE INDEX PowerIndex ON PowerDemand_Tab(Sample)
 INDEXTYPE IS power_idxtype;

Querying with the Index
The queries in this section are the same as those in "Querying Without the Index" on

page 13-67, but this time the index is used.

The execution plans show that Oracle is using the domain index and not

performing full table scans, thus resulting in more efficient execution. For example:

SQLPLUS> ---
SQLPLUS> -- Query, referencing the operators (with index)
SQLPLUS> ---
SQLPLUS> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_Equals(P.Sample,2,10) = 1;
Statement processed.
SQLPLUS> @tkoqxpll
SQLPLUS> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SQLPLUS>
SQLPLUS> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_Equals(P.Sample,2,10) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
0 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER

Testing the Domain Index

13-70 Oracle9i Data Cartridge Developer’s Guide

Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALS
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare position : 2
compare value : 10
ODCIIndexStart>>>>>select r from POWERCARTUSER.POWERINDEX_pidx where cpos ='2'
and cval ='10'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SQLPLUS>
SQLPLUS> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_Equals(P.Sample,2,8) = 1;
Statement processed.
SQLPLUS> @tkoqxpll
SQLPLUS> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SQLPLUS>
SQLPLUS> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_Equals(P.Sample,2,8) = 1;

Testing the Domain Index

Power Demand Cartridge Example 13-71

REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
 2 49 16 5
 2 53 20 5
7 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALS
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare position : 2
compare value : 8
ODCIIndexStart>>>>>select r from POWERCARTUSER.POWERINDEX_pidx where cpos ='2'
and cval ='8'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SQLPLUS>
SQLPLUS> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_EqualsAny(P.Sample,9) = 1;
Statement processed.
SQLPLUS> @tkoqxpll
SQLPLUS> set echo off

Testing the Domain Index

13-72 Oracle9i Data Cartridge Developer’s Guide

Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SQLPLUS>
SQLPLUS> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_EqualsAny(P.Sample,9) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
 2 49 16 5
 2 53 20 5
7 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALSANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare value : 9

Testing the Domain Index

Power Demand Cartridge Example 13-73

ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx where
cval ='9'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SQLPLUS>
SQLPLUS> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_GreaterThanAny(P.Sample,50) = 1;
Statement processed.
SQLPLUS> @tkoqxpll
SQLPLUS> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SQLPLUS>
SQLPLUS> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_GreaterThanAny(P.Sample,50) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
5 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP

Testing the Domain Index

13-74 Oracle9i Data Cartridge Developer’s Guide

Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_GREATERTHANANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare value : 50
ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx where cv
al >’50’
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SQLPLUS>
SQLPLUS> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_LessThanAny(P.Sample,50) = 0;
Statement processed.
SQLPLUS> @tkoqxpll
SQLPLUS> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SQLPLUS>
SQLPLUS> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_LessThanAny(P.Sample,50) = 0;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
0 rows selected.
ODCIIndexStart>>>>>

Testing the Domain Index

Power Demand Cartridge Example 13-75

ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_LESSTHANANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 0
stop key : 0
compare value : 50
ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx minus se
lect distinct r from POWERCARTUSER.POWERINDEX_pidx where cval <’50’
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>

Testing the Domain Index

13-76 Oracle9i Data Cartridge Developer’s Guide

PSBTREE: An Example of Extensible Indexing 14-1

14
PSBTREE: An Example of Extensible

Indexing

This chapter presents an extensible indexing example in which some of the

ODCIIndex interface routines are implemented in C:

■ Introduction

■ Design of the indextype

■ Implementing Operators

■ Implementing the Index Routines

■ The C Code

■ Implementing the Indextype

■ Usage examples

Introduction

14-2 Oracle9i Data Cartridge Developer’s Guide

Introduction
The example in this chapter gives a general illustration of how to implement the

extensible indexing interface routines in C. The example tries to concentrate on

topics that are common to all implementations and glosses over domain-specific

details.

The code for the example is in the demo directory (see file extdemo5.sql). It

extends an earlier example (extdemo2.sql , also in demo directory) by adding to

the indextype support for local domain indexes on range partitioned tables.

Design of the indextype
The indextype implemented here, called PSBtree, operates like a btree index. It

supports three user-defined operators:

■ gt(Greater Than)

■ lt(Less Than)

■ eq(EQuals)

These operators operate on operands of VARCHAR2 datatype.

The index data consists of records of the form <key, rid> where key is the value

of the indexed column and rid is the row identifier of the corresponding row. To

simplify the implementation of the indextype, the index data is stored in an

index-organized table.

When an index is a local domain index, one index-organized table is created for

each partition to store the index data for that partition. Thus, the index

manipulation routines merely translate operations on the PSBtree into operations

on the table storing the index data.

When a user creates a PSBtree index (a local index), n tables are created consisting

of the indexed column and a rowid column, where n is the number of partitions in

the base table. Inserts into the base table cause appropriate insertions into the

affected index table. Deletes and updates are handled similarly. When the PSBtree
is queried based on a user-defined operator (one of gt , lt and eq), an appropriate

query is issued against the index table to retrieve all the satisfying rows.

Appropriate partition pruning occurs, and only the index tables that correspond to

the relevant, or "interesting," partitions are accessed.

Implementing Operators

PSBTREE: An Example of Extensible Indexing 14-3

Implementing Operators
The PSBtree indextype supports three operators. Each operator has a

corresponding functional implementation. The functional implementations of the

eq , gt and lt operators are presented in the following section.

Create Functional Implementations

Functional Implementation of EQ (EQUALS)
The functional implementation for eq is provided by a function (bt_eq) that takes

in two VARCHAR2 parameters and returns 1 if they are equal and 0 otherwise.

CREATE FUNCTION bt_eq(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a = b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;

Functional Implementation of LT (LESS THAN)
The functional implementation for lt is provided by a function (bt_lt) that takes

in two VARCHAR2 parameters and returns 1 if the first parameter is less than the

second, 0 otherwise.

CREATE FUNCTION bt_lt(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a < b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;

Functional Implementation of GT (GREATER THAN)
The functional implementation for gt is provided by a function (bt_gt) that takes

in two VARCHAR2 parameters and returns 1 if the first parameter is greater than the

second, 0 otherwise.

Implementing the Index Routines

14-4 Oracle9i Data Cartridge Developer’s Guide

CREATE FUNCTION bt_gt(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a > b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;

Create Operators
To create the operator, you need to specify the signature of the operator along with

its return type and its functional implementation.

Operator EQ
CREATE OPERATOR eq
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_eq;

Operator LT
CREATE OPERATOR lt
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_lt;

Operator GT
CREATE OPERATOR gt
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_gt;

Implementing the Index Routines
1. Define an implementation type that implements the ODCIIndex interface

routines.

CREATE TYPE psbtree_im AS OBJECT
(
 scanctx RAW(4),
 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT SYS.ODCIObjectList)

Implementing the Index Routines

PSBTREE: An Example of Extensible Indexing 14-5

 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexCreate (ia SYS.ODCIIndexInfo, parms VARCHAR2,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDrop(ia SYS.ODCIIndexInfo, env SYS.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexExchangePartition(ia SYS.ODCIIndexInfo,
 ia1 SYS.ODCIIndexInfo, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexMergePartition(ia SYS.ODCIIndexInfo,
 part_name1 SYS.ODCIPartInfo, part_name2 SYS.ODCIPartInfo, parms VARCHAR2,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexSplitPartition(ia SYS.ODCIIndexInfo,
 part_name1 SYS.ODCIPartInfo, part_name2 SYS.ODCIPartInfo, parms VARCHAR2,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexTruncate(ia SYS.ODCIIndexInfo, env SYS.ODCIEnv)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexInsert(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 newval VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDelete(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 oldval VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexUpdate(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 oldval VARCHAR2, newval VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(sctx IN OUT psbtree_im, ia SYS.ODCIIndexInfo,
 op SYS.ODCIPredInfo, qi sys.ODCIQueryInfo, strt number, stop number,
 cmpval VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT SYS.ODCIridlist,
 env SYS.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexClose(env SYS.ODCIEnv) RETURN NUMBER
);
/
SHOW ERRORS

2. Define the implementation type body

You can implement the index routines in any language supported by Oracle. For

this example, we will implement the get interfaces routine and the index definition

routines in PL/SQL. We will implement the index manipulation and query routines

in C.

CREATE OR REPLACE TYPE BODY psbtree_im
IS

The get interfaces routine returns the expected interface name through its OUT
parameter.

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS

Implementing the Index Routines

14-6 Oracle9i Data Cartridge Developer’s Guide

 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject('SYS','ODCIINDEX2'));
 RETURN ODCIConst.Success;
 END ODCIGetInterfaces;

The ODCIIndexCreate routine creates an index storage table with two columns.

The first column stores the VARCHAR2indexed column value. The second column in

the index table stores the rowid of the corresponding row in the base table. When

the create routine is invoked during creation of a local domain index, it is invoked

n+2 times, where n is the number of partitions in the base table. The routine creates

one index storage table for each partition. The create routine is also invoked during

execution of ALTER TABLE ADD PARTITION if there are local domain indexes

defined on the table. In this case, the routine simply creates a new index storage

table to correspond to the newly created partition. The routine makes use of the

information passed in to determine the context in which it is invoked. DBMS_SQL is
used to execute the dynamically constructed SQL statement.

STATIC FUNCTION ODCIIndexCreate (ia SYS.ODCIIndexInfo, parms VARCHAR2,
 env SYS.ODCIEnv)
 RETURN NUMBER
 IS
 i INTEGER;
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 -- construct the sql statement
 stmt := ’’;

 IF ((env.CallProperty IS NULL) and (ia.IndexPartition IS NULL)) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_sbtree’ ||
 ’(f1 , f2, PRIMARY KEY (f1)) ORGANIZATION INDEX AS SELECT ’ ||
 ia.IndexCols(1).ColName || ’, ROWID FROM ’ ||
 ia.IndexCols(1).TableSchema || ’.’ || ia.IndexCols(1).TableName;
 END IF;

 IF ((env.CallProperty IS NOT NULL) AND (ia.IndexPartition IS NOT NULL)) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.indexpartition || ’_sbtree’ ||
 ’(f1 , f2, PRIMARY KEY (f1)) ORGANIZATION INDEX AS SELECT ’ ||
 ia.IndexCols(1).ColName || ’, ROWID FROM ’ ||
 ia.IndexCols(1).TableSchema || ’.’ ||
 ia.IndexCols(1).TableName || ’ PARTITION (’ ||

Implementing the Index Routines

PSBTREE: An Example of Extensible Indexing 14-7

 ia.IndexCols(1).TablePartition || ’)’;
 END IF;

 IF ((env.CallProperty IS NULL) AND (ia.IndexPartition IS NOT NULL)) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.IndexPartition || ’_sbtree’ ||
 ’(f1 ’ || ia.IndexCols(1).ColTypeName ||’(200) , f2 ROWID, ’ ||
 ’ PRIMARY KEY (f1)) ORGANIZATION INDEX’;
 END IF;

 DBMS_OUTPUT.PUT_LINE(’Create’);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 IF ((env.CallProperty IS NULL) OR
 (env.CallProperty = SYS.ODCIConst.IntermediateCall)) THEN
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

 The ODCIIndexDrop routine drops the index storage table(s). For a local domain

index, the routine is invoked n+2 times, where n is the number of partitions in the

base table.

STATIC FUNCTION ODCIIndexDrop(ia SYS.ODCIIndexInfo, env SYS.ODCIEnv)
 RETURN NUMBER IS
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 -- construct the sql statement
 stmt := ’’;
 IF ((env.CallProperty IS NULL) and (ia.IndexPartition IS NULL)) THEN
 stmt := ’DROP TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_sbtree’;
 ELSE
 IF (ia.IndexPartition IS NOT NULL) THEN
 stmt := ’DROP TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.IndexPartition || ’_sbtree’;
 END IF;

Implementing the Index Routines

14-8 Oracle9i Data Cartridge Developer’s Guide

 END IF;

 DBMS_OUTPUT.PUT_LINE(’Drop’);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 IF ((env.CallProperty IS NULL) OR
 (env.CallProperty = SYS.ODCIConst.IntermediateCall)) THEN
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

To handle partition maintenance operations, the indextype also has addiitonal

methods that take appropriate actions on the index storage tables when the base

table partitions are merged, split, or exchanged.

The ODCIIndexMergePartition routine drops the index storage tables for the

two index partitions being merged and creates a new table corresponding to the

resulting merged partition. If there is data in the resulting merged partition, the

index is marked UNUSABLE so that the table is not populated with rows. That is left

to be done during a subsequent ALTER INDEX REBUILD PARTITION .

 STATIC FUNCTION ODCIIndexMergePartition(ia SYS.ODCIIndexInfo,
 part_name1 SYS.ODCIPartInfo, part_name2 SYS.ODCIPartInfo,
 parms VARCHAR2, env SYS.ODCIEnv)
 return number
 IS
 stmt VARCHAR2(2000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 DBMS_OUTPUT.PUT_LINE(’Merge Partitions’);
 stmt := ’’;

 IF (ia.IndexPartition IS NOT NULL) THEN
 stmt := ’DROP TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.IndexPartition || ’_sbtree’;

 DBMS_OUTPUT.PUT_LINE(’drop’);
 DBMS_OUTPUT.PUT_LINE(stmt);

Implementing the Index Routines

PSBTREE: An Example of Extensible Indexing 14-9

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 IF (part_name1 IS NOT NULL) THEN
 stmt := ’DROP TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || part_name1.IndexPartition || ’_sbtree’;

 DBMS_OUTPUT.PUT_LINE(’drop’);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 IF (part_name2 IS NOT NULL) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || part_name2.IndexPartition || ’_sbtree’ ||
 ’(f1 ’ || ia.IndexCols(1).ColTypeName ||
 ’(200) , f2 ROWID, PRIMARY KEY (f1)) ORGANIZATION INDEX’;

 DBMS_OUTPUT.PUT_LINE(’create’);
 DBMS_OUTPUT.PUT_LINE(’Parameter string : ’ || parms);

 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

Implementing the Index Routines

14-10 Oracle9i Data Cartridge Developer’s Guide

The ODCIIndexSplitPartition routine drops the index storage table

corresponding to the partition being split and creates two new index tables that

correspond to the two new index partitions created.

STATIC FUNCTION ODCIIndexSplitPartition(ia SYS.ODCIIndexInfo,
 part_name1 SYS.ODCIPartInfo, part_name2 SYS.ODCIPartInfo,
 parms VARCHAR2, env sys.odcienv)
 return number
 IS
 stmt VARCHAR2(2000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 DBMS_OUTPUT.PUT_LINE(’Split Partition’);
 stmt := ’’;

 IF (ia.IndexPartition IS NOT NULL) THEN
 stmt := ’DROP TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.IndexPartition || ’_sbtree’;

 DBMS_OUTPUT.PUT_LINE(’drop’);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 IF (part_name1 IS NOT NULL) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || part_name1.IndexPartition || ’_sbtree’ ||
 ’(f1 ’ || ia.IndexCols(1).ColTypeName ||
 ’(200) , f2 ROWID, PRIMARY KEY (f1)) ORGANIZATION INDEX’;

 DBMS_OUTPUT.PUT_LINE(’create’);
 DBMS_OUTPUT.PUT_LINE(’Parameter string : ’ || parms);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

Implementing the Index Routines

PSBTREE: An Example of Extensible Indexing 14-11

 END IF;

 IF (part_name2 IS NOT NULL) THEN
 stmt := ’CREATE TABLE ’ || ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || part_name2.IndexPartition || ’_sbtree’ ||
 ’(f1 ’ || ia.IndexCols(1).ColTypeName ||
 ’(200) , f2 ROWID, PRIMARY KEY (f1)) ORGANIZATION INDEX’;

 DBMS_OUTPUT.PUT_LINE(’create’);
 DBMS_OUTPUT.PUT_LINE(’Parameter string : ’ || parms);
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, dbms_sql.native);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

The ODCIIndexExchangePartition exchanges the index storage tables for the

index partition being exchanged, with the index storage table for the global domain

index.

STATIC FUNCTION ODCIIndexExchangePartition(ia SYS.ODCIIndexInfo,
 ia1 SYS.ODCIIndexInfo, env SYS.ODCIEnv)
 RETURN NUMBER
 IS
 stmt VARCHAR2(2000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 stmt := ’’;
 DBMS_OUTPUT.PUT_LINE(’Exchange Partitions’);

 -- construct the sql statement
 stmt := ’ALTER TABLE temp EXCHANGE PARTITION p1 WITH TABLE ’ ||

ia1.IndexSchema || ’.’ || ia1.IndexName || ’_sbtree’;
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

Implementing the Index Routines

14-12 Oracle9i Data Cartridge Developer’s Guide

 stmt := ’ALTER TABLE temp EXCHANGE PARTITION p1 WITH TABLE ’ ||
 ia.IndexSchema || ’.’ || ia.IndexName ||
 ’_’ || ia.IndexPartition || ’_sbtree’;

 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

 stmt := ’ALTER TABLE temp EXCHANGE PARTITION p1 WITH TABLE ’ ||
 ia1.IndexSchema || ’.’ || ia1.IndexName || ’_sbtree’;
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, stmt, DBMS_SQL.NATIVE);
 junk := DBMS_SQL.EXECUTE(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

 RETURN ODCIConst.Success;
 END;

The index manipulation and query routines are implemented in C. These require

some setup to be done in advance. Specifically, you need to create a library object

called extdemo5l for your compiled C code.

After the setup, the following statements register the implementation of the index

manipulation and query routines in terms of their corresponding C functions.

Register the implementation of the ODCIIndexInsert routine.

STATIC FUNCTION ODCIIndexInsert(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 newval VARCHAR2, env SYS.ODCIEnv)
 RETURN NUMBER AS EXTERNAL
name "qxiqtbi"
library extdemo5l
with context
parameters (
context,
ia,
ia indicator struct,
rid,
rid indicator,
newval,
newval indicator,
env,
env indicator struct,
return OCINumber
);

Implementing the Index Routines

PSBTREE: An Example of Extensible Indexing 14-13

Register the implementation of the ODCIIndexDelete routine.

STATIC FUNCTION ODCIIndexDelete(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 oldval VARCHAR2, env SYS.ODCIEnv)
 RETURN NUMBER AS EXTERNAL
name "qxiqtbd"
library extdemo5l
with context
parameters (
context,
ia,
ia indicator struct,
rid,
rid indicator,
oldval,
oldval indicator,
env,
env indicator struct,
return OCINumber
);

Register the implementation of the ODCIIndexUpdate routine.

STATIC FUNCTION ODCIIndexUpdate(ia SYS.ODCIIndexInfo, rid VARCHAR2,
 oldval VARCHAR2, newval VARCHAR2, env SYS.ODCIEnv)
 RETURN NUMBER AS EXTERNAL
name "qxiqtbu"
library extdemo5l
with context
parameters (
context,
ia,
ia indicator struct,
rid,
rid indicator,
oldval,
oldval indicator,
newval,
newval indicator,
env,
env indicator struct,
return OCINumber
);

Implementing the Index Routines

14-14 Oracle9i Data Cartridge Developer’s Guide

Register the implementation of the ODCIIndexStart routine.

STATIC FUNCTION ODCIIndexStart(sctx IN OUT psbtree_im, ia SYS.ODCIIndexInfo,
 op SYS.ODCIPredInfo,
 qi SYS.ODCIQueryInfo,
 strt NUMBER,
 stop NUMBER,
 cmpval VARCHAR2,
 env SYS.ODCIEnv)
 RETURN NUMBER AS EXTERNAL
 name "qxiqtbs"
 library extdemo5l
 with context
 parameters (
 context,
 sctx,
 sctx indicator struct,
 ia,
 ia indicator struct,
 op,
 op indicator struct,
 qi,
 qi indicator struct,
 strt,
 strt indicator,
 stop,
 stop indicator,
 cmpval,
 cmpval indicator,
 env,
 env indicator struct,
 return OCINumber
);

Register the implementation of the ODCIIndexFetch routine.

MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT SYS.ODCIRidList,
 env SYS.ODCIEnv)
 RETURN NUMBER AS EXTERNAL
 name "qxiqtbf"
 library extdemo5l
 with context
 parameters (
 context,
 self,
 self indicator struct,

The C Code

PSBTREE: An Example of Extensible Indexing 14-15

 nrows,
 nrows indicator,
 rids,
 rids indicator,
 env,
 env indicator struct,
 return OCINumber
);

Register the implementation of the ODCIIndexClose routine.

MEMBER FUNCTION ODCIIndexClose (env SYS.ODCIEnv) RETURN NUMBER AS EXTERNAL
name "qxiqtbc"
library extdemo5l
with context
parameters (
 context,
 self,
 self indicator struct,
 env,
 env indicator struct,
 return OCINumber
);

The C Code

General Notes
The C structs for mapping the ODCI types are defined in the file odci.h . For

example, the C struct ODCIIndexInfo is the mapping for the corresponding ODCI

object type. The C struct ODCIIndexInfo_ind is the mapping for the null object.

Common Error Processing Routine
This function is used to check and process the return code from all OCI routines. It

checks the status code and raises an exception in case of errors.

static int qxiqtce(ctx, errhp, status)
OCIExtProcContext *ctx;
OCIError *errhp;
sword status;
{

The C Code

14-16 Oracle9i Data Cartridge Developer’s Guide

 text errbuf[512];
 sb4 errcode = 0;
 int errnum = 29400; /* choose some oracle error number */
 int rc = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 rc = 0;
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4)1, (text *)NULL, &errcode,
 errbuf, (ub4)sizeof(errbuf), OCI_HTYPE_ERROR);
 /* Raise exception */
 OCIExtProcRaiseExcpWithMsg(ctx, errnum, errbuf, strlen((char *)errbuf));
 rc = 1;
 break;
 default:
 (void) sprintf((char *)errbuf, "Warning - some error\n");
 /* Raise exception */
 OCIExtProcRaiseExcpWithMsg(ctx, errnum, errbuf, strlen((char *)errbuf));
 rc = 1;
 break;
 }
 return (rc);
}

Implementation Of The ODCIIndexInsert Routine
The insert routine parses and executes a statement that inserts a new row into the

index table. The new row consists of the new value of the indexed column and the

rowid that have been passed in as parameters.

OCINumber *qxiqtbi(ctx, ix, ix_ind, rid, rid_ind,
 newval, newval_ind, env, env_ind)
OCIExtProcContext *ctx;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *newval;
short newval_ind;
ODCIEnv *env;
ODCIEnv_ind *env_ind;
{

The C Code

PSBTREE: An Example of Extensible Indexing 14-17

 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char insstmt[2000]; /* sql insert statement */

 /* allocate memory for OCINumber first */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /******************************
 * Construct insert Statement *
 ******************************/
 if (ix_ind->IndexPartition == OCI_IND_NULL)
 {
 sprintf(insstmt,
 "INSERT into %s.%s_sbtree values (:newval, :mrid)",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));
 }
 else
 {
 sprintf(insstmt,
 "INSERT into %s.%s_%s_sbtree values (:newval, :mrid)",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName),
 OCIStringPtr(envhp, ix->IndexPartition));

 }

The C Code

14-18 Oracle9i Data Cartridge Developer’s Guide

 /**
 * Parse and Execute Insert Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)insstmt,
 (ub4)strlen(insstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for newval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)newval,
 (sb4)(strlen(newval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)2,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

The C Code

PSBTREE: An Example of Extensible Indexing 14-19

 return(rval);
}

Implementation of the ODCIIndexDelete Routine
The delete routine constructs a SQL statement to delete a row from the index table

corresponding to the row being deleted from the base table. The row in the index

table is identified by the value of rowid that is passed in as a parameter to this

routine.

OCINumber *qxiqtbd(ctx, ix, ix_ind, rid, rid_ind,
 oldval, oldval_ind, env, env_ind)
OCIExtProcContext *ctx;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *oldval;
short oldval_ind;
ODCIEnv *env;
ODCIEnv_ind *env_ind;
{
 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char delstmt[2000]; /* sql insert statement */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))

The C Code

14-20 Oracle9i Data Cartridge Developer’s Guide

 return(rval);

 /******************************
 * Construct delete Statement *
 ******************************/
 if (ix_ind->IndexPartition == OCI_IND_NULL)
 {
 sprintf(delstmt,
 "DELETE FROM %s.%s_sbtree WHERE f2 = :rr",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));
 }
 else
 {
 sprintf(delstmt,
 "DELETE FROM %s.%s_%s_sbtree WHERE f2 = :rr",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName),
 OCIStringPtr(envhp, ix->IndexPartition));

 }

 /**
 * Parse and Execute delete Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)delstmt,
 (ub4)strlen(delstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),

The C Code

PSBTREE: An Example of Extensible Indexing 14-21

 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 return(rval);
}

Implementation of the ODCIIndexUpdate Routine
The update routine constructs a SQL statement to update a row in the index table

corresponding to the row being updated in the base table. The row in the index

table is identified by the value of rowid that is passed in as a parameter to this

routine. The old column value (oldval) is replaced by the new value (newval).

OCINumber *qxiqtbu(ctx, ix, ix_ind, rid, rid_ind,
 oldval, oldval_ind, newval, newval_ind, env, env_ind)
OCIExtProcContext *ctx;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *oldval;
short oldval_ind;
char *newval;
short newval_ind;
ODCIEnv *env;
ODCIEnv_ind *env_ind;
{
 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */

The C Code

14-22 Oracle9i Data Cartridge Developer’s Guide

 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char updstmt[2000]; /* sql insert statement */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /******************************
 * Construct update Statement *
 ******************************/
 if (ix_ind->IndexPartition == OCI_IND_NULL)
 {
 sprintf(updstmt,
 "UPDATE %s.%s_sbtree SET f1 = :newval, f2 = :rr WHERE f1 = :oldval",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));
 }
 else
 {
 sprintf(updstmt,
 "UPDATE %s.%s_%s_sbtree SET f1 = :newval, f2 = :rr WHERE f1 = :oldval",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName),
 OCIStringPtr(envhp, ix->IndexPartition));

 }

 /**
 * Parse and Execute Update Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))

The C Code

PSBTREE: An Example of Extensible Indexing 14-23

 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)updstmt,
 (ub4)strlen(updstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for newval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)newval,
 (sb4)(strlen(newval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)2,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up bind for oldval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)3,
 (dvoid *)oldval,
 (sb4)(strlen(oldval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 return(rval);
}

The C Code

14-24 Oracle9i Data Cartridge Developer’s Guide

Implementation of the ODCIIndexStart Routine
The start routine performs the setup for an sbtree index scan. The query

information in terms of the operator predicate, its arguments, and the bounds on

return values are passed in as parameters to this function. The scan context that is

shared among the index scan routines is an instance of the type psbtree_im . We

have defined a C struct (qxiqtim) as a mapping for the object type. In addition,

there is a C struct (qxiqtin) for the corresponding null object. Note that the C

structs for the object type and its null object can be generated by using the Object

Type Translator (OTT).

/* The index implementation type is an object type with a single RAW attribute
 * which will be used to store the context key value.
 * C mapping of the implementation type :
 */
struct qxiqtim
{
 OCIRaw *sctx_qxiqtim;
};
typedef struct qxiqtim qxiqtim;

struct qxiqtin
{
 short atomic_qxiqtin;
 short scind_qxiqtin;
};
typedef struct qxiqtin qxiqtin;

This function sets up a cursor that scans the index table. The scan retrieves the

stored rowids for the rows in the index table that satisfy the specified predicate. The

predicate for the index table is generated based on the operator predicate

information that is passed in as parameters. For example, if the operator predicate is

of the form:

eq(col, ’joe’) = 1

the predicate on the index table is set up to be

f1 = ’joe’

There are a set of OCI handles that need to be cached away and retrieved on the

next fetch call. A C struct qxiqtcx is defined to hold all the necessary scan state.

This structure is allocated out of OCI_DURATION_STATEMENT memory to ensure

that it persists till the end of fetch . After populating the structure with the

required info, a pointer to the structure is saved in OCI context. The context is

The C Code

PSBTREE: An Example of Extensible Indexing 14-25

identified by a 4-byte key that is generated by calling an OCI routine. The 4-byte

key is stashed away in the scan context - exiting . This object is returned back to

the Oracle server and is passed in as a parameter to the next fetch call.

/* The index scan context - should be stored in "statement" duration memory
 * and used by start, fetch and close routines.
 */
struct qxiqtcx
{
 OCIStmt *stmthp;
 OCIDefine *defnp;
 OCIBind *bndp;
 char ridp[19];
};

typedef struct qxiqtcx qxiqtcx;

OCINumber *qxiqtbs(ctx, sctx, sctx_ind, ix, ix_ind, pr, pr_ind, qy, qy_ind,
 strt, strt_ind, stop, stop_ind, cmpval, cmpval_ind,
 env, env_ind)
OCIExtProcContext *ctx;
qxiqtim *sctx;
qxiqtin *sctx_ind;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
ODCIPredInfo *pr;
dvoid *pr_ind;
ODCIQueryInfo *qy;
dvoid *qy_ind;
OCINumber *strt;
short strt_ind;
OCINumber *stop;
short stop_ind;
char *cmpval;
short cmpval_ind;
ODCIEnv *env;
dvoid *env_ind;
{
 sword status;
 OCIEnv *envhp; /* env. handle */
 OCISvcCtx *svchp; /* service handle */
 OCIError *errhp; /* error handle */
 OCISession *usrhp; /* user handle */
 qxiqtcx *icx; /* state to be saved for later calls */

The C Code

14-26 Oracle9i Data Cartridge Developer’s Guide

 int strtval; /* start bound */
 int stopval; /* stop bound */

 int errnum = 29400; /* choose some oracle error number */
 char errmsg[512]; /* error message buffer */
 size_t errmsglen; /* Length of error message */

 char relop[3]; /* relational operator used in sql stmt */
 char selstmt[2000]; /* sql select statement */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "sctx" */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION,
 errhp)))
 return(rval);

 /**/
 /* Allocate memory to hold index scan context */
 /**/
 if (qxiqtce(ctx, errhp, OCIMemoryAlloc((dvoid *)usrhp, errhp,
 (dvoid **)&icx,
 OCI_DURATION_STATEMENT,
 (ub4)(sizeof(qxiqtcx)),
 OCI_MEMORY_CLEARED)))
 return(rval);

 icx->stmthp = (OCIStmt *)0;
 icx->defnp = (OCIDefine *)0;

The C Code

PSBTREE: An Example of Extensible Indexing 14-27

 icx->bndp = (OCIBind *)0;

 /***********************************/
 /* Check that the bounds are valid */
 /***********************************/
 /* convert from oci numbers to native numbers */
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, strt,
 sizeof(strtval), OCI_NUMBER_SIGNED,
 (dvoid *)&strtval)))
 return(rval);
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, stop,
 sizeof(stopval),
 OCI_NUMBER_SIGNED, (dvoid *)&stopval)))
 return(rval);

 /* verify that strtval/stopval are both either 0 or 1 */
 if (!(((strtval == 0) && (stopval == 0)) ||
 ((strtval == 1) && (stopval == 1))))
 {
 strcpy(errmsg, "Incorrect predicate for sbtree operator");
 errmsglen = (size_t)strlen(errmsg);
 if (OCIExtProcRaiseExcpWithMsg(ctx, errnum, (text *)errmsg, errmsglen)
 != OCIEXTPROC_SUCCESS)
 /* Use cartridge error services here */;
 return(rval);
 }

 /***/
 /* Generate the SQL statement to be executed */
 /***/
 if (memcmp((dvoid *)OCIStringPtr(envhp, pr->ObjectName), "EQ", 2)
 == 0)
 if (strtval == 1)
 strcpy(relop, "=");
 else
 strcpy(relop, "!=");
 else if (memcmp((dvoid *)OCIStringPtr(envhp, pr->ObjectName), "LT",
 2) == 0)
 if (strtval == 1)
 strcpy(relop, "<");
 else
 strcpy(relop, ">=");
 else
 if (strtval == 1)
 strcpy(relop, ">");

The C Code

14-28 Oracle9i Data Cartridge Developer’s Guide

 else
 strcpy(relop, "<=");

 if (ix_ind->IndexPartition == OCI_IND_NULL)
 {
 sprintf(selstmt, "select f2 from %s.%s_sbtree where f1 %s :val",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName), relop);
 }
 else
 {
 sprintf(selstmt, "select f2 from %s.%s_%s_sbtree where f1 %s :val",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName),
 OCIStringPtr(envhp, ix->IndexPartition), relop);
 }

 /***********************************/
 /* Parse, bind, define and execute */
 /***********************************/
 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp,
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&(icx->stmthp),
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);
 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(icx->stmthp, errhp, (text *)selstmt,
 (ub4)strlen(selstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind */
 if (qxiqtce(ctx, errhp,
 OCIBindByPos(icx->stmthp, &(icx->bndp), errhp, (ub4)1,
 (dvoid *)cmpval,
 (sb4)(strlen(cmpval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up define */
 if (qxiqtce(ctx, errhp, OCIDefineByPos(icx->stmthp, &(icx->defnp), errhp,
 (ub4)1, (dvoid *)(icx->ridp),

The C Code

PSBTREE: An Example of Extensible Indexing 14-29

 (sb4) sizeof(icx->ridp),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT)))
 return(rval);

 /* execute */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, icx->stmthp, errhp, (ub4)0,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /************************************/
 /* Set index context to be returned */
 /************************************/
 /* generate a key */
 if (qxiqtce(ctx, errhp, OCIContextGenerateKey((dvoid *)usrhp, errhp, &key)))
 return(rval);
 /* set the memory address of the struct to be saved in the context */
 if (qxiqtce(ctx, errhp, OCIContextSetValue((dvoid *)usrhp, errhp,
 OCI_DURATION_STATEMENT,
 (ub1 *)&key, (ub1)sizeof(key),
 (dvoid *)icx)))
 return(rval);
 /* set the key as the member of "sctx" */
 if (qxiqtce(ctx, errhp, OCIRawAssignBytes(envhp, errhp, (ub1 *)&key,
 (ub4)sizeof(key),
 &(sctx->sctx_qxiqtim))))
 return(rval);

 sctx_ind->atomic_qxiqtin = OCI_IND_NOTNULL;
 sctx_ind->scind_qxiqtin = OCI_IND_NOTNULL;

 return(rval);
}

Implementation of the ODCIIndexFetch Routine
The scan context set up by the start routine is passed in as a parameter to the fetch

routine. This function first retrieves the 4-byte key from the scan context. The C

mapping for the scan context is qxiqtim . Next, the OCI context is looked up based

on the key. This gives the memory address of the structure that holds the OCI

handles - the qxiqtcx structure.

The C Code

14-30 Oracle9i Data Cartridge Developer’s Guide

This function returns the next batch of rowids that satisfy the operator predicate. It

uses the value of the nrows parameter as the size of the batch. It repeatedly fetches

rowids from the open cursor and populates the rowid list with them. When the

batch is full or when there are no more rowids left, the function returns them back

to the Oracle server.

OCINumber *qxiqtbf(ctx, self, self_ind, nrows, nrows_ind, rids, rids_ind,
 env, env_ind)
OCIExtProcContext *ctx;
qxiqtim *self;
qxiqtin *self_ind;
OCINumber *nrows;
short nrows_ind;
OCIArray **rids;
short *rids_ind;
ODCIEnv *env;
dvoid *env_ind;
{
 sword status;
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *usrhp; /* user handle */
 qxiqtcx *icx;

 int idx = 1;
 int nrowsval;

 OCIArray *ridarrp = *rids; /* rowid collection */
 OCIString *ridstr = (OCIString *)0;

 int done = 0;
 int retval = (int)ODCI_SUCCESS;
 OCINumber *rval = (OCINumber *)0;

 ub1 *key; /* key to retrieve context */
 ub4 keylen; /* length of key */

 /*******************/
 /* Get OCI handles */
 /*******************/
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */

The C Code

PSBTREE: An Example of Extensible Indexing 14-31

 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp,
 OCINumberFromInt(errhp, (dvoid *)&retval, sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION, errhp)))
 return(rval);

 /********************************/
 /* Retrieve context from key */
 /********************************/
 key = OCIRawPtr(envhp, self->sctx_qxiqtim);
 keylen = OCIRawSize(envhp, self->sctx_qxiqtim);

 if (qxiqtce(ctx, errhp, OCIContextGetValue((dvoid *)usrhp, errhp,
 key, (ub1)keylen,
 (dvoid **)&(icx))))
 return(rval);

 /* get value of nrows */
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, nrows, sizeof(nrowsval),
 OCI_NUMBER_SIGNED, (dvoid *)&nrowsval)))
 return(rval);

 /****************/
 /* Fetch rowids */
 /****************/
 while (!done)
 {
 if (idx > nrowsval)
 done = 1;
 else
 {
 status = OCIStmtFetch(icx->stmthp, errhp, (ub4)1, (ub2) 0,
 (ub4)OCI_DEFAULT);
 if (status == OCI_NO_DATA)
 {
 short col_ind = OCI_IND_NULL;
 /* have to create dummy oci string */
 OCIStringAssignText(envhp, errhp, (text *)"dummy",
 (ub2)5, &ridstr);

The C Code

14-32 Oracle9i Data Cartridge Developer’s Guide

 /* append null element to collection */
 if (qxiqtce(ctx, errhp, OCICollAppend(envhp, errhp,(dvoid *)ridstr,
 (dvoid *)&col_ind,
 (OCIColl *)ridarrp)))
 return(rval);
 done = 1;
 }
 else if (status == OCI_SUCCESS)
 {
 OCIStringAssignText(envhp, errhp, (text *)icx->ridp,
 (ub2)18, (OCIString **)&ridstr);
 /* append rowid to collection */
 if (qxiqtce(ctx, errhp, OCICollAppend(envhp, errhp, (dvoid *)ridstr,
 (dvoid *)0, (OCIColl *)ridarrp)))
 return(rval);
 idx++;
 }
 else if (qxiqtce(ctx, errhp, status))
 return(rval);
 }
 }

 /* free ridstr finally */
 if (ridstr &&
 (qxiqtce(ctx, errhp, OCIStringResize(envhp, errhp, (ub4)0,
 &ridstr))))
 return(rval);

 *rids_ind = OCI_IND_NOTNULL;

 return(rval);
}

Implementation of the ODCIIndexClose Routine
The scan context set up by the start routine is passed in as a parameter to the close

routine. This function first retrieves the 4-byte key from the scan context. The C

mapping for the scan context is qxiqtim . Next, the OCI context is looked up based

on the key. This gives the memory address of the structure that holds the OCI

handles - the qxiqtcx structure.

The function closes and frees all the OCI handles. It also frees the memory that was

allocated in the start routine.

The C Code

PSBTREE: An Example of Extensible Indexing 14-33

OCINumber *qxiqtbc(ctx, self, self_ind, env, env_ind)
OCIExtProcContext *ctx;
qxiqtim *self;
qxiqtin *self_ind;
ODCIEnv *env;
dvoid *env_ind;
{
 sword status;
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *usrhp; /* user handle */

 qxiqtcx *icx;

 int retval = (int) ODCI_SUCCESS;
 OCINumber *rval = (OCINumber *)0;

 ub1 *key; /* key to retrieve context */
 ub4 keylen; /* length of key */

 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION, errhp)))
 return(rval);

 /********************************/
 /* Retrieve context using key */
 /********************************/
 key = OCIRawPtr(envhp, self->sctx_qxiqtim);
 keylen = OCIRawSize(envhp, self->sctx_qxiqtim);

 if (qxiqtce(ctx, errhp, OCIContextGetValue((dvoid *)usrhp, errhp,
 key, (ub1)keylen,

Implementing the Indextype

14-34 Oracle9i Data Cartridge Developer’s Guide

 (dvoid **)&(icx))))
 return(rval);

 /* Free handles and memory */
 if (qxiqtce(ctx, errhp, OCIHandleFree((dvoid *)icx->stmthp,
 (ub4)OCI_HTYPE_STMT)))
 return(rval);

 if (qxiqtce(ctx, errhp, OCIMemoryFree((dvoid *)usrhp, errhp, (dvoid *)icx)))
 return(rval);

 return(rval);
}

Implementing the Indextype
Create the indextype object and specify the list of operators that it supports. In

addition, specify the name of the implementation type that implements the

ODCIIndex interface routines.

CREATE INDEXTYPE psbtree
FOR
eq(VARCHAR2, VARCHAR2),
lt(VARCHAR2, VARCHAR2),
gt(VARCHAR2, VARCHAR2)
USING psbtree_im
WITH LOCAL RANGE PARTITION

Usage examples
One typical usage scenario is described in the following example. Create a range

partitioned table and populate it.

CREATE TABLE t1 (f1 NUMBER, f2 VARCHAR2(200))
PARTITION BY RANGE(f1)
(
 PARTITION p1 VALUES LESS THAN (101),
 PARTITION p2 VALUES LESS THAN (201),
 PARTITION p3 VALUES LESS THAN (301),
 PARTITION p4 VALUES LESS THAN (401)
);
INSERT INTO t1 VALUES (10, ’aaaa’);

Usage examples

PSBTREE: An Example of Extensible Indexing 14-35

INSERT INTO t1 VALUES (200, ’bbbb’);
INSERT INTO t1 VALUES (100, ’cccc’);
INSERT INTO t1 VALUES (300, ’dddd’);
INSERT INTO t1 VALUES (400, ’eeee’);
COMMIT;

Create a psbtree index on column f2. The create index statement specifies the

indextype to be used.

CREATE INDEX it1 ON t1(f2) iINDEXTYPE IS psbtree LOCAL
(PARTITION pe1 PARAMETERS(’test1’), PARTITION pe2,
 PARTITION pe3, PARTITION pe4 PARAMETERS(’test4’))
PARAMETERS(’test’);

Execute a query that uses one of the sbtree operators. •

SELECT * FROMM t1 WHERE eq(f2, ’dddd’) = 1 AND f1>101 ;

Explain Plan Output
OPERATION OPTIONS PARTITION_START
PARTITION_STOP

SELECTSTATEMENT

PARTITION RANGE ITERATOR 2
4

TABLE ACCESS BY LOCAL INDEX ROWID 2
4

DOMAIN INDEX

Usage examples

14-36 Oracle9i Data Cartridge Developer’s Guide

Part V
Reference

This part contains chapters of reference information on cartridge-related APIs:

■ Chapter 15, "Reference: Cartridge Services Using Java"

■ Chapter 16, "Reference: Extensibility Constants, Types, and Mappings"

■ Chapter 17, "Reference: Extensible Indexing Interface"

■ Chapter 18, "Reference: Extensible Optimizer Interface"

■ Chapter 19, "Reference: User-Defined Aggregates Interface"

■ Chapter 20, "Reference: Pipelined and Parallel Table Functions"

For information on cartridge services using C, see the chapter on cartridge services

in the Oracle Call Interface Programmer’s Guide.

Reference: Cartridge Services Using Java 15-1

15
Reference: Cartridge Services Using Java

This reference chapter describes a Java language cartridge service. For more

complete details on Java functionality, refer to the Oracle9i Supplied Java Packages
Reference, and the Oracle9i Java Stored Procedures Developer’s Guide.

■ File Installation

■ Cartridge Services—Maintaining Context

File Installation

15-2 Oracle9i Data Cartridge Developer’s Guide

File Installation
The ODCI.jar and CartridgeServices.jar files must be installed into the SYS
schema in order to use the Java classes described in this chapter.

If you installed the Java option, then you must install the ODCI.jar and

CartridgeServices.jar files. You do not need to perform this task if you did

not install the Java option.

To install ODCI.jar and CartridgeServices.jar files, run the following

commands from the command line:

loadjava -user sys/PASSWORD -resolve -synonym -grant public
-verbose ORACLE_HOME/vobs/jlib/CartridgeServices.jar

loadjava -user sys/PASSWORD -resolve -synonym -grant public
-verbose ORACLE_HOME/vobs/jlib/ODCI.jar

Substitute the SYS password for PASSWORD, and substitute the Oracle home

directory for ORACLE_HOME. These commands install the classes and create the

synonyms in the SYS schema. See the chapter on what to do after migrating or

updating the database, in Oracle9i Database Migration, for further details on

installing the jar files.

Cartridge Services—Maintaining Context

Reference: Cartridge Services Using Java 15-3

Cartridge Services—Maintaining Context

The Java cartridge service is used for maintaining context. It is similar to the OCI

context management service. This class should be used when switching context

between the server and the cartridge code.

For additional detail on Java functionality, see the Oracle9i Java Stored Procedures
Developer’s Guide.

Cartridge Services—Maintaining Context

15-4 Oracle9i Data Cartridge Developer’s Guide

ContextManager
ContextManager is a Constructor in class Oracle that extends Object.

Class Interface
public static Hashtable ctx

extends Object

Variable
ctx

 public static Hashtable ctx

Constructors
ContextManager

 public ContextManager()

Methods
The following methods are available:

setContext (static method in class oracle)
getContext (static method in class oracle)
clearContext (static method in class oracle)

Cartridge Services—Maintaining Context

Reference: Cartridge Services Using Java 15-5

CountException()

CountException is a Constructor for class Oracle that extends Exception.

Class oracle.CartridgeServices.CountException

CountException(String)

15-6 Oracle9i Data Cartridge Developer’s Guide

CountException(String)

CountException is a Constructor for class Oracle that extends Exception.

public CountException(String s)

Cartridge Services—Maintaining Context

Reference: Cartridge Services Using Java 15-7

InvalidKeyException()

InvalidKeyException() is a Constructor for class Oracle that extends Exception.

public InvalidKeyException(String s)

InvalidKeyException(String)

15-8 Oracle9i Data Cartridge Developer’s Guide

InvalidKeyException(String)

InvalidKeyException(String) is a Constructor for class Oracle that extends
Exception.

public InvalidKeyException(String s)

Reference: Extensibility Constants, Types, and Mappings 16-1

16
Reference: Extensibility Constants, Types,

and Mappings

This chapter first describes System Defined Constants and System Defined Types.

Both of these apply generically to all supported languages. Next, in three

subsections, this chapter describes mappings that are specific to the PL/SQL, C, and

Java languages.

■ System Defined Constants

■ System Defined Types

■ Mappings of Constants and Types

■ Constants Definitions

System Defined Constants

16-2 Oracle9i Data Cartridge Developer’s Guide

System Defined Constants

All the constants referred to in this chapter are defined in the ODCIConst package

installed as part of the catodci.sql script. There are equivalent definitions for

use within C routines in odci.h .

We strongly recommend that you use these constants instead of hard coding their

underlying values in your routines.

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-3

ODCIIndexAlter Options

■ AlterIndexNone

■ AlterIndexRename

■ AlterIndexRebuild

■ AlterIndexUpdBlockRefs

ODCIArgDesc.ArgType Bits

16-4 Oracle9i Data Cartridge Developer’s Guide

ODCIArgDesc.ArgType Bits

■ ArgOther

■ ArgCol

■ ArgLit

■ ArgAttr

■ ArgNull

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-5

ODCIEnv.CallProperty Values

■ None

■ FirstCall

■ IntermediateCall

■ FinalCall

ODCIIndexInfo.Flags Bits

16-6 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexInfo.Flags Bits

Bit Meaning

Local Indicates a local domain index

RangePartn For a local domain index, indicates that the base table is
range-partitioned. Is set only in conjunction with the Local bit

Parallel Indicates that a parallel degree was specified for the index
creation or alter operation

Unusable Indicates that UNUSABLE was specified during index creation
and that the index being created will be marked unusable

IndexOnIOT Indicates that the domain index is defined on an
index-organized table

FunctionIdx Indicates that the the index is a function-based domain index

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-7

ODCIPredInfo.Flag Bits

■ PredExactMatch

■ PredPrefixMatch

■ PredIncludeStart

■ PredIncludeStop

■ PredMultiTable

■ PredObjectFunc

■ PredObjectPkg

■ PredObjectType

ODCIFuncInfo.Flags Bits

16-8 Oracle9i Data Cartridge Developer’s Guide

ODCIFuncInfo.Flags Bits

■ ObjectFunc

■ ObjectPkg

■ ObjectType

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-9

ODCIQueryInfo.Flags Bits

■ QueryFirstRows

■ QueryAllRows

ODCIStatsOptions.Flags Bits

16-10 Oracle9i Data Cartridge Developer’s Guide

ODCIStatsOptions.Flags Bits

■ EstimateStats

■ ComputeStats

■ Validate

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-11

ODCIStatsOptions.Options Bits

■ PercentOption

■ RowOption

ScnFlg (Function with Index Context) Values

16-12 Oracle9i Data Cartridge Developer’s Guide

ScnFlg (Function with Index Context) Values

■ RegularCall

■ CleanupCall

System Defined Constants

 Reference: Extensibility Constants, Types, and Mappings 16-13

Status Values

■ Success

■ Error

■ Warning

■ ErrContinue

■ Fatal

Status Description

Success Indicates a successful operation.

Error Indicates an error.

Warning Oracle9i introduces a new global temporary
table—ODCI_WARNINGS$(C1 NUMBER, C2
VARCHAR2(2000)) —defined in catodci.sql to hold
warnings and error messages. The table is specific to a user
session.

Cartridge warnings and error messages can be put into this
table. The column C1 holds the line number where the warning
or error was generated, and C2 contains the text of the message.
If you prefer to produce more structured or formatted messages,
you can define your own table to hold them and simply insert a
row in the ODCI_WARNINGS$ table to indicate where your
warning or error message can be found.

If an ODCI_WARNING is returned by an ODCI DDL call, the
server reads the ODCI_WARNINGS$ table and dumps it out.

ErrContinue ErrContinue is used by the intermediate calls during DDL for
local domain indexes. Having an ODCIIndex call for a
partition-level operation return ErrContinue implies that there
was an error in processing the data for the particular partition
but that the DDL as a whole can continue. In such cases, the
related partition is marked FAILED , and processing continues
with the next partition.

By way of contrast, if any operation returns an Error status,
processing is immediately halted, and the index as well as the
specific partition that returned Error is marked FAILED .

Status Values

16-14 Oracle9i Data Cartridge Developer’s Guide

Fatal When an index creation operation returns this status code, all
the dictionary entries corresponding to the index are dropped
and the entire CREATE INDEX operation is rolled back. Note
that this assumes that the data cartridge did not perform a
COMMIT after creating any schema objects in the routine (or after
doing a cleanup of any such objects created) before returning
Fatal .

A Fatal status code can be returned only from the
ODCIIndexCreate call, for a non-local domain index, and from
the first call to ODCIIndexCreate , for a local domain index. In
all other cases, a return of Fatal is treated like a return of
Error .

Status Description

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-15

System Defined Types

A number of system-defined types are defined by Oracle and need to be created by

running the catodci.sql catalog script. The C mappings for these object types are

defined in odci.h The ODCIIndex and ODCIStats routines described in

Chapter 17 and Chapter 18 use these types as parameters.

Unless otherwise mentioned, the names parsed as type attributes are unquoted

identifiers.

ODCIArgDesc

16-16 Oracle9i Data Cartridge Developer’s Guide

ODCIArgDesc

Name
ODCIArgDesc

Datatype
Object type.

Purpose
Stores function/operator arguments.

Table 16–1 Function/Operator Argument Description — Attributes

Name Datatype Purpose

ArgType NUMBER Argument type

TableName VARCHAR2(30) Name of table

TableSchema VARCHAR2(30) Schema containing the table

ColName VARCHAR2(4000) Name of column. This could be top level
column name such as "A", or a nested
column "A"."B" Note that the column
name are quoted identifiers.

TablePartitionLower VARCHAR2(30) Contains the name of the lowest table
partition that is accessed in the query

TablePartitionUpper VARCHAR2(30) Contains the name of the highest table
partition that is accessed in the query

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-17

ODCIArgDescList

Name
ODCIArgDescList

Datatype
VARRAY(32767) of ODCIArgDesc

Purpose
Contains a list of argument descriptors

ODCIRidList

16-18 Oracle9i Data Cartridge Developer’s Guide

ODCIRidList

Name
ODCIRidList

Datatype
VARRAY(32767) OF VARCHAR2("M_URID_SZ")

Purpose
Stores list of rowids. The rowids are stored in their character format.

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-19

ODCIColInfo

Name
ODCIColInfo

Datatype
Object type.

Purpose
Stores information related column.

Table 16–2 Column Related Information — Attributes

Name Datatype Purpose

TableSchema VARCHAR2(30) Schema containing table

TableName VARCHAR2(30) Name of table

ColName VARCHAR2(4000) Name of column. This could be top level column
name such as "A", or a nested column "A"."B"
Note that the column name are quoted
identifiers.

ColTypeName VARCHAR2(30) Datatype of column

ColTypeSchema VARCHAR2(30) Schema containing datatype if user-defined
datatype

TablePartition VARCHAR2(30) For a local domain index, contains the name of
the specific base table partition

ODCIColInfoList

16-20 Oracle9i Data Cartridge Developer’s Guide

ODCIColInfoList

Name
ODCIColInfoList

Datatype
VARRAY(32) OF ODCIColInfo

Purpose
Stores information related to a list of columns.

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-21

ODCIColStats

Name
ODCIColStats

Datatype
Object type

Purpose
Stores statistics for a list of columns for a table function.

Table 16–3 ODCIColStats — Attributes

Name Datatype Purpose

Col ODCIColInfo Column of table function argument
(cursor)

Num_distinct NUMBER Number of distinct values for
column

Low_value RAW(32) Minimum value of column

High_value RAW(32) Maximum value of column

Num_nulls NUMBER Number of NULLs in the column

Avg_col_len NUMBER Average length of column in bytes

User_stats RAW(2000) User-defined statistics for column

ODCIColStatsList

16-22 Oracle9i Data Cartridge Developer’s Guide

ODCIColStatsList

Name
ODCIColStatsList

Datatype
VARRAY(32) of ODCIColStats

Purpose
Stores statistics for a list of column for a table function.

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-23

ODCICost

Name
ODCICost

Datatype
Object type.

Purpose
Stores cost information.

Table 16–4 Cost Information — Attributes

Name Datatype Purpose

CPUCost NUMBER CPU cost

IOCost NUMBER I/O cost

NetworkCost NUMBER Communication cost

IndexCostInfo VARCHAR2(255) Optional user-supplied information about the
domain index for display in the PLAN table (255
characters maximum)

ODCIEnv

16-24 Oracle9i Data Cartridge Developer’s Guide

ODCIEnv

Name
ODCIEnv

Datatype
Object type

Purpose
Contains general information about the environment in which the extensibility

routines are executing.

Usage Notes
CallProperty is used only for local domain indexes. For non-local domain

indexes it is always set to 0.

For local domain indexes, CallProperty is set to indicate which is the current call

in cases where multiple calls are made to the same routine.

For example, when creating a local domain index, the ODCIIndexCreate routine

is called N+2 times, where N is the number of partitions. For the first call,

CallProperty is set to FirstCall , for the N intermediate calls, it is set to

IntermediateCall , and for the last call it is set to FinalCall .

CallProperty is used only for CREATE INDEX, DROP INDEX, TRUNCATE
TABLE, and for some of the extensible optimizer-related calls for local domain

indexes. In all other cases, including DML and query routines for local domain

indexes, it is set to 0.

Table 16–5 Environment Variable Descriptor Information — Attributes

Name Datatype Purpose

EnvFlags NUMBER Not currently used

CallProperty NUMBER ■ 0 = None

■ 1 = First Call

■ 2 = Intermediate Call

■ 3 = Final Call

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-25

ODCIFuncInfo

Name
ODCIFuncInfo

Datatype
Object type.

Purpose
Stores function information.

Table 16–6 Function Information — Attributes

Name Datatype Purpose

ObjectSchemaVARCHAR2(30)Object schema name

ObjectName VARCHAR2(30)Function/package/type name

MethodName VARCHAR2(30)Method name for package/type

Flags NUMBER Function flags - see ODCIConst

ODCIIndexInfo

16-26 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexInfo

Name
ODCIIndexInfo

Datatype
Object type

Purpose
Stores the metadata information related to a domain index. It is passed as a

parameter to all ODCIIndex routines.

Table 16–7 Index Related Information — Attributes

Name Datatype Purpose

IndexSchema VARCHAR2(30) Schema containing domain index

IndexName VARCHAR2(30) Name of domain index

IndexCols ODCIColInfoList List of indexed columns

IndexPartition VARCHAR2(30) For a local domain index, contains the name of
the specific index partition

IndexInfoFlags NUMBER Possible flags are:

■ Local

■ RangePartn

■ Parallel

■ Unusable

■ IndexOnIOT

■ FunctionIdx

IndexParaDegree NUMBER The degree of parallelism, if one is specified
when creating or rebuilding a domain index or
local domain index partition in parallel

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-27

ODCIPredInfo

Name
ODCIPredInfo

Datatype
Object type

Purpose
Stores the metadata information related to a predicate containing a user-defined

operator or function. It is also passed as a parameter to ODCIIndexStart () query

routine.

Table 16–8 Operator Related Information — Attributes

Name Datatype Purpose

ObjectSchema VARCHAR2(30) Schema of operator/function

ObjectName VARCHAR2(30) Name of operator/function

MethodName VARCHAR2(30) Name of method, applies only to package methods
type

Flags NUMBER The possible flags that could be set are:

 PredExactMatch - Exact Match

 PredPrefixMatch - Prefix Match

 PredIncludeStart - Bounds include the start key
value

 PredIncludeStop - Bounds include the stop key
value

 PredMultiTable - Predicate involves multiple
tables

 PredObjectFunc - Object is a function

 PredObjectPlg - Object is a package

 PredObjectType - Object is a type

ODCIIndexCtx

16-28 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexCtx

Name
ODCIIndexCtx

Datatype
Object type

Purpose
Stores the index context, including the domain index metadata and the ROWID. It is
passed as parameter to the functional implementation of an operator that expects

index context.

Table 16–9 Index Context Related Information — Attributes

Name Datatype Purpose

IndexInfo ODCIIndexInfo Stores the metadata information about the domain
index

rid VARCHAR2("M_URID_SZ
")

Row identifier of the current row

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-29

ODCIObject

Name
ODCIObject

Datatype
Object type

Purpose
Stores information about a schema object.

Table 16–10 Index Context Related Information — Attributes

Name Datatype Purpose

ObjectSchema VARCHAR2(30) Name of schema in which object is located

ObjectName VARCHAR2(30) Name of object

ODCIObjectList

16-30 Oracle9i Data Cartridge Developer’s Guide

ODCIObjectList

Name
ODCIObjectList

Datatype
VARRAY(32) OF ODCIObject

Purpose
Stores information about a list of schema objects.

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-31

ODCIPartInfo

Name
ODCIPartInfo

Datatype
Object type

Purpose
Contains the names of both the table partition and the index partition.

Table 16–11 Index-Related Information — Attributes

Name Datatype Purpose

TablePartition VARCHAR2(30) Contains the table partition name

IndexPartition VARCHAR2(30) Contains the index partition name

ODCIQueryInfo

16-32 Oracle9i Data Cartridge Developer’s Guide

ODCIQueryInfo

Name
ODCIQueryInfo

Datatype
Object type

Purpose
Stores information about the context of a query. It is passed as a parameter to the

ODCIIndexStart routine.

Table 16–12 Index Context Related Information — Attributes

Name Datatype Purpose

Flags NUMBER The following flags can be set:

■ QueryFirstRows —Set when the optimizer hint
FIRST_ROWS is specified in the query

■ QueryAllRows —Set when the optimizer hint
ALL_ROWS is specified in the query

AncOps ODCIObjectList Ancillary operators referenced in the query

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-33

ODCIStatsOptions

Name
ODCIStatsOptions

Datatype
Object type.

Purpose
Stores options information for ANALYZE.

Table 16–13 Cost Information — Attributes

Name Datatype Purpose

Sample NUMBER Sample size

Options NUMBER ANALYZE options - see "ODCICost" on
page 16-23

Flags NUMBER ANALYZE flags - see "ODCICost" on
page 16-23

ODCITabStats

16-34 Oracle9i Data Cartridge Developer’s Guide

ODCITabStats

Name
ODCITabStats

Datatype
NUMBER

Purpose
Stores table statistics for a table function

Table 16–14 ODCITabStats — Attributes

Name Datatype Purpose

Num_rows NUMBER Number of rows in table

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-35

ODCITableFunctionStats

Name
ODCITableFunctionStats

Datatype
Object type

Purpose
Stores table function statistics

Table 16–15 PDCOTab;eFimctopmStats — Attributes

Name Datatype Purpose

ColumnStats ODCIColStatsList Column statistics for a table
function argument

TableStats ODCITabStats Table statistics for a table
function argument

Mappings of Constants and Types

16-36 Oracle9i Data Cartridge Developer’s Guide

Mappings of Constants and Types

Mappings in PL/SQL
A variety of PL/SQL mappings are common to both Extensible Indexing and the

Extensible Optimizer.

■ Constants are defined in the ODCIConst package found in catodci.sql

■ Types are defined as object types found in catodci.sql

Mappings in C
Mappings of constants and types are defined for C in the public header file odci.h .

Each C structure to which a type is mapped has a corresponding indicator structure

called structname_ind and a reference definition called structname_ref .

Mappings in Java
The ODCI (Oracle Data Cartridge Interface) interfaces are described in the Oracle9i
Supplied Java Packages Reference., To use these classes, they must first be loaded. See

Chapter 15 for loading instructions.

System Defined Types

 Reference: Extensibility Constants, Types, and Mappings 16-37

Constants Definitions

The following constants create or replace the ODCIConst IS package.

To ensure that the database or packet state are not inadvertently corrupted, the

following statement is always used with these methods to restrict reads and writes:

pragma restrict_references(ODCIConst, WNDS, RNDS, WNPS, RNPS);

Constants for Return Status
Success CONSTANT INTEGER := 0;
Error CONSTANT INTEGER := 1;
Warning CONSTANT INTEGER := 2;
ErrContinue CONSTANT INTEGER := 3;
Fatal CONSTANT INTEGER := 4;

Constants for ODCIPredInfo.Flags
PredExactMatch CONSTANT INTEGER := 1;
PredPrefixMatch CONSTANT INTEGER := 2;
PredIncludeStart CONSTANT INTEGER := 4;
PredIncludeStop CONSTANT INTEGER := 8;
PredObjectFunc CONSTANT INTEGER := 16;
PredObjectPkg CONSTANT INTEGER := 32;
PredObjectType CONSTANT INTEGER := 64;
PredMultiTable CONSTANT INTEGER := 128;

 Constants for ODCIQueryInfo.Flags
QueryFirstRows CONSTANT INTEGER := 1;
QueryAllRows CONSTANT INTEGER := 2;

Constants for ScnFlg (Func with Index Context)
CleanupCall CONSTANT INTEGER := 1;
RegularCall CONSTANT INTEGER := 2;

Constants for ODCIFuncInfo.Flags
ObjectFunc CONSTANT INTEGER := 1;
ObjectPkg CONSTANT INTEGER := 2;
ObjectType CONSTANT INTEGER := 4;

Constants Definitions

16-38 Oracle9i Data Cartridge Developer’s Guide

Constants for ODCIArgDesc.ArgType
ArgOther CONSTANT INTEGER := 1;
ArgCol CONSTANT INTEGER := 2;
ArgLit CONSTANT INTEGER := 3;
ArgAttr CONSTANT INTEGER := 4;
ArgNull CONSTANT INTEGER := 5;

Constants for ODCIStatsOptions.Options
PercentOption CONSTANT INTEGER := 1;
RowOption CONSTANT INTEGER := 2;

Constants for ODCIStatsOptions.Flags
EstimateStats CONSTANT INTEGER := 1;
ComputeStats CONSTANT INTEGER := 2;
Validate CONSTANT INTEGER := 4;

Constants for ODCIIndexAlter parameter alter_option
AlterIndexNone CONSTANT INTEGER := 0;
AlterIndexRename CONSTANT INTEGER := 1;
AlterIndexRebuild CONSTANT INTEGER := 2;
AlterIndexUpdBlockRefs CONSTANT INTEGER := 5;

Constants for ODCIIndexInfo.IndexInfoFlags
Local CONSTANT INTEGER := 1;
RangePartn CONSTANT INTEGER := 2;
Parallel CONSTANT INTEGER := 16;
Unusable CONSTANT INTEGER := 32;
IndexOnIOT CONSTANT INTEGER := 64;
FunctionIdx CONSTANT INTEGER := 256;

Constants for ODCIEnv.CallProperty
None CONSTANT INTEGER := 0;
FirstCall CONSTANT INTEGER := 1;
IntermediateCall CONSTANT INTEGER := 2;
FinalCall CONSTANT INTEGER := 3;

Reference: Extensible Indexing Interface 17-1

17
Reference: Extensible Indexing Interface

This chapter describes Java language ODCI (Oracle Data Cartridge Interface)

Extensible Indexing Interfaces. For more complete details on Java functionality,

refer to the Oracle9i Supplied Java Packages Reference.

The following interfaces are described:

■ ODCIGetInterfaces

■ ODCIIndexAlter

■ ODCIIndexClose

■ ODCIIndexCreate

■ ODCIIndexDelete

■ ODCIIndexDrop

■ ODCIIndexExchangePartition

■ ODCIIndexFetch

■ ODCIIndexGetMetadata

■ ODCIIndexInsert

■ ODCIIndexMergePartition

■ ODCIIndexSplitPartition

■ ODCIIndexStart

■ ODCIIndexTruncate

■ ODCIIndexUpdate

Extensible Indexing — System Defined Interface Routines

17-2 Oracle9i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines

Caution: These routines are invoked by Oracle at the appropriate

times based on SQL statements executed by the end user. The user

should not try to invoke these routines directly as this may result in

corruption of index data.

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-3

ODCIGetInterfaces

Syntax
ODCIGetInterfaces(ifclist OUT ODCIObjectList) RETURN NUMBER

Purpose
The ODCIGetInterfaces function is invoked when an INDEXTYPEis created by a

CREATE INDEXTYPE... statement or is altered.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
This function should be implemented as a static type method.

This function must return 'SYS.ODCIINDEX2' in the ODCIObjectList if the

indextype uses the second version of the ODCIIndex interface, that is, the version

described in this book.

In existing code that uses the previous, Oracle8i version of the ODCIIndex
interface, this function was required to return 'SYS.ODCIINDEX1' to specify the

Oracle8i version of the interface. That code will still work. To continue to use the

Oracle8i interface, continue to have this function return 'SYS.ODCIINDEX1' , and

do not implement Oracle9i versions of any of the routines.

Table 17–1 ODCIGetInterfaces Arguments

Argument Meaning

ifclist Contains information about the interfaces it supports

ODCIIndexAlter

17-4 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexAlter

Syntax
ODCIIndexAlter(ia ODCIIndexInfo, parms IN OUT VARCHAR2, alter_option NUMBER, env ODCIEnv)
RETURN NUMBER

Purpose
This method is invoked when a domain index or a domain index partition is altered

using an ALTER INDEX or an ALTER INDEX PARTITION statement.

Table 17–2 ODCIIndexAlter Arguments

Argument Meaning

ia Contains information about the index and the indexed column

parms (IN) Parameter string

if ALTER INDEX PARAMETERS or ALTER INDEX REBUILD
contains the user specified parameter string

 if ALTER INDEX RENAME contains the new name of the
domain index

parms (OUT) Parameter string

is valid only if ALTER INDEX PARAMETERS or ALTER INDEX
REBUILD. Contains the resultant string to be stored in system
catalogs

alter_option Specifies one of the following options:

■ AlterIndexNone if ALTER INDEX [PARTITION]
PARAMETERS

■ AlterIndexRename if ALTER INDEX RENAME
[PARTITION]

■ AlterIndexRebuild if ALTER INDEX REBUILD
[PARTITION] [PARALLEL (DEGREE deg)]
[PARAMETERS]

■ AlterIndexUpdBlockRefs if ALTER INDEX
[schema.]index UPDATE BLOCK REFERENCES

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-5

Returns
ODCIConst.Success on success, orODCIConst.Error on error, or
ODCIConst.Warning .

Usage Notes
■ This function should be implemented as a static type method.

■ An ALTER INDEX statement can be invoked for domain indexes in multiple

ways.

ALTER INDEX index_name
PARAMETERS (parms);

or

ALTER INDEX index_name
REBUILD PARAMETERS (parms);

The precise behavior in these two cases is defined by the implementor. One

possibility is that the first statement would merely reorganize the index based

on the parameters while the second would rebuild it from scratch.

■ The maximum length of the input parameters string is 1000 characters. The OUT
value of the parms argument can be set to resultant parameters string to be

stored in the system catalogs.

■ The ALTER INDEX statement can also be used to rename a domain index in the

following way:

ALTER INDEX index_name
RENAME TO new_index_name

In this case, the new name of the domain index is passed to the parms
argument.

■ If the PARALLEL clause is omitted, then the domain index or local domain

index partition is rebuilt sequentially.

■ If the PARALLEL clause is specified, the parallel degree is passed to the

ODCIIndexAlter invocation in the IndexParaDegree attribute of

ODCIIndexInfo , and the Parallel bit of the IndexInfoFlags attribute is

set. The parallel degree is determined as follows:

■ If PARALLEL DEGREEdeg is specified, deg is passed.

ODCIIndexAlter

17-6 Oracle9i Data Cartridge Developer’s Guide

■ If only PARALLEL is specified, then a constant is passed to indicate that the

default degree of parallelism was specified.

■ If the ODCIIndexAlter routine returns with the ODCIConst .Success , the

index is valid and usable. If the ODCIIndexAlter routine returns with

ODCIConst .Warning , the index is valid and usable but a warning message is

returned to the user. If ODCIIndexAlter returns with an error (or exception),

the domain index will be marked FAILED .

■ When the ODCIIndexAlter routine is being executed, the domain index is

marked LOADING.

■ Every SQL statement executed by ODCIIndexAlter is treated as an independent

operation. The changes made by ODCIIndexCreate are not guaranteed to be

atomic.

■ The AlterIndexUpdBlockRefs alter option applies only to domain indexes

on index-organized tables. When the end user executes an ALTER INDEX
<domain_index> UPDATE BLOCK REFERENCES, ODCIIndexAlter is

called with the AlterIndexUpdBlockRefs bit set to give the cartridge

developer the opportunity to update guesses as to the block locations of rows,

stored in logical rowids.

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-7

ODCIIndexClose

Syntax
ODCIIndexClose(self IN <impltype>, env ODCIEnv) RETURN NUMBER

Purpose
This method is invoked to end the processing of an operator.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ The index implementor can perform any appropriate actions to finish up the

processing of an domain index scan, such as freeing memory and other

resources.

Table 17–3 ODCIIndexClose Arguments

Argument Meaning

self(IN) Is the value of the context returned by the previous invocation
of ODCIIndexFetch

env The environment handle passed to the routine

ODCIIndexCreate

17-8 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexCreate

Syntax
ODCIIndexCreate(ia ODCIIndexInfo, parms VARCHAR2, env ODCIEnv) RETURN NUMBER

Purpose
The ODCIIndexCreate method is invoked when a domain index is created by a

CREATE INDEX...INDEXTYPE IS...PARAMETERS... statement issued by the

user. The domain index that is created can be a non-partitioned index or a local

partitioned domain index.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error

■ ODCIConst.Warning

■ ODCIConst.ErrContinue if the method is invoked at the partition level for

creation of a local partitioned index, to continue to the next partition even in

case of an error

■ ODCIConst.Fatal to signify that all dictionary entries for the index are

cleaned up and that the CREATE INDEXoperation is rolled back. Returning this

status code assumes that the cartridge code has not created any objects (or

cleaned up any objects created).

Usage Notes
■ This function should be implemented as a static type method.

Table 17–4 ODCIIndexCreate Arguments

Argument Meaning

ia Contains information about the indexed column

parms Is the PARAMETERS string passed in uninterpreted by Oracle.
The maximum size of the parameter string is 1000 characters.

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-9

■ The ODCIIndexCreate routine should create objects (such as tables) to store

the index data, generate the index data, and store the data in the index data

tables.

■ The ODCIIndexCreate procedure should handle creation of indexes on both

empty and non-empty tables. If the base table is not empty, the

ODCIIndexCreate procedure can scan the entire table and generate index

data.

■ Every SQL statement executed by ODCIIndexCreate is treated as an

independent operation. The changes made by ODCIIndexCreate are not

guaranteed to be atomic.

■ For a non-partitioned domain index, the parallel degree is passed to the

ODCIIndexCreate invocation in the IndexParaDegree attribute of

ODCIIndexInfo , and the Parallel bit of the IndexInfoFlags is set. The

parallel degree is determined as follows:

■ If PARALLEL DEGREEdeg specified, deg is passed.

■ If only PARALLEL is specified, then a constant indicating that the default

degree of parallelism was specified, is passed.

■ If the PARALLEL clause is omitted altogether, the operation is done

sequentially

■ When the ODCIIndexCreate routine is being executed, the domain index is

marked LOADING.

■ If the ODCIIndexCreate routine returns with the ODCIConst .Success , the

index is valid and usable. If the ODCIIndexCreate routine returns with

ODCIConst .Warning , the index is valid and usable but a warning message is

returned to the user. If the ODCIIndexCreate routine returns with an

ODCIConst .Error (or exception), the domain index will be marked FAILED.

■ The only operations permitted on FAILED domain indexes is DROP INDEX,
TRUNCATE TABLE or ALTER INDEX REBUILD.

■ If a domain index is created on an column of object type which contains a REF
attribute, do not dereference the REFs while building your index. Dereferencing

a REFfetches data from a different table instance. If the data in the other table is

modified, you will not be notified and your domain index will become

incorrect.

■ To create a non-partitioned domain indexe, the ODCIIndexCreate method is

invoked once, and the only valid return codes are ODCIConstSuccess ,

ODCIIndexCreate

17-10 Oracle9i Data Cartridge Developer’s Guide

ODCIConstWarning or ODCIConstError . The IndexPartition and

TablePartition name are NULL and callProperty is also NULL.

To create a local partitioned domain index, the ODCIIndexCreate method is

invoked N+2 times, where N is the number of local index partitions. The first

and the final call handle operations on the top-level index object, and the

intermediate N calls handle partition-level objects. In the first call, a table to

hold the index level metadata can be created. In the intermediate calls,

independent tables to hold partition level data can be created and populated,

and in the last call, indexes can be built on the index metadata tables and so

forth.

For local partitioned domain indexes, the first and the last call can return

ODCIConstSuccess , ODCIConstWarning or ODCIConstError . The

intermediate N calls can return ODCIConstSuccess , ODCIConstWarning ,

ODCIConstError or ODCIConstErrContiue . If a partition level call returns

ODCIConstError , the partition is marked FAILED , the index is marked

FAILED , and the create operation terminates at that point. If the call returns

ODCIConstErrContinue , the partition is marked FAILED , and the method is

invoked for the next partition.

This method is invoked during ALTER TABLE ADD PARTITION too. In this

case, there is only one call to ODCIIndexCreate , the IndexPartition and

TablePartition name are filled in, and the callProperty is set to NULL

Since this routine handles multiple things (namely, creation of a non-partitioned

index, creation of a local index and creation of a single index partition), you

must take special care to code it appropriately.

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-11

ODCIIndexDelete

Syntax
ODCIIndexDelete(ia ODCIIndexInfo, rid VARCHAR2, oldval <icoltype>, env ODCIEnv) RETURN
NUMBER

Purpose
This procedure is invoked when a row is deleted from a table that has a domain

index defined on one of its columns.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error

Usage Notes
■ This function should be implemented as a static type method.

■ This method should delete index data corresponding to the deleted row from

the appropriate tables/files storing index data.

■ If ODCIIndexDelete is invoked at the partition level, then the index partition

name is filled in in the ODCIIndexInfo argument.

Table 17–5 ODCIIndexDelete Arguments

Argument Meaning

ia Contains information about the index and the indexed column

rid The row identifier of the deleted row

oldval The value of the indexed column in the deleted row. The
datatype is the same as that of the indexed column.

env The environment handle passed to the routine

ODCIIndexDrop

17-12 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexDrop

Syntax
ODCIIndexDrop(ia ODCIIndexInfo, env ODCIEnv) RETURN NUMBER

Purpose
The ODCIIndexDrop procedure is invoked when a domain index is dropped

explicitly using a DROP INDEX statement, or implicitly through a DROP TABLE, or

DROP USER statement.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error, or

ODCIConst.Warning .

While dropping a local domain index, the first N+1 calls can return

ODCIConst.ErrContinue too.

Usage Notes
■ This method should be implemented as a static type method.

■ This method should drop the tables storing the domain index data.

■ This method is invoked for dropping a non-partitioned index, dropping a local

domain index, and also for dropping a single index partition during ALTER
TABLE DROP PARTITION.

For dropping a non-partitioned index, the ODCIIndexDrop is invoked once,

with the IndexPartition , TablePartition and callProperty set to

NULL.

For dropping a local domain index, the routine is invoked N+2 times, where N is

the number of partitions.

Table 17–6 ODCIIndexDrop Arguments

Argument Meaning

ia Contains information about the indexed column

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-13

For dropping a single index partition during ALTER TABLE DROP
PARTITION, this routine is invoked once with the IndexPartition and the

TablePartition filled in and the callProperty set to NULL.

The old table and the old index partition’s dictionary entries are deleted before

the call to ODCIIndexDrop , so the cartridge code for this routine should not

rely on the existence of this data in the views.

■ Since it is possible that the domain index is marked FAILED (due to abnormal

termination of some DDL routine), the ODCIIndexDrop routine should be

capable of cleaning up partially created domain indexes. When the

ODCIIndexDrop routine is being executed, the domain index is marked

LOADING.

■ Note that if the ODCIIndexDrop routine returns with an ODCIConst.Error
or exception, the DROP INDEX statement fails and the index is marked FAILED .

In that case, there is no mechanism to get rid of the domain index except by

using the FORCE option. If the ODCIIndexDrop routine returns with

ODCIConst .Warning in the case of an explicit DROP INDEX statement, the

operation succeeds but a warning message is returned to the user.

■ Every SQL statement executed by ODCIIndexDrop is treated as an

independent operation. The changes made by ODCIIndexDrop are not

guaranteed to be atomic.

ODCIIndexExchangePartition

17-14 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexExchangePartition

Syntax
ODCIIndexExchangePartition(ia ODCIIndexInfo, ia1 ODCIIndexInfo, env ODCIEnv) RETURN
NUMBER

Purpose
This method is invoked when an ALTER TABLE EXCHANGE
PARTITION...INCLUDING INDEXES is issued on a partitioned table on which a

local domain index is defined.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error, or

ODCIConst.Warning .

Usage Notes
The function should be implemented as a static type method.

This method should handle both converting a partition of a domain index into a

non-partitioned domain index table and converting a non-partitioned index to a

partition of a partitioned domain index.

Table 17–7 ODCIIndexExchangePartition Arguments

Argument Meaning

ia Contains information about the partition to exchange

ia1 Contains information about the non-local, unpartitioned
domain index to exchange

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-15

ODCIIndexFetch

Syntax
ODCIIndexFetch(self IN [OUT] <impltype>, nrows IN NUMBER, rids OUT ODCIRidList, env ODCIEnv)
RETURN NUMBER

Purpose
This procedure is invoked repeatedly to retrieve the rows satisfying the operator

predicate.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error

Usage Notes
■ ODCIIndexFetch returns rows satisfying the operator predicate. That is, it

returns the row identifiers of all the rows for which the operator return value

falls within the specified bounds.

■ Each call to ODCIIndexFetch can return a maximum of nrows number of

rows. The value of nrows passed in is decided by Oracle based on some internal

factors. However, the ODCIIndexFetch routine can return lesser than nrows
number of rows. The row identifiers are returned through the output rids

Table 17–8 ODCIIndexFetch Arguments

Argument Meaning

self(IN) Is the value of the context returned by the previous call (to
ODCIIndexFetch or to ODCIIndexStart if this is the first
time fetch is being called for this operator instance

self(OUT) The context that is passed to the next query-time call.Note that
this parameter does not have to be defined as OUT if the value
is not modified in this routine.

nrows Is the maximum number of result rows that can be returned to
Oracle in this call

rids Is the array of row identifiers for the result rows being
returned by this call

env The environment handle passed to the routine

ODCIIndexFetch

17-16 Oracle9i Data Cartridge Developer’s Guide

array. A NULL ROWID (as an element of the rids array) indicates that all

satisfying rows have been returned.

Assume that there are 3000 rows which satisfy the operator predicate, and that

the value of nrows = 2000. The first invocation of ODCIIndexFetch can return

the first 2000 rows. The second invocation can return a rid list consisting of

the remaining 1000 rows followed by a NULL element. The NULL value in rid
list indicates that all satisfying rows have now been returned.

■ If the context value is changed within this call, the new value is passed in to

subsequent query-time calls.

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-17

ODCIIndexGetMetadata

Syntax
ODCIIndexGetMetadata(ia IN ODCIIndexInfo, version IN VARCHAR2, new_block OUT PLS_
INTEGER) RETURN VARCHAR2;

Purpose
This routine is called repeatedly to return a series of strings of PL/SQL code that

comprise the non-dictionary metadata associated with the index in ia . The routine

can pass whatever information is required at import time—for example, policy,

version, preferences, and so on. This method is optional unless

implementation-specific metadata is required.

Developers of domain index implementation types in 8.1.3 must implement

ODCIIndexGetMetadata even if only to indicate that no PL/SQL metadata exists

or that the index is not participating in fast rebuild.

Returns
■ A null-terminated string containing a piece of an opaque block of PL/SQL

code.

■ A zero-length string indicates no more data; export stops calling the routine.

Usage Notes
This function should be implemented as a static type method.

Table 17–9 ODCIIndexGetMetadata Arguments

Argument Description

ia Specifies the index on which export is currently working.

version Version of export making the call in the form
08.01.03.00.00 .

new_block Non-zero (TRUE): Returned string starts a new PL/SQL block.
Export will terminate the current block (if any) with END; and
open a new block with BEGIN before writing strings to the
dump file. The routine is called again.

0 (FALSE): Returned string continues current block. Export
writes only the returned string to the dump file then calls the
routine again.

ODCIIndexGetMetadata

17-18 Oracle9i Data Cartridge Developer’s Guide

The routine will be called repeatedly until the return string length is 0. If an index

has no metadata to be exported using PL/SQL, it should return an empty string

upon first call.

This routine can be used to build one or more blocks of anonymous PL/SQL code

for execution by import.Each block returned will be invoked independently by

import. That is, if a block fails for any reason at import time, subsequent blocks will

still be invoked. Therefore any dependent code should be incorporated within a

single block. The size of an individual block of PL/SQL code is limited only by the

size of import’s read buffer controlled by its BUFFER parameter.

The execution of these PL/SQL blocks at import time will be considered part of the

associated domain index’s creation. Therefore, their execution will be dependent

upon the successful import of the index’s underlying base table and user’s setting

of import’s INDEXES=Y/N parameter, as is the creation of the index.

The routine should not pass back the BEGIN/END strings that open and close the

individual blocks of PL/SQL code; export will add these to mark the individual

units of execution.

The parameter version is the version number of the currently executing export

client. Since export and import can be used to downgrade a database to the

previous functional point release, it also represents the minimum server version

you can expect to find at import time; it may be higher, but never lower.

The cartridge developer can use this information to determine what version of

information should be written to the dump file. For example, assume the current

server version is 08.02.00.00.00 , but the export version handed in is

08.01.04.00.00 . If a cartridge’s metadata changed formats between 8.1 and 8.2,

it would know to write the data to the dump file in 8.1 format anticipating an

import into an 8.1.4 system. Server versions starting at 8.2 and higher will have to

know how to convert 8.1 format metadata.

Some points to be aware of:

1. The data contained within the strings handed back to export must be

completely platform-independent. That is, they should contain no binary

information that may reflect the endian nature of the export platform, which

may be different from the import platform. Binary information may be passed

as hex strings and converted through RAWTOHEX and HEXTORAW.

2. The strings are translated from the export server to export client character set

and are written to the dump file as such. At import time, they are translated

from export client character set to import client character set, then from import

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-19

client char set to import server character set when handed over the UPI

interface.

3. Specifying a specific target schema in the execution of any of the PL/SQL

blocks should be avoided as it will most likely cause an error if you exercise

import’s FROMUSER -> TOUSER schema replication feature. For example, a

procedure prototype such as:

PROCEDURE AQ_CREATE (schema IN VARCHAR2, que_name IN VARCHAR2) ...
Should be avoided since this will fail if you have remapped schema A to

schema B on import. You can assume at import time that you are already

connected to the target schema.

4. Export dump files from a particular version must be importable into all future

versions. This means that all PL/SQL routines invoked within the anonymous

PL/SQL blocks written to the dump file must be supported for all time. You

may wish to encode some version information to assist with detecting when

conversion may be required.

5. Export will be operating in a read-only transaction if its parameter

CONSISTENT=Y. In this case, no writes are allowed from the export session.

Therefore, this method must not write any database state.

6. You can attempt to import the same dump file multiple times, especially when

using import’s IGNORE=Y parameter. Therefore, this method must produce

PL/SQL code that is idempotent, or at least deterministic when executed

multiple times.

7. Case on database object names must be preserved; that is, objects named ’Foo’

and ’FOO’ are distinct objects. Database object names should be enclosed within

double quotes ("") to preserve case.

Error Handling
Any unrecoverable error should raise an exception allowing it to propagate back to

get_domain_index_metadata and thence back to export. This will cause export

to terminate the creation of the current index’s DDL in the dump file and to move

on to the next index.

At import time, failure of the execution of any metadata PL/SQL block will cause

the associated index to not be created under the assumption that the metadata

creation is an integral part of the index creation.

ODCIIndexInsert

17-20 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexInsert

Syntax
ODCIIndexInsert(ia ODCIIndexInfo, rid VARCHAR2, newval <icoltype>, env ODCIEnv) RETURN
NUMBER

Purpose
This method is invoked when a new row is inserted into a table that has a domain

index defined on one of its columns.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error

Usage Notes
This function should be implemented as a static type method.

This method should insert index data corresponding to the new row into the

appropriate tables/files storing index data.

If ODCIIndexInsert is invoked at the partition level, then the index partition

name is filled in in the ODCIIndexInfo argument.

Table 17–10 ODCIIndexInsert Arguments

Argument Meaning

ia Contains information about the index and the indexed column

rid The row identifier of the new row in the table

newval The value of the indexed column in the inserted row.

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-21

ODCIIndexMergePartition

Syntax
ODCIIndexMergePartition(ia ODCIIndexInfo, part_name1 ODCIPartInfo, part_name2 ODCIPartInfo,
parms VARCHAR2, env ODCIEnv) RETURN NUMBER

Purpose
This method is invoked when a ALTER TABLE MERGE PARTITION is issued on

range partitioned table on which a local domain index is defined.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error, or

ODCIConst.Warning .

Usage Notes
■ The function should be implemented as a static type method.

■ You should create a new table representing the resultant merged partition and

populate it with data from the merged partitions. Then drop the tables

corresponding to the merged index partitions. Also, the newly created partition

should pick the default parameter string associated with the index level.

The old table and the old index partitions' dictionary entries are deleted before

the call to ODCIIndexMergePartition , so the cartridge code for this routine

should not rely on the existence of this data in the views.

Table 17–11 ODCIIndexMergePartition Arguments

Argument Meaning

ia Contains index and table partition name for one of the
partitions to be merged

part_name1 Contains index and table partition name for the second
partition to be merged

part_name2 Holds index and table partition name for the merged partition

parms Contains the parameter string for the resultant merged
partition—essentially the default parameter string associated
with the index

env The environment handle passed to the routine

ODCIIndexSplitPartition

17-22 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexSplitPartition

Syntax
ODCIIndexSplitPartition(ia ODCIIndexInfo, part_name1 ODCIPartInfo, part_name2 ODCIPartInfo,
parms VARCHAR2, env ODCIEnv) RETURN NUMBER

Purpose
This method is invoked when an ALTER TABLE SPLIT PARTITION is invoked on

a partitioned table on which a local domain index is defined.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error, or

ODCIConst.Warning .

Usage Notes
The function should be implemented as a static type method.

Cartridge writers need to drop the metadata corresponding to the partition that is

split and create metadata for the two partitions that are created as a result of the

split. The index data corresponding to these partitions need not be computed since

the indexes are marked UNUSABLE. When the user issues ALTER INDEX REBUILD
PARTITION to make the indexes usable, the indexes can be built.

The old table and the old index partition’s dictionary entries are deleted before the

call to ODCIIndexSplitPartition , so the cartridge code for this routine should

not rely on the existence of this data in the views.

Table 17–12 ODCIIndexSplitPartition Arguments

Argument Meaning

ia Contains the information about the partition to be split

part_name1 Holds the index and table partition names for one of the new
partitions

part_name2 Holds the index and table partition names for the other new
partition

parms Contains the parameter string for the new partitions—
essentially the parameter string associated with the index
partition that is being split

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-23

ODCIIndexStart

Syntax
ODCIIndexStart(sctx IN OUT <impltype>, ia ODCIIndexInfo, pi ODCIPredInfo, qi ODCIQueryInfo, strt
<opbndtype>, stop <opbndtype>, <valargs>, env ODCIEnv) RETURN NUMBER

Purpose
This procedure is invoked to start the evaluation of an operator on an indexed

column.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error

Usage Notes
■ The function should be implemented as a static method.

Table 17–13 ODCIIndexStart Arguments

Argument Meaning

sctx(IN) The value of the scan context returned by some previous
related query-time call (such as the corresponding ancillary
operator, if invoked before the primary operator); NULL
otherwise

sctx(OUT) The context that is passed to the next query-time call; the next
query-time call will be to ODCIIndexFetch

ia Contains information about the index and the indexed column

pi Contains information about the operator predicate

qi Contains query information (hints plus list of ancillary
operators referenced)

strt The start value of the bounds on the operator return value. The
datatype is the same as that of the operator’s return value

stop The stop value of the bounds on the operator return value. The
datatype is the same as that of the operator’s return value.

valargs The value arguments of the operator invocation. The number
and datatypes of these arguments are the same as those of the
value arguments to the operator.

env The environment handle passed to the routine

ODCIIndexStart

17-24 Oracle9i Data Cartridge Developer’s Guide

■ ODCIIndexStart is invoked to begin the evaluation of an operator on an

indexed column. In particular, the following conditions hold:

– The first argument to the operator is a column which has a domain index

defined on it.

– The indextype of the domain index (specified in ODCIIndexInfo
parameter) supports the current operator.

– All other arguments to the operator are value arguments (literals) which are

passed in through the <valargs> parameters.

■ The ODCIIndexStart method should initialize the index scan as needed

(using the operator-related information in the pi argument) and prepare for the

subsequent invocations of ODCIIndexFetch .

■ The strt , stop parameters together with the bndflg value in

ODCIPredInfo parameter specify the range of values within which the

operator return value should lie.

■ Bounds for operator return values are specified as follows:

– If the predicate to be evaluated is of the form op LIKE val , the

ODCIIndexPrefixMatch flag is set. In this case, the start key contains the

value <val> and the stop key value is irrelevant.

– If the predicate to be evaluated is of the form op = val , the

ODCIIndexExactMatch flag is set. In this case, the start key contains the

value <val> and the stop key value is irrelevant.

– If the predicate to be evaluated is of the form op > val , startkey contains

the value <val> and stop key value is set to NULL. If the predicate is of the

form op >= <val> , the flag ODCIIndexIncludeStart is also set.

– If the predicate to be evaluated is of the form op < val , stop key contains

the value <val> and the start key value is set to NULL. If the predicate is of

the form op <= val , the flag ODCIIndexIncludeStop is also set.

■ A context value can be returned to Oracle (through the SELF argument) which

will then be passed back to the next query-time call. The next call will be to

ODCIIndexFetch if the evaluation continues, or to ODCIIndexStart if the

evaluation is restarted. The context value can be used to store the entire

evaluation state or just a handle to the memory containing the state.

■ Note that if the same indextype supports multiple operators with different

signatures, multiple ODCIIndexStart methods need to be implemented, one

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-25

for each distinct combination of value argument datatypes. For example, if an

indextype supports three operators:

1. op1(number, number)

2. op1(varchar2, varchar2)

3. op2(number, number)

two ODCIIndexStart routines would need to be implemented:

– ODCIIndexStart(...., NUMBER) — handles cases (1) and (3) which has

a NUMBER value argument

– ODCIIndexStart(...., VARCHAR2) — handles case (2) which has a

VARCHAR2 value argument

■ The query information in qi parameter can be used to optimize the domain

index scan, if possible. The query information includes hints that have been

specified for the query and the list of relevant ancillary operators referenced in

the query block.

ODCIIndexTruncate

17-26 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexTruncate

Syntax
ODCIIndexTruncate(ia ODCIIndexInfo, env ODCIEnv) RETURN NUMBER

Purpose
The ODCIIndexTruncate procedure is invoked when a TRUNCATE statement is

issued against a table that has a domain index defined on one of its columns.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error, or

ODCIConst.Warning .

While truncating a local domain index, the first N+1 calls can return

ODCIConst.ErrContinue too.

Usage Notes
■ This function should be implemented as a static type method.

■ After this function executes, the domain index should be empty (corresponding

to the empty base table).

■ While the ODCIIndexTruncate routine is being executed, the domain index is

marked LOADING. If the ODCIIndexTruncate routine returns with an

ODCIConst .Error (or exception), the domain index will be marked FAILED .

The only operation permitted on FAILED domain indexes is DROP INDEX,
TRUNCATE TABLEor ALTER INDEX REBUILD. If ODCIIndexTruncate returns

with ODCIConst .Warning , the operation succeeds but a warning message is

returned to the user.

■ Every SQL statement executed by ODCIIndexTruncate is treated as an

independent operation. The changes made by ODCIIndexTruncate are not

guaranteed to be atomic.

Table 17–14 ODCIIndexTruncate Arguments

Argument Meaning

ia Contains information about the indexed column

env The environment handle passed to the routine

Extensible Indexing — System Defined Interface Routines

Reference: Extensible Indexing Interface 17-27

■ This method is invoked for truncating a non-partitioned index, truncating a

local domain index, and also for truncating a single index partition during

ALTER TABLE TRUNCATE PARTITION.

For truncating a non-partitioned index, the ODCIIndexTruncateis invoked

once, with the IndexPartition , TablePartition and callProperty set

to NULL.

For truncating a local domain index, the routine is invoked N+2 times, where N
is the number of partitions.

For truncating a single index partition during ALTER TABLE TRUNCATE
PARTITION, this routine is invoked once with the IndexPartition and the

TablePartition filled in and the callProperty set to NULL.

ODCIIndexUpdate

17-28 Oracle9i Data Cartridge Developer’s Guide

ODCIIndexUpdate

Syntax
ODCIIndexUpdate(ia ODCIIndexInfo, rid VARCHAR2, oldval <icoltype>, newval <icoltype>, env
ODCIEnv)RETURN NUMBER

Purpose
This method is invoked when a row is updated in a table that has a domain index

defined on one of its columns.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error

Usage Notes
■ The function should be implemented as a static type method.

■ This method should update the tables/files storing the index data for the

updated row.

■ In addition to a SQL UPDATE statement, a LOB value can be updated through a

variety of "WRITE" interfaces (see Oracle9i Application Developer’s Guide - Large
Objects (LOBs)). If a domain index is defined on a LOB column or an object type

containing a LOB attribute, the ODCIIndexUpdate routine is called when a

LOB locator is implicitly or explicitly closed after one or more write operations.

■ If ODCIIndexUpdate is invoked at the partition level, then the index partition

name is filled in in the ODCIIndexInfo argument.

Table 17–15 ODCIIndexUpdate Arguments

Argument Meaning

ia Contains information about the index and the indexed column

rid The row identifier of the updated row

oldval The value of the indexed column before the update. The
datatype is the same as that of the indexed column.

newval The value of the indexed column after the update. The
datatype is the same as that of the indexed column.

env The environment handle passed to the routine

Reference: Extensible Optimizer Interface 18-1

18
Reference: Extensible Optimizer Interface

This chapter describes the functions and procedures that comprise the interface to

the extensible optimizer.

See Also: The Oracle9i Supplied Java Packages Reference for details

on Java functionality

Note on the New Interfaces

18-2 Oracle9i Data Cartridge Developer’s Guide

Note on the New Interfaces
In Oracle9i, the extensible optimizer interfaces have changed to support working

with partitioned tables and domain indexes. The changes are of two kinds:

■ Additional attributes have been added to some of the system-defined object

types that are parameters to the ODCIStats interface methods. For example

the ODCIColInfo type is enhanced to add information about the column's

partition.

■ Arguments or semantics of the arguments have changed for some ODCIStats
methods. For example, the ODCIStatsDelete interface is changed to add an

OUT argument to contain updated aggregate statistics.

You do not need to change your code unless you want to use the new functionality.

You must, however, recompile your files and reload the shared library on the server

machine, and you must not attempt to use the additional information being passed

in any newly added system-type attributes.

If, on the other hand, you do want to use the new Oracle9i functionality, you must

update your code for the new attributes added to the various system-defined types,

and you must code for the new arguments added to various ODCIStats functions.

You must also return 'SYS.ODCISTATS2' in the OUT argument in the

ODCIGetInterfaces routine. This tells the server to invoke the version of the

ODCIStats methods that uses the new arguments.

Note that you must update your code for the Oracle9i, ODCIStats2 version of the

ODCIStats interfaces to use your statistics type with an indextype that implements

the ODCIIndex2 version of the extensible indexing interfaces.

The Extensible Optimizer Interface

EXPLAIN PLAN
EXPLAIN PLAN has been enhanced to show the user-defined CPU and I/O costs for

domain indexes in the CPU_COST and IO_COST columns of PLAN_TABLE. For

example, suppose we have a table Emp_tab and a user-defined operator

Contains . Further, suppose that there is a domain index EmpResume_indx on the

Resume_col column of Emp_tab , and that the indextype of EmpResume_indx
supports the operator Contains . Then, the query

SELECT * FROM Emp_tab WHERE Contains(Resume_col, ’Oracle’) = 1

The Extensible Optimizer Interface

Reference: Extensible Optimizer Interface 18-3

might have the following plan:

INDEX Hint
The index hint will apply to domain indexes. In other words, the index hint will

force the optimizer to use the hinted index for a user-defined operator, if possible.

ORDERED_PREDICATES Hint
The hint ORDERED_PREDICATES forces the optimizer to preserve the order of

predicate evaluation (except predicates used for index keys) as specified in the

WHERE clause of a SQL DML statement.

Example
Consider an example of how the statistics functions might be used. Suppose, in the

schema SCOTT, we define the following:

CREATE OPERATOR Contains binding (VARCHAR2(4000), VARCHAR2(30))
 RETURN NUMBER USING Contains_fn;

CREATE TYPE stat1 (
 ...,
 STATIC FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER,
 args ODCIArgDescList, start NUMBER, stop NUMBER, doc VARCHAR2(4000),
 key VARCHAR2(30)) return NUMBER,
 STACTIC FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT
 ODCICost, args ODCIArgDescList, doc VARCHAR2(4000), key VARCHAR2(30))
 return NUMBER,
 STATIC FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER,
 cost OUT ODCICost, qi ODCIQueryInfo, pred ODCIPredInfo,
 args ODCIArgDescList, start NUMBER, stop NUMBER,
 key VARCHAR2(30)) return NUMBER,
 ...
);

OPERATION OPTIONS OBJECT_NAME CPU_COST IO_COST

SELECT STATEMENT

TABLE ACCESS BY ROWID EMP_TAB

DOMAIN INDEX EMPRESUME_INDX 300 4

The Extensible Optimizer Interface

18-4 Oracle9i Data Cartridge Developer’s Guide

CREATE TABLE T (resume VARCHAR2(4000));

CREATE INDEX T_resume on T(resume) INDEXTYPE IS indtype;

ASSOCIATE STATISTICS WITH FUNCTIONS Contains_fn USING stat1;

ASSOCIATE STATISTICS WITH INDEXES T_resume USING stat1;

When the optimizer encounters the query

SELECT * FROM T WHERE Contains(resume, ’ORACLE’) = 1,

it will compute the selectivity of the predicate by invoking the user-defined

selectivity function for the functional implementation of the Contains operator. In

this case, the selectivity function is stat1.ODCIStatsSelectivity . It will be

called as follows:

stat1.ODCIStatsSelectivity (
 ODCIPredInfo(’SCOTT’, ’Contains_fn’, NULL, 29),
 sel,
 ODCIArgDescList(
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgCol, ’T’, ’SCOTT’, ’"resume"’),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 1,
 1,
 NULL,
 ’ORACLE’)

Suppose the selectivity function returns a selectivity of 3 (percent). When the

domain index is being evaluated, then the optimizer will call the user-defined index

cost function as follows:

stat1.ODCIStatsIndexCost (
 ODCIIndexInfo(’SCOTT’, ’T_resume’,
 ODCIColInfoList(ODCIColInfo(’SCOTT’, ’T’, ’"resume"’, NULL, NULL))),
 3,
 cost,
 NULL,
 ODCIPredInfo(’SCOTT’, ’Contains’, NULL, 13),
 ODCIArgDescList(ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 1,
 1,

User-Defined ODCIStats Functions

Reference: Extensible Optimizer Interface 18-5

 ’ORACLE’)

Suppose that the optimizer decides not to use the domain index because it is too

expensive. Then it will call the user-defined cost function for the functional

implementation of the operator as follows:

stat1.ODCIStatsFunctionCost (
 ODCIFuncInfo(’SCOTT’, ’Contains_fn’, NULL, 1),
 cost,
 ODCIArgDescList(ODCIArgDesc(ODCIConst.ArgCol, ’T’, ’SCOTT’, ’"resume"’),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 NULL,
 ’ORACLE’)

The following sections describe each statistics type function in greater detail.

User-Defined ODCIStats Functions
User-defined ODCIStats functions are used for table columns, functions, package,

type, indextype or domain indexes. These functions are described in the following

sections.

ODCIGetInterfaces

18-6 Oracle9i Data Cartridge Developer’s Guide

ODCIGetInterfaces

Syntax
ODCIGetInterfaces(ifclist OUT ODCIObjectList) RETURN NUMBER

Purpose
ODCIGetInterfaces is invoked by the server to discover which version of the

ODCIStats interface the user has implemented in the methods of the user-defined

statistics type.

Returns
ODCIConst.Success on success, ODCIConst.Error otherwise.

Usage Notes
Different versions of ODCIStats functions are used by Oracle8i and Oracle9i: the

Oracle9i version adds parameters to some functions to support working with

statistics on partitions of a table or domain index.

For the Oracle9i version of ODCIStats functions, ODCIGetInterfaces must

return the string 'SYS.ODCISTATS2' in the ODCIObjectList parameter. This

value indicates that the statistics type uses the second version of the ODCIStats
interface. Accordingly, the server invokes statistics, cost, or selectivity functions

using the Oracle9i interface.

Table 18–1 ODCIGetInterfaces Parameters

Parameter Meaning

ifclist (OUT) The version of the ODCIStats interfaces implemented by the
statistics type. This value should be 'SYS.ODCISTATS2' to
specify the Oracle9i version.

ODCIStatsCollect (Column)

Reference: Extensible Optimizer Interface 18-7

ODCIStatsCollect (Column)

Syntax
FUNCTION ODCIStatsCollect(col ODCIColInfo, options ODCIStatsOptions, statistics OUT RAW) return NUMBER

Purpose
ODCIStatsCollect is called by the ANALYZE command to collect user-defined

statistics on a table or a partition of a table.

Returns
The function returns ODCIConst.Success , ODCIConst.Error , or

ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

If statistics are being collected for only one partition, the TablePartition field in

the ODCIColInfo type is filled in with the name of the partition. Otherwise (if

statistics need to be collected for all the partitions or for the entire table), the

TablePartition field is null.

If the ANALYZE command is executed to collect user-defined statistics on a

partitioned table, then n+1 ODCIStatsCollect calls are made, where n is the

number of partitions in the table. The first n calls are made with the

TablePartition attribute in ODCIColInfo filled in with the partition name and

the ODCIStatsOptions.CallProperty set to IntermediateCall . The last

call is made with ODCIEnv.CallPropertyflag set to FinalCall to allow you

to collect aggregate statistics for the entire table. The OUT statistics in the first call

are ignored by the server. The OUT statistics in the subsequent n calls are inserted

into the USTATS$table corresponding to the partitions. The OUTstatistics in the last

Table 18–2 ODCIStatsCollect Parameters

Parameter Meaning

col column for which statistics are being collected

options options passed to ANALYZE

statistics user-defined statistics collected

ODCIStatsCollect (Column)

18-8 Oracle9i Data Cartridge Developer’s Guide

call are the aggregate statistics for the table. The ODCIColInfo.Partition field is

NULL in the first and last calls.

If user-defined statistics are being collected for only one partition of the table, two

ODCIStatsCollect calls are made. In the first, you should collect statistics for the

partition. For this call, the TablePartition attribute of the ODCIColInfo
structure is filled in and the ODCIEnv.CallProperty is set to FirstCall . The

statistics in the OUTarguments in the ODCIStatsCollect call are inserted into the

USTATS$ table corresponding to the partition.

In the second call you can update the aggregate statistics of the table based upon

the new statistics collected for the partition. In this call, the

ODCIEnv.CallPropertyflag is set to FinalCall to indicate that it is the

second call. If you do not want to modify the aggregate statistics, read the aggregate

statistics of the table from the catalog and pass that back in the statistics field as the

OUT argument. Whatever value is present in the statistics argument is written in the

USTATS$ by the server. The ODCIColInfo.TablePartition is filled in with the

partition name in both the calls.

Return ’SYS.ODCISTATS2’ in the ODCIGetInterfaces call to indicate that you

are using the Oracle9i version of the ODCISTATS interface, that supports

partitioning.

ODCIStatsCollect (Index)

Reference: Extensible Optimizer Interface 18-9

ODCIStatsCollect (Index)

Syntax
FUNCTION ODCIStatsCollect(ia ODCIIndexInfo, options ODCIStatsOptions, statistics OUT RAW) return NUMBER

Purpose
ODCIStatsCollect is called by the ANALYZE INDEX command to collect

user-defined statistics on an index or a partition of an index.

Returns
The function returns ODCIConst.Success , ODCIConst.Error , or

ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

If statistics are being collected for the entire partitioned index, the

IndexPartition field is null, and n+2 calls are made to the ODCIStatsCollect
function. This scenario is similar to that described for the column version of

ODCIStatsCollect on page 18-7.

If the statistics are being collected for a single partition of the index, the

IndexPartition field contains the name of the partition, and two calls are made

to the ODCIStatsCollect function. The first call is made to obtain the statistics

for the index partition, and the second call is made to obtain the aggregate statistics

for the domain index.

To collect statistics on a non-partitioned domain index only a single call is made to

the ODCIStatsCollect function.

Table 18–3 ODCIStatsCollect Parameters

Parameter Meaning

ia domain index for which statistics are being collected

options options passed to ANALYZE

statistics user-defined statistics collected

ODCIStatsCollect (Index)

18-10 Oracle9i Data Cartridge Developer’s Guide

Return ’SYS.ODCISTATS2’ in the ODCIGetInterfaces call to indicate that you

are using the Oracle9i version of the ODCISTATS interface, that supports

partitioning.

ODCIStatsDelete (Column)

Reference: Extensible Optimizer Interface 18-11

ODCIStatsDelete (Column)

Syntax
FUNCTION ODCIStatsDelete(col ODCIColInfo, statistics OUT RAW, env ODCIEnv) return NUMBER

Purpose
ODCIStatsDelete is called by the ANALYZE <table> DELETE STATISTICS
command to delete user-defined statistics on a table or a partition of a table.

Returns
ODCIConst.Success , ODCIConst.Error , or ODCIConst.Warning.

Usage Notes
This function should be implemented as a static method.

When the function is called for a non-partitioned table, the statistics argument

in the ODCIStatsDelete interface is ignored.

If the statistics are being deleted for a partitioned table, the ODCIStatsDelete is

called n+1 times. The first n calls are with the partition name filled in in the

ODCIColInfo structure and the ODCIEnv.CallProperty set to

IntermediateCall . The last call is made with the ODCIEnv.CallProperty set

to FinalCall .

The order of operations that you must perform for a delete are the inverse of what

you do to collect statistics: In the first call, delete the table-level statistics from your

statistics tables; in the intermediate n calls, delete the statistics for the specific

partitions; and in the last call drop or clean up any structures created for holding

statistics for the deleted table. The ODCIColInfo.TablePartition is set to null

Table 18–4 ODCIStatsDelete Parameters

Parameter Meaning

col Column for which statistics are being deleted

statistics OUT Contains table-level aggregate statistics for a partitioned table

env Contains information about how many times the function has
been called by the server

ODCIStatsDelete (Column)

18-12 Oracle9i Data Cartridge Developer’s Guide

in the first and last calls. In the intermediate n calls, the TablePartition field is

filled in.

If statistics are being deleted for only one partition, two ODCIStatsDelete calls

are made. In each call, ODCIColInfo.TablePartition is filled in with the

partition name. On the first call, delete any user-defined statistics collected for that

partition. On the second call, update the aggregate statistics for the table and return

these aggregate statistics as an OUT argument.

Return ’SYS.ODCISTATS2’ in the ODCIGetInterfaces call to indicate that you

are using the Oracle9i version of the ODCISTATS interface, that supports

partitioning.

ODCIStatsDelete (Index)

Reference: Extensible Optimizer Interface 18-13

ODCIStatsDelete (Index)

Syntax
FUNCTION ODCIStatsDelete(ia ODCIIndexInfo, statistics OUT RAW, env ODCIEnv) return NUMBER

Purpose
ODCIStatsDelete is called by the ANALYZE <table> DELETE STATISTICS
command to delete user-defined statistics on an index or a partition of an index.

Returns
ODCIConst.Success , ODCIConst.Error , or ODCIConst.Warning.

Usage Notes
This function should be implemented as a static method.

When the function is called for a non-partitioned index, the statistics argument

in the ODCIStatsDelete interface is ignored.

If statistics are being deleted for a partitioned index, ODCIStatsDelete is called

n+2 times. The first and the last call are made with the ODCIEnv.CallProperty
set to FirstCall and FinalCall respectively and do not have the partition name

set in the ODCIIndexInfo type. The intermediate n calls are made with the

partition name filled in in the ODCIIndexInfo structure and the

ODCIEnv.CallProperty set to IntermediateCall .

The order of operations that you must perform to delete statistics are the inverse of

what you do to collect statistics: In the first call, delete the index-level statistics from

your statistics tables; in the intermediate n calls, delete the statistics for the specific

partitions; and in the last call drop or clean up any structures created for holding

the deleted statistics. The ODCIIndexInfo.IndexPartition is set to null in the

Table 18–5 ODCIStatsDelete Parameters

Parameter Meaning

ia Domain index for which statistics are being deleted

statistics OUT Contains aggregate statistics for a partitioned index

env Contains information about how many times the function has
been called by the server

ODCIStatsDelete (Index)

18-14 Oracle9i Data Cartridge Developer’s Guide

first and last calls. In the intermediate n calls, the IndexPartition field is filled

in.

If statistics are being deleted for only one partition, two ODCIStatsDelete calls

are made. In each call, ODCIIndexInfo.IndexPartition is filled in with the

partition name. On the first call, delete any user-defined statistics collected for that

partition. On the second call, update the aggregate statistics for the index and return

these aggregate statistics as an OUT argument.

Return ’SYS.ODCISTATS2’ in the ODCIGetInterfaces call to indicate that you

are using the Oracle9i version of the ODCISTATS interface, that supports

partitioning.

ODCIStatsFunctionCost

Reference: Extensible Optimizer Interface 18-15

ODCIStatsFunctionCost

Syntax
FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost, args
ODCIArgDescList, <list of function arguments>) return NUMBER

Purpose
Computes the cost of a function.

Returns
ODCIConst.Success , ODCIConst.Error , or ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 18–6 ODCIStatsFunctionCost Parameters

Parameter Meaning

func Function or type method for which the cost is being computed

cost Computed cost (must be positive whole numbers)

args Descriptor of actual arguments with which the function or type
method was called. If the function has n arguments, the args
array will contain n elements, each describing the actual
arguments of the function or type method

<list of function
arguments>

List of actual parameters to the function or type method; the
number, position, and type of each argument must be the same
as in the function or type method

ODCIStatsIndexCost

18-16 Oracle9i Data Cartridge Developer’s Guide

ODCIStatsIndexCost

Syntax
FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER, cost OUT ODCICost, qi
ODCIQueryInfo, pred ODCIPredInfo, args ODCIArgDescList, start <operator_return_type>, stop
<operator_return_type>, <list of operator arguments>, env ODCIEnv) return NUMBER

Purpose
Calculates the cost of a domain index scan—either a scan of the entire index or a

scan of one or more index partitions if a local domain index has been built.

For each table in the query, the optimizer uses partition pruning to determine the

range of partitions that may be accessed. These partitions are called interesting
partitions. The set of interesting partitions for a table is also the set of interesting

partitions for all domain indexes on that table. The cost of a domain index can

depend on the set of interesting partitions, so the optimizer passes a list of

interesting index partitions to ODCIStatsIndexCost in the args argument (the

type of this argument, ODCIArgDescList , is a list of ODCIArgDesc argument

descriptor types) for those arguments that are columns. For non-partitioned domain

indexes or for cases where no partition pruning is possible, no partition list is

passed to ODCIStatsIndexCost , and you should assume that the entire index

will be accessed.

The domain index key can contain multiple column arguments (for example, the

indexed column and column arguments from other tables appearing earlier in a join

order). For each column appearing in the index key, the args argument contains

the list of interesting partitions for the table. For example, for an index key

op(T1.c1, T2.c2) = 1

the optimizer passes a list of interesting partitions for tables T1 and T2 if they are

partitioned and there is partition pruning for them.

Table 18–7 ODCIStatsIndexCost Parameters

Parameter Meaning

ia domain index for which statistics are being collected

sel the user-computed selectivity of the predicate

cost computed cost (must be positive whole numbers)

ODCIStatsIndexCost

Reference: Extensible Optimizer Interface 18-17

Returns
ODCIConst.Success , ODCIConst.Error , or ODCIConst.Warning

Usage Notes
■ This function should be implemented as a static type method.

■ Only a single call is made to the ODCIIndexCost function for queries on

partitioned or non-partitioned tables. For queries on partitioned tables,

additional information is passed in the ODCIIndexCost function. Note that

some partitions in the list passed to ODCIStatsIndexCost may not actually

be accessed by the query. The list of interesting partitions chiefly serves to

exclude partitions that definitely will not be accessed.

■ When the ODCIIndexCost function is invoked, users can fill in a string in the

IndexCostInfo field of the cost attribute to supply any additional

information that might be helpful. The string (255 characters maximum) is

displayed in the OPTIONS column in the EXPLAIN PLAN output when an

execution plan chooses a domain index scan.

qi Information about the query

pred Information about the predicate

args Descriptor of start , stop , and actual value arguments with
which the operator was called. If the operator has n arguments,
the args array will contain n+1 elements, the first element
describing the start value, the second element describing the
stop value, and the remaining n-1 elements describing the
actual value arguments of the operator (that is, the arguments
after the first)

start Lower bound of the operator (for example, 2 for a predicate
fn(...) > 2)

stop Upper bound of the operator (for example, 5 for a predicate
fn(...) < 5)

<list of function
arguments>

List of actual parameters to the operator (excluding the first);
the number, position, and type of each argument must be the
same as in the operator

env Contains general information about the environment in which
the routine is executing

Table 18–7 ODCIStatsIndexCost Parameters (Cont.)

Parameter Meaning

ODCIStatsIndexCost

18-18 Oracle9i Data Cartridge Developer’s Guide

■ Users implementing this function must return 'SYS.ODCISTATS2' in the

ODCIGetInterfaces call.

ODCIStatsSelectivity

Reference: Extensible Optimizer Interface 18-19

ODCIStatsSelectivity

Syntax
FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args ODCIArgDescList,
start <function_return_type>, stop <function_return_type>, <list of function arguments>, env
ODCIEnv) return NUMBER

Purpose
This function specifies the selectivity of a predicate. The selectivity of a predicate

involving columns from a single table is the fraction of rows of that table that satisfy

the predicate. For predicates involving columns from multiple tables (for example,

join predicates), the selectivity should be computed as a fraction of rows in the

Cartesian product of those tables.

As in ODCIStatsIndexCost , the args argument contains a list of interesting
partitions for the tables whose columns are referenced in the predicate for which the

selectivity has to be computed. These interesting partitions are partitions that

cannot be eliminated by partition pruning as possible candidates to be accessed.

The set of interesting partitions is passed to the function only if partition pruning

has occurred (in other words, the interesting partitions are a strict subset of all the

partitions).

For example, when ODCIStatsSelectivity is called to compute the selectivity

of the predicate:

f(T1.c1, T2.c2) > 4

the optimizer passes the list of interesting partitions for the table T1 (in the

argument descriptor for column T1.c1) if partition pruning is possible; similarly

for the table T2.

If a predicate contains columns from more than one table, this information is

indicated by the flag bit PredMultiTable (new in Oracle9i) set in the Flags
attribute of the pred argument.

Table 18–8 ODCIStatsSelectivity Parameters

Parameter Meaning

pred Predicate for which the selectivity is being computed

ODCIStatsSelectivity

18-20 Oracle9i Data Cartridge Developer’s Guide

Returns
ODCIConst.Success , ODCIConst.Error , or ODCIConst.Warning

Usage Notes
■ This function should be implemented as a static type method.

■ Users implementing this interface must return 'SYS.ODCISTATS2' in the

ODCIGetInterfaces call.

■ The selectivity of a predicate involving columns from a single table is the

fraction of rows of that table that satisfy the predicate. For predicates involving

columns from multiple tables (for example, join predicates), the selectivity

should be computed as a fraction of rows in the Cartesian product of those

tables. For tables with partition pruning, the selectivity should be expressed

relative to the cardinalities of the interesting partitions of the tables involved.

The selectivity of predicates involving columns on partitioned tables is

computed relative to the rows in the interesting partitions. Thus, the selectivity

of the predicate

sel The computed selectivity, expressed as a number between (and
including) 0 and 100, representing a percentage.

args Descriptor of start , stop , and actual arguments with which
the function, type method, or operator was called. If the
function has n arguments, the args array will contain n+2
elements, the first element describing the start value, the
second element describing the stop value, and the remaining n
elements describing the actual arguments of the function,
method, or operator

start Lower bound of the function (for example, 2 for a predicate
fn(...) > 2)

stop Upper bound of the function (for example, 5 for a predicate
fn(...) < 5)

<list of function
arguments>

List of actual parameters to the function or type method; the
number, position, and type of each argument must be the same
as in the function, type method, or operator

env Contains general information about the environment in which
the routine is executing

Table 18–8 ODCIStatsSelectivity Parameters (Cont.)

Parameter Meaning

ODCIStatsSelectivity

Reference: Extensible Optimizer Interface 18-21

g(T1.c1) < 5

is the percentage of rows in the set of interesting partitions (or all partitions if

no partition pruning is possible) that satisfies this predicate. For predicates with

columns from multiple tables, the selectivity must be relative to the number of

rows in the cartesian product of the tables.

For example, consider the predicate:

f(T1.c1, T2.c2) > 4

Suppose that the number of rows in the interesting partitions is 1000 for T1 and

5000 for T2. The selectivity of this predicate must be expressed as the

percentage of the 5,000,000 rows in the Cartesian product of T1 and T2 that

satisfy the predicate.

■ If a predicate contains columns from more than one table, this information is

indicated by the flag bit PredMultiTable (new in Oracle9i) set in the Flags
attribute of the pred argument.

■ A selectivity expressed relative to the base cardinalities of the tables involved

may be only an approximation of the true selectivity if cardinalities (and other

statistics) of the tables have been reduced based on single-table predicates or

other joins earlier in the join order. However, this approximation to the true

selectivity should be acceptable to most applications.

■ Only one call is made to the ODCIStatsSelectivity function for queries on

partitioned or non-partitioned tables. In the case of queries on partitioned

tables, additional information is passed while calling the

ODCIStatsSelectivity function.

ODCIStatsSelectivity

18-22 Oracle9i Data Cartridge Developer’s Guide

Reference: User-Defined Aggregates Interface 19-1

19
Reference: User-Defined Aggregates

Interface

This chapter describes the routines that need to be implemented to define a

user-defined aggregate function. The routines are implemented as methods in an

object type. Then the CREATE FUNCTION statement is used to actually create the

aggregate function.

See Also: Chapter 11, "User-Defined Aggregate Functions"

ODCIAggregateInitialize

19-2 Oracle9i Data Cartridge Developer’s Guide

ODCIAggregateInitialize

Syntax
STATIC FUNCTION ODCIAggregateInitialize(actx IN OUT <impltype>) RETURN NUMBER

Purpose
The ODCIAggregateInitialize function is invoked by Oracle as the first step of

aggregation. This function typically initializes the aggregation context (an instance

of the implementation object type) and returns it (as an OUT parameter) to Oracle.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
Implement this routine as a static method.

Table 19–1 ODCIAggregateInitialize Parameters

Parameter Meaning

actx (IN OUT) The aggregation context that is initialized by the routine. Its
value will be null for regular aggregation cases. In aggregation
over windows, actx is the context of the previous window.
This object instance is passed in as a parameter to the next
aggregation routine.

ODCIAggregateIterate

Reference: User-Defined Aggregates Interface 19-3

ODCIAggregateIterate

Syntax
MEMBER FUNCTION ODCIAggregateIterate(self IN OUT <impltype>, val <inputdatatype>) RETURN
NUMBER

Purpose
The ODCIAggregateIterate function is invoked by Oracle to process the next

input row. The routine is invoked by passing in the aggregation context and the

value of the next input to be aggregated. This routine processes the input value,

updates the aggregation context accordingly, and returns the context back to Oracle.

This routine is invoked by Oracle for every value in the underlying group,

including NULL values.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
This is a mandatory routine and is implemented as a member method.

Table 19–2 ODCIAggregateIterate Parameters

Parameter Meaning

self (IN) The value of the current aggregation context

self (OUT) The updated aggregation context returned to Oracle

val (IN) The input value to be aggregated

ODCIAggregateMerge

19-4 Oracle9i Data Cartridge Developer’s Guide

ODCIAggregateMerge

Syntax
MEMBER FUNCTION ODCIAggregateMerge(self IN OUT <impltype>, ctx2 IN <impltype>) RETURN
NUMBER

Purpose
The ODCIAggregateMerge function is invoked by Oracle to merge two

aggregation contexts into a single object instance. Two aggregation contexts may

need to be merged during either serial or parallel evaluation of the user-defined

aggregate. This function takes the two aggregation contexts as input, merges them,

and returns the single, merged instance of the aggregation context.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
This is a mandatory routine and is implemented as a member method.

Table 19–3 ODCIAggregateMerge Parameters

Parameter Meaning

self (IN) The value of one aggregation context

ctx2 (IN) The value of the other aggregation context

self (OUT) The single, merged aggregation context returned to Oracle

ODCIAggregateTerminate

Reference: User-Defined Aggregates Interface 19-5

ODCIAggregateTerminate

Syntax
MEMBER FUNCTION ODCIAggregateTerminate(self IN <impltype>, ReturnValue OUT <return_type>,
flags IN number) RETURN NUMBER

Purpose
The ODCIAggregateTerminate function is invoked by Oracle as the final step of

aggregation. This routine takes the aggregation context as input and returns the

resultant aggregate value to Oracle. This routine also typically performs any

necessary cleanup operations such as freeing memory, and so on.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
This is a mandatory routine and is implemented as a member method.

Table 19–4 ODCIAggregateTerminate Parameters

Parameter Meaning

self (IN) The value of the aggregation context

ReturnValue (OUT) The resultant aggregate value

flags (IN) A bit vector that indicates various options. A set bit of ODCI_
AGGREGATE_REUSE_CTX indicates that the context will be
reused and that therefore any external context should not be
freed. (See "Reusing the Aggregation Context for Analytic
Functions" on page 11-10 for information on using this flag.)

ODCIAggregateDelete

19-6 Oracle9i Data Cartridge Developer’s Guide

ODCIAggregateDelete

Syntax
MEMBER FUNCTION ODCIAggregateDelete(self IN OUT <impltype>, val <inputdatatype>) RETURN
NUMBER

Purpose
The ODCIAggregateDelete function is invoked by Oracle to remove an input

value from the current group. The routine is invoked by passing in the aggregation

context and the value of the input to be removed. The routine processes the input

value, updates the aggregation context accordingly, and returns the context to

Oracle. This routine is invoked by Oracle during computation of user-defined

aggregates with analytic (windowing) functions.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
This is an optional routine and is implemented as a member method.

Table 19–5 ODCIAggregateDelete Parameters

Parameter Meaning

self (IN) The value of the current aggregation context

self (OUT) The updated aggregation context returned to Oracle

val (IN) The input value to be removed from the current group

ODCIAggregateWrapContext

Reference: User-Defined Aggregates Interface 19-7

ODCIAggregateWrapContext

Syntax
MEMBER FUNCTION ODCIAggregateWrapContext(self IN OUT <impltype>) RETURN NUMBER

Purpose
The ODCIAggregateWrapContext function is invoked by Oracle if the

user-defined aggregate has been declared to have external context and is

transmitting partial aggregates from slave processes.

This routine must integrate all external pieces of the current aggregation context to

make the context self-contained.

Returns
ODCIConst.Success on success, or ODCIConst.Error on error.

Usage Notes
This is an optional routine and is implemented as a member method.

See Also: "Handling Large Aggregation Contexts" on page 11-7

for more information on using this function

Table 19–6 ODCIAggregateWrapContext Parameters

Parameter Meaning

self (IN) The value of the current aggregation context

self (OUT) The updated and self-contained aggregation context returned
to Oracle

ODCIAggregateWrapContext

19-8 Oracle9i Data Cartridge Developer’s Guide

Reference: Pipelined and Parallel Table Functions 20-1

20
Reference: Pipelined and Parallel Table

Functions

This chapter describes the routines that need to be implemented to define pipelined

and parallel table functions in C.

See Also: Chapter 12 for an overall explanation of pipelined and

parallel table functions

ODCITableStart

20-2 Oracle9i Data Cartridge Developer’s Guide

ODCITableStart

Syntax
STATIC FUNCTION ODCITableStart(sctx OUT <imptype>, <args>) RETURN NUMBER

Purpose
ODCITableStart initializes the scan of a table function.

Returns
ODCIConst.Success on success, ODCIConst.Error otherwise.

Usage Notes
■ This is the first routine that is invoked to begin retrieving rows from a table

function. This routine typically performs the setup needed for the scan. The

scan context is created (as an object instance sctx) and returned to Oracle. The

arguments to the table function, specified by the user in the SELECT statement,

are passed in as parameters to this routine.

■ Any REF CURSOR arguments of the table function must be declared as SYS_
REFCURSOR type in the declaration of the ODCITableStart method.

Table 20–1 ODCITableStart Parameters

Parameter Meaning

sctx (OUT) The scan context returned by this routine. This value is passed
in as a parameter to the later scan routines. The scan context is
an instance of the object type containing the implementation of
the ODCITable routines.

args (IN) Set of zero or more arguments specified by the user for the
table function

ODCITableFetch

Reference: Pipelined and Parallel Table Functions 20-3

ODCITableFetch

Syntax
MEMBER FUNCTION ODCITableFetch(self IN OUT <imptype>, nrows IN NUMBER, rws OUT
<coll-type>) RETURN NUMBER

Purpose
ODCITableFetch returns the next batch of rows from a table function.

Returns
ODCIConst.Success on success, ODCIConst.Error otherwise.

Usage Notes
ODCITableFetch is invoked one or more times by Oracle to retrieve all the rows

in the collection returned by the table function. The scan context is passed in as a

parameter. Typically ODCITableFetch uses the input scan context and computes

the next set of rows to be returned to Oracle. In addition, it may update the scan

context accordingly.

Returning more rows in each invocation of fetch() reduces the number of fetch

calls that need to be made and thus improves performance.

Table 20–2 ODCITableFetch Parameters

Parameter Meaning

self (IN) The current scan context. This is the object instance returned to
Oracle by the previous invocation of the scan routine.

self (OUT) The scan context to be passed to later scan routine invocations.

nrows (IN) The number of rows the system expects in the current fetch
cycle. The method can ignore this value and return a different
number of rows. If fewer rows are returned, the method is
called again; if more rows are returned, they are processed in
the next cycle.

rws (OUT) The next batch of rows from the table function. This is returned
as an instance of the same collection type as the return type of
the table function.

ODCITableFetch

20-4 Oracle9i Data Cartridge Developer’s Guide

Oracle calls ODCITableFetch repeatedly until all rows in the table function's

collection have been returned. When all rows have been returned,

ODCITableFetch should return a null collection.

ODCITableClose

Reference: Pipelined and Parallel Table Functions 20-5

ODCITableClose

Syntax
MEMBER FUNCTION ODCITableClose(self IN <imptype>) RETURN NUMBER

Purpose
ODCITableClose performs cleanup operations after scanning a table function.

Returns
ODCIConst.Success on success, ODCIConst.Error otherwise.

Usage Notes
Oracle invokes ODCITableClose after the last fetch call. The scan context is passed

in as a parameter. ODCITableClose then performs any necessary cleanup

operations, such as freeing memory.

Table 20–3 ODCITableClose Parameters

Parameter Meaning

self (IN) The scan context set up by previous scan routine invocation

ODCITableDescribe

20-6 Oracle9i Data Cartridge Developer’s Guide

ODCITableDescribe

Syntax
STATIC FUNCTION ODCITableDescribe(rtype OUT ANYTYPE, <args>) RETURN NUMBER

Purpose
ODCITableDescribe returns describe information for a table function whose

return type is ANYDATASET.

Returns
ODCIConst.Success on success, ODCIConst.Error otherwise.

Usage Notes
Oracle invokes ODCITableDescribe at query compilation time to retrieve the

specific type information.

Note that this interface is applicable only for table functions whose return type is

ANYDATASET. The format of elements within the returned collection is conveyed to

Oracle by returning an instance of ANYTYPE. The ANYTYPE instance specifies the

actual structure of the returned rows in the context of the specific query.

ANYTYPE provides a datatype to model the metadata of a row—the names and

datatypes of all the columns (fields) comprising the row. It also provides a set of

PL/SQL and C interfaces for users to construct and access the metadata

information. ANYDATASET, like ANYTYPE, contains a description of a given type,

but ANYDATASET also contains a set of data instances of that type

Table 20–4 ODCITableDescribe Parameters

Parameter Meaning

rtype (OUT) The AnyType value that describes the returned rows from the
table function

args (IN) The set of zero or more arguments specified by the user for the
table function.

See Also: "Transient and Generic Types" in Chapter 12 for a

discussion of ANYTYPE, ANYDATA, and ANYDATASET

ODCITableDescribe

Reference: Pipelined and Parallel Table Functions 20-7

The following example shows a query on a table function that uses the

ANYDATASET type:

SELECT * FROM
TABLE(CAST(AnyBooks('http://.../books.xml') AS ANYDATASET));

At query compilation time, Oracle invokes the ODCITableDescribe routine. The

routine typically uses the user arguments to figure out the nature of the return rows.

In this example, ODCITableDescribe consults the DTD of the XML documents at

the specified location to determine the appropriate ANYTYPE value to return. Each

ANYTYPE instance is constructed by invoking the constructor APIs with this field

name and datatype information.

Any arguments of the table function which are not constants are passed to

ODCITableDescribe as NULLs because their values are not known at compile

time.

ODCITableDescribe

20-8 Oracle9i Data Cartridge Developer’s Guide

Example: Pipelined Table Functions: Interface Approach A-1

A
Example: Pipelined Table Functions:

Interface Approach

This appendix supplements the discussion of table functions in Chapter 12. The

appendix shows two complete implementations of the StockPivot table function

using the interface approach. One implementation is done in C and one in Java.

The function StockPivot converts a row of the type (Ticker, OpenPrice,
ClosePrice) into two rows of the form (Ticker, PriceType, Price) . For

example, from an input row ("ORCL", 41, 42) , the table function returns the

two rows ("ORCL", "O", 41) and ("ORCL", "C", 42) .

C Implementation
In this example, the three ODCITable interface methods of the implementation

type are implemented as external functions in C. The code to implement these

methods is shown after the following SQL declarations:

SQL Declarations for C Implementation

-- Create the input stock table

CREATE TABLE StockTable (
 ticker VARCHAR(4),
 open_price NUMBER,
 close_price NUMBER
);

-- Create the types for the table function's output collection
-- and collection elements

C Implementation

A-2 Oracle9i Data Cartridge Developer’s Guide

CREATE TYPE TickerType AS OBJECT
(
 ticker VARCHAR2(4),
 PriceType VARCHAR2(1),
 price NUMBER
);
/

CREATE TYPE TickerTypeSet AS TABLE OF TickerType;
/

-- Create the external library object

CREATE LIBRARY StockPivotLib IS '/home/bill/libstock.so';
/

-- Create the implementation type

CREATE TYPE StockPivotImpl AS OBJECT
(
 key RAW(4),

 STATIC FUNCTION ODCITableStart(sctx OUT StockPivotImpl, cur SYS_REFCURSOR)
 RETURN PLS_INTEGER
 AS LANGUAGE C
 LIBRARY StockPivotLib
 NAME "ODCITableStart"
 WITH CONTEXT
 PARAMETERS (
 context,
 sctx,
 sctx INDICATOR STRUCT,
 cur,
 RETURN INT
),

 MEMBER FUNCTION ODCITableFetch(self IN OUT StockPivotImpl, nrows IN NUMBER,
 outSet OUT TickerTypeSet) RETURN PLS_INTEGER
 AS LANGUAGE C
 LIBRARY StockPivotLib
 NAME "ODCITableFetch"
 WITH CONTEXT
 PARAMETERS (
 context,

C Implementation

Example: Pipelined Table Functions: Interface Approach A-3

 self,
 self INDICATOR STRUCT,
 nrows,
 outSet,
 outSet INDICATOR,
 RETURN INT
),

 MEMBER FUNCTION ODCITableClose(self IN StockPivotImpl) RETURN PLS_INTEGER
 AS LANGUAGE C
 LIBRARY StockPivotLib
 NAME "ODCITableClose"
 WITH CONTEXT
 PARAMETERS (
 context,
 self,
 self INDICATOR STRUCT,
 RETURN INT
)

);
/

-- Define the ref cursor type

CREATE PACKAGE refcur_pkg IS
 TYPE refcur_t IS REF CURSOR RETURN StockTable%ROWTYPE;
END refcur_pkg;
/

-- Create table function

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
PIPELINED USING StockPivotImpl;
/

C Implementation of the ODCITable Methods
The following code implements the three ODCITable methods as external

functions in C:

#ifndef OCI_ORACLE
include <oci.h>
#endif

C Implementation

A-4 Oracle9i Data Cartridge Developer’s Guide

#ifndef ODCI_ORACLE
include <odci.h>
#endif

/*---
 PRIVATE TYPES AND CONSTANTS
 ---*/

/* The struct holding the user's stored context */

struct StoredCtx
{
 OCIStmt* stmthp;
};
typedef struct StoredCtx StoredCtx;

/* OCI Handles */

struct Handles_t
{
 OCIExtProcContext* extProcCtx;
 OCIEnv* envhp;
 OCISvcCtx* svchp;
 OCIError* errhp;
 OCISession* usrhp;
};
typedef struct Handles_t Handles_t;

/********************** SQL Types C representation **********************/

/* Table function's implementation type */

struct StockPivotImpl
{
 OCIRaw* key;
};
typedef struct StockPivotImpl StockPivotImpl;

struct StockPivotImpl_ind
{
 short _atomic;
 short key;
};
typedef struct StockPivotImpl_ind StockPivotImpl_ind;

C Implementation

Example: Pipelined Table Functions: Interface Approach A-5

/* Table function's output collection element type */

struct TickerType
{
 OCIString* ticker;
 OCIString* PriceType;
 OCINumber price;
};
typedef struct TickerType TickerType;

struct TickerType_ind
{
 short _atomic;
 short ticker;
 short PriceType;
 short price;
};
typedef struct TickerType_ind TickerType_ind;

/* Table function's output collection type */

typedef OCITable TickerTypeSet;

/*--*/
/* Static Functions */
/*--*/

static int GetHandles(OCIExtProcContext* extProcCtx, Handles_t* handles);

static StoredCtx* GetStoredCtx(Handles_t* handles, StockPivotImpl* self,
 StockPivotImpl_ind* self_ind);

static int checkerr(Handles_t* handles, sword status);

/*--*/
/* Functions definitions */
/*--*/

/* Callout for ODCITableStart */

int ODCITableStart(OCIExtProcContext* extProcCtx, StockPivotImpl* self,
 StockPivotImpl_ind* self_ind, OCIStmt** cur)
{
 Handles_t handles; /* OCI hanldes */
 StoredCtx* storedCtx; /* Stored context pointer */

C Implementation

A-6 Oracle9i Data Cartridge Developer’s Guide

 ub4 key; /* key to retrieve stored context */

 /* Get OCI handles */
 if (GetHandles(extProcCtx, &handles))
 return ODCI_ERROR;

 /* Allocate memory to hold the stored context */
 if (checkerr(&handles, OCIMemoryAlloc((dvoid*) handles.usrhp, handles.errhp,
 (dvoid**) &storedCtx,
 OCI_DURATION_STATEMENT,
 (ub4) sizeof(StoredCtx),
 OCI_MEMORY_CLEARED)))
 return ODCI_ERROR;

 /* store the input ref cursor in the stored context */
 storedCtx->stmthp=*cur;

 /* generate a key */
 if (checkerr(&handles, OCIContextGenerateKey((dvoid*) handles.usrhp,
 handles.errhp, &key)))
 return ODCI_ERROR;

 /* associate the key value with the stored context address */
 if (checkerr(&handles, OCIContextSetValue((dvoid*)handles.usrhp,
 handles.errhp,
 OCI_DURATION_STATEMENT,
 (ub1*) &key, (ub1) sizeof(key),
 (dvoid*) storedCtx)))
 return ODCI_ERROR;

 /* stored the key in the scan context */
 if (checkerr(&handles, OCIRawAssignBytes(handles.envhp, handles.errhp,
 (ub1*) &key, (ub4) sizeof(key),
 &(self->key))))
 return ODCI_ERROR;

 /* set indicators of the scan context */
 self_ind->_atomic = OCI_IND_NOTNULL;
 self_ind->key = OCI_IND_NOTNULL;

 return ODCI_SUCCESS;
}

C Implementation

Example: Pipelined Table Functions: Interface Approach A-7

/***/

/* Callout for ODCITableFetch */

int ODCITableFetch(OCIExtProcContext* extProcCtx, StockPivotImpl* self,
 StockPivotImpl_ind* self_ind, OCINumber* nrows,
 TickerTypeSet** outSet, short* outSet_ind)
{
 Handles_t handles; /* OCI hanldes */
 StoredCtx* storedCtx; /* Stored context pointer */
 int nrowsval; /* number of rows to return */

 /* Get OCI handles */
 if (GetHandles(extProcCtx, &handles))
 return ODCI_ERROR;

 /* Get the stored context */
 storedCtx=GetStoredCtx(&handles,self,self_ind);
 if (!storedCtx) return ODCI_ERROR;

 /* get value of nrows */
 if (checkerr(&handles, OCINumberToInt(handles.errhp, nrows, sizeof(nrowsval),
 OCI_NUMBER_SIGNED, (dvoid *)&nrowsval)))
 return ODCI_ERROR;

 /* return up to 10 rows at a time */
 if (nrowsval>10) nrowsval=10;

 /* Initially set the output to null */
 *outSet_ind=OCI_IND_NULL;

 while (nrowsval>0)
 {

 TickerType elem; /* current collection element */
 TickerType_ind elem_ind; /* current element indicator */

 OCIDefine* defnp1=(OCIDefine*)0; /* define handle */
 OCIDefine* defnp2=(OCIDefine*)0; /* define handle */
 OCIDefine* defnp3=(OCIDefine*)0; /* define handle */

 sword status;

 char ticker[5];
 float open_price;

C Implementation

A-8 Oracle9i Data Cartridge Developer’s Guide

 float close_price;
 char PriceType[2];

 /* Define the fetch buffer for ticker symbol */
 if (checkerr(&handles, OCIDefineByPos(storedCtx->stmthp, &defnp1,
 handles.errhp, (ub4) 1,
 (dvoid*) &ticker,
 (sb4) sizeof(ticker),
 SQLT_STR, (dvoid*) 0, (ub2*) 0,
 (ub2*) 0, (ub4) OCI_DEFAULT)))
 return ODCI_ERROR;

 /* Define the fetch buffer for open price */
 if (checkerr(&handles, OCIDefineByPos(storedCtx->stmthp, &defnp2,
 handles.errhp, (ub4) 2,
 (dvoid*) &open_price,
 (sb4) sizeof(open_price),
 SQLT_FLT, (dvoid*) 0, (ub2*) 0,
 (ub2*) 0, (ub4) OCI_DEFAULT)))
 return ODCI_ERROR;

 /* Define the fetch buffer for closing price */
 if (checkerr(&handles, OCIDefineByPos(storedCtx->stmthp, &defnp3,
 handles.errhp, (ub4) 3,
 (dvoid*) &close_price,
 (sb4) sizeof(close_price),
 SQLT_FLT, (dvoid*) 0, (ub2*) 0,
 (ub2*) 0, (ub4) OCI_DEFAULT)))
 return ODCI_ERROR;

 /* fetch a row from the input ref cursor */
 status = OCIStmtFetch(storedCtx->stmthp, handles.errhp, (ub4) 1,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

 /* finished if no more data */
 if (status!=OCI_SUCCESS && status!=OCI_SUCCESS_WITH_INFO) break;

 /* Initialize the element indicator struct */

 elem_ind._atomic=OCI_IND_NOTNULL;
 elem_ind.ticker=OCI_IND_NOTNULL;
 elem_ind.PriceType=OCI_IND_NOTNULL;
 elem_ind.price=OCI_IND_NOTNULL;

 /* assign the ticker name */

C Implementation

Example: Pipelined Table Functions: Interface Approach A-9

 elem.ticker=NULL;
 if (checkerr(&handles, OCIStringAssignText(handles.envhp, handles.errhp,
 (text*) ticker,
 (ub2) strlen(ticker),
 &elem.ticker)))
 return ODCI_ERROR;

 /* assign the price type */
 elem.PriceType=NULL;
 sprintf(PriceType,"O");
 if (checkerr(&handles, OCIStringAssignText(handles.envhp, handles.errhp,
 (text*) PriceType,
 (ub2) strlen(PriceType),
 &elem.PriceType)))
 return ODCI_ERROR;

 /* assign the price */
 if (checkerr(&handles, OCINumberFromReal(handles.errhp, &open_price,
 sizeof(open_price), &elem.price)))
 return ODCI_ERROR;

 /* append element to output collection */
 if (checkerr(&handles, OCICollAppend(handles.envhp, handles.errhp,
 &elem, &elem_ind, *outSet)))
 return ODCI_ERROR;

 /* assign the price type */
 elem.PriceType=NULL;
 sprintf(PriceType,"C");
 if (checkerr(&handles, OCIStringAssignText(handles.envhp, handles.errhp,
 (text*) PriceType,
 (ub2) strlen(PriceType),
 &elem.PriceType)))
 return ODCI_ERROR;

 /* assign the price */
 if (checkerr(&handles, OCINumberFromReal(handles.errhp, &close_price,
 sizeof(close_price), &elem.price)))
 return ODCI_ERROR;

 /* append row to output collection */
 if (checkerr(&handles, OCICollAppend(handles.envhp, handles.errhp,
 &elem, &elem_ind, *outSet)))
 return ODCI_ERROR;

C Implementation

A-10 Oracle9i Data Cartridge Developer’s Guide

 /* set collection indicator to not null */
 *outSet_ind=OCI_IND_NOTNULL;

 nrowsval-=2;
 }

 return ODCI_SUCCESS;
}

/***/

/* Callout for ODCITableClose */

int ODCITableClose(OCIExtProcContext* extProcCtx, StockPivotImpl* self,
 StockPivotImpl_ind* self_ind)
{
 Handles_t handles; /* OCI hanldes */
 StoredCtx* storedCtx; /* Stored context pointer */

 /* Get OCI handles */
 if (GetHandles(extProcCtx, &handles))
 return ODCI_ERROR;

 /* Get the stored context */
 storedCtx=GetStoredCtx(&handles,self,self_ind);
 if (!storedCtx) return ODCI_ERROR;

 /* Free the memory for the stored context */
 if (checkerr(&handles, OCIMemoryFree((dvoid*) handles.usrhp, handles.errhp,
 (dvoid*) storedCtx)))
 return ODCI_ERROR;

 return ODCI_SUCCESS;
}

/***/

/* Get the stored context using the key in the scan context */

static StoredCtx* GetStoredCtx(Handles_t* handles, StockPivotImpl* self,
 StockPivotImpl_ind* self_ind)
{
 StoredCtx *storedCtx; /* Stored context pointer */
 ub1 *key; /* key to retrieve context */
 ub4 keylen; /* length of key */

C Implementation

Example: Pipelined Table Functions: Interface Approach A-11

 /* return NULL if the PL/SQL context is NULL */
 if (self_ind->_atomic == OCI_IND_NULL) return NULL;

 /* Get the key */
 key = OCIRawPtr(handles->envhp, self->key);
 keylen = OCIRawSize(handles->envhp, self->key);

 /* Retrieve stored context using the key */
 if (checkerr(handles, OCIContextGetValue((dvoid*) handles->usrhp,
 handles->errhp,
 key, (ub1) keylen,
 (dvoid**) &storedCtx)))
 return NULL;

 return storedCtx;
}

/***/

/* Get OCI handles using the ext-proc context */

static int GetHandles(OCIExtProcContext* extProcCtx, Handles_t* handles)
{
 /* store the ext-proc context in the handles struct */
 handles->extProcCtx=extProcCtx;

 /* Get OCI handles */
 if (checkerr(handles, OCIExtProcGetEnv(extProcCtx, &handles->envhp,
 &handles->svchp, &handles->errhp)))
 return -1;

 /* get the user handle */
 if (checkerr(handles, OCIAttrGet((dvoid*)handles->svchp,
 (ub4)OCI_HTYPE_SVCCTX,
 (dvoid*)&handles->usrhp,
 (ub4*) 0, (ub4)OCI_ATTR_SESSION,
 handles->errhp)))
 return -1;

 return 0;
}

/***/

Java Implementation

A-12 Oracle9i Data Cartridge Developer’s Guide

/* Check the error status and throw exception if necessary */

static int checkerr(Handles_t* handles, sword status)
{
 text errbuf[512]; /* error message buffer */
 sb4 errcode; /* OCI error code */

 switch (status)
 {
 case OCI_SUCCESS:
 case OCI_SUCCESS_WITH_INFO:
 return 0;
 case OCI_ERROR:
 OCIErrorGet ((dvoid*) handles->errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 sprintf((char*)errbuf, "OCI ERROR code %d",errcode);
 break;
 default:
 sprintf((char*)errbuf, "Warning - error status %d",status);
 break;
 }

 OCIExtProcRaiseExcpWithMsg(handles->extProcCtx, 29400, errbuf,
 strlen((char*)errbuf));

 return -1;
}

Java Implementation
In this example, the declaration of the implementation type references Java methods

instead of C functions. This is the only change from the preceding, C example: all

the other objects (TickerType , TickerTypeSet , refcur_pkg , StockTable ,

and StockPivot) are the same. The code to implement the Java methods is shown

after the SQL declarations in the following section.

SQL Declarations for Java Implementation
// create the directory object

CREATE OR REPLACE DIRECTORY JavaDir AS '/home/bill/Java';

// compile the java source

Java Implementation

Example: Pipelined Table Functions: Interface Approach A-13

CREATE AND COMPILE JAVA SOURCE NAMED source01
USING BFILE (JavaDir,'StockPivotImpl.java');
/
show errors

-- Create the implementation type

CREATE TYPE StockPivotImpl AS OBJECT
(
 key INTEGER,

 STATIC FUNCTION ODCITableStart(sctx OUT StockPivotImpl, cur SYS_REFCURSOR)
 RETURN NUMBER
 AS LANGUAGE JAVA

NAME 'StockPivotImpl.ODCITableStart(oracle.sql.STRUCT[], java.sql.ResultSet)
return java.math.BigDecimal',

 MEMBER FUNCTION ODCITableFetch(self IN OUT StockPivotImpl, nrows IN NUMBER,
 outSet OUT TickerTypeSet) RETURN NUMBER
 AS LANGUAGE JAVA
 NAME 'StockPivotImpl.ODCITableFetch(java.math.BigDecimal,
oracle.sql.ARRAY[]) return java.math.BigDecimal',

 MEMBER FUNCTION ODCITableClose(self IN StockPivotImpl) RETURN NUMBER
 AS LANGUAGE JAVA
 NAME 'StockPivotImpl.ODCITableClose() return java.math.BigDecimal'

);
/
show errors

Java Implementation of the ODCITable Methods
The following code implements the three ODCITable methods as external

functions in Java:

import java.io.*;
import java.util.*;
import oracle.sql.*;
import java.sql.*;
import java.math.BigDecimal;
import oracle.CartridgeServices.*;

Java Implementation

A-14 Oracle9i Data Cartridge Developer’s Guide

// stored context type

public class StoredCtx
{
 ResultSet rset;
 public StoredCtx(ResultSet rs) { rset=rs; }
}

// implementation type

public class StockPivotImpl implements SQLData
{
 private BigDecimal key;

 final static BigDecimal SUCCESS = new BigDecimal(0);
 final static BigDecimal ERROR = new BigDecimal(1);

 // Implement SQLData interface.

 String sql_type;
 public String getSQLTypeName() throws SQLException
 {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 key = stream.readBigDecimal();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeBigDecimal(key);
 }

 // type methods implementing ODCITable interface

 static public BigDecimal ODCITableStart(STRUCT[] sctx,ResultSet rset)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // create a stored context and store the result set in it

Java Implementation

Example: Pipelined Table Functions: Interface Approach A-15

 StoredCtx ctx=new StoredCtx(rset);

 // register stored context with cartridge services
 int key;
 try {
 key = ContextManager.setContext(ctx);
 } catch (CountException ce) {
 return ERROR;
 }

 // create a StockPivotImpl instance and store the key in it
 Object[] impAttr = new Object[1];
 impAttr[0] = new BigDecimal(key);
 StructDescriptor sd = new StructDescriptor("STOCKPIVOTIMPL",conn);
 sctx[0] = new STRUCT(sd,conn,impAttr);

 return SUCCESS;
 }

 public BigDecimal ODCITableFetch(BigDecimal nrows, ARRAY[] outSet)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // retrieve stored context using the key
 StoredCtx ctx;
 try {
 ctx=(StoredCtx)ContextManager.getContext(key.intValue());
 } catch (InvalidKeyException ik) {
 return ERROR;
 }

 // get the nrows parameter, but return up to 10 rows
 int nrowsval = nrows.intValue();
 if (nrowsval>10) nrowsval=10;

 // create a vector for the fetched rows
 Vector v = new Vector(nrowsval);
 int i=0;

 StructDescriptor outDesc =
 StructDescriptor.createDescriptor("TICKERTYPE", conn);
 Object[] out_attr = new Object[3];

 while(nrowsval>0 && ctx.rset.next()){

Java Implementation

A-16 Oracle9i Data Cartridge Developer’s Guide

 out_attr[0] = (Object)ctx.rset.getString(1);
 out_attr[1] = (Object)new String("O");
 out_attr[2] = (Object)new BigDecimal(ctx.rset.getFloat(2));
 v.add((Object)new STRUCT(outDesc, conn, out_attr));

 out_attr[1] = (Object)new String("C");
 out_attr[2] = (Object)new BigDecimal(ctx.rset.getFloat(3));
 v.add((Object)new STRUCT(outDesc, conn, out_attr));

 i+=2;
 nrowsval-=2;
 }

 // return if no rows found
 if(i==0) return SUCCESS;

 // create the output ARRAY using the vector
 Object out_arr[] = v.toArray();
 ArrayDescriptor ad = new ArrayDescriptor("TICKERTYPESET",conn);
 outSet[0] = new ARRAY(ad,conn,out_arr);

 return SUCCESS;
 }

 public BigDecimal ODCITableClose() throws SQLException {

 // retrieve stored context using the key, and remove from ContextManager
 StoredCtx ctx;
 try {
 ctx=(StoredCtx)ContextManager.clearContext(key.intValue());
 } catch (InvalidKeyException ik) {
 return ERROR;
 }

 // close the result set
 Statement stmt = ctx.rset.getStatement();
 ctx.rset.close();
 if(stmt!=null) stmt.close();

 return SUCCESS;
 }

}

Index-1

Index
A
aggregate functions, user-defined, 11-1 to 11-13

analytic functions and, 11-9

creating, 11-4

parallel evaluation of, 11-6

Alias library, 4-2

ALTER INDEX statement, 7-24

ANYDATA type, 12-28

ANYDATASET type, 12-28

ANYTYPE type, 12-27

Associating the Extensible Optimizer Methods with

Database Objects, 13-63

attributes of object type, 1-16, 13-2

referencing in method, 5-5

B
binary large object, see BLOB

BLOB, 6-2

EMPTY_BLOB function, 6-4

C
C and C++

debugging DLLs, 4-15

differences from PL/SQL, 5-9

callback

restrictions, 4-11

Callback Restrictions, 4-11

character large object, see CLOB

character sets

support for, 2-12

CLOB, 6-2

EMPTY_CLOB function, 6-4

collection types, 1-8

configuration files

naming conventions, 2-6

configuration files for external procedures, 4-6

constructor method, 3-5

context

WITH CONTEXT clause, 4-10

conventions

naming, 2-8

corruption of package, 5-10

CREATE TYPE BODY statement, 5-2

CREATE TYPE with OID statement, 3-3

Creating Statistics Table

(PowerCartUserStats), 13-40

D
data cartridge

definition, 1-2

development process, 2-2

domains, 1-4

external procedures (guidelines), 4-15

installation, 2-4

interfaces, 1-14

method, 1-8

naming conventions, 2-8

suggested development approach, 2-14

datatypes

collection, 1-8

extensibility, 1-7

object type, 1-8

REF (relationship), 1-9

Datatypes, Specifying, 4-7

Index-2

DBMS interfaces, 1-14

DBMS_LOB package, 6-10

compared with OCI, 6-7

DDL

for LOBs, 6-2

DEBUG_EXTPROC, Using, 4-15

debugging

C code in DLLs, 4-15

common errors, 5-9

PL/SQL, 5-8

Debugging External Procedures, 4-14

demo directory (PL/SQL), 4-11

demo file (extdemo1.sql)

extensible indexing in power demand

example, 13-15

directories

installation, 2-6

DLL

debugging, 4-15

naming conventions, 2-7

domain indexes, 7-11, 7-24

altering, 7-24

creating, 13-15

parallelizing, with table functions, 12-25

exporting and importing, 7-27

loading, 7-47

moving, 7-28

domain of data cartridge, 1-4

E
electric utility example, 13-1

EMPTY_BLOB function, 6-4

EMPTY_CLOB function, 6-4

error messages

naming conventions, 2-6

exception

raising (OCIExtProcRaiseExcp), 4-13

raising (OCIExtProcRaiseExcpWithMsg), 4-13

extdemo1.sql demo file (extensible indexing in

power demand example), 13-15

extensibility

datatypes, 1-7

interfaces, 1-14

server execution environment, 1-10, 2-5

services, 1-7

extensible indexing

queries benefitting, 13-14

external library, 1-17

linkage, 1-16

external LOB, 6-2

external procedure

configuration files for, 4-6

guidelines, 4-15

guidelines for using with data cartridge, 4-15

how PL/SQL calls, 4-4

LOBs in, 6-11

OCI access functions, 4-12

overview, 4-2

PARAMETERS clause, 4-9

passing parameters to, 4-7

registering, 4-3

specifying datatypes, 4-7

WITH CONTEXT clause, 4-10

External Procedures, Debugging, 4-14

extproc process, 4-5, 4-6, 4-15

F
features, new, xxxii

G
generic types

See ANYTYPE type

Globalization Support, 2-12

globals

naming conventions, 2-5

I
index

domain

creating, 13-15

metadata for, 13-37

index scan, 7-34

indexing

extensible

queries benefitting, 13-14

queries not benefitting, 13-14

Index-3

indextype, 7-17

indextype implementation methods, 13-22

indextypes, 7-11, 14-2

operators and, 7-31

installation directory

naming conventions, 2-6

installation of data cartridge, 2-4

interfaces

data cartridge, 1-14

DBMS, 1-14

extensibility, 1-14

service, 1-14

internal LOB, 6-2

L
large object, see LOB

library

alias, 4-2

shared, 2-7, 4-2

LOB

DDL for, 6-2

external, 6-2

external procedure use, 6-11

internal, 6-2

locator, 6-3

OCI use with, 6-6

overview, 1-9

triggers and, 6-12

value, 6-2

local domain indexes, 7-42 to 7-47, 14-2

locator

LOB, 6-3

M
Maintaining Context - Java, 15-3

map methods, 3-5

materialized views, 11-9

member method, 3-2, 5-2

message files

naming conventions, 2-6

metadata

index, 13-37

method, 1-8, 1-16, 13-2

constructor, 3-5

implementing, 5-2

invoking, 5-4

map, 3-5

member, 3-2, 5-2

order, 3-5

referencing attributes, 5-5

N
naming conventions, 2-8

configuration files, 2-6

error messages, 2-6

globals, 2-5

installation directory, 2-6

message files, 2-6

name format, 2-9

need for, 2-8

schema, 2-5

shared libraries, 2-7

national language support (NLS). See Globalization

Support

NCLOB, 6-2

new features, xxxii

NLS (national language support). See Globalization

Support

O
object identifier (OID)

with CREATE TYPE, 3-3

object type, 1-8

attributes, 1-16, 13-2

body code, 1-16

comparisons, 3-5

methods, 13-2

specification, 1-16

OCI

LOB manipulation functions, 6-6

OCIExtProcAllocMemory routine, 4-13

OCIExtProcRaiseExcp routine, 4-13

OCIExtProcRaiseExcpWithMsg routine, 4-13

OCILob...() functions, 6-6

ODCIAggregate interface, 11-3

ODCIArgDesc, 16-36

Index-4

ODCIArgDescList, 16-36

ODCIArgDescRef, 16-36

ODCIColInfo, 16-36

ODCIColInfoList, 16-36

ODCIColInfoRef, 16-36

ODCICost, 16-36

ODCICostRef, 16-36

ODCIFuncInfo, 16-36

ODCIFuncInfoRef, 16-36

ODCIGetInterfaces method, 13-25

ODCIIndexClose method, 13-33

ODCIIndexCreate method, 13-25

ODCIIndexCtx, 16-36

ODCIIndexCtxRef, 16-36

ODCIIndexDelete method, 13-35

ODCIIndexDrop method, 13-27

ODCIIndexFetch method, 13-32

ODCIIndexGetMetadata method, 13-37

ODCIIndexInfo, 16-36

ODCIIndexInfoRef, 16-36

ODCIIndexInsert method, 13-34

ODCIIndexStart method, 13-28, 13-30

ODCIIndexUpdate method, 13-36

ODCIObject, 16-36

ODCIObjectList, 16-36

ODCIObjectRef, 16-36

ODCIPredInfo, 16-36

ODCIPredInfoRef, 16-36

ODCIQueryInfo, 16-36

ODCIQueryInfoRef, 16-36

ODCIRidList, 16-36

ODCIStatsOptions, 16-36

ODCIStatsOptionsRef, 16-36

OID

with CREATE TYPE, 3-3

order methods, 3-5

P
package body, 5-5

package specification, 5-5

packages

corruption, 5-10

in PL/SQL, 5-5

privileges required to create procedures in, 5-7

PARAMETERS clause with external procedure, 4-9

PL/SQL

DBMS_LOB package compared with OCI, 6-7

debugging, 5-8

demo directory, 4-11

differences from C and C++, 5-9

packages, 5-5

power demand cartridge example, 13-1

demo file (extdemo1.sql), 13-15

pragma RESTRICT_REFERENCES, 5-6

privileges

required to create procedures, 5-7

purity level, 5-6

R
REF operator, 1-9

registering an external procedure, 4-3

RESTRICT_REFERENCES pragma, 5-6

Restrictions on Callbacks, 4-11

routine

service, 4-12

RPC time out, 4-14, 5-10

S
schema

naming conventions, 2-5

SELF parameter, 5-4, 5-5

service interfaces, 1-14

service routine, 4-12

examples, 4-13

services

extensibility, 1-7

shared library, 4-2

naming conventions, 2-7

side effect, 5-6

signature mismatch, 5-9

.so files

naming conventions, 2-7

suggested development approach for data

cartridge, 2-14

Index-5

T
table functions, 12-2 to ??

parallel execution of, 12-6, 12-17, 12-23

partitioning input, 12-21

pipelined, 12-5, 12-7, 12-9

querying, 12-14

REF CURSOR arguments to, 12-5

table functions, 12-29

transient types

See ANYTYPE type

triggers

with LOBs, 6-12

W
WITH CONTEXT clause and external

procedure, 4-10

Index-6

	Contents
	Send Us Your Comments
	Preface
	What’s New in Data Cartridges?
	Part I� Introduction
	1 What Is a Data Cartridge?
	What Are Data Cartridges?
	Why Build Data Cartridges?
	Data Cartridge Domains

	Extending the Server—Services and Interfaces
	Extensibility Services
	Extensible Type System
	Extensible Server Execution Environment
	Extensible Indexing
	Extensible Optimizer

	Extensibility Interfaces
	DBMS Interfaces
	Cartridge Basic Service Interfaces
	Data Cartridge Interfaces

	Cartridges as Software Components
	The Structure of a Data Cartridge
	Object Type Specification
	Object Type Body Code
	External Library Linkage Specification
	External Library Code
	Installing a Data Cartridge

	2 Roadmap to Building a Data Cartridge
	Development Process
	Installation and Use
	Requirements and Guidelines for Data Cartridge Constituents
	Schema
	Globals
	Error Message Names or Error Codes
	Cartridge Installation Directory
	Files
	Shared Library Names for External Procedures

	Deployment Checklist
	Naming Conventions
	Cartridge Registration
	Directory Structure and Standards
	Cartridge Upgrades
	Import and Export
	Cartridge Versioning
	Internationalization
	Administration
	Suggested Development Approach

	Part II� Building Data Cartridges
	3 Defining Object Types
	Objects and Object Types
	Assigning an OID to an Object Type
	Constructor Methods
	Object Comparison

	4 Methods: Using C/C++ and Java
	External Procedures
	Using Shared Libraries
	Registering an External Procedure
	How PL/SQL Calls an External Procedure
	Configuration Files for External Procedures
	Passing Parameters to an External Procedure
	Specifying Datatypes
	Using the Parameters Clause
	Using the WITH CONTEXT Clause

	OCIExtProcGetEnv
	Doing Callbacks
	Restrictions on Callbacks

	OCI Access Functions for External Procedures
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg

	Common Potential Errors
	Calls to External Functions
	RPC Time Out

	Debugging External Procedures
	Using Package DEBUG_EXTPROC
	Debugging C Code in DLLs on Windows NT Systems

	Guidelines for Using External Procedures with Data Cartridges
	Java Methods

	5 Methods: Using PL/SQL
	Methods
	Implementing Methods
	Invoking Methods
	Referencing Attributes in a Method

	PL/SQL Packages
	Pragma RESTRICT_REFERENCES
	Privileges Required to Create Procedures and Functions
	Debugging PL/SQL Code
	Notes for C and C++ Programmers
	Common Potential Errors

	6 Working with Multimedia Datatypes
	Overview
	DDL for LOBs
	LOB Locators
	EMPTY_BLOB and EMPTY_CLOB Functions
	Using the OCI to Manipulate LOBs
	Using DBMS_LOB to Manipulate LOBs
	LOBs in External Procedures
	LOBs and Triggers
	Using Open/Close as Bracketing Operations for Efficient Performance
	Errors and Restrictions Regarding Open/Close Operations

	7 g Building Domain Indexes
	Introduction to Extensible Indexing
	What is Indexing?
	Index Structures
	Kinds of Indexes
	Why is Extensible Indexing Necessary?

	The Extensible Indexing API
	Concepts: Extensible Indexing
	Indextypes
	ODCI Index Interface
	Domain Indexes
	Operators
	Operators and Indextypes
	Object Dependencies, Drop Semantics, and Validation
	Privileges

	Partitioned Domain Indexes
	Dropping a Local Domain Index
	Altering a Local Domain Index
	Summary of Index States
	DML Operations with Local Domain Indexes
	Table Operations That Affect Indexes
	ODCIIndex Interfaces for Partitioning Domain Indexes
	Domain Indexes and SQL*Loader

	8 Query Optimization
	Overview
	Statistics
	Selectivity
	Cost

	Defining Statistics, Selectivity, and Cost Functions
	User-Defined Statistics Functions
	User-Defined Selectivity Functions
	User-Defined Cost Functions for Functions
	User-Defined Cost Functions for Domain Indexes

	Using User-Defined Statistics, Selectivity, and Cost
	User-Defined Statistics
	User-Defined Selectivity
	User-Defined Cost
	Declaring a NULL Association for an Index or Column
	How Statistics Are Affected by DDL Operations

	Predicate Ordering
	Dependency Model
	Restrictions and Suggestions
	Parallel Query
	Distributed Execution
	Performance

	9 Using Cartridge Services
	Cartridge Services — Introduction
	Cartridge Handle
	Client Side Usage
	Cartridge Side Usage
	Service Calls
	Error Handling

	Memory Services
	Maintaining Context
	Durations

	Globalization Support
	Globalization Support Language Information Retrieval
	String Manipulation

	Parameter Manager Interface
	Input Processing
	Parameter Manager Behavior Flag
	Key Registration
	Parameter Storage and Retrieval
	Parameter Manager Context

	File I/O
	String Formatting

	Part III� Advanced Topics
	10 Design Considerations
	Designing the Types
	Structured and Unstructured Data
	Using Nested Tables or VARRAYs
	Choosing a Language in Which to Write Methods
	Invokers Rights — Why, When, How

	Callouts
	When to Callout
	When to Callback
	Callouts and LOB
	Saving and Passing State

	Designing Indexes
	Influencing Index Performance
	Influencing Index Performance
	When to Use IOTs
	Can Index Structures Be Stored in LOBs
	External Index Structures
	Multi-Row Fetch

	Designing Operators
	Functional and Index Implementations

	Talking to the Optimizer
	Weighing Cost and Selectivity

	Design for maintenance
	How to Make Your Cartridge Extensible
	How to Make Your Cartridge Installable

	Miscellaneous
	How to Write Portable Cartridge Code

	11 User-Defined Aggregate Functions
	The ODCIAggregate Interface: Overview
	Creating a User-Defined Aggregate
	Using a User-Defined Aggregate
	Parallel Evaluation of User-Defined Aggregates
	Handling Large Aggregation Contexts
	External Context and Parallel Aggregation
	External Context and User-Defined Analytic Functions

	User-Defined Aggregates and Materialized Views
	User-Defined Aggregates and Analytic Functions
	Reusing the Aggregation Context for Analytic Functions

	Example: Creating and Using a User-Defined Aggregate

	12 Pipelined and Parallel Table Functions
	Overview
	Concepts
	Table Functions
	Pipelined Table Functions
	Pipelined Table Functions with REF CURSOR Arguments
	Parallel Execution of Table Functions

	Pipelined Table Functions
	Implementation Choices for Pipelined Table Functions
	Declarations of Pipelined Table Functions
	Implementing the Native PL/SQL Approach
	Pipelining Between PL/SQL Table Functions
	Implementing the Interface Approach
	Querying Table Functions
	Performing DML Operations Inside Table Functions
	Performing DML Operations on Table Functions
	Handling Exceptions in Table Functions

	Parallel Table Functions
	Inputting Data with Cursor Variables
	Input Data Partitioning
	Parallel Execution of Leaf-level Table Functions

	Input Data Streaming for Table Functions
	Parallel Execution: Partitioning and Clustering

	Parallelizing Creation of a Domain Index
	Transient and Generic Types

	Part IV� Scenarios and Examples
	13 Power Demand Cartridge Example
	Feature Requirements
	Modeling the Application
	Sample Queries

	Queries and Extensible Indexing
	Queries Not Benefiting from Extensible Indexing
	Queries Benefiting from Extensible Indexing

	Creating the Domain Index
	Creating the Schema to Own the Index
	Creating the Object Type (PowerDemand_Typ)
	Defining the Object Type Methods
	Creating the Functions and Operators
	Creating the Indextype Implementation Methods
	Creating the Indextype

	Defining a Type and Methods for Extensible Optimizing
	Creating the Statistics Table (PowerCartUserStats)
	Creating the Extensible Optimizer Methods
	Associating the Extensible Optimizer Methods with Database Objects
	Analyzing the Database Objects

	Testing the Domain Index
	Creating and Populating the Power Demand Table
	Querying Without the Index
	Creating the Index
	Querying with the Index

	14 PSBTREE: An Example of Extensible Indexing
	Introduction
	Design of the indextype
	Implementing Operators
	Create Functional Implementations
	Create Operators

	Implementing the Index Routines
	The C Code
	General Notes
	Common Error Processing Routine
	Implementation Of The ODCIIndexInsert Routine
	Implementation of the ODCIIndexDelete Routine
	Implementation of the ODCIIndexUpdate Routine
	Implementation of the ODCIIndexStart Routine
	Implementation of the ODCIIndexFetch Routine
	Implementation of the ODCIIndexClose Routine

	Implementing the Indextype
	Usage examples
	Explain Plan Output

	Part V� Reference
	15 Reference: Cartridge Services Using Java
	File Installation
	Cartridge Services—Maintaining Context
	ContextManager
	Class Interface
	Variable
	Constructors
	Methods

	CountException()
	CountException(String)
	InvalidKeyException()
	InvalidKeyException(String)

	16 Reference: Extensibility Constants, Types, and Mappings
	System Defined Constants
	ODCIIndexAlter Options
	ODCIArgDesc.ArgType Bits
	ODCIEnv.CallProperty Values
	ODCIIndexInfo.Flags Bits
	ODCIPredInfo.Flag Bits
	ODCIFuncInfo.Flags Bits
	ODCIQueryInfo.Flags Bits
	ODCIStatsOptions.Flags Bits
	ODCIStatsOptions.Options Bits
	ScnFlg (Function with Index Context) Values
	Status Values

	System Defined Types
	ODCIArgDesc
	ODCIArgDescList
	ODCIRidList
	ODCIColInfo
	ODCIColInfoList
	ODCIColStats
	ODCIColStatsList
	ODCICost
	ODCIEnv
	ODCIFuncInfo
	ODCIIndexInfo
	ODCIPredInfo
	ODCIIndexCtx
	ODCIObject
	ODCIObjectList
	ODCIPartInfo
	ODCIQueryInfo
	ODCIStatsOptions
	ODCITabStats
	ODCITableFunctionStats
	Mappings of Constants and Types
	Mappings in PL/SQL
	Mappings in C
	Mappings in Java

	Constants Definitions
	Constants for Return Status
	Constants for ODCIPredInfo.Flags
	Constants for ODCIQueryInfo.Flags
	Constants for ScnFlg (Func with Index Context)
	Constants for ODCIFuncInfo.Flags
	Constants for ODCIArgDesc.ArgType
	Constants for ODCIStatsOptions.Options
	Constants for ODCIStatsOptions.Flags
	Constants for ODCIIndexAlter parameter alter_option
	Constants for ODCIIndexInfo.IndexInfoFlags
	Constants for ODCIEnv.CallProperty

	17 Reference: Extensible Indexing Interface
	Extensible Indexing — System Defined Interface Routines
	ODCIGetInterfaces
	ODCIIndexAlter
	ODCIIndexClose
	ODCIIndexCreate
	ODCIIndexDelete
	ODCIIndexDrop
	ODCIIndexExchangePartition
	ODCIIndexFetch
	ODCIIndexGetMetadata
	ODCIIndexInsert
	ODCIIndexMergePartition
	ODCIIndexSplitPartition
	ODCIIndexStart
	ODCIIndexTruncate
	ODCIIndexUpdate

	18 Reference: Extensible Optimizer Interface
	Note on the New Interfaces
	The Extensible Optimizer Interface
	EXPLAIN PLAN
	INDEX Hint
	ORDERED_PREDICATES Hint
	Example

	User-Defined ODCIStats Functions
	ODCIGetInterfaces
	ODCIStatsCollect (Column)
	ODCIStatsCollect (Index)
	ODCIStatsDelete (Column)
	ODCIStatsDelete (Index)
	ODCIStatsFunctionCost
	ODCIStatsIndexCost
	ODCIStatsSelectivity

	19 Reference: User-Defined Aggregates Interface
	ODCIAggregateInitialize
	ODCIAggregateIterate
	ODCIAggregateMerge
	ODCIAggregateTerminate
	ODCIAggregateDelete
	ODCIAggregateWrapContext

	20 Reference: Pipelined and Parallel Table Functions
	ODCITableStart
	ODCITableFetch
	ODCITableClose
	ODCITableDescribe

	A Example: Pipelined Table Functions: Interface Approach
	C Implementation
	SQL Declarations for C Implementation
	C Implementation of the ODCITable Methods

	Java Implementation
	SQL Declarations for Java Implementation
	Java Implementation of the ODCITable Methods

	Index

