Oracle® interMedia

User’s Guide and Reference

Release 9.0.1

June 2001
Part No. A88786-01

Oracle interMedia audio, document, image, and video is designed to manage
Internet media content. interMedia is a standard feature, enabling Oracle9i to
manage rich content, including text, documents, images, audio, video, and

location information, in an integrated fashion with traditional business data.

ORACLE

Oracle interMedia User’s Guide and Reference, Release 9.0.1
Part No. A88786-01

Copyright © 1999, 2001, Oracle Corporation. All rights reserved.
Primary Author: Rod Ward

Contributors: Susan Mavris, Melli Annamalai, Todd Rowell, Raja Chatterjee, Robert Abbott, Albert
Landeck, Vishal Rao, Dongbai Guo, Fengting Chen, Joseph Mauro, Rabah Mediouni, Sanjay Agarwal,
Bill Voss, Susan Kotsovolos, Rosanne Toohey, Bill Beauregard, Susan Shepard, Helen Grembowicz

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Plus are registered trademarks, and Oracle9i and PL/SQL are trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send US YOUT COMMEBNTS ..ottt XXiii

PIETACE. ... XXV
F N § o [1= o (o= OSSOSO URPRORVRURN XXV
(O o 7= T 1= 1 1 To) o 1SR XXVi
REIALEA DOCUIMENTS. ..ottt sttt b bbb st b e e b e e e b e ebe et e et et XXVii
(670 a1 7=] 011 o] o LS J OSSPSR XXVii
Changes t0 ThiS GUIE.......cciiiie ittt ettt na et se e en e e e enesrenee e XXVili
Documentation ACCESSIDIIITYc.oov ot XXiX
Introduction
1.1 Object Relational TeChNOIOQYcciiiiiiie e 1-1
1.2 Multimedia Content ManagemMENTcccooiiiiiiiie et 1-2
1.3 YA U o [0 T @] g 1o7=T o] 0SSP 1-5
13.1 DY To 1 74=To AN S o [To JUN USSR 1-6
1.3.2 AUAIO COMPONENTS. ...ttt bbbt b e ettt e et b ebesre b 1-6
1.4 ORDDoc or Heterogeneous Media Data CONCEPLSccvvvrvreieririeiieneiiereseeie e se e 1-6
14.1 Digitized Heterogeneous Media Data............ccccoiirieiiiene e 1-7
1.4.2 Heterogeneous Media Data COMPONENTScocoiiiiiiriirine e 1-7
1.5 T aF= Vo Lo O 0] 1= o] £ 1-7
15.1 DiIgitiZed IMAGES ...ttt b e bbbt 1-8
15.2 IMAgE COMPONENTS ...ttt ettt ettt sbe e sre b sbe e snesbensbenreans 1-8
1.6 A2 T0 [=T0 T O] g Tor=T o) = SRS 1-9

16.1
1.6.2
1.7
1.8
181
1.8.2
1.8.3
1.9
19.1
1.9.2
1.9.3
1.10
111
1.12
1.13
1.13.1
1.13.2
1.13.3
1.13.4
1.135
1.13.6

(BT To 1 74=Te IV A To [-To BRSSP 1-9

AV ATo [=To O] 4 a1 o o 1 1=T o £ 1-9
Multimedia Object Types and Methods.........ccocoiiiiriiiiiiii e 1-10
MUITIMEAIA STOTAQE ... ettt ettt b bbb see e e 1-10

Storing MUltimedia Data............coveveiieiesie e ene s 1-11

Querying Multimedia Data............cccoiiiiiiiiiii e 1-12

Accessing MUultimedia Data.........ccovvvevieieneiere e 1-12
Extending Oracle iNterMediac.covvviiiiiiiii e 1-12

Supporting Other External Sources and Other Media Data Formats................... 1-13

Supporting Audio Data ProCeSSINGcccvreiirerieieeriseeiesie s esie e sesieseeeesesesnesnens 1-14

Supporting Video Data ProCeSSING........cccvreiirierieieniesesiesesesesieseesieseesasseesessesessens 1-14
Relational INTErfaCE. ..o 1-15
Loading Multimedia Data into Oracle9i Using interMedia...........ccccoovvveveivenceernnnnnns 1-15
Reading Data from @ LOB ..ottt et 1-16
INtErMedia AFCRITECTUIEo.eiiiie ettt s 1-17

Oracle interMedia Java CIaSSES.........ccviiiriririeierieiieeseeseees e 1-21

Oracle interMedia Java Classes for Servilets and JSPScccovvviviiininncinen, 1-22

Annotation Services for Multimedia Data............ccocooeiiiiiniiiiiiee e 1-23

Streaming Content from an Oracle Database...........ccccveovvveinieiisence i 1-24

Support for Web TEeChNOIOGIES........ccveviiiiiirise e 1-25

GEOCOAING SEIVICES ...ttt ettt ettt ettt be st et beseesnenre e 1-25

Content-Based Retrieval Concepts

21
2.2
221
2.2.2
2.2.3
2.3
231
2.3.2
2.3.3
234
2.4
2.5

OVerview and Benefits........oiii i 2-1
How Content-Based RetrieVal WOIKS..........cocoiiiiiiiieicecee e 2-2
(070 (o] So OSSPSR 2-5
B =) L0 | (T PO TRPPPURPIN 2-7
3] T 1 o 1 ST 2-7
HOW MatChiNG WOTKS........ciiiiisiie ettt st s eneenennenneas 2-8
LTAT LT o o | TRV 2-8
1o] =TSP TP S USROS PR PRSP 2-8
Similarity CalCUlation ..o ens 2-9
THreSNOIA VaAlUE ..o s ne s 2-11
Using an Index to ComMpPare SIgNatUIESc.ccoeeereierieeeiese e siee e sresee s 2-12
Preparing or Selecting Images for Useful Matchingcccccoovevviviiivivi v 2-13

3 interMedia Examples

3.1
3.1.1
3.1.2
3.13
3.14
3.15
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15

3.2

3.21
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9

3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15

AUIO Data EXAMPIESccvieieiisieieieee sttt se et snesne e reneennnes 3-1
Defining @ SONQG ODJECTcuiiiiiiie e 3-2
Creating an Object Table SONGSTabIe.......cccoiiiiiii e 3-2
Creating a List Object Containing a List of References to SONgScccevvevvvrvnnns 3-2
Defining the Implementation of the songList Object..........cc.cccoivniiiiiniiiiee 3-3
Creating a CD Object and a CD Table.......ccccovivieeiiieccsesse e 3-3
Inserting a Song into the SongsTable Table ... 3-4
Inserting a CD into the CdTable Table..........coooiiiiie, 3-5
Loading a Song into the SongsTable Table ..o, 3-5
Inserting a Reference to a Song Object into the Songs List in the CdTable Table 3-6
Adding a CD Reference t0 @ SONQccooeiiriirieiiiieieeeeee st 3-8
Retrieving Audio Data from a Song in @ CD.....c.ccceeveeeiviv s 3-8
Extending interMedia to Support a New Audio Data Formatc.cccoevvevvnnnnne 3-9
Extending interMedia With @ NeW TYPe......cccoiriiiii e 3-9
Using Audio Types With ODBJECt VIEWS........cccvveiiiciecec e 3-10
Scripts for Creating and Populating an Audio Table from a BFILE Data Source..........
.. 3-11

Media Data EXAMPIESc.ooiiiie ettt st 3-19
Defining a Media ODJECL.........cccvi i 3-20
Creating an Object Table DocumentsTable..........c.ccocvevviiiccc s 3-21
Creating a List Object Containing a List of References to Media............ccccc...... 3-21
Defining the Implementation of the documentList Objectc..ccocevvviiennnenn 3-21
Creating a Library Object and a Library Tableccccceovevvivivivsinecece e 3-22
Inserting Media into the DocumentsTable Table ... 3-23
Inserting a Library into the LibraryTable Tablecc.ccocoveviiniiiincncese e, 3-24
Loading Media into the DocumentsTable Tablecccccooveviiiivinec s 3-24
Inserting a Reference to a Document Object into the Documents List in the
LibraryTable Table ... e e 3-25
Adding a Library Reference to a DOCUMENTcccooviiniinienneneeee e, 3-26
Extending interMedia to Support a New Media Data Formatcc.coceevennee. 3-27
Extending interMedia With @ NeW TYPe......cocoiiriiiiiie e 3-28
Using Document Types With ObJECt VIEWSccoviiriiniiieieee e 3-28
Using the ORDDoc Object Type as a REPOSITONYcccocevvviriiriennensense e 3-29

Scripts for Creating and Populating a Media Table from a BFILE Data Source. 3-34

vi

3.3 IMage Data EXAMPIESooiiiiiie e ettt bbb 3-41

3.3.1 Adding Image Types to an Existing Tablecccccocvvevivcieiicse e 3-42
3.3.2 Adding Image Types to a New Table........ccooiii e 3-42
3.3.3 Inserting a ROW USiNG BLOB IMAQJEScccviiiiiiriniiieie et 3-43
3.34 Populating a Row Using BLOB IMAJEScccvoueviirierieeeieieeisesesiese e sresieseeseessenens 3-44
3.35 Inserting a ROW UsSiNg BFILE IMAQES......cciiiiiiiiiiieie e 3-45
3.3.6 Populating a Row Using BFILE IMageS........ccccevirierieeiiiieisie s see e seeseenens 3-46
3.3.7 (O 11T AT o To I W 0 PSR 3-46
3.3.8 Importing an Image from an External File into the Databasecc.ccoceeeninine 3-47
3.3.9 R LoV A T To I U I T Vo - 3-48
3.3.10 Retrieving Images Similar to a Comparison Image (Content-Based Retrieval).. 3-50
3.3.11 Creating @ DOMaIN INAEXccoiiiiiiiieiieeee e 3-52
3.3.12 Retrieving Images Similar to a Comparison Image Using Index Operations (Indexed

Content-Based RELFIEVAl) oocuiiiiiiiiiie e 3-53
3.3.13 COPYING AN TMEBQE ..ottt e sbene s 3-53
3.3.14 Converting an 1mMage FOIMAL..........cccoiiiiiiiiie e e 3-54
3.3.15 Copying and Converting in ONE SEPcccvviriirnirieee e 3-54
3.3.16 Extending interMedia With @ NEW TYPEccoiiiiiiiiieiseesceseese e 3-55
3.3.17 Using Image Types With Object VIEWScccooiiiiiiiieie e 3-57
3.3.18 Scripts for Creating and Populating an Image Table from a BFILE Data Source 3-59
3.3.19 Scripts for Populating an Image Table from an HTTP Data Source.........c..cc....... 3-66
3.3.20 Addressing Globalization SUPPOIt ISSUEScccciveiiiiieneieieereeee e 3-68
3.4 Video Data EXAMPIESoccviiiiie ettt 3-69
34.1 Defining @ Clip OBJECTocviiiicee s 3-70
3.4.2 Creating an Object Table ClipSTable ... 3-70
3.4.3 Creating a List Object Containing a List of ClipScccccocovvevviiieisiie s 3-71
3.4.4 Defining the Implementation of the clipList Object..........cccccoovviiiivciciiiiiecies 3-71
3.4.5 Creating a Video Object and a Video Table.........cccoiiiiiiii e 3-71
3.4.6 Inserting a Video Clip into the ClipsTable Table.........c..cccccoviviiiiiiieiine e, 3-72
3.4.7 Inserting a Row into the VideoTable Table ..., 3-73
3.4.8 Loading a Video into the ClipsTable Table ... 3-73
3.4.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table.......

... 3-74
3.4.10 Inserting a Reference to a Video Object into the Clip ..., 3-75
3.4.11 Retrieving a Video Clip from the VideoTable Table..........ccooiviiiniincien, 3-76
3.4.12 Extending interMedia to Support a New Video Data Formatccccceceevevnnenn. 3-76

3.4.13 Extending interMedia with a New ODbject TYPEcoooiiiiiiiiiriee s 3-77

3.4.14 Using Video Types With OBJECt VIEWScccvvviiiirce e 3-77
3.4.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source.. 3-79
35 Extending interMedia to Support a New Data SOUICe..........cccccveiiniienenene e 3-86

Ensuring Future Compatibility with Evolving interMedia Object Types

4.1 When and How to Call the Compatibility Initialization Functionccccccevevennnen. 4-1
COMPALTDTIIEY TNTT() ot et be e bebe e 4-3

Common Methods for interMedia Object Types Reference Information

51 IMPOITANT INOTES ... bbbt bbb be st s s 5-2
5.2 IMIBENOMS ... b ettt bbb et 5-3
ClEANLOCAI() +nveneeieeiei ettt bbbt et e bbb et e e e s e et b e ebeaneene s 5-5
(o[0T TS 0T U] ot T (P RPSPSTRSN 5-6
(0 1= L1 1T @00) (=1 o1 1 () TSRS 5-8
L2y oo ¢ { () OO TSR RPRPRURN 5-9
GEEBIILE() 1.ttt bbbkttt et 5-13
(o= (@0] 1=] o1 () TSP 5-15
(oL 0Y T 0 g Tl Y o =T () IR TSRS UTR PP 5-17
[0 =] 1o 11 (o= () RSP 5-19
(o= o0 o= o To=1 1 To] o () ISP 5-21
(o o0 do=] =T g =T OO 5-22
(o c o 10 | (o=l Y o T-T (O RSP 5-23
(o eI oo 1 (= T a1 () TR 5-25
(1] I Tox= | [() OO PUSURPRON 5-26
(o] 0= 0 S0 LU o= (TP 5-27
ProcessSOUrCECOMMANT() .ouviveiireiieie s ettt sae e e ereens 5-29
FEAAFTOMSOUITE() . vitiieeieieeee ettt sttt ettt ettt et e e b e e e e st e e ane e e nneanea 5-32
1= 1 I Yo7 | () R 5-34
1L\ [T ol 1Y/ o LT () I 5-35
LS o LU ol =T () OSSR 5-37
11 (0 oL F=Y (=l T2 1= () R 5-39

Vii

viii

LH 8] g N To U] or=T () SO STURUSURURURURR 5-40
Y L C o o U or=T (O TSP PR RORPPR 5-42

ORDAudio Reference Information

6.1

6.2

6.3
6.3.1

L0 o] 1=Tot A 1Y 01T SO 6-2
(@12 DY AN T (o Tl @] o] =T w1 d 1Y/ o -SSP 6-3
1070] 3 1 (U o1 (o] £ T TSP U TR U T UPTOUPTUPRURPROIN 6-7
LT TS PSPS 6-8
iNit(srcType,srcLocation,SICNAME)ocvcviie e 6-10
IMEENODS ... 6-12

Example Table DefinitioNs ..o 6-16
(ol oot o (o] 0 1= o 1= (SRS 6-17
Lo e WA 1 ANt o1 U) (=YY (R RSTPSSRI 6-19
ELATIIIDULE() ..ttt ettt b e b b er b e nn s e senee e 6-21
(o= ¥ANE [FToT BTN] =1 o] o () TSRS 6-23
getCONtENTLENGLN() ovii e e 6-24
OEtCOMPIESSIONTYPE() wovereiieiieieiieieiee ettt et ettt bt bbb bbb e e bese s 6-25
(o= (@foT) (=T a1 I 0] o S SSSRRS 6-26
Lo Lc B Lol o o[] o () ISR 6-28
oL 1 =X oleTe [T 0 o (0 IE USSR TTRSUPTRIN 6-29
Lo = Lo 1 T L () SRS PRSN 6-30
gEtNUMDBErOTfCRANNEIS() ..viiviieiiiieec ettt sreneas 6-31
(oL =T a0 o] (o 2= () TSSOSO 6-32
Lol =T aa] o] [T aTo | = (=T () ISP 6-33
(L] 0 o] o € SRS 6-34
([ag] o o] g (= o]0 () T USROS 6-36
o]0 T=RIY AU Lo [To O] o T n s F=Ta o () S 6-39
1Y VAN U Lo [To] BT UT - A To] o[() PRSP 6-42
LS (0o g] o] (1T o] a1 1Y/ o 1T () OSSPSR 6-43
11D T=T ol] o] o]] (SRS 6-44
1= 1= o7 Lo T o | () TSRS 6-46

6.4
6.4.1
6.4.2

L (o] g 4T L () TSRS 6-47

SELKNOWRNALIFIDULES() . 6-49
SEtNUMDBErOfChANNEIS() .ovveeieicice e 6-51
LS (e o] o 1=] o (=TT () ISR 6-52
SELSAMPIINGRATE() oottt bbbttt b e sb e bbb 6-54
SISz 1 0] 01 Lo 4T (S 6-55
Packages or PL/SQL PIUG-INScoiiiiiiiiee e 6-56

ORDPLUGINS.ORDX_DEFAULT_AUDIO Packageccoceevrvrieneenaenneniniennes 6-56

Extending interMedia to Support a New Audio Data Formatccccceeveevrnnnnn. 6-59

ORDDoc Reference Information

7.1

7.2

7.3
73.1

7.4
7.4.1
7.4.2

(O] o 1=t A 1Y 01T 7-2
(@2 {B B ToTol @] o] [=Te1 fl 1N/ o 1 TSRS 7-3
(0] 0 51 £ ¥ o1 (o] £ PSSP PP PP U P PTTTRPRPRORPN 7-5
T PSP 7-6
iNit(SrcType,srcLocation,SICNGAIME)coiiiiiiiiee e e 7-8
IMEENOMS ...ttt bbb bbb b b 7-10

Example Table DefiNitioNS. ... e 7-12
(o= (@foT) (=] a1 1 o] o () SRR 7-14
GEtCONTENTLENGLN() .ot e 7-16
(o<1 0] 1 g | ST PSP PTOUROTR TP 7-17
(L]0 o] € SRS RRPS 7-18
IMPOTTFTOMI().ttt bbbt eb et e bt besbesbe b e be e e e eneas 7-21
1= (01 0= 1 () PR 7-24
R1=] 1 (0] =T 0 AT () IS 7-26
Packages or PLZSQL PIUG-INS .o.oiiiiiiceee e 7-29

ORDPLUGINS.ORDX_DEFAULT_DOC Packageccccecerveivrieieniaeniaesieeseennens 7-29

Extending interMedia to Support a New Media Data Formatcccccocveevrnnnne. 7-30

Image Object Types Reference Information

8.1

(O] 2B Vg T o TR @] o] [=Tox A 11V o 1= SRS 8-2
ORDIMAGE ODJECTE TY PR . eeeieeuietieeeie ettt sttt sttt sttt sttt sbe bbb b e b e enneneas 8-3

8.1.1

8.1.2
8.1.3

8.2

8.2.1

8.2.2

8.2.3

(670 3 1 (U o1 (o] < T T SO TP T PR UPTUROPT 8-6
INTE() TOr ORDIMAGE . .cueiniiiieie ettt ettt ettt se e bbb en e sns e ene s 8-7
init(srcType,srcLocation,srcName) for ORDIMAJEcovevevivciriin e 8-9

IMIEBENOMS ... bbbt ettt eae e 8-10

Example Table DefinitioNs ... 8-13
CECKPTOPEITIES ...t bbb ettt et sbe b benea 8-15
(070] o)V () TSRS 8-16
getCOMPIreSSIONFOIMAL ..ottt sa e e eneerennes 8-18
OELCONTENTFOIMNAL. ...ttt sb et ne e 8-19
getCONtENTLENGLN ... 8-20
ELFIIEFOIMAL ..ot se e eneeneere e 8-21
GETHEIGNT ...ttt st sbe b 8-22
Lo 1= 844 T 1 1 o SRS 8-23
(L] 0o] ¢ SRS 8-24
([ag] oo] o (= o100 T TSSOSO 8-26
010 1oL () SRS 8-29
01 1oL =T O] o) Y/ () IS 8-34
1] (e o] o 1=] o (=TSSR 8-36
setProperties() for FOreign IMages ..o vvieiiieiieiesee e 8-38
ORDIMageSignature ODJECT TYPEouiiieeieie ettt e 8-40
ORDIMAageSignature ODJECT TYPE ..o ittt 8-42

(070 3 1 (U 01 (o] =TT PRSPPI 8-42
iNit() for ORDIMAQESIGNALULIEcoccvevieiiircie sttt st st 8-44

1Y/ 1= 1 g To o LSRR 8-45
oA LU Lol o =T () S SRSSSSSTSIN 8-46
OENEIALESIGNATUIE() .ovviievieieeeeete ettt te st e st st et e e se et e e eneeteerenrenes 8-48
(SIS T 10 411 = U (RSOOSR 8-49

ORDIMageSignature OPEIatOrSccccvvviereirerieieeeeieeesesee e se e sresseseeseeseesens 8-51
IMGSIMITAr OPEIALON ...ttt 8-52

IMGSCOIE OPEIALON ...cciiiiiieciieei ettt rb e st b et et e sre e nbeesarennben 8-56

ORDVideo Reference Information

9.1

9.2

9.3
9.3.1

(O] o 1=t A 1Y 013NN 9-2
ORDVIOE0 ODJECE TYPE -ttt sttt bbb b e e e es e e e ene s 9-3
CONSIIUCTONS ...ttt e ettt b e bbbt e sn e e e e neene s 9-8
1YL TP OSSO TOTPSORPRP 9-9
iNit(SrcType,srcLocation,SICNGAIME)c.oiuiiiiiiere e e 9-11
IMIEENOMS ...ttt bbbt et 9-13

Example Table DefiNitioNsS. ... e 9-17
CRECKPIOPEITIES() +veuveviieriieiiiteest ettt bbb bbb 9-18
GELANALIFIDULES() et e et 9-20
[0 7 AN A1] 01U T () TSSOSO 9-22
GEIBITRALE ...ttt bbbttt ne e 9-24
OELC OMPIESSIONTYPE .ttt ettt b bbb bbbt e e bt et bbb 9-25
EtCONLENTINLOD() ..vvivieiiiiis e 9-26
GEtCONLENTLENGEN() oottt 9-28
(oS A B LT ol o o)1 1 [o] o H USSR 9-29
GEEFOIMIAL. ... bbbttt ettt er e 9-30
ELFTAMERALE ... bbb e 9-32
OEtFFAMERESOIULION ...ttt ettt 9-33
GELFTAMIESIZE() cvveever ettt bbbttt b ettt ettt 9-34
JEtNUMBDEIOTCOIONS ...ttt 9-36
OEINUMDBDEIOTFIAIMES ...ttt sbe e et ens 9-37
EEVIAEODUIALIONviviitiiiiiici bbbttt 9-38
[Lap] o] £ {0 PO P PP PPN 9-39
([ag] o o] g (= o100 () TSROSO USRS 9-41
ProcessVideOCOMMAN(). . ccoveieieiieirieirieise ettt e s 9-44
SEEBITRATE() wveveeveieieieii e bbbttt 9-47
SELCOMPIESSIONTYPE() .neiuieieeieeiiiti ettt sttt sttt ettt sttt sb e besee e e e e s et e e e eneeteneeaneas 9-48
=1 ool] o] {To] o () OSSPSR 9-49
=] 0] 1 00 T- LA () PO OSSR 9-51
LS U = g [=] R = =T () ISR 9-53

Xi

10

Xii

SEEFFAMERESOIULION() ..veiiciiiiie e e bbbt 9-54

SEEFTAMESIZE() -ttt sttt b ettt et e et b e b e b e bt bt b b e e e b e nes 9-55
SEtKNOWRNATIFIDULES() 1.vovveeeecieeee ettt st eneenes 9-57
SEENUMDBDEIOTCOIONS() ..ottt ettt bbb 9-60
SEENUMDBDEIOTFIAMES(() 1+ veiteieie sttt ettt eb ettt be e 9-61
1=Y (0] o =T AT () RS TSSS R SRSR 9-62
1Y AV ATe (101 B0 T =4 o] o | () SRS 9-64
9.4 Packages or PL/ZSQL PIUG-INScccoiiieiiieieicire et 9-65
9.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEQO Packagecccovvviiriririnirisisisesinnenns 9-65
9.4.2 Extending interMedia to Support a New Video Data Formatccccceceverinenn. 9-68
interMedia Relational Interface Reference
10.1 Static Methods for the Relational Interface..........ccoviiiiiniinics 10-2
10.1.1 Static Methods Common to All ObJeCt TYPES ...ccvvvieriree e 10-2
10.1.2 Static Methods Uniquely Associated with Each Object Type........ccocvvnireienennas 10-2
10.2 Static Methods Common to All OBJECt TYPES ..cvvevveveiricire e 10-4
L2y o] 1 { () SR UUT RSO URUTURURTUTUSRPTRIS 10-5
(L a] o o] (o2 0 () TSSO 10-8
IMPOrtFrom() (Al attribULES)ccviiiecicce e e 10-11
10.3 Static Methods Unique to the ORDAudio Object Type Relational Interface............ 10-13
10.3.1 Example Table DefinitioNS ... e 10-14
EtProperties() fOr BLOBS.........cccii ittt se e e s e ne e ene s 10-16
getProperties() (all attributes) for BLOBS...........cccooviieiinire e 10-18
getPropertieS() fOr BFEILES ...ttt 10-22
getProperties() (all attributes) fOor BFILEScccoovoveivveieicce e 10-24
10.4 Static Methods Unique to the ORDDoc Object Type Relational Interface................ 10-26
10.4.1 Example Table DefiNitioNsS ..o 10-28
getPropertieS() fOr BLOBS........ccoii ettt eae 10-29
getProperties() (all attributes) for BLOBS...........cccooviveiiieie e 10-31
EtProperties() fOr BFEILEScccciiiieiiiesee ettt sttt ene s 10-34
getProperties() (all attributes) for BFILES ... 10-36
10.5 Static Methods Unique to the ORDImage Object Type Relational Interface............ 10-38
10.5.1 Example Table DefiNitioNS ... 10-39

10.6
10.6.1

getPropertieS() FOr BLOBS ...ttt bt 10-41

getProperties() (all attributes) for BLOBS ...t 10-43
EtProperties() fOr BFEILES ...t 10-46
getProperties() (all attributes) for BFILES ... 10-48
PPTOCESS() ceveteetitesterte et tesee ettt e sttt b e b e bt e e eb e s b seene e st es e et eb e e Rt b e bt eb e e b e b e ebe b sbenn et enean 10-51
O] T I O] o) V1 () I (0] =1 HX O =TSSR 10-53
ProcesSCOPY() FOr BFILES.....cccviiiiieeieieceee st s enen 10-55
Static Methods Unique to the ORDVideo Object Type Relational Interface............. 10-56

Example Table DefinitioNs. ... 10-58
EtProperties() fOr BLOBS ..ottt s na e ere s 10-60
getProperties() (all attributes) for BLOBScccocvveiiieiie e 10-62
getPropertieS() FOr BFEILES ...ttt 10-66
getProperties() (all attributes) for BFILES........cccccoveoviieiieiicece e 10-68

11 Tuning Tips for the DBA

111
11.2

11.2.1

11.2.2

11.2.3
11.2.4
11.2.5
11.2.6
11.3

11.4
11.5
11.6

11.7
11.8

Setting Database Initialization Parameters.........ccccceoeviieirsiese s 11-2
Issues to Consider in Creating Tables with interMedia Column Objects Containing
2 =PRI 11-8
Initializing Internal interMedia Column Objects Containing BLOBs to NULL or
AV PP RPRR 11-8
Specifying Tablespace and Storage Characteristics for interMedia Column Objects
(0] a1 7 Ul o] [T [= I] = 11-9
Segment Attributes and Physical Attributes..........coooiieiiniiiiiii e 11-15
Accommodating Temporary LOBs in the Buffer Cache...........ccccooeveivivcvvnnnnn 11-16
Using interMedia Column Objects Containing BLOBs in Table Partitions........ 11-17
LOB Buffering for Client APPliCatioNns ... 11-17
Improving Multimedia Data INSERT Performance in interMedia Objects Containing
[]2 PP TPPPRPPRN 11-18
Loading Multimedia Data Using the interMedia Clipboard...........ccccccoeiviviininninnnnns 11-25
Loading Multimedia Data Using interMedia Annotator Utilityccocoeceeeinne 11-25
Reading Data from an ORDVideo Object Using the interMedia readFromSource()
Method iN @ PL/ZSQL SCHIPL .eeeiiiiiiiiiie it 11-25
Reading Results of an interMedia Benchmarkc.cccocvovviiiniiiieicessie e 11-26
Getting the Best Performance ReSUILS ... 11-28

Xiii

Xiv

11.9 Improving Multimedia LOB Data Retrieval and Update Performance..................... 11-29

Audio File and Compression Formats
Al Supported Audio File and Compression FOrmMats..........cocoveoiiiiiiiine e A-1

Image File and Compression Formats

B.1 Supported Image File and Compression FOrMAtS.........cccvvveivrerierienesesiese e eee s B-1
B.1.1 IMAge File FOIMALS ..o et renre s B-1
B.1.2 Image ComMPresSSioN FOPMALS........cciiiiiiie ettt B-7
B.1.3 Summary of Image File Format and Image Compression Format............cc.cc....... B-11

Video File and Compression Formats
Cc.l1 Supported Video File and Compression FOrMAtScococveivvviiennnesiesenese e C-1

Image process() and processCopy() Operators

D.1 (070 0] 0 aT0] o I @] aTox=] o | £SO D-1
D.1.1 Source and Destination IMAagES........cccvvviiririirie s D-1
D.1.2 Process() and ProCeSSCOPY()...ecerererereruereeieieeeeieaesiesesiestesteseeseesteseeseeseesesseenessesnas D-2
D.1.3 (@ o LT -1 (o] gr=Ta o ANV 111 1= S D-2
D.1.4 (%0 gal o] aTTa e @] o T- - L o] ¢SRS D-2
D.2 Image FOrmatting OPEratorsScc.coieiiieiire ettt bbb e e D-2
D.2.1 FHIBFOIMIAL. ...ttt nenes D-3
D.2.2 CONTENTFOMMAL ... e et ens D-3
D.2.3 COMPIESSIONFOIMAL........ciiiiieiiie et bbbt sbe e D-4
D.2.4 (070 001 o T=1ST [0 T U T-1 1 Y25 D-5
D.3 IMage ProcesSing OPEratOrSc.coiciieeieeeisesesiesiesese e see e saesee e eseesessessesreseessessesseseensens D-6
D.3.1 (O TSSOSO D-6
D.3.2 SCALE ..ttt b b nene D-6
D.3.3 XSCAIE .ttt n s D-6
D.3.4 Y SCAIE .ttt bbbt bRttt ae bt ene e e nenes D-7
D.3.5 FIXEASCAIE ...ttt D-7
D.3.6 IMIBXSCAIE ... e ettt ettt ettt D-7
D.4 FOrmat-SPecific OPEIALOIScoiiiieieeeeeee ettt s D-8
D.4.1 ChANNEIOTAEN ...ttt b D-8

D.4.2
D.4.3
D.4.4
D.4.5
D.4.6
D.4.7
D.4.8

INEEITEAVING ...t bbbttt ettt b e sbe st e b D-9

o D] (@] o T S D-9
S Tor= L |11 =T@ o [T SRS D-9
INPUECRNANNEIS ...ttt bt neneas D-9
D 1 1= OSSPSR D-10
PG .t b et bt r e et sre e D-10
I =T P D-11

Image Raw Pixel Format

E.l
E.2
E.3
E.4
E.5
ES5.1
E.5.2
E.5.3
E5.4
E.6
E.7
E.8
E.9
E.10

RAW PiXel INTrOAUCTION ..ot E-1
RAW PixXel IMage SIrUCTUIEccve e sttt sa e re e ene s E-2
Raw Pixel Header Field DeSCriPLIONS........cc.oiiiiiiiiiirie st E-3
RaW Pixel POSt-HEAEN GaP......coviieiieeesiese sttt E-7
Raw Pixel Data Section and Pixel Data FOrmMatccovevvinninninennen e E-8

SCANTING OFAEITNG. ...ttt ettt bbb bt se et b e E-8

D I @ o [T T oo S E-8

=T aTe I Lo (=T [=T= YT o S E-9

[N ST UaTe [T - RO USROS E-10
Raw Pixel Header “C” SIIUCLUIE........c.ciiiieereeese et E-11
Raw Pixel Header “C” CONSLANTScooviriiiieeienieeiee s E-12
Raw Pixel PLZSQL CONSTANTSccoiiiieiiiie ettt s sr e sttt snn s E-13
Raw Pixel Images Using CCITT COMPIESSIONc.cvvveeieeeresesiesieseesieseeseessesseseesessenns E-13
Foreign Image Support and the Raw Pixel FOrmat...........ccccoevviveinivninivsincie e E-14

Sample Programs

F.1
F.2
F.3
F.3.1
F.3.2
F.4
F.5

L a] o] (Sl AN [FTo TS Tot g7 £ PR F-1
SAMPIE DOCUMENT SCEIPTS ..ottt bbb b e e ebesreene e F-2
Sample Program for Modifying Images or Testing the Image Installation. F-2

Demonstration (Demo) Installation STEPScccccveeerveiciiie e F-3

RUNNING ThE DEIMIO ...t bbb F-3
RE] o] LIV A T [T o IS od T o USRI F-4
JAVE DIBIMO......cceiee e e en s F-5

XV

XVi

Frequently Asked Questions

Exceptions and Error Messages

H.1 (=T o) 0] TSRS H-1
H.1.1 ORDAUdIOEXCEeptioNS EXCEPLIONSc.oiviiiiiiiiieiieiesesie et H-1
H.1.2 ORDDOCEXCEPLIONS EXCEPLIONSoviiiiiiiiieriee e e H-3
H.1.3 ORDIMageEXCeptioNs EXCEPLIONScecvvvrierieieieeieeeisie ettt s se e enesneneas H-3
H.1.4 ORDVideoEXCeptions EXCEPLIONS........ccciiiiiriiiiiiie et H-4
H.1.5 ORDSO0UrceEXceptions EXCEPLIONSccviviiriviiiie e H-5
H.2 ORDAUIO ErTOr IMESSAQES. ..c.vevveieveeeeetesiestestesteseestesiesseseessesessessessessessessessessessessessssesssssenses H-6
H.3 ORDIMAQJE ErrOr IMIESSAGESeetetiiitieiiete ettt ettt st sttt e bt s et et e sbesseesaessnesaeeeeas H-7
H.4 ORDViIdEO0 ErrOr IMESSAQES «..c.vcvveeiieetesiestestesiesteseesieseeseeseesessesnessessessestesestessessessssesssssenses H-25

ORDSource Reference Information

1.1 (O] o 1=t A 1Y 011U -2
ORDSOUICE ODJECE TYPIB ...ttt e b sttt b et et eb e beebe b e -3
1.2 IMIBENOMS ... bbbttt I-6
ClEANLOCAL ...ttt bbbt sb et e aneas -9
(o] 0 1S7=T (S [-10
AeleteLOCAICONTENT........ouiiiiiece bbb bbb [-12
L2y oo 1 { () TSSOSO -13
Lo =2 T - TP I-16
getContentINTeMPLOD() .o -17
GEtCONTENTLENGEN() .neeieee b b e [-19
o = 4 o Tor=1 (@] o] (=] o | [-21
Lo e o0 o=y AN (o [(=T (I [-22
EtSOUNCEINTOrMALION ...ouiiiiieee e e [-24
o e i o0 for=] o o= 1 o o [P [-25
JETSOUICENGIMIE ...ttt ettt te e te s teeseesreesbesreenteete e tennaennenneas 1-26
(o< 1o U] o=l IV o1 T TR U U RTUROPTURTOPURON 1-27
Lo =1L oo F- 1 (=) T 1SS [-28
(L] 0 o] o ¢ TSRS 1-29

([ag] o o] g (= goT0 (0 TR SO [-31

(1] I Lo | OO OO USRS 1-33
o] o =T o () SRS I-34
PrOCESSCOMIMANT() ..uviueiieieeiieieee sttt ettt eb ettt b e be b e e b s e e eseesbebeenesbeebenbesaen [-36
LT Lo [() TSSO USSRV RTPR PR 1-38
SEELOCAL ...ttt bbbt e b et bbb eres [-40
SEtSOUTCEINTOIMALION() .oveeee e e re e srenes [-41
SEEUPABLETIME() +veeeiteie ettt ettt ettt b e bbbt e e et et beebenbe e [-43
L1 .0 TS [-44
1TAY 1 T S I-46
1.3 Packages or PLZSQL PIUG-INS ..ottt [-47
1.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Packageccccccervrerriieininieiniaesieesianesens 1-48
1.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package.........ccccevvrurirririiisiseeseesienns I-50
1.3.3 ORDPLUGINS.ORDX_<srcType> SOURCE Package........ccccoevrvrvrieresieniereesinnens [-52
1.3.4 Extending interMedia to Support a New Data SOUrCe..........c.coceiereieeiinieicieane [-52

J Deprecated Methods
J.1 Deprecated Audio and Video Methods ... J-1

Index

XVii

List of Examples

Xviii

W W WwWwowowaowow $ W W Wwowowaowaow
NNNRPRPRPRPRPRRPPRPRPRPERLOONO®O
NFPFOOWO~NODUIDWNRERO

®
N
w

3-24

Define @ SONG OBJECLociiiiie sttt nee s 3-2
Create a Table Named SONGSTabIEcccvvviiiieccce s 3-2
Create a List Object Containing a List of References to SONgS.........ccccvvvvvevevivevcnnnnn, 3-2
Define the Implementation of the songList ObjecCt..........ccccovviveiciviive s 3-3
Create a CD Table Containing CD INformation.........ccccccecvvviieiniesisnsie e 3-4
Insert a Song into the SongsTable Table........cccccov i 3-4
Insert a CD into the CATable Table........cccoiiiiin e 3-5
Load a Song into the SongsTable Table.........c.ccvviiviiiieiieier e 3-5
Insert a Reference to a Song Object into the Songs List in the CdTable Table 3-7
Add a CD Reference t0 @ SONQcccveveiieiieisire ettt neeneens 3-8
Retrieve Audio Data from a SoNg iNn @ CD......cccccveveiiiiiiese e 3-9
Define a Relational Table Containing No ORDAudio Object........cc.cccovvvveninerierinnnnn, 3-10
Define an Object View Containing an ORDAudio Object and Relational Columns. 3-11
Defing @ Media ODBJECT........ccciiii et 3-20
Create a Table Named DocumentsTable..........ccoeiiiiiiii s 3-21
Create a List Object Containing a List of References to Media...........cccccoevvevervcvennnne, 3-21
Define the Implementation of the documentList Objectcccccooviviiviicicie e, 3-21
Create a Library Table Containing Library Informationcccccooevevviviiiiviinienn, 3-22
Insert Media into the DocumentsTable Table ... 3-23
Insert a Library into the LibraryTable Table ..o 3-24
Load Media into the DocumentsTable Table ... 3-24
Insert a Reference to a Document Object into the Documents List in the LibraryTable
L= o] LR SPP 3-25
Add a Library Reference t0 @ DOCUMENTcccvvviiiiniiiee e 3-26
Build a RepoSitory Of MEAIacccviiiiiiieseeie e sne 3-29
Add New Columns of Type ORDImage and ORDImageSignature to the stockphotos
L= o] [PPSR 3-42
Create the stockphotos Table and Add ORDImage and ORDImageSignature Types.........
.. 3-43
Insert a Row into a Table with Empty Data in the ORDImage Type Column........... 3-43
Populate a Row with ORDIMage BLOB Data........cccccevveviiieienicieine e 3-44
Insert a Row into a Table Pointing to an External Image Data Fileccccecvvenee. 3-45
Populate a Row with ORDImage External File Dataccocoovvevnivecnnsccnnsece e, 3-46
Query Rows of ORDImage Data for Widths Greater Than 32 PixelS........cccccocevvevnennas 3-46
Query Rows of ORDImage Data for Widths Greater Than 32 Pixels and a Minimum
Content LENGLN oo ——— 3-47
Import an Image from an External File ..o 3-47
Table stockphotos Definition Used for Content-Based Retrieval of Images............... 3-48
Load the stockphotos Table with Image Data..........cccccooveviveiiiecienice e 3-48
Check the Contents of the stockphotos Table ... 3-49

3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
6-1

Create the Tablespaces for the INAeX........ccccooiiiiiiii e 3-49

Retrieve an Image (Simple REA) ..o s 3-50
Retrieve Images Similar to a Comparison IMageccoceeeriienineie e 3-51
Find photo_id and Score of Similar IMage ... 3-52
Create an iNterMedial INAEX........ccoviiiiiii e 3-52
(070] o) V=1 g T 10 g F- 1o | T TP TP UPTUPPTUPOURTURTT 3-53
Convert an IMage FOIMAL ..ottt nieaes 3-54
Copy and Convert an Image FOrMAL.........c.ooiiiiiiic e 3-55
Extend Oracle interMedia with a New ODbjJect TYPe......ccccoiiiriiiiininre e 3-56
Define a Relational Table Containing No ORDImage Object.........ccccooeiiiiiiiiinnnnnns 3-57
Define an Object View Containing an ORDImage Object and Relational Columns. 3-58
Address a Globalization SUPPOIT ISSUE.........ccuiiiiiciiiie it 3-69
DefiNe @ ClIP ODJECL ..ottt bbb e 3-70
Create a Table Named ClPSTabIeccooiiiiiiieeee e 3-71
Create a List Object Containing a LiSt Of ClIPScccooiiiiiiiiieieee e 3-71
Define the Implementation of the clipList Object..........ccooiiiiiiiiiii e 3-71
Create a Video Table Containing Video Informationcccccocieiiiiiinninnicene 3-72
Insert a Video Clip into the ClipsTable Table ... 3-72
Insert a Row into the VideoTable Table ... 3-73
Load a Video into the ClipsTable Table ... 3-73
Insert a Reference to a Clip Object into the Clips List in the VideoTable Table 3-74
Insert a Reference to a Video Object into the Clip.......ccccovviiviv i 3-75
R L LoV I= WY A T =T o I O T o TS 3-76
Define a Relational Table Containing No ORDVideo Objectccccvcevvrveveiveriinannns 3-78

Define an Object View Containing an ORDVideo Object and Relational Columns. 3-78
Show the Package Body for Extending Support to a New Audio

Data FOIMAL ... et e e e e e e e e e e et e e e e e e e e e e e e e e s 6-60
Show the Package Body for Extending Support to a New Media

DT L B o 0 L PP PP PP 7-30
Show the Package Body for Extending Support to a New Video

Data FOIMAL ...t e rn e s 9-69
Create a Separate Tablespace to Store an interMedia Column Object Containing LOB
DT - PP PP PR 11-9
Show the LOad1.Dat File ... 11-18
SHOW the TL.SQL FIle...ciiiiici ettt 11-19
Show the Loadl.sql File that Executes the load_image Stored Procedure................ 11-22
Show the Control File for Loading Video Datacc.ccoceeeiveiieieieie e 11-23
Read Data from an ORDVideo Column Object Using interMedia readFromSource()
Method in a PL/SQL Stored ProCedurecocoeveiiiiiiiiiiiiieeeeee e 11-26
Execute the Demo from the Command LiNe.........ccocevviiniinniinnie e F-4
Show the Package Body for Extending Support to a New Data Source [-53

Xix

List of Figures

1-1 iNterMedia ArChITECTUNEo e 1-19
2-1 L@ L R=To [aa =T (=To [[4 T Vo - O SRSSRS 2-3
2-2 =T [l=]] (= To [N [y T Vo -SSR 2-4
2-3 Image Comparison: Color and LOCAtIONccccvvieviviienevcne e 2-5
2-4 Images Very Similar in COlOr ..o 2-6
2-5 Images Very Similar in Color and LOCAtioNcccceovviviinnne i 2-6
2-6 Fabric Images With Similar TEXTUIEcccvcviiie s 2-7
2-7 Images with Very Similar SNAPEccovviiiiiie s 2-8
2-8 Score and Distance RelatioNShipccccvcveiciiiie s 2-9
8-1 Use and Syntax Flow Diagram for the contentFormat Operator Values. 8-32

XX

List of Tables

1-1 interMedia Services and Features -- Supported Systems and Oracle9i Releases....... 1-20
2-1 Distances for Visual Attributes Between Imagel and Image?2............ccccuvveeeeeeneennn. 2-10
6-1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schemaccccccceeieeiiiiiiiiinnee 6-56
6-2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package 6-58
7-1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schemaccccccceeiieiiiiiiiiinnee, 7-29
7-2 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package........... 7-29
8-1 IMage ProcesSing OPEratOrSccciviuerveierireeisesesestesesesse e seeseessees e esesreseessesseseeseensens 8-29
8-2 Additional Image Processing Operators for Raw Pixel and Foreign Images............. 8-31
8-3 Image Characteristics for FOreign FileS........ccccoviiiiiieiii e 8-39
9-1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schemacccccceveeeeeviiniinene, 9-65
9-2 Methods Supported in the ORDPLUGINS.ORDX_ DEFAULT_VIDEO Package 9-67
A-1 AIFF Data FOIMAL.......coiiiecces e e e A-1
A-2 ATFF-C Data FOIMAL........cciiiiiiiiiiie ettt re e A-2
A-3 AU DAL FOIMAL ... e et er e sne e A-2
A-4 WAV DAta FOFMAL. ..ot bbb A-3
A-5 AUdIO MPEG Data FOIMAL........ccoouiiiiiiiiiii e A-5
B-1 Summary of Read/Write Access for Supported Image File Formats -- Content Format
SPECITIC CharaCteriStICS ...ocoiiiiiiiiiiiiie e e e e s ereeeee s B-12
B-2 Summary of Read/Write Access for Supported Image File Formats -- Compression
Format and Other Format Specific Characteristicscccccvvvverieeeeiiiiiicieiieeee e B-13
C-1 Apple QuickTime 3.0 Data FOrMaL.........ccccoeeieriiieieieeieit e C-2
c-2 Microsoft Video for Windows (AVI) Data FOrmat...........ccceeoveivivcivnvsiesenesese e C-3
C-3 RealNetworks Real Video Data FOrmMat..........ccccoeiiiiiiiniieneneeeee e C-3
-1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package............. [-49
-2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package........... [-51

XXi

XXii

Send Us Your Comments

Oracle interMedia User’s Guide and Reference , Release 9.0.1
Part No. A88786-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: nedc-doc_us@oracle.com

FAX: 603.897.3825 Attn: Oracle interMedia Documentation
Postal service:

Oracle Corporation

Oracle interMedia Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXiii

XXiV

Audience

Preface

This guide describes how to use Oracle interMedia.
Oracle interMedia ships with Oracle9i.

For information about Oracle9i and the features and options that are available to
you, see Oracle9i Database New Features.

This guide is for application developers and database administrators who are
interested in storing, retrieving, and manipulating audio, document, image, and
video data in an Oracle database, including developers of audio, document, image,
and video specialization options.

If you are interested in only one particular object type, see Chapter 1 for general
introductory information, then, for a description of the methods that are common
for all object types, refer to Chapter 5. If, for example, you are interested in the
ORDImage object type, refer to Chapter 8, the ORDImage reference chapter for a
description of the image-specific methods, then for a description of content-based
retrieval and image matching, refer to Chapter 2.

Also, for examples about using the ORDImage methods, see Chapter 3 and for a
description of using the relational interface with images, see Chapter 10. Then, for
tuning tips for storing image files, see Chapter 11.

For information on supported image content and compression formats, see
Appendix B. For information about using image processing methods, see
Appendix D. Finally, for information about the raw pixel image format, see
Appendix E.

XXV

Organization

Chapter 1

Chapter 2
Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

XXVi

This guide contains the following chapters and appendixes:

Introduces multimedia and Oracle interMedia; explains multimedia-related
concepts.

Explains concepts, operations, and techniques related to content-based retrieval.
Provides basic examples of using Oracle interMedia object types and methods.

Provides compatibility information for ensuring future compatibility with
evolving object types.

Provides reference information about methods that are common to ORDAudio,
ORDDoc, ORDImage, and ORDVideo object types.

Provides reference information on Oracle interMedia ORDAudio object type and
methods.

Provides reference information on Oracle interMedia ORDDoc object type and
methods.

Provides reference information on Oracle interMedia ORDImage object type and
methods.

Provides reference information on Oracle interMedia ORDVideo object type and
methods.

Provides reference information on interMedia relational interface methods for the
ORDAudio, ORDDoc, ORDImage, and ORDVideo object types.

Provides tuning tips for the DBA for more efficient storage of multimedia data.
Describes the supported audio data formats.

Describes the supported image data formats.

Describes the supported video data formats.

Describes the process and processCopy operators.

Describes the raw pixel format.

Describes how to run the sample program and includes the source program.

Emphasizes several entries from the online FAQ.

Appendix H Lists exceptions raised and potential errors, their causes, and user actions to
correct them.

Appendix | Provides reference information on Oracle interMedia ORDSource object type and
methods.
Appendix J Describes the deprecated audio and video methods.

Related Documents

Note: For information added after the release of this guide, refer
to the online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

ORACLE HOVE ord/ i ml admi n/ README. t xt

Please see your operating-system specific installation guide for
more information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://otn. oracl e. cont

For more information about using interMedia in a development environment, see
the following documents in the release 9.0.1 Oracle database server documentation

set:

Conventions

Oracle Call Interface Programmer’s Guide

Oracle9i Application Developer’s Guide - Fundamentals
Oracle9i Application Developer’s Guide - Large Objects (LOBs)
Oracle9i Database Concepts

PL/SQL User’s Guide and Reference

Oracle interMedia Java Classes User’s Guide and Reference

In this guide, Oracle interMedia is sometimes referred to as interMedia.

XXVii

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this guide:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface text indicates a term defined in the text.
italic text Italic text is used for emphasis, book titles, and variable names.
<> Angle brackets enclose user-supplied names.
[1 Brackets enclose optional clauses from which you can choose one or
none.
Changes to This Guide

XXViii

The following substantive changes have been made to this guide since its previous
version for release 8.1.7 on the Oracle Technology Network (OTN) Web site.

Other minor corrections and clarifications have also been included.

A new document object, ORDDoc, is available. The ORDDoc document type can be
used in applications that require you to store different types of documents, such as
audio, image, video, and any other type of document in the same column so you
can build a common metadata index on all the different types of documents and
search across different types of documents using this index. See Chapter 7 for more
information.

Content-based retrieval of images with extensible indexing is supported for image
matching. See Chapter 2, the ORDImageSignature Object Type, the evaluateScore()
method, and the image operators described in Section 8.2.3 for more information.

interMedia image supports the Java Advanced Imaging engine. See the process()
method, Appendix B, and Appendix D for more information.

An interMedia relational interface is available for application developers, who
created multimedia applications without using the interMedia object types to store

and manage media data in relational tables, and who do not want to migrate their
existing multimedia applications to use interMedia objects. See Chapter 10 for more
information.

Documentation Accessibility

Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

htt p: // waw or acl e. comi accessi bi lity/
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XXiX

XXX

1

Introduction

Oracle interMedia is a feature that enables Oracle9i to store, manage, and retrieve
geographic location information, images, audio, video, or other heterogeneous
media data in an integrated fashion with other enterprise information. Oracle
interMedia extends Oracle9i reliability, availability, and data management to
multimedia content in Internet, electronic commerce, and media-rich applications as
well as online Internet-based geocoding services for locator applications.

Oracle interMedia provides services for managing Web content. These services
include:

« Media and application metadata management services (see Section 1.3,
Section 1.4, Section 1.5, Section 1.6, and Section 1.13.3)

« Storage and retrieval services (see Section 1.11 and Section 1.12)
= Support for popular formats (see Appendix A, Appendix B, and Appendix C)

« Access through traditional and Web interfaces (see Section 1.13.5) and a search
capability using associated relational data or using specialized indexing.

Oracle interMedia provides media content services to JDeveloper, Oracle Internet
File System, Oracle Portal, and Oracle partners. This guide describes only the
management of audio, image, and video, or other heterogeneous media data.

1.1 Object Relational Technology

Oracle9i is an object relational database management system. This means that in
addition to its traditional role in the safe and efficient management of relational
data, it provides support for the definition of object types, including the data
associated with objects and the operations (methods) that can be performed on
them. This powerful mechanism, well established in the object-oriented world,

Introduction 1-1

Multimedia Content Management

includes integral support for BLOBs to provide the basis for adding complex
objects, such as digitized audio, image, and video to Oracle9i databases.

Within Oracle interMedia, audio data characteristics have an object relational type
known as ORDAudio, heterogeneous data characteristics have an object relational
type known as ORDDoc, image data characteristics have an object relational type
known as ORDImage, and video data characteristics have an object relational type
known as ORDVideo. All four store data source information in an object relational
type known as ORDSource.

See the following references for extensive information on using BLOBs and BFILEs:
« Oracle9i Application Developer’s Guide - Large Objects (LOBSs)
« Oracle9i Database Concepts -- see the chapter on Object Views.

See Section 1.7 for more information about the multimedia object types and
methods and Section 1.8 for more information about the ORDSource object type and
methods.

1.2 Multimedia Content Management

The capabilities of interMedia include the storage, retrieval, management, and
manipulation of multimedia data managed by Oracle9i. Oracle interMedia supports
multimedia storage, retrieval, and management of:

= Binary large objects (BLOBSs) stored locally in Oracle9i and containing audio,
image, or video data, or other heterogeneous media data

« File-based large objects, or BFILEs, stored locally in operating system-specific
file systems and containing audio, image, or video data, or other heterogeneous
media data

« URLs containing audio, image, or video data or other heterogeneous media
data, stored on any HTTP server such as Oracle Internet Application Server,
Netscape Application Server, Microsoft Internet Information Server, Apache
HTTPD server, and Spyglass servers

« Streaming audio or video data stored on specialized media

Multimedia applications have common and unique requirements. Oracle interMedia
object types support common application requirements and can be extended to
address application-specific requirements. With Oracle interMedia, multimedia data
can be managed as easily as standard attribute data.

1-2 Oracle interMedia User’s Guide and Reference

Multimedia Content Management

Oracle interMedia is accessible to applications through both relational and object
interfaces. Database applications written in Java, C++, or traditional 3GLs can
interact with interMedia through modern class library interfaces, or PL/SQL and
Oracle Call Interface (OCI).

interMedia supports storage of the popular file formats, including desktop
publishing image, and streaming audio and video formats in Oracle9i databases.
interMedia provides the means to add audio, image, and video, or other
heterogeneous media columns or objects to existing tables, and insert and retrieve
multimedia data. This enables database designers to extend existing application
databases with multimedia data or to build new end-user multimedia database
applications. interMedia developers can use the basic functions provided here to
build specialized multimedia applications.

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. These object types are called ORDAudio, ORDDoc, ORDImage,
and ORDVideo. An instance of these object types consists of attributes, including
metadata and the media data, and methods. Media data is the actual audio, image,
or video, or other heterogeneous media data. Metadata is information about the
data, such as object length, compression type, or format. Methods are procedures
that can be performed on the object like getContent() and setProperties().

interMedia objects have a common media data storage model. The media data
component of these objects can be stored in the database, in a binary large object
(BLOB) under transaction control. The media data can also be stored outside the
database, without transaction control. In this case, a pointer is stored in the database
under transaction control, and the media data is stored in:

« Anexternal binary file (BFILE)
« ANnHTTP server-based URL
= A user-defined source on a specialized media data server or other server

Media data stored outside the database can provide a convenient mechanism for
managing large, pre-existing, or new media repositories that reside as flat files on
erasable or read-only media. This data can be imported into BLOBs at any time for
transaction control. Section 1.11 describes several ways of loading multimedia data
into an Oracle9i database.

Media metadata is stored in the database under Oracle interMedia control. Whether
media data is stored within or outside the database, interMedia manages metadata
for all the media types and may automatically extract it for audio, image, and video.
This metadata includes the following attributes:

Introduction 1-3

Multimedia Content Management

« Audio, image, and video, or other heterogeneous media data storage
information including the source type, location, and source name, and whether
the data is stored locally (in the database) or externally

= Audio, image, and video, or other heterogeneous media data update timestamp
« Audio and video data description

« Audio, image, and video, or other heterogeneous media data format

« MIME type of the audio, image, and video, or other heterogeneous media data
« Audio and video metadata, or other heterogeneous media metadata in XML

= Audio characteristics: encoding type, number of channels, sampling rate,
sample size, compression type, and play time (duration)

« Image characteristics: height and width, image content length, image content
format, and image compression format

« Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

In addition to metadata extraction methods, a minimal set of image manipulation
methods is provided. For image, this includes performing format conversion and
compression, scaling, cropping, and copying images.

interMedia is designed to be extensible. It supports a base set of popular audio,
image, and video data formats for multimedia processing that also can be extended,
for example, to support additional formats, new digital compression and
decompression schemes (codecs), data sources, and even specialized data
processing algorithms for audio and video data.

It is possible to extend Oracle interMedia by:

« Creating a new object type or a new composite object type based on the
provided multimedia object types. See the examples in Section 3.1.13,
Section 3.3.16, and Section 3.4.13 for more information.

« Creating specialized plug-ins to support other external sources of audio, image,
and video data, or other heterogeneous media data that are not currently
supported. See Section 1.9.1 for more information.

« Creating specialized audio and video data, or other heterogeneous media data
format plug-ins to support other audio and video data, or other heterogeneous
media data formats that are not currently supported. See Section 1.9.1 for more
information.

1-4 Oracle interMedia User’s Guide and Reference

Audio Concepts

« Using the setProperties() method for foreign images, which allows certain other
image formats to be recognized. See Section 1.9.1 and "setProperties() for
Foreign Images" in Section 8.1.2 for more information.

= Using the audio and video data processing methods to allow a specific audio or
video command and its arguments to be passed through to process audio or
video data. See Section 1.9.2 and Section 1.9.3 for more information.

interMedia is a building block for various multimedia applications rather than being
an end-user application. It consists of object types along with related methods for
managing and processing multimedia data. Some example applications for
interMedia are:

« Internet music stores that provide music samplings of CD quality
« Digital sound repositories

« Dictation and telephone conversation repositories

= Audio archives and collections (for example, for musicians)

« Digital art galleries

« Real estate marketing

« Document imaging

« Photograph collections (for example, for professional photographers)
« Internet video stores and digital video-clip previews

« Digital video sources for streaming video delivery systems

« Digital video libraries, archives, and repositories

« Libraries of digital video training programs

« Digital video repositories (for example, for motion picture production,
television broadcasting, documentaries, advertisements, and so forth)

1.3 Audio Concepts

This section contains information about digitized audio concepts and using the
ORDAudio object type to build audio applications or specialized ORDAudio
objects.

Introduction 1-5

ORDDoc or Heterogeneous Media Data Concepts

1.3.1 Digitized Audio

ORDAudio integrates the storage, retrieval, and management of digitized audio
data in Oracle databases using Oracle9i.

Audio may be produced by an audio recorder, an audio source such as a
microphone, digitized audio, other specialized audio recording devices, or even by
program algorithms. Audio recording devices take an analog or continuous signal,
such as the sound picked up by a microphone or sound recorded on magnetic
media, and convert it into digital values with specific audio characteristics such as
format, encoding type, number of channels, sampling rate, sample size,
compression type, and audio duration.

1.3.2 Audio Components

Digitized audio consists of the audio data (digitized bits) and attributes that
describe and characterize the audio data. Audio applications sometimes associate
application-specific information, such as the description of the audio clip, date
recorded, author or artist, and so forth, with audio data by storing descriptive text
in an attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. ORDAudio can store
and retrieve audio data of any data format. ORDAudio can automatically extract
metadata from audio data of a variety of popular audio formats. ORDAudio can
also extract application attributes and store them in the comments field of the object
in XML form identical to what is provided by interMedia Annotator utility. See
Appendix A for a list of supported data formats from which ORDAudio can extract
and store attributes and other audio features. ORDAudio is extensible and can be
made to recognize and support additional audio formats.

The size of digitized audio (humber of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze audio data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.4 ORDDoc or Heterogeneous Media Data Concepts

This section contains information about heterogeneous media data concepts and
using the ORDDoc object type to build applications or specialized ORDDoc objects.

1-6 Oracle interMedia User’s Guide and Reference

Image Concepts

1.4.1 Digitized Heterogeneous Media Data

ORDDoc integrates the storage, retrieval, and management of heterogeneous media
data in Oracle databases using Oracle9i.

Text documents may be produced by application software, text conversion utilities,
speech to text processing software, and so forth. Heterogeneous media data can be
ASCII text files or binary files formatted by a particular application.

interMedia ORDDoc can store any heterogeneous media data including audio,
image, and video data in a database column. Instead of having separate columns for
audio, image, text, and video objects, you can use one column of ORDDoc objects to
represent all types of multimedia.

1.4.2 Heterogeneous Media Data Components

Heterogeneous media data consist of the data (digitized bits) and attributes that
describe and characterize the heterogeneous media data.

Heterogeneous media data can have different formats depending upon the
application generating the media data. interMedia can store and retrieve media data
of any data format. The ORDDoc heterogeneous media data type can be used in
applications that require you to store different types of heterogeneous media data,
such as audio, image, video, and any other type of media data in the same column
so you can build a common metadata index on all the different types of
heterogeneous media data. Using this index, you can search across all the different
types of heterogeneous media data. Note that you cannot use this same search
technique if the different types of heterogeneous media data are stored in different
types of objects in different columns of relational tables.

ORDDoaoc can automatically extract metadata from data of a variety of popular
audio, image, and video data formats. ORDDoc can also extract application
attributes and store them in the comments field of the object in XML form. See
Appendix A, Appendix B, and Appendix C for a list of supported data formats
from which interMedia can extract and store attributes. ORDDoc is extensible and
can be made to recognize and support other heterogeneous media data formats.

1.5 Image Concepts

This section contains information about digitized image concepts and using the
ORDImage object type to build image applications or specialized ORDImage
objects.

Introduction 1-7

Image Concepts

1.5.1 Digitized Images

ORDImage integrates the storage, retrieval, and management of digitized images in
Oracle databases using Oracle9i.

ORDImage supports two-dimensional, static, digitized raster images stored as
binary representations of real-world objects or scenes. Images may be produced by
a document or photograph scanner, a video source such as a camera or VCR
connected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or
continuous signal such as the light that falls onto the film in a camera, and convert
it into digital values on a two-dimensional grid of data points known as pixels.
Devices involved in the capture and display of images are under application
control.

1.5.2 Image Components

Digitized images consist of the image data (digitized bits) and attributes that
describe and characterize the image data. Image applications sometimes associate
application-specific information, such as including the name of the person pictured
in a photograph, description of the image, date photographed, photographer, and
so forth, with image data by storing this descriptive text in an attribute or column in
the database table.

The image data (pixels) can have varying depths (bits per pixel) depending on how
the image was captured, and can be organized in various ways. The organization of
the image data is known as the data format. ORDImage can store and retrieve
image data of any data format. ORDImage can process and automatically extract
properties of images of a variety of popular data formats. See Appendix B for a list
of supported data formats for which ORDImage can process and extract metadata.
In addition, certain foreign images (formats not natively supported by ORDImage)
have limited support for image processing. See Appendix E for more information.

The storage space required for digitized images can be large compared to
traditional attribute data such as numbers and text. Many compression schemes are
available to squeeze an image into fewer bytes, thus reducing storage device and
network load. Lossless compression schemes squeeze an image so that when it is
decompressed, the resulting image is bit-for-bit identical with the original. Lossy
compression schemes do not result in an identical image when decompressed, but
rather, one in which the changes may be imperceptible to the human eye.

Image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, allowing different applications to
create, exchange, and use images. Interchange formats are often stored in or as disk

1-8 Oracle interMedia User’s Guide and Reference

Video Concepts

files. They may also be exchanged in a sequential fashion over a network and be
referred to as a protocol. There are many application subdomains within the
digitized imaging world and many applications that create or utilize digitized
images within these. ORDImage supports storage and retrieval of all image data
formats and processing and attribute extraction of many image data formats (see
Appendix B).

Content-based retrieval of images with extensible indexing is supported for image
matching. An overview of the benefits of content-based retrieval is described in
Chapter 2 along with how content-based retrieval works, including definitions and
explanations of the visual attributes (color, texture, shape, and location) and why
you might emphasize specific attributes in certain situations. In addition, the use of
indexing to improve search and retrieval performance is described in Section 2.4.

1.6 Video Concepts

This section contains information about digitized video concepts and using
ORDVideo to build video applications or specialized ORDVideo objects.

1.6.1 Digitized Video

ORDVideo integrates the storage, retrieval, and management of digitized video
data in Oracle databases using Oracle9i.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the
video picked up by a video camera or video recorded on magnetic media, and
convert it into digital values with specific video characteristics such as format,
encoding type, frame rate, frame size (width and height), frame resolution, video
length, compression type, number of colors, and bit rate.

1.6.2 Video Components

Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
application-specific information, such as the description of the video training tape,
date recorded, instructor’s name, producer’s name, and so forth, with video data by
storing descriptive text in an attribute or column in the database table.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and

Introduction 1-9

Multimedia Object Types and Methods

bit rates depending upon how the video data was digitally recorded. ORDVideo can
store and retrieve video data of any data format. ORDVideo can automatically
extract metadata from video data of a variety of popular video formats. ORDVideo
can also extract application attributes and store them in the comments field of the
object in XML form identical to what is provided by the interMedia Annotator
utility. See Appendix C for a list of supported data formats from which interMedia
can extract and store attributes and other video features. ORDVideo is extensible
and can be made to recognize and support additional video formats.

The size of digitized video (number of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze video data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.7 Multimedia Object Types and Methods

Oracle interMedia provides the ORDAudio, ORDDoc, ORDImage, and ORDVideo
object types and methods for:

« Modifying the time an object was last updated
« Manipulating the location of media data
« Extracting attributes from multimedia data

« Getting and managing multimedia data from Oracle interMedia, Web servers,
and other servers

« Performing a minimal set of manipulation operations on multimedia data
(ORDImage only)

« Performing file operations on the source and metadata extraction in XML
format (ORDAudio, ORDDoc, and ORDVideo only)

1.8 Multimedia Storage

Oracle interMedia provides the ORDSource object type and methods for multimedia
data source manipulation. The ORDAudio, ORDDoc, ORDImage, and ORDVideo
object types all contain an attribute of type ORDSource. This section presents a
conceptual overview of the ORDSource object type methods.

1-10 Oracle interMedia User’s Guide and Reference

Multimedia Storage

Note: ORDSource methods should not be called directly. Instead,
invoke the wrapper method of the media object corresponding to
the ORDSource method. This information is presented for users
who want to write their own user-defined sources.

1.8.1 Storing Multimedia Data

interMedia can store multimedia data as an internal source within the Oracle9i
database, under transactional control as a BLOB. It can also externally reference
digitized multimedia data stored as an external source in an operating
system-specific BFILE in a local file-system, as a URL on an HTTP server, as audio,
image, or video stored on media servers, or as a user-defined source on other
servers. Although these external storage mechanisms are particularly convenient for
integrating pre-existing sets of multimedia data with an Oracle9i database, the
multimedia data will not be under transactional control.

BLOBs are stored in the database tablespaces in a way that optimizes space and
provides efficient access. Large BLOBs may not be stored inline (BLOBs under 4K
bytes in size can be stored inline) with other row data. Depending on the size of the
BLOB, a locator is stored in the row and the actual BLOB (up to 4 gigabytes) is
stored in other tablespaces. The locator can be considered a pointer to the actual
location of the BLOB value. When you select a BLOB, you are selecting the locator
instead of the value, although this is done transparently. An advantage of this
design is that multiple BLOB locators can exist in a single row. For example, you
might want to store a short video clip of a training tape, an audio recording
containing a brief description of its contents, a syllabus of the course, a picture of
the instructor, and a set of maps and directions to each training center.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an
inconsistency with the BFILE locator. See Oracle9i Application Developer’s Guide -
Large Objects (LOBs) and Oracle Call Interface Programmer’s Guide for detailed
information on using BLOBs and BFILEs.

interMedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types provide
wrapper methods to set the source of the data as local or external; modifying the
time an object was last updated; setting information about the external source type,
location, and file name of the data; transferring data into or out of the database;
obtaining information about the local data content such as its length and location,
its handle to the BLOB, putting the content into a temporary BLOB, or deleting it;
accessing source data by opening it, reading it, writing to it, trimming it, and

Introduction 1-11

Extending Oracle interMedia

closing it; and passing in a series of methods and related arguments to be processed
by calling a single method.

1.8.2 Querying Multimedia Data

Once stored within an Oracle9i database, multimedia data can be queried and
retrieved by using the various alphanumeric columns or object attributes of the
table to find a row that contains the desired data. For example, you can select a
video clip from the Training table where the course name is 'Oracle9i Concepts’.

The collection of multimedia data in the database can be related to some set of
attributes or keywords that describe the associated content. The multimedia data
content can be described with textual components and numeric attributes such as
dates and identification numbers. With Oracle9i, data attributes can reside in the
same table as the object type with objects also containing the metadata.
Alternatively, the application designer could define a composite object type that
contains one of the interMedia object types along with other attributes.

1.8.3 Accessing Multimedia Data

Applications access and manipulate multimedia data using SQL, PL/SQL, OCI, or
Java through the object relational types ORDAudio, ORDDoc, ORDImage, and
ORDVideo. See Oracle interMedia Java Classes User’s Guide and Reference for more
information about using Java.

The object syntax for accessing attributes within a complex object is the dot
notation:

variable.data_attribute
The syntax for invoking methods of a complex object is also the dot notation:
variable.function(parameterl, parameter?, ...)

A complete set of media attribute accessors (get methods) are provided for
accessing attributes for each media type.

See Oracle9i Database Concepts for information on this and other SQL syntax.

1.9 Extending Oracle interMedia
interMedia can be extended to support:

« Other external sources of media data not currently supported

1-12 Oracle interMedia User’s Guide and Reference

Extending Oracle interMedia

« Other media data formats not currently supported
« Audio and video data processing

The following sections describe each of these topics and where to find more
information.

1.9.1 Supporting Other External Sources and Other Media Data Formats

For each unique external media data source or each unique ORDAudio, ORDDoc,
or ORDVideo data format that you want to support, you must:

1. Design your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

2. Implement your new data source or new ORDAudio, ORDDoc, or ORDVideo
data format.

3. Install your new plug-in in the ORDPLUGINS schema.
4. Grant EXECUTE privileges on your new plug-in to PUBLIC.

Supporting Other External Sources

To implement your new data source, you must implement the required interfaces in
the ORDX_<srcType>_ SOURCE package in the ORDPLUGINS schema (where
<srcType> represents the name of the new external source type). Use the package
body example in Section 1.3.4 as a template to create the package body. Then set the
source type parameter in the setSourcelnformation() call to the appropriate source
value to indicate to the ORDAudio, ORDImage, ORDDoc, or ORDVideo object that
package ORDPLUGINS.ORDX_<srcType>_SOURCE is available as a plug-in. Use
the ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_
SOURCE packages as guides when you extend support to other external audio,
image, video, or other heterogeneous media data sources.

See Section 3.5, Section 1.3.1, Section 1.3.2, and Section 1.3.4 for examples and for
more information on extending the supported external sources of audio, image,
video, or other heterogeneous media data.

Supporting Other ORDAudio, ORDDoc, and ORDVideo Data Formats

To implement your new ORDAudio, ORDDoc, or ORDVideo data format, you must
implement the required interfaces in the ORDPLUGINS.ORDX_<format>_<media>
package in the ORDPLUGINS schema (where <format> represents the name of the
new audio or video, or other heterogeneous media data format and <media>
represents the type of media ("TAUDIO" or "VIDEQ", or "DOC"). Use the

Introduction 1-13

Extending Oracle interMedia

ORDPLUGINS.ORDX_DEFAULT_<media> package as a guide when you extend
support to other audio or video data formats or other heterogeneous media data
formats. Use the package body examples in Section 6.4.2, Section 7.4.2, and
Section 9.4.2 as templates to create the audio or video, or other heterogeneous
media data package body, respectively. Then set the new format parameter in the
setFormat() call to the appropriate format value to indicate to the ORDAudio,
ORDDoaoc, or ORDVideo object that package ORDPLUGINS.ORDX_<format>_
<media> is available as a plug-in.

See Section F.1 and Section F.4 for more information on installing your own format
plug-in and running the sample scripts provided.

See Section 3.1.12, Section 3.2.11, Section 3.4.12, Section 6.4.2, Section 7.4.2, and
Section 9.4.2 for examples and for more information on extending the supported
audio and video, or other heterogeneous media data formats.

Supporting Other Image Data Formats

Oracle interMedia supports certain other image formats through the setProperties()
method for foreign images. This method allows other image formats to be
recognized by writing the values supplied to the setProperties() method for foreign
images to the existing ORDImage data attributes. See "setProperties() for Foreign
Images" in Section 8.1.2 for more information.

1.9.2 Supporting Audio Data Processing

To support audio data processing, that is, the passing of an audio processing
command and set of arguments to a format plug-in for processing, use the
processAudioCommand() method. This method is available only for user-defined
formats.

See "processAudioCommand()" in Section 6.3 and Section 3.1.12 for a description.

1.9.3 Supporting Video Data Processing

To support video data processing, that is, the passing of a command and set of
arguments to a format plug-in for processing, use the processVideoCommand()
method. This method is only available for user-defined formats.

See "processVideoCommand()" in Section 9.3 and Section 3.4.12 for a description.

1-14 Oracle interMedia User’s Guide and Reference

Loading Multimedia Data into Oracle9i Using interMedia

1.10 Relational Interface

Oracle interMedia relational interface gives developers the power of interMedia to
annotate and manipulate media data stored in BLOBs and BFILEs without requiring
changes to the existing application schema or instantiation of interMedia object
types, ORDAudio, ORDDoc, ORDVideo, and ORDImage.

Developers can now use static methods of interMedia objects with existing and new
media stored in BLOBS and BFILEs to move media data between the local file
system and the database, to parse and extract the properties of the media data, and
to store these properties in an XML formatted CLOB and optionally individual
relational columns. interMedia static methods can also be used to perform image
processing operations such as cut, scale, compress, and convert format.

See Chapter 10 for a description of the relational interface for each media type,
including reference information, and information about using the relational
interface. See Table 1-1 for a description on the availability of the relational interface
and form of distribution.

1.11 Loading Multimedia Data into Oracle9i Using interMedia

Multimedia data can be managed best by the Oracle9i database. Your multimedia
data should be loaded into Oracle9i to take advantage of its reliability, scalability,

availability, and data management capabilities. To bulk load multimedia data into
Oracle9i, you can use:

« SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case,
multimedia data (LOB data), from external multimedia files into a table of an
Oracle9i database containing interMedia column objects.

. PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation
programming language (4GL) of Oracle Corporation.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation. See Section 11.3 for a description of a
sample control file. See also Oracle9i Database Utilities for more information.

An advantage of using PL/SQL scripts to load your data is that you can call
methods as you load data to generate image thumbnails, extract properties, or
import data. See Section 11.3 for a description of a sample PL/SQL multimedia data
load script. See also PL/SQL User’s Guide and Reference for more information.

Introduction 1-15

Reading Data from a LOB

Loading Multimedia Data Using Oracle interMedia Clipboard, Version 2
You can also use the Oracle interMedia feature, the Clipboard Version 2, to
individually store and retrieve multimedia objects, such as audio, video, and image
data, in an Oracle9i database server.

See Setting Up the Oracle interMedia Clipboard, Version 2 for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://otn.oracl e. cont

Loading Multimedia Data Using Oracle interMedia Annotator Utility

You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle9i database. Annotator does this using an
Oracle PL/SQL Upload Template, which contains both PL/SQL calls and
Annotator-specific keywords.

Advanced users with PL/SQL experience can create their own PL/SQL Upload
Templates in a text editor. Novice users can use the PL/SQL Template Wizard,
which is a graphical user interface that progresses through each step of PL/SQL
Upload Template creation.

With a PL/SQL Upload Template created, you use the Annotator utility to invoke
the Upload Annotation window and perform a series of operations, entering user
name, password, service name, and the path to the PL/SQL Template Folder and
file specification for your PL/SQL Upload Template.

See Chapter 5 "Uploading Structured Annotations into a Database" in Oracle
interMedia Annotator User’s Guide for more information.

1.12 Reading Data from a LOB
LOB read tests were conducted with:
« PL/SQL scripts used to read LOBs from the database
« OCI calls to perform LOB read operations from C++

A benchmark measured the performance of an Oracle-based system in a setting
modeling a real-life video server application. See Section 11.6 for a description of the
PL/SQL script used to read LOBs from the database. See Section 11.7 for a
description of the LOB-read benchmark tests and the results of these tests for
measuring the performance of an Oracle-based system in a setting modeling a
real-life audio server application.

1-16 Oracle interMedia User’s Guide and Reference

interMedia Architecture

1.13 interMedia Architecture

Oracle interMedia is a single, integrated feature that extends Oracle9i by offering
services to store, manage, and retrieve image, audio, and video data, location
services, support for Web technologies, and annotation services for multimedia
data.

The interMedia architecture defines the framework (see Figure 1-1) through which
media-rich content as well as traditional data are supported in the database. This
content and data can then be securely shared across multiple applications written
with popular languages and tools, easily managed and administered by relational
database management and administration technologies, and offered on a scalable
server that supports thousands of users.

Figure 1-1 shows the interMedia architecture from a 3-tier perspective: database
server tier -- Oracle9i; application server tier -- Internet Application Server (iAS);
and client tier -- thin and thick Java clients.

Through the use of interMedia, Oracle9i holds rich content in tables along with
traditional data. Through the Oracle9i Java Virtual Machine (JVM), a server-side
media parser is supported as well as an image processor. The media parser has
object-oriented and relational interfaces, supports format and application metadata
parsing, and includes a registry for new formats and extensions. The image
processor includes Java Advanced Imaging (JAI) and provides image processing for
producing thumbnail-sized images, for converting images, and image indexing and
matching.

Beginning with Oracle9i, interMedia supports a heterogeneous media column,
known as the ORDDoc object type. This allows a column to hold a mixture of
image, audio, and video data, or other heterogeneous media data. Using interMedia
import and export methods for each object type and for the relational interface,
import and export between media objects and operating system files (external file
storage) is possible. interMedia also supports special delivery types of servers, such
as streaming content from an Oracle database. Using the Oracle interMedia plug-in
for RealServer G2 6.0, 7.0, or 8.0, the RealServer G2 can stream multimedia data to a
client directly out of the Oracle9i database using rtsp and iip protocols. In addition,
media content indexing generators run external to the database.

In the middle tier, the Internet Application Server (iAS) or other Web server,
provides access to interMedia through Oracle interMedia Java Classes, which
enables Java applications on any tier (client, application server, or database server)
to access, manipulate, and modify audio, image, and video data stored in Oracle9i.
interMedia Java Classes makes it possible for JDBC result sets to include both
traditional relational data and interMedia media objects (OrdAudio, OrdDoc,

Introduction 1-17

interMedia Architecture

OrdIimage, and OrdVideo). This support enables applications to easily select and
operate on a result set that contains interMedia columns plus other relational data.
These classes also enable access to interMedia object attributes and invocation of
interMedia object methods.

In addition, Oracle interMedia Java classes for servlets and JSPs facilitates the
upload and retrieval of multimedia data stored in an Oracle9i database using the
interMedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types. Oracle
interMedia Java classes for servlets and JSPs can access data stored in the interMedia
objects or BLOBs directly.

On the client tier, the browser-based interMedia Clipboard is provided and uses the
webdav-enabled HTTP protocol for communication with the application server
(iAS) tier. For thick clients and tools, client-side media processing and media
parsing is supported through JAI, and the Java Media Framework (JMF). With
Business Components for Java (BC4J), Oracle JDeveloper’s programming
framework can build scalable, multitier database applications from reusable
business components.

1-18 Oracle interMedia User’s Guide and Reference

interMedia Architecture

Figure 1-1 interMedia Architecture

Thin Client| |Clipboard Thick Clients Tools |
;s X | | and Tonl= l::'.:. a
Browrser
B | JALIMF
C | Client-side
4 I}_‘;:Iedia _
rt
iipsp webdar enabled http J Sy
Media | [Scripting|
Parszer | (Interface [
= Weh
A5 e Server
Apache r
|
mterhledia | PLISEL
Java Classes | Cartridge
JDEBC 2.0
Oracledi
Special T - - :
Delivery [M;Media Parser Image Processor Media
Server [JAI Content
JVM * o Indexers
Heterogeneous =) X Optional
Media Column N " External File
Storage

Introduction 1-19

interMedia Architecture

Table 1-1 describes the interMedia services and features for specified operating
systems and releases of Oracle9i.

Table 1-1 interMedia Services and Features -- Supported Systems and Oracle9i Releases

1-20 Oracle interMedia User’s Guide and Reference

inter Media
Form of Services and
Distribution! |Features Operating Systems and Platforms? Release
8.1.6
Windows or
Solaris Linux NT Macintosh 8.1.5 8.1.7 9.0.1
CD-ROM interMedia Yes Yes Yes No Yes Yes Yes
server-side
CD-ROM Java classes Yes Yes Yes No No Yes Yes
OTN Java Classes Yes Yes Yes No Yes Yes No
OTN and/or JavaClasses for Yes Yes Yes No NO VYes® VYes?
CD-ROM Servlets and JSPs
OTN Clipboard Yes Yes- Yes No No No Yes
(Release 2)
OTN Annotator utility No No Yes Yes (MacOS Yes Yes Yesd
CD-ROM 8.6)
OTN MediaFinder Yes No Yes No Yes Yes Yesb
CD-ROM
OTN Plug-in for Yes Yes Yes No Yes Yes Yes
RealServer G2
6.0,7.00r 8.0
OTN Plug-in for No No Yes Yes No vYes” Yes
Macromedia
UltraDev
CD-ROM Locator Yes Yes Yes No Yes Yes Yes
CD-ROM Generic Yes Yes Yes No No Yes Yes
Geocoding
interface®
OTN Custom YesYes No Yes No No Yes Yes
DataSource and
DataSink for IMF
2.0°

interMedia Architecture

Table 1-1 interMedia Services and Features -- Supported Systems and Oracle9i Releases (Cont.)

inter Media
Form of Services and
Distribution! |Features Operating Systems and Platforms? Release
8.1.6
Windows or
Solaris Linux NT Macintosh 8.1.5 8.1.7 9.0.1
CD-ROM BFILE and BLOB Yes Yes Yes No No No Yes
Stream Adaptors
for JAI
OTN/ interMedia Yes Yes Yes No NO Yes!® vesit
CD-ROM Relational
interface

L Oracle software is distributed from CD-ROM or OTN -- Oracle Technology Network Web site:

http://otn.oracl e.conl

® N o o A~ W

interface.

9 Requires JMF V2.0, Oracle JDBC 8.1.5 or later. JDK version 1.1.n.
10 Available on OTN for release 8.1.7.
1 Available for release 9.0.1 CD-ROM only.

interMedia server and client software are available on many other platforms; the platforms shown in this table describe
only the ones on which the respective interMedia services and features listed are known to run.

Available on OTN for release 8.1.7.
Available for release 9.0.1 CD-ROM only.
Available for release 9.0.1 CD-ROM only.
Available for release 9.0.1 CD-ROM only.
Available on OTN for release 8.1.7.
Generic geocoding client written in Java, is embedded in Oracle9i database as a JSP, and published using PL/SQL

Section 1.13.1 through Section 1.13.6 describe the additional interMedia services and
features that comprise interMedia.

1.13.1 Oracle interMedia Java Classes

Oracle interMedia Java Classes enables Java applications on any tier (client,
application server, or database server) to manipulate and modify audio, image, and
video data, or heterogeneous media data stored in Oracle9i. interMedia Java Classes
makes it possible for JDBC result sets to include both traditional relational data and
interMedia media objects. This support enables applications to easily select and
operate on a result set that contains sets of interMedia columns plus other relational
data. These classes also enable access to object attributes and invocation of object
methods. See Oracle interMedia Java Classes User’s Guide and Reference for more

information.

Introduction 1-21

interMedia Architecture

1.13.2 Oracle interMedia Java Classes for Servlets and JSPs

Oracle interMedia Java Classes for servlets and JSPs facilitates the upload and
retrieval of multimedia data stored in an Oracle9i database using the interMedia
ORDAudio, ORDDoc, ORDImage, and ORDVideo object types. Oracle interMedia
Java Classes for servlets and JSPs accesses data stored in the interMedia object types
using Oracle interMedia Java Classes. However, Oracle interMedia Java Classes for
servlets and JSPs can also be used to handle upload and retrieval of data using
BLOBs directly.

The OrdHttpResponseHandler class facilitates the retrieval of multimedia data from
an Oracle9i database and its delivery to a browser or other HTTP client from a Java
servlet. The OrdHttpJspResponseHandler class provides the same features for Java
Server Pages (JSPs).

Note: JSP engines are not required to support access to the servlet
binary output stream. Therefore, not all JSP engines support the
delivery of multimedia data using the
OrdHttpJspResponseHandler class. See Oracle interMedia Java
Classes User’s Guide and Reference for more information.

Form-based file uploading using HTML forms encodes form data and uploaded
files in POST requests using the multipart/form-data format. The
OrdHttpUploadFormData class facilitates the processing of such requests by
parsing the POST data and making the contents of regular form fields and the
contents of uploaded files readily accessible to a Java servlet or Java Server Page.
The handling of uploaded files is facilitated by the OrdHttpUploadFile class, which
provides an easy-to-use API that applications call to load audio, image, and video
data, or heterogeneous media data into a database.

To read the Javadoc documentation that describes how to use interMedia Java
Classes for Servlets and JSPs, expand the zip file:

<CRACLE_HOME>/ or d/ ht t p/ doc/ or dht t pdoc. zi p (on Uhi x)
<CRACLE_HOMEX\ or d\ ht t p\ doc\ or dht t pdoc. zi p (on Wndows NI)

Also, see Oracle interMedia Java Classes User’s Guide and Reference for more
information.

1-22 Oracle interMedia User’s Guide and Reference

interMedia Architecture

1.13.3 Annotation Services for Multimedia Data

One application for which annotation services can be used is for constructing and
operating a media archive. In the sections that follow, Oracle interMedia Annotator
and a MediaFinder sample application are described. An annotation utility shows
how content and format properties can be extracted from media data, collected as
an annotation, stored in the database, and queried to locate media data based on the
annotation’s content. MediaFinder is a sample application that demonstrates how to
build a media library.

interMedia Annotator Utility

Oracle interMedia Annotator is a utility that makes it easy to store and search for
rich media content in Oracle9i. Oracle interMedia Annotator utility extracts content
and format attributes from media sources (image, audio, and video files, audio CD,
and URLSs), and organizes the attributes into an XML formatted annotation. It lets
you customize annotations to further describe the data, loads the annotation and
the media data into Oracle9i, and allows you to index the annotation for powerful
full text and thematic media searches using Oracle9i Text. Thus, the database can be
queried to locate the media data based on the annotation’s content. See Oracle
interMedia Annotator User’s Guide for more information.

MediaFinder - a Sample Application That Uses Oracle interMedia
Annotator

MediaFinder is a sample application that demonstrates how to build a media
library by using Oracle interMedia components. The open source code is provided
to assist developers in building their own applications.

MediaFinder is an application that uses Oracle interMedia to let you search a video
library built using Oracle interMedia Annotator. MediaFinder allows searching by
movie title or by keyword, retrieving movie annotation information along with the
video clip, and launching QuickTime to play the video. During a keyword search
that will result in text sample matches, MediaFinder will locate the point where the
match occurred, and allow you to start the playback from that point.

With the Apple QuickTime-For-Java library, interMedia Annotator can extract video
frames as well as the text-track samples from the specified QuickTime movie.
Consequently, MediaFinder can enrich the result set of your keyword search by
retrieving the video frame that is closest to the matching text sample by means of
timestamp comparisons.

Introduction 1-23

interMedia Architecture

MediaFinder uses Oracle9i Text to perform a text search against an XML document
as well as a plain text string. For more information, refer to the Oracle9i Text
information provided on the Oracle Technology Network Web site:

http://otn. oracl e. cont

MediaFinder also uses Oracle interMedia ORDImage and ORDVideo objects for the
storage of images and video in the Oracle9i database.

MediaFinder has a graphical user interface that allows you to use a Web interface to
search a video library for a specific text sample, and retrieve the video frames
associated with each text sample.

See "MediaFinder" - a Sample Application That Uses Oracle interMedia Annotator Utility
Readme for Installation, Configuration, and Use for more information, which can be
found on the Oracle interMedia Ultilities and Plugins section of the Oracle
Technology Network Web site:

http://otn.oracl e. cont

1.13.4 Streaming Content from an Oracle Database

You can stream content stored in an Oracle database using an Oracle interMedia
plug-in that supports the streaming server, and deliver this content for play on a
client that uses the browser-supported streaming player.

Oracle interMedia Plug-in for RealServer G2 6.0, 7.0, or 8.0

Oracle interMedia Plug-in for RealServer G2 6.0, 7.0, or 8.0 allows RealServer G2 to
stream multimedia data to a client directly out of the Oracle9i database. This plug-in
is installed in RealServer G2 and defined in the RealServer G2 configuration file.
The data is requested with a URL, which contains information necessary to select
the multimedia data from the database.

For information on RealNetwork RealServer G2 Streaming Server, see the following
URL:

http://waw real . com
See Oracle interMedia Plug-in for RealNetworks G2 Streaming Server Readme for
Installation and Configuration for more information. The Oracle interMedia Plug-in

for RealServer G2 can be downloaded from the Oracle interMedia Utilities and
Plugins section of the Oracle Technology Network Web site:

http://otn. oracl e. cont

1-24 Oracle interMedia User’s Guide and Reference

interMedia Architecture

1.13.5 Support for Web Technologies

Using interMedia support for Web technologies, you can easily integrate
multimedia data into Web and Java applications. You can also store, retrieve, and
manage rich media content in an Oracle9i database.

Oracle interMedia Clipboard Features

The interMedia Clipboard (Version 2) enables users to access Oracle interMedia data
from the Web. You can configure the Clipboard to enable access in the following
ways:

« Through the Clipboard Web browser interface
« Through the OraDav programming interface
See Setting Up the Oracle interMedia Clipboard, Version 2 for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://otn. oracl e. cont

1.13.6 Geocoding Services

Geocoding represents addresses and locations of interest (postal codes,
demographic regions, and so forth) as geometric factors (points). These enable
distances to be calculated and sites to be represented graphically in Web, data
warehousing, customer information system, and enterprise resource planning
applications. Geocoding services can be used to add the exact location (latitude and
longitude) of points of interest to existing data files stored in Oracle9i.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data.

Oracle9/ Locator

Oraclei Locator is an Internet-ready tool developed exclusively to support
standalone and online geocoding and Internet mapping requirements. Geocoded
business information provides a necessary step in cleansing, enhancing, and
visualizing customer records. Such information is proving vital in data
warehousing, customer information systems, electronic commerce, and enterprise
resource planning. In addition to geocoding support, Oracle9i Locator provides the
technology that enables the deployment of simple, easy-to-use Internet-based
mapping applications.

Introduction 1-25

interMedia Architecture

Oracle9i Locator enables Oracle9i to support online Internet-based geocoding
facilities for locator applications and proximity queries.

Oracle9i Locator supports the leading online and batch geocoding services
including MapXtreme from Maplinfo Corporation, Centrus from Qualitative
Marketing Software, MapQuest destination information solutions from
MapQuest.com ("MapQuest"), and GeoZip from whereonearth.com Ltd.

MaplInfo Corporation, Qualitative Marketing Software, MapQuest.com, and
whereonearth.com currently provide the online and batch geocoding services for
the Locator features. Each service offers a number of free geocoding calls at its Web
site for trial purposes for online geocoding, and geocoding service software for
batch geocoding. Locator users need to consent to the vendor policies and possibly
register with them:

Mapinfo Corporation: ht t p: / / www. MapMar ker . cont

Quialitative Marketing Software: htt p: / / www. cent r us- sof t war e. con or acl e/
MapQuest.com: ht t p: / / www. mapquest . coni

whereonearth.com: ht t p: / / www. wher eoneart h. cont

During registration for online geocoding services, you are asked to create your own
user ID and password. Please make a note of them for embedding into your sample
geocoding service because the user ID/password combination is required for each
geocoding call. Your free account is limited to a small number of address records
per day.

Should you require the ability to geocode larger data sets, or for further
information, contact:

« Maplnfo technologies to complement your Oracle solution; call 1.800.FASTMAP
(1.800.327.8627); or send e-mail to custserv@mapinfo.com (see their Web site for
more specific geographic contact information)

« QMSoft technologies to complement your Oracle solution; call QMSoft at
1.800.782.7988; or send e-mail to oracle@gmsoft.com

« MapQuest.com technologies to complement your Oracle solution; call
1.888.MAPQUEST (1.888.627.7837) or in Europe, (31) 70.426.2660; or send e-mail
to info@mapquest.com

= whereonearth.com technologies to complement your Oracle solution; call +44
(0) 207 246 1400; or send e-mail to enquiries@whereonearth.com

These companies’ Web sites will also have detailed documentation about the
vendor-specific parameter information of the Locator features, such as match code

1-26 Oracle interMedia User’s Guide and Reference

interMedia Architecture

or error code. Because Oracle provides an interface to facilitate the geocoding
functions, you should contact the vendors with your questions.

See Oracle9i Locator Release Notes (depending on your operating system,
<ORACLE_HOME>/md/doc/README.txt) for additional information about the
geocoding services provided by these Oracle partners.

Oracle9i Locator also supports server-based geocoding and data scrubbing
operations for data warehouse applications.

Using simple location queries, Oracle9i Locator allows Web and other applications
to retrieve information based on distance. For example, using a set of geocoded
address data and simple query-by-text or query-by-map operations, users can use a
Web browser-based application, enter a distance, and identify the nearest location
from a specific address or reference point on a map. For example, Oracle9i Locator
applications can help you locate stores, offices, distribution points, and other points
of interest based on their distance from a given postal (zip) code, address, or other
reference point.

See the <ORACLE_HOME>/md/doc/LOCATOR_README.txt file or <ORACLE_
HOME>/md/doc/LOCATOR_README.htm file for more information.

These features enable database designers to extend existing application databases
with geocoded, spatial-point data, or to build new geocoded spatial-point
applications. Web application developers can build specialized Web-enabled
Oracle9i Locator applications.

Oracle9i Locator is Web-based and requests are formatted in HTTP. Thus, each
request in SQL must contain the URL of the Web site, proxy for the firewall (if any),
and user account information on the service provider’s Web site. An HTTP
approach potentially limits the utility or practicality of the service when dealing
with large tables or undertaking frequent updates to the base address information.
In such situations, it is preferable to use a batch geocoding service made available
within an Intranet or local area network. The next section describes the interface for
a facility that potentially contains this existing Oracle9i Locator HTTP-based
solution.

Generic Geocoding Interface

A generic geocoding interface is available with Oracle Spatial for release 8.1.6 and
later. This is a generic interface to third-party geocoding software that lets users
geocode their address information stored in database tables, standardized
addresses, and corresponding location information as instances of predefined object
types. This interface is part of the geocoding framework in Oracle Spatial for release
8.1.6 and later and Oracle9i Locator.

Introduction 1-27

interMedia Architecture

This generic geocoding interface describes a set of interfaces and metadata schema
that enables geocoding of an entire address table, or a single row. It also describes
the procedures for inserting new or updated standardized address and spatial data
into another table (or the same table). The third-party geocoding service is assumed
to have been installed on a local network and to be accessible through standard
communication protocols such as sockets or HTTP.

The generic geocoding client is written in Java and embedded in the Oracle9i
database as a Java stored procedure. A fast, scalable, highly available, and secure
Java Virtual Machine (Java VM or JVM) is integrated in the Oracle9i database server.
The Java VM provides an ideal platform for enterprise applications written in Java
as Java stored procedures, Enterprise JavaBeans (EJBs), or Java Methods of Oracle9i
object types.

Java stored procedures are published using the PL/SQL interface; thus, the generic
geocoding interface can be compatible with existing Locator APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
Oracle9i Locator. The procedures also require certain object types to be defined and
metadata tables to be populated. The object types, metadata schema, and geocoder
interface are described in <ORACLE_HOME>/md/doc/LOCATOR_README.txt
file or <ORACLE_HOME>/md/doc/LOCATOR_README.htm file and Oracle
Spatial User’s Guide and Reference.

1-28 Oracle interMedia User’s Guide and Reference

2

Content-Based Retrieval Concepts

This chapter explains, at a high level, why and how to use content-based retrieval. It
covers the following topics:

Overview and benefits of content-based retrieval

How content-based retrieval works, including definitions and explanations of
the visual attributes (color, texture, shape, location) and why you might
emphasize specific attributes in certain situations

Image matching using a specified comparison image, including comparing how
the weights of visual attributes determine the degree of similarity between
images

Use of indexing to improve search and retrieval performance

Image preparation or selection to maximize the usefulness of comparisons

2.1 Overview and Benefits

Inexpensive image-capture and storage technologies have allowed massive
collections of digital images to be created. However, as an image database grows,
the difficulty of finding relevant images increases. Two general approaches to this
problem have been developed, both of which use metadata for image retrieval:

Using information manually entered or included in the table design, such as
titles, descriptive keywords from a limited vocabulary, and predetermined
classification schemes

Using automated image feature extraction and object recognition to classify
image content -- that is, using capabilities unique to content-based retrieval

With interMedia, you can combine both approaches in designing a table to
accommodate images: use traditional text columns to describe the semantic

Content-Based Retrieval Concepts 2-1

How Content-Based Retrieval Works

significance of the image (for example, that the pictured automobile won a
particular award, or that its engine has six or eight cylinders), and use the
ORDImage type for the image, to permit content-based queries based on intrinsic
attributes of the image (for example, how closely its color and shape match a picture
of a specific automobile).

As an alternative to defining image-related attributes in columns separate from the
image, a database designer could create a specialized composite data type that
combines interMedia and the appropriate text, numeric, and date attributes.

The primary benefit of using content-based retrieval is reduced time and effort
required to obtain image-based information. With frequent adding and updating of
images in massive databases, it is often not practical to require manual entry of all
attributes that might be needed for queries, and content-based retrieval provides
increased flexibility and practical value. It is also useful in providing the ability to
query on attributes such as texture or shape that are difficult to represent using
keywords.

Examples of database applications where content-based retrieval is useful -- where
the query is semantically of the form, “find objects that look like this one” --
include:

« Trademarks, copyrights, and logos
« Artgalleries and museums

« Retailing

« Fashion and fabric design

« Interior design or decorating

For example, a Web-based interface to a retail clothing catalog might allow users to
search by traditional categories (such as style or price range) and also by image
properties (such as color or texture). Thus, a user might ask for formal shirts in a
particular price range that are off-white with pin stripes. Similarly, fashion
designers could use a database with images of fabric swatches, designs, concept
sketches, and finished garments to facilitate their creative processes.

2.2 How Content-Based Retrieval Works

A content-based retrieval system processes the information contained in image data
and creates an abstraction of its content in terms of visual attributes. Any query
operations deal solely with this abstraction rather than with the image itself. Thus,

2-2 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works

every image inserted into the database is analyzed, and a compact representation of
its content is stored in a feature vector, or signature.

The signature for the image in Figure 2-1 is extracted by segmenting the image into
regions based on color as shown in Figure 2-2. Each region has associated with it
color, texture, and shape information. The signature contains this region-based
information along with global color, texture, and shape information to represent
these attributes for the entire image. In Figure 2-2, there are a total of 55 shapes
(patches of connected pixels with similar color) in this segmented image. In
addition, there is also a "background" shape, which consists of small disjoint dark
patches. These tiny patches (usually having distinct colors) do not belong to any of
their adjacent shapes and are all classified into a single "background" shape. This
background shape is also taken into consideration for image retrieval.

Figure 2-1 Unsegmented Image

Content-Based Retrieval Concepts 2-3

How Content-Based Retrieval Works

Figure 2-2 Segmented Image

Images are matched based on the color, texture, and shape attributes. The positions
of these visual attributes in the image are represented by location. Location by itself
is not a meaningful search parameter, but in conjunction with one of the three visual
attributes represents a search where the visual attribute and the location of that
visual attribute are both important.

The signature contains information about the following visual attributes:

« Color represents the distribution of colors within the entire image. This
distribution includes the amounts of each color, but not the locations of colors.

« Texture represents the low-level patterns and textures within the image, such as
graininess or smoothness. Unlike shape, texture is very sensitive to features that
appear with great frequency in the image.

« Shape represents the shapes that appear in the image, as determined by
color-based segmentation techniques. A shape is characterized by a region of
uniform color.

2-4 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works

2.2.1 Color

« Location represents the positions of the shapes, color, and texture components.
For example, the color blue could be located in the top half of the image. A
certain texture could be located in the bottom right corner of the image.

Feature data for all these visual attributes is stored in the signature, whose size
typically ranges from 3000 to 4000 bytes. For better performance with large image
databases, you can create an index based on the signatures of your images. See
Section 2.4 for more information on indexing.

Images in the database can be retrieved by matching them with a comparison
image. The comparison image can be any image inside or outside the current
database, a sketch, an algorithmically generated image, and so forth.

The matching process requires that signatures be generated for the comparison
image and each image to be compared with it. Images are seldom identical, and
therefore matching is based on a similarity-measuring function for the visual
attributes and a set of weights for each attribute. The score is the relative distance
between two images being compared. The score for each attribute is used to
determine the degree of similarity when images are compared, with a smaller
distance reflecting a closer match, as explained in Section 2.3.3.

Color reflects the distribution of colors within the entire image.

Color and location specified together reflect the color distributions and where they
occur in the image. To illustrate the relationship between color and location,
consider Figure 2-3.

Figure 2-3 Image Comparison: Color and Location

Red Blue
Yellow Yellow
Blue Red
Image 1 Image 2

Content-Based Retrieval Concepts 2-5

How Content-Based Retrieval Works

Image 1 and Image 2 are the same size and are filled with solid colors. In Image 1,
the top left quarter (25%) is red, the bottom left quarter (25%) is blue, and the right
half (50%) is yellow. In Image 2, the top right quarter (25%) is blue, the bottom right
quarter (25%) is red, and the left half (50%) is yellow.

If the two images are compared first solely on color and then color and location, the
following are the similarity results:

« Color: complete similarity (score = 0.0), because each color (red, blue, yellow)
occupies the same percentage of the total image in each one

« Color and location: no similarity (score = 100), because there is no overlap in the
placement of any of the colors between the two images

Thus, if you need to select images based on the dominant color or colors (for
example, to find apartments with blue interiors), give greater relative weight to
color. If you need to find images with common colors in common locations (for
example, red dominant in the upper portion to find sunsets), give greater relative
weight to location.

Figure 2-4 shows two images very close in color. Figure 2-5 shows two images very
close in both color and location.

Figure 2-4 Images Very Similar in Color

Figure 2-5 Images Very Similar in Color and Location

2-6 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works

2.2.2 Texture

2.2.3 Shape

Texture reflects the texture of the entire image. Texture is most useful for full images
of textures, such as catalogs of wood grains, marble, sand, or stones. These images
are generally hard to categorize using keywords alone because our vocabulary for
textures is limited. Texture can be used effectively alone (without color) for pure
textures, but also with a little bit of color for some kinds of textures, like wood or
fabrics. Figure 2—-6 shows two similar fabric samples.

Figure 2—-6 Fabric Images with Similar Texture

Texture and location specified together compare texture and location of the textured
regions in the image.

Shape represents the shapes that appear in the image. Shapes are determined by
identifying regions of uniform color.

Shape is useful to capture objects such as horizon lines in landscapes, rectangular
shapes in buildings, and organic shapes such as trees. Shape is very useful for
querying on simple shapes (like circles, polygons, or diagonal lines) especially
when the query image is drawn by hand and color is not considered important
when the drawing is made. Figure 2-7 shows two images very close in shape.

Content-Based Retrieval Concepts 2-7

How Matching Works

Figure 2-7 Images with Very Similar Shape

Shape and location specified together compare shapes and location of the shapes in
the images.

2.3 How Matching Works

2.3.1 Weight

2.3.2 Score

When you match images, you assign an importance measure, or weight, to each of
the visual attributes, and interMedia calculates a similarity measure for each visual
attribute.

Each weight value reflects how sensitive the matching process for a given attribute
should be to the degree of similarity or dissimilarity between two images. For
example, if you want color to be completely ignored in matching, assign a weight of
0.0 to color; in this case, any similarity or difference between the color of the two
images is totally irrelevant in matching. On the other hand, if color is extremely
important, assign it a weight greater than any of the other attributes; this will cause
any similarity or dissimilarity between the two images with respect to color to
contribute greatly to whether or not the two images match.

Weight values can be between 0.0 and 1.0. During processing, the values are
normalized such that they total 1.0. The weight of at least one of the color, texture,
or shape attributes must be set to greater than zero. See Section 2.3.3 for details of
the calculation.

The similarity measure for each visual attribute is calculated as the score or distance
between the two images with respect to that attribute. The score can range from 0.00
(no difference) to 100.0 (maximum possible difference). Thus, the more similar two
images are with respect to a visual attribute, the smaller the score will be for that
attribute.

2-8 Oracle interMedia User’s Guide and Reference

How Matching Works

As an example of how distance is determined, assume that the dots in Figure 2-8
represent scores for three images with respect to two visual attributes, such as color
and shape, plotted along the x-axis and y-axis of a graph.

Figure 2-8 Score and Distance Relationship

increasing difference

Shape Score
o
Image 2
®

Image 3
increasing

o .
Color Score difference

Image 1

For matching, assume Image 1 is the comparison image, and Image 2 and Image 3
are each being compared with Image 1. With respect to the color attribute plotted on
the x-axis, the distance between Image 1 and Image 2 is relatively small (for
example, 15), whereas the distance between Image 1 and Image 3 is much greater
(for example, 75). If the color attribute is given more weight, then the fact that the
two distance values differ by a great deal will probably be very important in
determining whether or not Image 2 and Image 3 match Image 1. However, if color
is minimized and the shape attribute is emphasized instead, then Image 3 will
match Image 1 better than Image 2 matches Image 1.

2.3.3 Similarity Calculation

In Section 2.3.2, Figure 2-8 showed a graph of only two of the attributes that
interMedia can consider. In reality, when images are matched, the degree of
similarity depends on a weighted sum reflecting the weight and distance of all three
of the visual attributes in conjunction with location of the comparison image and
the test image.

Content-Based Retrieval Concepts 2-9

How Matching Works

For example, assume that for the comparison image (Image 1) and one of the
images being tested for matching (Image 2), Table 2-1 lists the relative distances
between the two images for each attribute. Note that you would never see these
individual numbers unless you computed three separate scores, each time
highlighting one attribute and setting the others to zero. For simplicity, the three
attributes are not considered in conjunction with location in this example.

Table 2—1 Distances for Visual Attributes Between Imagel and Image2

Visual Attribute Distance
Color 15
Texture 5
Shape 50

In this example, the two images are most similar with respect to texture (distance =
5) and most different with respect to shape (distance = 50).

Assume that for the matching process, the following weights have been assigned to
each visual attribute:

« Color=0.7
« Texture=0.2
« Shape=0.1

The weights are supplied in the range of 0.0 to 1.0. Within this range, a weight of 1
indicates the strongest emphasis, and a weight of 0 means the attribute should be
ignored. The values you supply are automatically normalized such that the weights
total 1.0, still maintaining the ratios you have supplied. In this example, the weights
were specified such that normalization was not necessary.

The following formula is used to calculate the weighted sum of the distances, which
is used to determine the degree of similarity between two images:

wei ght ed_sum = col or _wei ght * col or_di stance +
texture weight * texture_distance +
shape_wei ght * shape_di st ance+

The degree of similarity between two images in this case is computed as:
0.7*c_distance + 0.2*tex_distance + 0.1*shape_distance

Using the supplied values, this becomes:

2-10 Oracle interMedia User’s Guide and Reference

How Matching Works

(0.7%15 + 0.2*5 + 0.1*50) = (10.5 + 1.0 + 5.0) = 16.5

To illustrate the effect of different weights in this case, assume that the weights for
color and shape were reversed. In this case, the degree of similarity between two
images is computed as:

0.1*c_distance +0.2*tex_distance + 0.7*shape_distance
That is:
(0.1*15 + 0.2*5 + 0.7*50) = (1.5 + 1.0 + 35.0) = 37.5

In this second case, the images are considered to be less similar than in the first case,
because the overall score (37.5) is greater than in the first case (16.5). Whether or not
the two images are considered matching depends on the threshold value (explained
in Section 2.3.4). If the weighted sum is less than or equal to the threshold, the
images match; if the weighted sum is greater than the threshold, the images do not
match.

In these two cases, the correct weight assignments depend on what you are looking
for in the images. If color is extremely important, then the first set of weights is a
better choice than the second set of weights, because the first set of weights grants
greater significance to the disparity between these two specific images with respect
to color. The two images differ greatly in shape (50) but that difference contributes
less to the final score because the weight assigned to the attribute shape is low. With
the second set of weights, the images have a higher score when shape is assigned a
higher weight and the images are less similar with respect to shape than with
respect to color.

2.3.4 Threshold Value

When you match images, you assign a threshold value. If the weighted sum of the
distances for the visual attributes is less than or equal to the threshold, the images
match; if the weighted sum is greater than the threshold, the images do not match.

Using the examples in Section 2.3.3, if you assign a threshold of 20, the images do
not match when the weighted sum is 37.5, but they do match when the weighted
sum is 16.5. If the threshold is 10, the images do not match in either case; and if the
threshold is 37.5 or greater, the images match in both cases.

The following example shows a cursor (getphotos) that selects the photo _id,
annotation, and photo from the Pictures table where the threshold value is 20 for
comparing photographs with a comparison image:

QURCR get photos | S
SELECT photo_id, annotation, photo FROM P ctures WERE

Content-Based Retrieval Concepts 2-11

Using an Index to Compare Signatures

ORDSYS.IMGSimilar(photo_sig, comparison_sig, ‘color="0.4",
texture="0.10", shape="0.3", location="0.2", 20)=1;

Before the cursor executes, the generateSignature() method must be called to
compute the signature of the comparison image (comparison_sig), and to compute
signatures for each image in the table. Chapter 8 describes all the operators,
including IMGSimilar and IMGScore.

The number of matches returned generally increases as the threshold increases.
Setting the threshold to 100 would return all images as matches. Such a result, of
course, defeats the purpose of content-based retrieval. If your images are all very
similar, you may find that even a threshold of 50 returns too many (or all) images as
matches. Through trial and error, adjust the threshold to an appropriate value for
your application.

You will probably want to experiment with different weights for the visual
attributes and different threshold values, to see which combinations retrieve the
kinds and approximate number of matches you want.

2.4 Using an Index to Compare Signatures

A domain index, or extensible index, is an approach for supporting complex data
objects. The Oracle database and interMedia cooperate to define, build, and
maintain an index for image data. This index is of type ORDImagelndex. Once it is
created, the index automatically updates itself every time an image is inserted or
removed from the database table. The index is created, managed, and accessed by
routines supplied by the index type.

For better performance with large image databases, you should always create and
use an index for searching through the image signatures. The default search model
compares the signature of the query image to the signatures of all images stored in
the database. This works well for simple queries against a few images such as,
"Does this picture of an automobile match the image stored with the client’s
insurance records?" However, if you want to compare that image with thousands or
millions of images to determine what kind of vehicle it is, then a linear search
though the database would be impractical. In this case, an index based on the image
signatures would greatly improve performance.

Assume you have a table T containing fabric ID numbers and pattern photographs
and signatures:

CREATE TABLE T (fabric_id NUMBER pattern_photo CROSYS RO MAGE, pattern_
si gnat ure CROSYS. RO mageS gnat ure) ;

2-12 Oracle interMedia User’s Guide and Reference

Preparing or Selecting Images for Useful Matching

Load the table with images, and process each image using the generateSignature()
method to generate the signatures.

Note: Performance is greatly improved by loading the data tables
prior to creating the index.

Once the signatures are created, the following command creates an index on this
table, based on the data in the pat t er n_phot o column.

CREATE | NDEX i dx1 ON T(pattern_signature) | NDEXTYPE | S CRDSYS. RO MAGHE NDEX
PARAMETERS ('ORDImage_Filter_Tablespace = <name>,ORDImage_Index_Tablespace =
<name>);

The index name is limited to 24 or fewer characters.® As with any Oracle table, do
not use pound signs (#) or dollar signs ($) in the name. Also as usual, the tablespace
must be created before creating the table.

The index data resides in two tablespaces. The first contains the actual index data,
and the second is an internal index created on that data. See Section 3.3.11 for
suggestions concerning the sizes of these tablespaces.

Finally, as with other Oracle indexes, you should analyze the new index as follows:

ANALYZE | NDEX i dx1 GOMPUTE STATI STI CS,

Two operators, IMGSimilar and IMGScore support queries using the index. The
operators automatically use the index if it is present. See Section 8.2.3 for syntax
information and examples.

2.5 Preparing or Selecting Images for Useful Matching

The human mind is infinitely smarter than a computer in matching images. If we
are near a street and want to identify all red automobiles, we can easily do so
because our minds rapidly adjust for the following factors:

« Whether the automobile is stopped or moving
« The distinction between red automobiles, red motorcycles, and red trailers

=« The absolute size of the automobile, as well as its relative size in our field of
vision (because of its distance from us)

! The standard Oracle restriction is 30 characters for table or index names. However,
interMedia requires an extra 6 characters for internal processing of the domain index.

Content-Based Retrieval Concepts 2-13

Preparing or Selecting Images for Useful Matching

= The location of the automobile in our field of vision (center, left, right, top,
bottom)

« The direction in which the automobile is pointing or traveling (left or right,
toward us, or away from us)

However, for a computer to find red automobiles (retrieving all red automobiles
and no or very few images that are not red or not automobiles), it is helpful if all the
automobile images have the automobile occupy almost the entire image, have no
extraneous elements (people, plants, decorations, and so on), and have the
automobiles pointing in the same direction. In this case, a match emphasizing color
and shape would produce useful results. However, if the pictures show automobiles
in different locations, with different relative sizes in the image, pointing in different
directions, and with different backgrounds, it will be difficult to perform
content-based retrieval with these images.

The following are some suggestions for selecting images or preparing images for
comparison. The list is not exhaustive, but the basic principle to keep in mind is
this: Know what you are looking for, and use common sense. If possible, crop and
edit images in accordance with the following suggestions before performing
content-based retrieval:

« Have what you expect to be looking for occupy almost all the image space, or at
least occupy the same size and position on each image. For example, if you
want to find all the red automobiles, each automobile image should show only
the automobile and should have the automobile in approximately the same
position within the overall image.

= Minimize any extraneous elements that might prevent desired matches or cause
unwanted matches. For example, if you want to match red automobiles and if
each automobile has a person standing in front of it, the color, shape, and
position of the person (skin and clothing) will cause color and shape similarities
to be detected, and might reduce the importance of color and shape similarities
between automobiles (because part of the automobile is behind the person and
thus not visible). If you know that your images vary in this way, experiment
with different thresholds and different weights for the various visual attributes
until you find a combination that provides the best result set for your needs.

« During analysis, images are temporarily scaled to a common size such that the
resulting signatures are based on a common frame of reference. If you crop a
section of an image, and then compare that piece back to the original,

2-14 Oracle interMedia User’s Guide and Reference

Preparing or Selecting Images for Useful Matching

interMedia will likely find that the images are less similar than you would
expect.

Note: interMedia has a fuzzy search engine, and is not designed to
do correlations. For example, interMedia cannot find a specific
automobile in a parking lot. However, if you crop an individual
automobile from a picture of a parking lot, you can then compare
the automobile to known automobile images.

= When there are several objects in the image, interMedia matches them best
when:

— The colors in the image are distinct from each other. For example, an image
of green and red as opposed to an image of dark green and light green.

— The color in adjacent objects in the image contrast with each other.

— The image consists of a few, simple shapes.

Content-Based Retrieval Concepts 2-15

Preparing or Selecting Images for Useful Matching

2-16 Oracle interMedia User’s Guide and Reference

3

interMedia Examples

This chapter provides examples that show common operations with Oracle
interMedia. Examples are presented by audio, media, image, and video data groups
followed by a section that describes how to extend interMedia to support a new
data source.

3.1 Audio Data Examples
Audio data examples using interMedia include the following common operations:
« Defining a song object named songObiject
« Creating an object table named SongsTable
« Creating a list object named songList that contains a list of songs
« Defining the implementation of the songList object
« Creating a CD object and CdTable table
« Inserting a song into the SongsTable table
« Inserting a CD into the CdTable table
« Loading a song into the SongsTable table
« Inserting a reference to a song object into the songs list in the CdTable table
« Adding a CD reference to a song
« Retrieving audio data from a song in a CD
« Extending interMedia to support a new audio data format
« Extending interMedia with new object types

« Using interMedia with object views

interMedia Examples 3-1

Audio Data Examples

« Using a set of scripts for creating and populating an audio table from a BFILE
data source

Reference information on the methods used in these examples is presented in
Chapter 6.

3.1.1 Defining a Song Object

Example 3-1 describes how to define a Song object.

Example 3-1 Define a Song Object
CREATE TYPE song(hj ect as CBIECT (

cdRef REF Gd(yj ect, -- REFinto the cd tabl e
songl d VARCHAR2(20),

title VARCHAR2(4000) ,

arti st VARCHAR2(4000) ,

awar ds VARCHAR2(4000) ,

timePeriod VARCHAR2(20),

duration | NTEGER

cli pRef REF cliphject, -- REFinto the clips table (rusic video)
txtcontent COCB

audi oSour ce CRDSYS. GRDALD O

E

3.1.2 Creating an Object Table SongsTable

Example 3-2 describes how to create an object table named SongsTable.

Example 3-2 Create a Table Named SongsTable
CREATE TABLE SongsTabl e of song(hj ect (UN QE (songld), songld NOT NULL);

3.1.3 Creating a List Object Containing a List of References to Songs

Example 3-3 describes how to create a list object containing a list of references to
songs.

Example 3-3 Create a List Object Containing a List of References to Songs
CREATE TYPE songNst Type AS TABLE of REF song(hj ect ;

CREATE TYPE songLi st AS CBJECT (songs songNst Type,
MEMBER PROCEDURE addSong(s | N REF song(j ect)) ;

3-2 Oracle interMedia User’s Guide and Reference

Audio Data Examples

3.1.4 Defining the Implementation of the songList Object

Example 3—-4 describes how to define the implementation of the songList object.

Example 3—4 Define the Implementation of the songList Object

CREATE TYPE BCDY songLi st AS
MEMBER PROCEDURE addSong(s | N REF song(hj ect)
1S
pos | NTEGER : = 0O;
BEA N
IF songs |'S NLL THEN
songs : = songNst Type(NLLL) ;

pos : = 0;
B.SE
pos : = songs. count;
END I F,
songs. EXTEND,
songs(pos+l) :=s;
END,

END,

3.1.5 Creating a CD Object and a CD Table

This section describes how to create a CD object and a CD table of audio clips that
includes, for each audio clip, the following information:

= lItemID

. CDDBID
= CbDttitle

= CD artist

« CD category

« Copyright

« Name of producer
= Awards

« Time period

interMedia Examples 3-3

Audio Data Examples

« Rating

« Duration

« Text content
« Cover image
« Songs

Example 3-5 creates a CD object named CdObiject, and a CD table named CdTable
that contains the CD information.

Example 3-5 Create a CD Table Containing CD Information
CREATE TYPE d(hj ect as CBIECT (

itemd | NTECER

cddbl D | NTEGER

title VARCHAR2(4000) ,
arti st VARCHAR2(4000) ,
cat egory VARCHAR2(20) ,
copyri ght VARCHAR2(4000) ,
pr oducer VARCHAR2(4000) ,
awar ds VARCHAR2(4000) ,
tinmePeriod VARCHAR2(20) ,
rating VARCHAR2(256) ,
durati on | NTECER

t xt cont ent (eNe:)

cover | ny REF CGROSYS. GRD nage,
songs songLi st);

CREATE TABLE (dTabl e OF Qd(oj ect (LN QUE(itenid), itemid NOT NULL)
NESTED TABLE songs. songs STGRE AS song_store_tabl e;

3.1.6 Inserting a Song into the SongsTable Table

3-4

Example 3-6 describes how to insert a song into the SongsTable table.

Example 3-6 Insert a Song into the SongsTable Table

-- Insert a song into the songs tabl e
I NSERT | NTO SongsTabl e VALUES (NLLL,
00,
"Unhder Pressure’,
" Queen’ ,
'no awards’,
' 80-90,

Oracle interMedia User’s Guide and Reference

Audio Data Examples

243,

NULL,

BWTY_0.(H(),

CROSYS CGRDAUdi 0.init());

-- Check songs insertion
SHLECT s.title

FROM SongsTabl e s
WHERE songld ='00;

3.1.7 Inserting a CD into the CdTable Table
Example 3-7 describes how to insert a CD into the CdTable table.

Example 3-7 Insert a CD into the CdTable Table

-- Insert acdinto the cd table

I NSERT | NTO (dTabl e VALUES (1, 23232323,
"Queen d assics',
" Queen’,
"rock’,
' BW Gonpany’ ,
"BW
"Gamy’,
'80-90,
"no rating’,
4000, -- in seconds
BWTY_Q.H().,
NULL,
songLi st (NULL)) ;

-- Check cd insertion
SHECT cd.title
FROM dtabl e cd;

3.1.8 Loading a Song into the SongsTable Table

Example 3-8 describes how to load a song into the SongsTable table. This example
requires an AUDDIR directory to be defined; see the comments in the example.

Example 3-8 Load a Song into the SongsTable Table
-- Load a Song into the SongsTabl e

interMedia Examples 3-5

Audio Data Examples

-- (reate your directory specification bel ow
-- CREATE (R REPLACE D RECTQRY ALDO R AS '/ audi of * ;
-- GRANT READ ON D RECTCRY ALCDI R TO PUBLI C WTH GRANT CPTI ON
CEQLARE

audi o) CGRDSYS. CGRDALD Q

ctx RAW4000) := NULL;
BEA N

SEH.ECT S. audi oSour ce | NTO audi o(hj

FROM SongsTabl e S

WERE S songld ='00

FOR UPDATE,

audi ohj . set Source('file', "ADDO R, 'WderPressure.au’);
audi o . i nport(ctx);
audi o(hj . set Properties(ctx);

UPDATE SongsTabl e S
SET S. audi oSour ce = audi o(hj
WHERE S songld ='00;
QW T;
B\D,

-- (Check song insertion
DEQLARE
audi oChj CRDSYS. CRDALDI Q
ctx RAW4000) := NULL;
BEG N
SH ECT S audi oSour ce | NTO audi o(bj
FROM SongsTabl e S
WHERE S songld ='00;

dbns_output. put_|ine(’ Gontent Length: ' ||
audi o(hj . get Gont ent Lengt h(ctx));
dbns_out put. put _| i ne(’ Content M neType: ' ||
audi oChj . get M neType());
END,

3.1.9 Inserting a Reference to a Song Object into the Songs List in the CdTable Table

Example 3-9 describes how to insert a reference to a song object into the songs list
in the CdTable table.

3-6 Oracle interMedia User’s Guide and Reference

Audio Data Examples

Example 3-9 Insert a Reference to a Song Object into the Songs List in the CdTable
Table

-- Insert a reference to a Songthject into the Songs List in the dTabl e Tabl e
CEQLARE

songRef REF Song(hj ect ;

songLi st I nst ance songLi st ;

BEA N
SHECT REHS) into songRef
FROM SongsTabl e S
where S songld ='00;
SHLECT C songs | NTO songLi st | nst ance
FROM Table C
WERE Citenid =1
FOR UPDATE,
songLi st | nst ance. addSong(songRef) ;
UPDATE (dTable C
SET C songs = songLi st | nst ance
WERE Citenid = 1;
QOWT;
END,

-- Check insertion of ref
-- This exanpl e works for the first entry inserted in the songLi st
DEQLARE
song Song(hj ect ;
songRef REF Song(hj ect ;
songLi st I nst ance songLi st;
songType songNst Type;
BEG N
SH.ECT C songs | NTO songLi st | nst ance
FROM Table C
WERE Citemd = 1;

SH ECT songlLi st | nst ance. songs | NTO songType FROM DUAL;
songRef : = songType(1);
SH ECT DEREF(songRef) | NTO song FROM DUAL;

dbns_output.put_line(’Song Title: ' ||
song.title);

interMedia Examples 3-7

Audio Data Examples

3.1.10 Adding a CD Reference to a Song

Example 3-10 describes how to add a CD reference to a song.

Example 3-10 Add a CD Reference to a Song

-- Adding a cd reference to a song
CEQLARE
song@Ref REF QGd(hj ect ;
BEA N
SH ECT S cdRef | NTO songCdRef
FROM SongsTabl e S
WERE S songld ='00
FOR UPDATE,

SH ECT REH(Q | NTO songQdRef
FROM QdTable C
WERE Citenid = 1;

UPDATE SongsTabl e S
SET S. cdRef = songCdRef
WHERE S songld ='00;

aaWT;
END,

-- Check cd Ref

CEQLARE
cdref REF Gd(oj ect ;
cd Qloj ect ;

BEAN
SH ECT S. cdRef | NTO cdRef
FROM SongsTable S
WHERE S songld ='00;

SH ECT DEREF(cdRef) I NTO cd FROM DUAL;
dbns_output.put_line(’Cd Title: ' ||
cd. title);
BND,

3.1.11 Retrieving Audio Data from a Song ina CD

Example 3-11 describes how to retrieve audio data from a song in a CD.

3-8 Oracle interMedia User’s Guide and Reference

Audio Data Examples

Example 3-11 Retrieve Audio Data from a Song in a CD

FUNCTI ON retri eveAudi o(i tem D | N | NTEGER

songld I N | NTEGER
RETURN BLAB I S

obj CRDSYS. CRPAdI o;

BEG N

sel ect S audi oSource into obj from SongsTable S
where S songld = songl d;

return obj.getContent();

BND,

3.1.12 Extending interMedia to Support a New Audio Data Format

To support a new audio data format, implement the required interfaces in the
ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where <format>
represents the name of the new audio data format). See Section 6.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_AUDIO package. Use the
package body example in Section 6.4.2 as a template to create the audio package
body. Then set the new format parameter in the setFormat call to the appropriate
format value to indicate to the audio object that package ORDPLUG-INS.ORDX_
<format>_AUDIO is available as a plug-in.

See Section F.1 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and fpluginb.sql files that
are installed in the $QRAQ.E HOMH or d/ aud/ deno/ directory. These are demonstration
(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the auddemo.sql file in this same directory to learn how to
install your own format plug-in.

3.1.13 Extending interMedia with a New Type

This section describes how to extend Oracle interMedia with a new object type.

You can use any of the interMedia objects types as the basis for a new type of your
own creation.

See Example 3-45 for a more complete example and description.

interMedia Examples 3-9

Audio Data Examples

Note: When atype is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDAudio attribute and the interMedia
ORDAudio type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQA> ALTER TYPE <type- nane> GOMP LE,

3.1.14 Using Audio Types with Object Views

This section describes how to use audio types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data --
of either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3-12, consider the following relational table (containing no ORDAudio
objects).

Example 3-12 Define a Relational Table Containing No ORDAudio Object

create table flat (

id NUMBER
description VARCHAR2(4000) ,
| ocal Dat a BLCB,

srcType VARCHAR2(4000) ,
srcLocat i on VARCHAR2(4000) ,
srchNane VARCHAR2(4000) ,
upDat eTi ne DATE,

| ocal NUMBER

f or nat VARCHARZ(31),
m neType VARCHAR2(4000) ,

3-10 Oracle interMedia User’s Guide and Reference

Audio Data Examples

comment s acs,

encodi hg VARCHAR2(256) ,
nunber & Channel s NUMBER

sanpl i ngRat e NUVBER

sanpl eS ze NUMBER

conpressi onType VARCHAR2(4000),
audi oDur at i on NUMBER
);

You can create an object view on the relational table shown in Example 3-12 as
follows in Example 3-13.

Example 3-13 Define an Object View Containing an ORDAudio Object and Relational
Columns

create or replace view object_audio v as
sel ect

id,

CROSYS. ARDAUd of

CROSYS. GRBSour ce(
T.srctype, T.srclLocation, T.srchNane,, T.updateTine, T.Local),
T. description,
T. | ocal Dat a,
T.format,
T. m neType,
T. comment s,
T. encodi ng,
T. nunber & Channel s,
T. sanpl i ngRat e,
T. sanpl eS ze,
T. conpr essi onType,
T. audi oDur at i on)

fromflat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

3.1.15 Scripts for Creating and Populating an Audio Table from a BFILE Data Source

The following scripts can be found on the Oracle Technology Network (OTN) Web
site: htt p: // ot n. oracl e. com as an end-to-end script that creates and

interMedia Examples 3-11

Audio Data Examples

populates an audio table from a BFILE data source. You can get to this site by
selecting the Oracle interMedia Plugins and Ultilities page and from the interMedia
page, select Sample Code.

The following set of scripts:

1. Creates a tablespace for the audio data, creates a user and grants certain
privileges to this new user, creates an audio data load directory (create_
auduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_audtable.sql).

3. Loads the audio data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importaud.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_audschema.sql) automates this entire process by running
each script in the required order. The last script (readaudio.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of audio
data from the BLOB, beginning at a particular offset, until all the audio data is read.
To successfully load the audio data, you must have an auddir directory created on
your system. This directory contains the audl.wav and aud2.mp3 files, which are
installed in <ORACLE HOVE>/ or d/ aud/ denv directory; this directory path and
disk drive must be specified in the CREATE DIRECTORY statement in the create_
auduser.sql file.

Script 1: Create a Tablespace, Create an Audio User, Grant Privileges to
the Audio User, and Create an Audio Data Load Directory (create_
auduser.sql)

This script creates the auddemo tablespace. It contains a data file named
auddemo.dbf of 200MB in size, an initial extent of 64K, and a next extent of 128K,
and turns on table logging. Next, the auddemo user is created and given connect,
resource, create library, and create directory privileges followed by creating the

3-12 Oracle interMedia User’s Guide and Reference

Audio Data Examples

audio data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

Note: You must edit the create_auduser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.

-- create_auduser. sql
-- Qonnect as admin
connect syst end <syst em passwor d>;

-- Hit this script and either enter your system password here
-- to repl ace <system password> or comment out this connect
-- staterment and connect as systembefore running this script.

set serveroutput on
set echo on

-- Need systemmanager privileges to delete a user.
-- Note: There is no need to del ete auddeno user if you do not del ete
-- the auddeno tabl espace, therefore comment out the next |ine.

-- drop user auddeno cascade;

-- Need systemmanager privileges to delete a directory. If there is no need to
-- delete it, then cooment out the next |ine.

-- drop directory auddir;

-- Delete then create tabl espace.

-- Note: It is better to not delete and create tabl espaces,

-- so comment this next line out. The create tabl espace statenent

-- wll fail if it already exists.

-- drop tabl espace auddeno i ncl udi ng contents;

-- |If you uncomment the preceding line and really want to del ete the

-- auddeno tabl espace, renenber to nmanual |y del ete the auddeno. dbf
-- file to conplete this operation. Qherw se, you cannot create

interMedia Examples 3-13

Audio Data Examples

-- the auddeno tabl espace agai n because t he auddeno. dbf file
-- already exists. Therefore, it nmight be best to create this tabl espace
-- once and not delete it.

creat e tabl espace auddeno
dat afil e ' auddeno. dbf’ size 200M
m ni num extent 64K
default storage (initial 64K next 128K)

| oggi ng;

-- Ceate auddeno user.

create user auddeno identified by auddeno
defaul t tabl espace auddeno

tenporary tabl espace tenp;

-- Note: If you do not have a tenp tabl espace al ready defined, you will have to
-- create it first for this script to work.

grant connect, resource, create |library to auddeno;
grant create any directory to auddeno;

-- Note: If this user already exists, you get an error nessage
-- when you try and create this user again.

-- (onnect as auddeno.
connect auddeno/ auddeno

-- Qeate the auddir load directory; this is the directory where the audio
-- files are residing.

create or replace directory auddir
as 'e:\oracl e\ord\ aud\ deno’ ;
grant read on directory auddir to public with grant option;

-- Note: If this directory already exists, an error nmessage
-- is returned stating the operation will fail; ignore the nessage.

Script 2: Create the Audio Table and Initialize the Column Object
(create_audtable.sql)

This script creates the audio table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.

3-14 Oracle interMedia User’s Guide and Reference

Audio Data Examples

--create_audt abl e. sql

connect auddeno/ auddeno;
set serveroutput on
set echo on

drop tabl e audtabl e;
create tabl e audtabl e (i d nunber,
Audi o ordsys. or dAudi 0) ;

-- Insert arowwth enpty BLCB.
insert into audtabl e val ues(1, GROSYS. CRDAudi 0.init());

-- Insert arowwth enpty BLCB.
insert into audtabl e val ues(2, GROSYS. GRDAudi 0.init());
commt;

Script 3: Load the Audio Data (importaud.sql)

This script performs a SELECT FOR UPDATE operation to load the audio data by
first setting the source for loading the audio data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two audio clips to your
AUDDIR directory using the names specified in this script, or modify this script to
match the file names of your audio clips.

-- inportaud. sql

set serverout put on
set echo on
-- Inport two files into the database.

DEQLARE
obj CROSYS CRDALD Q
ctx RAW4000) := NUL;

BEA N
-- This inports the audio file audl.wav fromthe auddir directory
-- onalocal file system(srcType=file) and sets the properties.

select Audio into obj fromaudtable where id = 1 for update;
obj.setSource(’file' ,” ADDR,’ audl. wav');

obj.inport(ctx);

obj . set Properties(ctx);

interMedia Examples 3-15

Audio Data Examples

updat e audtabl e set audio = obj where id = 1;
comt;

-- This inports the audio file aud2. np3 fromthe auddir directory
-- on alocal file system(srcType=file) and sets the properties.

select Audio into obj fromaudtabl e where id = 2 for update;
obj .set Source('file',” ADDR , " aud2. np3');

obj.inport(ctx);

obj . set Properti es(ctx);

updat e audtabl e set audio = obj where id = 2;
commit;

END

/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)

This script performs a SELECT operation of the rows of the audio table, then gets
the audio characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

- - chkpr op. sql
set serverout put on;
- - Gonnect auddeno/ auddeno
--Query audtabl e for CRDSYS. CRDAudI o.
DEQLARE
audi o CRDSYS. CRDAUdI o;
i dnumi nt eger;
properties_match BOOLEAN
ctx RAW4000) := NULL;

BEAN

FCR1 IN1..2 LCCP
SHECT id, audio into i dnum audi o fromaudtabl e where id=l;
dbns_out put . put _|ine(’ audio id: || idnum;

properties_match : = audi 0. checkProperti es(ctx);
| F properties_match THEN DBVS QUJTPUT. PUT_LI NE(’ Check Properties Succeeded’);

END IF
dbns_out put . put _| i ne(’ audi o encodi ng: "|| audio. get Encodi ng()); dbns_
out put. put _|ine(’ audi o nunber of channels:’|| audi o. get Nunber & Channel s());
dbns_out put . put _|ine(’ audio M ME type: "|| audio.get M neType());
dbns_out put. put _line(’ audio file format: "|| audio.getFormat());
dbns_out put . put _| i ne(’ BLCB Lengt h: || TO.

3-16 Oracle interMedia User’s Guide and Reference

Audio Data Examples

CHAR audi o. get Gont ent Lengt h(ctx)));
dbns_out put. put _line(’ ---=-------c-m e ");

END | oop;
END,

Results from running the script chkprop.sql are the following:

Q> @hkpr op. sl

audio id: 1

Check Properties Succeeded

audi o encodi ng: M5 PQOM

audi o nunber of channels: 1

audi o M ME type: audi of x-wav
audio file format: VWAVE

BLCB Lengt h: 93594

audi o id: 2

Check Properties Succeeded

audi o encodi ng: LAYER3

audi o nunber of channels: 1
audio MME type: audi o/ npeg
audio file format: MPGA
BLCB Lengt h: 51537

PL/ SQ procedure successfully conpl et ed.

Automated Script (setup_audschema.sql)

This script runs each of the previous four scripts in the correct order to automate
this entire process.

- - set up_audschena. sql

-- Qeate auddeno user, tablespace, and | oad directory to
-- hold the audio files:

@r eat e_auduser . sl

-- Geate Audio table:
@r eat e_audt abl e. sql

--Inport 2 audio clips and set properties:
@npor t aud. sql

--Check the properties of the audio clips:
@hkpr op. sql

interMedia Examples 3-17

Audio Data Examples

--exit;

Read Data from the BLOB (readaudio.sql)

This script creates a stored procedure that performs a SELECT operation to read a
specified amount of audio data from the BLOB, beginning at a particular offset,
until all the audio data is read.

- - r eadaudi o. sql

set serverout put on
set echo on

create or replace procedure readaudi o as

obj CRDBYS. GRDAUdI o

buf fer RAW (32767);

nunByt es Bl NARY | NTEGER : = 32767;
startpos integer := 1;

read_cnt integer := 1;

ctx RAWA4000) := NLL;

BEA N

Sel ect audio into obj fromaudtable where id = 1;

LGP
obj . r eadFr onSour ce(ct x, st art Pos, nunByt es, buf fer) ;
DBVE QUTPUT. PUT_LI NE(' BLCB Lengt h: ’ || TO CHAR obj . get Cont ent Lengt h(ctx)));
DBVB QUTPUT. PUT_LI NE(" start position: || startPos);
DBVE GQUTPUT. PUT_LI NE(’ doi ng read: '’ || read_cnt);
startpos := startpos + nunBytes;
read cnt :=read cnt + 1;
BEND LOCP,

-- Note: Add your own code here to process the audi o data bei ng read;
-- this routine just reads the data into the buffer 32767 bytes
-- at atine, then reads the next chunk, overwiting the first

-- buffer full of data.

EXCEPTI ON

WHEN NO DATA FOND THEN

DBVE QUTPUT. PUT_LI NE(" End of data ');
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN

CBVE GQUTPUT. PUT_LI NE(" CRDSour ceExcept i ons. METHID NOT_SUPPCRTED caught ’) ;
WEN OTHERS THEN

3-18 Oracle interMedia User’s Guide and Reference

Media Data Examples

DBVS_ QUTPUT. PUT_LI NE(’ EXCEPTI ON caught’) ;
END,

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQ > set serveroutput on;
SQ> execut e readaudi o
Gontent Lengt h: 93594
start position: 1

doing read: 1

start position: 32768
doing read: 2

start position: 65535
doing read: 3

End of data

PL/ SQ procedure successfully conpl et ed.

3.2 Media Data Examples
Media data examples using interMedia include the following common operations:
« Defining a media object named documentObject
« Creating an object table named DocumentsTable
« Creating a list object named docList that contains a list of media
« Defining the implementation of the docList object
« Creating a library object and LibraryTable table
« Inserting media into the DocumentsTable table
« Inserting a library into the LibraryTable table
« Loading media into the DocumentsTable table

« Inserting a reference to a document object into the media list in the LibraryTable
table

« Adding a library reference to document

interMedia Examples 3-19

Media Data Examples

« Extending interMedia to support a new media data format
« Extending interMedia with new object types

« Using interMedia with object views

« Using the ORDDoc object type as a repository

« Using a set of scripts for creating and populating a media table from a BFILE
data source

Reference information on the methods used in these examples is presented in
Chapter 7.

3.2.1 Defining a Media Object

Example 3-14 describes how to define a media object. You must create an empty
LibraryObject object type first for the REF to work in this example. The actual
LibraryObject is created in Example 3-18.

Example 3-14 Define a Media Object
-- Forward Declarations --

CREATE (R REPLACE TYPE Li braryj ect ;
/

CREATE TYPE Docunent (bj ect as CBIECT (

Li br ar yRef REF Li braryj ect, -- REFintothe library table
docunent I d VARCHAR2(40) ,

title VARCHAR2(4000) ,

aut hor VARCHAR2(4000) ,

cat egory VARCHARZ(20) ,

copyri ght VARCHAR2(4000) ,

publ i sher VARCHAR2(4000) ,

awar ds VARCHAR2(4000) ,
tinmePeriod VARCHAR2(20) ,

l ength | NTEGER

t xt cont ent B,

cover | nage REF GROSYS. (RO nage,
docurnent Source CRDSYS. GRODCC

/
show errors

3-20 Oracle interMedia User’s Guide and Reference

Media Data Examples

3.2.2 Creating an Object Table DocumentsTable
Example 3-15 describes how to create an object table named DocumentsTable.

Example 3-15 Create a Table Named DocumentsTable

CREATE TABLE Docunent sTabl e of Docunent (bj ect (UN QUE (docurnent |1 d), docunent|d
NOT NULL) ;

3.2.3 Creating a List Object Containing a List of References to Media

Example 3-16 describes how to create a list object containing a list of references to
media.

Example 3—-16 Create a List Object Containing a List of References to Media

CREATE TYPE docunent Nst Type AS TABLE of REF Docunent (bj ect ;
/
show errors

CREATE TYPE docunent Li st AS (BIECT (docunents docunent Nst Type,
MEMBER PROCEDURE addDocunent (d | N REF Docunent Chj ect)) ;

/

show errors

3.2.4 Defining the Implementation of the documentList Object

Example 3-17 describes how to define the implementation of the documentList
object.

Example 3-17 Define the Implementation of the documentList Object

CREATE TYPE BCDY docunent Li st AS
MEMBER PROCEDURE addDocunent (d | N REF Docurrent Chj ect)
IS
pos | NTEGER : = 0;
BEGQ N
| F docunents 1S NULL THEN
docunent s : = docunent Nst Type(NLLL) ;

pos : = 0;
BLSE

pos : = docunent. count;
END I F,
docunent s. EXTEND,

interMedia Examples 3-21

Media Data Examples

docunent s(pos+1) : = d;
END

END,
/

show errors

3.2.5 Creating a Library Object and a Library Table

This section describes how to create a Library object and a Library table of media
abstracts that includes, for each media abstract, the following information:

= ItemID

« Library DB ID

« Library title

« Library author

« Library category

« Copyright

« Name of publisher
= Awards

« Time period

« Rating

« Length of media in bytes
= Text content

« Coverimage

= Documents

Example 3-18 creates a Library object named LibraryObiject, a Library table named
LibraryTable that contains the Library information, and an Image table named
ImageTable that contains the media cover images.

Example 3-18 Create a Library Table Containing Library Information
CREATE TYPE Li brary(j ect as CBIECT (

itemd | NTEGER
librarydbl D | NTEGER
title VARCHAR2(4000) ,
aut hor VARCHAR2(4000) ,

3-22 Oracle interMedia User’s Guide and Reference

Media Data Examples

cat egory VARCHAR2(20) ,
copyri ght VARCHAR2(4000) ,
publ i sher VARCHAR2(4000) ,

awar ds VARCHAR2(4000) ,
tinmePeriod VARCHAR2(20) ,

rating VARCHAR2(256) ,

I ength | NTEGER

t xt cont ent B,

cover | ny REF GROSYS (RO nage,
docunent s docunent sLi st) ;

/
show errors

CREATE TABLE LibraryTabl e GF LibraryQhject (UNQUE(itemd), itenid NOI NLL)
NESTED TABLE docunent s. docunents STCRE AS docunent _store_tabl e;
CREATE TABLE | nageTabl e OF CRDSYS. (RO nage;

3.2.6 Inserting Media into the DocumentsTable Table
Example 3-19 describes how to insert media into the DocumentsTable table.

Example 3-19 Insert Media into the DocumentsTable Table

-- Insert nedia into the docurments tabl e
I NSERT | NTO Docunent sTabl e VALUES (NULL,
00,
"The Bg Wnd Sornm,
"aut hor’,
‘storns’,
11999,
"Wndy Rvers Publishers’,
"Aassic Tales Anard’,
11992,
2430000,
BWPTY_O.CH(),
NLLL,
CROSYS. CRDDoc. init());

-- Check nedi a insertion
SHECT d.title

FROM Docunent sTabl e d
WHERE documentld ='00";

interMedia Examples 3-23

Media Data Examples

3.2.7 Inserting a Library into the LibraryTable Table

Example 3-20 describes how to insert a Library into the LibraryTable table.

Example 3-20 Insert a Library into the LibraryTable Table

-- Insert alibrary intothe library table

I NSERT | NTO Li braryTabl e VALUES (1, 23232323,
"Sailing dassics’,
"aut hors’,
"sailing,
1998’ ,
' BW Gonpany’ ,
"Young Aut hors Award’,
" 90s’,
"no rating’,
4000000, -- in characters
BWTY_Q.H().,
NLL,
docunent Li st (NULL));

-- Check library insertion
SELECT library.title
FROM Librarytable library;

3.2.8 Loading Media into the DocumentsTable Table

Example 3-21 describes how to load media into the DocumentsTable table. This
example requires a DOCDIR directory to be defined; see the comments in the
example.

Example 3-21 Load Media into the DocumentsTable Table

-- Load nedi a into the Docunent sTabl e
-- (reate your directory specification bel ow
-- CREATE (R REPLACE D RECTCRY DOODI R AS ' / docunent /' ;
DEQLARE
docunent Ghj CROSYS. ARDDACG
ctx RAWA4000) := NULL;
BEA N
SH ECT D docunent Sour ce | NTO docunent (hj
FROM Docunent sTabl e D
WHERE D docurentid ="' 00
FOR UPDATE,

3-24 Oracle interMedia User’s Guide and Reference

Media Data Examples

docunent (oj . set Source(’ file’, 'DOCDO R, 'B gWndStormpdf');
docunent (oj . set M neType(’ appl i cation/ pdf’);

docunent (vj . i nport (ctx, FALSE) ;

docunent (bj . set Properti es(ctx, FALSE) ;

UPDATE Docunent sTabl e D
SET D docurnent Sour ce = docunent (bj
WHERE D docunentld ='00;
QOWT;
BND,
/
-- Check docunent insertion
CEQLARE
docunent Ghj CROSYS. GRDDACG
ctx RAWA4000) := NULL;
BEAN
SH.ECT D docunent Sour ce | NTO docunent (hj
FROM Docunent sTabl e D
WHERE D docurentid ='00;

dbns_out put. put _|ine(’ Content Length: ' ||
docunent bj . get Gont ent Lengt h()) ;

dbns_out put. put_|ine(’ Content MneType: ' ||
docunent (oj . get M neType());

3.2.9 Inserting a Reference to a Document Object into the Documents List in the
LibraryTable Table

Example 3-22 describes how to insert a reference to a document object into the
documents list in the LibraryTable table.

Example 3-22 Insert a Reference to a Document Object into the Documents List in
the LibraryTable Table

-- Insert a reference to a Docunent (bj ect into the Docunents List in the
Li braryTabl e Tabl e
DEQLARE
docunent Ref REF Docunent (bj ect ;
docunent Li st | nst ance docunent Li st;
BEA N
SH ECT REH(D into docunent Ref

interMedia Examples 3-25

Media Data Examples

FROM Docunent sTabl e D
where D docurentlid ='00;

SH ECT L. docunent s | NTO docunent Li st | nst ance
FRCM LibraryTable L

WHERE L.itenid =1

FCR UPDATE,

docunent Li st | nst ance. addDocunent (docunent Ref) ;

UPDATE Li braryTabl e L
SET L. docunent s = docunent Li st | nst ance
WHERE L.itenid = 1;

QOW T,
END,
-- Check insertion of ref
-- This exanpl e works for the first entry inserted i n the docunent Li st

CEQLARE
docunent Docunent Chj ect ;
docunent Ref REF Docunent (j ect ;
docunent Li st | nst ance docunent Li st;
docunent Type docunent Nst Type;
BEA N

SH ECT L. docunent s | NTO docunent Li st | nst ance
FROM LibraryTable L
WERE L.itenid = 1;

SH ECT docurrent Li st | nst ance. docunent s | NTO docurnent Type FRCOM DUAL;
docunent Ref : = docunent Type(1);
SH ECT DEREF(docunent Ref) | NTO docunent FRCM DUAL;

dbns_out put. put _| i ne(’ Docunent Title: ' ||
docunent.title);

3.2.10 Adding a Library Reference to a Document

Example 3-23 describes how to add a library reference to a document.

Example 3-23 Add a Library Reference to a Document

-- Adding a library reference to a docunent
DEQLARE

3-26 Oracle interMedia User’s Guide and Reference

Media Data Examples

docunent Li braryRef REF Li brary(j ect;
BEA N
SEHECT D libraryRef | NIO docunent Li br ar yRef
FRCM Docunent sTabl e D
WHERE D docunentld =’ 00’
FOR UPDATE,

SH ECT REF(L) | NrO docunent Li br ar yRef
FRCM LibraryTabl e L
WERE L.itenid = 1;

UPDATE Docunent sTabl e D
SET D libraryRef = docunent Li brar yRef
WHERE D docurentid ='00;

aOWT;
BEND,

-- Check library Ref

DEQLARE
l'ibraryRef REF Library(j ect;
library Li brary(j ect ;

BEG N
SEHECT DlibraryRef INTOIibraryRef
FROM Docurnent sTabl e D
WHERE D docurentld ='00;

SH ECT DEREF(libraryRef) INTOlibrary FROM DUAL;
dbns_output.put_line(’Library Title: ' ||
library.title);

3.2.11 Extending interMedia to Support a New Media Data Format

To support a new media data format, implement the required interfaces in the
ORDX_<format>_DOC package in the ORDPLUGINS schema (where <format>
represents the name of the new media data format). See Section 7.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_DOC package. Use the
package body example in Section 7.4.2 as a template to create the media package
body. Then set the new format parameter in the setFormat call to the appropriate
format value to indicate to the media object that package ORDPLUG-INS.ORDX_
<format>_DOC is available as a plug-in. See Section 7.4.2 for more information
about extending interMedia to support a new media data format.

interMedia Examples 3-27

Media Data Examples

3.2.12 Extending interMedia with a New Type

This section describes how to extend Oracle interMedia with a new object type.

You can use any of the interMedia objects types as the basis for a new type of your
own creation.

See Example 3-45 for a more complete example and description.

Note: When atype is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDDoc attribute and the interMedia
ORDDoaoc type is altered, which always occurs during an interMedia
installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQA> ALTER TYPE <type- nane> GOMP LE,

3.2.13 Using Document Types with Object Views

This section describes how to use document types with object views. Just as a view
is a virtual table, an object view is a virtual object table.

The Oracle database provides object views as an extension of the basic relational
view mechanism. By using object views, you can create virtual object tables from
data -- of either built-in or user-defined types -- stored in the columns of relational
or object tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.
See Example 3-12 and Example 3-13 for examples of defining a relational table
containing no media (ORDAudio) object type and how to define an object view
containing a media (ORDAudio) object type and relational columns.

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

3-28 Oracle interMedia User’s Guide and Reference

Media Data Examples

3.2.14 Using the ORDDoc Object Type as a Repository

The ORDDoc document object type is most useful for applications that require the
storage of different types of media, such as audio, image, video, and any other type
of document in the same column so you can build a common metadata index on all
the different types of media and perform searches across different types of media
using this index.

Note: You cannot use this same search technique if the different
types of media are stored in different types of objects in different
columns of relational tables.

Example 3-24 shows how to create a repository of media using the tdoc table. A
requirement for creating the metadata index is to create a primary key constraint on
column n. After initializing each row, load each row with a different media, in this
case two audio clips, two video clips, and two images. For each media file, call the
setProperties() method after each row is loaded and specify the setComments =
TRUE value for this parameter to populate the comments field of the object with an
extensive set of format and application properties in XML form. Because the format
of each media type is natively supported by interMedia, the setProperties method is
used to extract the properties from the media source and the comments field of the
object is populated in XML form. If the format of the media type is not known, then
the setProperties() method raises a DOC_PLUGIN_EXCEPTION exception.
interMedia does not support any document media type file (html, pdf, doc, and so
forth), therefore you must create your own format plug-in in order to extract the
media attributes from the media data.

Next, use Oracle Text and create the metadata index on the comments attribute of
the doc column. Then, begin to search for interesting formats, mimeTypes, and so
forth.

Example 3-24 Build a Repository of Media

-- (Oonnect as systemmanager to create a tabl espace and a user.
-- My need to create a tenp tabl espace for this to work.

CONNECT SYSTEM MANAGER
--Create tabl espace docrepository.

CREATE TABLESPACE docr eposi t ory
DATAFI LE * docr epos. dbf’ Sl ZE 200M

interMedia Examples 3-29

Media Data Examples

M N MUM EXTENT 64K
DEFALLT STCRAGE (IN TIAL 64K NEXT 128K)
LOEE NG

-- Qreate a docuser user.
-- (Qreate a tenp tabl espace if you do not have one.

CREATE USER DOOUSER | DENTI Fl ED BY DOOUSER
CEFALLT TABLESPACE docr eposi tory;
-- TEMPCRARY TABLESPACE t enp;

GRANT GONNECT, RESOURCE, CREATE LI BRARY to docuser;
GRANT CREATE ANY DO RECTCRY TO docuser ;

-- BEnd of system nanager tasks.

-- Begin user tasks.

QONNECT docuser / docuser

-- Qeate the docdir directory.
CREATE (R REPLACE D RECTCRY docdi r
as 'e:\oracl e\ ord\ aud\ denv’ ;
GRANT READ ON D RECTCRY docdi r TO PUBLI C WTH GRANT CPTI O\
-- OQeate the tdoc table.

CREATE TABLE tdoc (n NUMBER QONSTRAINT n_pk PR MARY KEY, doc CRDSYS. CRCDoc)
STCRAGE (INTI AL 100K NEXT 100K PCTI NCREASE 0) ;

I NSERT | NTO t doc VALLES(1, CROSYS. GRODoc. init());
I NSERT | NTO t doc VALLES(2, CRDSYS. GRODoc. init());

DEQLARE
obj CGROSYS. CRODAC
ctx RAWA4000) := NULL;
BEA N
-- This inports the audio file audl.wav fromthe docdir directory
-- onalocal file system(srcType=file) and sets the properties.

SHLECT doc | NTO obj FROMtdoc WHERE n = 1 FCR UPDATE,

3-30 Oracle interMedia User’s Guide and Reference

Media Data Examples

obj .set Source('file',” DD R, audl. wav');
obj .inport(ctx, FALSE);
obj . set Properti es(ctx, TRE);
UPDATE tdoc SET doc = obj WHERE n = 1;
AOWT;

-- This inports the audio file aud2. np3 fromthe docdir directory
-- onalocal file system(srcType=file) and sets the properties.

SELECT doc INTO obj FROMtdoc WHERE n = 2 FCR UPDATE,
obj.setSource(’file',” DD R, aud2. np3');
obj .inport(ctx, FALSE);
obj . set Properties(ctx, TRE;

UPDATE tdoc SET doc = obj WHERE n = 2;

QOWT,

B\D,

/

I NSERT | NTO tdoc VALUES(3, CRDSYS GRDDoc.init());
I NSERT | NTO tdoc VALUES(4, CRDSYS GRDDoc.init());

CREATE (R REPLACE D RECTCRY docdi r
as 'e:\oracle\ord\vid\deno' ;
GRANT READ ON D RECTCRY docdir TO PUBLI C WTH GRANT CPTI O\

DEQLARE
obj CROSYS CREDGC
ctx RAW4000) := NUL;

BEA N
-- This inports the video file vidl. mov fromthe docdir directory
-- onalocal file system(srcType=file) and sets the properties.

SELECT doc I NTO obj FROMtdoc WHERE n = 3 FCR UPDATE,
obj.setSource(’file',” DD R,’vidl nov');
obj .inport(ctx, FALSE);
obj . set Properti es(ctx, TRE);

UPDATE tdoc SET doc = obj WHERE n = 3;

QOWT,

-- This inports the video file vid2. mov fromthe docdir directory
-- onalocal file system(srcType=file) and sets the properties.

SELECT doc INTO obj FROMtdoc WHERE n = 4 FCR UPDATE;
obj.setSource(’file',” DD R ,’vid2. nov');

interMedia Examples 3-31

Media Data Examples

obj .inport(ctx, FALSE);
obj . set Properties(ctx, TRE;
UPDATE tdoc SET doc = obj WHERE n = 4;
QOWT,
B\D,
/

I NSERT | NTO tdoc VALUES(5, CRDSYS GRDDoc.init());
I NSERT | NTO t doc VALUES(6, CRDBYS. GRDDuc. init());

CREATE (R REPLACE D RECTCRY docdi r
as 'e:\oracl e\ord\i ng\ deno’ ;
GRANT READ ON D RECTCRY docdir TO PUBLI C WTH GRANT CPTI O\

DEQLARE
obj CROSYS CREDGC
ctx RAW4000) := NULL;

BEG N
-- This inports the image file ing7l.gif fromthe docdir directory
-- on alocal file system(srcType=file) and sets the properties.

SELECT doc INTO obj FROMtdoc WHERE n = 5 FCR UPDATE,
obj.setSource('file',"’DODR,"ing7l.gif");
obj .inport(ctx, FALSE);
obj . set Properties(ctx, TRE;

UPDATE tdoc SET doc = obj WHERE n = 5;

QOWT,

-- This inports the image file ing50.gif fromthe docdir directory
-- onalocal file system(srcType=file) and sets the properties.

SELECT doc INTO obj FROMtdoc WHERE n = 6 FCR UPDATE,
obj.setSource(’file',” DD R, ing50.qif’);
obj .inport(ctx, FALSE);
obj . set Properties(ctx, TRE;

UPDATE tdoc SET doc = obj WHERE n = 6;

AWM T;

B\D,

/

-- Qreate the index using Qacle Text.

CREATE | NCEX nedi ai dx ON t doc(doc. comment s) | NDEXTYPE | S ct xsys. cont ext ;
GOW T,

3-32 Oracle interMedia User’s Guide and Reference

Media Data Examples

-- As part of the CREATE | NDEX statenent, you can create a preference,
-- create nedia attribute sections for each nedia attri bute,

-- that is, format, mneType, and content Lengt h.

-- For exanpl g,

-- Qeate a preference.

EXEQUTE ctx_ddl . creat e_pref erence(’ ANNOT_WIRDLI ST, ' BASI C WORDLI ST) ;
EXEQUTE ctx_ddl . set_attribute(’ ANNOT_WHRDLIST, 'stemmer’, 'ENAISH);
EXEQUTE ctx_ddl . set_attribute(’ ANNOT_WIRDLI ST, 'fuzzy match’', 'ENAISH);

-- Ceate a section group.
-- Define Media Attribute sections, that is, the XM. tags for the attributes
-- or sanples.

EXEQUTE CTX_DOL. DRCP_SECTI ON_GROP(* MEDI AANN TAGS) ;

EXEQUTE CTX DOL. CREATE_SECTI N GROP(" MEDI AANN TAGS , ' xmh _secti on_group’);
EXEQUTE CTX_[COL. ADD ZONE_SECTI QN MED AANN TAGS

" MEDI AFCRVATENGCD NGTAG , " MEDI A FCRVAT_ENCODI NG OCEE) ;

EXEQUTE CTX DOL. ADD ZONE_SECTI QN MED AANN TAGS , ' MEDI ASOURCEM METYPETAG ,

" MED A SOURCE M ME_TYPE) ;

EXEQUTE CTX DOL. ADD ZONE_SECTI O\ MEDI AANN TAGS , ' MEDI ASI ZETAG ,” MDA S ZF) ;
-- Add the fol | owing PARAMETERS cl ause to the end of the CREATE | NDEX st at enent :
-- PARAMETERS (' section group MED AANN TAGS), so the statenent appears

-- as foll owns:

CREATE | NDEX nedi ai dx ON t doc(doc. corment s) | NDEXTYPE | S
CTXSYS. CONTEXT PARAMETERS(' st opl i st CTXSYS. BEMPTY_STCPLI ST wor dl i st
ANN VWRDLI ST filter CTXSYS NULL_FI LTER section group MED AANN TAGS) ;
COWM T,

-- Now performa SELECT statenent on the attributes in the doc. cooments col um.

SELECT n fromtdoc;
-- Shoul d display 6 rows.

SELECT n, score(99) fromtdoc t WHERE OONTA NS(t. doc. comments, ' (MPEG WTH N

MEDI AFCRVATENGCD NGTAG |, 99) >0
-- Should find one row for the aud2. np3 audio file.

interMedia Examples 3-33

Media Data Examples

3.2.15 Scripts for Creating and Populating a Media Table from a BFILE Data Source

The following scripts can be found on the Oracle Technology Network (OTN) Web
site: htt p: // ot n. oracl e. com as an end-to-end script that creates and
populates a media table from a BFILE data source. You can get to this site by
selecting the Oracle interMedia Plugins and Utilities page and from the interMedia
page, select Sample Code.

The following set of scripts:

1. Creates a tablespace for the media data, creates a user and grants certain
privileges to this new user, and creates a media data load directory (create
docuser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_doctable.sql).

3. Loads the media data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importdoc.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_docschema.sql) automates this entire process by running
each script in the required order. The last script (readdoc.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of media
data from the BLOB, beginning at a particular offset, until all the media data is read.
To successfully load the media data, you must have a docdir directory created on
your system. This directory contains the audl.wav and aud2.mp3 files, which are
installed in <ORACLE HOVE>/ or d/ aud/ denv directory; this directory path and
disk drive must be specified in the CREATE DIRECTORY statement in the create_
docuser.sql file.

Script 1: Create a Tablespace, Create a Media User, Grant Privileges to
the Media User, and Create a Media Data Load Directory (create_
docuser.sql)

This script creates the docdemo tablespace. It contains a data file named
docdemo.dbf of 200MB in size, an initial extent of 64K, and a next extent of 128K,
and turns on table logging. Next, the docdemo user is created and given connect,
resource, create library, and create directory privileges followed by creating the

3-34 Oracle interMedia User’s Guide and Reference

Media Data Examples

media data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

Note: You must edit the create_docuser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.

-- create_docuser. sql
-- Qonnect as admin
connect syst end <syst em passwor d>;

-- Hit this script and either enter your system password here
-- to repl ace <system password> or comment out this connect
-- staterment and connect as systembefore running this script.

set serveroutput on
set echo on

-- Need systemmanager privileges to delete a user.
-- Note: There is no need to del ete docdeno user if you do not del ete
-- the docdeno tabl espace, therefore comment out the next |ine.

-- drop user docdeno cascade;

-- Need systemmanager privileges to delete a directory. If there is no need to
-- delete it, then cooment out the next |ine.

-- drop directory docdir;

-- Delete then create tabl espace.

-- Note: It is better to not delete and create tabl espaces,

-- so comment this next line out. The create tabl espace statenent

-- wll fail if it already exists.

-- drop tabl espace docdeno i ncl udi ng contents;

-- |If you uncomment the preceding line and really want to del ete the

-- docdeno tabl espace, renenber to nmanual |y del ete the docdeno. dbf
-- file to conplete this operation. Qherw se, you cannot create

interMedia Examples 3-35

Media Data Examples

-- the docdeno tabl espace agai n because t he docdeno. dbf file
-- already exists. Therefore, it nmight be best to create this tabl espace
-- once and not delete it.

creat e tabl espace docdeno
dat afil e ' docdeno. dbf’ size 200M
m ni num extent 64K
default storage (initial 64K next 128K)

| oggi ng;

-- Ceate docdeno user.

create user docdeno identified by docdeno
defaul t tabl espace docdeno

tenporary tabl espace tenp;

-- Note: If you do not have a tenp tabl espace al ready defined, you will have to
-- create it first for this script to work.

grant connect, resource, create |library to docdeno;
grant create any directory to docdeno;

-- Note: If this user already exists, you get an error nessage
-- when you try and create this user again.

-- onnect as docdeno.
connect docdeno/ docdeno

-- Qeate the docdir load directory; this is the directory where the nedi a
-- files are residing.

create or replace directory docdir
as 'e:\oracl e\ ord\ aud\ deno’ ;
grant read on directory docdir to public with grant option;
— Note for Solaris, the directory specification could be ‘fuserflocal
— Note: If this directory already exists, an error message
—is retumed stating the operation will fail; ignore the message.

Script 2: Create the Media Table and Initialize the Column Object
(create_doctable.sql)

This script creates the media table and then performs an insert operation to
initialize the column object to empty for two rows. Initializing the column object
creates the BLOB locator that is required for populating each row with BLOB data in
a subsequent data load operation.

3-36 Oracle interMedia User’s Guide and Reference

Media Data Examples

--create_doct abl e. sql

connect docdeno/ docdeno;
set serveroutput on
set echo on

drop tabl e doctabl e;
create tabl e doctabl e (id nunber,
Docunent or dsys. or dDoc) ;

-- Insert arowwth enpty BLCB.
insert into doctabl e val ues(1, GROEYS. CRDDoc.init());

-- Insert arowwth enpty BLCB.
insert into doctabl e val ues(2, GRDSYS. GRCDoc.init());
commt;

Script 3: Load the Media Data (importdoc.sql)

This script performs a SELECT FOR UPDATE operation to load the media data by
first setting the source for loading the media data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two media files to your
DOCDIR directory using the names specified in this script, or modify this script to
match the file names of your media.

-- inportdoc. sql

set serverout put on
set echo on
-- Inport two files into the database.

DEQLARE
obj CROSYS CRODGC
ctx RAW4000) := NUL;

BEA N
-- This inports the audio file audl.wav fromthe DOCD R directory
-- onalocal file system(srcType=file) and sets the properties.

sel ect Docunent into obj fromdoctabl e where id = 1 for update;
obj.setSource(’file',” DD R, audl. wav');

obj .inport(ctx, TRE);

updat e doct abl e set document = obj where id = 1;

commt;

interMedia Examples 3-37

Media Data Examples

-- This inports the audio file aud2. np3 fromthe DOCO R directory
-- onalocal file system(srcType=file) and sets the properties.

sel ect Docunent into obj fromdoctabl e where id = 2 for update;
obj . set Source('file',’ DD R, aud2. np3');
obj .inport(ctx, TRE);
updat e doct abl e set docunent = obj where id = 2;
commit;
B\D,
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)

This script performs a SELECT operation of the rows of the media table, then gets
the media characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

- - chkprop. sql
set serverout put on;
- - Gonnect docdeno/ docdeno
--Query doctabl e for GRDSYS. GRDDoc.
DEQLARE
docurent CRDSYS. GRODoc;
i dnumi nt eger;
properties_match BOOLEAN
ctx RAWA4000) := NULL;

BEA N
FCRI IN1..2 LCCP
SHECT id, docunent into idnum docunent fromdoctable where id=l;

dbns_out put . put _| i ne(’ docunent i d: || idnum;
dbns_out put . put _| i ne(’ document M ME t ype: "|| docurent . get M neType());
dbns_out put . put _| i ne(’ docunent file fornat: || docurent . get Fornat ());
dbns_out put . put _| i ne(’ BLCB Lengt h: "|| TO CHAR docunent . get Cont ent Lengt h()));
dbns_output.put _line(’ ------=----m - ");
END | oop;
BND

/

Results from running the script chkprop.sql are the following:

Q> @hkpr op. sql
docunent id: 1

3-38 Oracle interMedia User’s Guide and Reference

Media Data Examples

docunent M ME type: audi of xwav
docurent file fornat: VWAVE

BLCB Lengt h: 93594
docunent i d: 2

docunent M ME type: audi o/ npeg
docunent file fornat: MPGA

BLCB Lengt h: 51537

PL/ SQL procedure successfully conpl et ed.

Automated Script (setup_docschema.sql)

This script runs each of the previous four scripts in the correct order to automate
this entire process.

- - set up_docschena. sql

-- (reate docdeno user, tablespace, and | oad directory to
-- hold the nedia files:

@r eat e_docuser . sql

-- Ceate Mdia table:
@r eat e_doct abl e. sql

--lmport 2 nedia clips and set properties:
@npor t doc. sql

--Check the properties of the nmedia clips:
@hkpr op. sql

--exit;

Read Data from the BLOB (readdoc.sql)

This script creates a stored procedure that performs a select operation to read a
specified amount of media data from the BLOB, beginning at a particular offset,
until all the media data is read.

--readdoc. sql

set serveroutput on
set echo on

create or replace procedure readdocunent as

obj CRDBYS. GRDDoc;

interMedia Examples 3-39

Media Data Examples

buf fer RAW(32767);

nunByt es Bl NARY | NTECER : = 32767;
startpos integer := 1;

read_cnt integer := 1;

ctx RAW4000) := NLL;

BEA N

Sel ect docunent into obj fromdoctabl e where id = 1,

LaP
obj . r eadFr onSour ce(ct x, st art Pos, nunByt es, buf fer) ;
DBVE QUTPUT. PUT_LI NE(" BLCB Length: |] TO CGHAR obj . get Gontent Length()));
DBVE QUTPUT. PUT_LI NH" start position: '|| startPos);
CBVE QUTPUT. PUT_LI NE(’ doi ng read: ’ || read_cnt);
startpos := startpos + nunBytes;
read_cnt :=read cnt + 1;
BEN\D LGP,

-- Note: Add your own code here to process the nedia data bei ng read;
-- this routine just reads the data into the buffer 32767 bytes
-- at atine, then reads the next chunk, overwiting the first

-- buffer full of data.

EXCEPTI ON

WHEN NO DATA FOND THEN

DBVE QUTPUT. PUT_LINE(" End of data ');
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN

DBVE_QUTPUT. PUT_LI NE(" CRDSour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN

DBVE QUTPUT. PUT_LI NE(" EXCEPTI ON caught ') ;

END,

/
show errors

To execute the stored procedure, enter the following SQL statements:

S > set serveroutput on;
SQ> execut e r eaddocunent
Gontent Length: 93594
start position: 1

doing read: 1

start position: 32768

3-40 Oracle interMedia User’s Guide and Reference

Image Data Examples

doing read: 2
start position: 65535
doing read: 3

End of data

PL/ SQ procedure successfully conpl et ed.

3.3 Image Data Examples

Image data examples using interMedia include the following common operations:

Adding types to a new or existing table

Inserting a row using BLOB images

Populating a row using BLOB images

Inserting a row using BFILE images

Populating a row using BFILE images

Querying a row

Importing an image from an external file into the database

Retrieving images (simple read operation; no content-based retrieval)
Retrieving images similar to a comparison image (content-based retrieval)
Creating a domain index

Retrieving images similar to a comparison image using indexing operations
(indexed content-based retrieval)

Copying an image

Converting an image format

Copying and converting an image in one step
Extending interMedia with new object types
Using image types with object views

Using a set of scripts for creating and populating an image table from a BFILE
data source

interMedia Examples 3-41

Image Data Examples

« Using a set of scripts for creating and populating an image table from an HTTP
data source

« Addressing Globalization Support issues

3.3.1 Adding Image Types to an Existing Table

Suppose you have an existing table named 'stockphotos’ with the following
columns:

photo_id NUMBER
phot ogr apher VARCHAR?(64)
annotati on VARCHAR2(255)

To add two new columns to the 'stockphotos’ table called ‘photo’ using the
ORDImage type and photo_sig using the ORDImageSignature type, issue the
statement in Example 3-25. The photo column will store images and the photo_sig
column will store image signatures, so you can later compare these images to a
comparison image by means of their image signature.

Example 3-25 adds two new columns of type ORDImage and ORDImageSignature
to the stockphotos table.

Example 3-25 Add New Columns of Type ORDImage and ORDImageSignature to the
stockphotos Table

ALTER TABLE st ockphot os
ADD (phot o CRDBYS. (RO nage, photo_si g CRDSYS. RO nageS gnat ure) ;

3.3.2 Adding Image Types to a New Table

Suppose you are creating a new table called 'stockphotos’ with the following
information:

= Photo ID number

« Photographer’s name
« Descriptive annotation
« Photographic image

« Photograph signature

The column for the photograph is for photographs of cloth patterns and uses the
ORDImage type, and the column for the photograph signature 'photo_sig' uses the

3-42 Oracle interMedia User’s Guide and Reference

Image Data Examples

ORDImageSignature type. The statement in Example 3-26 creates the table and
adds ORDImage and ORDImageSignature types to the new table.

Example 3-26 Create the stockphotos Table and Add ORDImage and
ORDImageSignature Types

CREATE TABLE st ockphot os (
phot o_i d NUMBER
phot ogr apher VARCHAR2(64) ,
annot at i on VARCHAR2(255) ,
phot o CRDSYS. CRO nage,
phot 0_si g GROSYS. CRD nageSi gnat ure) ;

3.3.3 Inserting a Row Using BLOB Images

To insert a row into a table that has storage for image content using the ORDImage
and ORDImageSignature types, you must populate each type with an initializer.
Note that this is different from NULL. Attempting to use the ORDImage or
ORDImageSignature types with a NULL value results in an error.

Example 3-27 describes how to insert rows into the table using the ORDImage and
ORDImageSignature types. Assume you have a table 'stockphotos' with the
following columns:

photo_id NUMBER

phot ogr apher VARCHAR2(64)

annot ati on VARCHER2(255)

phot o (RO nage
photo_sig (RO nageS gnat ure

If you are going to store image data in the database (in a binary large object
(BLOB)), you must populate the ORDSource.localData attribute with a value and
initialize storage for the localData attribute with an empty_blob() constructor. To
insert a row into the table with empty data in the 'photo’ and 'photo_sig' columns,
issue the statement in Example 3-27.

Example 3-27 inserts a row into a table with empty data in the ORDImage type
column.

Example 3-27 Insert a Row into a Table with Empty Data in the ORDImage Type
Column

I NSERT | NTO st ockphot os VALUES (
1, "John Doe’, 'red plaid,
CROSYS. GRD mage. i nit (),

interMedia Examples 3-43

Image Data Examples

CROSYS. RO mageSi gnature.init());

3.3.4 Populating a Row Using BLOB Images

Prior to updating a BLOB value, you must lock the row containing the BLOB
locator. This is usually done using a SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or using an Oracle Call Interface (OCI) pin or lock function in
OCI programs.

Example 3-28 populates a row with ORDImage BLOB data and
ORDImageSignature data. See Section 3.1.15 for another set of examples for
populating rows using BLOB images.

Example 3-28 Populate a Row with ORDImage BLOB Data

DEQLARE
-- application variabl es
| rage CROSYS. CRD nage;
ctx RAW4000) := NULL;
BEG N
I NSERT | NTO st ockphot os VALUES (
1, John Doe’, red plaid,
CROSYS CRD nage. init (),
CROSYS (RO nageSi gnature.init());
-- Select the newy inserted row for update
SELECT phot o | NTO | nage FROM st ockphot os
WHERE photo_id = 1 for UPDATE
-- Can use the get Gontent nethod to get the LAB | ocator.
-- Populate the data with DBMS LGB calls or wite an GO programto
-- fill in the inage BLGB.
-- This exanple inports the inage file test.gif fromthe GRO MO R
-- directory on a local file system
-- (srcType=FI LE) and autonatically sets the properti es.

I mage. set Source('file',"CROMIDI R ,'redplaid. gif');
| mage. i nport (ctx);

UPDATE st ockphot os SET photo = | mage WHERE photo_id = 1;
QW T;
-- Qontinue processi ng

END,

/

An UPDATE statement is required to update the property attributes. If you do not
use the UPDATE statement now, you can still commit, and the change to the image

3-44 Oracle interMedia User’s Guide and Reference

Image Data Examples

will be reflected in the BLOB attribute, but not in the properties. See Oracle9i
Application Developer’s Guide - Large Objects (LOBs) for more information on BLOBs.

3.3.5 Inserting a Row Using BFILE Images

To insert a row into a table that has storage for image content in external files using
the ORDImage type, you must populate the type with an initializer. Note that this is
different from NULL. Attempting to use the ORDImage type with a NULL value
results in an error.

Example 3-29 describes how to insert rows into the table using the ORDImage type.
Assume you have a table 'stockphotos' with the following columns:

photo_id NUMBER

phot ogr apher VARCHAR?(64)
annotati on VARCHAR2(255)

phot o CRO nage
photo_sig CRO nageSi gnat ure

If you are going to use the ORDImage and ORDImageSignature type columns, you
must first populate the columns with a value. To populate the value of the
ORDImage type column with an image stored externally in a file, you must
populate the row with a file constructor.

Example 3-29 inserts a row into the table with an image called 'redplaid.gif’ from
the ORDIMGDIR directory.

Example 3-29 Insert a Row into a Table Pointing to an External Image Data File

I NSERT | NTO st ockphot os VALUES (
1,’John Doe’,’ red plaid,
CRSYS GRDmage.init("file',” GROMIOIR ,’'redplaid.gif’),
CROSYS. RO mageS gnature.init());

For a description of row insertion into an object type, see Chapter 8, and the Oracle9i
Application Developer’s Guide - Large Objects (LOBs) manual.

The sourceLocation argument 'ORDIMGDIR’ is a directory referring to a file system
directory. Note that the directory name must be in uppercase. The following
sequence creates a directory named ORDIMGDIR:

-- Mike a directory referring to a file systemdirectory
CREATE D RECTARY RO M R AS * <W1 MMGED RECTCRY>'
GRANT READ ON O RECTARY RO M@ R TO <user -or -rol e>;

interMedia Examples 3-45

Image Data Examples

<MYIMAGEDIRECTORY> is the file system directory, and <user-or-role> is the
specific user to whom to grant read access.

3.3.6 Populating a Row Using BFILE Images

Example 3-30 populates the row with ORDImage data stored externally in files.

Example 3-30 Populate a Row with ORDImage External File Data

CEQLARE
| rage CROSYS. CRD nage;
BEA N
I NSERT | NTO st ockphot os VALUES (1, John Doe’,’red plaid,
CROSYS (R0 nage. init("file’," CROMII R, redplaid.gif’),
CROSYS RO mageSignature.init());
-- Select the newy inserted row for update
SELECT photo | NTO | nage FRCM st ockphot os
WHERE photo_id = 1 FOR UPDATE,
-- Set property attributes for the i mage data
| mage. set Properti es;
UPDATE st ockphot os SET photo = | nage WHERE photo_id = 1;
GOWMT;
-- Qontinue processi ng

3.3.7 Querying a Row
Example 3-31 and Example 3-32 assume you have this table:

CREATE TABLE st ockphot os (

photo_id NUMBER

phot ogr apher VARCHAR2(64),

annot ati on VARCHAR2(255),

phot o CRDSYS. CRD nage,

phot o_si g CRDSYS. (RO nageS gnat ure) ;

Example 3-31 queries the stockphotos table for the photo_id of 1 and the
ORDImage data for rows with minimum photo widths (greater than 32 pixels).You
must create a table alias (E in this example) when you refer to a type in a SELECT
statement.

Example 3-31 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels
SELECT photo_id, s.photo.get\Wdth()

3-46 Oracle interMedia User’s Guide and Reference

Image Data Examples

FRCM st ockphot os S
WHERE photo_id = 1 and
S. phot 0. get Wdth() > 32;

Example 3-32 queries the stockphotos table for photo_id =1 and the ORDImage
data for rows with minimum photo widths (greater than 32 pixels) and a minimum
content length (greater than 10000 bytes).

Example 3-32 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels and
a Minimum Content Length

SELECT photo_id, S photo. get Gonpr essi onFor nat ()
FRCM st ockphot os S
WHERE photo_id = 1 and
S. phot 0. get Wdth() > 32 and
S. phot o. get Cont ent Lengt h() > 10000;

3.3.8 Importing an Image from an External File into the Database

To import an image from an external file into the database, use the
ORDImage.import method. Example 3-33 imports image data from an external file
into the database. The source type, source location, and source name must be set
prior to calling the import() method.

Example 3-33 Import an Image from an External File

DEQLARE
| rage CROSYS. CRD nage;
ctx RAW4000) := NULL;
BEG N
SELECT phot o
I NTO | rage FRCM st ockphot os
WHERE photo_id = 1 FCR UPDATE,
-- Inport the image into the database
| mage. i nport (ctx);
UPDATE st ockphot os SET photo = | MAGE
WHERE photo_id = 1;
QOWMT;,

interMedia Examples 3-47

Image Data Examples

3.3.9 Retrieving an Image

The following examples, Example 3-38 through Example 3-41 use the table
definition described in Example 3-34 that includes both an image object and image
signature object for content-based retrieval of images.

Example 3-34 Table stockphotos Definition Used for Content-Based Retrieval of
Images

CREATE TABLE st ockphot os(photo_i d | NTEGER
phot ogr apher VARCHAR2(64) ,
annotation VARCHAR2(255),
phot o CRDSYS. CRD nage,
phot 0_si gnat ure GRDSYS. (RO nageS gnat ur e) ;

The stockphotos table is loaded with image data as described in Example 3-35.

Example 3-35 Load the stockphotos Table with Image Data
DEQLARE

nyi ng CROSYS. (RO nage;

nysi g CRDSYS. RO nageS gnat ur €;

X | NTEGER
ctx RAW4000): = NULL;
BEG N

-- create 4 plaid patterns, for each get an inage fromCRD M R directory
I NSERT | NTO st ockphot os(phot o_i d, phot ogr apher , annot at i on, phot o, phot o_si g)
VALUES(1,
" John Macl vor’,
‘red plaid,

ORDSYS.ORDImage.init(‘file’, ORDIMGDIR', redplaid.gif),
ORDSYS.ORDImageSignature.init();

INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)

VALUES(2,

‘Jane Cranston,
‘green plaid!,
ORDSYS.ORDImage.init(‘fle’; ORDIMGDIR',greenplaid.gif),
ORDSYS.ORDImageSignature.init();

INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)

VALUES(3,

'Clark Gordon,
‘blue plaid,
ORDSYS.ORDImage.init(‘fle’; ORDIMGDIR', blueplaid.gf),
ORDSYS.ORDImageSignature.init();

INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)

3-48 Oracle interMedia User’s Guide and Reference

Image Data Examples

VALUES(4,
" Bruce Macleod’ ,
“yellow plaid,
ORDSYS.ORDImage.init(‘fle’; ORDIMGDIR','yellowplaid.gif),
ORDSYS.ORDImageSignature.init();

—importimages and generate signatures
FORXxin1.4LOOP
SELECT S.photo, S.photo_sig INTO myimg, mysig
FROM stockphotos S
WHERE S.photo_id =x FOR UPDATE;
myimg.import(ct);
mysig.generateSignature(myimg);
UPDATE stockphotos S
SET Sphoto =myimg,
S.photo_sig =mysig
WHERE S.photo_id=X;
END LOOP;
END;
/

Rows can be read from the emp table as shown in Example 3-36 to check the
contents of the table.

Example 3-36 Check the Contents of the stockphotos Table

SELECT photo_id, photographer, annotation
FROM st ockphot os
CRCER BY phot o_i d;

Finally, Example 3-37 shows how to create the tablespaces needed for index
creation by the imageuser user in Example 3-41.

Example 3-37 Create the Tablespaces for the Index
QONNECT syst end <syst em passwor d>;

GRANT CREATE TABLESPACE TO i nageuser ;
GRANT DRCP TABLESPACE TO i mageuser ;

QON\NECT i nageuser/ i nageuser ;
CREATE TABLESPACE ordi nage i dx_tbs_1

DATAF LE ’ e:\ <GRAQLE HOMEX DATABASRE or di nage_i dx_t bs_1. dbf’ S ZE 1M REUSE;
CREATE TABLESPACE ordi nage_i dx_tbs_2

DATAFI LE ’ e: \ <GRAQLE_ HOMEX\ DATABASE\ or di nage_i dx_tbs_2. dbf’ S ZE 1M REUSE;

interMedia Examples 3-49

Image Data Examples

Example 3-38 reads an image from the table and prepares it to be passed along,
either directly to the end user or to the application for further processing. The
program segment selects the desired photograph (where photo_id = 1) and places
it in an image storage area.

Example 3-38 Retrieve an Image (Simple Read)

SET SERVERQUTRPUT (N
SET EGHO ON

DEQLARE
i mage CROSYS. RO MNAGE;
BEA N
-- Select the desired photograph fromthe stockphotos tabl e.
SELECT photo | NTO i nage FROM st ockphot os
WHERE photo_id = 1;
BEND,
/

3.3.10 Retrieving Images Similar to a Comparison Image (Content-Based Retrieval)

Example 3-39 performs content-based retrieval; it finds images that are similar to an
image chosen for comparison.

The program segment performs the following operations:

1. Defines a cursor to perform the matching. The cursor sets the following weight
values:

= Color:0.2

= Texture: 0.1
« Shape: 0.4

= Location: 0.3

2. The example assumes that all signatures for images are generated and stored in
the phot o_si g column.

3. Selects all photo signatures in the phot o_si g column to compare with the
comparison image signature (conpar e_i ng) and where the photo_id is not 1
(photo_id <> 1).

4. Sets the threshold value at 25.

5. Selects the matching images, using the cursor.

3-50 Oracle interMedia User’s Guide and Reference

Image Data Examples

Example 3-39 Retrieve Images Similar to a Comparison Image

SET SERVERQUTPUT ON
SET EGO (N

DEQLARE
t hreshol d NUMBER,
conpare_sig CRDSYS. (RO nageS gnat ur €;
phot ogr apher VARCHAR2(64) ;
annotati on VARCHAR2(255);
phot o CROSYS. (RO MACE;

-- Define cursor for matching. Set weights for the visual attributes.
QURSCR get photos 1S
SELECT phot ograpger, annotation, photo FROM st ockphotos S
WHERE GRDSYS. | M5 mi | ar (S, phot o_si g, conpare_si g,
‘color="0.2" texture="0.1" shape="0.4"
location="0.3", threshold)=1 AND photo_id <> 1,

BEGIN

- select signature of image you want to match against
SELECT P.photo_sig INTO compare_img FROM stockphotos P
WHERE P.photo_id =1,

— Set the threshold value.
threshold := 25;

— Retrieve rows for matching images.

OPEN getphotos;

LOOP
FETCH getphotos INTO photographer, annotation, photo;
EXIT WHEN getphotos%sNOTFOUND;
— Display or store the resullts.

END LOOP;
CLOSE getphotos;
END;
/

Example 3-40 finds the photo_id and score of the image that is most similar to a
comparison image with respect to texture. None of the other image characteristics is
considered. This example uses the IMGScore() operator, which is an ancillary
operator used in conjunction with the IMGSimilar operator. The parameter passed
to IMGScore() (123 in this example) is an identifier to an IMGSimilar() operator,

interMedia Examples 3-51

Image Data Examples

indicates that the image matching score value returned by an IMGScore() operator
is the same one used in the corresponding IMGSimilar() operator (with label 123).
In this example, one of the three images compared to the comparison image were
identical to the comparison image and showed a score of zero (0).

Example 3-40 Find photo_id and Score of Similar Image

SET SERVERQUTRPUT (N
SET EGHO ON

SELECT Q photo_i d,
CROSYS. | MeScore(123) SOORE
FROM st ockphot os Q st ockphot os E
WHERE E. photo_i d=1 AND Q photo_id != E photo_id AND
CROSYS. IM=S nill ar (Q photo_sig, E photo_sig,
"texture=1'", 20.0, 123)=1;

3.3.11 Creating a Domain Index

To improve performance, you can create a domain index on the image signature
attribute. Example 3-41 creates an index called imgindex.

Example 3-41 Create an interMedia Index

SET SERVERQUTPUT ON
SET EGO (N

CREATE | NCEX i ngi ndex ON st ockphot os(phot 0_si g)
| NDEXTYPE | S GRDSYS. CRD magel ndex
PARAMETERS(
ORDIMG_FILTER_TABLESPACE =ordimage_idx ths 1,
ORDIMG_INDEX_TABLESPACE = ordimage_idx_tbs_2);

As with any index, the tablespace (ordimage_idx_tbs_1 and ordimage_idx_tbs_2)
must be created first.
The following recommendations are good starting points for further index tuning:

« ORDIMG_FILTER_TABLESPACE -- Each signature requires approximately 350
bytes in this tablespace. The tablespace should be at least 350 times the number
of signatures in the table.

3-52 Oracle interMedia User’s Guide and Reference

Image Data Examples

« ORDIMG_INDEX_TABLESPACE -- The size of the tablespace should be 100
times the size of the initial and final extents specified. For example, if an extent
is 10 KB, the tablespace size should be 1 MB. The initial and final extents should
be equal to each other. The size of the tablespace should also be approximately
equal to the size of ORDIMG_DATA_TABLESPACE.

« Typically, it will be much faster if you create the index after the images are
loaded into the database and analyzed.

« Creating an index for large tables can be very time consuming. When importing
a large number of images, you should postpone index creation until after the
import operation completes. Do this by specifying the following parameters to
the IMPORT statement: INDEXES=N and INDEXNAME=<filename>. See
Oracle9i Database Utilities for details.

= Rollback segments of an appropriate size are required. The size depends on the
size of your transactions, such as, how many signatures are indexed at one time.

= Analyze the new index. See Section 2.4.

3.3.12 Retrieving Images Similar to a Comparison Image Using Index Operations
(Indexed Content-Based Retrieval)

Quieries for indexed and nonindexed comparisons are identical. The Oracle
optimizer uses the domain index if it determines that the first argument passed to
the IMGSimilar operator is a domain-indexed column. Otherwise, the optimizer
invokes a functional implementation of the operator that compares the query
signature with the stored signatures, one row at a time.

See Section 3.3.10 for examples of retrieving similar images. As in the example, be
sure to specify the query signature as the second parameter.

3.3.13 Copying an Image

To copy an image, use the ORDImage.copy method. Example 3-42 copies image
data.

Example 3-42 Copy an Image

CEQLARE

I mage_1 CROSYS (RO nage;

| rage_2 CRDSYS. CRD nage;
BEG N

SELECT photo | NTO I nage_1

interMedia Examples 3-53

Image Data Examples

FROM st ockphot os WHERE photo_id = 1;
SELECT photo | NTO | nage_2
FROM st ockphot os WHERE photo_id = 1 FCR UPDATE,
-- Qopy the data fromlnage 1 to | nage 2
I mage_1. copy(| mage_2);
-- Qontinue processing
UPDATE st ockphot os SET photo = | nage_2
WHERE photo_id = 1;
QOWT;

3.3.14 Converting an Image Format
To convert the image data into a different format, use the process() method.

Note: The process() method processes only into a BLOB, so the
image data must be stored locally.

Example 3-43 converts the image data to the TIFF image file format.

Example 3-43 Convert an Image Format

DEQLARE
| mrage CROSYS. CRD nage;
BEG N
SELECT photo | NTO | nage FRCM st ockphot os
WHERE photo_id = 1 FOR UPDATE
-- Qonvert the inage to TIFF (in place)
I mage. process(’ fil eFormat =TI FF) ;
UPDATE st ockphot os SET photo = | nage WHERE photo_id = 1;
QOWMT;,

3.3.15 Copying and Converting in One Step

To make a copy of the image and convert it in one step, use the processCopy()
method.

3-54 Oracle interMedia User’s Guide and Reference

Image Data Examples

Note: The processCopy() method processes only into a BLOB, so
the destination image must be set to local and the localData
attribute in the source must be initialized.

Example 3-44 creates a thumbnail image, converts the image data to the TIFF image
file format, copies it to a BLOB, and leaves the original image intact.

Example 3-44 Copy and Convert an Image Format

DEQLARE
I rage_1 CRDSYS. CRD nage;
| rage_2 CRDSYS. (RO nage;
BEG N
SELECT photo | NTO I nage_1
FROM st ockphot os WHERE photo_id = 1;
SELECT photo | NTO | nage_2
FROM st ockphot os WHERE photo_id = 2 FCR UPDATE,
-- Qonvert the inage to a TIFF thunbnail inage and store the
-- result in Inage 2
I mage_1. processCopy(’ fil eFornat =TI FF fixedScal e=32 32', |nage_2);
-- Qontinue processi ng
UPDATE st ockphot os SET photo = | nage 2 WHERE photo_id = 2;
GOWMT;
BND
/

Changes made by the processCopy/() method can be rolled back. This technique
may be useful for a temporary format conversion.

3.3.16 Extending interMedia with a New Type

You can use the ORDImage type as the basis for a new type of your own creation as
shown in Example 3-45.

interMedia Examples 3-55

Image Data Examples

Note: When atype is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDImage attribute and the interMedia
ORDImage type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQA> ALTER TYPE <type- nane> GOMP LE,

Example 3-45 Extend Oracle interMedia with a New Object Type
CREATE TYPE Annot at edl nage AS CBIECT

(

)
/

i mage CROSYS CRD nage,
description VARCHAR2(2000),
MEMBER PROCEDURE Set Properti es(SELF | N QJT Annot at edl nage) ,
MEMBER PROCEDURE Copy(dest | N QJT Annot at edl nage) ,
MEMBER PROCEDURE Pr ocessCopy(comrand | N VARCHAR?,
dest | N QJT Annot at edl nage)

CREATE TYPE BCDY Annot at edl nage AS
MEMBER PROCEDURE Set Properties(SELF | N QJT Annot at edl nage) | S

BEQ

N

SELF. i nage. set Properties();
SELF. description : =

END

"This is an exanpl e of using | nage object as a subtype’;
Set Properti es;

MEMBER PROCEDURE Copy(dest | N QJT Annot at edl mage) |'S

BEQ

N

SELF. i nage. copy(dest . i nage) ;
dest. description := SHF. description;

END

Gopy;

MEMBER PROCEDURE Pr ocessQopy(command | N VARCHAR?,

dest I N QJT Annot at edl nage) | S

BEQ N
SELF. | nage. pr ocessCopy(command, dest . i nage) ;
dest. description := SHF. description;

END
BND,
/

Pr ocessCopy;

3-56 Oracle interMedia User’s Guide and Reference

Image Data Examples

After creating the new type, you can use it as you would any other type. For
example:

CREATE (R REPLACE DI RECTCRY (ROOMO R AS "' C\TESTS ;

CREATE TABLE ny_exanpl e(id NOMBER an_i mage Annot at edl nage) ;
I NSERT | NTO ny_exanpl e VALUES (1,

Annot at edl nage(

CRSYS (RO mage. init('file'," GROMID R, "plaid.gif’));

AW T;
DEQLARE

nyi mage Annot at edl nage;
BEG N

SELECT an_i mage | NTO nyi nage FROM ny_exanpl e;

nyi nage. Set Properti es;

DBVE QUTPUT. PUT_LI NS’ Thi s i mage has a description of ');

DBVE_QUTPUT. PUT_LI NE(nyi nage. descri ption);

UPDATE ny_exanpl e SET an_i nage = nyi nage;

3.3.17 Using Image Types with Object Views

Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data-- of
either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3-46, consider the following relational table (containing no ORDImage
objects):

Example 3-46 Define a Relational Table Containing No ORDImage Object
CREATE TABLE fl at (

id NUVBER

| ocal Dat a BLCB,

interMedia Examples 3-57

Image Data Examples

srcType VARCHAR2(4000) ,
srclLocati on VARCHAR2(4000) ,
srcNane VARCHAR2(4000) ,
updat eTi ne DATE,

| ocal NUMBER,

hei ght | NTEGER

wi dt h | NTEGER
content Lengt h | NTEGER

fil eFor mat VARCHAR2(4000) ,
cont ent For nat VARCHAR2(4000) ,
conpr essi onFor nat VARCHAR2(4000) ,
m neType VARCHAR2(4000)
)

You can create an object view on the relational table shown in Example 3-46 as
follows in Example 3-47.

Example 3—-47 Define an Object View Containing an ORDImage Object and Relational
Columns

CREATE (R REPLACE M EWobj ect _i mages_v AS
SH ECT
id,
CROSYS. ARD nage(
CROSYS. ARBsour ce(
T. 1 ocal Dat a,
T. srcType,
T. srcLocat i on,
T. srchane,
T. updat eTi ne,
T.local),
T. hei ght,
T. wi dt h,
T. cont ent Lengt h,
T.fil eFornat,
T. cont ent For nat ,
T. conpr essi onFor nat ,
T. m neType
) I MGE
FROMflat T,

Object views provide the flexibility of looking at the same relational or object data

in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the

3-58 Oracle interMedia User’s Guide and Reference

Image Data Examples

database. See the Oracle9i Database Concepts manual for more information on
defining, using, and updating object views.

3.3.18 Scripts for Creating and Populating an Image Table from a BFILE Data Source

The following scripts can be found on the Oracle Technology Network (OTN) Web
site: htt p: // ot n. oracl e. coml as end-to-end scripts that create and populate an
image table from a BFILE data source. You can get to this site by selecting the Oracle
interMedia Plugins and Utilities page and from the interMedia page, select Sample
Code.

The following set of scripts:

1. Creates a tablespace for the image data, creates a user and grants certain
privileges to this new user, creates an image data load directory (create_
imguser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_imgtable.sql).

3. Loads the image data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importimg.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_imgschema.sql) automates this entire process by running
each script in the required order. The last script (readimage.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of image
data from the BLOB beginning at a particular offset until all the image data is read.
To successfully load the image data, you must have an imgdir directory created on
your system containing the img71.gif and img50.gif files, which are installed in the
<ORACLE_HOVE>/ or d/ i ng/ deno directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_imguser.sql
file.

Script 1: Create a Tablespace, Create an Image User, Grant Privileges to
the Image User, and Create an Image Data Load Directory (create_
imguser.sql)

This script creates the imgdemo tablespace with a data file named imgdemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the imgdemao user is created and given connect, resource, create

interMedia Examples 3-59

Image Data Examples

library, and create directory privileges, followed by creating the image data load
directory.

Note: You must edit the create_imguser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.

-- create_i nguser. sql

-- Qonnect as adm n.

connect syst end <syst em passwor d>;

-- Edit this script and either enter your system password here
-- to replace <system password> or conmment out this connect

-- staterment and connect as systembefore running this script.

set serverout put on
set echo on

-- Need systemnanager privileges to delete a user.
-- Note: There is no need to delete ingdeno user if you do not del ete the
-- ingdeno tabl espace, therefore comment out the next line.

-- drop user ingdeno cascade;

-- Need systemmnanager privileges to delete a directory. If threreis
-- no need to really delete it, then conment out the next |ine.

-- drop directory ingdir;

-- Delete then create the tabl espace.

-- Note: It is better to not delete and create tabl espaces,

-- so comment this next line out. The create tabl espace statenent

-- wll fail if it already exists.

-- drop tabl espace i ngdeno i ncl udi ng contents;

-- |If you uncomrent the preceding line and really want to del ete the
-- ingdeno tabl espace, renenber to nmanual |y del ete the i ngdeno. dbf

-- file to conpl ete the operati on. G herw se, you cannot create
-- the i ngdeno tabl espace agai n because the i ngdeno. dbf file

3-60 Oracle interMedia User’s Guide and Reference

Image Data Examples

-- already exists. Therefore, it mght be best to create this
-- tabl espace once and not del ete it.

-- Qeate tabl espace.
creat e tabl espace i ngdeno
datafile 'ingdeno. dbf’ size 200M
m ni num extent 64K
default storage (initial 64K next 128K)

| oggi ng;

-- Qeate i ngdeno user.

create user ingdeno identified by i ngdeno
defaul t tabl espace i ngdeno

tenporary tabl espace tenp;

-- Note: If you do not have a tenp tabl espace al ready defined, you w |
-- have to create it first for this script to work.

grant connect, resource, create library to i ngdeno;
grant create any directory to ingdeno;

-- Note: If this user already exists, you get an error nessage when you
-- try and create this user again.

-- Qonnect as i ngdeno.
connect i nydeno/ i ngdeno

-- Qeate the ingdir load directory; this is the directory where the i nage
-- files are residing.

create or replace directory ingdir
as 'e:\oracl e\ord\i ng\ deno’ ;
grant read on directory ingdir to public with grant option;
-- Note: If this directory already exists, an error nmessage
-- is returned stating the operation will fail; ignore the nessage.

Script 2: Create the Image Table and Initialize the Column Object
(create_imgtable.sql)

This script creates the image table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.

interMedia Examples 3-61

Image Data Examples

-- create_i ngtabl e. sql
connect i ngdeno/ i nydeno;
set serveroutput on

set echo on

drop tabl e ingtabl g
create tabl e ingtabl e (i d nunber,
| mage ordsys. or dl mage) ;

-- Insert arowwth enpty BLCB.
insert into ingtabl e val ues(1, GROSYS. RO nage.init());

-- Insert arowwth enpty BLCB.
insert into ingtabl e val ues(2, CROSYS. CRO nage.init());
commt;

Script 3: Load the Image Data (importimg.sql)

This script performs a SELECT FOR UPDATE operation to load the image data by
first setting the source for loading the image data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two image files to your
IMGDIR directory using the names specified in this script, or modify this script to
match the file names of your image files.

--inmportiny. sql

set serverout put on

set echo on

-- Inport the two files into the database.

DEQLARE
obj CRDSYS. CRO MAGE,
ctx RAW4000) := NULL;
BEG N
-- This inports the image file ing7l.gif fromthe IMO R directory
-- on alocal file system(srcType=file) and sets the properties.

select Image into obj fromingtable where id = 1 for update;
obj.setSource('file',"IMDR," ing7l.gif");
obj .inport(ctx);

update ingtabl e set image = obj where id = 1;
commit;

3-62 Oracle interMedia User’s Guide and Reference

Image Data Examples

-- This inports the image file ing50.gif fromthe IMOR directory
-- onalocal file system(srcType=file) and sets the properties.

select Image into obj fromingtable where id = 2 for updat e;
obj.setSource('file',"IMDR," ing50.gif");
obj.inmport(ctx);

update ingtabl e set image = obj where id = 2;
commit;

BND,

/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)

This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

-- chkprop. sql
set serverout put on;
--connect i ngdeno/ i ngdeno
--Query ingtabl e for GROSYS. GRO nage.
DEQLARE
i nrage CROSYS. CRO nage;
i dnumi nt eger;
properties_match BOOLEAN

BEA N

FCRI IN1..2 LOP

SHECT id into idnumfromingtabl e where id=l;
dbns_out put . put _|ine(’ i mage id: || idnum;

SHECT Inmage into inmage fromingtabl e where id=l;
properties_match : = i mage. checkProperties();

| F properties_match THEN DBVS _CQUTPUT. PUT_LI NE(' Check Properties Succeeded’');
END | F

dbns_out put . put _| i ne(’ i mage hei ght: "|| image.getHeight());
dbns_out put . put _| i ne(’ i mage w dt h: "|| image. getWdth());
dbns_out put . put i ne(’ i mrage M ME type: "|| image. get M neType());
dbns_output.put _line('inage file format: '|| inage.getFileFornat());
dbns_out put . put _|i ne(’ BLAB Lengt h: "|| TO CGHARi mage. get Gontent Lengt h()));
dbns_out put. put _line(’ ------=-=----m o ");

interMedia Examples 3-63

Image Data Examples

END | oop;
BEND
/
Results from running the script chkprop.sql are the following:

SQA> @hkpr op. sql

i mage id: 1

Check Properties Succeeded
i rage hei ght: 15

i rage Wi dt h: 43

i mage M ME type: i mage/ gi f
image file format: QFF

BLCB Lengt h: 1124

i rage id: 2

Check Properties Succeeded
i mage hei ght: 32

i mage W dt h: 110

i mge M ME type: i mage/ gi f
image file format: QFF
BLCB Lengt h: 686

PL/ SQL procedure successfully conpl et ed.

Automated Script (setup_imgschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_i ngschena. sql

-- (reate i ngdeno user, tabl espace, and | oad directory to
-- hold inage files:

@r eat e_i nguser . sql

-- Qeate inage tabl e:
@reat e_i ngt abl e. sql

--lnport 2 inages and set properties:
@nporting. sql

--Check the properties of the inages:
@hkpr op. sql

--exit;

3-64 Oracle interMedia User’s Guide and Reference

Image Data Examples

Read Data from the BLOB (readimage.sql)

This script performs a SELECT operation to read a specified amount of image data
from the BLOB, beginning at a particular offset until all the image data is read.

-- readi mage. sql

set serveroutput on
set echo on

create or replace procedure readi rage as

Note: CRO nage has no readFronSour ce nethod |i ke CRDAudi o
and CRDMVi deo; therefore, you nust use the DBME LCB package to
read i nage data froma BLCB.

buf fer RAW(32767);

src BLGB,

obj CRDBYS. GRD nmage;

am Bl NARY_| NTEGER : = 32767;
pos integer := 1;

read_cnt integer := 1;

BEG N

Select t.inage.getcontent into src fromingtable t where t.id = 1;
Select image into obj fromingtable t where t.id = 1;

DBV QUTPUT. PUT_LI NE(” Gontent length is: '|| TO CHAR obj . get Gontent Length()));
LoP
CBMVB L(B. READ(src, ant, pos, buffer);
DBVB QUTPUT. PUT_LINE(" start position: '|| pos);
DBVE QUTPUT. PUT_LINE(" doing read '|| read cnt);
pos := pos + am;
read cnt :=read cnt + 1;

Note: Add your own code here to process the inage data bei ng read;
this routine just reads data into the buffer 32767 bytes

at a tine, then reads the next chunk, overwiting the first
buffer full of data.

B\D LQCP,

EXCEPTI ON

WHEN NO DATA FOND THEN
DBMVB QUTPUT. PUT_LINE(" == -----=--mmm - - ')
DBVE QUTPUT. PUT_LINE(’ End of data ’);

interMedia Examples 3-65

Image Data Examples

END,

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQ > set serveroutput on;
Q> execut e readi nage(1);
Gontent length is: 1124
start position: 1

doing read 1

End of data

PL/ SQL procedure successfully conpl et ed.

3.3.19 Scripts for Populating an Image Table from an HTTP Data Source

The following scripts can be found on the Oracle Technology Network (OTN) Web
site: htt p: // ot n. oracl e. conf as end-to-end scripts that create and populate an
image table from an HTTP data source. You can get to this site by selecting the
Oracle interMedia Plugins and Utilities page and from the interMedia page, select
Sample Code.

Note: Before you run the importimg.sql script described in this
section to load image data from an HTTP data source, check to
ensure you have already run the create_imguser.sql and create_
imgtable.sql scripts described in Section 3.3.18.

The following set of scripts performs a row insert operation and an import
operation, then checks the properties of the loaded images to ensure that the images
are really loaded.

Initialize the Column Object and Import the Image Data
(importimghttp.sql)

This script inserts two rows into the imgtable table, initializing the object column
for each row to empty with a locator, and indicating the HTTP source information
(source type (HTTP), URL location, and HTTP object name). Within a SELECT FOR
UPDATE statement, an import operation loads each image object into the database

3-66 Oracle interMedia User’s Guide and Reference

Image Data Examples

followed by an UPDATE statement to update the object attributes for each image,
and finally a COMMIT statement to commit the transaction.

To successfully run this script, you must modify this script to point to two images
located on your own Web site.

--importinghttp. sql

-- Inport the two HITP i nages froma Véb site into the dat abase.
-- Running this script assunes you have al ready run the

-- create_inguser.sql and create_ingtable.sql scripts.

-- Mdify the HTTP URL and obj ect nane to point to two i mages
-- on your own Vb site.

set serverout put on
set echo on

-- Inport two images fromHITP source URLs.
connect i ngdeno/ i nydeno;
-- Insert two rows with enpty BLCB.

insert into ingtable val ues (7, GROSYS CRD nage. i ni t (
"http',’your.web.site.cominternedia ,’inagel.gif'));

insert into ingtable val ues (8, GROSYS CRD nage. init(
"http',’your.web.site.comintermedia ,’inage2.gif’));

DEQLARE
obj CRDSYS. CRO MAGE,
ctx RAW4000) := NULL;
BEG N
-- This inports the image file inagel.gif fromthe HITP source URL
-- (srcType=HITP), and autonatically sets the properties.

sel ect Image into obj fromingtable where id = 7 for update;
obj .inmport(ctx);

update ingtabl e set image = obj where id = 7;
commit;

-- This inports the image file inmage2.gif fromthe HITP source URL
-- (srcType=HITP), and autonatically sets the properties.

select Image into obj fromingtable where id = 8 for updat e;

interMedia Examples 3-67

Image Data Examples

obj .inmport(ctx);

update ingtabl e set image = obj where id = 8;
commit;

BND,

/

Check the Properties of the Loaded Data

This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

- - chkprop. sql

set serverout put on;

--connect i ngdeno/ i ngdeno

--Query ingtable for CGROSYS. GRO nage.
DEQLARE

i rage CRDSYS. (RO nage;

i dnumi nt eger;

properties_match BOCLEAN

BEA N
FORI IN7..8 LOP
SHECT id into i dnumfromingtabl e where id=l;

dbns_output.put_line("inage id: || idnun);
SHECT Image into inage fromingtabl e where id=l for update;
properties_match : = i mage. checkProperties();
I F properties_match THEN DBVS QUTPUT. PUT_LI NE(’ Check Properties Succeeded’);
END I F;
dbns_out put. put_|ine(’inmage height: '|| inage.getHeight());
dbns_output. put_|ine(’inage width: '|| inage. getWdth());
dbns_out put. put _|ine(’i mage MM type: '|| inage.getMneType());
dbns_output. put_line(’image file format: ' || inmage.getFleFormat());
dbns_out put. put _|ine(’ BLAB Il ength: || TO CHARi nage. get Gontent Length()));
dbns_output.put_line(’ -------------"c);
END | oop;

BND,
/

3.3.20 Addressing Globalization Support Issues

Example 3-48 shows how to use the processCopy() method with language settings
that use the comma as the decimal point. For example, when the territory is

3-68 Oracle interMedia User’s Guide and Reference

Video Data Examples

FRANCE, the decimal point is expected to be a comma. Notice the ",75" specified as
the scale factor. This application addresses Globalization Support issues.

Example 3-48 Address a Globalization Support Issue

ALTER SESSION SET NLS LANGUACGE = FRENCH
ALTER SESSI QN SET NLS TERR TQRY = FRANCE
DEQLARE
nyi mage CROSYS CRD nage;
nyl ar gei mrage GROSYS. CRD nage;
BEG N
SELECT photo, |arge_photo | NTO nyi nage, nyl ar gei nage
FROM enp FCR UPDATE;
nyi nage. set Properties();
nyi mage. ProcessCopy(’ scal e=", 75"", nyl ar gei nage) ;
UPDATE enp SET photo = nyi nage, | arge_photo = nyl ar gei nage;
QOWMT,

3.4 Video Data Examples
Video data examples using interMedia include the following common operations:
« Defining a clip object named clipObject
« Creating an object table named clipsTable
« Creating a list object named clipList that contains a list of clips
« Defining the implementation of the clipList object
« Creating a video object and VideoTable table
« Inserting a video clip into the ClipsTable table
« Inserting a row into the VideoTable table
« Loading a video into the ClipsTable table
« Inserting a reference to a clipObject into the clips list in the video table
= Inserting a reference to a video object into the clip
« Retrieving a video clip from the VideoTable table
« Extending interMedia to support a new video data format

« Extending interMedia with new object types

interMedia Examples 3-69

Video Data Examples

« Using video types with object views

« Using a set of scripts for creating and populating a video table from a BFILE
data source

The video examples in this section use a table of video clips and a table of videos.
For each video clip the following are stored: a videoRef (REF into the video table),
clip ID, title, director, category, copyright, producer, awards, time period, rating,
duration, cdRef (REF into CdObiject for sound tracks), text content (indexed by
CONTEXT), cover image (REF into the image table), and video source. For each
video the following are stored: an item ID, duration, text content (indexed by
CONTEXT), cover image (REF into the image table), and a list of clips on the video.

Reference information on the methods used in these examples is presented in
Chapter 9.

3.4.1 Defining a Clip Object

Example 3-49 describes how to define a clip object.

Example 3-49 Define a Clip Object
CREATE TYPE cl i p(hj ect as CBIECT (

vi deoRef REF M deo(j ect, -- REF into the video table
clipld VARCHAR2(20) , -- Idinside of the clip table
title VARCHAR2(4000) ,

director VARCHAR2(4000) ,

cat egory VARCHAR2(20) ,

copyri ght VARCHAR2(4000) ,

pr oducer VARCHAR2(4000) ,

awar ds VARCHAR2(4000) ,

tinmePeriod VARCHAR2(20) ,

rating VARCHAR2(256) ,

durati on | NTECER

cdRef REF Qd(yj ect, -- REF into a Gd(yj ect (soundtrack)
t xt cont ent (eNe:)

cover | ny REF QROSYS. (RO nage, -- REF into the | nageTabl e

vi deoSource CROSYS. GRDM deo) ;

3.4.2 Creating an Object Table ClipsTable

Example 3-50 describes how to create an object table named ClipsTable.

3-70 Oracle interMedia User’s Guide and Reference

Video Data Examples

Example 3-50 Create a Table Named ClipsTable
CREATE TABLE d i psTabl e of clipQject (UNQE (clipld), clipld NOT NULL);

3.4.3 Creating a List Object Containing a List of Clips

Example 3-51 describes how to create a list object containing a list of clips.

Example 3-51 Create a List Object Containing a List of Clips
CREATE TYPE cl i pNst Type AS TABLE of REF clipQbj ect;

CREATE TYPE clipList AS CBIECT (clips clipNstType,
MEMBER PROCEDURE addd i p(c IN REF clipoject));

3.4.4 Defining the Implementation of the clipList Object

Example 3-52 describes how to define the implementation of the clipList object.

Example 3-52 Define the Implementation of the clipList Object

CREATE TYPE BQODY clipList AS
MEVMBER PROCEDURE addd i p(c I N REF cli p(oj ect)
1S
pos | NTEGER : = 0O;
BEA N
IFclips | S NLL THEN
clips := clipNst Type(NLL);

pos : = 0;
B.SE
pos := clips.count;
END I F,
clips. EXTEND,
clips(pos+l) :=c;
END,
B\D,

3.4.5 Creating a Video Object and a Video Table

This section describes how to create a video object and a video table of video clips
that includes, for each video clip, the following information:

« ltemID

« Duration

interMedia Examples 3-71

Video Data Examples

« Text content
« Cover image
« Clips

Example 3-53 creates a video object named videoObject and a video table named
VideoTable that contains the video information.

Example 3-53 Create a Video Table Containing Video Information
CREATE TYPE M deo(hj ect as CBIECT (

itemd I NTECER

duration | NTECGER

t xt cont ent B

cover | ng REF GROSYS. GRD nage,
clips clipList);

CREATE TABLE Vi deoTabl e OF M deoChj ect (UN QUE(itentid),itenid NOT NULL)
NESTED TABLE clips.clips STGRE AS clip_store_table;

3.4.6 Inserting a Video Clip into the ClipsTable Table

Example 3-54 describes how to insert a video clip into the ClipsTable table.

Example 3-54 Insert a Video Clip into the ClipsTable Table

-- Insert a Mdeo Qipinto the AipsTabl e
insert into AipsTabl e val ues (NULL,
T117,
"Qacle Coomercial’,
"Larry Hlison',
"comercial’,
"Qacle Gorporation',
'no awards’,
' 90s’
"no rating,
30,
NLLL,
BWTY_AQ.CH(),
NLLL,
GROEYS ARV DEQ i nit());

3-72 Oracle interMedia User’s Guide and Reference

Video Data Examples

3.4.7 Inserting a Row into the VideoTable Table
Example 3-55 describes how to insert a row into the VideoTable table.

Example 3-55 Insert a Row into the VideoTable Table

-- Insert arowinto the deoTabl e
insert into M deoTabl e val ues (11,
30,
NULL,
NULL,
clipList(NLL));

3.4.8 Loading a Video into the ClipsTable Table

Example 3-56 describes how to load a video into the ClipsTable table. This example
requires a VIDDIR directory to be defined; see the comments in the example.

Example 3-56 Load a Video into the ClipsTable Table

-- Load a Mideo into a clip
-- (reate your directory specification bel ow
-- CREATE (R REPLACE D RECTCRY M DO R AS '/ vi deo/ ’ ;
CEQLARE

vi deo] CROSYS. GRDV DEQ

ctx RAWA4000) := NULL;
BEA N

SHELECT C vi deoSour ce | NTO vi deo(hj

FROM dipsTable C

WERE Cclipld ="171

FOR UPDATE,

vi deo(j . set Description(’ Uhder Pressure Video Aip');

vi deo(j . set Source(’'file', "MIDO R, 'UhderPressure.nov');
vi deoQj . i nport (ctx);

vi deo(j . set Properti es(ctx, TRE)

UPDATE d i psTable C
SET C vi deoSour ce = vi deo(hj
WERE Cclipld ="11";
QOWT,
END

-- Check video insertion
DEQLARE

interMedia Examples 3-73

Video Data Examples

vi deoCh] CROSYS. GRDM deo;
ctx RAW4000) := NULL;
BEG N
SH ECT C vi deoSour ce | NTO vi deohj
FROM dipsTable C
WERE Cclipld ="11";

dbns_output. put_|ine(’ Gontent Length: ' ||
vi deo(j . get Cont ent Lengt h(ctx));
dbns_out put. put _| i ne(’ Content M neType: ' ||
vi deo(j . get M neType());
END,

3.4.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table

Example 3-57 describes how to insert a reference to a clip object into the clips list in
the VideoTable table.

Example 3-57 Insert a Reference to a Clip Object into the Clips List in the VideoTable
Table

-- Insert areference to a Aiptject intothe Aips List in the M deoTabl e
DEQLARE

cli pRef REF A i poj ect;

clipListlinstance clipList;
BEA N

SHECT REH(Q into clipRef

FROM dipsTable C
where Cclipld ="11";

SHLECT V.clips INTOclipLi st nstance
FROM Vi deoTabl e V

WERE V.itenid = 11
FCR UPDATE

clipListlnstance. addd i p(clipRef);
UPDATE M deoTabl e V

SET V.clips = clipListlnstance
WERE V.itenid = 11,

QAW T;
END,

-- Check insertion of clip ref

3-74 Oracle interMedia User’s Guide and Reference

Video Data Examples

DEQLARE
clip aipj ect;
cli pRef REF A i poj ect;
clipListinstance cliplList;
clipType cl i pNst Type;
BEG N

SHLECT V.clips INTOclipLi st nstance
FROM M deoTabl e V
WERE V.itenid = 11;

SHLECT clipListlnstance.clips | NIO clipType FROM DUAL;
cliprRef :=clipType(l);
SH ECT DEREF(clipRef) INTOclip FROM DUAL;

dbns_output.put_line(’Qip Title: * ||
clip.title);
BND,

3.4.10 Inserting a Reference to a Video Object into the Clip
Example 3-58 describes how to insert a reference to a video object into the clip.

Example 3-58 Insert a Reference to a Video Object into the Clip

-- Insert areference to a video object into the clip
CEQLARE
aVi deoRef REF M deo(hj ect ;
BEA N
-- Mike a VideoRef an obj to use for update
SH ECT . vi deoRef | NTO aM deoRef
FROM dipsTable O
WERE .clipld =17
FOR UPDATE,

-- (hange its val ue
SH ECT REH(V) | NTO aV deoRef
FROM M deoTabl e V
WERE V.itemd = 11,

-- Updat e dat abase
UPDATE d i psTable C
SET C vi deoRef = aVi deoRef
WERE Cclipld ="11";

QWM T,

interMedia Examples 3-75

Video Data Examples

END,

3.4.11 Retrieving a Video Clip from the VideoTable Table

Example 3-59 describes how to retrieve a video clip from the VideoTable table and
return it as a BLOB. The program segment performs these operations:

1. Defines the retrieveVideo() method to retrieve the video clip by its clipld as an
ORDVideo BLOB.

2. Selects the desired video clip (where C. cl i pl d = cli pl d) and returns it
using the getContent method.

Example 3-59 Retrieve a Video Clip
FUNCTI ON retri eveM deo(clipld I N | NTEEER

RETUNBLAB | S
obj CRDSYS. GRDM deo;

BEA N
-- Select the desired video clip fromthe dipTabl e table.
SELECT C vi deoSource INTOobj fromdQipTable C
WHERE Cclipld = clipld;
return obj . get Gontent;

BEND,

3.4.12 Extending interMedia to Support a New Video Data Format

This section describes how to extend Oracle interMedia to support a new video data
format.

To support a new video data format, implement the required interfaces in the
ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where <format>
represents the name of the new video data format). See Section 9.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_VIDEO package. Use the
package body example in Section 9.4.2 as a template to create the video package
body.

Then set the new format parameter in the setFormat call to the appropriate format
value to indicate to the video object that package ORDPLUGINS.ORDX_<format> _
VIDEO is available as a plug-in.

See Section F.4 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and fpluginb.sql files that
are installed in the$GRAQ.E HOME or d/ vi d/ deno/ directory. These are demonstration

3-76 Oracle interMedia User’s Guide and Reference

Video Data Examples

(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the viddemao.sql file in this same directory to learn how to
install your own format plug-in.

3.4.13 Extending interMedia with a New Object Type

This section describes how to extend Oracle interMedia with a new object type.
You can use the ORDVideo type as the basis for a new type of your own creation.

See Example 3-45 for a more complete example and description.

Note: When atype is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDVideo attribute and the interMedia
ORDVideo type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQA> ALTER TYPE <type- nane> GOMP LE,

3.4.14 Using Video Types with Object Views

This section describes how to use video types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data --
of either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3-60, consider the following relational table (containing no ORDVideo
objects).

interMedia Examples 3-77

Video Data Examples

create table flat (

Example 3-60 Define a Relational Table Containing No ORDVideo Object

id nunber ,
description VARCHAR2(4000) ,
| ocal Dat a BLCB,

srcType VARCHAR2(4000) ,
srcLocat i on VARCHAR2(4000) ,
srcNane VARCHAR2(4000) ,
upDat eTi ne DATE,

| ocal NUMBER

f or nat VARCHAR2(31),
m neType VARCHARZ(4000) ,
comment s acB,

w dth | NTEGER

hei ght | NTECER
franeResol ution | NTEGER
franeRat e | NTEGER

vi deolur at i on | NTEGER

nunber & Fr anes | NTEGER
conpressi onType VARCHAR2(4000),
nunber & Gl or s | NTEGER

bit Rate | NTEGER

)s

You can create an object view on the relational table shown in Example 3-60 as
follows in Example 3-61.

Example 3—-61 Define an Object View Containing an ORDVideo Object and Relational
Columns

create or replace view object_video v as
sel ect

id,

CROSYS. GRDMVE deo(

CROSYS. ARBsour ce(
T.local Data, T.srcType, T.srcLocation, T.srcNane, T.updateTine,
T.local),
T. description,
T.fornat,
T. m neType,
T. corment s,
T.wi dth,
T. hei ght,
T. franeResol uti on,
T. franeRat e,

3-78 Oracle interMedia User’s Guide and Reference

Video Data Examples

T. vi deolur at i on,

T. nunber of Fr anes,

T. conpr essi onType,

T. nunber & Gol or s,

T.bitRate) M DEO
fromflat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

3.4.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source

The following scripts can be found on the Oracle Technology Network (OTN) Web
site: htt p: // ot n. oracl e. com as end-to-end scripts that create and populate a
video table from a BFILE data source. You can get to this site by selecting the Oracle
interMedia Plugins and Utilities page and from the interMedia page, select Sample
Code.

The following set of scripts:

1. Creates a tablespace for the video data, creates a user and grants certain
privileges to this new user, creates a video data load directory (create_
viduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_vidtable.sql).

3. Loads the video data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importvid.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_vidschema.sql) automates this entire process by running each
script in the required order. The last script (readvideo.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of video
data from the BLOB, beginning at a particular offset, until all the video data is read.
To successfully load the video data, you must have a viddir directory created on
your system containing the vidl.mov and vid2.mov files, which are installed in the
<ORACLE_HQOVE>/ or d/ vi d/ deno directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_viduser.sql
file.

interMedia Examples 3-79

Video Data Examples

Script 1: Create a Tablespace, Create a Video User, Grant Privileges to
the Video User, and Create a Video Data Load Directory (create_
viduser.sql)

This script creates the viddemo tablespace with a data file named viddemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the viddemo user is created and given connect, resource, create
library, and create directory privileges followed by creating the video data load
directory.

Note: You must edit the create_viduser.sql file and either enter the
system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.

-- create_viduser.sql

-- onnect as admin.
connect syst end <syst em passwor d>;

-- Hit this script and either enter your system password here
-- to repl ace <system password> or comment out this connect
-- staterment and connect as systembefore running this script.

set serverout put on
set echo on

-- Need systemmanager privileges to delete a user.
-- Note: There is no need to del ete viddeno user if you do not
-- delete the viddeno tabl espace, therefore comment out the next |ine.

-- drop user viddeno cascade;

-- Need systemmanager privileges to delete a directory. If there is no
-- need to really delete it, then cooment out the next |ine.

-- drop directory viddir;
-- Delete then create tabl espace.

-- Note: It is better to not delete and create tabl espaces,

3-80 Oracle interMedia User’s Guide and Reference

Video Data Examples

-- so comment this next line out. The create tabl espace statenent
-- wll fail if it already exists.

-- drop tabl espace vi ddeno incl udi ng contents;

-- |If you uncomrent the previous line and want to del ete the

-- viddeno tabl espace, renenber to nanual |y del ete the vi ddeno. dbf
-- file to conplete the operati on. G herw se, you cannot create

-- the viddeno tabl espace agai n because the vi ddeno. dbf file

-- already exists. Therefore, it mght be best to create this

-- tabl espace once and not del ete it.

-- (reate tabl espace.
creat e tabl espace vi ddeno
datafil e ’viddeno. dbf’ size 200M
m ni num extent 64K
default storage (initial 64K next 128K)

| oggi ng;

-- Qreate viddeno user.

create user viddeno identified by viddeno
defaul t tabl espace vi ddeno

tenporary tabl espace tenp;

-- Note: If you do not have a tenp tabl espace al ready defined, you
-- wll have to create it first for this script to work.

grant connect, resource, create library to vi ddeno;
grant create any directory to vi ddeno;

-- Note: If this user already exists, you get an error nessage
-- when you try and create this user again.

-- (onnect as vi ddeno.
connect vi ddeno/ vi ddeno

-- GQeate the viddir load directory; this is the directory where the video
-- files are residing.

create or replace directory viddir
as 'e:\oracle\ord\vid\ deno' ;
grant read on directory viddir to public with grant option;

-- Note: If this directory already exists, an error nessage
-- is returned stating the operation will fail; ignore the nessage.

interMedia Examples 3-81

Video Data Examples

Script 2: Create the Video Table and Initialize the Column Object (create_
vidtable.sql)

This script creates the video table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.

--create_vidtabl e. sql
connect vi ddeno/ vi ddeno;
set serveroutput on

set echo on

drop tabl e vidtabl g
create tabl e vidtabl e (id nunber,
Vi deo ordsys. or dVi deo);

-- Insert arowwth enpty BLCB.
insert into vidtabl e val ues(1, GROSYS. CRDVideo.init());

-- Insert arowwth enpty BLCB.
insert into vidtabl e val ues(2, ROSYS. GRDVideo.init());
commt;

Script 3: Load the Video Data (importvid.sql)

This script performs a SELECT FOR UPDATE operation to load the video data by
first setting the source for loading the video data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two video clips to your
VIDDIR directory using the names specified in this script, or modify this script to
match the file names of your video clips.

-- inportvid. sql

set serverout put on
set echo on
-- Inport the two files into the database.

DEQLARE
obj CRDSYS. CRbVi DEQ
ctx RAW4000) := NULL;

BEAG N

-- This inports the video file vidl. mov fromthe IDDOR directory
-- onalocal file system(srcType=file) and sets the properties.

3-82 Oracle interMedia User’s Guide and Reference

Video Data Examples

select Mdeo into obj fromvidtable where id = 1 for update;
obj.setSource(’'file',”MDOR,’vidl nov');

obj .inport(ctx);

obj . set Properties(ctx);

update vidtabl e set video = obj where id = 1;
commit;

-- This inports the video file vid2.mov fromthe DO R directory
-- onalocal file system(srcType=file) and sets the properties.

select Mdeo into obj fromvidtable where id = 2 for update;
obj .setSource('file',” MDD R, vid2. nov');

obj.inport(ctx);

obj . set Properti es(ctx);

update vidtabl e set video = obj where id = 2;
comit;

END

/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)

This script performs a SELECT operation of the rows of the video table, then gets
the video characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

- - chkpr op. sql
set serverout put on;
--connect Vi ddeno/ vi ddeno
--Query vidtable for CRDSYS. CGRDM deo.
DEQLARE
vi deo CROSYS. GRDMVi deo;
i dnumi nt eger;
properties_match BOOLEAN
ctx RAW4000) := NULL;
w dth integer;
hei ght integer;

BEA N

FORI IN1..2 LOP

SHECT id, video into i dnum video fromvidtabl e where id=l;
dbns_out put . put _|i ne(’ vi deo id: || idnum;

interMedia Examples 3-83

Video Data Examples

properties_match : = vi deo. checkProperti es(ctx);
| F properties_match THEN DBVS CQUTPUT. PUT_LI NE(' Check Properties Succeeded’');

END I F;
--dbns_out put . put _line(’ video frane rate: "|| video. get FraneRat e(ctx));
--dbns_out put . put _|ine(’ video w dth & height: "|| video. get FrameS ze(ct x, w dt h, hei ght);
dbns_out put. put _| i ne(’ video M ME type: "|| video. get M neType());
dbns_out put. put _|ine(’ video file format: "|| video.getFormat(ctx));
dbns_out put . put _| i ne(’ BLAB Lengt h: "|| TO CGHAR vi deo. get Gont ent Lengt h(ctx)));
dbns_out put . put _|ine(’ -==-----====---=--- oo ")
END | oop;
BND,

/
Results from running the script chkprop.sql are the following:

Q> @hkpr op. sql

video id: 1

Check Properties Succeeded

vi deo M ME type: vi deo/ qui ckt i ne
video file fornat: MOV

BLCB Lengt h: 4958415

video id: 2

Check Properties Succeeded

vi deo M ME type: vi deo/ qui ckt i ne
video file fornat: MOV

BLCB Lengt h: 2891247

Automated Script (setup_vidschema.sql)

This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_vi dschena. sql

-- Qeate viddeno user, tablespace, and | oad directory to
-- hold the video files:

@r eat e_vi duser . sql

-- GQeate Video table:
@reat e_vidtabl e. sql

--lmport 2 video clips and set properties:
@nportvi d. sql

--Check the properties of the video clips:
@hkpr op. sql

3-84 Oracle interMedia User’s Guide and Reference

Video Data Examples

--exit;

Read Data from the BLOB (readvideo.sql)

This script creates a stored procedure that performs a SELECT operation to read a
specified amount of video data from the BLOB, beginning at a particular offset,
until all the video data is read.

-- readvi deo. sql

set serveroutput on
set echo on

create or replace procedure readvi deo as

obj CRDBYS. GRDM deo;

buf fer RAW(32767);

nunbyt es Bl NARY | NTECER : = 32767;
startpos integer :=1;

read_cnt integer := 1;

ctx RAWA4000) := N.LL;

BEA N

Sel ect video into obj fromvidtable where id = 1;

LGP
obj . r eadFr onBour ce(ct x, st art pos, nunbyt es, buf fer) ;
DBVE QUTPUT. PUT_LINE(’ Gontent length is: || TO CHAR obj . get Gontent Length()));
DBVB QUJTPUT. PUT_LINE' start position: || startpos);
DBVB QJTPUT. PUT_LINK' doing read '|| read cnt);
startpos := startpos + nunbytes;
read cnt :=read cnt + 1;

-- Note: Add your own code here to process the video data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at atime, then reads the next chunk, overwiting the first
-- buffer full of data.
B\D LQCP,

EXCEPTI N

WEN NO DATA FOND THEN
DBVS QUTPUT. PUT_LINE(’ End of data ’);

interMedia Examples 3-85

Extending interMedia to Support a New Data Source

WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE_ GQUTPUT. PUT_LI NE(" CRDSour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBMVS_QUTPUT. PUT_LI NE(’' EXCEPTI ON caught *) ;
BEND
/
show errors
To execute the stored procedure, enter the following SQL statements;

S > set serveroutput on;
Q> execut e readvi deo
Qontent Length: 4958415
start position: 1

doing read 1

start position: 32768
doing read 2

start position: 65535

doing read 151
start position: 4947818
doing read 152

End of data

PL/ SQL procedure successfully conpl et ed.

3.5 Extending interMedia to Support a New Data Source

This section describes how to extend Oracle interMedia to support a new data
source.

To support a new data source, implement the required interfaces in the ORDX_
<srcType> SOURCE package in the ORDPLUGINS schema (where <srcType>
represents the name of the new external source type). See Section 1.3.1 and

Section 1.3.2 for a complete description of the interfaces for the ORDX_FILE_
SOURCE and ORDX_HTTP_SOURCE packages. See Section 1.3.4 for an example of
modifying the package body listing that is provided. Then set the source type
parameter in the setSourcelnformation call to the appropriate source type to

3-86 Oracle interMedia User’s Guide and Reference

Extending interMedia to Support a New Data Source

indicate to the video object that package ORDPLUGINS.ORDX_<srcType>_
SOURCE is available as a plug-in.

interMedia Examples 3-87

Extending interMedia to Support a New Data Source

3-88 Oracle interMedia User’s Guide and Reference

A4

Ensuring Future Compatibility with
Evolving interMedia Object Types

The interMedia object types may evolve by adding new object attributes in a future
release. Client-side applications that want to maintain compatibility with the
current release of the interMedia object types (ORDAudio, ORDImage, ORDVideo,
and ORDSource), even after a server upgrade that includes evolved object types, are
advised to do the following:

= Make a call to the compatibility initialization function at the beginning of the
application, if necessary (see Section 4.1).

« Use the static constructor functions, init(), in INSERT statements that are
provided beginning with release 8.1.7 (see Section 6.2, Section 8.1.1, and
Section 9.2). Do not use the default constructors because INSERT statements
using the default constructor will fail if the interMedia object types have added
new attributes.

Note: If you do not do the preceding recommended actions, you
may have to upgrade your client and perhaps even recompile your
application when you upgrade to a newer server release with
evolved types.

4.1 When and How to Call the Compatibility Initialization Function

Only client-side applications that statically recognize the structure of the interMedia
object types need to make a call to the compatibility initialization function.
Server-side stored procedures will automatically use the newly installed
(potentially changed) interMedia object types after an upgrade, so you do not need
to call the compatibility initialization function from server-side stored procedures.

Ensuring Future Compatibility with Evolving interMedia Object Types 4-1

When and How to Call the Compatibility Initialization Function

Client-side applications that do not statically (at compile time) recognize the
structure of interMedia object types do not need to call the compatibility
initialization function. OCI applications that determine the structure of the
interMedia object types at runtime, through the OClDescribeAny call, do not need
to call the compatibility initialization function.

Client-side applications written in OCI that have been compiled with the C
structure of interMedia object types (generated by OTT) should make a call to the
server-side PL/SQL function, ORDSYS.IM.compatibilityInit(), at the beginning of
the application. See the compatibilityInit() method description of this function in
this section.

Client-side applications written in Java using the interMedia Java Classes for release
8.1.7 or higher, should call the OrdMediaUtil.imCompatibilityInit() function after
connecting to the Oracle database server.

public static void i nConpati bilitylnit(QacleCnnection con)
throws Exception

This Java function takes OracleConnection as an argument. The included interMedia
release 8.1.7 or higher Java API will ensure that your 8.1.7 or higher application will
work (without upgrading) with a potential future release of interMedia with
evolved object types.

There is not yet a way for client-side PL/SQL applications to maintain compatibility
with the current release of the interMedia object types if the objects add new
attributes in a future release.

See the compatibilitylnit() method in this section, and Oracle interMedia Java Classes
User’s Guide and Reference for further information, and detailed descriptions and
examples. This guide is on the Oracle Technology Network,
http://otn.oracle.con.

4-2 Oracle interMedia User’s Guide and Reference

compatibilityInit()

compatibilitylnit()

Format

Description

Parameters

Pragmas

Exceptions

Usage Notes

compatibilitylnit(release IN - VARCHAR?2,
errmsg OUT VARCHAR2)
RETURN NUMBER;

Allows for compatibly evolving the interMedia object types in a future release.

release

The release number. This string should be set to ’9.0.1’ to allow a 9.0.1 application to
work (without upgrading) with a potential future release of the Oracle database and
interMedia with evolved object types.

errmsg
String output parameter. If the function returns a status other than 0, this errmsg
string contains the reason for the failure.

None.

None.

You should begin using the compatibilityInit() method as soon as possible to
ensure you will not have to upgrade the Oracle software on your client node, or
recompile your client application in order to work with a future release of the
Oracle database server if the interMedia object types change in a future release. See
Section 4.1 to determine if you need to call this function.

The compatibility initialization function for interMedia is located in the ORDSYS.IM
package.

Ensuring Future Compatibility with Evolving interMedia Object Types 4-3

compatibilityInit()

Examples

Using OCI and setting the compatibilitylnit() method release parameter to release
9.0.1 to allow a 9.0.1 application to work with a future release of the Oracle database
and interMedia with changed object types; note, that this is not a standalone
program in that it assumes that you have allocated handles beforehand:

voi d prepareExecuteStni(GO Env *envHhdl,
A Snt **stnkhdl,
QO Eror *errorthdl,
Qd SveG x *servi ceQ x,
Qd B nd *bi ndhp[])

text *statenent
"begin :sts :
end;";
sword sts = 0;
text *vers = (text *)"9.0.1";
text errText[512];
sb2 nul | | nd;

(text *)
CROSYS. IMconpatibilitylnit(:vers, :errText);

printf(" Preparing statenent\n");

Qd Handl eA 1 oc(envHhdl, (void **) stniHhdl, GO _HTYPE STMI, 0, NUL
);

QO SmPrepare(*stniHhdl, errorthdl, (text *)statenent,
(ubd)strlen((char *)statement), QOO _NIV_SYNTAX
Q0 _DEFAULT);

printf(" Executing statenent\n");

Qd B ndByPos(*stniHhdl, &indhp] 0], errorthdl, 1, (void *)&sts,
sizeof (sts), SQ@QT_INT, (void *)0O, NULL, O, O,
NULL, OO _DEFAULT);

Qd B ndByPos(*stntHhdl, &vindhp[1], errorthdl, 2, vers,
strlen((char *)vers) + 1, SQT STR (void *)0, NLLL,
0, 0, NULL, O _DEAUT);

Qd B ndByPos(*stntHhdl, &indhp] 2], errorthdl, 3, errText,
sizeof (errText), SQT STR &nulllnd, NLLL, O, O,
NULL, QO _DEFAULT);

Q0 St m Execute(service@x, *stmthdl, errorHhdl, 1, O,
(A Snapshot *)NULL, (O Snapshot *)NULL, OGO _DEFAULT);

4-4

compatibilityInit()

printf(" Statenment executed\n");
if (sts!=0)
{
printf("Conpatibilitylnit failed wth Ss = %l\n", sts);
printf("9%\n", errText);
}

Ensuring Future Compatibility with Evolving interMedia Object Types 4-5

compatibilitylnit()

4-6 Oracle interMedia User’s Guide and Reference

D

Common Methods for interMedia Object
Types Reference Information

This chapter presents reference information on the common methods used for the
following Oracle interMedia data types:

« ORDAudio
« ORDDoc

« ORDImage
« ORDVideo

See Section 5.2 for a list of methods described in this chapter.

The examples in this chapter assume that you have created the test tables as
described in Section 6.3.1, Section 7.3.1, Section 8.1.3, and Section 9.3.1.

Common Methods for interMedia Object Types Reference Information 5-1

Important Notes

Note: The interMedia methods are designed to be internally
consistent. If you use interMedia methods (such as import() or
image process()) to modify the media data, interMedia will ensure
that object attributes remain synchronized with the media data.
However, if you manipulate the data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the data.

5.1 Important Notes

Methods invoked at the ORDSource level that are handed off to a source plug-in for
processing have ctx (RAW(4000)) as the first argument. Before calling any of these
methods for the first time, the client must allocate the ctx structure, initialize it to
NULL, and invoke the openSource() method. At this point, the source plug-in can
initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked at the ORDAudio, ORDDoc, or ORDVideo level that are handed
off to a format plug-in for processing have ctx (RAW(4000)) as the first argument.
Before calling any of these methods for the first time, the client must allocate the ctx
structure and initialize it to NULL.

Note: Inthe current release, not all source plug-ins and format
plug-ins will use the ctx argument, but if you code as previously
described, your application should work with any current or future
source and format plug-in.

For ORDAudio, ORDDoc, or ORDVideo object types, you should use any of the
individual set methods to set the value of the attribute for an object for formats not
natively supported or write a format plug-in and call setProperties(); otherwise, for
formats natively supported, use the setProperties() method to populate the
attributes of the object.

For ORDImage object types, use the setProperties() method to populate the
attributes of the object. Use the setProperties() for Foreign Images method for
foreign image formats.

5-2 Oracle interMedia User’s Guide and Reference

Methods

5.2 Methods

This section presents reference information on the Oracle interMedia methods that
are common to all object types. These common methods are described in the
following groupings. Other methods, which are particular to a particular object type
or which are implemented differently for the different object types, are described in
Section 6.3, Section 7.3, Section 8.1.2, and Section 9.3.

Common Methods Associated with the updateTime Attribute

getUpdateTime(): returns the time when the object was last updated. See
"getUpdateTime()" on page 5-25 for information.

setUpdateTime(): sets the update time for the object. This method is called
implicitly by methods that modify the media data. See "setUpdateTime()" on
page 5-39 for information.

Common Methods Associated with mimeType Attribute

setMimeType(): sets the MIME type of the stored data. This method is called
implicitly by methods for natively supported formats. See "setMimeType()" on
page 5-35 for information.

getMimeType(): returns the MIME type of the stored data. See "getMimeType(
)" on page 5-17 for information.

Common Methods Associated with the source Attribute

processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

setSource(): sets the source information to where data is found. See "setSource(
)" on page 5-37 for information.

getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

Common Methods for interMedia Object Types Reference Information 5-3

Methods

= getSourcelLocation(): returns the external source location of the data. See
"getSourceLocation()" on page 5-21 for information.

= getSourceName(): returns the external source name of the data. See
"getSourceName()" on page 5-22 for information.

= getSourceType(): returns the external source type of the data. See
"getSourceType()" on page 5-23 for information.

= export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

« getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

« deleteContent(): deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

« getBFILE(): returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

Common Methods Associated with File Operations

= openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27
for information.

« closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

« trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

« readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

« writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

For more information on object types and methods, see Oracle9i Database Concepts.

5-4

clearLocal()

clearLocal()

Format
clearLocal();

Description
Resets the local flag to indicate that the data is stored externally. When the local flag
is set to clear, media methods look for corresponding data using the srcLocation,
srcName, and srcType attributes.

Parameters

None.

Usage Notes

This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle9i.

Pragmas
None.
Exceptions
None.
Examples
Clear the value of the local flag for the data:
DEQLARE
obj CRDBYS. CRAdI o;
BEG N

SH ECT aud | NTO obj FROM TALD WHERE N = 1 FCR UPDATE,
obj . cl earLocal ();
UPDATE TALD SET aud=obj WHERE N = 1,
QOWT;
END,
/

Common Methods for interMedia Object Types Reference Information 5-5

closeSource()

closeSource()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

closeSource(ctx IN OUT RAW) RETURN INTEGER;

Closes a data source.

ctx
The source plug-in context information. You must call the openSource() method;
see Section 5.1 on page 5-2 for more information.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the closeSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the closeSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the closeSource() method within a source plug-in
when any other exception is raised.

5-6 Oracle interMedia User’s Guide and Reference

closeSource()

See Appendix H for more information about these exceptions.

Examples
Close an external data source:
DECLARE
obj GRDSYS. CRPAUdI o;
res | NTECER
ctx RAWA4000) :=NUL;
BEA N

SH ECT aud I NTO obj FROMtaud WHERE N =2 FCR UPDATE;
res := obj.closeSource(ctx);
UPDATE TALD SET aud=obj WHERE N=2 ;
QAW T;
BEXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE_QUTPUT. put _| i ne(” CRDBour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVE_QUTPUT. put _|i ne(” EXCEPTI ON caught ') ;
BEND,
/

Common Methods for interMedia Object Types Reference Information 5-7

deleteContent()

deleteContent()
Format

deleteContent();
Description

Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes

This method can be called after you export the data from the local source to an
external data source and you no longer need this data in the local source.

Call this method when you want to update the object with a new object.

Pragmas
None.
Exceptions
None.
Examples
Delete the local data from the current local source:
DEQLARE
| rage CROSYS. CRD nage;
BEG N

SELECT | arge_photo | NTO I nage FRCM enp
WERE enane = ' John Doe’ FCR UPDATE;
-- delete the local content of the inage
| mrage. del et eContent () ;
UPDATE enp SET | arge_photo = | nage WHERE enane = ' John Doe’;
BEND,
/

5-8 Oracle interMedia User’s Guide and Reference

export()

export()
Format
export(
ctx IN OUT RAW,
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2);
Description
Copies data from a local source (localData) within an Oracle database to a
corresponding external data source.
Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where the data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Usage Notes

After exporting data, all attributes remain unchanged and srcType, srcLocation, and
srcName are updated with input values. After calling the export() method, you can

Common Methods for interMedia Object Types Reference Information 5-9

export()

Pragmas

Exceptions

call the clearLocal() method to indicate the data is stored outside the database and
call the deleteContent() method if you want to delete the content of the local data.

This method is also available for user-defined sources that can support the export
method.

The export() method for a source type of file is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteContent() method after calling the export() method to delete the
content from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT _
PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBVB JAVA GRANT_PERM SSI O\
" MED ALBER
"java.io. H |l ePermssion’,
" [actual / server/directory/ path/fil enane. dat’,
‘wite');

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

5-10 Oracle interMedia User’s Guide and Reference

export()

Examples

This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.
ORDSourceExceptions.IO_ERROR

This exception is raised if the export() method encounters an error writing the
BLOB data to the file specified.

Export data from a local source to an external data source.

Note: You must first create the directory to which you want to
export your data. Create this directory using the following SQL
statement and then grant read access to PUBLIC to this directory.
Change this directory specification to match the location to where
you want to export your media files.

-- Qreate the directory to which you
-- want to export your files.

CREATE (R REPLACE D RECTCRY docdi r
as 'e:\ <QRAQLE HOVEA or d\ doc\ deno’ ;
GRANT READ ON D RECTCRY docdi r TO PUBLI C WTH GRANT CPTI O\

SET EGHO ON
SET SERVERQUTPUT ON
QONNECT SYSTEM AS SYSDBA
BEA N
DBVE JAVA GRANT_PERM SSION' PUBLIC, 'java.io.FilePermission’, 'e:\ QRAAE_
HAVEA or d\ doc\ deno\ t est doc. dat ’
"WRTE);

Common Methods for interMedia Object Types Reference Information 5-11

export()

QW T;
BEND,
/
CEQLARE
obj CRDSYS. CRDDoc;
ctx RAW4000) :=NULL;
BEA N
SELECT doc INTO obj FROMtdoc WHERE N = 1 FCOR UPDATE;
obj . export(ctx,'file',”’DOD R, testdoc.dat’);
BEXCEPTI ON
WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB GQUTPUT. put _l i ne(’ Source METHOD NOT_SUPPCRTED caught ') ;
WHEN CRDSYS. CRDSour ceExcept i ons. SOURCE PLUA N_EXCEPTI ON THEN
CBVB QUJTPUT. put _li ne(’ SOURCE PLUQ N EXCEPTI ON caught ') ;
WHEN OTHERS THEN
CBVE QUTPUT. put _| i ne(” OTHER EXCEPTI ON caught ') ;
B\D,
/

5-12 Oracle interMedia User’s Guide and Reference

getBFILE()

getBFILE()
Format
getBFILE() RETURN BFILE;
Description
Returns the LOB locator of the BFILE containing the media.
Parameters

None.

Usage Notes

This method constructs and returns a BFILE using the stored source.srcLocation and
source.srcName attribute information. The source.srcLocation attribute must
contain a defined directory object. The source.srcName attribute must be a valid file
name and source.srcType must be "file".

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS)
Exceptions
If the source.srcType attribute value is NULL, calling this method raises an
INCOMPLETE_SOURCE_INFORMATION exception.
If the value of srcType is other than file, then calling this method raises an
INVALID_SOURCE_TYPE exception.
Examples

Return the BFILE for the stored source directory and file name attributes:

CEQLARE
obj CRDSYS. CRDM deo;
vi deobfil e BFILE
BEA N
SELECT vid INTO obj FROMtvid
WHERE N-1;
-- get the video BF LE

Common Methods for interMedia Object Types Reference Information 5-13

getBFILE()

vi deobfile := obj.get BF LK) ;
BEND,
/

5-14 Oracle interMedia User’s Guide and Reference

getContent()

getContent()

Format
getContent() RETURN BLOB;

Description
Returns a handle to the local BLOB storage, that is the BLOB within the object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS)
Exceptions
None.
Examples
A client accesses video data to be put on a Web-based player:
DEQLARE
obj CRDSYS. CRDMi deo;
BEA N
SHECT vid INTOobj FROMTM D WHERE N=1 FCR UPDATE,
-- inport data
obj.inportFrom{ctx, ' file'," M MIDEAO R ," M/1.AV");
-- check size

DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Cont ent Lengt h(ctx)));

DBVE QUTPUT. PUT_LI NE(TO CHAR(DBVB _LCB. GETLENGTH obj . get Content ())));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;

DBVE GQJTPUT. PUT_LI N’ del eting contents’);

DBVE QUTPUT. PUT_LINE(" -------=-m-mmm- -);
obj . del eteContent ();

DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));

Common Methods for interMedia Object Types Reference Information 5-15

getContent()

UPDATE T™ D SET vi d=obj WHERE N=1;
QAW T;

B\D,

/

5-16 Oracle interMedia User’s Guide and Reference

getMimeType()

getMimeType()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getMimeType() RETURN VARCHARZ2;

Returns the MIME type for the data. This is a simple access method that returns the
value of the mimeType attribute.

None.

If the source is an HTTP server, the MIME type information is read from the HTTP
header information when the media is imported and stored in the object attribute. If
the source is a file or BLOB, the MIME type information is extracted when the
setProperties() method is called.

For unrecognized file formats, users must call the setMimeType() method and
specify the MIME type.

Use this method rather than accessing the mimeType attribute directly to protect
yourself from potential changes to the internal representation of the object.

PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS)

None.

Set the MIME type for some stored image data:

DEQLARE
| rage CROSYS. CRD nage;
BEG N
SELECT | arge_photo I NTO I nage FRCM enp

Common Methods for interMedia Object Types Reference Information 5-17

getMimeType()

WHERE enane = ’ John Doe’;
-- set the inage nine type
I mage. set M neType(’ i nage/ nyfornat’);

5-18 Oracle interMedia User’s Guide and Reference

getSource()

getSource()

Format
getSource() RETURN VARCHAR?2;

Description
Returns information about the external location of the data in URL format.

Parameters
None.

Usage Notes
Possible return values are:

« FILE:Z//<DIR OBJECT NAME>/<FILE NAME> for a file source
« HTTP://<URL> for an HTTP source

« User-defined source; for example, TYPE://<USER-DEFINED SOURCE
LOCATION>/<USER-DEFINED SOURCE NAME>

Pragmas

PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

Get the source of the image data:

CEQLARE
| rage CROSYS. CRD nage;
Sour cel nf o VARCHAR2(4000) ;
BEA N
SELECT | arge_photo | NTO I rage FRCM enp
WHERE enane = ' John Doe€’;
-- get the image source infornation
Sour cel nfo : = | nage. get Source();

Common Methods for interMedia Object Types Reference Information 5-19

getSource()

5-20 Oracle interMedia User’s Guide and Reference

getSourceLocation()

getSourceLocation()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getSourceLocation() RETURN VARCHAR?2;

Returns a string containing the value of the external data source location.

None.

This method returns a VARCHAR?2 string containing the value of the external data
location, for example "BFILEDIR".

PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

ORDSourceExceptions.INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the getSourceLocation method and the value of
srcLocation is NULL.

Get the source location information about an image data source:

CEQLARE

| rage CROSYS. CRD nage;

Sour celLocat i on VARCHAR2(4000) ;
BEA N

SELECT | arge_photo | NTO I rage FRCM enp

WHERE enane = ' John Doe€’;

-- get the i mage source | ocation

Sour celLocation : = | mage. get Sour ceLocati on();
BEND,

Common Methods for interMedia Object Types Reference Information 5-21

getSourceName()

getSourceName()

Format
getSourceName() RETURN VARCHAR?Z;

Description
Returns a string containing of the name of the external data source.

Parameters
None.

Usage Notes

This method returns a VARCHAR?2 string containing the name of the external data
source, for example "testimg.dat".

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_NAME
This exception is raised if you call the getSourceName() method and the value of
srcName is NULL.
Examples

Get the source name information about an image data source:

CEQLARE

| rage CROSYS. CRD nage;

Sour ceNane VARCHAR2(4000) ;
BEA N

SELECT | arge_photo | NTO I nage FRCM enp

WHERE enane = ' John Doe€’;

-- get the image source nane

Sour ceNane : = | nage. get Sour ceNane() ;
END,

5-22 Oracle interMedia User’s Guide and Reference

getSourceType()

getSourceType()

Format
getSourceType() RETURN VARCHAR?2;

Description
Returns a string containing the type of the external data source.

Parameters
None.

Usage Notes

Returns a VARCHAR? string containing the type of the external data source, for
example "file".

Pragmas

PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

Get the source type information about a media data source:

DEQLARE

obj CGROSYS. CRODoc;
BEG N

SHECT doc INTO obj FROMtdoc WHERE N=1 FCR UPDATE
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);
DBVE QUTPUT. PUT_LINE(" -----------mmmmmmmmm - -)
-- set source to afile

obj.set Source('file',” DOCDR ,"testdoc.dat’);

-- get source infornation

DBVE GJTPUT. put _| i ne(obj . get Source());

DBVE GJTPUT. put _| i ne(obj . get Sour ceType()) ;

DBVB QUJTPUT. put _| i ne(obj . get Sour ceLocati on());

DBVE QUTPUT. put _| i ne(obj . get Sour ceNane()) ;

Common Methods for interMedia Object Types Reference Information 5-23

getSourceType()

UPDATE TDQC SET doc=obj WHERE N=1;
GOMWT;

B\D,

/

5-24 Oracle interMedia User’s Guide and Reference

getUpdateTime()

getUpdateTime()

Format
getUpdateTime() RETURN DATE;

Description
Returns the time when the object was last updated.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples
Get the updated time of some audio data:
DEQLARE
obj CRDSYS. CRAdI o;
BEG N

SHECT aud INTOobj FROMTALD WERE N =1 ;

CBVE GQUTPUT. PUT_LI N TO GHAR obj . get Updat eTi ne() ,” MA DD YYYY HR24: M:SS));
END,

/

Common Methods for interMedia Object Types Reference Information 5-25

isLocal()

isLocal()
Format
isLocal() RETURN BOOLEAN;
Description
Returns TRUE if the data is stored locally in a BLOB or FALSE if the data is stored
externally.
Parameters
None.

Usage Notes

If the local attribute is set to 1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas

PRAGMA RESTRICT_REFERENCES(getLocal, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

Determine whether or not the audio data is local:

DEQLARE

obj CRDSYS. CRAdI o;
BEG N

SHECT aud INTOobj FROMTALDD WERE N =1 ;
if(obj.isLocal () = TRE then

CBVE QJTPUT. put _line(’local is set true');
el se

DBV QUTPUT. put _line('local is set false');
end if;
END
/

5-26 Oracle interMedia User’s Guide and Reference

openSource()

openSource()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Opens a data source.

userArg
The user argument. This may be used by user-defined source plug-ins.

ctx
The source plug-in context information.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the openSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the openSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

Common Methods for interMedia Object Types Reference Information 5-27

openSource()

This exception is raised if you call the openSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Open an external data source:

CEQLARE
obj GQRDSYS. CRPAUdI o;
res | NTEGER
ctx RAWA4000) :=NUL;
user Arg RAW4000);
BEA N
SH ECT aud | NTO obj FROMtaud WHERE N =1 FCR UPDATE;
res := obj.openSource(user Arg, ctx);
UPDATE taud SET aud=obj WHERE N=1 ;
QOWT;
BEXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
DBVE_QUTPUT. put _| i ne(’ CRDBour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVE_QUTPUT. put _|i ne(” EXCEPTI ON caught ') ;
B\D,
/

5-28 Oracle interMedia User’s Guide and Reference

processSourceCommand()

processSourceCommand()

Format

Description

Parameters

Usage Notes

processSourceCommand(
ctx IN OUT RAW,
cmd IN VARCHAR?,
arguments IN VARCHAR?2,
result OUT RAW)
RETURN RAW;

Allows you to send any command and its arguments to the source plug-in. This
method is available only for user-defined source plug-ins.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

cmd
Any command recognized by the source plug-in.

arguments
The arguments of the command.

result
The result of calling this method returned by the source plug-in.

Use this method to send any command and its respective arguments to the source
plug-in. Commands are not interpreted; they are just taken and passed through to
be processed.

Common Methods for interMedia Object Types Reference Information 5-29

processSourceCommand()

Pragmas

Exceptions

Examples

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processSourceCommand() method and the
value of srcType is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the processSourceCommand() method and this
method is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processSourceCommand() method within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Process some commands:

DEQLARE
obj CRDSYS. CGRDMi deo;
res RAW4000);
result RAWA4000);
command VARCHAR 4000) ;
argLi st VARCHAR 4000) ;
ctx RAW4000) :=NULL;
BEG N
select vidinto obj fromTV D where N =1 for UPDATE
-- assign command
-- assign argLi st
res := obj . processSour ceCommand(ct x, command, argList, result);
UPDATE T D SET vi d=obj WHERE N-1 ;
AW T;
EXCEPTI ON
WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE QJTPUT. put _l i ne(’ Source METHCD NOT_SUPPCRTED caught’) ;
WHEN CRDSYS. GRDSour ceExcept i ons. SOURCE PLU3 N_EXCEPTI ON THEN
DBVE QUJTPUT. put _li ne(’ SOURCE PLUQ N EXCEPTI ON caught) ;
WHEN CRDSYS. CRDSour ceExcept i ons. | NOOMPLETE_SOURCE | NFCRVATI ON THEN
DBVE_QUTPUT. put _| i ne(” SOURCE | NOOMPLETE_SOURCE | NFCRVATI ON EXCEPTI N

5-30 Oracle interMedia User’s Guide and Reference

processSourceCommand()

caught’);
WEN OTHERS THEN
CBVE QUTPUT. PUT_LI NE(’ EXCEPTI ON caught) ;
BEND,
/

Common Methods for interMedia Object Types Reference Information 5-31

readFromSource()

readFromSource()
Format
readFromSource(
ctx IN OUT RAW,
startPos IN INTEGER,
numBytes IN OUT INTEGER,
buffer ~ OUT RAW);
Description

Allows you to read a buffer of n bytes from a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer into which the data will be read.

Usage Notes

This method is not supported for HTTP sources.
To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you

must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.

5-32 Oracle interMedia User’s Guide and Reference

readFromSource()

Pragmas

Exceptions

Examples

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the readFromSource() method and the value of
srcType is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the readFromSource() method and the data is
local but localData is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the readFromSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the readFromSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Read a buffer from the source:

CEQLARE
obj GQRDSYS. CRPAUdI o;
buf f er RAW4000);
i | NTEGER
ctx RAWA4000) :=NUL;
BEA N
i =20
sel ect aud into obj fromTALD where N =1 ;
obj . readFronSource(ctx, 1,i, buffer);
DBVE GUJTPUT. PUT_LI NE(TO CHAR(obj . get Cont ent Lengt h(ctx)));
BEXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
DBVE_QUTPUT. put _| i ne(" CRDBour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVE_QUTPUT. put _|i ne(” EXCEPTI ON caught ') ;
B\D,

Common Methods for interMedia Object Types Reference Information 5-33

setLocal()

setLocal()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setLocal();

Sets the local attribute to indicate that the data is stored internally in a BLOB. When
local is set, methods look for corresponding data in the source.localData attribute.

None.

This method sets the local attribute to 1 meaning the data is stored locally in
localData.

None.

NULL_LOCAL_DATA

This exception is raised if you call the setLocal method and the source.localData
attribute value is NULL.

Set the flag to local for the data:

DEQLARE

obj CRDSYS. CRAdI o;

BEG N

SHECT s INTO obj FROM TALD WHERE N = 1 FCR UPDATE,
obj . set Local ();

UPDATE TALD SET s=obj WHERE N = 1;

GOMWM T;

END

/

5-34 Oracle interMedia User’s Guide and Reference

setMimeType()

setMimeType()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setMimeType(mime IN VARCHAR?2);

Allows you to set the MIME type of the data.

mime
The MIME type.

You can override the automatic setting of MIME information by calling this method
with a specified MIME value.

Calling this method implicitly calls the setUpdateTime() method.
The method setProperties() calls this method implicitly.

For image objects, the methods setProperties(), process(), and processCopy() call
this method implicitly.

None.

INVALID_MIME_TYPE

This exception is raised if you call the setMimeType() method and the value for
mimeType is NULL.

Set the MIME type for some stored data:

DEQLARE
obj GRDSYS. CRAUdI o;

Common Methods for interMedia Object Types Reference Information 5-35

setMimeType()

BEG N
SHECT aud INTO obj FROMTALD WHERE N=1 FCR UPDATE,
DBVE GQUJTPUT. PUT_LINE(’ writing mnetype’);
DBVB QUTPUT. PUT_LINE(" ----------------)
obj . set M neType(’ audi o/ basi c’);
DBVE _GUTPUT. PUT_LI NE(obj . get M neType) ;
UPDATE TALD SET aud=obj WHERE N=1;
QOWT,

END,

5-36 Oracle interMedia User’s Guide and Reference

setSource()

setSource()
Format
setSource(
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR?2);
Description

Sets or alters information about the external source of the data.

Parameters

source_type
The source type of the external data. See the ORDSource Object Type definition in
Appendix | for more information.

source_location
The source location of the external data. See the ORDSource Object Type definition
in Appendix | for more information.

source_name
The source name of the external data. See the ORDSource Object Type definition in
Appendix | for more information.

Usage Notes
Users can use this method to set the data source to a new BFILE or URL.

You must ensure that the directory exists or is created before you use this method.

Calling this method implicitly calls the setUpdateTime() method and the
clearLocal() method.

Pragmas
None.

Common Methods for interMedia Object Types Reference Information 5-37

setSource()

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the setSource() method and the value of srcType
is NULL.

Examples
Set the source of the data:

DEQLARE
obj GRDSYS. CRPAUdI o;

BEG N
SHECT aud I NTO obj FROMTALD WHERE N=1 FCR UPDATE
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);
DBVE QUTPUT. PUT_LINE(" -----------mmmmmmmmm oo - ")
obj .setSource('file',”AD@M R, audio.au');
DBVE_QUTPUT. PUTLII\E(obJ get Source());
UPDATE TALD SET aud=obj WHERE N=1;
COMT;

END

5-38 Oracle interMedia User’s Guide and Reference

setUpdateTime()

setUpdateTime()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setUpdateTime(current_time DATE);

Sets the time when the data was last updated. Use this method whenever you
modify the data. Methods that modify the object attributes and all set media access
methods call this method implicitly. For example, the methods setMimeType(),
setSource(), and deleteContent() call setUpdateTime() explicitly.

current_time
The timestamp to be stored. Defaults to SYSDATE.

You must invoke this method whenever you modify the data without using object
methods.

None.

None.

Set the updated time of some data:

DEQLARE

obj CRDSYS. CRAdI o;

BEG N

SH ECT aud | NTO obj FROM TALD WHERE N = 1;
obj . set Updat eTi ne(SYSDATE) ;

UPDATE TALD SET aud=obj WHERE N = 1,
QOWMT,
END

Common Methods for interMedia Object Types Reference Information 5-39

trimSource()

trimSource()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

trim(ctx IN OUT RAW,
newlen IN INTEGER) RETURN INTEGER;

Trims a data source.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

newlen
The trimmed new length.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trimSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the trimSource() method and this method is not
supported by the source plug-in being used.

5-40 Oracle inteMedia User’s Guide and Reference

trimSource()

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trimSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Trim an external data source:
DECLARE
obj GRDSYS. CRPAUdI o;
res | NTECER
ctx RAWA4000) :=NUL;
BEA N

sel ect aud into obj fromTAUD where N =1 for UPDATE
res := obj.trinSource(ctx,0);
UPDATE TALD SET aud=obj WHERE N=1 ;
QW T;
BEXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE_QUTPUT. put _| i ne(” CRDBour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVE_QUTPUT. put _|i ne(” EXCEPTI ON caught ') ;
BEND,
/

Common Methods for interMedia Object Types Reference Information 5-41

writeToSource()

writeToSource()
Format
writeToSource(
ctx IN OUT RAW,
startPos IN INTEGER,
numBytes IN OUT INTEGER,
buffer IN RAW);
Description

Allows you to write a buffer of n bytes to a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes

This method assumes that the source allows you to write n number of bytes starting
at a random byte location. The file and HTTP source types will not permit you to
write, and do not support this method. This method will work if data is stored in a
local BLOB or is accessible through a user-defined source plug-in.

Pragmas
None.

5-42 Oracle interMedia User’s Guide and Reference

writeToSource()

Exceptions

Examples

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the writeToSource() method and the value of
srcType is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the writeToSource() method and the data is local
but localData is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the writeToSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the writeToSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Write a buffer to the source:

CEQLARE
obj GRDSYS. CRPAUdI o;
n INTEEER : = 6;
ctx RAWA4000) :=NUL;
BEA N
sel ect aud into obj from TAUD where N =1 for update;
obj . writeToSource(ctx, 1, n, UIL_RAWCAST TO RAW' hel 1 oP));
DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
update TAUD set aud = obj where N =1 ;
QOWT;
BEXCEPTI ON
WHEN CRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
DBVE_QUTPUT. put _| i ne(’ CRDBour ceExcept i ons. METHID NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVE_QUTPUT. put _| i ne(” EXCEPTI ON caught’) ;
B\D,
/

Common Methods for interMedia Object Types Reference Information 5-43

writeToSource()

5-44 Oracle interMedia User’s Guide and Reference

S

ORDAudio Reference Information

Oracle interMedia contains information about the ORDAudio type:
« Object type -- see Section 6.1.

= Constructors -- see Section 6.2.

= Methods -- see Section 6.3.

« Packages or PL/SQL plug-ins -- see Section 6.4.

The examples in this chapter assume that the test audio table TAUD has been
created and filled with data. This table was created using the SQL statements
described in Section 6.3.1.

Note: If you manipulate the audio data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the audio data.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx(RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

ORDAudio Reference Information 6-1

Object Types

Methods invoked at the ORDAudio level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and
initialize it to NULL.

Note: Inthe current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

6.1 Object Types

Oracle interMedia describes the ORDAudio object type, which supports the storage
and management of audio data.

6-2 Oracle interMedia User’s Guide and Reference

ORDAudio Object Type

ORDAudio Object Type

The ORDAudio object type supports the storage and management of audio data.
This object type is defined as follows:

CREATE (R REPLACE TYPE CRDAudi 0

AS BIECT
(

-- ATTR BUTES
description VARCHAR2(4000) ,
sour ce CRCSour ce,

f or nat VARCHAR2(31),
m neType VARCHAR2(4000) ,
comment s acs,

-- ALD O RELATED ATTR BUTES
encodi ng VARCHAR2(256) ,
nunber & Channel s | NTECER
sanpl i ngRat e | NTEGER
sanpl eS ze | NTEGER
conpr essi onType VARCHAR2(4000) ,
audi oDur ati on | NTECER

-- METHIS
-- QOONSTRUICTGRS

STATIC FUNCTION i ni t () RETURN CGRDAUd o,

STATI C FUNCTI ON i ni t (srcType I N VARCHARZ,
srcLocati on | N VARCHAR?,
srcNane I'N VARCHAR?) RETURN CRDAUd o,

-- Methods associated wth the date attribute

MEMBER FUNCTI ON get Updat eTi ne() RETURN DATE,

PRAGVA RESTR CT_REFERENCES(get Updat eTi ne, VWADS, VWPS, R\DS, R\PS),
MEMBER PROCEDURE set Updat eTi ne(current _ti me DATE),

-- Methods associated with the description attribute

MEMBER PROCEDURE set Descri pti on(user _description | N VARCHAR?) ,
MEMBER FUNCTI ON get Description() RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get Descri ption, WD, VWPS, R\DS, R\PS),

-- Methods associated with the mineType attribute
MEMBER PROCEDLRE set M neType(nine | N VARCHARR)
MEMBER FUNCTI ON get M neType() RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get M neType, WDS, \WPS, R\DS, R\PS),

ORDAudio Reference Information 6-3

ORDAudio Object Type

-- Methods associated with the source attribute
MEMBER FUNCTI ON pr ocessSour ceCommrand(
ctx IN QJT RAW
cnd IN VARCHAR?,
argurents | N VARCHAR?,
resul t QJT RAWY
RETURN RAWY

MEMBER FUNCTI ON i sLocal () RETURN BOCLEAN
PRAGVA RESTR CT_REFERENCES(i sLocal , WADS, VWPS, R\DS, R\PS),

MEMBER PROCEDURE set Local (),
MEMBER PROCEDURE cl ear Local (),

MEMBER PROCEDURE set Sour ce(

sour ce_type I N VARCHARZ,
source_l ocation | N VARCHAR?,
sour ce_nane IN VARCHAR?) ,

MEMBER FUNCTI ON get Source() RETURN VARCHARZ,
PRAGVA RESTR CT_REFERENCES(get Sour ce, VDS, VWPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceType() RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceType, WADS, VWPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour celocation() RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceLocati on, VINDS, VAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceNane() RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceNane, VWADS, VWPS, R\DS, R\PS),

MEMBER PROCEDURE i nport (ctx I N QJT RAW,
MEMBER PROCEDURE i npor t Fr ong

ctx IN QJT RAW
sour ce_t ype I N VARCHAR2,
source_| ocati on I N VARCHAR?,
sour ce_nane I N VARHAR?) ,
MEMBER PROCEDURE expor t (

ctx IN QJT RAW

sour ce_type I N VARCHARZ,

source_| ocation | N VARCHAR2,

sour ce_nane IN VARCHAR?) ,

MEMBER FUNCTI ON get Content Lengt h(ctx | N QUT RAW RETURN | NTECER
PRAGVA RESTR CT_REFERENCES(get Gont ent Lengt h, WADS, WWPS, R\DS, R\PS),

MEMBER PROCEDURE get Gont ent | nLob(

6-4

ORDAudio Object Type

ctx IN QJr RAW

dest _| ob I N QJI NOOCPY BLCB,
m neType QJT VARCHAR2,

f or mat QUT VARCHAR?) ,

MEMBER FUNCTI ON get Content () RETURN BL(B,
PRAGVA RESTR CT_REFERENCES(get Gont ent, WADS, WAPS, R\CS, R\PS),

MEMBER PROCEDURE del eteContent (),

MEMBER FUNCTI ON get BFI LE() RETURN BFI LE,
PRAGVA RESTR CT_REFERENCES(get BFI LE, WOS, WPS, R\DS, R\PS),

-- Methods associated with file operati ons on the source
MEMBER FUNCTI ON openSour ce(user Arg | N RAW ctx QUT RAW RETURN | NTEGER
MEMBER FUNCTI ON cl oseSour ce(ctx | N QJT RAW RETURN | NTEGER
MEMBER FUNCTI ON t ri nBour ce(ct x IN QJT RAW
new en |ININEER RETURN | NTEEER

MEMBER PROCEDURE r eadFr onBour ce(

ctx IN QJT RAW

startPos | N | NTECER

nunBytes | N QJT | NTEGER

buf f er QJT RAWY,
MEMBER PROCEDURE wri t eToSour ce(

ctx IN QJT RAW

startPos | N | NTEGER

nunBytes | N QJT | NTECER

buf f er IN RAVWY,

-- Methods associated with audio attributes accessors

MEMBER PROCEDURE set For nat (knownf or nat | N VARCHAR?) ,

MEMBER FUNCTI ON get Format () RETURN VARCHARZ,

PRAGVA RESTR CT_REFERENCES(get Fornat, VDS, VWWPS, R\DS, R\PS),

MEMBER PROCEDURE set Encodi ng(knownEncodi ng | N VARCHAR?) ,
MEMBER FUNCTI ON get Encodi ng() RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Encodi ng, WS, VWPS, R\DS, R\P9S),

MEMBER PROCEDURE set Nunber O Channel s(knownNunber &0 Channel s | N | NTEGER) ,
MEMBER FUNCTI ON get Nunber G Channel s() RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Nunber O Channel s, VIRDS, VIWPS, R\DS, R\PS),

MEMBER PROCEDURE set Sanpl i ngRat e(knownSanpl i ngRat e | N | NTEGER),

MEMBER FUNCTI ON get Sanpl i ngRat e() RETURN | NTECGER
PRAGVA RESTR CT_REFERENCES(get Sanpl i ngRat e, WWDS, VWPS, R\CS, R\PS),

ORDAudio Reference Information 6-5

ORDAudio Object Type

MEMBER PROCEDURE set Sanpl eS ze(knownSanpl eS ze |N | NTEGER),
MEMBER FUNCTI ON get Sanpl eSi ze() RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Sanpl eSi ze, WS, WS, R\DS, R\PS),

MEMBER PROCEDURE set Gonpr essi onType(knownGonpr essi onType | N VARCHAR?) ,
MEMBER FUNCTI ON get Gonpr essi onType() RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Conpr essi onType, WADS, VWPS, R\DS, R\PS),

MEMBER PROCEDURE set Audi olur at i on(knownAudi oDuration I N | NTEGR),
MEMBER FUNCTI CN get Audi oDurati on() RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Audi oDur ati on, WADS, WWPS, R\DS, R\PS),

MEMBER PROCEDURE set KnownAt tri but es(
knownFor mat | N VARCHAR?,
knownEncodi ng | N VARCHAR2,
knownNunber & Channel s | N | NTECER
knownSanpl i ngRat e | N | NTEGER
knownSanpl eS ze | N | NTEGER
knownConpr essi onType | N VARCHARZ,
knownAudi oDuration I N I NTEGER ,

-- Methods associated with setting all the properties
MEMBER PROCEDURE set Properti es(ct x IN QUT RAWY
set Comnment s | N BOCLEAN) ,
MEMBER FUNCTI ON checkProperties(ctx I N QJT RAY RETURN BOOLEAN

MEMBER FUNCTI ON get At tri but e(
ctx INQJT RAW
nane | N VARCHAR?) RETURN VARCHARZ,

MEMBER PROCEDURE get Al | Attri but es(
ctx IN QJT RAW
attributes IN QJI NOOCPY ALCB),

-- Methods associ ated w th audi o processi ng

MEMBER FUNCTI ON pr ocessAudi oGonmand(
ctx IN QJr RAW
crd I N VARCHAR?,
argunents | N VARCHAR?,
resul t Qur RAWY

RETURN RAW
);

where:

6-6 Oracle interMedia User’s Guide and Reference

Constructors

« description: the description of the audio object.

= source: the ORDSource where the audio data is to be found.

« format: the format in which the audio data is stored.

« mimeType: the MIME type information.

« comments: the comment information of the audio object.

« encoding: the encoding type of the audio data.

« numberOfChannels: the number of audio channels in the audio data.

« samplingRate: the rate in Hz at which the audio data was recorded.

« sampleSize: the sample width or number of samples of audio in the data.
« compressionType: the compression type of the audio data.

= audioDuration: the total duration of the audio data stored.

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle
interMedia Annotator utility. Oracle Corporation recommends that
you not write to this attribute directly.

6.2 Constructors
This section describes the constructor functions.
The interMedia constructor functions are as follows:
« init()

= init(srcType,srcLocation,srcName)

ORDAudio Reference Information 6-7

init()

init()
Format
Description
Parameters
Pragmas

Exceptions

Usage Notes

Examples

init() RETURN ORDAudio;

Allows for easy initialization of instances of the ORDAudio object type.

None.

None.

None.

This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

« source.updateTime is set to SYSDATE
« source.local is set to 1 (local)
« source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Initialize the ORDAudio object attributes:

BEGN
I NSERT | NTO t aud VALUES (CROSYS. GRDAudi 0. i nit());

6-8 Oracle interMedia User’s Guide and Reference

init()

ORDAudio Reference Information 6-9

init(srcType,srcLocation,srcName)

init(srcType,srcLocation,srcName)

Format

Description

Parameters

Pragmas

Exceptions

Usage Notes

init(srcType IN VARCHAR?2,
srcLocation IN VARCHAR?2,
srctName IN VARCHAR2)

RETURN ORDAudio;

Allows for easy initialization of instances of the ORDAudio object type.

srcType
The source type of the audio data.

srcLocation
The source location of the audio data.

srcName
The source name of the audio data.

None.

None.

This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

« source.updateTime is set to SYSDATE
« source.localissetto 0

« source.localData is set to empty_blob

6-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)

= source.srcType is set to the input value
= source.srcLocation is set to the input value
= source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDAudio object attributes:

BEA N

INSERT INTO taud VALUES (ORDSYS.ORDAudio.init(file’, AUDDIR',/audiol.au’));
END;

/

ORDAudio Reference Information 6-11

Methods

6.3 Methods

This section presents reference information on the Oracle interMedia methods used
for audio data manipulation. These methods are described in the following
groupings:

ORDAudio Methods Associated with the updateTime Attribute

getUpdateTime(): returns the time when the audio object was last updated. See
"getUpdateTime()" on page 5-25 for information.

setUpdateTime(): sets the update time for the audio object. This method is
called implicitly by methods that modify natively supported audio formats. See
"setUpdateTime()" on page 5-39 for information.

ORDAudio Methods Associated with the description Attribute

setDescription(): sets the description of the audio data. See "setDescription()"
on page 6-44.

getDescription(): returns the description of the audio data. See "getDescription(
)" on page 6-28.

ORDAudio Methods Associated with mimeType Attribute

setMimeType(): sets the MIME type of the stored audio data. This method is
called implicitly by any method that modifies natively supported audio
formats. See "setMimeType()" on page 5-35 for information.

getMimeType(): returns the MIME type of the stored audio data. See
"getMimeType()" on page 5-17 for information.

ORDAudio Methods Associated with the source Attribute

processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

6-12 Oracle interMedia User’s Guide and Reference

Methods

setSource(): sets the source information to where audio data is found. See
"setSource()" on page 5-37 for information.

getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

getSourceType(): returns the external source type of the audio data. See
"getSourceType()" on page 5-23 for information.

getSourceLocation(): returns the external source location of the audio data. See
"getSourceLocation()" on page 5-21 for information.

getSourceName(): returns the external source name of the audio data. See
"getSourceName()" on page 5-22 for information.

import(): transfers data from an external data source (specified by calling
setSourcelnformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local and
updating the timestamp. See "import()" on page 6-36.

importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 6-36.

export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 6-24.

getContentinLob(): returns content into a temporary LOB. See
"getContentinLob()" on page 6-26 for information.

getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

deleteContent(): deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

ORDAudio Reference Information 6-13

Methods

getBFILE(): returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

ORDAudio Methods Associated with File Operations

openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27
for information.

closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

readFromsSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

ORDAudio Methods Associated with Audio Attributes Accessors

setFormat(): sets the object attribute value of the format of the audio data. See
"setFormat()" on page 6-47 for information.

getFormat(): returns the object attribute value of the format in which the audio
data is stored. See "getFormat()" on page 6-30.

setEncoding(): sets the object attribute value of the encoding type of the audio
data. See "setEncoding()" on page 6-46.

getEncoding(): returns the object attribute value of the encoding type of the
audio data. See "getEncoding()" on page 6-29.

setNumberOfChannels(): sets the object attribute value of the number of audio
channels of the audio data. See "setNumberOfChannels()" on page 6-51.

getNumberOfChannels(): returns the object attribute value of the number of
audio channels in the audio data. See "getNumberOfChannels()" on page 6-31.

setSamplingRate(): sets the object attribute value of the sampling rate of the
audio data. See "setSamplingRate()" on page 6-54.

getSamplingRate(): returns the object attribute value of the sampling rate in
samples per second at which the audio data was recorded. See
"getSamplingRate()" on page 6-33.

6-14 Oracle interMedia User’s Guide and Reference

Methods

setSampleSize(): sets the object attribute value of the sample width or number
of samples of audio in the data. See "setSampleSize()" on page 6-55.

getSampleSize(): returns the object attribute value of the sample width or
number of samples of audio in the data. See "getSampleSize()" on page 6-32.

setCompressionType(): sets the object attribute value of the compression type
of the audio data. See "setCompressionType()" on page 6-43.

getCompressionType(): returns the object attribute value of the compression
type of the audio data. See "getCompressionType()" on page 6-25.

setAudioDuration(): sets the object attribute value of the total time value for
the time required to play the audio data. See "setAudioDuration()" on
page 6-42.

getAudioDuration(): returns the object attribute value of the total time required
to play the audio data. See "getAudioDuration()" on page 6-23.

setKnownAttributes(): sets known audio attributes including format, encoding
type, number of channels, sampling rate, sample size, compression type, and
audio duration of the audio data. The parameters are passed in with this call.
See "setKnownAttributes()" on page 6-49.

setProperties(): reads the audio data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility. See "setProperties()" on
page 6-52.

For the known attributes that ORDAudio understands, it sets the properties for
these attributes. These include: format, encoding type, data type, number of
channels, sampling rate, and sample size of the audio data. See "setMimeType(
)" on page 5-35 for information.

checkProperties(): calls the format plug-in to check the properties including
format, encoding type, number of channels, sampling rate, and sample size of
the audio data, and returns a Boolean value TRUE if the properties stored in
object attributes match those in the audio data. See "checkProperties()" on
page 6-17.

getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins. See "getAttribute()" on page 6-21.

getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of audio data

ORDAudio Reference Information 6-15

Methods

attributes separated by a comma (,): FileFormat, Encoding, NumberOfChannels,
SamplingRate, and SampleSize. Different format plug-ins can return data in any
format in this call. For user-defined formats, the string is defined by the format

plug-in. See "getAllAttributes()" on page 6-19.

ORDAudio Methods Associated with Processing Audio Data

« processAudioCommand(): sends commands and related arguments to the
format plug-in for processing. This method is available only for user-defined
format plug-ins. See "processAudioCommand()" on page 6-39.

For more information on object types and methods, see Oracle9i Database Concepts.

6.3.1 Example Table Definitions

The methods described in this reference chapter show examples based on a test
audio table TAUD. Refer to the TAUD table definition that follows when reading
through the examples:

TAUD Table Definition

CREATE TABLE TALD(n NUMBER aud CRDSYS. CRDALD O
storage (initia 100K next 100K pcti ncrease 0);

I NSERT | NTO TALD VALLES(1, CROSYS, GRAudi 0.init());
I NSERT | NTO TALD VALLES(2, CROSYS, GRAudi 0.init());

6-16 Oracle interMedia User’s Guide and Reference

checkProperties()

checkProperties()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,;

Checks the properties of the stored audio data, including the following audio
attributes: sample size, sample rate, number of channels, format, and encoding type.

ctx
The format plug-in context information.

If the format is set to NULL, then the checkProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

None.

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the audio
plug-in raises an exception.

Check property information for known audio attributes:

DEQLARE
obj GRDSYS. CRPAUdI o;
ctx RAW4000) :=NLLL;
BEG N
sel ect aud into obj fromTAUD where N =1 for update;

ORDAudio Reference Information 6-17

checkProperties()

i f(obj.checkProperties(ctx) = TRE) then
DBVE QUTPUT. put _line(’ true');
el se
DBVE QJTPUT. put _line(’ fal se’);
end if;
EXCEPTI ON
WHEN CRDSYS. CRDAUdi oExcept i ons. ALDI O PLUA N EXCEPTI ON THEN
DBVE_QUTPUT. put _|i ne(’ CRDAudi oExcepti ons. AUD O PLUG N_EXCEPTI ON caught) ;
WEN OTHERS THEN
DBVE QUJTPUT. put _| i ne(” EXCEPTI ON caught’) ;
B\D,
/

6-18 Oracle interMedia User’s Guide and Reference

getAllAttributes()

getAllAttributes()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

getAllAttributes(
ctx IN OUT RAW,
attributes IN OUT NOCOPY CLOB);

Returns a formatted string for convenient client access. For natively supported
formats, the string includes the following list of audio data attributes separated by a
comma (,): fileFormat, mimeType, encoding, numberOfChannels, samplingRate,
sampleSize, compressionType, and audioDuration. For user-defined formats, the
string is defined by the format plug-in.

ctx
The format plug-in context information.

attributes
The attributes.

These audio data attributes are available from the header of the formatted audio
data.

None.

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getAllAttributes() method and the audio
plug-in raises an exception.

ORDAudio Reference Information 6-19

getAllAttributes()

Examples
Return all audio attributes for audio data stored in the database:

DEQLARE
obj CROSYS. GRDAud o;
tenpLob OQCB;
ctx RAW4000) :=N.LL;
BEA N
SH ECT aud | NTO obj FROM TALD WHERE N=1;
DBV QUTPUT. PUT_LINE(' getting comma separated list of all attribs’);
DBVB QUTPUT. PUT LI NE(" = - - == == == o e e e e ot e ")
DBVS _LCB. GREATETEMPCRARY(t enplob, FALSE, DBMS LCB. CALL);
obj.get Al Atributes(ctx,tenplob);
DBV QUTPUT. put _| i ne(DBV _L@B. subst r (t enpLob, DBMS LCB. get Lengt h(t enpLob) , 1));
EXCEPTI (N
WHEN CRDSYS. CRDAUdi oExcept i ons. ALD O PLUG N _EXCEPTI ON THEN
DBMS_OUTPUT.PUT_LINE(ORDAudioExceptions. AUDIO_PLUGIN_EXCEPTION caught);

END
/

6-20 Oracle interMedia User’s Guide and Reference

getAttribute()

getAttribute()
Format
getAttribute(
ctx INOUT RAW,
name IN VARCHAR2)
RETURN VARCHAR?2;
Description

Parameters

Usage Notes

Pragmas

Exceptions

Returns the value of the requested attribute from audio data for user-defined
formats only.

ctx
The format plug-in context information.

name
The name of the attribute.

The audio data attributes are available from the header of the formatted audio data.

Audio data attribute information can be extracted from the audio data itself. You
can extend support to a format not understood by the ORDAudio object by
implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 3.4.13 for more information.

None.

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getAttribute() method and the audio plug-in
raises an exception.

ORDAudio Reference Information 6-21

getAttribute()

Examples

Return information for the specified audio attribute for audio data stored in the
database:

CEQLARE
obj CRDSYS. CRPAudI o;
res VARCHAR2(4000) ;
ctx RAWA4000) :=NUL;
BEA N
SH ECT aud | NTO obj FROMTALD WHERE N-1;
DBVE QUTPUT. PUT_LI NE(" getting audi o sanpl e size');
DBVE QUTPUT. PUT_LINE(" === === mmmmmmm oo);
res := obj.getAttribute(ctx,’ sanple_size');
BEXCEPTI ON
WHEN CRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE QUJTPUT. put _li ne(’ Source METHOD NOT_SUPPCRTED caught’) ;
WHEN CRDSYS. CRDSour ceExcept i ons. SOURCE PLUA N_EXCEPTI ON THEN
CBVB QUJTPUT. put _| i ne(” SOURCE PLUJ N EXCEPTI ON caught) ;
WHEN GRDSYS. CRDAUdi oExcept i ons. METHOD NOT_SUPPCRTED THEN
DBVE QUTPUT. put _| i ne(” AUDI O METHOD NOT_SUPPCRTED EXCEPTI ON caught ') ;
WHEN CRDSYS. CRDAUdi oExcept i ons. ALD O PLUA N _EXCEPTI ON THEN
CBVE QUTPUT. put _| i ne(” AUD O PLUG N EXCEPTI ON caught ') ;
WHEN OTHERS THEN
CBVE QUTPUT. PUT_LI NE(' EXCEPTI ON caught ') ;

6-22 Oracle interMedia User’s Guide and Reference

getAudioDuration()

getAudioDuration()

Format
getAudioDuration() RETURN INTEGER;

Description
Returns the value of the audioDuration attribute of the audio object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-23

getContentLength()

getContentLength()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Returns the length of the audio data content stored in the source.

ctx
The source plug-in context information.

This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

See the example in import() on page 6-35.

6-24 Oracle interMedia User’s Guide and Reference

getCompressionType()

getCompressionType()

Format
getCompressionType() RETURN VARCHARZ;

Description
Returns the value of the compressionType attribute of the audio object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-25

getContentinLob()

getContentinLob()
Format
getContentinLob(
ctx IN OUT RAW,
dest lob IN OUT NOCOPY BLOB,
mimeType OUT VARCHARZ2,
format OUT VARCHAR?2);
Description

Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

6-26 Oracle interMedia User’s Guide and Reference

getContentinLob()

Examples

This exception is raised if you call the getContentinLob() method and the value of
srcType is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentinLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentinLob() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Get data from a data source and put it into the specified BLOB:

CEQLARE
obj CRDSYS. CRAdI o;
t enpBLob BLCB;
m neType VARCHAR2(4000) ;
fornmat VARCHAR2(4000) ;
ctx RAW4000) :=NUL;
BEA N
SELECT aud | NTO obj FRAIMTALD WERE N =1 ;
i f(obj.islLocal) then
CBVB QUTPUT. put _line(’ local is true');
end if;
CBVE LOB. CREATETEMPCRARY(t enpBLob, true, 10);
obj . get Gont ent | nLob(ct x, t enpBLob, m neType, fornat);
DBVE_QUTPUT. PUT_LI NE(TO CHAR DBVS _LCB. get Lengt h(t enpBLob))) ;
EXCEPTI ON
WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB QUTPUT. put _| i ne(’ GRDSour ceBxcept i ons. METHOD NOTI_ SUPPCRTED caught ') ;
WHEN OTHERS THEN
CBVB GQUJTPUT. put _| i ne(’” EXCEPTI ON caught ') ;
BEND,
/

ORDAudio Reference Information 6-27

getDescription()

getDescription()

Format
getDescription() RETURN VARCHAR?2;

Description
Returns the description of the audio data.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS)
Exceptions
DESCRIPTION_IS_NOT_SET
This exception is raised if you call the getDescription() method and the description
is not set.
Examples

See the example in setDescription() on page 6-44.

6-28 Oracle interMedia User’s Guide and Reference

getEncoding()

getEncoding()

Format
getEncoding() RETURN VARCHARZ2;

Description

Returns the value of the encoding attribute of the audio object.
Parameters

None.
Usage Notes

None.
Pragmas

PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-29

getFormat()

getFormat()

Format
getFormat() RETURN VARCHAR?2;

Description
Returns the value of the format attribute of the audio object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS)
Exceptions
AUDIO_FORMAT_IS_NULL
This exception is raised if you call the getFormat() method and the value for format
is NULL.
Examples

See the example in setProperties() on page 6-52.

6-30 Oracle interMedia User’s Guide and Reference

getNumberOfChannels()

getNumberOfChannels()

Format
getNumberOfChannels() RETURN INTEGER;

Description
Returns the value of the numberOfChannels attribute of the audio object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfChannels, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-31

getSampleSize()

getSampleSize()

Format
getSampleSize() RETURN INTEGER;

Description

Returns the value of the sampleSize attribute of the audio object.
Parameters

None.
Usage Notes

None.
Pragmas

PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

See the example in setProperties() on page 6-52.

6-32 Oracle interMedia User’s Guide and Reference

getSamplingRate()

getSamplingRate()

Format
getSamplingRate() IN INTEGER;
Description
Returns the value of the samplingRate attribute of the audio object. The unit is Hz.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-33

import()

import()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

import(ctx IN OUT RAW);

Transfers audio data from an external audio data source to a local source (localData)
within an Oracle database.

ctx
The source plug-in context information.This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

6-34 Oracle interMedia User’s Guide and Reference

import()

Examples

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and the import() method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Import audio data from an external audio data source into the local source:

CEQLARE
obj GQRDSYS. CRPAUdI o;
ctx RAW4000) :=NULL;
BEA N
SH ECT aud I NTO obj FROMTALD WERE N1 FCR UPDATE,
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);
DBV QUTPUT. PUT_LINE(" === === - - mm e oo ")
-- set source to afile
obj.setSource('file',”AD@M R, testaud. dat’);
-- get source infornation
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
-- inport data
obj.inmport(ctx);
-- check size
DBVE GUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
DBVE GQJTPUT. PUT_LI N’ del eting contents’);
DBVE QUTPUT. PUT_LINE(" -------=-m-mmm- -);
obj . del eteContent ();
DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
UPDATE TALD SET aud=obj WHERE N=1;
QOWT;
B\D,

ORDAudio Reference Information 6-35

importFrom()

importFrom()
Format
importFrom(ctx IN OUT RAW,
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2);
Description

Parameters

Usage Notes

Transfers audio data from the specified external audio data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the audio data.

source_location
The location from where the audio data is to be imported.

source_name
The name of the audio data.

This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

6-36 Oracle interMedia User’s Guide and Reference

importFrom()

Pragmas

Exceptions

Examples

None.

ORDSourceExceptions.NULL_SOURCE

See Appendix H for more information about these exceptions.

Import audio data from the specified external data source into the local source:
DEQLARE

obj CRDSYS CRPAudI o;
ctx RAW4000) :=NLLL;

BEA N

SH ECT aud | NTO obj FROMTALD WHERE N=1 FCR UPDATE,
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);

DBVE QUTPUT. PUT_LINE(" === === mmm e mmm e e e -);

-- set source to afile

-- inport data
obj.inportFromctx, ' file',” ADCR, testaud.dat’);

-- check size

DBVE GUJTPUT. PUT_LI NE(TO CHAR(obj . get Cont ent Lengt h(ctx)));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;

DBVE GQJTPUT. PUT_LI N’ del eting contents’);

DBV QUTPUT. PUT_LINE(" ----------------- ")

obj . del eteContent ();

DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
DBV QUTPUT. PUT_LI NE(TO CHAR DBVB L(B. GETLENGTH obj . get Content ())));

ORDAudio Reference Information

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

6-37

importFrom()

UPDATE TALD SET aud=obj WHERE N=1;
GOWT,
EXCEPTI ON
WHEN CRDSYS. GRDAudi oExcept i ons. METHCD NOT_SUPPCRTED THEN
DBVE GQUJTPUT. PUT_LI NE(’ Source not specified');
END,
/

6-38 Oracle interMedia User’s Guide and Reference

processAudioCommand()

processAudioCommand()

Format

Description

Parameters

Usage Notes

processAudioCommand(
ctx IN OUT RAW,
cmd IN VARCHAR?2,
arguments IN VARCHAR?2,
result OUT RAW)
RETURN RAW;

Allows you to send a command and related arguments to the format plug-in for
processing.

Note: This method is supported only for user-defined format
plug-ins.

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Use this method to send any audio commands and their respective arguments to
the format plug-in. Commands are not interpreted; they are taken and passed
through to a format plug-in to be processed.

ORDAudio Reference Information 6-39

processAudioCommand()

If the format is set to NULL, then the processAudioCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDAudio object
by preparing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 3.4.13 for more information.

Pragmas
None.
Exceptions
AUDIO_PLUGIN_EXCEPTION
This exception is raised if you call the processAudioCommand() method and the
audio plug-in raises an exception.
Examples

Process a set of commands:

DEQLARE
obj CRDSYS CRPAudI o;
res RAW4000);
result RAW4000);
command VARCHAR(4000) ;
argLi st VARCHAR 4000) ;
ctx RAWA4000) :=NUL;
BEA N
sel ect aud into obj from TAUD where N =1 for UPDATE,
-- assi gn command
-- assign argLi st
res := obj . processAudi oCommand (ctx, command, argList, result);
UPDATE TALD SET aud=obj WHERE N-1 ;
QOWT;
EXCEPTI ON
WHEN CRDSYS. CRDSour ceExcept i ons. METHCD _NOT_SUPPCRTED THEN
CBVE QUJTPUT. put _l i ne(’ Source METHOD NOT_SUPPCRTED caught ') ;
WHEN CRDSYS. GRDSour ceExcept i ons. SOURCE PLUG N_EXCEPTI ON THEN
CBVE QUJTPUT. put _l i ne(’ SOURCE PLUJ N EXCEPTI ON caught) ;
WHEN GRDSYS. CRDAUdi oExcept i ons. METHOD NOT_SUPPCRTED THEN
CBVE QUTPUT. put _I i ne(” AUDI O METHOD NOT_SUPPCRTED EXCEPTI ON caught) ;
WHEN CRDSYS. CRDAUdi oExcept i ons. ALD O PLUA N _EXCEPTI ON THEN
CBVE QUTPUT. put _| i ne(” AUD O PLUG N EXCEPTI ON caught ') ;
WHEN OTHERS THEN

6-40 Oracle interMedia User’s Guide and Reference

processAudioCommand()

CBVE QUJTPUT. put _| i ne(’ EXCEPTI ON caught ') ;

ORDAudio Reference Information 6-41

setAudioDuration()

setAudioDuration()

Format

setAudioDuration(knownAudioDuration IN INTEGER);
Description

Sets the value of the audioDuration attribute of the audio object.
Parameters

knownAudioDuration
A known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.
Exceptions
NULL_INPUT_VALUE
This exception is raised if you call the setAudioDuration() method and the value
for the knownAudioDuration parameter is NULL.
Examples

See the example in setProperties() on page 6-52.

6-42 Oracle interMedia User’s Guide and Reference

setCompressionType()

setCompressionType()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setCompressionType(knownCompressionType IN VARCHAR?2);

Sets the value of the compressionType attribute of the audio object.

knownCompressionType
A known compression type.

The value of the compressionType always matches that of the encoding value
because in many audio formats, encoding and compression type are tightly
integrated. See Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-43

setDescription()

setDescription()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setDescription (user_description IN VARCHAR2);

Sets the description of the audio data.

user_description
The description of the audio data.

Each audio object may need a description to help some client applications. For
example, a Web-based client can show a list of audio descriptions from which a user
can select one to access the audio data.

Web-access components and other client components provided with Oracle
interMedia make use of this description attribute to present audio data to users.

Calling this method implicitly calls the setUpdateTime() method.

None.

None.

Set the description attribute for some audio data:

DEQLARE
obj GRDSYS. CRRAUdI o;
BEG N
SHECT aud INTO obj FROMTALD WHERE N=1 FCR UPDATE
DBVE QJTPUT. PUT_LINE('writing title');
DBVB QUTPUT. PUT_LINE(" -------------)

6-44 Oracle interMedia User’s Guide and Reference

setDescription()

obj . set Description(’ audi ol. wav');
DBVE GJTPUT. PUT_LI NE(obj . get Descri ption());
UPDATE TALD SET aud=obj WHERE N=1;
QOWT;
END,

ORDAudio Reference Information 6-45

setEncoding()

setEncoding()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setEncoding(knownEncoding IN VARCHAR2);

Sets the value of the encoding attribute of the audio object.

knownEncoding
A known encoding type.

The value of encoding always matches that of the compressionType value because
in many audio formats, encoding and compression type are tightly integrated. See
Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setEncoding() method and the value for the
knownEncoding parameter is NULL.

See the example in setProperties() on page 6-52.

6-46 Oracle interMedia User’s Guide and Reference

setFormat()

setFormat()

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the audio object.

Parameters

knownFormat
The known format of the audio data to be set in the audio object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some audio data:

DEQLARE
obj CROSYS. GRDAudI o;
BEA N
sel ect aud into obj from TAUD where N =1 for updat e;
obj . set Format (" AUFF) ;
obj . set Encodi ng(’ MULAW) ;
obj . set Nunber &f Channel s(1);
obj . set Sanpl i ngRat e(8) ;
obj . set Sanpl eS ze(8);
obj . set Conpr essi onType(’ 8Bl TMONQALD O) ;
obj . set Audi oDur at i on(16);

ORDAudio Reference Information 6-47

setFormat()

DBVB QUTPUT. put _line('format: ' || obj.getformat);

DBVB QUTPUT. put _l i ne(’ encodi ng: * || obj.get Encodi ng);

DBV QUTPUT. put _l i ne(’ nunber & Channel s: ' || TO CHAR obj . get Nunber & Channel s)) ;
DBVB QUTPUT. put _l i ne(’ sanpl i ngRate: ' || TO CHAR obj . get Sanpl i ngRate));

DBVB QUTPUT. put _| i ne(’ sanpl eSize: * || TO CHAR obj . get Sanpl eSi ze)) ;

DBV QUTPUT. put _l i ne(’ conpr essi onType : ' || obj. get Conpressi onType) ;

DBV QUTPUT. put _l i ne(’ audi oDuration: ' || TO CHAR obj . get Audi oDuration));

QOW T,

EXCEPTI ON

WHEN CRDSYS. GRDAUdi oExcept i ons. NLLL_| NPUT_VALUE THEN
DBVB_QUTPUT. put _| i ne(’ CRDAudi oExcept i ons. NULL_| NPUT_VALUE caught) ;
WEN OTHERS THEN
DBVB_QUTPUT. put _| i ne(’ EXCEPTI ON caught ') ;
END,
/

6-48 Oracle interMedia User’s Guide and Reference

setKnownAttributes()

setKnownAttributes()

Format

Description

Parameters

setkKnownAttributes(
knownFormat IN VARCHAR2,
knownEncoding IN VARCHARZ2,
knownNumberOfChannels IN INTEGER,
knownSamplingRate IN INTEGER,
knownSamleSize IN INTEGER,
knownCompressionType IN VARCHAR?2,
knownAudioDuration IN INTEGER);

Sets the known audio attributes for the audio object.

knownFormat
The known format.

knownEncoding
The known encoding type.

knownNumberOfChannels
The known number of channels.

knownSamplingRate
The known sampling rate.

knownSampleSize
The known sample size.

knownCompressionType
The known compression type.

ORDAudio Reference Information 6-49

setKnownAttributes()

knownAudioDuration
The known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.
Exceptions
None.
Examples
Set the known attributes for the audio data.
DCEQLARE
obj CROSYS. GRDAud o;
BEG N

sel ect aud into obj fromTAUD where N =1 for updat €;
obj . set KnownAt tri butes(’ AUFF ,” MLAW, 1, 8, 8, '8B TMINQAWD O, 16);

DBVS QUTPUT. put _line(’fornat: ' || obj.getfornat());

DBV QUTPUT. put _l i ne(’ encoding: * || obj. get Encoding());

DBVE QUTPUT. put _I i ne(’ nunber &f Channel s: * || TO CHAR obj . get Nunber Cf Channel s()));
DBV QUTPUT. put _l i ne(’ sanpl i ngRate: ' || TO CHAR(obj . get Sanpl i ngRate()));

DBV QUTPUT. put _l i ne(’ sanpl eSi ze: ' || TO CHAR obj . get Sanpl eSi ze()));

DBVBS QUTPUT. put _| i ne(’ conpr essi onType : ' || obj . get Conpressi onType());

DBV QUTPUT. put _l i ne(’ audi oDuration: ' || TO CHAR obj . get Audi oDuration()));
GOWT;

EXCEPTI ON

WHEN CRDSYS. CRDAUdi oExcept i ons. METHCD NOT_SUPPCRTED THEN
DBVB_QUTPUT. put _| i ne(’ CRDAudi oExcept i ons. METHOD NOT_SUPPCRTED caught’) ;
WEN OTHERS THEN
DBVB_QUTPUT. put _| i ne(’ EXCEPTI ON caught ') ;
END,
/

6-50 Oracle interMedia User’s Guide and Reference

setNumberOfChannels()

setNumberOfChannels()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setNumberOfChannels(knownNumberOfChannels IN INTEGER);

Sets the value of the numberOfChannels attribute for the audio object.

knownNumberOfChannels
A known number of channels.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfChannels() method and the
value for the knownNumberOfChannels parameter is NULL.

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-51

setProperties()

setProperties()
Format
setProperties(ctx IN OUT RAW,
setComments IN BOOLEAN);
Description

Parameters

Usage Notes

Pragmas

Reads the audio data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the audio data: format, encoding type, number of channels, sampling rate, and
sample size. It populates the comments field of the object with a rich set of format
and application properties in XML form if the value of the setComments parameter
is TRUE.

ctx
The format plug-in context information.

setComments

If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

None.

6-52 Oracle interMedia User’s Guide and Reference

setProperties()

Exceptions

Examples

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the audio plug-in
raises an exception.

Set the property information for known audio attributes:

DEQLARE

obj CROSYS. GRDAudI o;
ctx RAW4000) :=N.LL;

BEG N

sel ect aud into obj fromTAUD where N =1 for updat €;
obj . set Properties(ctx, FALSE);

--DBVE QUTPUT. put _line('format: ' || obj.getformat());

DBV QUTPUT. put _l i ne(’ encoding: * || obj. get Encoding());

DBVB QUTPUT. put _I i ne(’ nunber Ff Channel s: * || TO CHAR obj . get Nunber Cf Channel s()));
DBV QUTPUT. put _l i ne(’ sanpl i ngRate: ' || TO CHAR(obj . get Sanpl i ngRate()));

DBV QUTPUT. put _l i ne(’ sanpl eSi ze: ' || TO CHAR obj . get Sanpl eSi ze()));

update TAUD set aud = obj where N =1 ;

GOWT;

EXCEPTI N

WHEN GRDSYS. CRDAUdi oExcept i ons. METHCD NOT_SUPPCRTED THEN

DBVB_QUTPUT. put _| i ne(’ CRDAudi oExcept i ons. METHOD NOT_SUPPCRTED caught ') ;
WEN OTHERS THEN

DBV QUTPUT. put _| i ne(’ EXCEPTI ON caught ') ;

END

/

ORDAudio Reference Information 6-53

setSamplingRate()

setSamplingRate()

Format

setSamplingRate(knownSamplingRate IN INTEGER);
Description

Sets the value of the samplingRate attribute of the audio object. The unit is Hz.
Parameters

knownSamplingRate
A known sampling rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.
Exceptions
NULL_INPUT_VALUE
This exception is raised if you call the setSamplingRate() method and the value for
the knownSamplingRate parameter is NULL.
Examples

See the example in setProperties() on page 6-52.

6-54 Oracle interMedia User’s Guide and Reference

setSampleSize()

setSampleSize()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setSampleSize(knownSampleSize IN INTEGER);

Sets the value of the sampleSize attribute of the audio object.

knownSampleSize
A known sample size.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setSampleSize() method and the value for the
knownSampleSize parameter is NULL.

See the example in setProperties() on page 6-52.

ORDAudio Reference Information 6-55

Packages or PL/SQL Plug-ins

6.4 Packages or PL/SQL Plug-ins

This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 6-1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Table 6—-1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type
ORDPLUGINS.ORDX_DEFAULT_AUDIO <format> Dependent on file format
ORDPLUGINS.ORDX_AUFF_AUDIO AUFF audio/basic
ORDPLUGINS.ORDX_AIFF_AUDIO AIFF audio/x-aiff
ORDPLUGINS.ORDX_AIFC_AUDIO AIFC audio/x-aiff
ORDPLUGINS.ORDX_WAVE_AUDIO WAVE audio/x-wave
ORDPLUGINS.ORDX_MPGA_AUDIO MPGA audio/mpeg

Section 6.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_AUDIO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 6-1
are identical for all plug-in packages, therefore, refer to Section 6.4.1.

6.4.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

Use the following provided ORDPLUGINS.ORDX_DEFAULT_AUDIO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_AUDIO audio
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE (R REPLACE PACKACE CRDX DEFALLT_ALD O

aut hid current_user

AS

--AlD O ATTR BUTES ACCESSCRS

--Deprecated Functions Deprecated in Rel ease 8.1.6 Begin Here

FUNCTI ON get Fornat (ctx | N QJT RAW obj | N GROSYS. CRDAudi 0)
RETURN VARCHARZ;

FUNCTI ON get Encodi ng(ctx I N QJT RAW obj | N CROSYS. GRDAUdi 0)
RETURN VARCHAR;

FUNCTI ON get Nunber Of Channel s(ctx | N QJT RAW obj | N CROSYS. CRDAudi 0)
RETURN | NTECER

FUNCTI ON get Sanpl i ngRate(ctx | N QJT RAW obj | N CRDSYS. GRDAudi 0)
RETURN | NTECER

6-56 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

FUNCTI ON get Sanpl eSi ze(ctx | N QJI RAW obj | N CROSYS. GRDAUdi 0)
RETURN | NTECGER

FUNCTI ON get Gonpr essi onType(ctx | N GQJI RAW obj | N CGRESYS. CRDAud 0)
RETURN VARCHAR?;

FUNCTI ON get Audi oDuration(ctx | N GQJI RAW obj | N CROSYS. GRDAudi 0)
RETURN | NTEGER

--Deprecated Functions Deprecated in Release 8.1.6 End Here

PROCEDURE set Properties(ctx IN QJT RAW
obj N QJI NOOCPY GRDSYS. (RDAUdI o,
set Coments | N NUMBER : = 0);
FUNCTI ON checkProperties(ctx N QJI RAW obj |IN QJI CROSYS. CRDAUdi 0)
RETURN NUMBER
FUNCTI ON get Attribute(ctx I N QJT RAW
obj I N CRDBYS. (RAUdi o,
nane | N VARCHAR?) RETURN VARCHAR?;
PROCEDURE get Al I Attributes(ctx | N QJT RAW
obj I N GRBBYS. CRRAUdI o,
attributes N QJIr NOOCPY ALCB);
- - AUD O PROCESS NG METHODS

FUNCTI ON pr ocessCommand(ct x IN QJT RAW
obj IN OJT NOOPY CROSYS. CRDAud o,
cnd I'N VARCHARZ,

argunents | N VARHAR?,
resul t QJT RAWY
RETURN RAWY

PRAGVA RESTR CT_REFERENCES(get Format, VIRDS, WAPS, R\DS, R\PS);

PRAGVA RESTR CT_REFERENCES(get Encodi ng, WADS, VWPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Nunber 0 Chennel s, VIRDS, VWPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Sanpl i ngRat e, WWOS, WAPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Sanpl eSi ze, VDS, WAPS, R\C5, R\PS);
PRAGVA RESTR CT_REFERENCES(get Conpr essi onType, VWDS, VIPS, R\DS, R\FS);
PRAGVA RESTR CT_REFERENCES(get Attribute, VIRDS, WWPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Audi oDur ati on, VDS, VI\PS, R\DS, R\PS);

END,
/

Table 6-2 shows the methods supported in the
ORDPLUGINS.ORDX_DEFAULT_AUDIO package and the exceptions raised if you
call a method that is not supported.

ORDAudio Reference Information 6-57

Packages or PL/SQL Plug-ins

Table 6—2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

Name of Method Level of Support

getFormat Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getEncoding Supported; if the source is local, get the attribute and return the encoding, but
if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfChannels Supported; if the source is local, get the attribute and return the number of
channels, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSamplingRate Supported; if the source is local, get the attribute and return the sampling
rate, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSampleSize Supported; if the source is local, get the attribute and return the sample size,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getCompressionType Supported; if the source is local, get the attribute and return the compression
type, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getAudioDuration Supported; if the source is local, get the attribute and return the audio
duration, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

6-58 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

Table 6—2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package(Cont.)

Name of Method Level of Support

setProperties Supported; if the source is local, process the local data and set the properties,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and set the properties; if the source is neither
local nor a BFILE, get the media content into a temporary LOB, process the
data, and set the properties.

checkProperties Supported; if the source is local, process the local data and check the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and check the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and check the properties.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them, but if the
source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY_SOURCE
exception; otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

6.4.2 Extending interMedia to Support a New Audio Data Format
Extending interMedia to support a new audio data format consists of four steps:
1. Design your new audio data format.

2. Implement your new audio data format and name it, for example, ORDX_MY _
AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY _
AUDIO.SQL plug-in, to PUBLIC.

Section 3.1.12 briefly describes how to extend interMedia to support a new audio
data format and describes the interface. A package body listing is provided in
Example 6-1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

ORDAudio Reference Information 6-59

Packages or PL/SQL Plug-ins

See Section F.1 for more information on installing your own audio format plug-in
and running the sample scripts provided.

Example 6-1 Show the Package Body for Extending Support to a New Audio
Data Format

CREATE CR REPLACE PACKAGE BODY GRDX_ W _ALDI O

AS
--ALD O ATTR BUTES AQCESSCRS
FUNCTI ON get Fornat (ctx | N QUT RAW obj | N CROSYS CGRDAud 0)
RETURN VARCHAR?

IS

--Your variables go here
BEGQ N

--Your code goes here
END

FUNCTI ON get Encodi ng(ctx I N QJT RAW obj | N GRDSYS. CRDAUdi 0)
RETURN VARCHARZ

IS
--Your variables go here
BEQ N
--Your code goes here
END
FUNCTI ON get Nunber & Channel s(ctx | N QJI RAW obj | N CRDSYS. CRDAUdI 0)
RETURN | NTEGER
IS
--Your variables go here
BEQ N
--Your code goes here
END
FUNCTI N get Sanpl i ngRat e(ctx | N QJUT RAW obj | N CROSYS. CRDAUd 0)
RETURN | NTEGER
IS
--Your variables go here
BEQ N
--Your code goes here
END

FUNCTI ON get Sanpl eSi ze(ctx | N QUT RAW obj | N GROSYS. GRDAUdi o)
RETURN | NTEGER

IS

--Your variables go here
BEGQ N

--Your code goes here
END

FUNCTI ON get Conpr essi onType(ctx | N QJT RAW obj | N CROSYS. GRDAudi o)

6-60 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

RETURN VARCHARZ

IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTI ON get Audi oDuration(ctx | N QJT RAW
obj | N CROSYS. GRDAudi 0)
RETURN | NTEGER

IS

--Your variables go here
BEGQ N

--Your code goes here
END

PROCEDURE set Properties(ctx I N QJT RAW
obj I N QUT NOOCPY CGRDSYS. CRDAUdI o,
set Corment s | N NUMBER : =0)

IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTI ON checkProperties(ctx IN QJT RAW obj IN QJI CROSYS. GRDAudi 0)
RETURN NUMBER

IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTION getAttribute(ctx I|N QJT RAW
obj I N CROSYS. GRPAUdI o,
nane | N VARCHAR?)
RETURN VARCHAR?

IS

--Your variables go here
BEGQ N

--Your code goes here
END

PROCEDURE get Al | Attributes(ctx I N QJT RAW
obj I N GRDSYS. GRDAUdI o,
attributes IN GQJI NOOPY ALCB)
IS
--Your variables go here
BEGQ N
--Your code goes here

ORDAudio Reference Information 6-61

Packages or PL/SQL Plug-ins

BEND
-- AUD O PROCESS NG METHCES
FUNCTI N pr ocessComand(

ctx IN QJT RAWY
obj I'N QJT NOOCPY CRDSYS. GRDAud o,
cnd I'N VARGHAR?,

argunents | N VARCHAR?,
resul t QT RAWY
RETURN RAW
1S
--Your variables go here
BEA N
--Your code goes here
END,

END,
/

show errors;

6-62 Oracle interMedia User’s Guide and Reference

v

ORDDoc Reference Information

Oracle interMedia contains information about the ORDDoc type:
« Object type -- see Section 7.1.

= Constructors -- see Section 7.2.

= Methods -- see Section 7.3.

« Packages or PL/SQL plug-ins -- see Section 7.4.

The examples in this chapter assume that the test media table TDOC has been
created and filled with data. This table was created using the SQL statements
described in Section 7.3.1.

Note: If you manipulate the media data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the media data.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx(RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

ORDDoc Reference Information 7-1

Object Types

Methods invoked at the ORDDoc level that are handed off to the format plug-in for
processing have ctx (RAW(4000)) as the first argument. Before calling any of these
methods for the first time, the client must allocate the ctx structure and initialize it
to NULL.

Note: Inthe current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

7.1 Object Types

Oracle interMedia describes the ORDDoc object type, which supports the storage
and management of any media data including text, image, audio, and video.

7-2 Oracle interMedia User’s Guide and Reference

ORDDoc Object Type

ORDDoc Object Type

The ORDDoc object type supports the storage and management of media data. This
object type is defined as follows:

CREATE CR REPLACE TYPE (RCDoc

AS (BIECT
(

-- ATTR BUTES
sour ce CRCSour ce,
f or nat VARCHAR 80) ,
m neType VARCHAR 80) ,
content Lengt h | NTEGER
comment s B,

-- METHIDS
-- QONSTRUCTCRS

STATIC FUNCTION i ni t () RETURN CRODoc,

STATI C FUNCTION i ni t (srcType I'N VARCHAR?,
srcLocati on | N VARCHAR?,
srcNane I'N VARCHAR?) RETURN CRDDoc,

-- Methods associated with the mneType attribute
MEMBER FUNCTI ON get M neType RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get M neType, WADS, WAPS, R\CS, R\PS),
MEMBER PROCEDURE set M neType(nmi ne | N VARCHAR?) ,

-- Methods associated with the date attribute
MEMBER FUNCTI ON get Updat eTi ne RETURN DATE,

PRAGVA RESTR CT_REFERENCES(get Lpdat eTi ne, VIRDS, WIAPS, R\DS, R\PS),
MEMBER PROCEDURE set Updat eTi ne(current _ti ne DATE),

-- Methods associated wth the format attribute
MEMBER FUNCTI ON get For nat RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get Fornat, VDS, WWPS, R\DS, R\PS),
MEMBER PROCEDURE set Fornat (fornmat | N VARCHARR) ,

-- Methods associated with the source attribute

MEMBER FUNCTI ON i sLocal RETURN BOOLEAN

PRAGVA RESTR CT_REFERENCES(i sLocal , WADS, WPS, R\DS, R\PS),
MEMBER PROCEDURE set Local

MEMBER PROCEDURE ¢l ear Local ,

ORDDoc Reference Information 7-3

ORDDoc Object Type

7-4

MEMBER PROCEDURE set Sour ce('sour ce_type I'N VARCHAR?,
source_| ocation | N VARCHAR2,
sour ce_nane IN VARCHAR?) ,

MEMBER FUNCTI ON get Sour ce RETURN VARCHAR,
PRAGVA RESTR CT_REFERENCES(get Source, WDS, WPS, R\CS, R\PS),

MEMBER FUNCTI ON get Sour ceType RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceType, VIRDS, WAPS, R\CS5, R\PS),

MEMBER FUNCTI ON get Sour ceLocat i on RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceLocati on, VDS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceNane RETURN VARCHAR2,
PRAGVA RESTR CT_REFERENCES(get Sour ceNane, VDS, WAPS, R\CS, R\PS),

MEMBER PROCEDURE set Properti es(ct x IN QUT RAWY
set Comnment s | N BOCLEAN) ,

MEMBER FUNCTI ON get BFl LE RETURN BFI LE,
PRAGVA RESTR CT_REFERENCES(get BFI LE, WDS, WWPS, R\DS, R\PS),

MEMBER PROCEDURE i npor t (¢t x IN QUT RAW

set_prop | N BOOLEAN),

MEMBER PROCEDURE i npor t Fron{ ct x IN QJT RAWY
sour ce_t ype I N VARCHAR2,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHARZ
set_prop I N BOCLEAN) ,

MEMBER PROCEDURE export (ct X IN QUT RAWY

sour ce_type I N VARCHAR2,
source_|l ocation | N VARCHAR?,
sour ce_narne I'N VARCHAR?) ,

MEMBER FUNCTI ON openSour ce(user Arg | N RAW ctx QUT RAW RETURN | NTEGER
MEMBER FUNCTI ON cl oseSource(ctx | N QUI RAW RETURN | NTEGER

MEMBER FUNCTI ON t ri nBour ce(ct X IN QJT RAW
new en |ININEER RETURN | NTEGER
MEMBER PROCEDURE r eadFr onour ce(¢t X IN QJT RAW

startPos | N | NTECER
nunBytes | N QJT | NTEGER
buffer QJI RAW,

MEMBER PROCEDURE wri t eToSour ce(ct x IN QUT RAWY
start Pos | N | NTEGER
nunBytes | N QJT | NTECER
buf f er IN RAVWY,

Constructors

MEMBER FUNCTI ON get Gont ent Lengt h RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Gont ent Lengt h, VDS, WAPS, R\DS, R\PS),

MEMBER PROCEDURE get Cont ent | nLob(ct x IN QJT RAW
dest _|ob I N QUI NOOCPY BLCB,
m neType QJI VARCHARZ,
f or mat QUT VARCHAR?) ,

MEMBER FUNCTI ON get Cont ent RETURN BLGB,
PRAGVA RESTR CT_REFERENCES(get Gontent, VDS, VIWPS, R\DS, R\PS),

MEMBER PROCEDURE del et eCont ent

MEMBER FUNCTI ON pr ocessSour ceComrmand(ct x IN QJT RAWY
cnd IN VARCHAR?,
argurents | N VARCHARZ,
resul t QJT RAWY

RETURN RAW

= source: the ORDSource where the media data is found.

« format: the format in which the media data is stored.

« mimeType: the MIME type information.

« contentLength: the length of the media data stored in the source.

« comments; the metadata information of the media object.

7.2 Constructors
This section describes the constructor functions.
The interMedia constructor functions are as follows:
« init()

« init(srcType,srcLocation,srcName)

ORDDoc Reference Information 7-5

init()

init()

Format
init() RETURN ORDDaoc;
Description
Allows for easy initialization of instances of the ORDDoc object type.
Parameters
None.
Pragmas
None.
Exceptions
None.

Usage Notes

This static method initializes all the ORDDoc attributes to NULL with the following
exceptions:

« source.updateTime is set to SYSDATE
« source.local is set to 1 (local)
« source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDDoc object type, especially if the ORDDoc type evolves and
attributes are added in a future release. INSERT statements left unchanged using
the default constructor (which initializes each object attribute), will fail under these
circumstances.

Examples
Initialize the ORDDoc object attributes:

BEA N
I NSERT | NTO tdoc VALUES (1, GRDSYS. CRDDoc.init());

7-6 Oracle interMedia User’s Guide and Reference

init()

ORDDoc Reference Information 7-7

init(srcType,srcLocation,srcName)

init(srcType,srcLocation,srcName)

Format
init(srcType IN VARCHAR?2,

srcLocation IN VARCHAR2,
srctName IN VARCHAR2)
RETURN ORDDoc;

Description
Allows for easy initialization of instances of the ORDDoc object type.

Parameters

srcType
The source type of the media data.

srcLocation
The source location of the media data.

srcName
The source name of the mediamedia data.

Pragmas
None.

Exceptions
None.

Usage Notes

This static method initializes all the ORDDoc attributes to NULL with the following
exceptions:

« source.updateTime is set to SYSDATE
« source.localissetto 0

« source.localData is set to empty_blob

7-8 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)

Examples

= source.srcType is set to the input value
= source.srcLocation is set to the input value
= source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDDoc object type, especially if the ORDDoc type evolves and
attributes are added in a future release. INSERT statements left unchanged using
the default constructor (which initializes each object attribute), will fail under these
circumstances.

Initialize the ORDDoc object attributes.

Note: You must first create the DOCDIR directory; this is the
directory where your media files reside. Create this directory using
the following SQL statement and then grant read access to PUBLIC
to this directory. Change this directory specification to match the
location of your media files.

-- Qeate the DOCO Rl oad directory; this is the directory where the nedi a
-- files reside.

CREATE (R REPLACE D RECTCRY docdi r
as 'e:\oracl e\ord\ doc\deno’ ;
GRANT READ ON D RECTCRY docdi r TO PUBLI C WTH GRANT CPTI O\

BEG N

INSERT INTO tdoc VALUES (2, ORDSYS.ORDDoc.init(file’, DOCDIR’, docl.pdf);
END;
/

ORDDoc Reference Information 7-9

Methods

7.3 Methods

This section presents reference information on the Oracle interMedia methods used
for media data manipulation. These methods are described in the following
groupings:

ORDDoc Methods Associated with mimeType Attribute
« getMimeType: returns the MIME type of the stored media data. See
"getMimeType()" on page 5-17 for information.

« setMimeType(): sets the MIME type of the stored media data. This method is
called implicitly by any method that modifies natively supported media
formats. See "setMimeType()" on page 5-35 for information.

ORDDoc Methods Associated with the updateTime Attribute
« getUpdateTime: returns the time when the media object was last updated. See
"getUpdateTime()" on page 5-25 for information.

« setUpdateTime(): sets the update time for the media object. This method is
called implicitly by methods that modify natively supported media formats. See
"setUpdateTime()" on page 5-39 for information.

ORDDoc Methods Associated with the format Attribute
« setFormat(): sets the object attribute value of the format of the media data. See
"setFormat()" on page 7-24 for information.

« getFormat: returns the object attribute value of the format in which the media
data is stored. See "getFormat" on page 7-17.

ORDDoc Methods Associated with the source Attribute

« isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

« setLocal: sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

« clearLocal: clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

= setSource(): sets the source information to where media data is found. See
"setSource()" on page 5-37 for information.

7-10 Oracle interMedia User’s Guide and Reference

Methods

getSource: returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

getSourceType: returns the external source type of the media data. See
"getSourceType()" on page 5-23 for information.

getSourceLocation: returns the external source location of the media data. See
"getSourceLocation()" on page 5-21 for information.

getSourceName: returns the external source name of the media data. See
"getSourceName()" on page 5-22 for information.

setProperties(): reads the media data to get the values of the object attributes
and then stores them in the object for known format types. If the value for the
setComments parameter is TRUE, then the comments field of the object will be
populated with an extensive set of format and application properties of the
media object in XML form, identical to what is provided by the interMedia
Annotator utility. For the known attributes that ORDDoc understands, it sets
the properties for these attributes. These include the format of the media data.
This method also automatically sets the content length of the media and sets the
update time. See "setProperties()" on page 7-26.

import(): transfers data from an external data source (specified by calling
setSourcelnformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local, and
updating the timestamp. See "import()" on page 7-18.

importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 7-21.

export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 7-16.

ORDDoc Reference Information 7-11

Methods

getContentinLob(): returns content into a temporary LOB. See
"getContentinLob()" on page 7-14 for information.

getContent: returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

deleteContent: deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

ORDDoc Methods Associated with File Operations

openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27
for information.

closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

readFromsSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

For more information on object types and methods, see Oracle9i Database Concepts.

7.3.1 Example Table Definitions

The methods described in this reference chapter show examples based on a test
media table TDOC. Refer to the TDOC table definition that follows when reading
through the examples:

TDOC Table Definition
CREATE TABLE TDOOn NUMBER GONSTRAINT n_pk PR MARY KEY,

doc CROSYS. CREDCOD)

STCRAGE (INTI AL 100K NEXT 100K PCTI NOREASE 0);

I NSERT | NTO tdoc VALUES(1, CRDSYS GRDDoc.init());

7-12 Oracle interMedia User’s Guide and Reference

Methods

I NSERT | NTO tdoc VALUES(2, CRDSYS GRDDoc.init());

ORDDoc Reference Information 7-13

getContentinLob()

getContentinLob()
Format
getContentinLob(
ctx IN OUT RAW,
dest lob IN OUT NOCOPY BLOB,
mimeType OUT VARCHARZ2,
format OUT VARCHAR?2);
Description

Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

7-14 Oracle interMedia User’s Guide and Reference

getContentinLob()

Examples

This exception is raised if you call the getContentinLob() method and the value of
srcType is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentinLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentinLob() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Get data from a data source and put it into the specified BLOB:

CEQLARE
obj CRDBYS. CRDDoc;
t enpBLob BLCB;
m neType VARCHAR2(4000) ;
fornmat VARCHAR2(4000) ;
ctx RAW4000) :=NUL;
BEA N
SELECT doc INTO obj FROMtdoc WERE N = 1 ;
i f(obj.isLocal ()) then
CBVB QUTPUT. put _line(’ local is true');
end if;
CBVE LOB. CREATETEMPCRARY(t enpBLob, true, 10);
obj . get Gont ent | nLob(ct x, t enpBLob, m neType, fornat);
DBVE_QUTPUT. PUT_LI NE(TO CHAR DBVS _LCB. get Lengt h(t enpBLob))) ;
EXCEPTI ON
WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB QUTPUT. put _| i ne(’ GRDSour ceBxcept i ons. METHOD NOTI_ SUPPCRTED caught ') ;
WHEN OTHERS THEN
CBVB GQUJTPUT. put _| i ne(’” EXCEPTI ON caught ') ;
BEND,
/

ORDDoc Reference Information 7-15

getContentLength()

getContentLength()

Format
getContentLength RETURN INTEGER,;

Description
Returns the length of the media data content stored in the source.

Parameters
None.

Usage Notes

This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples

See the example in import() on page 7-19.

7-16 Oracle interMedia User’s Guide and Reference

getFormat

getFormat

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getFormat RETURN VARCHAR?2;

Returns the value of the format attribute of the media object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS)

INVALID_FORMAT_TYPE

This exception is raised if you call the getFormat() method and the value for format
is NULL.

See the example in setProperties() on page 7-26.

ORDDoc Reference Information 7-17

import()

import()

Format

Description

Parameters

Usage Notes

Pragmas

import(ctx IN OUT RAW
set_prop IN BOOLEAN);

Transfers media data from an external media data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information.This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

set_prop

If the value is TRUE, then the setProperties() method is called to read the media
data to get the values of the object attributes and store them in the object attributes,
otherwise, if the value is FALSE, the set Properties() method is not called. The
default value is FALSE.

Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external media data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

None.

7-18 Oracle interMedia User’s Guide and Reference

import()

Exceptions

Examples

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and the import() method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION

This exception is raised if you call the import() method and the setProperties()
method raises an exception from within the media plug-in.

See Appendix H for more information about these exceptions.

Import media data from an external media data source into the local source:

CEQLARE
obj CRDSYS. CRDDoc;
ctx RAWA4000) :=NUL;
BEA N
SH ECT doc I NTO obj FROMtdoc WHERE N1 FCR UPDATE,
DBVE QUTPUT. PUT_LINE(" setting and getting source’);
DBV QUTPUT. PUT_LINE(" === === - - mmm e oo oo ")
-- set source to afile
obj.setSource('file',” DOCDR ,’ testdoc.dat’);
-- get source infornation
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
-- inport data
obj .inport(ctx, FALSE);
-- check size
DBVE GUJTPUT. PUT_LI NE(TO CHAR(DBVB_LCB. get Lengt h(obj . get Gontent ())));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;

ORDDoc Reference Information 7-19

import()

DBVE GQUTPUT. PUT_LI NE(" del eting contents’);
DBVE QUTPUT. PUT_LINE(" ----------------- s
obj . del eteContent ();
DBVE GUTPUT. PUT_LI NE(TO CHAR(DBVB_LCB. get Lengt h(obj . get Gontent ())));
UPDATE tdoc SET doc=obj WHERE N=1;
QW T;
EXCEPTI ON
WHEN CRDSYS. CRDSour ceExcept i ons. METHCD_NOT_SUPPCRTED THEN
CBVE QUJTPUT. PUT_LI NE(’ GRDSour ceBExcept i ons. METHOD NOTI_SUPPCRTED caught ') ;
WHEN GRDSYS. CRDDocExcept i ons. DOC PLU3 N EXCEPTI ON THEN
CBVE QJTPUT. put _li ne(’ DOC PLUA N BEXCEPTI ON caught ') ;
END,
/

7-20 Oracle interMedia User’s Guide and Reference

importFrom()

importFrom()
Format
importFrom(ctx IN OUT RAW,

source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2
set_prop IN BOOLEAN);

Description

Parameters

Transfers media data from the specified external media data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the media data.

source_location
The location from where the media data is to be imported.

source_name
The name of the media data.

set_prop

If the value is TRUE, then the setProperties() method is called to read the media
data to get the values of the object attributes and store them in the object attributes,
otherwise, if the value is FALSE, the set Properties() method is not called. The
default value is FALSE.

ORDDoc Reference Information 7-21

importFrom()

Usage Notes

This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external media data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION

This exception is raised if you call the import() method and the setProperties()
method raises an exception from within the media plug-in.

See Appendix H for more information about these exceptions.

Examples
Import media data from the specified external data source into the local source:

DEQLARE
obj QRDSYS. CRDDoc;
ctx RAW4000) :=NLLL;
BEG N

7-22 Oracle interMedia User’s Guide and Reference

importFrom()

SHLECT doc | NTO obj FROMtdoc WHERE N=1 FCR UPDATE FCR WPDATE
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);

DBVE QUTPUT. PUT_LINE(" === === - mmmmm e e e -);

-- set source to a file

-- inport data
obj.inportFrom{ctx, ' file',”DOD R, testdoc. dat’, FALSE);
-- check si ze

DBVES QUTPUT. PUT_LI NE(TO CHAR DBVB L(B. GETLENGTH obj . get Content ())));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
DBVE GQJTPUT. PUT_LI N’ del eting contents’);
DBVE QUTPUT. PUT_LINE(" --------=--mmm- -);
obj . del eteContent ();
DBVE QUTPUT. PUT_LI NE(TO CHAR(DBVB _LCB. GETLENGTH obj . get Gontent ())));
UPDATE tdoc SET doc=obj WHERE N=1;
QOWT;
BEXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB QUTPUT. PUT_LI NE(' CRDSour ceExcept i ons. METHOD NOT_SUPPCRTED caught ') ;
WHEN CRDSYS. CRDDocExcept i ons. DOC PLUG N EXCEPTI ON THEN
CBVB QUTPUT. put _li ne(’ DOC PLUA N EXCEPTI ON caught) ;
B\D,
/

ORDDoc Reference Information 7-23

setFormat()

setFormat()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setFormat(knownFormat IN VARCHAR2);

Sets the format attribute of the media object.

knownFormat
The known format of the data to be set in the corresponding media object.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setFormat method and the value for the
knownFormat parameter is NULL.

Set the format for some media data:

DEQLARE
obj CROSYS. GRDDoc;
BEA N
sel ect doc into obj fromtdoc where N =1 for update;
obj . set Fornat (* PDF) ;
DBVS QUTPUT. put _line(’fornat: ' || obj.getfornat());
QOWMT;
EXCEPTI N
WHEN CRDSYS. GRDAUdi oExcept i ons. NLLL_| NPUT_VALUE THEN
DBV QUTPUT. put _| i ne(’ GRDSour ceExcept i ons. NULL_| NPUT_VALLE caught ') ;
WHEN OTHERS THEN

7-24 Oracle interMedia User’s Guide and Reference

setFormat()

DBVE _QUTPUT. put _| i ne(’ EXCEPTI ON caught’) ;
END,
/

ORDDoc Reference Information 7-25

setProperties()

setProperties()
Format
setProperties(ctx IN OUT RAW,
setComments IN BOOLEAN);
Description

Reads the media data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the media data: format, MIME type, and content length. It populates the
comments field of the object with an extensive set of format and application
properties in XML form if the value of the setComments parameter is TRUE.

Note: Some audio, image, and video formats are supported, but
no media formats are supported. This method works for only
natively supported formats. See Appendix A, Appendix B, and
Appendix C for information on natively supported media formats.

Parameters

ctx
The format plug-in context information.

setComments

If the value is TRUE, then the comments field of the object is populated with an
extensive set of format and application properties of the media object in XML form,
identical to what is provided by the interMedia Annotator utility; otherwise, if the
value is FALSE, the comments field of the object remains unpopulated. The default
value is FALSE.

Usage Notes

If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

7-26 Oracle interMedia User’s Guide and Reference

setProperties()

Pragmas

Exceptions

Examples

None.

DOC_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the media
plug-in raises an exception.

Example 1: Set the property information for known media attributes:

DEQLARE
obj CROSYS. GRDDoc;
ctx RAW4000) :=N.LL;
BEA N
SH ECT doc INTO obj FROMtdoc WHERE N =1 FCR UPDATE
obj . set Properties(ctx, FALSE);

--DBMS QUTPUT. put _line('format: ' || obj.getfornat());
WPDATE tdoc SET doc = obj WHERE N =1 ;

QOWMT;

EXCEPTI ON

WHEN CRDSYS. CRCDocExcept i ons. DOC PLUG N EXCEPTI ON THEN
DBVE QUTPUT. put _|i ne(” DOC PLUA N EXCEPTI ON caught) ;
WHEN OTHERS THEN
DBV QUTPUT. put _| i ne(’ EXCEPTI ON caught ') ;
END
/

Example 2: Set the property information for known media attributes and store the
format and application properties in the comments attribute. Create an extensible
index on the contents of the comments attribute using Oracle Text.

DEQLARE
obj CROSYS. GRDDoc;
ctx RAW4000) :=N.LL;
BEA N
SHLECT doc | NTO obj FROMtdoc WHERE N =1 FCR UPDATE;
obj . set Properties(ctx, TRE);

--DBMS QUTPUT. put _line(’ format: ' || obj.getfornat());
UPDATE tdoc SET doc = obj WHERE N =1 ;

QOWMT,

EXCEPTI ON

WHEN CRDSYS. GRDDocExcept i ons. DOC PLUG N EXCEPTI ON THEN
DBVE QUTPUT. put _| i ne(” DOC PLUA N EXCEPTI ON caught ’) ;
WHEN OTHERS THEN

ORDDoc Reference Information 7-27

setProperties()

DBVE QUTPUT. put _| i ne(’ EXCEPTI ON caught ') ;
BEND,
/
-- Must have interMdia text installed on your system
CREATE | NDEX nedi ai ndex ON t doc(doc. comments) | NDEXTYPE | S ctxsys. context;

7-28 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

7.4 Packages or PL/SQL Plug-ins

This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 7-1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Table 7-1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Media Format MIME Type
ORDPLUGINS.ORDX_DEFAULT_DOC <format> Dependent on file format

Section 7.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_DOC package, the
method supported, and the level of support. The method supported and the level of
support for the PL/SQL plug-in package is described in Table 7-2.

7.4.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package

Use the following provided ORDPLUGINS.ORDX_DEFAULT_DOC package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_DOC media
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE (R REPLACE PACKACE CRDX DEFALLT _DOC
aut hid current_user
AS

PROCEDURE set Properties(ctx IN QJT RAW
obj IN QJI NOOPY CRDSYS. CRODoc,
set Comments | N NUMBER : = 0);

END,
/

Table 7-2 shows the method supported in the ORDPLUGINS.ORDX_DEFAULT _
DOC package and the exception raised if the source is null.

Table 7-2 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package

Name of Method Level of Support

setProperties Supported; if the source is local, process the local data and set the properties,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and set the properties; if the source is neither
local nor a BFILE, get the media content into a temporary LOB, process the
data, and set the properties.

ORDDoc Reference Information 7-29

Packages or PL/SQL Plug-ins

7.4.2 Extending interMedia to Support a New Media Data Format
Extending interMedia to support a new media data format consists of four steps:

1. Design your new media data format.

2. Implement your new media data format and name it, for example, ORDX_MY _
DOC.SQL.

3. Install your new ORDX_MY_DOC.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY _
DOC.SQL plug-in, to PUBLIC.

Section 3.2.11 briefly describes how to extend interMedia to support a new media
data format and describes the interface. A package body listing is provided in
Example 7-1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.2 for more information on installing your own media format plug-in
and running the sample scripts provided.

Example 7-1 Show the Package Body for Extending Support to a New Media
Data Format

CREATE (R REPLACE PACKACGE BADY CRDX_WY_DOC
AS
- - DOOUMENT ATTR BUTES AQCESSCRS
PROCEDURE set Properties(ctx I N QJT RAWY
obj I N QUI NOOPY CROSYS. CRODoc,
set Corment s | N NUMBER : =FALSE)
IS
--Your variables go here
BEGQ N
--Your code goes here
BEND

END,
/

show errors;

7-30 Oracle interMedia User’s Guide and Reference

8

Image Object Types Reference Information

Oracle interMedia contains the following information about the ORDImage type
and the ORDImageSignature type:

ORDImage Object type -- see Section 8.1.
ORDImage Constructors -- see Section 8.1.1.
ORDImage Methods -- see Section 8.1.2.
ORDImageSignature Object type -- see Section 8.2.
ORDImageSignature Constructor -- see Section 8.2.1.
ORDImageSignature Methods -- see Section 8.2.2.

ORDImageSignature Operators -- see Section 8.2.3.

The examples in this chapter assume that the test image table EMP has been created
and filled with data. These tables were created using the SQL statements described
in Section 8.1.3.

Note: If you manipulate the image data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the image data.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the source.open() method. At this point, the source plug-in

Image Object Types Reference Information 8-1

ORDImage Object Types

can initialize the context for this client. When processing is complete, the client
should invoke the source.close() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: Inthe current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your application
should work with any current or future source plug-in.

8.1 ORDImage Object Types

Oracle interMedia describes the ORDImage object type, which supports the storage,
management, and manipulation of image data and the ORDImageSignature object
type, which supports content-based retrieval (image matching).

8-2 Oracle interMedia User’s Guide and Reference

ORDImage Object Type

ORDImage Object Type

The ORDImage object type supports the storage and management of image data.
This object type is defined as follows:

CREATE (R REPLACE TYPE CRO nage
AS GBIECT

sour ce CRDSour ce,

hei ght | NTEGER

wi dt h | NTECER

cont ent Lengt h | NTECER

fil eFor nat VARCHAR2(4000) ,
cont ent For mat VARCHAR2(4000) ,
conpressi onFormat VARCHAR2(4000) ,
m neType VARCHAR2(4000) ,

STATITC FUNCTION i ni t () RETURN CRO nage,
STATI C FUNCTI QN i ni t (srcType I'N VARCHAR?,
srclLocation | N VARCHAR?,
srchane I'N VARCHAR?) RETURN CRDI nage,

-- Methods associated wth copy operations
MEMBER PROCEDURE copy(dest | N QUT CRO nage) ,

-- Methods associated with i mage process operations
MEMBER PROCEDURE process(command | N VARCHAR?) ,

MEMBER PROCEDURE pr ocessCopy(command | N VARCHAR2,
dest IN QJT CRD nage) ,

-- Methods associated with i mage property set and check operations
MEMBER PROCEDURE set Properti es,

MEMBER PROCEDURE set Properti es(descripti on | N VARCHAR?),

Image Object Types Reference Information

8-3

ORDImage Object Type

MEMBER FUNCTI ON checkProperti es RETURN BOOLEAN

-- Methods associated with i mage attributes accessors
MEMBER FUNCTI ON get Hei ght RETURN | NTEGER,
PRAGVA RESTR CT_REFERENCES(get Hei ght, WBS, WPS, R\DS, R\PS),

MEMBER FUNCTI ON get Wdt h RETURN | NTECGER
PRAGVA RESTR CT_REFERENCES(get Wdt h, WADS, VWPS, R\DS, R\PS),

MEMBER FUNCTI ON get Gont ent Lengt h RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Gont ent Lengt h, WADS, VI\PS, R\DS, R\PS),

MEMBER FUNCTI ON get Fi | eFor nat RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Fi | eFornat, VDS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Cont ent For mat RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Cont ent Format, VWADS, VIWPS, R\DS, R\PS),

MEMBER FUNCTI ON get Gonpr essi onFor nat RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Conpr essi onFornat, VIRDS, WAPS, R\DS, R\PS),

-- Methods associated with the local attribute

MEMBER PROCEDURE set Local ,

MEMBER PROCEDURE ¢l ear Local ,

MEVMBER FUNCTI ON i sLocal RETURN BOOLEAN

PRAGVA RESTR CT_REFERENCES(i sLocal , VDS, WWPS, R\DS, R\PS),

-- Methods associated with the date attribute
MEMBER FUNCTI ON get Updat eTi ne RETURN DATE,

PRAGVA RESTR CT_REFERENCES(get Lpdat eTi e, VIRDS, WIWPS, R\DS, R\PS),
MEMBER PROCEDURE set Updat eTi ne(current _ti ne DATE),

-- Methods associated with the mneType attribute

MEMBER FUNCTI AN get M neType RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get M neType, WADS, WPS, R\DS, R\PS),
MEMBER PROCEDURE set M neType(nine | N VARCHAR?) ,

-- Methods associated with the source attribute
MEMBER FUNCTI N get Gont ent RETURN BLCB,
PRAGVA RESTR CT_REFERENCES(get Content, VWOS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get BFl LE RETURN BFI LE,
PRAGVA RESTR CT_REFERENCES(get BFI LE, WADS, VWPS, R\DS, R\PS),

8-4

ORDImage Object Type

MEMBER PROCEDURE del et eCont ent ,

MEMBER PROCEDURE set Sour ce(sour ce_t ype I'N VARCHAR?,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,

MEMBER FUNCTI N get Sour ce RETURN VARCHAR,
PRAGVA RESTR CT_REFERENCES(get Source, WS, WPS, R\DS, R\PS),

MEMBER FUNCTI ON - get Sour ceType RETURN VARCHARZ,
PRAGVA RESTR CT_REFERENCES(get Sour ceType, VDS, VWAPS, R\LS, R\PS),

MEMBER FUNCTI ON get Sour ceLocat i on RETURN VARCHAR2,
PRAGVA RESTR CT_REFERENCES(get Sour ceLocati on, VDS, VWWPS, R\DS, R\PS),

MEMBER FUNCTI ON - get Sour ceNane RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceNane, VDS, VAPS, R\DS, R\PS),

MEMBER PROCEDURE i nport (ctx | N QUT RAVY,

MEMBER PROCEDURE i npor t Fronf ct x IN QJT RAW
sour ce_t ype I'N VARCHAR2,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,

MEMBER PROCEDURE export (ct x IN QJT RAW
sour ce_t ype I'N VARCHAR?,
source_|l ocati on I N VARCHAR?,
sour ce_nane I'N VARCHAR?) ,

where:

= source: the source of the stored image data.

« height: the height of the image in pixels.

= width: the width of the image in pixels.

« contentLength: the size of the on-disk image file in bytes.

« fileFormat: the file type or format in which the image data is stored (TIFF,
JIFF, and so forth.).

« contentFormat: the type of image (monochrome and so forth).
« compressionFormat: the compression algorithm used on the image data.

« mimeType: the MIME type information.

Image Object Types Reference Information 8-5

ORDImage Object Type

8.1.1 Constructors
This section describes the constructor functions.

The interMedia constructor functions are as follows:
« init() for ORDImage

« init(srcType,srcLocation,srcName) for ORDImage

8-6 Oracle interMedia User’s Guide and Reference

init() for ORDImage

init() for ORDImage

Format

Description

Parameters

Pragmas

Exceptions

Usage Notes

Examples

init() RETURN ORDImage;

Allows for easy initialization of instances of the ORDImage object type.

None.

None.

None.

This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

« source.updateTime is set to SYSDATE
« source.local is set to 1 (local)
« source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Initialize the ORDImage object attributes:

BEA N
I NSERT | NTO enp VALUES (CROSYS CRDOImage.init());

Image Object Types Reference Information 8-7

init() for ORDImage

8-8 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage

init(srcType,srcLocation,srcName) for ORDImage

Format
init(srcType IN VARCHAR?2,

srcLocation IN VARCHAR?2,
srctName IN VARCHAR2)
RETURN ORDImage;

Description
Allows for easy initialization of instances of the ORDImage object type.

Parameters

srcType
The source type of the image data.

srcLocation
The source location of the image data.

srcName
The source name of the image data.

Pragmas
None.

Exceptions
None.

Usage Notes

This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

= source.updateTime is set to SYSDATE
« source.localissetto 0

« source.localData is set to empty_blob

Image Object Types Reference Information 8-9

init(srcType,srcLocation,srcName) for ORDImage

= source.srcType is set to the input value
= source.srcLocation is set to the input value
= source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDImage object attributes:

BEA N

INSERT INTO emp VALUES (ORDSYS.ORDImage.init(file’,IMGDIR’,image1.gif));
END;
/

8.1.2 Methods

This section presents reference information on the Oracle interMedia methods used
for image data manipulation. These methods are described in the following
groupings:

ORDImage Methods Associated with copy Operations

« copy(): creates a copy of an image in another ORDImage. See "copy()" on
page 8-16.

ORDImage Methods Associated with process Operations
« process(): performs in-place image processing on an image stored in a BLOB.
See "process()" on page 8-29.

« processCopy(): performs image processing while copying an image to another
ORDImage BLOB data type. See "processCopy()" on page 8-34.

ORDImage Methods Associated with properties set and check
Operations

« setProperties: fills in the attribute fields of an image for native image formats.
See "setProperties" on page 8-36.

8-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage

setProperties(): fills in the attribute fields of an image and includes a
description parameter for foreign image formats. See "setProperties() for
Foreign Images" on page 8-38 for a description of what a foreign image is.

checkProperties: verifies the stored image attributes match the actual image. See
"checkProperties" on page 8-15.

ORDImage Methods Associated with image Attributes

getHeight: returns the height of the image in pixels. See "getHeight" on
page 8-22.

getWidth: returns the width of the image in pixels. See "getWidth" on page 8-23.

getContentLength: returns the size of the image in bytes. See
"getContentLength" on page 8-20.

getFileFormat: returns the file type of an image. See "getFileFormat" on

page 8-21.

getContentFormat: returns the format of the image. See "getContentFormat" on
page 8-19.

getCompressionFormat: returns the type of compression used on the image. See
"getCompressionFormat" on page 8-18.

ORDImage Methods Associated with the local Attribute

setLocal: sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

clearLocal: clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

ORDImage Methods Associated with the date Attribute

getUpdateTime: returns the time when the image object was last updated. See
"getUpdateTime()" on page 5-25 for information.

setUpdateTime(): sets the update time for the image object. This method is
called implicitly by methods that modify natively supported images. See
"setUpdateTime()" on page 5-39 for information.

Image Object Types Reference Information 8-11

init(srcType,srcLocation,srcName) for ORDImage

ORDImage Methods Associated with the mimeType Attribute

getMimeType: returns the MIME type of the stored image data. See
"getMimeType()" on page 5-17 for information.

setMimeType(): sets the MIME type of the stored image data. This method is
called implicitly by any method that modifies natively supported images. See
"setMimeType()" on page 5-35 for information.

ORDImage Methods Associated with the source Attribute

processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

getContent: returns the content of the local data. See "getContent()" on
page 5-15 for information.

getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

deleteContent: deletes the content of the local data. See "deleteContent()" on
page 5-8 for information.

setSource(): sets the source information to where external image data is to be
found. See "setSource()" on page 5-37 for information.

getSource: returns a string containing complete information about the external
data source formatted as a URL. See "getSource()" on page 5-19 for information.

getSourceType: returns the external source type of the image data. See
"getSourceType()" on page 5-23 for information.

getSourceLocation: returns the external source location of the image data. See
"getSourcelLocation()" on page 5-21 for information.

getSourceName: returns the external source name of the image data. See
"getSourceName()" on page 5-22 for information.

import(): transfers data from an external data source (specified by calling
setSourcelnformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local, and
updating the timestamp and image attributes. See "import()" on page 8-24.

importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local, and updating the
timestamp and image attributes. See "importFrom()" on page 8-26.

8-12 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage

= export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, setting source information to parameters
supplied, and leaving all attributes unchanged. See "export()" on page 5-9 for
information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

ORDImage Methods Associated with File Operations

= openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27
for information.

« closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

« trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

« readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

= writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

8.1.3 Example Table Definitions

The methods described in this chapter show examples based on a test image table
EMP. Refer to the EMP table definition that follows when reading through the
examples:

EMP Table Definition

CREATE TABLE enp (

enane VARCHAR2(50),

sal ary NUMBER

j ob VARCHAR2(50),

departnent | NTEGER

phot o CRDSYS. CRD nage,

| ar ge_phot o GRDSYS. CRDI nage) ;
DEQLARE

| rage CRDSYS. CRD nage;
BEA N

Image Object Types Reference Information 8-13

init(srcType,srcLocation,srcName) for ORDImage

I NSERT | NTO enp VALUES (' John Doe’, 24000, 'Technical Witer', 123,
GROSYS RO nage. init("file'," G(ROMIO R ,"jdoe.gif'));
I NSERT | NTO enp VALUES (' Jane Doe’, 24000, 'Technical Witer’, 456,
GROSYS (RDnage. init("file," CROMIOI R ,’jadoe.gif’));
SH ECT | arge_photo | NTO | mage FRCM enp
WHERE enane = ' John Doe’ FCR UPDATE
| nage. set Properti es;
UPDATE enp SET | arge_photo = | mage WHERE enane = ' John Doe’;
QOWT;
SH ECT | arge_photo | NTO | mage FRCM enp
WHERE enane = ' Jane Doe’ FCR UPDATE;
| nage. set Properti es;
UPDATE enp SET | arge_photo = | mage WHERE enane = ' Jane Doe’;
QW T;
B\D,

8-14 Oracle interMedia User’s Guide and Reference

checkProperties

checkProperties

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

checkProperties RETURN BOOLEAN;

Verifies that the properties stored in attributes of the image object match the
properties of the image. This method should not be used for foreign images (those
formats not natively supported by interMedia).

None.

Use this method to verify that the image attributes match the actual image.

None.

None.

Check the image attributes:

CEQLARE
| rage CROSYS. CRD nage;
properties_match BOOLEAN
BEA N
SELECT | arge_photo I NTO I nage FRCM enp
WHERE enane = ' John Doe’ FCOR UPDATE
-- check that properties nmatch the inage
properties_match : = | mage. checkProperties();
| F properties_natch THEN
DBVE GQUJTPUT. PUT_LI NE(’ Check Properties succeeded’);
END | F;

Image Object Types Reference Information 8-15

copy()

copy()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

copy(dest IN OUT ORDImage);

Copies an image without changing it.

dest
The destination of the new image.

This method copies the image data, as is, including all source and image attributes,
into the supplied local destination image.

If the data is stored locally in the source, then calling this method copies the BLOB
to the destination source.localData attribute.

Calling this method copies the external source information to the external source
information of the new image whether or not source data is stored locally.

Calling this method implicitly calls the setUpdateTime() method on the destination
object to update its timestamp information.

None.

NULL_LOCAL_DATA

This exception is raised if you call the copy() method and the destination
source.localData attribute is not initialized.

This exception is raised if you call the copy() method and the source.isLocal
attribute value is 1 and the source.localData attribute value is NULL.

8-16 Oracle interMedia User’s Guide and Reference

copy()

Examples
Create a copy of the image:

DEQLARE
I mage_1 CROSYS (RO nage;
| rage_2 CROSYS. (RO nage;
BEG N
SELECT photo, |arge_photo
INTO | nage_2, Inage 1
FROM enp
WHERE enane = ' John Doe’ FCR WPDATE;
-- copy the data fromlnage_ 1 to | nage 2
I mage_1. copy(| mage_2);
UPDATE enp SET photo = | nage 2
WHERE enane = ' John Doe’;
BND
/

Image Object Types Reference Information 8-17

getCompressionFormat

getCompressionFormat

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getCompressionFormat RETURN VARCHAR?Z;

Returns the compression type of an image. This method does not actually read the
image, it is a simple access method that returns the value of the compressionFormat
attribute.

None.

Use this method rather than accessing the compressionFormat attribute directly to
protect yourself from potential changes to the internal representation of the
ORDImage object.

PRAGMA RESTRICT_REFERENCES(getCompressionFormat, WNDS,
WNPS, RNDS, RNPS)

None.

Get the compression type of an image:

CEQLARE

| rage CROSYS. CRD nage;

Conpr essi onFor nat VARCHAR2(4000) ;
BEA N

SELECT | arge_photo I NTO I mage FRCM enp

WHERE enane = ' John Doe€’;

-- get the i mage conpressi on for nat

Conpr essi onFornat : = | nage. get Gonpr essi onFor nat () ;
BEND,

8-18 Oracle interMedia User’s Guide and Reference

getContentFormat

getContentFormat

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getContentFormat RETURN VARCHARZ2;

Returns the content type of an image (such as monochrome). This method does not
actually read the image; it is a simple access method that returns the value of the
contentFormat attribute.

None.

Use this method rather than accessing the contentFormat attribute directly to
protect yourself from potential changes to the internal representation of the

ORDImage object.

PRAGMA RESTRICT_REFERENCES(getContentFormat, WNDS,
WNPS, RNDS, RNPS)

None.

Get the type of an image:

CEQLARE
| rage CROSYS. CRD nage;
Gont ent For mat VARCHAR2(4000) ;

BEQ

END,

N

SELECT | arge_photo | NTO I rage FRCM enp
WHERE enane = ' John Doe€’;
-- get the inmage content fornat

Cont ent For mat

1= | nage. get Cont ent For mat () ;

Image Object Types Reference Information 8-19

getContentLength

getContentLength

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getContentLength RETURN INTEGER,;

Returns the length of the image data content stored in the source. This method does
not actually read the image; it is a simple access method that returns the value of
the content length attribute.

None.

Use this method rather than accessing the contentLength attribute directly to
protect from potential future changes to the internal representation of the
ORDImage object.

PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

None.

Get the length of the image data content stored in the source:

CEQLARE

| rage CROSYS. CRD nage;

Gont ent Lengt h | NTEGER,
BEA N

SELECT | arge_photo I NTO I mage FRCM enp

WHERE enane = ' John Doe€’;

-- get the inage size

Gontent Lengt h : = | mage. get Cont ent Lengt h() ;
BEND,

8-20 Oracle interMedia User’s Guide and Reference

getFileFormat

getFileFormat

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getFileFormat RETURN VARCHAR?2;

Returns the file type of an image (such as TIFF or JFIF). This method does not
actually read the image; it is a simple access method that returns the value of the
fileFormat attribute.

None.

Use this method rather than accessing the fileFormat attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

PRAGMA RESTRICT_REFERENCES(getFileFormat, WNDS, WNPS, RNDS, RNPS)

None.

Get the file type of an image:

CEQLARE
| rage CROSYS. CRD nage;
F | eFor nat VARCHAR2(4000) ;
BEA N
SELECT | arge_photo | NTO I rage FRCM enp
WHERE enane = ' John Doe€’;
-- get the inmage file fornat
FileFornmat := Inage. get F | eFornat ();
BEND,

Image Object Types Reference Information 8-21

getHeight

getHeight

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getHeight RETURN INTEGER;

Returns the height of an image in pixels. This method does not actually read the
image; it is a simple access method that returns the value of the height attribute.

None.

Use this method rather than accessing the height attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

PRAGMA RESTRICT_REFERENCES(getHeight, WNDS, WNPS, RNDS, RNPS)

None.

Get the height of an image:

CEQLARE
| rage CROSYS. CRD nage;
Hei ght | NTEGER

BEA N

SELECT | arge_photo | NTO I mage FRCM enp
WHERE enane = ' John Doe€’;
-- get the inage hei ght
Hei ght := I nage. get Hei ght ();
BEND,
/

8-22 Oracle interMedia User’s Guide and Reference

getWidth

getWidth
Format
getWidth RETURN INTEGER;
Description
Returns the width of an image in pixels. This method does not actually read the
image; it is a simple access method that returns the value of the width attribute.
Parameters

None.

Usage Notes

Use this method rather than accessing the width attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getWidth, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the width of an image:

CEQLARE
| rage CROSYS. CRD nage;
Wdth | NTEGER
BEA N
SELECT | arge_photo | NTO I rage FRCM enp
WHERE enane = ' John Doe€’;
-- get the image width
Wdth : = | nage. get Wdt h();
BEND,
/

Image Object Types Reference Information 8-23

import()

import()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

MEMBER PROCEDURE import(ctx IN OUT RAW);

Transfers image data from an external image data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external image data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

8-24 Oracle interMedia User’s Guide and Reference

import()

Examples

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

See Appendix H for more information about these exceptions.

Import image data from an external image data source into the local source:

DEQLARE
| rage CROSYS. CRD nage;
ctx RAW4000) :=NUL;
BEG N
-- select the image to be inported
SELECT | arge_photo | NTO I mage FRCM enp
WHERE enane = 'John Doe’ FCR UPDATE
-- inport the inage into the database
| mage. i nport (ctx);
-- update the image obj ect
UPDATE enp SET | arge_photo = | nage WERE enane = ' John Doe’;

Image Object Types Reference Information 8-25

importFrom()

importFrom()
Format
importFrom(ctx IN OUT RAW,
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR?2);
Description

Parameters

Usage Notes

Transfers image data from the specified external image data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

source_type
The source type of the image data.

source_location
The location from where the image data is to be imported.

source_name
The name of the image data.

This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external image data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

8-26 Oracle interMedia User’s Guide and Reference

importFrom()

Pragmas

Exceptions

Examples

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

None.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Import image data from the specified external data source into the local source:

DEQLARE
| mrage CROSYS. CRD nage;
ctx RAW4000) :=NUL;
BEG N
-- select the inage to be inported
SELECT | arge_photo | NTO I nage FRCM enp
WERE enane = ' John Doe’ FCR UPDATE
-- inport the image into the database
| mage. i nport Fron{ct x,
“file',
"ROMIO R,
"jdoe.gif');
-- update the image obj ect

Image Object Types Reference Information 8-27

importFrom()

UPDATE enp SET | arge_photo = | nage WHERE enane = ' John Doe’;
BEND,
/

8-28 Oracle interMedia User’s Guide and Reference

process()

process()

Format

process(command IN VARCHAR?2);

Description

Performs one or more image processing operations on a BLOB, writing the image
back onto itself.

Parameters

command

A list of image processing operations to perform on the image.

Usage Notes

You can change one or more of the image attributes shown in Table 8-1. Table 8-2
shows additional changes that can be made only to raw pixel and foreign images.

Table 8—1 Image Processing Operators

Operator Name

Usage

Values

compressionFormat

compressionQuality

contentFormat

cut

Compression type/format;
coerces output to specified
compression format if supported
by file format.

Compression quality; determines
quality of lossy compression;
JPEG only.

Image type/pixel/data format

MONOCHROME | nBIT[BIP |
BIL | BSQ] {LUT[RGB | GRAY] |
{[DRCT]RGB | GREY}}; coerces
output to specified content format.

Window to cut or crop (origin.x
origin.y width height); first pixel
in x ory is 0 (zero); must define a
window inside image.

JPEG, SUNRLE, BMPRLE,TARGARLE,
LZW, LZWHDIFF, FAX3, FAX4,
HUFFMANS, PACKBITS, GIFLZW,
ASCII, RAW, DEFLATE, NONE

MAXCOMPRATIO, MAXINTEGRITY,
LOWCOMP, MEDCOMP, HIGHCOMP

See Figure 8-1 for use and syntax flow of
the following values: MONOCHROME,
1BIT, 2BIT, 4BIT, 8BIT, 12BIT, 16BIT, 24BIT,
32BIT, 48BIT, BIP, BIL, BSQ, LUT, DRCT,
RGB, GRAY [SCALE], GREY [SCALE]

positive INTEGER INTEGER INTEGER
INTEGER
maximum value is 2147483648

Image Object Types Reference Information 8-29

process()

Table 8—1 Image Processing Operators(Cont.)

Operator Name Usage Values
fileFormat File format of the image; coerces BMPF, CALS, GIFF, JFIF, PBMF, PGMF,
output to specified file format. PICT, PNGF, PNMF, PPMF, RASF, RPIX,

TGAF, TIFF, WBMP

fixedScale Scale to a specific size in pixels positive INTEGER INTEGER
(width, height); may not be
combined with other scale verbs.

maxScale Scale to a specific size in pixels, positive INTEGER INTEGER
while maintaining the aspect ratio
(maxWidth, maxHeight); may not
be combined with other scale
verbs.

scale Scale factor (for example, 0.5 or <FLOAT> positive
2.0); uniformly scales image; may
not be combined with other scale
verbs.

xScale X-axis scale factor (default is 1); <FLOAT> positive
non-uniformly scales image; may
be combined only with the yScale
operator; may not be combined
with any other scale verbs.

yScale Y-axis scale factor (default is 1); <FLOAT> positive
non-uniformly scales image; may
only be combined with the xScale
operator; may not be combined
with any other scale verbs.

8-30 Oracle interMedia User’s Guide and Reference

process()

Table 8-2 Additional Image Processing Operators for Raw Pixel and Foreign Images

Operator Name

Usage

Values

channelOrder

inputChannels

interleave (deprecated in
release 9.0.1; functions moved
to ContentFormat operator)

pixelOrder

scanlineOrder

Dither

Page

Tiled

Indicates the relative position of
the red, green, and blue channels
(bands) within the image; changes
order of output channels. Only for

RPIX.

For multiband images, specify
either one (grayscale) or three
integers indicating which
channels to assign to red (first),

green (second), and blue (third).
Note that this parameter affects

the source image, not the
destination; RPIX only.

Controls band layout within the

image:
Band Interleaved by Pixel
Band Interleaved by Line
Band Sequential

Coerces output to be BIP, BIL, or

BSQ; RPIX only.

If NORMAL, then the leftmost
pixel appears first in the image;

coerces pixel direction. RPIX only.

If NORMAL, then the top scanline
appears first in the image; coerces

scanline direction. RPIX and
BMPF only.

See Section D.4.6 for more
information.

Selects a page from a multipage
file; for use with TIFF only; first

page is 0 (zero).

No arguments; forces output
image to be tiled; for use with
TIFF only.

RGB (default), RBG, GRB, GBR, BRG,
BGR

INTEGER or
INTEGER INTEGER INTEGER

BIP (default), BIL, BSQ

NORMAL (default), REVERSE

NORMAL (default), INVERSE

ERRORDIFFUSION, ORDEREDDITHER

positive INTEGER

Image Object Types Reference Information 8-31

process()

Figure 8-1 Use and Syntax Flow Diagram for the contentFormat Operator Values

MONOCHROME]| -

One of:

1,2,3,4,5,6,7, BIT LUT
2,16,24,32,48 -

BIP| T

\ETH HITT—

BsSQ} SDRCTH

é
s
=)

Note: When specifying values that include floating-point
numbers, you must use double quotation marks (") around the
value. If you do not, the wrong values may be passed and you will
get incorrect results.

There is no implicit import() or importFrom() call performed when you call this
method,; if data is external, you must first call import() or importFrom() to make
the data local before you can process it.

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
after the process() method is called.

See Appendix D for more information on process() method operators.

Pragmas
None.

Exceptions
DATA_NOT_LOCAL

This exception is raised if you call the process() method and the data is not local or
the source.localData attribute is not initialized.

8-32 Oracle interMedia User’s Guide and Reference

process()

Examples

Example 1: Change the file format of imagel to GIF:
imagel.process(fleFormat=GIFF);

Example 2: Change imagel to use lower quality JPEG compression and double the
length of the image along the X-axis:

imagel.process(compressionFormat=JPEG, compressionQuality=MAXCOMPRATIO,
xScale="2.0");

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single operation. Any other
combinations of scale operators result in an error.

The maxScale and fixedScale operators are especially useful for creating thumbnail
images from various-sized originals. The following line creates at most a 32-by-32
pixel thumbnail image, preserving the original aspect ratio:

imagel.process(maxScale=32 32));

Example 3: Convert the image to TIFF:

DECLARE
Image ORDSYS.ORDImage;
BEGIN
SELECT photo INTO Image FROM emp
WHERE ename = 'John Doe' FOR UPDATE;
Image.process(fileFormat=TIFF);
UPDATE emp SET photo =Image WHERE ename ='John Doe;
END;
/

Example 4: Change the content format to 8BIT, BIP pixel layout, LUT interpretation,
and RGB color space:

DECLARE
Image ORDSYS.ORDImage;
BEGIN
SELECT photo INTO Image FROM emp
WHERE ename ="John Doe' FOR UPDATE;
Image.process(fileFormat=TIFF,‘contentFormat=8BITBIPLUTRGB));
UPDATE emp SET photo = Image WHERE ename ='John Doe’;
END;
/

Image Object Types Reference Information 8-33

processCopy()

processCopy()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

processCopy(command IN VARCHAR?2,
dest IN OUT ORDImage);

Copies an image stored internally or externally to another image stored internally in
aBLOB.

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

See Table 8-1, "Image Processing Operators" and Table 8-2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

You cannot specify the same BLOB as both the source and destination.

Calling this method processes the image into the destination BLOB from any source
(local or external).

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
on the destination image after the processCopy() method is called.

See Appendix D for more information on processCopy operators.

None.

NULL_DESTINATION

8-34 Oracle interMedia User’s Guide and Reference

processCopy()

Examples

This exception is raised if you call the processCopy() method and the value of dest
is NULL.

DATA_NOT_LOCAL

This exception is raised if you call the processCopy() method and the
dest.source.isLocal attribute value is FALSE, (the destination image must be local).

NULL_LOCAL_DATA

This exception is raised if you call the processCopy() method and the
dest.source.localData attribute value is NULL (destination image must be
initialized).

This exception is raised if you call the processCopy() method and the source.isLocal
attribute value is 1 and the source.localData attribute value is NULL.

Copy an image, changing the file format, compression format, and data format in
the destination image:

CEQLARE
I rage_1 CRDSYS. CRD nage;
| rage_2 CRDSYS. (RO nage;
nycommand VARCHAR2(400) ;
BEA N
SELECT phot o, | arge_phot o
INTO | nrage_2, Inage_1

FRCOM enp
WHERE enane = ' John Doe’ FCR UPDATE
nycommand :="fileFormat=tiff conpressi onFormat=packbits

contentFormat = 8bitlut’;
I mage_1. pr ocessCopy(nycommand, | nage_2);
UPDATE enp SET photo = | nage_2 WHERE enane = ' John Doe’;
BEND,
/

Image Object Types Reference Information 8-35

setProperties

setProperties

Format

Description

Parameters

Usage Notes

setProperties;

Reads the image data to get the values of the object attributes, then stores them into
the appropriate attribute fields. The image data can be stored in the database in a
BLOB, or externally in a BFILE or URL. If the data is stored externally in anything
other than a BFILE, the data is read into a temporary BLOB in order to determine
the image characteristics.

This method should not be called for foreign images. Use the
setProperties(description) method for foreign images.

None.

After you have copied, stored, or processed a native format image, call this method
to set the current characteristics of the new content, except when this method is
called implicitly.

This method sets the following information about an image:
« Heightin pixels

« Width in pixels

« Data size of the on-disk image in bytes

« File type (TIFF, JFIF, and so forth)

« Image type (monochrome and so forth)

« Compression type (JPEG, LZW, and so forth)

« MIME type (generated based on file format)

Calling this method implicitly calls the setUpdateTime() and the setMimeType()
methods.

8-36 Oracle interMedia User’s Guide and Reference

setProperties

Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the setProperties() method and the
source.isLocal attribute value is 1 and the source.localData attribute value is NULL.

Examples
Select the image, and then set the attributes using the setProperties method:

CEQLARE
| rage GROSYS. RO nage;
BEA N
I NSERT | NTO enp VALLES (' John Doe’, 24000, ’Technical Witer’, 123,
GROSYS (RDimage. init("file," GROMIR,’jdoe.gif’);
-- select the newy inserted row for update
SELECT | arge_phot o | NTO | nage FRCM enp
WHERE enane = ' John Doe’ FCR UPDATE
-- set property attributes for the i nage data
I mage. set Properties();

CBVE QUTPUT. PUT_LINE'inmage wdth = || inage.getWdth());
CBVE QUTPUT. PUT_LINK"inage height ="' || inage.getHeight());
CBVB QUTPUT. PUT_LINE'inage size = ' || inage. get ContentlLength());
DBVB QUTPUT. PUT_LINK"inage file type ="' || inage.getFileFornat());
CBVE QUTPUT. PUT_LINE'inage type = ' || inage.get ContentFornat());
CBVB QUTPUT. PUT_LI N’ i mage conpression =’ || inage. get Conpressi onFormat ());
CBVE QUTPUT. PUT_LINE’ image mine type = ' || imnage. get M neType());
UPDATE enp SET | arge_photo = | nage WHERE enane = ' John Doe’;
END

/

Example output:

i mge w dth = 360

i mage hei ght = 490

i mage size = 66318

image file type = JFIF

i rage type = 24B TR®B

i rage conpr essi on = JPEG

i mage mne type = i mage/j peg

Image Object Types Reference Information 8-37

setProperties() for Foreign Images

setProperties() for Foreign Images

Format
setProperties(description IN VARCHAR2);

Description
Allows you to write the characteristics of a foreign image into the appropriate
attribute fields.

Parameters

description
Specifies the image characteristics to set for the foreign image.

Usage Notes

Note: Once you have set the properties for a foreign image, it is
up to you to keep the properties consistent. If interMedia detects an
unknown file format, it will not implicitly set the properties.

After you have copied, stored, or processed a foreign image, call this method to set
the characteristics of the new image content. Unlike the native image types
described in Appendix E, foreign images either do not contain information on how
to interpret the bits in the file or, interMedia does not understand the information. In
this case, you must set the information explicitly.

You can set the following image characteristics for foreign images, as shown in
Table 8-3.

8-38 Oracle interMedia User’s Guide and Reference

setProperties() for Foreign Images

Table 8-3 Image Characteristics for Foreign Files

Field Data Type Description
CompressionFormat STRING Value must be CCITG3, CCITG4, or NONE (default).
DataOffset INTEGER The offset allows the image to have a header that interMedia does

DefaultChannelSelection INTEGER

Height

Interleaving

NumberOfBands

PixelOrder

ScanlineOrder

UserString

Width

MimeType

INTEGER

STRING

INTEGER

STRING

STRING

STRING

INTEGER

STRING

not try to interpret. Set the offset to avoid any potential header. The
value must be a positive integer less than the LOB length. Default is
zero.

For multiband images, specify either one (grayscale) or three
integers indicating which channels to assign to red (first), green
(second), and blue (third). For example, DefaultChannelSelection =
1 for single-band images and DefaultChannelSelection = 1, 2, 3 for
triple-band images.

Height of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

Band layout within the image. Valid styles are:

« BIP (default) Band Interleaved by Pixel
« BIL Band Interleaved by Line

« BSQ Band Sequential

Value must be a positive integer less than 255 describing the
number of color bands in the image. Default is 3.

If NORMAL (default), the leftmost pixel appears first in the file. If
REVERSE, the rightmost pixel appears first.

If NORMAL (default), the top scanline appears first in the file. If
INVERSE, then the bottom scanline appears first.

A 4-character descriptive string. If used, the string is stored in the
fileFormat field, appended to the file format ("OTHER:"). Default is
blank and fileFormat is set to "OTHER".

Width of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

Value must be a MIME type, such as img/gif.

The values supplied to setProperties() are written to the existing ORDImage data
attributes. The fileFormat is set to "OTHER" and includes the user string, if
supplied; for example, 'OTHER: LANDSAT’.

Image Object Types Reference Information 8-39

ORDImageSignature Object Type

Pragmas

Exceptions

Examples

None.

NULL_PROPERTIES_DESCRIPTION

This exception is raised if you call the setProperties() method for Foreign Images
and the description attribute value is NULL.

Select the foreign image and then set the properties for the image:

CEQLARE
| rage CROSYS. CRD nage;
BEA N
SELECT | arge_photo I NTO I nage FRCM enp
WERE enane = ' John Doe’ FCR UPDATE
-- set property attributes for the i mage data
| mage. set Properti es(’ w dt h=123 hei ght =321 conpr essi onFor nat =NONE | |
' user Sring=DIMdat aCf f set =128" ||
" scanl i neQ der =| \VERSE pi xel O der =REVERSE | |
" interleaving=Bl L nunber (0 Bands=1" ||
" def aul t Channel Sel ection=1");
UPDATE enp SET | arge_photo = | nage WERE enane = ' John Doe’ ;
BEND,
/

8.2 ORDImageSignature Object Type

Oracle interMedia describes the ORDImageSignature object type, which supports
content-based retrieval (image matching).

The examples in this section assume that a table called stockphotos has been created
and filled with some photographic images. The table was created using the
following SQL statement:

CREATE TABLE st ockphot os (phot o_i d NUMBER
phot ogr apher VARCHAR2(64) ,
annot ati on VARCHAR2(255),
phot o CROSYS. (RO nage,
phot 0_si g GROSYS. CRD nageS gnat ure) ;

8-40 Oracle interMedia User’s Guide and Reference

ORDImageSignature Object Type

When you are storing or copying images, you must first create an empty BLOB in
the table. The following method invocation creates an empty ORDImageSignature
object:

CROSYS. RO nageSi gnature.init();

Image Object Types Reference Information 8-41

ORDImageSignature Object Type

ORDImageSignature Object Type

The ORDImageSignature object type supports content-based retrieval or image
matching. This object type is defined as follows:

CREATE (R REPLACE TYPE CRO nageS gnat ure
AS BIECT

(
-- Signature of the image. Gontains color, texture
-- and shape information of the image. It is stored
-- in a BLAB

signature BL(B,

-- Mikes the cal | out
STATIC FUNCTITON i ni t RETURN CRDI nageS gnat ur e,
STATI C FUNCTI ON eval uat eScor e(si g1 I N CRD nageS gnat ur e,

si g2 I N GRD nageS gnat ur e,
vei ghts | N VARCHAR?)

RETURN FLQAT,

STATIC FUNCTION i sSinmil ar (si gl IN GRD mageS gnat ur e,
si g2 I'N CRD mageS gnat ur e,
weights | N VARCHAR?,
threshol d I N FLOAT)

RETURN | NTEGER

MEMBER PROCEDURE gener at eS gnat ure(i nage | N CRD nage)

);

where:

« signature: holds the signature of the stored image data.

8.2.1 Constructors
This section describes the constructor functions.

8-42 Oracle interMedia User’s Guide and Reference

ORDImageSignature Object Type

The interMedia constructor functions are as follows:

« init() for ORDImageSignature

Image Object Types Reference Information 8-43

init() for ORDImageSignature

init() for ORDImageSignature

Format
init() RETURN ORDImageSignature;
Description
Allows for easy initialization of instances of the ORDImageSignature object type.
Parameters
None.
Pragmas
None.
Exceptions
None.

Usage Notes

This static method initializes the ORDImageSignature signature attribute to empty _
blob.

You should always use the init() method to initialize the ORDImageSignature
object type, which will be especially useful if the ORDImageSignature type evolves
and attributes are added in a future release.

Examples
Initialize the ORDImageSignature object attribute:

BEA N

I NSERT | NTO st ockphot os VALUES (

5,Al MacFarlane, red plaid’,

ORDSYS.ORDImage.init(file’, ORDIMGDIR’/macfarlane.gff),
ORDSYS.ORDImageSignature.init());

END;

/

8-44 Oracle interMedia User’s Guide and Reference

init() for ORDImageSignature

8.2.2 Methods

This section presents reference information on the Oracle interMedia methods used
for image data manipulation. These methods are described in the following
groupings:

ORDImage Signature Methods Associated with Signature Operations

« evaluateScore(): evaluates the distance between two input signatures based on
the influence of specified attributes in the weights parameter.

« isSimilar(): computes the distance between two input signatures based on the
influence of specified attributes in the weights parameter and the specified
threshold value.

= generateSignature(): generates a signature for the specified ORDImage object.

Image Object Types Reference Information 8-45

evaluateScore()

evaluateScore()

Format
evaluateScore(
sigl IN ORDImageSignature,
sig2 IN ORDImageSignature,
weights IN VARCHAR2)
RETURN FLOAT,
Description
A static method of the ORDImageSignature object type that evaluates the distance
between two input signatures based on the influence of the specified attributes in
the weights parameter.
Parameters

sigl
Signature object.

sig2
Signature object.

weights

A string consisting of matching attribute names followed by values. The matching
attributes refer to the weights assigned by the user to the different attributes that
influences the kind of match. The string can have all or some of the following
attributes. Attributes not specified by the user have a default value of 0. At least one
of the attributes, color, texture, and shape, must have a value greater than 0.

color: The importance of the feature color. It is a value between 0.0 and 1.0.
DEFAULT: 0

texture: The importance of the feature texture. It is a value between 0.0 and 1.0.
DEFAULT: 0

shape: The importance of the feature shape. It is a value between 0.0 and 1.0.
DEFAULT: 0

8-46 Oracle interMedia User’s Guide and Reference

evaluateScore()

location: The importance of the location of the regions in the image. It is a value
between 0.0 and 1.0. DEFAULT: 0. Location weight string cannot be specified alone,
it must be used with another weight string.

Usage Notes

None.
Pragmas

None.
Exceptions

None.
Examples

Compare two signatures and evaluate the score between them:

DEQLARE
t_i nage CROSYS. (RO nage;
image_sig CRDSYS RO nmageS gnat ur e;
conpar e_si g CROSYS. (RO mageS gnat ur €;
BEA N
SELECT photo, photo_sig INTOt _inage, inmage_si g FROM stockphot os
WHERE phot o_i d=1 FCR UPDATE,
-- evaluate the signature of two inages
CROSYS. (RO nageS gnat ur e. eval uat eScor e(i mage_si g, conpar e_si g,
" col or=1. O, t ext ur e=0, shape=0, | ocati on=0");
UPDATE st ockphot os SET photo = t_i nrage WHERE phot o_i d=1;
BEND,
/

Image Object Types Reference Information 8-47

generateSignature()

generateSignature()

Format
generateSignature (image IN ORDImage);
Description
Generates a signature for a given input image that is passed back as the signature
object.
Parameters
image

The image object whose signature is to be generated.

Usage Notes

None.
Pragmas

None.
Exceptions

None.
Examples

Generate a signature for an image object:

DEQLARE
t_inmage CQRDSYS (RO nage;
i mage_si g GROSYS. (RO nageS gnat ur e;
BEA N
SELECT photo, photo_sig INTOt_inage, inage sig FROM stockphot os
WHERE phot 0_i d=1 FCR UPDATE,
-- generate a signature
i mage_si g. gener at eS gnat ur e(t _i nage) ;
UPDATE st ockphot os SET photo_sig = i nage_si g WHERE photo_id =1;
BEND,
/

8-48 Oracle interMedia User’s Guide and Reference

isSimilar()

isSimilar()

Format

Description

Parameters

isSimilar(
sigl IN ORDImageSignature,
sig2 IN ORDImageSignature,
weights IN VARCHARZ,
threshold IN FLOAT)
RETURN INTEGER,;

A static method of the ORDImageSignature object type that compares two
signatures and computes the distance between them based on the influence of the
specified attributes in the weights parameter and the specified threshold value. If
the distance is less than the specified threshold, a value of 1 is returned, otherwise a
value of 0 is returned.

sigl
Signature object.

sig2
Signature object.

weights

A string consisting of matching attribute names followed by values. The matching
attributes refer to the weights assigned by the user to the different attributes that
influences the kind of match. The string can have all or some of the following
attributes. Attributes not specified by the user have a default value of 0. At least one
of the attributes, color, texture, or shape, must have a value greater than 0.

color: The importance of the feature color. It is a value between 0.0 and 1.0.
DEFAULT: 0

texture: The importance of the feature texture. It is a value between 0.0 and 1.0.
DEFAULT: 0

Image Object Types Reference Information 8-49

isSimilar()

shape: The importance of the feature shape. It is a value between 0.0 and 1.0.
DEFAULT: 0

location: The importance of the location of the regions in the image. It is a value
between 0.0 and 1.0. DEFAULT: 0. This attribute must be specified with one other
attribute; it cannot be specified by itself.

threshold

The degree of the match that the user desires. For example, if the value is specified
as 10, then only those images whose signatures are a distance of 10 or less (score of
10 or less) from the query signature will be returned. The value of the threshold
ranges from 0 to 100, which is the range of the distance.

Usage Notes

You can use this method to compare two signatures not stored in the database or
when you must perform a comparison within a PL/SQL construct.

Pragmas
None.
Exceptions
None.
Examples
Compute the distance between two signatures:
DEQLARE

t_image CROSYS CRO nage;
i mage_si g GRDSYS. (ROl nageS gnat ur g;
i magesi g2 CRDSYS. CRDl nmageS gnat ur e;
BEG N
SELECT photo, photo_sig INTOt _image, inmage_si g FRCOM st ockphot os
WHERE photo_id = 1 FCR UPDATE,
- conput e the di stance between two si gnatures
CRDSYS. RO nageSi gnat ure. i sS mi | ar (i mage_si g, i nagesi g2, ' col or =1. O, t ext ur e=0, shape=0, | ocat i on=0" , 10) ;
UPDATE st ockphot os SET photo = t_i nage WHERE photo_id = 1;
END,
/

8-50 Oracle interMedia User’s Guide and Reference

isSimilar()

8.2.3 ORDImageSignature Operators

The following ORDImageSignature operators are schema level operators and do not
reside within a package. These operators use the domain index, if it exists.

« ORDSYS.IMGSimilar(): Compares the signature of a query image with the
signatures of images stored in a table and determines whether or not the images
match, based on the weights and threshold. Returns 1 if the computed distance
measure (weighted average) is less than or equal to the threshold value, and
returns 0 when the distance between the two images is more than the threshold.

« ORDSYS.IMGScore(): IMGScore() is an ancillary operator to IMGSimilar() and
returns the score of similarity value computed by the primary operator,
IMGSimilar().

Image Object Types Reference Information 8-51

IMGSimilar Operator

IMGSimilar Operator

Format

Description

Parameters

...IMGSimilar (ORDSYS.ORDImageSignature,
ORDSYS.ORDImageSignature,
VARCHAR?2,
FLOAT
[,referencetoScore IN NUMBER])...;

Determines whether or not two images match. Specifically, the operator compares
the signatures of two images, computes a weighted sum of the distance between the
two images using user-supplied weight values for the visual attributes, compares
the weighted sum with the threshold value, and returns the integer value 1 if the
weighted sum is less than or equal to the threshold value. Otherwise, the operator
returns 0.

ORDSYS.ORDImageSignature (signature)

The signature of the image to which you are comparing the query image. Data type
is ORDImageSignature. To use the domain index for the comparison, this first
parameter must be the signature column on which the domain index has been
created. Otherwise, Oracle9i uses the non-indexed implementation of query
evaluation.

ORDSYS.ORDImageSignature (query signature)
The signature of the query or test image. Data type is ORDImageSignature.

VARCHARZ2 (weightstring)
A list of weights to apply to each visual attribute. Data type is VARCHAR2. The
following attributes can be specified, with a value of 0.0 specifying no importance

8-52 Oracle interMedia User’s Guide and Reference

IMGSimilar Operator

Return Value

Pragmas

Exceptions

and a value of 1.0 specifying highest importance. You must specify a value greater
than zero for at least one of the attributes, not including location.

Attribute Description

color The weight value (0.0 to 1.0) assigned to the color visual attribute.
Data type is number. Default is 0.0.

texture The weight value (0.0 to 1.0) assigned to the texture visual attribute.
Data type is number. Default is 0.0.

shape The weight value (0.0 to 1.0) assigned to the shape visual attribute.
Data type is number. Default is 0.0.

location The weight value (0.0 to 1.0) assigned to the location visual attribute.
Data type is number. Default is 0.0. This attribute must be specified
with one other attribute; it cannot be specified by itself.

Note: When specifying parameter values that include
floating-point numbers, you should use double quotation marks
(" ") around the value. If you do not, this may result in incorrect
values being passed, and you will get incorrect results.

FLOAT (threshold)

The threshold value with which the weighted sum of the distances is to be
compared. If the weighted sum is less than or equal to the threshold value, the
images are considered to match. The range of this parameter is from 0.0 to 100.0.

referencetoScore

An optional parameter used when ancillary data (score of similarity) is required
elsewhere in the query. Set this parameter to the same value here as used in the
IMGScore() operator. Data type is NUMBER.

Returns an integer value of 0 (not similar) or 1 (match).

None.

None.

Image Object Types Reference Information 8-53

IMGSimilar Operator

Usage Notes

Before the IMGSimilar operator can be used, the image signatures must be created
with the generateSignature() method. Also, to use the domain index, the index of
type ORDImagelndex must have already been created. See Section 2.4 for
information on creating and using the index and see Section 2.5 for additional
performance tips.

The IMGSimilar() operator returns Boolean values to indicate whether two images
match (true, if their image matching score is below the threshold). If you want to
know the score value itself, you can use the IMGScore() operator in conjunction
with the IMGSimilar() operator to retrieve the score computed in the IMGSimilar()
operator.

The IMGSimilar() operator is useful when the application needs a simple Yes or No
for whether or not two images match. The IMGScore(') operator is useful when an
application wants to make finer distinctions about matching or to perform special
processing based on the degree of similarity between images.

The weights supplied for the four visual attributes are normalized prior to
processing such that they add up to 1.0.

You must specify at least one of the three image attributes color, texture, or shape in
the weightstring.

Examples

Using the IMG index, find all images similar to the query image using a threshold
value of 25 and the following weights for the visual attributes:

« Color:0.2
« Texture: 0.1
« Shape: 0.5

« Location: 0.2

This example assumes you already used the generateSignature() method to
generate a signature for the query image. If an index exists on the signature column,
it will be used automatically. See the IMGScore() operator for an example that uses
the referenceToScore parameter.

DEQLARE
t_ing CROSYS. (RO nage;
i | NTEGER
i mage_sig CROSYS. CRD mageS gnat ur €

query_si gnat ure CRDSYS. (RO nageS gnat ur e;

8-54 Oracle interMedia User’s Guide and Reference

IMGSimilar Operator

BEG N
SELECT photo_id, photo, photo_sig
INTOi, t_ing, inmage_sig FROM st ockphot os WHERE
CROSYS. | M=S ni | ar (phot 0_si g, query_signature,
‘color="0.2" texture="0.1" shape="0.5"location="0.2", 25) = 1,
END;
/

Image Object Types Reference Information 8-55

IMGScore Operator

IMGScore Operator
Format

...IMGScore (NUMBER)...;
Description

Parameters

Return Value

Pragmas

Exceptions

Usage Notes

Compares the signatures of two images and returns a number representing the
weighted sum of the distances for the visual attributes. IMGScore() is an ancillary
operator, used only in conjunction with the primary operator, IMGSimilar() to
retrieve the score computed in the IMGSimilar() operator. Each IMGScore() and
IMGSimilar() operator shares the same reference number.

NUMBER (referencetoSimilar)

Identifier to an IMGSimilar() operator. This identifier indicates that the image
matching score value returned by the IMGScore() operator is the same one used in
the corresponding IMGSimilar() operator. This parameter can also be used to
maintain references for multiple invocations of the IMGSimilar() operator. Data
type is NUMBER.

This function returns a FLOAT value between 0.0 and 100.0, where 0.0 means the
images are identical and 100.0 means the images are completely different.

None.

None.

Before the IMGScore() operator can be used, the image signatures must be created
with the generateSignature() method. Also, if you want the comparison to use the
domain index, the index of type ORDImagelndex must have already been created.

8-56 Oracle interMedia User’s Guide and Reference

IMGScore Operator

Examples

See Section 2.4 for information on creating and using the index, and see Section 2.5
for additional performance tips.

The IMGScore() operator can be useful when an application wants to make finer
distinctions about matching than the simple Yes or No returned by IMGSimilar().
For example, using the score returned by IMGScore(), the application might assign
each image being compared to one of several categories, such as Definite Matches,
Probable Matches, Possible Matches, and Nonmatches. The IMGScore() operator
can also be useful if the application needs to perform special processing based on
the degree of similarity between images.

Example 1

Find the weighted sum of the distances between a test image and the other images
in the stockphotos table, using a threshold of 50 and the following weights for the
visual attributes:

= Color:0.2

= Texture: 0.1
« Shape: 0.5

= Location: 0.2

This example assumes that the signatures were already created using the
generateSignature() method and they are stored in the database. Notice that both
IMGScore() and IMGSimilar() are using 123 as the reference number in this
example.

DEQLARE
i ng_score NUMBER
i I NTEGER
guery_si gnat ure CRDSYS. CRO nageS gnat ur e;
i mage_sig CROSYS. (RO mageS gnat ur €
t_ing CROSYS. (RO nage;

BEG N

SELECT photo_id, ORDSYS. | M=core(123), photo, photo_sig
INTOi, inmg_score, t_ing, inage_sig FROM st ockphot os

WHERE
CRDSYS. | M5 mi | ar (i mage_si g, query_si gnature,
‘color="0.2" texture="0.1" shape="0.5"location="0.2", 50, 123) =1

END;

/

Image Object Types Reference Information 8-57

IMGScore Operator

The following shows possible results from this example. The first image has the
lowest score, and therefore is the best match of the test image. Changing the
weights used in the scoring would lead to different results.

1 10.5
1 row sel ect ed.

Example 2

The following example demonstrates the use of reference numbers to refer to scores
evaluated in different IMGSimilar calls. In this example, a query is searching for a
stock image in the stockphotos table that is similar in color to query image 1 and
similar in shape and location to query image 2.

DEQLARE

i ng_score NUMBER

i | NTEGER

guery_si gl GRDSYS. RO nageS gnat ur e;
query_si g2 GRDSYS. RO nageS gnat ur e;
i magel si g GROSYS. (RO nageS gnat ur e;
t_i ng GROSYS. (ROl nage;

BEG N

SELECT photo_id, GRDSYS | M=core(1), CRDBYS. | M=core(2), photo,
photo_sig

INTOi, ing_score, t_ing, image_sig FRCM st ockphot os

WHERE

CROSYS. | M=Si nil ar (i mage_si g, query_sigl,
"color="1.0"", 50, 1) =1

AND

CROSYS. | M=S il ar (i nage_si g, query_sig2,
"shape="0.5" location="0.2"", 50, 2) =1
B\D,

/

8-58 Oracle interMedia User’s Guide and Reference

9

ORDVideo Reference Information

Oracle interMedia contains the following information about the ORDVideo type:
« Object type -- see Section 9.1.

= Constructors -- see Section 9.2.

= Methods -- see Section 9.3.

« Packages or PL/SQL plug-ins -- see Section 9.4.

The examples in this chapter assume that the test video table TVID has been created
and filled with data. This table was created using the SQL statements described in
Section 9.3.1.

Note: If you manipulate the video data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the video data.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

ORDVideo Reference Information 9-1

Object Types

Methods invoked at the ORDVideo level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and
initialize it to NULL.

Note: Inthe current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

9.1 Object Types

Oracle interMedia describes the ORDVideo object type, which supports the storage
and management of video data.

9-2 Oracle interMedia User’s Guide and Reference

ORDVideo Object Type

ORDVideo Object Type

The ORDVideo object type supports the storage and management of video data.
This object type is defined as follows:

CREATE (R REPLACE TYPE CRDMi deo

AS (BIECT
(

-- ATTR BUTES
description VARCHAR2(4000) ,
sour ce CRCSour ce,
f or nat VARCHAR2(31),
m neType VARCHAR2(4000) ,
comment s B,

-- M DEO RELATED ATTR BUTES
w dth | NTEGER
hei ght | NTECER
franeResol ution | NTEGER
franeRat e | NTEGER
vi deolur ati on | NTEGER
nunber & Fr anes | NTECER
conpr essi onType VARCHAR2(4000) ,
nunber & ol or s | NTECER
bitRate | NTEGER

-- METHIS
-- QONSTRUCTCRS

STATIC FUNCTION i ni t () RETURN GRDM deo,

STATI C FUNCTION i ni t (srcType I'N VARCHAR?,
srcLocati on | N VARCHAR2,
srchNane I'N VARCHAR?) RETURN CRDM deo,

-- Methods associated with the date attribute

MEMBER FUNCTI ON get Updat eTi ne RETURN DATE,

PRAGVA RESTR CT_REFERENCES(get Updat eTi ne, VIRDS, WAPS, R\LCS, R\PS),
MEMBER PROCEDURE set Updat eTi ne(current _ti ne DATE),

-- Methods associated with the description attribute

MEMBER PROCEDURE set Descri pti on(user _description | N VARCHAR?) ,
MEMBER FUNCTI ON get Descri pti on RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get Descri ption, VWDS, VWS, R\DS, R\PS),

-- Methods associated with the mneType attribute
MEMBER PROCEDURE set M neType(nm ne | N VARCHAR?) ,

ORDVideo Reference Information 9-3

ORDVideo Object Type

MEMBER FUNCTI ON get M neType RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get M neType, WS, WPS, R\DS, R\PS),

-- Methods associated wth the source attribute
MEMBER FUNCTI ON pr ocessSour ceCommand(
ctx IN QJT RAW
cnu IN VARCHAR2,
argurents | N VARCHARZ,
resul t QJT RAWY
RETURN RAW

MEMBER FUNCTI ON i sLocal RETURN BOOLEAN
PRAGVA RESTR CT_REFERENCES(i sLocal , WADS, WPS, R\DS, R\PS),

MEMBER PROCEDURE set Local
MEMBER PROCEDURE ¢l ear Local ,

MEMBER PROCEDURE set Sour ce(

sour ce_type I N VARCHARZ,
source_| ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,

MEMBER FUNCTI ON get Sour ce RETURN VARCHAR,
PRAGVA RESTR CT_REFERENCES(get Source, WDS, WPS, R\CS, R\PS),

MEMBER FUNCTI ON get Sour ceType RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceType, VDS, WAPS, R\LCS, R\PS),

MEMBER FUNCTI ON get Sour ceLocat i on RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceLocati on, VINDS, VWAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceNane RETURN VARCHAR2,
PRAGVA RESTR CT_REFERENCES(get Sour ceNane, VDS, WAPS, R\CS, R\PS),

MEMBER PROCEDLRE i nport (ctx | N QUT RAVY,
MEMBER PROCEDURE i npor t Fr ong

ctx IN QJT RAW
sour ce_t ype I'N VARCHAR2,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHAR?) ,
MEMBER PROCEDURE expor t (

ctx IN QJT RAW

sour ce_type I N VARCHARZ,

source_l ocation | N VARCHAR?,

sour ce_narne I'N VARCHAR?) ,

9-4

ORDVideo Object Type

MEMBER FUNCTI ON get Content Lengt h(ctx | N QUT RAW RETURN | NTECER
PRAGVA RESTR CT_REFERENCES(get Cont ent Lengt h, VWADS, VI\PS, R\DS, R\PS),

MEMBER PROCEDURE get Gont ent | nLob(
ctx IN QJT RAW
dest _|ob I N QUI NOOCPY BLCB,
m neType QJI VARCHARZ,
f or mat QUT VARCHAR?) ,

MEMBER FUNCTI ON get Cont ent RETURN BLCB,
PRAGVA RESTR CT_REFERENCES(get Gontent, VDS, VIWPS, R\DS, R\PS),

MEMBER PROCEDURE del et eCont ent

MEMBER FUNCTI ON get BFl LE RETURN BFI LE,
PRAGVA RESTR CT_REFERENCES(get BFI LE, WDS, WWWPS, R\DS, R\PS),

-- Methods associated with file operati ons on the source
MEMBER FUNCTI ON openSour ce(user Arg | N RAW ctx QUT RAW RETURN | NTEGER
MEMBER FUNCTI ON cl oseSource(ctx | N QUI RAW RETURN | NTEGER
MEMBER FUNCTI ON t ri nBour ce(ct x IN QJT RAW
new en | NINEER RETURN | NTEEER

MEMBER PROCEDURE r eadFr onBour ce(

ctx IN QUT RAW

startPos | N | NTECER

nunBytes I N QJT | NTEGER

buf f er QJT RAWY,
MEMBER PROCEDURE wri t eToSour ce(

ctx IN QJT RAW

startPos | N | NTEGER

nunBytes | N QUT | NTECER

buffer IN RAWY,

-- Methods associated with the video attributes accessors
MEMBER PROCEDURE set For mat (knownf or nat | N VARCHAR?) ,

MEMBER FUNCTI ON get For nat RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(get Fornat, VDS, VWWPS, R\DS, R\PS),

MEMBER PROCEDURE set FraneS ze(knownWdt h I N | NTEGER knownHei ght | N | NTEGER),
MEMBER PROCEDURE get FraneS ze(ret Wdth QJT | NTEGER ret Hei ght QUT | NTEGER),
PRAGVA RESTR CT_REFERENCES(get FraneS ze, VIRDS, VIWPS, R\DS, R\PS),

MEMBER PROCEDURE set Fr aneResol uti on(knownFraneResol ution | N | NTEGER) ,

MEMBER FUNCTI ON get FraneResol uti on RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get FraneResol ution, VWADS, VIWPS, R\DS, R\PS),

ORDVideo Reference Information 9-5

ORDVideo Object Type

MEMBER PROCEDURE set Fr aneRat e(knownFraneRate | N | NTEGER),
MEMBER FUNCTI ON get FraneRat e RETURN | NTECGER
PRAGVA RESTR CT_REFERENCES(get FraneRat e, VWOS, VAPS, R\DS, R\PS),

MEMBER PROCEDURE set M deolur at i on(knownMVi deoDuration | N | NTEGER),
MEMBER FUNCTI ON get Vi deoDur ati on RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Vi deoDur ati on, WADS, WWPS, R\DS, R\PS),

MEMBER PROCEDURE set Nunber O Fr anes(knownNurber O Franes | N | NTEGER) ,
MEMBER FUNCTI ON get Nunber O Franes RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Nunber 0 Franes, VIWOS, WAPS, R\DS, R\PS),

MEMBER PROCEDURE set Gonpr essi onType(knownGonpr essi onType | N VARCHAR?) ,
MEMBER FUNCTI ON get Gonpr essi onType RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Conpr essi onType, VWDS, VIPS, R\DS, R\FS),

MEMBER PROCEDURE set Nunber O Gl or s(knownNurber O Gol ors | N | NTEGER),
MEMBER FUNCTI ON get Nunber &0 Gol ors RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Nunber 0 ol ors, VDS, WAPS, R\DS, R\PS),

MEMBER PROCEDURE set Bi t Rat e(knownBi t Rate | N | NTEGER)
MEMBER FUNCTI ON get Bi t Rat e RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get B tRate, WDS, WPS, RN\CS, R\PS),

MEMBER PROCEDURE set KnownAt tri but es(
knownFor mat | N VARCHAR?,
knownWdt h I N | NTECER
knownHei ght | N | NTEGER
knownFr aneResol ution | N | NTEGER
knownFraneRat e | N | NTECER
knownMi deolur ati on | N | NTEGER
knownNunber & Franes | N | NTEEGER
knownConpr essi onType | N VARCHAR?,
knownNunber & Col ors | N | NTECGER
knownBi t Rate | N | NTEGER),

-- Methods associated with setting all the properties
MEMBER PROCEDURE set Properti es(ct x IN QUT RAWY
set Corment s | N BOCLEAN) ,
MEMBER FUNCTI ON checkProperties(ctx I N QJT RAW RETURN BOOLEAN

MEMBER FUNCTI ON get At tri but e(

ctx INQJT RAW
nane | N VARCHAR2) RETURN VARCHAR?,

9-6 Oracle interMedia User’s Guide and Reference

ORDVideo Object Type

MEMBER PROCEDURE get Al | Attri but es(
ct x IN QJT RAW
attributes IN QJI NOOCPY ALCB),

-- Methods associ ated w th video processi ng
MEMBER FUNCTI ON pr ocessMi deoGonmand(
ctx IN QJI RAW
cnd I N VARCHAR?,
argunents | N VARCHAR?,
resul t Qur RAYY
RETURN RAW

where:
« description: the description of the video object.
= source: the ORDSource where the video data is to be found.
« format: the format in which the video data is stored.
« mimeType: the MIME type information.
« comments: the metadata information of the video object.
« width: the width of each frame of the video data.
= height: the height of each frame of the video data.
« frameResolution: the frame resolution of the video data.
« frameRate: the frame rate of the video data.
» videoDuration: the total duration of the video data stored.
= numberOfFrames: the number of frames in the video data.
= compressionType: the compression type of the video data.
« numberOfColors: the number of colors in the video data.

= bitRate: the bit rate of the video data.

ORDVideo Reference Information 9-7

Constructors

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle
interMedia Annotator utility. Oracle Corporation recommends that
you not write to this attribute directly.

9.2 Constructors

This section describes the constructor functions.
The interMedia constructor functions are as follows:
- init()

« init(srcType,srcLocation,srcName)

9-8 Oracle interMedia User’s Guide and Reference

init()

init()
Format
Description
Parameters
Pragmas

Exceptions

Usage Notes

Examples

init() RETURN ORDVideo;

Allows for easy initialization of instances of the ORDVideo object type.

None.

None.

None.

This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

« source.updateTime is set to SYSDATE
« source.local is set to 1 (local)
« source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Initialize the ORDVideo object attributes:

BEGA N
INSERT | NTO tvid VALLES (CRDSYS. GRDVideo.init());

ORDVideo Reference Information 9-9

init()

9-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)

init(srcType,srcLocation,srcName)

Format
init(srcType IN VARCHAR?2,

srcLocation IN VARCHAR2,
srctName IN VARCHAR2)
RETURN ORDVideo;

Description
Allows for easy initialization of instances of the ORDVideo object type.

Parameters

srcType
The source type of the video data.

srcLocation
The source location of the video data.

srcName
The source name of the video data.

Pragmas
None.

Exceptions
None.

Usage Notes

This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

= source.updateTime is set to SYSDATE
« source.localissetto 0

« source.localData is set to empty_blob

ORDVideo Reference Information 9-11

init(srcType,srcLocation,srcName)

= source.srcType is set to the input value
= source.srcLocation is set to the input value
= source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDVideo object attributes:

BEQ N

INSERT INTO tvid VALUES (ORDSYS.ORDVideoinit(fie’ VIDDIR' videoLm));
END;
/

9-12 Oracle interMedia User’s Guide and Reference

Methods

9.3 Methods

This section presents reference information on the Oracle interMedia methods used
for video data manipulation. These methods are described in the following
groupings:

ORDVideo Methods Associated with the updateTime Attribute

getUpdateTime(): returns the time when the video object was last updated. See
"getUpdateTime()" on page 5-25 for information.

setUpdateTime(): sets the update time for the video object. This method is
called implicitly by methods that modify natively supported video formats. See
"setUpdateTime()" on page 5-39 for information.

ORDVideo Methods Associated with the description Attribute

setDescription(): sets the description of the video data. See "setDescription()"
on page 9-49.

getDescription: returns the description of the video data. See "getDescription"
on page 9-29.

ORDVideo Methods Associated with mimeType Attribute

setMimeType(): sets the MIME type of the stored video data. This method is
called implicitly by any method that modifies natively supported video
formats. See "setMimeType()" on page 5-35 for information.

getMimeType(): returns the MIME type for video data. See "getMimeType()"
on page 5-17 for information.

ORDVideo Methods Associated with the source Attribute

processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

ORDVideo Reference Information 9-13

Methods

« setSource(): sets the source information to where video data is to be found. See
"setSource()" on page 5-37 for information.

= getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

= getSourceType(): returns the external source type of the video data. See
"getSourceType()" on page 5-23 for information.

= getSourceLocation(): returns the external source location of the video data. See
"getSourcelLocation()" on page 5-21 for information.

« getSourceName(): returns the external source name of the video data. See
"getSourceName()" on page 5-22 for information.

« import(): transfers data from an external data source (specified by calling
setSourcelnformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local and
updating the timestamp. See "import()" on page 9-39.

« importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 9-41.

« export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

« getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 9-28.

« getContentinLob(): returns content into a temporary LOB. See
"getContentinLob()" on page 9-26 for information.

« getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

« deleteContent(): deletes the content of the local BLOB. See "deleteContent()"
on page 5-8 for information.

9-14 Oracle interMedia User’s Guide and Reference

Methods

getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

ORDVideo Methods Associated with File Operations

openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27
for information.

closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

readFromsSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

ORDVideo Methods Associated with Video Attributes Accessors

setFormat(): sets the object attribute value of the format of the video data. See
"setFormat()" on page 9-51 for information.

getFormat: returns the object attribute value of the format in which the video
data is stored. See "getFormat" on page 9-30.

setFrameSize(): sets the object attribute value of the width and height in pixels
of each frame in the video data. See "setFrameSize()" on page 9-55.

getFrameSize: returns the object attribute value of the width and height in
pixels of each frame in the video data. See "getFrameSize()" on page 9-34.

setFrameResolution(): sets the object attribute value of the number of pixels per
inch of frames in the video data. See "setFrameResolution()" on page 9-54.

getFrameResolution: returns the object attribute value of the number of pixels
per inch of frames in the video data. See "getFrameResolution™ on page 9-33.

setFrameRate(): sets the object attribute value of the rate in frames per second
at which the video data was recorded. See "setFrameRate()" on page 9-53.

getFrameRate: returns the object attribute value of the rate in frames per second
at which the video data was recorded. See "getFrameRate" on page 9-32.

setVideoDuration(): sets the object attribute value of the total time it takes to
play the entire video data. See "setVideoDuration()" on page 9-64.

ORDVideo Reference Information 9-15

Methods

« getVideoDuration: returns the object attribute value of the total time it takes to
play the entire video data. See "getVideoDuration" on page 9-38.

« setNumberOfFrames(): sets the object attribute value of the total number of
frames in the video data. See "setNumberOfFrames()" on page 9-61.

= getNumberOfFrames: returns the object attribute value of the total number of
frames in the video data. See "getNumberOfFrames” on page 9-37.

« setCompressionType(): sets the value of the compression type attribute of the
video object. See "setCompressionType()" on page 9-48.

« getCompressionType: returns the object attribute value of the compression type
in the video data. See "getCompressionType" on page 9-25.

« setNumberOfColors(): sets the object attribute value of the number of colors in
the video data. See "setNumberOfColors()" on page 9-60.

« getNumberOfColors: returns the object attribute value of the number of colors
in the video data. See "getNumberOfColors" on page 9-36.

« setBitRate(): sets the object attribute value of the bit rate in the video data. See
"setBitRate()" on page 9-47.

« getBitRate: returns the object attribute value of the bit rate in the video data. See
"getBitRate" on page 9-24.

« setKnownAttributes(): sets known video attributes including format, frame
size, frame resolution, frame rate, video duration, number of frames,
compression type, number of colors, and bit rate of the video data. The
parameters are passed in with this call. See "setkKnownAttributes()" on
page 9-57.

« setProperties(): reads the video data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility. For the known
attributes that ORDVideo understands, it sets the properties for these attributes,
which include: format, frame size, frame resolution, frame rate, video duration,
number of frames, compression type, number of colors, and bit rate of the video
data. See "setProperties()" on page 9-62.

« checkProperties(): calls the format plug-in to check the properties including
format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate of the video data; it

9-16 Oracle interMedia User’s Guide and Reference

Methods

returns a Boolean value TRUE if the properties stored in object attributes match
those in the video data. See "checkProperties()" on page 9-18.

« getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins. See "getAttribute()" on page 9-22.

« getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of video data
attributes separated by a comma (,): format, frameSize, frameResolution,
frameRate, videoDuration, numberOfFrames, compressionType,
numberOfColors, and bitRate. The string is defined by the user-defined format
plug-in. See "getAllAttributes()" on page 9-20.

ORDVideo Methods Associated with Processing Video Data

« processVideoCommand(): sends commands and related arguments to the
format plug-in for processing. See "processVideoCommand()" on page 9-44.

For more information on object types and methods, see Oracle9i Database Concepts.

9.3.1 Example Table Definitions

The methods described in this reference chapter show examples based on a test
video table TVID. Refer to the TVID table definition that follows when reading
through the examples:

TVID Table Definition

CREATE TABLE ™M D(n NUMBER vi d CRDSYS. CRDMVi deo)
storage (initia 100K next 100K pcti ncrease 0);

I NSERT | NTO TVI D VALUES(1, CROSYS. GRDV deo.init()):
I NSERT | NTO TVI D VALUES(2, CRDSYS. GRDV deo.init()):

ORDVideo Reference Information 9-17

checkProperties()

checkProperties()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,;

Checks all the properties of the stored video data, including the following video
attributes: format, frame size, frame resolution, frame rate, video duration, number
of frames, compression type, number of colors, and bit rate.

ctx
The format plug-in context information.

The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

None.

VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the video
plug-in raises an exception when calling this method.

Check property information for known video attributes:

DEQLARE
obj CRDSYS. CGRDMi deo;
ctx RAW4000) :=NLLL;
BEA N
select vid into obj fromTD where N =1 ;
if (obj.checkProperties(ctx)) then

9-18 Oracle interMedia User’s Guide and Reference

checkProperties()

DBVB QUTPUT. put _|i ne(’ check Properties returned true');
el se

DBVE QUJTPUT. put _| i ne(’ check Properties returned fal se’);

end if;

EXCEPTI ON

WHEN OTHERS THEN
DBVE QUTPUT. put _| i ne(’ exception raised);

B\D,
/

ORDVideo Reference Information 9-19

getAllAttributes()

getAllAttributes()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

getAllAttributes(
ctx IN OUT RAW,
attributes IN OUT NOCOPY CLOB);

Returns a formatted string for convenient client access. For natively supported
formats, the string includes the following list of audio data attributes separated by a
comma (,): width, height, format, frameResolution, frameRate, videoDuration,
numberOfFrames, compressionType, numberOfColors, and bitRate. For
user-defined formats, the string is defined by the format plug-in.

ctx
The format plug-in context information.

attributes
The attributes.

These video data attributes are available from the header of the formatted video
data.

Video data attribute information can be extracted from the video data itself. You can
extend support to a video format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 3.4.13 for more information.

None.

METHOD_NOT_SUPPORTED

9-20 Oracle interMedia User’s Guide and Reference

getAllAttributes()

Examples

This exception is raised if you call the getAllAttributes() method and the video
plug-in raises an exception when calling this method.

Return all video attributes for video data stored in the database:

CEQLARE
obj CRDSYS. CGRDMi deo;
tenpLob QB
ctx RAWA4000) :=NUL;
BEA N

SHECT vid INTOobj FRIM TV D WERE N1,
DBVE QUTPUT. PUT_LI NE(" getting comma separated |ist of all attrlbutes)
DBVB_QUTPUT. PUT_ LI NE(" === === - m o m e oo e e BF

DB\VS LB, CREATETEMPCRARY(t enpLob, FALSE, DBMS LGB CALL);
obj.get Al Attributes(ctx,tenpLob);
DBV QUTPUT. put _| i ne(DBV _L@B. subst r (t enpLob, DBMS LCB. get Lengt h(t enpLob), 1));
EXCEPTI ON
WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB GQUJTPUT. put _l i ne(’ Source METHCD NOT_SUPPCRTED caught’) ;
WHEN CRDSYS. GRDSour ceExcept i ons. SOURCE PLUA N_EXCEPTI ON THEN
DBVB GQUJTPUT. put _li ne(’ SOURCE PLUQ N EXCEPTI ON caught ') ;
WHEN CRDSYS. CGRDMVi deoExcept i ons. METHOD NOT_SUPPCRTED THEN
DBVB QUTPUT. put _| i ne(’ VI DEO METHOD _NOT_SUPPCRTED EXCEPTI ON caught ') ;
WHEN CRDSYS. GRDVi deoExcept i ons. M DEO PLUG N EXCEPTI ON THEN
CBVE GQUTPUT. put _l i ne(’ VM DEO PLU3 N EXCEPTI ON caught’) ;
WHEN OTHERS THEN
DBVE QUTPUT. put _| i ne(” EXCEPTI ON CAUGHT) ;
BND,
/

ORDVideo Reference Information 9-21

getAttribute()

getAttribute()
Format
getAttribute(
ctx INOUT RAW,
name IN VARCHAR2)
RETURN VARCHAR?2;
Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

Returns the value of the requested attribute from video data for user-defined
formats only.

ctx
The format plug-in context information.

name
The name of the attribute.

The video data attributes are available from the header of the formatted video data.

None.

VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getAttribute() method and the video plug-in
raises an exception when calling this method.

Return information for the specified video attribute for video data stored in the
database:

9-22 Oracle interMedia User’s Guide and Reference

getAttribute()

CEQLARE
obj CRDSYS. CRDM deo;
res VARCHAR2(4000) ;
ctx RAWA4000) :=NUL;
BEA N
SHECT vid INTOobj FRAMTM D WHERE N-1;
DBVE QUTPUT. PUT_LI N’ getting video duration);

DBVB QUTPUT. PUT_LINE(" - ---------mmmm oo oo -)
res := obj.getAttribute(ctx,’ video duration);
EXCEPTI ON

WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVE QUJTPUT. put _li ne(’ Source METHOD NOT_SUPPCRTED caught’) ;
WHEN CRDSYS. CRDSour ceExcept i ons. SOURCE_ PLUA N_EXCEPTI ON THEN
DBVB QUJTPUT. put _li ne(” SOURCE PLUQ N EXCEPTI ON caught) ;
WHEN CRDSYS. GRDVi deoExcept i ons. METHOD NOT_SUPPCRTED THEN
CBVE QUJTPUT. put _| i ne(’ VI DEO METHOD NOT_SUPPCRTED EXCEPTI ON caught ') ;
WHEN CRDSYS. GRDVi deoExcept i ons. M DEO PLUJ N EXCEPTI ON THEN
CBVE QUTPUT. put _| i ne(’ VI DEO PLUG N EXCEPTI ON caught ') ;
WHEN OTHERS THEN
CBVE QUTPUT. PUT_LI NE(* EXCEPTI ON caught ') ;

ORDVideo Reference Information 9-23

getBitRate

getBitRate
Format
getBitRate RETURN INTEGER;
Description
Returns the value of the bitRate attribute of the video object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS)
Exceptions
None.
Examples
Return the object attribute value of the bitRate attribute of the video object:
DEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEGER
BEG N

SHECT vid INTOobj FRIMTM D WHERE N-1 ;
res := obj.getBtRate();
DBV QUTPUT. put _line('bit rate : ' || res);
BEND,
/

9-24 Oracle interMedia User’s Guide and Reference

getCompressionType

getCompressionType

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getCompressionType RETURN VARCHARZ;

Returns the value of the compressionType attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS,
RNPS)

None.

Return the object attribute value of the compressionType attribute of the video
object:

DEQLARE
obj CRDSYS. CGRDMi deo;
res VARCHAR2(4000) ;
BEA N
SHECT vid INTOobj FROMTM D WHERE N1 ;
res : = obj . get Conpressi onType() ;
DBVE QUTPUT. put _| i ne(’ conpression type: ' ||res);
BEND,
/

ORDVideo Reference Information 9-25

getContentinLob()

getContentinLob()
Format
getContentinLob(

ctx IN OUT RAW,

dest lob INOUT NOCOPY BLOB,

mimeType OUT VARCHARZ2,

format OUT VARCHARY);
Description

Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

9-26 Oracle interMedia User’s Guide and Reference

getContentinLob()

Examples

This exception is raised if you call the getContentinLob() method and the value of
srcType is NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentinLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentinLob() method and within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Get data from a data source into the specified BLOB on the local source:

CEQLARE
obj CRDSYS. CGRDMi deo;
t enpBLob BLCB,
m neType VARCHAR2(4000) ;
format VARCHAR2(4000);
ctx RAWA4000) :=NUL;
BEA N
SELECT vid INTOobj FRMTMD WERE N=1 ;
i f(obj.islLocal) then
CBVB QUTPUT. put _line(’ local is true');
end if;
CBVE LOB. CREATETEMPCRARY(t enpBLob, true, 10);
obj . get Gont ent | nLob(ct x, t enpBLob, m neType, fornat);
DBVE_QUTPUT. PUT_LI NE(TO CHAR DBVS _LCB. get Lengt h(t enpBLob))) ;
EXCEPTI ON
WHEN GRDSYS. CRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB QUTPUT. put _| i ne(’” GRDSour ceBxcept i ons. METHID NOTI_ SUPPCRTED caught ') ;
WEN OTHERS THEN
DBVB QUJTPUT. put _| i ne(" EXCEPTI ON caught ') ;
BEND,
/

ORDVideo Reference Information 9-27

getContentLength()

getContentLength()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Returns the length of the video data content stored in the source.

ctx
The source plug-in context information.

This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

ORDSourceExceptions.INCOM-PLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about this exception.

See the example in "import()" on page 9-40.

9-28 Oracle interMedia User’s Guide and Reference

getDescription

getDescription

PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS)

This exception is raised if you call the getDescription method and the description is

Format
getDescription RETURN VARCHAR2;
Description
Returns the description of the video data.
Parameters
None.
Usage Notes
None.
Pragmas
Exceptions
DESCRIPTION_IS_NOT_SET
not set.
Examples

See the example in setDescription() on page 9-49.

ORDVideo Reference Information 9-29

getFormat

getFormat

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getFormat RETURN VARCHAR?2;

Returns the value of the format attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getStoredFormat, WNDS,
WNPS, RNDS, RNPS)

VIDEO_FORMAT _IS_NULL

This exception is raised if you call the getFormat() method and the value for format
is NULL.

Set the format and then get it for some stored video data:

CEQLARE
obj CRDSYS. CRDMi deo;

BEA N
SHECT vid INTOobj FRIMTM D WERE N-1 FCR UPDATE,
DBVE QUTPUT. PUT_LINE("witing format’);
DBVE QUTPUT. PUT_ LINE(" -------------- s
obj.setFormat (' avi');
DBVE GUTPUT. PUT_LI NE(obj . get Fornat ()) ;
UPDATE T™ D SET vi d=obj WHERE N=1;
QOWT;

9-30 Oracle interMedia User’s Guide and Reference

getFormat

ORDVideo Reference Information 9-31

getFrameRate

getFrameRate

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getFrameRate RETURN INTEGER;

Returns the value of the frameRate attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS)

None.

Return the object attribute value of the frame rate for video data stored in the
database:

CEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEGER
BEA N
SHECT vid INTOobj FRIMTM D WHERE N-1 ;
res := obj.get FraneRate();
DBV QUTPUT. put _line(' frane rate : ' ||res);
BEND,
/

9-32 Oracle interMedia User’s Guide and Reference

getFrameResolution

getFrameResolution

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getFrameResolution RETURN INTEGER,;

Returns the value of the frameResolution attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS,
WNPS, RNDS, RNPS)

None.

Return the value of the frame resolution for the video data:

DEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEEER
BEA N
SHECT vid INTOobj FROMTM D WHERE N1 ;
res := obj . get FraneResol ution();
DBVE QUTPUT. put _line('resolution : ' ||res);
BEND,
/

ORDVideo Reference Information 9-33

getFrameSize()

getFrameSize()

Format
getFrameSize(
retWidth OUT INTEGER,
retHeight OUT INTEGER);
Description
Returns the value of the height and width attributes of the video object.
Parameters

retwidth
The frame width in pixels.

retHeight
The frame height in pixels.

Usage Notes

None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS)
Exceptions
None.
Examples
Return the frame size for video data:
DECLARE
obj CRDSYS. CGRDMi deo;
w dth | NTECER
hei ght | NTECGER
BEA N

SHECT vid INTOobj FRAMTMD WHERE N-1 ;

9-34 Oracle interMedia User’s Guide and Reference

getFrameSize()

obj . get FraneS ze(wi dth, height);

DBVE QUTPUT. put _line(’wdth :’ || wdth);
DBVE QJTPUT. put _line(’ height :* || height);
BND
/

ORDVideo Reference Information 9-35

getNumberOfColors

getNumberOfColors

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getNumberOfColors RETURN INTEGER;

Returns the value of the numberOfColors attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS,
WNPS, RNDS, RNPS)

None.

Return the object attribute value of the numberOfColors attribute of the video
object:

CEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEGER
BEA N
SHECT vid INTOobj FRIMTM D WHERE N-1 ;
res := obj . get Nunber &0 Gol ors();
DBVE QUTPUT. put _|i ne(’ nunber of colors: ' ||res);
BEND,
/

9-36 Oracle interMedia User’s Guide and Reference

getNumberOfFrames

getNumberOfFrames

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getNumberOfFrames RETURN INTEGER;

Returns the value of the numberOfFrames attribute of the video object.

None.

None.

PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS,
WNPS, RNDS, RNPS)

None.

Return the object attribute value of the total number of frames in the video data:

DEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEEER
BEA N
SHECT vid INTOobj FROMTM D WHERE N1 ;
res : = obj. get Nunber &0 Franes();
DBVE QUTPUT. put _|i ne(’ nunber of frames : ' ||res);
BEND,
/

ORDVideo Reference Information 9-37

getVideoDuration

getVideoDuration

Format
getVideoDuration RETURN INTEGER,;

Description
Returns the value of the videoDuration attribute of the video object.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples
Return the total time to play the video data:
DEQLARE
obj CRDSYS. CGRDMi deo;
res | NTEGER
BEG N

SHECT vid INTOobj FRMTV D WERE N-1 ;

res := obj.getVideoDuration();

DBVE QUTPUT. put _|ine(’ video duration : ' ||res);
END,
/

9-38 Oracle interMedia User’s Guide and Reference

import()

import()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

import(ctx IN OUT RAW);

Transfers video data from an external video data source to a local source (localData)
within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Use the setSource() method to set the external source type, location, and name prior
to calling import.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external video data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

ORDVideo Reference Information 9-39

import()

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data by first setting the source and then importing it:

CEQLARE
obj CRDSYS. CGRDMi deo;
ctx RAW4000) :=NULL;
BEA N
SHECT vid INTOobj FRMMTM D WERE N-1 FCR UPDATE,
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);
DBV QUTPUT. PUT_LINE(" === === - - mmm e oo ")
-- set source to afile
obj.setSource('file',”" MIDEAD R, "testvid.dat’);
-- get source infornation
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
-- inport data
obj.inmport(ctx);
-- check size
DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;
DBVE GQUJTPUT. PUT_LI N’ del eting contents’);
DBVE QUTPUT. PUT_LINE(" -------==m-mmm -);
obj . del eteContent ();
DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));
UPDATE T™ D SET vi d=obj WHERE N=1;
QOWT;
B\D,

9-40 Oracle interMedia User’s Guide and Reference

importFrom()

importFrom()

Format

Description

Parameters

Usage Notes

importFrom(ctx IN OUT RAW,
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2);

Transfers video data from the specified external video data source to a local source
(localData) within an Oracle database.

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the video data.

source_location
The location from where the video data is to be imported.

source_name
The name of the video data.

This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external video data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

ORDVideo Reference Information 9-41

importFrom()

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE exception

This exception is raised if you call the importFrom() method and the value dlob is
NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data from the specified external data source into the local source:

DEQLARE
obj CRDSYS. CRDM deo;
ctx RAW4000) :=NLLL;
BEG N
SHECT vid INTOobj FRIMTM D WHERE N=1 FCR UPDATE
DBVE GQUJTPUT. PUT_LINE(" setting and getting source’);

DBVB QUTPUT. PUT LI NE(" === === = m e s mmmmmemme e oF
-- inport data
obj.inportFrom{ctx, ' file'," MDEAO R ," M/1.AV");
-- check size

DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Gont ent Lengt h(ctx)));

DBV QUTPUT. PUT_LI NE(TO CHAR DBVE L(B. GETLENGTH obj . get Content))) ;
DBVE GJTPUT. PUT_LI NE(obj . get Sour ce()) ;

DBVE GQJTPUT. PUT_LI N’ del eting contents’);

DBVE QUTPUT. PUT_LINE(" ----------------- ")

obj . del eteContent ();

DBVE QUTPUT. PUT_LI NE(TO CHAR(obj . get Cont ent Lengt h(ctx)));

UPDATE T™ D SET vi d=obj WHERE N-1;

QOWT;

9-42 Oracle interMedia User’s Guide and Reference

importFrom()

EXCEPTI ON

WHEN CRDSYS. GRDSour ceExcept i ons. METHCD NOT_SUPPCRTED THEN
CBVB QJTPUT. put _l i ne(’ Sour ce METHCD NOT_SUPPCRTED caught’) ;

WHEN CRDSYS. GRDSour ceExcept i ons. SOURCE PLU3 N_EXCEPTI ON THEN
DBVB QUJTPUT. put _li ne(” SOURCE PLUQ N EXCEPTI ON caught) ;

WHEN CRDSYS. CRDVi deoExcept i ons. METHOD NOT_SUPPCRTED THEN
CBVE QUTPUT. put _I i ne(’ M DEO METHOD NOT_SUPPCRTED EXCEPTI ON caught) ;

WHEN CRDSYS. GRDVi deoExcept i ons. M DEO PLUJ N EXCEPTI ON THEN
CBVE QUJTPUT. put _| i ne(’ VI DEO PLU3 N EXCEPTI ON caught’) ;

WHEN OTHERS THEN
CBVE QUJTPUT. PUT_LI NE(" EXCEPTI ON Caught ') ;

ORDVideo Reference Information 9-43

processVideoCommand()

processVideoCommand()
Format
processVideoCommand(
ctx IN OUT RAW,
cmd IN VARCHAR?2,
arguments IN VARCHAR?2,
result OUT RAW)
RETURN RAW;
Description

Allows you to send a command and related arguments to the format plug-in for
processing.

Note: This method is supported only for user-defined format
plug-ins.

Parameters

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Usage Notes

Use this method to send any video commands and their respective arguments to the
format plug-in. Commands are not interpreted; they are taken and passed through
to a format plug-in to be processed.

9-44 Oracle interMedia User’s Guide and Reference

processVideoCommand()

Pragmas

Exceptions

Examples

If the format is set to NULL, then the processVideoCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDVideo object
by preparing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 3.4.13 for more information.

None.

METHOD_NOT_SUPPORTED or VIDEO_PLUGIN_EXCEPTION

Either exception is raised if you call the ProcessVideoCommand() method and the
video plug-in raises an exception when calling this method.

Process a set of commands:

DEQLARE
obj CRDSYS. CRDM deo;
res RAW4000);
result RAW4000);
command VARCHAR4000) ;
argLi st VARCHAR 4000) ;
ctx RAWA4000) :=NUL;
BEA N
select vidinto obj fromTV D where N =1 for UPDATE
-- assign command
-- assign argLi st
res := obj . process\v deoConmand(ct x, command, argList, result);
UPDATE T™ D SET vi d=obj WHERE N-1 ;
QOWT,
EXCEPTI ON
WHEN CRDSYS. CRDSour ceExcept i ons. METHCD _NOT_SUPPCRTED THEN
CBVE QUJTPUT. put _l i ne(’ Source METHOD NOT_SUPPCRTED caught’) ;
WHEN CRDSYS. GRDSour ceExcept i ons. SOURCE PLU3 N_EXCEPTI ON THEN
CBVE QUJTPUT. put _I i ne(” SOURCE PLUJ N EXCEPTI ON caught) ;
WHEN CRDSYS. GRDVi deoExcept i ons. METHOD NOT_SUPPCRTED THEN
CBVE QUTPUT. put _I i ne(’ M DEO METHOD NOT_SUPPCRTED EXCEPTI ON caught) ;
WHEN CRDSYS. CRDVi deoExcept i ons. M DEO PLUA N _EXCEPTI ON THEN
CBVE QUTPUT. put _| i ne(’ VI DEO PLUG N EXCEPTI ON caught ') ;
WHEN OTHERS THEN

ORDVideo Reference Information 9-45

processVideoCommand()

CBVB QUJTPUT. put _| i ne(” EXCEPTI ON caught ') ;

9-46 Oracle interMedia User’s Guide and Reference

setBitRate()

setBitRate()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setBitRate(knownBitRate IN INTEGER);

Sets the value of the bitRate attribute of the video object.

knownBitRate
The bit rate.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setBitRate() method and the value for the
knownBitRate parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

ORDVideo Reference Information 9-47

setCompressionType()

setCompressionType()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setCompressionType(knownCompressionType IN VARCHAR?2);

Sets the value of the compressionType attribute of the video object.

knownCompressionType
A known compression type.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

9-48 Oracle interMedia User’s Guide and Reference

setDescription()

setDescription()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setDescription (user_description IN VARCHAR2);

Sets the description of the video data.

user_description
The description of the video data.

Each video object may need a description to help some client applications. For
example, a Web-based client can show a list of video descriptions from which a user
can select one to access the video data.

Web access components and other client components provided with Oracle
interMedia make use of this description attribute to present video data to users.

Calling this method implicitly calls the setUpdateTime() method.

None.

None.

Set the description attribute for some video data:

DEQLARE
obj CRDSYS. CGRDMi deo;
BEG N
SHECT vid INTOobj FRMTM D WHERE N=1 FCR UPDATE,
DBVE GQUJTPUT. PUT_LINE(’ writing description);
DBVB QUTPUT. PUT_LINE(" -------------)

ORDVideo Reference Information 9-49

setDescription()

obj . set Description(’ videol);
DBVE _QUTPUT. PUT_LI NE(obj . get Descri ption());
UPDATE T D SET vi d=obj WHERE N=1;
GOWM T,
BEND,

9-50 Oracle interMedia User’s Guide and Reference

setFormat()

setFormat()

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the video object.

Parameters

knownFormat
The known format of the video data to be set in the video object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some stored video data:

DEQLARE
obj CRDSYS. CRDMi deo;

BEG N
SHECT vid INTOobj FRIMTM D WHERE N=1 FCR UPDATE
DBVE GQUJTPUT. PUT_LINE("witing fornmat’);
DBVB QUTPUT. PUT_LINE(" -------------- ");
obj.setFormat (' avi’);
DBVE QUTPUT. PUT_LI NE(obj . get Format) ;
UPDATE T™ D SET vi d=obj WHERE N=1;
QOWT;

ORDVideo Reference Information 9-51

setFormat()

BEXCEPTI ON
WHEN CRDSYS. CRDVi deoExcept i ons. NLLL_| NPUT_VALLE THEN
DBMS_OUTPUT put_line(ORDVideoExceptions NULL INPUT_VALUE caught);
WHEN OTHERS THEN
DBMS_OUTPUT put_line(EXCEPTION caught);
END;
/

9-52 Oracle interMedia User’s Guide and Reference

setFrameRate()

setFrameRate()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setFrameRate(knownFrameRate IN INTEGER);

Sets the value of the frameRate attribute of the video object.

knownFrameRate
The frame rate.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setFrameRate() method and the value for the
knownFrameRate parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

ORDVideo Reference Information 9-53

setFrameResolution()

setFrameResolution()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setFrameResolution(knownFrameResolution IN INTEGER);

Sets the value of the frameResolution attribute of the video object.

knownFrameResolution
The known frame resolution in pixels per inch.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setFrameResolution() method and the value
for the knownFrameResolution parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

9-54 Oracle interMedia User’s Guide and Reference

setFrameSize()

setFrameSize()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setFrameSize(
knownWidth IN INTEGER,
knownHeight IN INTEGER);

Sets the value of the height and width attributes of the video object.

knownWidth
The frame width in pixels.

knownHeight
The frame height in pixels.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setFrameSize() method and the value for
either the knownWidth or knownHeight parameter is NULL.

Set the frame size for video data:

DEQLARE
obj CRDSYS. CRDMi deo;
BEA N

ORDVideo Reference Information 9-55

setFrameSize()

select vidinto obj fromTMD where N =1 for update;
obj . set FraneS ze(1, 2);
obj . set FraneResol uti on(4);
obj . set FraneRat e(5) ;
obj . set M deolur ati on(20);
obj . set Nunber Cf Fr anes(8) ;
obj . set Gonpr essi onType(’ d nepak’) ;
obj . set Bi t Rat ¢(1500) ;
obj . set Nunber Cf Gol or s(256) ;
update TM D set vid = obj where N = 1;
QOWT;
BEND,

9-56 Oracle interMedia User’s Guide and Reference

setKnownAttributes()

setKnownAttributes()

Format
setkKnownAttributes(
knownFormat IN VARCHAR?,
knownWidth IN INTEGER,
knownHeight IN INTEGER,
knownFrameResolution IN INTEGER,
knownFrameRate IN INTEGER,
knownVideoDuration IN INTEGER,
knownNumberOfFrames IN INTEGER,
knownCompressionType IN VARCHAR2,
knownNumberOfColors IN INTEGER,
knownBitRate IN INTEGER);
Description
Sets the known video attributes for the video data.
Parameters

knownFormat
The known format.

knownWidth
The known width.

knownHeight
The known height.

knownFrameResolution
The known frame resolution.

knownFrameRate
The known frame rate.

ORDVideo Reference Information 9-57

setKnownAttributes()

knownVideoDuration
The known video duration.

knownNumberOfFrames
The known number of frames.

knownCompressionType
The known compression type.

knownNumberOfColors
The known number of colors.

knownBitRate
The known bit rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas

None.
Exceptions

None.
Examples

Set the property information for all known attributes for video data:

DEQLARE
obj CRDSYS. CGRDMi deo;
w dth integer;
hei ght i nteger;
BEA N
select vid into obj fromTV D where N =1 for update;
obj . set KnownAttri butes(’ MOV , 1, 2, 4,5, 20, 8,” d nepak’, 256, 1500);
obj . get FraneS ze(w dth, height);

DBVE QUTPUT. put _line("wdth: * || TOGHARw dth));

DBV QUTPUT. put _line(" height: ' || TOHAR height));

DBV QUTPUT. put _line(’ format: ’ || obj.getFornat());

CBVE QJTPUT. put _line(’ frane resol ution: ' || TO CHAR obj . get FrameResol ution()));
DBV QUTPUT. put _line(’frane rate: ' || TO CHARobj . get FraneRate()));

DBVE QUTPUT. put _line(’ video duration: ' || TO CHAR obj. get M deoluration()));

9-58 Oracle interMedia User’s Guide and Reference

setKnownAttributes()

DBVE QUTPUT. put _li ne(’ nunber of franes: ' || TO CHAR obj . get Nunber 0 Franes()));
CBVE QUTPUT. put _|i ne(’ conpression type: ' || obj.get GonpressionType());
CBVE QUTPUT. put _line(’bite rate: ' || TOCHAR obj.getBitRate()));
CBVE QUTPUT. put _li ne(’ nunber of colors: ' || TO CHAR obj . get Nunber 0 Gol ors()));
update TM D set vid = obj where N = 1;
QGOWMT;

END,

ORDVideo Reference Information 9-59

setNumberOfColors()

setNumberOfColors()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setNumberOfColors(knownNumberOfColors RETURN INTEGER);

Sets the value of the numberOfColors attribute of the video object.

knownNumberOfColors
A known number of colors.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfColors() method and the value
for the knownNumberOfColors parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

9-60 Oracle interMedia User’s Guide and Reference

setNumberOfFrames()

setNumberOfFrames()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

setNumberOfFrames(knownNumberOfFrames RETURN INTEGER);

Sets the value of the numberOfFrames attribute of the video object.

knownNumberOfFrames
A known number of frames.

Calling this method implicitly calls the setUpdateTime() method.

None.

NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfFrames() method and the value
for the knownNumberOfFrames parameter is NULL.

See the example in "setFrameSize()" on page 9-55.

ORDVideo Reference Information 9-61

setProperties()

setProperties()

Format

Description

Parameters

Usage Notes

Pragmas

setProperties(ctx IN OUT RAW,
setComments IN BOOLEAN);

Reads the video data to get the values of the object attributes and then stores them
in the object. For the known attributes that ORDVideo understands, it sets the
properties for these attributes, which include: format, frame size, frame resolution,
frame rate, video duration, number of frames, compression type, number of colors,
and bit rate. It populates the comments field of the object with a rich set of format
and application properties in XML form if the value of the setComments parameter
is TRUE.

ctx
The format plug-in context information.

setComments

If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses your user-defined format plug-in.

None.

9-62 Oracle interMedia User’s Guide and Reference

setProperties()

Exceptions
VIDEO_PLUGIN_EXCEPTION
This exception is raised if you call the setProperties() method and the video plug-in
raises an exception when calling this method.

Examples

Set the property information for known video attributes:

DEQLARE
obj CRDSYS. CGRDMi deo;
ctx RAWA4000) :=NUL;
BEG N
select vid into obj fromTM D where N =1 for update;
obj . set Properti es(ctx, FALSE) ;
update ™MD set vid = obj where N = 1;
QOWT;
EXCEPTI ON
WHEN OTHERS THEN
DBVB GQJTPUT. put _| i ne(’ exception raised);
END,
/

ORDVideo Reference Information 9-63

setVideoDuration()

setVideoDuration()

Format
setVideoDuration(knownVideoDuration RETURN INTEGER);

Description
Sets the value of the videoDuration attribute of the video object.

Parameters

knownVideoDuration
A known video duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.
Exceptions
NULL_INPUT_VALUE
This exception is raised if you call the setVideoDuration() method and the value for
the knownVideoDuration parameter is NULL.
Examples

See the example in "setFrameSize()" on page 9-55.

9-64 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

9.4 Packages or PL/SQL Plug-ins

This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 9-1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Table 9—1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type
ORDPLUGINS.ORDX_DEFAULT_VIDEO <format> Dependent on file format
ORDPLUGINS.ORDX_AVI_VIDEO AVI video/x-msvideo
ORDPLUGINS.ORDX_MOOV_VIDEO MOOV video/quicktime
ORDPLUGINS.ORDX_RMFF_VIDEO RMFF audio/x-pn-realaudio

Section 9.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_VIDEO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 9-1
are identical for all plug-in packages, therefore, refer to Section 9.4.1.

9.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Use the following provided ORDPLUGINS.ORDX_ DEFAULT_VIDEO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_VIDEO video
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE (R REPLACE PACKACGE CRDX_DEFAULT_M DEO
aut hid current_user
AS
- -V DEO ATTR BUTES ACCESSCRS
FUNCTION get Format (ctx | N QJT RAW obj | N CRDSYS. GRDM deo)
RETURN VARCHAR;
FUNCTION getAttribute(ctx IN QUI RAW
obj I N CROSYS. GRDM deo,
nane | N VARCHAR?)
RETURN VARCHAR;
PROCEDURE get FraneS ze(ctx |N QJI RAW
obj I N CROSYS. GRDM deo,
wi dth QUT | NTEGER
hei ght QJT I NTEGER ;
FUNCTI ON get FraneResol ution(ctx | N QJT RAW obj | N GRDSYS. GRDV deo)
RETURN | NTEGER

ORDVideo Reference Information 9-65

Packages or PL/SQL Plug-ins

FUNCTI N get FraneRat e(ctx | N QJI RAW obj | N CROSYS. GRDMV deo)

RETURN | NTEGER

FUNCTI ON get i deolurati on(ctx | N QJT RAW obj | N GRDSYS. CRDVi deo)
RETURN | NTEGER

FUNCTI ON get Nunber O Franmes(ctx | N QJT RAW obj | N CROSYS. CRDMV deo)
RETURN | NTEGER

FUNCTI ON get Gonpr essi onType(ctx | N QJT RAW obj | N CROSYS. CRDVi deo)
RETURN VARCHAR?;
FUNCTI QN get Nunber & Gol ors(ctx | N QJI RAW obj | N CRESYS. CRDMV deo)
RETURN | NTECGER,
FUNCTION getBitRate(ctx IN QJT RAW obj | N CROSYS. GRDVi deo)
RETURN | NTECGER
PROCEDURE set Properties(ctx IN QJT RAW
obj I N QJT NOOCPY CRDSYS. GRDM deo,
set Comments | N NUMBER : = 0);

FUNCTI ON checkProperties(ctx | N QJT RAWobj | N GROSYS. GRDVi deo) RETURN NUMBER

-- must return nane=val ue; name=value; ... pairs
PROCEDURE get Al l Attributes(ctx | N QJT RAW
obj I N GROBYS. CRDM deo,
attributes N QJr NOOCPY A.CB);
-- M DEO PROCESSI NG METHDS
FUNCTI N pr ocessComrand(

ctx IN QJT RAW
obj IN QJI NOOPY CROSYS. CRDMV deo,
cnd I N VARCHAR?,

argurents | N VARCHAR?,
resul t QJT RAWY
RETURN RAWY

PRAGVA RESTR CT_REFERENCES(get Fornat, VDS, WAPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Attribute, VDS, VWWPS R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get FraneSi ze, VWOS, WWPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get FraneResol ution, VIADS, VI\PS, R\DS, R\FS);
PRAGVA RESTR CT_REFERENCES(get FraneRat e, VIRDS, VWWPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Vi deoDur ati on, VDS, VINPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Nunber 0 Franes, VWOS, WAPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Conpr essi onType, WDS, WWPS, R\OS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Nunber 0F ol ors, VDS, WAPS, R\DS, R\PS);
PRAGVA RESTR CT_REFERENCES(get Bt Rate, VWOS, VIWPS, R\DS, R\PS);

END,
/

9-66 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

Table 9-2 shows the methods supported in the ORDPLUGINS.ORDX_DEFAULT _
VIDEO package and the exceptions raised if you call a method that is not

supported.

Table 9—2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method

Level of Support

getFormat

getAttribute

getFrameSize

getFrameResolution

getFrameRate

getVideoDuration

getNumberOfFrames

getCompressionType

Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;

otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

Not supported - raises exceptions;: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

Supported; if the source is local, get the attribute and return the frame size,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;

otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

Supported; if the source is local, get the attribute and return the frame rate,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;

otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

Supported; if the source is local, get the attribute and return the video
duration, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

Supported; if the source is local, get the attribute and return the number of
frames, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;

otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

Supported; if the source is local, get the attribute and return the
compression type, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

ORDVideo Reference Information 9-67

Packages or PL/SQL Plug-ins

Table 9—2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package (Cont.)

Name of Method Level of Support

getNumberOfColors Supported; if the source is local, get the attribute and return the number of
colors, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getBitRate Supported; if the source is local, get the attribute and return the bit rate, but
if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

setProperties Supported; if the source is local, process the local data and set the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and set the properties.

checkProperties Supported; if the source is local, process the local data and set the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and set the properties.

getAllAttributes Supported,; if the source is local, get the attributes and return them, but if
the source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY _
SOURCE exception; otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

9.4.2 Extending interMedia to Support a New Video Data Format

Extending interMedia to support a new video data format consists of four steps:
1. Design your new video data format.

2. Implement your new video data format and name it, for example, ORDX_MY _
VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY _
VIDEO.SQL plug-in, to PUBLIC.

9-68 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

Section 3.4.12 briefly describes how to extend interMedia to support a new video
data format and describes the interface. A package body listing is provided in
Example 9-1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.4 for more information on installing your own video format plug-in
and running the sample scripts provided.

Example 9-1 Show the Package Body for Extending Support to a New Video
Data Format

CREATE (R REPLACE PACKACGE BADY CRDX_WY_M DEO

AS
--M DEO ATTR BUTES ACCESSCRS
FUNCTION getFormat (ctx | N QJT RAW obj | N CROBYS. GRDVi deo)
RETURN VARCHAR2

IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTION getAttribute(ctx I|N QJT RAW
obj I N CROSYS. GRDM deo,
nane | N VARCHAR?)
RETURN VARCHAR2

IS

--Your variables go here
BEQ N

--Your code goes here
END

PROCEDURE get FraneS ze(ctx | N QJT RAW
obj I N CROSYS. GRDM deo,
w dth QJT | NTEGER

hei ght QUT | NTEGER)

IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTI ON get FraneResol ution(ctx | N QJT RAW obj | N CROSYS. GRDMV deo)
RETURN | NTEGER
IS
--Your variables go here
BEQ N

ORDVideo Reference Information 9-69

Packages or PL/SQL Plug-ins

--Your code goes here
END,
FUNCTI ON get FraneRate(ctx |N QJT RAW obj | N CROSYS CRDMV deo)
RETURN | NTEGER

IS

--Your variables go here
BEQ N

--Your code goes here
BEND,

FUNCTI ON get M deoDuration(ctx I N QJT RAW obj | N GRDSYS. CRDMV deo)
RETURN | NTEGER

IS

--Your variables go here
BEAQ N

--Your code goes here
END
FUNCTI ON get Nunber O Franes(ctx |N QJT RAW obj | N CRDSYS. CRDM deo)
RETURN | NTEGER
IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTI ON get Conpr essi onType(ctx | N QJT RAW obj | N CROSYS. GRDMV deo)
RETURN VARCHAR?

IS

--Your variables go here
BEQ N

--Your code goes here
END
FUNCTI ON get Nunber & Gol ors(ctx |N QJT RAW obj | N GRDSYS. CRDMVi deo)
RETURN | NTEGER
IS

--Your variables go here
BEQ N

--Your code goes here
END

FUNCTION getBitRate(ctx IN GQJI RAW obj | N CROSYS. GRDMV deo)
RETURN | NTEGER

IS

--Your variables go here
BEQ N

--Your code goes here
END

9-70 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

PROCEDURE set Properties(ctx IN QJT RAW
obj N QUT NOOCPY QRDSYS. CRDMi deo,
set Corment s | N NUMBER : =0)

IS

--Your variables go here
BEQ N

--Your code goes here
BEND,

FUNCTI ON checkProperties(ctx IN QJIT RAW obj | N CRDSYS. GRDVi deo) RETURN NUMBER
IS

IS

--Your variables go here
BEQ N

--Your code goes here
BEND,

PROCEDURE get Al | Attributes(ctx I N QJT RAW
obj I N GRDSYS. GRDVi deo,
attributes IN QJI NOOCPY AL(B)

IS

--Your variables go here
BEQ N

--Your code goes here
END

-- VI DEO PROCESS NG METHCDS
FUNCTI N pr ocessComrand(

ctx IN QJT RAWY
obj I'N QJT NOOCPY CROSYS. GRDM deo,
cnd I'N VARCHAR?,

argunents | N VARCHAR?,
result QJT RAW
RETURN RAW
IS
--Your variables go here
BEG N
--Your code goes here
END,
BND,
/
show errors;

ORDVideo Reference Information 9-71

Packages or PL/SQL Plug-ins

9-72 Oracle interMedia User’s Guide and Reference

10

interMedia Relational Interface Reference

Application developers, who created multimedia applications without using the
interMedia object types to store and manage media data in relational tables, and
who do not want to migrate their existing multimedia applications to use
interMedia objects, can use the interMedia relational interface for managing their
media data. The interMedia relational interface consists of a set of methods for:

« Extracting information directly from their media data as either an XML string or
as XML and individual attributes

« Processing and copying image data
« Loading media data into the Oracle database
« Exporting media data from the Oracle database into operating system files

The primary benefit of using the interMedia relational interface is to let application
developers take advantage of interMedia functions with only minimal changes to
their applications, and all without having to change their schemas to the interMedia
objects to store their data.

The Oracle interMedia relational interface consists of a set of static methods (see
Section 10.1) for the interMedia objects: ORDAudio, ORDDoc, ORDImage, and
ORDVideo. Because these are static methods, no object is instantiated. Data is
passed by method arguments rather than by object attributes.

The examples in this chapter assume that each of the media tables described in the
respective sections of this chapter has been created and filled with data.

Methods related to the source of the media have ctx(RAW(4000)) as the first
argument. Before calling any of these methods for the first time, the client must
allocate the ctx structure and initialize it to NULL.

interMedia Relational Interface Reference 10-1

Static Methods for the Relational Interface

ORDAudio, ORDDoc, and ORDVideo methods related to media parsing have ctx
(RAW(4000)) as the first argument. Before calling any of these methods for the first
time, the client must allocate the ctx structure and initialize it to NULL.

10.1 Static Methods for the Relational Interface

This section presents reference information on the static methods for the relational
interface. It is divided into subsections that describe those static methods (export(),
import(), and importFrom()) that are common to all object types and those static
methods that are unique to a particular object type or implemented differently for
the different object type.

10.1.1 Static Methods Common to All Object Types

The following static methods common to all object types for the relational interface
are all associated with the source of the media.

export() -- copies data from a local source within an Oracle database to the
specified external data source.

importFrom() -- transfers data from the specified external data source to the
specified local source within an Oracle database.

importFrom() (all attributes) -- transfers data (all attributes) from the specified
external data source to the specified local source within an Oracle database and
returns format and mimeType if available.

10.1.2 Static Methods Uniquely Associated with Each Object Type

The following static methods (grouped by object type) for the relational interface
are either unique to a particular object type or are implemented differently for each
object type.

ORDAudio

getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

10-2 Oracle interMedia User’s Guide and Reference

Static Methods for the Relational Interface

getProperties() for BFiles (all attributes) -- reads the BFILE data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

ORDDoc

getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

ORDImage
getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

process() -- performs in-place image processing on an image stored in a BLOB.

processCopy() for BLOBs -- copies an image from a BLOB to the destination BLOB
while performing image processing on the destination BLOB.

processCopy() for BFILEs -- copies an image from a BFILE to the destination BLOB
while performing image processing on the destination BLOB.

interMedia Relational Interface Reference 10-3

Static Methods Common to All Object Types

ORDVideo

getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

10.2 Static Methods Common to All Object Types

10-4

The examples in this section assume that you have created the test tables as
described in Section 10.3.1, Section 10.4.1, Section 10.5.1, and Section 10.6.1,
respectively for each object type.

This section presents reference information on the Oracle interMedia common static
methods used for the relational interface.

export()

export()

Format
export(

ctx IN OUT RAW,
local_data IN BLOB,
source_type IN VARCHAR?2,
source_location IN VARCHAR2,
source_name IN VARCHAR2);

Description

Copies data from a local source (local_data) within an Oracle database to an
external data source.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

Parameters

ctx
The source plug-in context information.

local_data
The BLOB location that is being exported.

source_type
The source type of the location to where the data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

interMedia Relational Interface Reference 10-5

export()

Usage Notes

Pragmas

Exceptions

After calling the export() method, you can issue a SQL DELETE statement or call
the DBMS_LOB.TRIM procedure to delete the content stored locally, if desired.

The export() method for a source type of file’is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT _
PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBVB JAVA GRANT_PERM SSI QN
" MED AUSER
"java.io.H |l ePermssion’,
" [actual / server/directory/ path/fil enane. dat’,
‘wite');

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

None.

ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

10-6 Oracle interMedia User’s Guide and Reference

export()

ORDSourceExceptions.|O_ERROR

This exception is raised if the export() method encounters an error writing the
BLOB data to the file specified.

See Appendix H for more information about these exceptions.

Examples
Export data from a local source to an external audio data source:

Note: <ORACLE HOVE> must be replaced with your Oracle home
and <system-password> with the system password.

QONNECT SYSTEM <syst em passvior d>;
CREATE (R REPLACE D RECTCRY ALDI ADI R AS ' e:\ <QRAALE_ HOMEA or d\ aud\ deno’ ;
GRANT READ ON D RECTCRY ALD (DI R TO PUBLI C WTH GRANT CPTI ON

CALL DBVB JAVA GRANT_PERM SSI QN
" MED ALSER
"java.io.Fi |l ePermssion’,
" e\ <QRAALE_ HOMEA or d\ aud\ deno\ t est aud. dat ',
‘wite');
GONNECT MEDI AUSER MEDI AUSER
DEQLARE
audi o_data BLCB;
ctx RAWA4000) :=NUL;
BEA N
SH ECT aud | NTO audi o_data FROMtaud WHERE N = 1,
CROSYS. ARDAUd 0. export (ctx, audi o_data, ' file' ,”AD MR, testaud. dat’);
BEXCEPTI ON
WHEN OTHERS THEN
RAl SE
BEND,
/

interMedia Relational Interface Reference 10-7

importFrom()

importFrom()
Format
importFrom(ctx IN OUT RAW,

local_data IN OUT NOCOPY BLOB,
source_type IN VARCHAR?2,
source_location IN VARCHAR2,
source_name IN VARCHAR2);

Description

Transfers data from the specified external data source to a local source (local_data)
within an Oracle database.

Parameters

ctx
The source plug-in context information.

local_data
The BLOB location to receive the data.

source_type
The source type of the data.

source_location
The location from where the data is to be imported.

source_name
The name of the data.

Usage Notes
You must ensure that the directory exists or is created before you use this method

for file sources.

Pragmas
None.

10-8 Oracle interMedia User’s Guide and Reference

importFrom()

Exceptions

Examples

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of local_
data is NULL or has not been initialized.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom(') method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Import document data from the specified external data source into the local source:

Note: <ORACLE HOVE> must be replaced with your Oracle home.

QONNECT syst end <syst em passwor d>;
CREATE (R REPLACE D RECTCRY DO R AS ' e: \ <QRAALE_ HOMEA or d\ doc\ deno’ ;
GRANT READ ON D RECTCRY DACDI R TO PUBLI C WTH GRANT CPTI ON

GONNECT MEDI AUSER MEDI AUSER,

CEQLARE
docunent _dat a BLCB;
ctx RAW4000) :=NULL;
BEA N
SH_ECT docunent | NTO docunent _data FROMtdoc WHERE N = 1 FCR UPDATE,
CROSYS. CRDDoc. i npor t Fronf ct X, docunent _data, ' file',”’DOD R ,’testing.dat’);
UPDATE tdoc SET docunent = docunent _data WHERE N = 1;
GOM T,
SELECT docunent | NTO docunent _data FROMtdoc WHERE N = 2 FCR UPDATE;
CROSYS. CRDDoc. i npor t Fronf ct X, docunent _data, ' file',” DOD R ,’ testaud. dat’);
UPDATE tdoc SET docurent = docunent data WHERE N = 2;
QOWT;
SELECT docunent | NTO docunent _data FROMtdoc WHERE N = 3 FCR UPDATE;
CROSYS. CRDDoc. i npor t Fron{ ct X, docunent_data, ' file',"’DOD R, testvid.dat’);
UPDATE tdoc SET docunent = docunent_data WHERE N = 3;

interMedia Relational Interface Reference 10-9

importFrom()

COWT;
EXCEPTI ON
WEN OTHERS THEN

RAI SE

10-10 Oracle interMedia User’s Guide and Reference

importFrom() (all attributes)

importFrom() (all attributes)

Format
importFrom(ctx IN OUT RAW,
local_data IN OUT NOCOPY BLOB,
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHARZ2,
format OUT VARCHAR?2,
mime_type OUT VARCHARY);
Description
Transfers data from the specified external data source to a local source (local_data)
within an Oracle database.
Parameters

ctx
The source plug-in context information.

local_data
The BLOB location to receive the data.

source_type
The source type of the data.

source_location
The location from where the data is to be imported.

source_name
The name of the data.

format
The format of the data. The value is returned if it is available (from HTTP sources).

interMedia Relational Interface Reference 10-11

importFrom() (all attributes)

Usage Notes

Pragmas

Exceptions

Examples

mime_type
The MIME type of the data. The value is returned if it is available (from HTTP
sources).

You must ensure that the directory exists or is created before you use this method
for file sources.

None.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value local_
data is NULL or has not been initialized.

ORDSourceExceptions. METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom(') method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Import image data from the specified external data source into the local source:

Note: <ORACLE HOVE> must be replaced with your Oracle home.

QONNECT syst ent <syst em passwor d>;
CREATE (R REPLACE D RECTQRY | MAEEDI R AS " e: \ <QRAQLE HOMEA or d\ i ng\ deno’ ;
CRANT READ ON D RECTCRY | MAGED R TO PUBLI C WTH GRANT CPTI QN

DECLARE

i mage_data BLCB;

ctx RAW4000) :=NULL;

i mg_f or mat

VARCHARZ2(32) := NULL;

10-12 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDAudio Object Type Relational Interface

ing_mne_type VARCHAR2(80);

BEG N

SELECT ing | NTO i nage_data FROMting WHERE N = 1 FCR UPDATE,
CROSYS. CRD mage. i nport Fronfctx, i mage_data,’file' ,” IMMED R, testing.dat’,ing format,iny_mne_type);
UPDATE ting SET ing = i nage_data WHERE N = 1;

QGOW T,
EXCEPTI ON

WHEN OTHERS THEN

RAI SE
END
/

10.3 Static Methods Unique to the ORDAudio Object Type Relational

Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDAudio relational interface.

The relational interface adds interMedia support to audio data stored in BLOBs and
BFILEs rather than in the ORDAudio type. The following interface is defined in the
ordaspec.sql file:

-- Satic Mthods for the relational interface

STATI C PROCEDURE export (ct X IN QJT RAW
| ocal data IN BLCB,
sour ce_t ype I'N VARCHAR?,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr onf ct X IN QJT RAW
| ocal data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARGHAR2,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr onf ct X IN QJT RAW
| ocal data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARGHAR2,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHAR2,
f or mat QUT VARCHAR2,

interMedia Relational Interface Reference 10-13

Static Methods Unique to the ORDAudio Object Type Relational Interface

m ne_t ype QJT VARCHAR?) ,

STATI C PROCEDURE get Properti es(ct x IN QJT RAWY
audi oB ob I N BLGB,
attributes I'N QJT NOOCPY LB,
f or nat I'N VARCHAR?) ,

STATI C PROCEDURE get Properti es(ct x IN QJT RAW
audi oB ob I N BLCB,
attributes IN QJI NOOCPY ALCB,
m neType QUT VARCHAR?,
f or mat IN QUT VARCHAR?,
encodi ng QUT VARCHAR?,

nunber & Channel s QJT | NTEGER
sanpl i ngRat e QJT | NTEGER
sanpl eS ze QJT | NTEEER
conpr essi onType QJT VARCHAR?,
audi olurati on QJT | NTEGER),

STATI C PROCEDURE get Properti es(ct x IN QJT RAW
audi oBfil e I N QJT NOOCPY BFl LE,
attributes I'N QJT NOOCPY LB,
f or mat I N VARCHAR?) ,

STATI C PROCEDURE get Properti es(ct x IN QJT RAW
audi oBfil e IN QUT NOOCPY BFI LE,
attributes IN QJT NOOCPY ALCB,
m neType QUT VARCHAR?,
f or mat IN QJT VARCHAR?,
encodi ng QUT VARCHAR?,

nunber & Channel s QJT | NTEGER
sanpl i ngRat e QUT | NTEGER
sanpl eS ze QJT | NTEEER
conpr essi onType QJT VARCHAR?,
audi oDur ati on QJT | NTEGER),

10.3.1 Example Table Definitions

The methods described in this section show examples based on a test audio table
TAUD. Refer to the TAUD table definition that follows when reading through the
examples:

10-14 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDAudio Object Type Relational Interface

TAUD Table Definition

CREATE TABLE taud(n NUMBER
aud BLCB,
attributes acs,
nm net ype VARCHAR2(4000) ,
f or nat VARCHAR2(31),
encodi ng VARCHAR2(256) ,
nunber of channel s | NTEGER
sanpl i ngrate | NTEGER
sanpl esi ze | NTEGER

conpressi ontype VARCHAR2(4000) ,
audi odur ati on | NTECER)
STCRAGE (I N TI AL 100K NEXT 100K PCTI NCREASE 0);

I NSERT | NTO t aud VALUES(1, EMPTY BLGB(), EMPTY CLGB(), NULL, NULL, NULL, NULL,
NLL, NULL, NULL, NULL);

I NSERT | NTO taud VALUES(2, EMPTY BLGB(), EMPTY_QLGB(), NULL, NULL, NULL, NULL,
NLL, NULL, NULL, NULL);

COWM T,

interMedia Relational Interface Reference 10-15

getProperties() for BLOBs

getProperties() for BLOBs

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
audioBlob IN BLOB,
attributes IN OUT NOCOPY CLOB,
format IN VARCHAR2);

Reads the audio BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

ctx
The format plug-in context information.

audioBlob
The audio data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BLOB data in XML form.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked.

None.

None.

10-16 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs

Exceptions
AUDIO_PLUGIN_EXCEPTION
This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.
ORDSourceExceptions.EMPTY_SOURCE
This exception is raised when the source is local but the source is NULL.
Examples
Get the property information for known audio attributes:
DEQLARE

aud attrib A.CB
ctx RAW4000) :=N.LL;
aud data BLCB
aud format VARCHAR2(160) := NULL;
BEGA N
SHECT aud, attributes I NTO aud data, aud attrib FROMtaud WHERE N =1 FCR UPDATE,
CRDSYS. CRDAUdI 0. get Properti es(ctx,aud data, aud attrib, aud_fornat);
DBMS_OUTPUT put_line(Size of XML Annotations:’ ||
TO_CHAR(DBMS_LOB.GETLENGTH(aud_atfrib)));
UPDATE taud SET aud=aud_data, attributes=aud _attrib WHERE N=1;
COMMIT;
EXCEPTION
WHEN OTHERS THEN
RAISE;
END;
/

interMedia Relational Interface Reference 10-17

getProperties() (all attributes) for BLOBs

getProperties() (all attributes) for BLOBs

Format
getProperties(ctx IN OUT RAW,
audioBlob IN BLOB,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHAR?2,
format IN OUT VARCHAR2
encoding OUT VARCHARZ2,
numberOfChannels OUT INTEGER,
samplingRate OUT INTEGER,
sampleSize OUT INTEGER,
compressionType OUT VARCHAR2,
audioDuration OUT INTEGER);
Description
Reads the audio BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the audio data: duration,
MIME type, compression type, format, encoding type, number of channels,
sampling rate, and sample size. It populates the CLOB with an extensive set of
format and application properties in XML form.
Parameters

ctx
The format plug-in context information.

audioBlob
The audio data represented as a BLOB.

10-18 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

Usage Notes

Pragmas

Exceptions

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BLOB data in XML form.

mimeType
The MIME type of the audio data.

format

The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked. If not specified, the derived format value is
returned.

encoding
The encoding type of the audio data.

numberOfChannels
The number of channels in the audio data.

samplingRate
The sampling rate in samples per second at which the audio data was recorded.

sampleSize
The sample width or number of samples of audio in the data.

compressionType
The compression type of the audio data.

audioDuration
The total time required to play the audio data.

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

None.

AUDIO_PLUGIN_EXCEPTION

interMedia Relational Interface Reference 10-19

getProperties() (all attributes) for BLOBs

Examples

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known audio attributes:

DEQLARE
aud attrib acs
ctx RAW4000) :=NUL;
aud _data BLCB;
m meType VARCHAR2(180) ;
f or mat VARCHAR2(32) ;
encodi ng VARCHAR2(1160) ;
nunber & Channel s NUMBER,
sanpl i ngRat e NUMBER
sanpl eS ze NUMBER

conpressi onType VARCHAR2(160) ;

audi oDur ati on NUMBER
BEA N

SHECT aud, attributes, minetype, format, encodi ng, nunberof channel s, sanplingrate,
sanpl esi ze, conpressi ontype, audioduration INTO aud data, aud attrib, mneType, fornat,
encodi ng, nunber &0 Channel s, sanpl i ngRat e, sanpl eS ze, conpressi onType, audi oDurati on FROM
taud WHERE N = 1 FCR UPDATE,

CROSYS. CRDAudI 0. get Properties(ctx, aud data, aud_attrib, mneType, format, encoding,
nunber & Channel s, sanpl i ngRat e, sanpl eS ze, conpressi onType, audi oDuration);

DBVE QUTPUT. put _line(’ Sze of XM Annotations ' ||
TO CHAR(DBVB_LCB. GETLENGTH aud_attrib)));

DBVE QUTPUT. put _li ne(’ mneType: ' || mneType);

DBVE QUTPUT. put _line('fornat: ' || format);

DBVS QUTPUT. put _l i ne(’ encoding: * || encoding);

DBV QUTPUT. put _l i ne(’ nunber & Channel s: ' || nunber O Channel s);
DBVE QUTPUT. put _li ne(’ sanplingRate: ' || sanplingRate);

DBVS QUTPUT. put _l i ne(’ sanpl eSi ze: * || sanpleS ze);

DBVS QUTPUT. put _| i ne(’ conpr essi onType: * || conpressi onType);
DBVS QUTPUT. put _l i ne(’ audi oDuration: ' || audioDuration);

UPDATE taud SET
aud=aud_dat a,
attributes=aud attrib,
m net ype=m neType,
f or nat =f or nat ,
encodi ng=encodi ng,
nunber of channel s=nunber & Channel s,
sanpl i ngr at e=sanpl i ngRat e,

10-20 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

sanpl esi ze=sanpl eS ze,
conpr essi ont ype=conpr essi onType,
audi odur at i on=audi oDur at i on

WHERE n=1;
GOW T,
EXCEPTI ON
WEN OTHERS THEN
RAl SE;
END,

/

interMedia Relational Interface Reference 10-21

getProperties() for BFILES

getProperties() for BFILES

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
audioBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
format IN VARCHAR2);

Reads the audio BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

ctx
The format plug-in context information.

audioBfile
The audio data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BFILE data in XML form.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked.

None.

None.

10-22 Oracle interMedia User’s Guide and Reference

getProperties() for BFILES

Exceptions

Examples

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known audio attributes:

DEQLARE
aud attrib A.CB
ctx RAW4000) :=N.LL;
aud data BFILE := BFI LENAME(' ADCD R, 'testaud. dat’);
aud format VARCHAR2(160) := NULL;
BEGA N
DBVB L(B. CREATETEMPCRARY(aud_attrib, FALSE DBVE LGB CALL);
CRDSYS. CRDAUdI 0. get Properties(ctx, aud_data, aud_attrib, aud fornat);

DBVS QUTPUT. put _line(’ Size of XM. Annotations ' ||
TO GHAR(DBVB_LCB. GETLENGIH aud_attrib)));
EXCEPTI ON
WEN OTHERS THEN
RA SE
END,
/

interMedia Relational Interface Reference 10-23

getProperties() (all attributes) for BFILES

getProperties() (all attributes) for BFILES

Format

Description

Parameters

getProperties(ctx IN OUT RAW,
audioBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHAR?2,
format IN OUT VARCHAR2
encoding OUT VARCHAR2,

numberOfChannels OUT INTEGER,
samplingRate OUT INTEGER,
sampleSize OUT INTEGER,
compressionType OUT VARCHAR?2,
audioDuration OUT INTEGER);

Reads the audio BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the audio data: duration,
MIME type, compression type, format, encoding type, number of channels,
sampling rate, and sample size. It populates the CLOB with an extensive set of
format and application properties in XML form.

ctx
The format plug-in context information.

audioBfile
The audio data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application

10-24 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs

Usage Notes

Pragmas

Exceptions

properties of the audio BFILE data in XML form, identical to what is provided by
the interMedia Annotator utility.

mimeType
The MIME type of the audio data.

format

The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked. If not specified, the derived format value is
returned.

encoding
The encoding type of the audio data.

numberOfChannels
The number of channels in the audio data.

samplingRate
The sampling rate in samples per second at which the audio data was recorded.

sampleSize
The sample width or number of samples of audio in the data.

compressionType
The compression type of the audio data.

audioDuration
The total time required to play the audio data.

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

None.

AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

interMedia Relational Interface Reference 10-25

Static Methods Unique to the ORDDoc Object Type Relational Interface

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known audio attributes:
CEQLARE
aud attrib acs
ctx RAW4000) :=NUL;
dat a BFI LE : = BFI LENAME' AD (DR, "testaud.dat’);
m meType VARCHAR2(180) ;
f or mat VARCHAR2(32) ;
encodi ng VARCHAR2(1160) ;
nunber & Channel s NUMBER
sanpl i ngRat e NUMBER
sanpl eS ze NUMBER

conpressi onType VARCHAR2(160) ;
audi oDur ati on NUMBER
BEA N
DBVB L(B. CREATETEMPCRARY(aud_attrib, FALSE DBVE LGB CALL);

CROSYS. CRDAud 0. get Properties(ctx, data, aud attrib, mneType, format, encodi ng,
nunber & Channel s, sanpl i ngRat e, sanpl eS ze, conpressi onType, audi oDuration);

DBVE QUTPUT. put _line(’ Size of XM Annotations ' ||
TO CHAR(DBVB_LCB. GETLENGTH aud_attrib)));

DBVE QUTPUT. put _li ne(’ mneType: ' || mneType);
DBVE QUTPUT. put _line('fornat: ' || format);
DBVS QUTPUT. put _l i ne(’ encoding: * || encoding);
DBVE QUTPUT. put _l i ne(’ nunber & Channel s: ' || nunber O Channel s);
DBVE QUTPUT. put _li ne(’ sanplingRate: ' || sanplingRate);
DBVS QUTPUT. put _l i ne(’ sanpl eSize: * || sanpleS ze);
DBVS QUTPUT. put _| i ne(’ conpr essi onType: * || conpressi onType);
DBVS QUTPUT. put _l i ne(’ audi oDuration: ' || audioDuration);
EXCEPTI ON
WEN OTHERS THEN
RAl SE
END,

/

10.4 Static Methods Unique to the ORDDoc Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDDoaoc relational interface.

10-26 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDDoc Object Type Relational Interface

The relational interface adds interMedia support to audio, document, image, and
video data stored in BLOBs and BFILEs rather than in the ORDDoc type. The
following interface is defined in the orddspec.sql file:

-- Satic Methods for the relational interface

STATI C PROCEDURE export (ct x IN QJT RAW
| ocal data IN BLCB,
sour ce_t ype I'N VARCHAR?,
source_|l ocati on I N VARCHAR?,
sour ce_nane I'N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr onf ct x IN QJT RAW
| ocal _data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARCHAR2,
source_|l ocation | N VARCHAR?,
sour ce_nane I N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr ong ct X IN QJT RAW
| ocal _data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARCHAR?,
source_|l ocation | N VARCHAR?,
sour ce_nane I N VARCHAR?2,
f or mat QJT VARCHAR?,
m ne_t ype QUT VARCHAR?) ,
STATI C PROCEDURE get Properti es(ct x IN QJT RAW
docB ob IN BLGB,
attributes I'N QJT NOOCPY LB,
f or mat I N VARCHAR?) ,
STATI C PROCEDURE get Properti es(ct x IN QJT RAW
docB ob IN BLCB,
attributes IN QUT NOOCPY ALCB,
m neType QUT VARCHAR?,
f or mat IN QJT VARCHAR?,

cont ent Lengt h QJT | NTEGER),

STATI C PROCEDURE get Properti es(ct x IN QJT RAWY
docBfile I'N QJT NOOCPY BFI LE,
attributes I'N QJT NOOCPY LGB,
f or mat I N VARCHAR?) ,

interMedia Relational Interface Reference 10-27

Static Methods Unique to the ORDDoc Object Type Relational Interface

STATI C PROCEDURE get Properti es(ct x IN QJT RAW
docBfil e IN QUT NOOCPY BFI LE,
attributes I N QJT NOOCPY LGB,
m neType QUT VARCHAR?,
f or mat IN QJT VARCHAR?,
content Lengt h QJT | NTECGER),

10.4.1 Example Table Definitions

The methods described in this section show examples based on a test document
table TDOC. Refer to the TDOC table definition that follows when reading through
the examples:

TDOC Table Definition

CREATE TABLE tdoc(n NUMBER
docurent BLCB,
attributes acs,

m net ype VARCHAR2(80) ,
f or nat VARCHAR2(80) ,

contentl ength | NTEGER
STCRAGE (INTI AL 100K NEXT 100K PCTI NCREASE 0);

I NSERT | NTO tdoc VALUES(1, EMPTY BLGB(), EMPTY CLGB(), NULL, NULL, NULL);
I NSERT | NTO tdoc VALUES(2, EMPTY BLGB(), EMPTY CLGB(), NULL, NULL, NULL);
I NSERT | NTO tdoc VALUES(3, EMPTY BLCB(), EMPTY CLGB(), NULL, NULL, NULL);
I NSERT | NTO tdoc VALUES(4, EMPTY BLCB(), EMPTY CLGB(), NULL, NULL, NULL);
COWM T

10-28 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs

getProperties() for BLOBs

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
docBlob IN BLOB,
attributes IN OUT NOCOPY CLOB,
format IN VARCHARY);

Reads the document BLOB data to get the values of the media attributes and then
stores them in the input CLOB. This method populates the CLOB with an extensive
set of format and application properties in XML form.

ctx
The format plug-in context information.

docBlob
The document data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BLOB data in XML form.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.

None.

None.

interMedia Relational Interface Reference 10-29

getProperties() for BLOBs

Exceptions
DOC_PLUGIN_EXCEPTION
This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.
ORDSourceExceptions.EMPTY_SOURCE
This exception is raised when the source is local but the source is NULL.
Examples
Get the property information for known document attributes:
DEQLARE

doc_attrib A.CB

ctx RAW4000) :=N.LL;

doc_data BLCB

doc_format VARCHAR2(160) := NULL;

BEA N
SH ECT docunent, attributes | NTO doc_data, doc_attrib FROMtdoc WHERE N = 1 FCR UPDATE,
CROSYS. CRDDoc. get Properties(ctx, doc_data, doc_attrib, doc format);

DBVS QUTPUT. put _line(’ Size of XML Annotations ' ||
TO CHAR(DBVE LCB. CETLENGTH doc_attrib)));
UPDATE tdoc SET docunent=doc_data, attributes=doc_attrib WHERE N=1;
QGOW T,
EXCEPTI ON
WHEN OTHERS THEN
RAl SE
END,
/

10-30 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

getProperties() (all attributes) for BLOBs

Format

Description

Parameters

getProperties(ctx IN OUT RAW,
docBlob IN BLOB,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHAR?2,
format IN OUT VARCHAR?2,

contentLength OUT INTEGER);

Reads the document BLOB data to get the values of the media attributes and then
stores them in the input CLOB as explicit parameters. This method gets the
properties for the following attributes of the document data: MIME type, content
length, and format. It populates the CLOB with an extensive set of format and
application properties in XML form.

ctx
The format plug-in context information.

docBlob
The document data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BLOB data in XML form.

mimeType
The MIME type of the document data.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.

interMedia Relational Interface Reference 10-31

getProperties() (all attributes) for BLOBs

contentLength
The length in bytes of the content.

Usage Notes

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.
Exceptions
DOC_PLUGIN_EXCEPTION
This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.
ORDSourceExceptions.EMPTY_SOURCE
This exception is raised when the source is local but the source is NULL.
Examples
Get the property information for known document attributes:
DECLARE
doc_attrib acB
ctx RAW4000) :=NUL;
doc_data BLCB;
doc_ni neType VARCHAR2(180) ;
doc_f or mat VARCHAR2(132) ;
doc_cont ent Lengt h NUMBER,
BEG N

SELECT docunent, attributes, mnetype, fornat, contentlength | NTOdoc_data, doc_attrib,
doc_m neType, doc_format, doc_contentlLength FROMtdoc WHERE N = 1 FCR UPDATE;

CRDSYS. GRDDoc. get Properties(ctx, doc_data, doc_attrib,
doc_m neType, doc_format, doc_contentlLength);

DBVS QUTPUT. put _line(’ Size of XML Annotations ' ||
TO GHAR(DBVB_LCB. GETLENGIH doc_attrib)));

DBVE QUTPUT. put _li ne(’ mneType: * || doc_m neType);
DBVS QUTPUT. put _line('fornat: ' || doc_fornat);
DBVS QUTPUT. put _l i ne(’ contentLength: * || doc_contentlLength);

UPDATE tdoc SET
docurent =doc_dat a,
attributes=doc_attrib,

10-32 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

m net ype=doc_ni neType,
f or mat =doc_f or nat,
cont ent | engt h=doc_cont ent Lengt h
WHERE N=1;
QGOW T,
EXCEPTI ON
WEN OTHERS THEN
RAI SE;
END,
/

interMedia Relational Interface Reference 10-33

getProperties() for BFILES

getProperties() for BFILES

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
docBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
format IN VARCHARY);

Reads the document BFILE data to get the values of the media attributes and then
stores them in the input CLOB. It populates the CLOB with an extensive set of
format and application properties in XML form.

ctx
The format plug-in context information.

docBfile
The document data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BFILE data in XML form.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.

None.

None.

10-34 Oracle interMedia User’s Guide and Reference

getProperties() for BFILES

Exceptions

Examples

DOC_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known document attributes:

DEQLARE
doc_attrib A.CB
ctx RAW4000) :=N.LL;
doc_data BFILE := BFI LENAME(' DOCDIR , "testvid. dat’);
doc_format VARCHAR2(160) := NULL;
BEGA N
DBVB LCB. GREATETEMPCRARY(doc_attrib, FALSE, DBVE LGB CALL);
CRDSYS. GRDDoc. get Properties(ctx, doc_data, doc_attrib, doc_fornat);

DBVS QUTPUT. put _line(’ Size of XML Annotations ' ||
TO GHAR(DBVB_LCB. GETLENGIH doc_attrib)));
EXCEPTI ON
WEN OTHERS THEN
RA S5
END,
/

interMedia Relational Interface Reference 10-35

getProperties() (all attributes) for BFILES

getProperties() (all attributes) for BFILES

Format
getProperties(ctx IN OUT RAW,
docBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHAR?2,
format IN OUT VARCHAR?2,
contentLength OUT INTEGER);
Description
Reads the document BFILE data to get the values of the media attributes for
supported formats and then stores them in the input CLOB as explicit parameters.
This method gets the properties for the following attributes of the document data:
MIME type, content length, and format. It populates the CLOB with an extensive set
of format and application properties in XML form.
Parameters

ctx
The format plug-in context information.

docBfile
The document data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BFILE data in XML form.

mimeType
The MIME type of the document data.

10-36 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs

format

The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked. If not specified, the derived format is
returned.

contentLength
The length in bytes of the content.

Usage Notes

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.
Exceptions
DOC_PLUGIN_EXCEPTION
This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.
ORDSourceExceptions.EMPTY_SOURCE
This exception is raised when the source is local but the source is NULL.
Examples
Get the property information for known document attributes:
DECLARE
doc_attrib acs
ctx RAW4000) :=NUL;
doc_data BFI LE : = BFI LENAME(' DOCDIR , "testing.dat’);
doc_mi neType VARCHAR2(180) ;
doc_f or mat VARCHAR2(32) ;
doc_cont ent Lengt h NUMBER
BEG N

DBVB LCB. GREATETEMPCRARY(doc_attrib, FALSE, DBVE LGB CALL);
CRCSYS. CRDDoc. get Properties(ctx, doc_data, doc_attrib,
doc_m neType, doc_format, doc_contentlLength);
DBVS QUTPUT. put _line(’ Size of XML Annotations ' ||
TO GHAR(DBMVB_LCB. GETLENGTH doc_attrib)));

DBVS QUTPUT. put _l i ne(’ mneType: * || doc_m neType);
DBVS QUTPUT. put _line(’'fornat: ' || doc_fornmat);
DBVS QUTPUT. put _line(’ contentLength: ' || doc_contentlLength);

interMedia Relational Interface Reference 10-37

Static Methods Unique to the ORDImage Object Type Relational Interface

EXCEPTI ON
WHEN OTHERS THEN
RAI S5

10.5 Static Methods Unique to the ORDImage Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDImage relational interface.

The relational interface adds interMedia support to image data stored in BLOBs and
BFILEs rather than in the ORDImage type. The following interface is defined in the
ordispec.sql file:

-- Satic Methods for the relational interface

STATI C PROCEDURE export (ct X IN QJT RAWY
| ocal _data IN BLCB,
sour ce_t ype I'N VARCHAR?,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr onf ct X IN QJr RAW
| ocal _data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARCHAR2,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr onf ct X IN QJT RAW
| ocal _data I N QJT NOOCPY BLCB,
sour ce_t ype I N VARCHAR?,
source_| ocation | N VARCHAR2,
sour ce_nane I N VARCHAR?2,
f or mat QJT VARCHAR?,
m ne_t ype QJT VARHAR?) ,
STATI C PROCEDURE get Properti es(i mageBl ob I N BLCB,
attributes I'N QJT NOOCPY LB,
m neType QUT VARCHAR?,
wi dth QUJT | NTECGER
hei ght QUT | NTECER

10-38 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDImage Object Type Relational Interface

fil eFor mat QJT VARCHARZ,
cont ent For nat QJT VARCHAR?,
conpr essi onFor nat QJT VARCHAR?,
cont ent Lengt h QJUT | NTEGR),

STATI C PROCEDURE get Properti es(i nageBl ob I N BLCB,
attributes IN QJT NOOCPY AL(B),
STATI C PROCEDURE get Properti es(i nageBfil e IN QJT NOOCPY BFI LE,
attributes I'N QJT NOOCPY LB,
m neType QUT VARCHAR?,
wi dth QJT | NTEGER
hei ght QUT | NTECER
fil eFor mat QUT VARCHAR?,
cont ent For nat QJT VARCHAR?,

conpr essi onFor nat QJT VARCHAR?,
cont ent Lengt h QJUT | NTEGER),

STATI C PROCEDURE get Properti es(i mageBfile | N QJI NOOCPY BFI LE,

attributes N QJI NOOCPY ALCB),

STATI C PROCEDURE process(i mageBl ob | N GQUT NOOCPY BLCB,

coomand | N VARCHAR?) ,

STATI C PROCEDURE pr ocessCopy(i nageB ob | N QUT NOOCPY BLCB,

command | N VARCHAR2,
dest I N QJT NOOCPY BLCB),

STATI C PROCEDURE pr ocessCopy(i nageBfile | N QJT BF LE,

comrand IN VARCHARZ,
dest IN QUT NOOCPY BL(B),

10.5.1 Example Table Definitions

The methods described in this section show examples based on a test image table
TIMG. Refer to the TIMG table definition that follows when reading through the

examples:

TIMG Table Definition
CREATE TABLE ting(n NUMBER

ing BLCB

interMedia Relational Interface Reference 10-39

Static Methods Unique to the ORDImage Object Type Relational Interface

attributes A.CB,

m net ype VARCHAR2(4000) ,

wi dth | NTEGER

hei ght | NTEGER

fileformat VARCHAR2(4000),
contentfornmat VARCHARZ2(4000),
conpr essi onf or mat VARCHAR2(4000) ,

contentl ength | NTEGER
STCRAGE (I N TI AL 100K NEXT 100K PCTI NCREASE 0);

INSERT INTOtiny VALLES(1, EMPTY BLCB(), EMPTY CLCB(), NLLL,
NOLL, NULL, NULL, NULL, NULL, NULL);
INSERT INTOtiny VALLES(2, EMPTY BLCB(), EMPTY CLCB(), NLLL,
NULL, NULL, NULL, NULL, NULL, NULL);
aOWM T

10-40 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs

getProperties() for BLOBs

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getProperties(imageBlob IN BLOB,
attributes IN OUT NOCOPY CLOB);

Reads the image BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with a set of format properties in XML form.

imageBlob
The image data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BLOB
data in XML form.

None.

None.

ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Get the property information for known image attributes:

CEQLARE
ing_attrib A.CB

interMedia Relational Interface Reference 10-41

getProperties() for BLOBs

ing_data BLCB,

BEG N
SHECT ing, attributes INTOing_data, ing_attrib FROMting WAERE N = 1 FCR UPDATE,
CROSYS. CRD mage. get Properties(i ng_data, ing_attrib);

DBVE QUTPUT. put _li ne(’ Size of XML Annotations ' ||
TO GHAR(DBVB_LCB. GETLENGIH(i ng_attrib)));
UPDATE ting SET ing=ing_data, attributes=ing_attrib WHERE N1,
QOWM T,
EXCEPTI ON
WEN OTHERS THEN
RAI S5
END,
/

10-42 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

getProperties() (all attributes) for BLOBs

Format

Description

Parameters

getProperties(imageBlob IN BLOB,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHARZ2,
width OUT INTEGER,
height OUT INTEGER,
fileFormat OUT VARCHAR?2,

contentFormat OUT VARCHAR?,
compressionFormat OUT VARCHAR?2,
contentLength OUT INTEGER);

Reads the image BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the image data: MIME
type, width, height, file format, content format, compression format, and content
length. It populates the CLOB with a set of format properties in XML form.

imageBlob
The image data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BLOB
data in XML form.

mimeType
The MIME type of the image data.

width
The width of the image in pixels.

interMedia Relational Interface Reference 10-43

getProperties() (all attributes) for BLOBs

Usage Notes

Pragmas

Exceptions

Examples

height
The height of the image in pixels.

fileFormat
The format of the image data.

contentFormat
The type of image (monochrome, and so forth).

compressionFormat
The compression algorithm used on the image data.

contentLength
The size of the on-disk image file in bytes.

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

None.

ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Get the property information for known image attributes:

DEQLARE
ing_data BLCB;
ing_attrib acs
m meType VARCHAR2(14000) ;
w dt h NUMBER
hei ght NUMBER,
fil eFor nat VARCHAR2(32) ;
cont ent For mat VARCHAR2(14000) ;

conpr essi onFor mat VARCHAR2(4000) ;
cont ent Lengt h NUMBER
BEA N
SHECT ing, attributes, mnetype, width, height, fileformat, contentfornat,
conpressionformat, contentlength INTOing_data, ing_attrib, mneType, wdth, height,

10-44 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

fileFormat, contentFornat, conpressionFornmat, contentlength FROMting WHERE N = 1 FCR
UPDATE,

CROSYS. CRD mage. get Properties(ing_data, ing_attrib,
mneType, w dth, height, fileFornat,
cont ent Format, conpressi onFornat, contentLengt h);

DBVS QUTPUT. put _line(’ Size of XML Annotations ' ||
TO GHAR(DBMVB LCB. GETLENGTH(i ng_attrib)));

DBVS QUTPUT. put _l i ne(’ mneType: * || mineType);
DBVS QUTPUT. put _line("width: ' || width);
DBVS QUTPUT. put _line(' height: ' || height);
DBVS QUTPUT. put _line('fileFormat: ' || fileFornat);
DBVS QUTPUT. put _l i ne(’ content Fornmat: ' || content Fornat);
DBVS QUTPUT. put _l i ne(’ conpressi onFormat: ' || conpressi onFornat);
DBVS QUTPUT. put _l i ne(’ contentLength: * || contentlLength);
UPDATE ting SET
i ng=i ng_dat a,

attributes=ing_ attrib,
m net ype=m neType,
wi dt h=wi dt h,
hei ght =hei ght,
fileformat=fileFornat,
cont ent f or mat =cont ent For nat ,
conpr essi onf or mat =conpr essi onFor nat ,
cont ent | engt h=cont ent Lengt h
WHERE N=1;
QGOWT,
EXCEPTI ON
WEN OTHERS THEN
RA S5
END,
/

interMedia Relational Interface Reference 10-45

getProperties() for BFILES

getProperties() for BFILES

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getProperties(imageBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB);

Reads the image BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with a set of format properties in XML form.

imageBfile
The image data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BFILE
data in XML form.

None.

None.

ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Get the property information for known image attributes:

CEQLARE
ing_attrib A.CB

10-46 Oracle interMedia User’s Guide and Reference

getProperties() for BFILES

data BFILE := BFI LENAME(' IMMED R, "testing.dat’);

BEA N
CB\VB LCB. CREATETEMPCRARY(i ng_attrib, FALSE, DBVB LCB. CALL);
CROSYS. CRD mage. get Properties(data, ing_attrib);

DBVE QUTPUT. put _li ne(’ Size of XML Annotations ' ||
TO CHAR(DBVB_LCB. GETLENGTH(i ng_attrib)));
EXCEPTI ON
WHEN OTHERS THEN
RAI SE
END,
/

interMedia Relational Interface Reference 10-47

getProperties() (all attributes) for BFILES

getProperties() (all attributes) for BFILES

Format
getProperties(imageBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHAR?2,
width OUT INTEGER,
height OUT INTEGER,
fileFormat OUT VARCHAR?2,
contentFormat OUT VARCHAR2,
compressionFormat OUT VARCHAR?2,
contentLength OUT INTEGER);
Description
Reads the image BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the image data: MIME
type, width, height, file format, content format, compression format, and content
length. It populates the CLOB with a set of format properties in XML form.
Parameters

imageBfile
The image data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BFILE

data in XML form.

mimeType
The MIME type of the image data.

width
The width of the image in pixels.

10-48 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs

height
The height of the image in pixels.

fileFormat
The format of the image data.

contentFormat
The type of image (monochrome, and so forth).

compressionFormat
The compression algorithm used on the image data.

contentLength
The size of the on-disk image file in bytes.

Usage Notes

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.
Exceptions
ORDImageExceptions.NULL_CONTENT
This exception is raised when the content attribute is NULL.
Examples
Get the property information for known image attributes:
DECLARE
ing_data BFI LE : = BFI LENAMVE(' IMMED R, "testing.dat’);
ing_attrib [eNe:S
m neType VARCHAR2(80) ;
widith NUMBER
hei ght NUMBER
fil eFor nat VARCHAR2(32) ;

cont ent For mat VARCHAR2(4000) ;
conpr essi onFor mat VARCHAR2(4000) ;
cont ent Lengt h NUMBER
BEG N
DBVB LCB. GREATETEMPCRARY(i ng_attrib, FALSE, DBVE LCB. CALL);

interMedia Relational Interface Reference 10-49

getProperties() (all attributes) for BFILES

CROSYS. CRD mage. get Properties(ing_data, ing_attrib,
mneType, w dth, height, fileFornat,
cont ent Format, conpressi onFornat, contentLengt h);

DBVB QUTPUT. put _line(’ Size of XM Annotations ’ ||
TO CHAR(DBMS LCB. GETLENGTH(i ny_attrib)));

DBVS QUTPUT. put _l i ne(’ mneType: * || mineType);
DBVB QUTPUT. put _line("width: ' || width);
DBVS QUTPUT. put _line(' height: ' || height);
DBVS QUTPUT. put _line('fileFormat: ' || fileFornat);
DBVS QUTPUT. put _l i ne(’ content Fornmat: ' || content Fornat);
DBVS QUTPUT. put _l i ne(’ conpressi onFormat: ' || conpressi onFornat);
DBVS QUTPUT. put _l i ne(’ contentLength: * || contentlLength);
EXCEPTI ON
WEN OTHERS THEN
RAl S5
END,

/

10-50 Oracle interMedia User’s Guide and Reference

process()

process()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

process(imageBlob IN OUT NOCOPY BLOB,
command IN VARCHAR?2);

Performs one or more image processing operations on a BLOB, writing the image
back onto itself.

imageBlob
The image data represented as a BLOB.

command
A list of image processing operations to perform on the image.

You can change one or more of the image attributes shown in Table 8-1. Table 8-2
shows additional changes that can be made only to raw pixel and foreign images.
See Appendix D for more information on process() method operators.

The process() method changes image attributes, therefore if you are storing image
attributes, you should call the getProperties() method after calling the process()
method.

None.

DATA_NOT_LOCAL

This exception is raised if you call the process() method and the imageBlob
parameter is not initialized.

interMedia Relational Interface Reference 10-51

process()

Examples

Example 1: Change the file format of an image in the image_data BLOB to GIF:
CROSYS. CRD nage. process(i nage_data, 'fileFormat=A FF);

Example 2: Change the image in the image_data BLOB to use higher quality JPEG
compression and double the length of the image along the X-axis:

CQRDSYS. CRD mage. process(i nage_data, ' conpr essi onFor mat =JPEG
conpr essi onQual i t y=NAXQOMPRATI Q xScal e="2.0"") ;

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single scale operation. Any
other combinations of scale operators result in an error.

Example 3: The maxScale and fixedScale operators are especially useful for creating
thumbnail images from various-sized originals. The following line creates at most a
32-by-32 pixel thumbnail image, preserving the original aspect ratio:

ORDSYS.ORDImage.process(image_data, 'maxScale=32 32);

Example 4: Convert the image to TIFF:

DECLARE
img_attrib CLOB;
image_data BLOB;
BEGIN
SELECT img, attributes INTO image_data, img_attrib FROM timg WHERE N=1 FOR
UPDATE;
ORDSYS.ORDImage.process(image_data, fleFormat=TIFF);
ORDSYS.ORDImage.getProp(image_data, img_attrib);
UPDATE timg SET img =image_data, attributes=img_attrib WHERE N =1;
COMMIT;
EXCEPTION
WHEN OTHERS THEN
RAISE;
END;
/

10-52 Oracle interMedia User’s Guide and Reference

processCopy() for BLOBs

processCopy() for BLOBs

Format

Description

Parameters

Usage Notes

processCopy(imageBlob IN BLOB,
command IN VARCHAR2,
dest IN OUT NOCOPY BLOB);

Copies an image stored internally to another image stored internally in a BLOB and
processes the destination image.

imageBlob
The source image data represented as a BLOB.

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

See Table 8-1, "Image Processing Operators" and Table 8-2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

You cannot specify the same BLOB as both the source and destination.

Calling this method processes the image into the destination BLOB from any source
BLOB.

The processCopy() method changes image attributes, therefore if you are storing
image attributes, you should call the getProperties() method after calling the
processCopy() method.

See Appendix D for more information on processCopy operators.

interMedia Relational Interface Reference 10-53

processCopy() for BLOBs

Pragmas
None.
Exceptions
DATA_NOT_LOCAL
This exception is raised if you call the processCopy() method and the imageBlob
parameter is not initialized.
Examples

Copy an image, changing the file format, compression format, and content format
in the destination image:

CEQLARE
dest _attrib a
i nage_dat a BLCB;
destination data BLCB
t he_Command VARCHAR2(4000) ;
BEA N

SELECT ing INTO i nage_data FROMting WHERE N = 1;
SELECT ing, attributes | NTO destination data, dest_attrib FROMting
WERE N = 2 FOR UPDATE,

the_Command :="fileFormat=tiff, conpressi onFornat=packbits,
content Fornat =8bitl ut’;
CROSYS. CRD nage. processQopy(i mage_data, the_Command, destination_data);
CROSYS. CRD nage. get Properti es(destinati on_data, dest_attrib);
UPDATE ting SET ing = destination_data, attributes=dest_attrib WHERE N = 2;
QOWT;
BEXCEPTI ON
WEN OTHERS THEN
RAl S5
BEND,
/

10-54 Oracle interMedia User’s Guide and Reference

processCopy() for BFILEs

processCopy() for BFILES

Format

Description

Parameters

Usage Notes

Pragmas

processCopy(imageBfile IN OUT NOCOPY BFILE,
command IN VARCHAR2,
dest IN OUT NOCOPY BLOB);

Copies an image stored externally to another image stored internally in a BLOB and
processes the destination image.

imageBfile
The image data represented as a BFILE.

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

See Table 8-1, "Image Processing Operators" and Table 8-2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

Calling this method processes the image into the destination BLOB from any source
BFILE.

The processCopy() method changes image attributes, therefore if you are storing
image attributes, you should call the getProperties() method after calling the
processCopy() method.

See Appendix D for more information on processCopy operators.

None.

interMedia Relational Interface Reference 10-55

Static Methods Unique to the ORDVideo Object Type Relational Interface

Exceptions

Examples

NULL_DESTINATION

This exception is raised if you call the processCopy/() method and the value of dest
is NULL.

NULL_LOCAL_DATA

This exception is raised when source.localData is NULL.

Copy an image, generating a thumbnail of, at most, 32 x 32 pixels in the destination
image:

DEQLARE
dest _attrib a
i nage_dat a BFI LE : = BFI LENAME' IMMED R, ' testing. dat’);
destination data BLCB
t he_Command VARCHAR2(4000) ;
BEG N

SELECT ing, attributes | NTO destination data, dest_attrib FROMting
WHERE N = 2 FOR UPDATE,

the Command : = ' naxScal e=32 32';
CROSYS. (RD nage. processQopy(i mage_data, the Command, destination_data);
CROSYS. CRD nage. get Properti es(destinati on_data, dest_attrib);
UPDATE ting SET ing = destination_data, attributes=dest_attrib WHERE N = 2;
AW T;
BEXCEPTI ON
WEN OTHERS THEN
RAI S5
BEND,
/

10.6 Static Methods Unique to the ORDVideo Object Type Relational

Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDVideo relational interface.

The relational interface adds interMedia support to video data stored in BLOBs and
BFILESs rather than in the ORDVideo type. The following interface is defined in the
ordvspec.sql file:

10-56 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDVideo Object Type Relational Interface

-- Satic Methods for the relational interface

STATI C PROCEDURE export (ct X IN QJT RAWY
| ocal _data IN BLCB,
sour ce_t ype I'N VARCHAR?,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,
STATI C PROCEDURE i npor t Fr ong ct x IN QJT RAW
| ocal _data I'N QUT NOOCPY BLCB,
sour ce_t ype I N VARCHARZ,
source_|l ocation | N VARCHAR?,
sour ce_nane I'N VARCHAR?) ,
STATI C PROCEDURE i npor t Frong ct x IN QJT RAW
| ocal _data I'N QUT NOOCPY BLCB,
sour ce_t ype I N VARCHARZ,
source_|l ocation | N VARCHAR?,
sour ce_nane I N VARCHAR?,
f or mat QJT VARCHAR?,
m ne_t ype QUT VARCHAR?) ,
STATI C PROCEDURE get Properti es(ct x IN QJT RAW
vi deoBl ob IN BLGB,
attributes I'N QJT NOOCPY LB,
f or mat I N VARCHAR?) ,
STATI C PROCEDURE get Properti es(ct x IN QJT RAW
vi deoBl ob IN BLCB,
attributes IN QUT NOOCPY LGB,
m neType QUT VARCHAR?,
f or mat IN QJT VARCHAR?,
wi dth QUJT | NTEGER
hei ght QJT | NTEGER
frameResol ution QJT | NTEGER
franeRat e | NTEGER

aJr
vi deolur ati on aJr
nunberd Frames QJT
conpressi onType QJT V,
nunberFGolors QJT
bitRate aJr

interMedia Relational Interface Reference 10-57

Static Methods Unique to the ORDVideo Object Type Relational Interface

STATI C PROCEDURE get Properti es(ct x IN QJT RAWY
vi deoBfil e I'N QJT NOOCPY BFI LE,
attributes I'N QJT NOOCPY LB,
f or mat I N VARCHAR?) ,

STATI C PROCEDURE get Properti es(ct x IN QJT RAW
vi deoBfil e I'N QJT NOOCPY BFI LE,
attributes I'N QJT NOOCPY ALCB,
m neType QUT VARCHAR?,
f or mat IN QJT VARCHAR?,
w dth QJT | NTEEER
hei ght QJT | NTEGER
franeResol ution QJT | NTEGER
franeRat e | NTEGER

aJr
vi deolur at i on aJr
nunberd Franmes QJT
conpr essi onType QJT V,
nunberFGolors QJT
bitRate aJr

10.6.1 Example Table Definitions

The methods described in this section show examples based on a test video table
TVID. Refer to the TVID table definition that follows when reading through the
examples:

TVID Table Definition

CREATE TABLE tvi d(n NJMBER
vid BLGB,
attributes ALCB,
m net ype VARCHAR2(4000) ,
format VARCHAR2(31),
w dt h | NTEGER
hei ght | NTECER
franeresol ution | NTECER
framerate | NTECER
vi deodur at i on | NTECER
nunber of f ranes | NTECER
conpr essi ont ype VARCHAR2(4000) ,
nunber of col ors | NTEGER

bitrate | NTEGER

10-58 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDVideo Object Type Relational Interface

STCRAGE (I N TIAL 100K NEXT 100K PCTI NOREASE 0);

INSERT INTOtvid VALUES(1, EMPTY BLCB(), BMPTY_CLCB(), NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ;

INSERT INTOtvid VALUES(2, BEMPTY BLCB(), BEMPTY_QLQB(), NUL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ;

GOWT;

interMedia Relational Interface Reference 10-59

getProperties() for BLOBs

getProperties() for BLOBs

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
videoBlob IN BLOB,
attributes ~ IN OUT NOCOPY CLOB,
format IN VARCHAR2);

Reads the video BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

ctx
The format plug-in context information.

videoBlob
The video data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BLOB data in XML form.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked.

None.

None.

10-60 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs

Exceptions
VIDEO_PLUGIN_EXCEPTION
This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.
ORDSourceExceptions.EMPTY_SOURCE
This exception is raised when the source is local but the source is NULL.
Examples
Get the property information for known video attributes:
DEQLARE

vid_attrib A.CB
ctx RAW4000) :=N.LL;
vid_data BLCB;
vid_format VARCHAR2(31) := NULL;
BEA N
SHECT vid, attributes INTOvid_ data, vid attrib FROMtvid WHERE N = 1 FCR UPDATE,
CROSYS. CRDMVi deo. get Properties(ctx, vid data, vid attrib, vid fornat);

DBVS QUTPUT. put _line(’ Size of XM. Annotations ' ||
TO CHAR(DBMVB LCB. GETLENGTH(vid_attrib)));
UPDATE tvid SET vid=vid_data, attributes=vid_attrib WHERE N=1,
GOWT;
EXCEPTI ON
WEN OTHERS THEN
RA SE
END,
/

interMedia Relational Interface Reference 10-61

getProperties() (all attributes) for BLOBs

getProperties() (all attributes) for BLOBs

Format
getProperties(ctx IN OUT RAW,

videoBlob IN BLOB,

attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHARZ,
format IN OUT VARCHAR2
width OUT INTEGER,
height OUT INTEGER,
frameResolution ~ OUT INTEGER,
frameRate OUT INTEGER,
videoDuration OUT INTEGER,
numberOfFrames OUT INTEGER,
compressionType OUT VARCHAR?2,
numberOfColors ~ OUT INTEGER,
bitRate OUT INTEGERY);

Description

Reads the video BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the video data: MIME
type, format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate. It populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

10-62 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

videoBlob
The video data represented as a BLOB.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BLOB data in XML form.

mimeType
The MIME type of the video data.

format

The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked. If specified as NULL, the format of the video
data is returned.

width
The width of the frame in pixels of the video data.

height
The height of the frame in pixels of the video data.

frameResolution
The number of pixels per inch of frames in the video data.

frameRate
The number of frames per second at which the video data was recorded.

videoDuration
The total time required to play the video data.

numberOfFrames
The total number of frames in the video data.

compressionType
The compression type of the video data.

numberOfColors
The number of colors in the video data.

bitRate
The bit rate in the video data.

interMedia Relational Interface Reference 10-63

getProperties() (all attributes) for BLOBs

Usage Notes

Pragmas

Exceptions

Examples

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

None.

VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known video attributes:

DEQLARE
vid_attrib acs
ctx RAW4000) :=NUL;
vi d_data BLCB;
m meType VARCHAR2(180) ;
f or mat VARCHAR2(32) ;
wi dt h NUMBER
hei ght NUMBER,
franeResol ution NUMBER
franeRat e NUMBER,
vi deoDur ati on NUMBER,
nunber & Fr anes NUMBER,
conpr essi onType VARCHAR2(160) ;
nunber & Gl or s NUMBER,
bitRate NUMBER

BEGA N

SHECT vid, attributes, mnetype, format, wdth, height, franeresolution, franerate,
vi deodur at i on, nunber of franes, conpressi ontype, nunberof col ors, bitrate | NTO vid_data,
vid attrib, mmeType, format, wdth, height, franeResol ution, franeRate, videoDuration,
nunber & Fr anes, conpr essi onType, nunber 0 Col ors, bitRate FROMtvid WHERE N = 1;

CROSYS. CRDMVi deo. get Properties(ctx, vid data, vid attrib, mneType, fornat,
w dth, height, franeResol ution, franeRate,
vi deoDur ati on, nunber Cf Frames, conpressi onType, nunber (F Gol ors, bitRate);

10-64 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs

DBVB QUTPUT. put _line(’ Size of XM Annotations ' ||
TO CHAR(DBVE LCB. CETLENGTH vid_attrib)));

DBVE QUTPUT. put _li ne(’ mneType: ' || mineType);

DBVB QUTPUT. put _line('format: ' || format);

DBVB QUTPUT. put _line("wdth: ' || width);

DBVE QUTPUT. put _line(' height: ' || height);

DBVS QUTPUT. put _| i ne(’ franeResol ution: * || frameResolution);
DBVS QUTPUT. put _line(’ franeRate: ' || frameRate);

DBVS QUTPUT. put _l i ne(’ videoDuration: ' || videoDuration);
DBV QUTPUT. put _I i ne(’ nunber & Franes: ' || nunber &' Franes);
DBV QUTPUT. put _| i ne(’ conpr essi onType: * || conpressi onType);
DBV QUTPUT. put _li ne(’ nunberJ Gl ors: ' || nunberGGolors);
DBVS QUTPUT. put _line(’ bitRate: ' || bitRate);

UPDATE tvid SET
vi d=vi d_dat a,
attributes=vid attrib,
m net ype=n neType,
format =f or nat ,
W dt h=wi dt h,
hei ght =hei ght,
franeresol uti on=franeResol uti on,
franerat e=franeRat e,
vi deodur at i on=vi deoDur ati on,
nunber of f r anes=nunber & Fr anes,
conpr essi ont ype=conpr essi onType,
nunber of col or s=nunber & ol or s,
bi trate=bitRate
WHERE N-=1;
GOW T,
EXCEPTI ON
WEN OTHERS THEN
RAl SE
END,
/

interMedia Relational Interface Reference 10-65

getProperties() for BFILES

getProperties() for BFILES

Format

Description

Parameters

Usage Notes

Pragmas

getProperties(ctx IN OUT RAW,
videoBfile IN OUT NOCOPY BFILE,
attributes ~ IN OUT NOCOPY CLOB,
format IN VARCHAR2);

Reads the video BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

ctx
The format plug-in context information.

videoBfile
The video data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BFILE data in XML form.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked.

None.

None.

10-66 Oracle interMedia User’s Guide and Reference

getProperties() for BFILES

Exceptions

Examples

VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known video attributes:

DEQLARE
vid_attrib A.CB
ctx RAW4000) :=N.LL;
vid_data BFILE := BFILENAME(VIDEODIR', testvid.dat);
vid_format VARCHAR2(160) := NULL;
BEGIN
DBMS_LOB.CREATETEMPORARY (vid_atirib, FALSE, DBMS_LOB.CALL);
ORDSYS.ORDVideo.getProperties(ctx, vid_data, vid_attrib, vid_format);

DBMS_OUTPUT put_line('Size of XML Annotations ' ||
TO_CHAR(MDBMS_LOB.GETLENGTH(vid_attrib)));
EXCEPTION
WHEN OTHERS THEN
RAISE;
END;
/

interMedia Relational Interface Reference 10-67

getProperties() (all attributes) for BFILES

getProperties() (all attributes) for BFILES

Format
getProperties(ctx IN OUT RAW,

videoBfile IN OUT NOCOPY BFILE,
attributes IN OUT NOCOPY CLOB,
mimeType OUT VARCHARZ2,

format IN OUT VARCHAR?2,
width OUT INRTEGER,

height OUT INTEGER,
frameResolution ~ OUT INTEGER,
frameRate OUT INTEGER,
videoDuration OUT INTEGER,
numberOfFrames OUT INTEGER,
compressionType OUT VARCHAR?2,
numberOfColors ~ OUT INTEGER,
bitRate OUT INTEGERY);

Description

Reads the video BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the video data: MIME
type, format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate. It populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

10-68 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs

videoBfile
The video data represented as a BFILE.

attributes

The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BFILE data in XML form.

mimeType
The MIME type of the video data.

format

The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked. If specified as NULL, the format of the video
data is returned.

width
The width of the frame in pixels of the video data.

height
The height of the frame in pixels of the video data.

frameResolution
The number of pixels per inch of frames in the video data.

frameRate
The number of frames per second at which the video data was recorded.

videoDuration
The total time required to play the video data.

numberOfFrames
The total number of frames in the video data.

compressionType
The compression type of the video data.

numberOfColors
The number of colors in the video data.

bitRate
The bit rate in the video data.

interMedia Relational Interface Reference 10-69

getProperties() (all attributes) for BFILES

Usage Notes

Pragmas

Exceptions

Examples

If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

None.

VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Get the property information for known video attributes:

DEQLARE
vid_attrib acs
ctx RAW4000) :=NUL;
vi d_data BFI LE : = BFI LENAVE'MMDEAD R, "testvid.dat’);
m meType VARCHAR2(180) ;
f or mat VARCHAR2(32) ;
wi dt h NUMBER
hei ght NUMBER,
frameResol ution NUMBER
franeRat e NUMBER

vi deoDur ati on NUMBER,
nunber & Fr anes NUMBER,
conpr essi onType VARCHAR2(160) ;
nunber & Gl or s NUMBER,
bitRate NUMBER,
BEA N
DBVE L(B. CREATETEMPCRARY(vi d_attrib, FALSE, DBVE L(B CALL);

CROSYS. CRDMVi deo. get Properties(ctx, vid data, vid attrib, mneType, fornat,
w dth, height, frameResol ution, franeRate,
vi deoDur ati on, nunber Cf Frames, conpressi onType, nunber (F Gol ors, bitRate);

DBVE QUTPUT. put _line(’ Sze of XM Annotations ' ||
TO CHAR(DBVB_LCB. GETLENGTH(vi d_attrib)));
DBVE QUTPUT. put _li ne(’ mneType: ' || mneType);

10-70 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs

DBVB QUTPUT. put _line('format: ' || format);
DBVB QUTPUT. put _line("wdth: ' || width);
DBVE QUTPUT. put _line(' height: ' || height);
DBVB QUTPUT. put _l i ne(’ frameResol ution: ' || franeResol ution);
DBVB QUTPUT. put _line(’ franeRate: ' || franeRate);
DBVS QUTPUT. put _l i ne(’ videoDuration: ' || videoDuration);
DBV QUTPUT. put _I i ne(’ nunber & Franes: ' || nunber G Franes);
DBV QUTPUT. put _| i ne(’ conpr essi onType: * || conpressi onType);
DBVE QUTPUT. put _li ne(’ nunberJ Gl ors: ' || nunberGGolors);
DBVS QUTPUT. put _line(’ bitRate: ' || bitRate);

EXCEPTI ON
WEN OTHERS THEN
RA SE

END,

/

interMedia Relational Interface Reference 10-71

getProperties() (all attributes) for BFILES

10-72 Oracle interMedia User’s Guide and Reference

11

Tuning Tips for the DBA

This chapter provides tuning tips for the Oracle DBA who wants to achieve more
efficient storage and management of multimedia data in the database when using
Oracle interMedia.

The goals of your interMedia application determine the resource needs and how
those resources should be allocated. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your interMedia application in a production
environment.

Multimedia data consists of a variety of media types including character text,
images, audio clips, video clips, line drawings, and so forth. All these media types
are typically stored in LOBSs, in either internal LOBs (stored in an internal database
tablespace) or in BFILEs (external LOBs in operating system files outside of the
database tablespaces). This chapter discusses only the management of audio, image,
and video data.

Internal LOBs consist of: CLOBs, NCLOBs, and BLOBs and can be up to 4 gigabytes
in size. BFILESs can be as large as the operating system will allow up to a maximum
of 4 gigabytes.

Oracle interMedia manages a variety of LOB types. The following general topics
will help you to better manage your interMedia LOB data:

« Setting database initialization parameters
« Issues to consider in creating tables with interMedia objects containing LOBs

« Improving multimedia data INSERT performance in interMedia objects
containing LOBs

« Putting into practice user guidelines for best performance results

Tuning Tips for the DBA 11-1

Setting Database Initialization Parameters

« Improving interMedia LOB data retrieval and update performance

For more information about LOB partitioning, LOB tuning, and LOB buffering, see
Oracle9i Application Developer’s Guide - Large Objects (LOBs), Oracle Call Interface
Programmer’s Guide, Oracle9i Database Concepts, and Oracle9i Database Performance
Guide and Reference.

For information on restrictions to consider when using LOBs, see Oracle9i
Application Developer’s Guide - Large Objects (LOBS).

For guidelines on using the DIRECTORY feature in Oracle9i, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs). This feature enables a simple, flexible,
nonintrusive, and secure mechanism for the DBA to manage access to large files in
the server file system.

11.1 Setting Database Initialization Parameters

The information that follows is an excerpt from Oracle9i Database Performance Guide
and Reference and Oracle9i Database Reference, and is presented as an overview of the
topic. Refer to Oracle9i Database Performance Guide and Reference and Oracle9i
Database Reference for more information.

Database tuning of the Oracle instance consists of tuning the system global area
(SGA). The SGA is used to store data in memory for fast access. The SGA consumes
a portion of your system’s physical memory. The SGA must be sufficiently large to
keep your data in memory but neither too small nor so large that performance
begins to degrade. Degrading performance occurs when the operating system
begins to page unused information to disk to make room for new information
needed in memory, or begins to temporarily swap active processes to disk so other
processes needing memory can use it. Excessive paging and swapping can bring a
system to a standstill. The goal in sizing the SGA is to size it for the data that must
be kept in main memory to keep performance optimal. With this in mind, you must
size the SGA required for your interMedia application. This may mean increasing
the physical memory of your system and monitoring your operating system
behavior to ensure paging and swapping remains minimal.

The size of the SGA is determined by the values of the following database
initialization parameters: DB_BLOCK_SIZE, DB_CACHE_SIZE, SHARED_POOL _
SIZE, and LOG_BUFFER.

Beginning with Oracle9i, the SGA infrastructure is dynamic. This means that the
following primary parameters used to size the SGA can be changed while the
instance is running:

11-2 Oracle inteMedia User’s Guide and Reference

Setting Database Initialization Parameters

« Buffer cache (DB_CACHE_SIZE) -- the size in bytes of the cache of standard
blocks

« Shared pool (SHARED _POOL_SIZE) -- the size in bytes of the area devoted to
shared SQL and PL/SQL statements

« Large pool (LARGE_POOL_SIZE) (default is 0 bytes) -- the size in bytes of the
large pool used in shared server systems for session memory, parallel execution
for message buffers, and by backup and restore processes for disk 1/0 buffers

The LOG_BUFFER parameter is used when buffering redo entries to a redo log. It is
a static parameter and represents a very small portion of the SGA and can be
changed only by stopping and restarting the database to read the changed value for
this parameter from the initialization parameter file (init.ora).

Note that even though you cannot change the MAX_SGA_SIZE parameter value
dynamically, you do have the option of changing any of its three dependent
primary parameters (DB_CACHE_SIZE, SHARED POOL_SIZE, and LARGE_
POOL_SIZE) to make memory tuning adjustments on the fly. To help you specify an
optimal cache value, you can use the dynamic DB_CACHE_ADVICE parameter
with statistics gathering enabled to predict behavior with different cache sizes
through the V$DB_CACHE_ADVICE performance view. Use the ALTER
SYSTEM...SET clause... statement to enable this parameter. See Oracle9i Database
Performance Guide and Reference for more information about using this parameter.

Beginning with Oracle9i, there is a concept of creating tablespaces with multiple
block sizes and specifying cache sizes corresponding with each block size. The
SYSTEM tablespace uses a standard block size and additional tablespaces can use
up to five non-standard block sizes.

The standard block size is specified by the DB_BLOCK_SIZE parameter. Its cache
size is specified by the DB_CACHE_SIZE parameter. Non-standard block sizes are
specified by the BLOCKSIZE clause of the CREATE TABLESPACE statement. The
cache size for each corresponding non-standard block size is specified using the
notation: DB_nK_CACHE_SIZE parameter, where the value n is 2, 4, 8, 16, or 32 K
bytes.

The standard block size, known as the default block size, is usually set to the same
size in bytes as the operating system block size, or a multiple of this size. The DB_
CACHE_SIZE parameter, known as the DEFAULT cache size, specifies the size of
the cache of standard block size (default is 48M bytes). The system tablespace uses
the standard block size and the DEFAULT cache size.

Either the standard block size or any of the non-standard block sizes and their
associated cache sizes can be used for any of your other tablespaces. If you intend to

Tuning Tips for the DBA 11-3

Setting Database Initialization Parameters

use multiple block sizes in your database storage design, you must specify at least
the DB_CACHE_SIZE and one DB_nK_CACHE_SIZE parameter value. You must
specify all sub-caches for all the other non-standard block sizes that you intend to
use. This block size/cache sizing scheme lets you use up to five different
non-standard block sizes for your tablespaces and lets you specify respective cache
sizes for each corresponding block size. For example, you can size your system
tablespace to the normal 2K or 4K bytes standard block size with a default DB_
CACHE_SIZE of 48M bytes or whatever size you want to specify. Then you can use
the remaining non-standard block sizes of 2K or 4K, 8K, 16K, or the maximum 32K
bytes for storing your interMedia LOB data in appropriate block-sized tablespaces
and respective caches to achieve optimal LOB storage and retrieval performance.

Because the DB_BLOCK_SIZE parameter value can be changed only by re-creating
the database, the value for this parameter must be chosen carefully and remain
unchanged for the life of the database. See the next section “DB_BLOCK_SIZE” for
more information about this parameter.

The following sections describe these and some related initialization parameters
and their importance to interMedia performance.

DB_BLOCK_SIZE

The DB_BLOCK_SIZE parameter is the size in bytes of Oracle database blocks
(2048-32768). Oracle manages the storage space in the data files of a database in
units called data blocks. The data block is the smallest unit of 1/0 operation used by
a database; this value should be a multiple of the operating system’s block size
within the maximum (port-specific) limit to avoid unnecessary 1/0 operations. This
parameter value is set for each Oracle database from the DB_BLOCK_SIZE
parameter value in the initialization parameter file when you create the database.
This value cannot be changed unless you create the database again.

The size of a database block determines how many rows of data Oracle can store in
a single database page. The size of an average row is one piece of data that a DBA
can use to determine the correct database block size. interMedia objects with
instantiated LOB locators range in size from 175 bytes for ORDImage to 260 bytes
for ORDAudio and ORDVideo. This figure does not include the size of the media
data. (The difference in row sizes between instantiated image and audio and video
data is that audio and video data contain a Comments attribute that is about 85
bytes in size to hold the LOB locator.)

If LOB data is less than 4000 bytes, then it can be stored in line or on the same
database page as the rest of the row data. LOB data can be stored in line only when
the block size is large enough to accommodate it.

11-4 Oracle inteMedia User’s Guide and Reference

Setting Database Initialization Parameters

LOB data that is stored out of line, on database pages that are separate from the row
data, is accessed (read and written) by Oracle in CHUNK size pieces where
CHUNK is specified in the LOB storage clause (see Section 11.2 for more
information about the CHUNK option). CHUNK must be an integer multiple of
DB _BLOCK_SIZE and defaults to DB_BLOCK_SIZE if not specified. Generally, it is
more efficient for Oracle to access LOB data in large chunks, up to 32 KB. However,
when LOB data is updated, it may be versioned (for read consistency) and logged
both to the rollback segments and the redo log in CHUNK size pieces. If updates to
LOB data are frequent then it may be more efficient space wise to manipulate
smaller chunks of LOB data, especially when the granularity of the update is much
less than 32 KB.

The preceding discussion is meant to highlight the differences between the
initialization parameter DB_BLOCK_SIZE and the LOB storage parameter CHUNK.
Each parameter controls different aspects of the database design, and though
related, they should not be automatically equated.

Tuning Memory Allocation

Allocating memory to database structures and proper sizing of these structures can
greatly improve database performance when working with LOB data. See Oracle9i
Database Performance Guide and Reference for a comprehensive, in-depth presentation
of this subject, including understanding memory allocation issues as well as
detecting and solving memory allocation problems. The following sections describe
a few of the important initialization parameters specifically useful for optimizing
LOB performance relative to tuning memory allocation.

DB_CACHE_SIZE

The DB_CACHE_SIZE parameter specifies the size of the DEFAULT buffer pool for
buffers in bytes. This value is the database buffer value that is displayed when you
issue a SQL SHOW SGA statement. Because you cannot change the value of the

DB _BLOCK_SIZE parameter without re-creating the database, change the value of
the DB_CACHE_SIZE parameter to control the size of the database buffer cache
using the ALTER SYSTEM...SET clause... statement. The DB_CACHE_SIZE
parameter is dynamic.

BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE - Tuning Multiple
Buffer Pools Using the Standard Block Size

To greatly reduce 170 operations while reading and processing LOB data, tune the
database instance by partitioning your buffer cache into multiple buffer pools for
the tables containing the LOB columns.

Tuning Tips for the DBA 11-5

Setting Database Initialization Parameters

Note: Multiple buffer pools are available only for the standard
block size. Non-standard block size caches have a single DEFAULT
pool. Therefore, the information presented in this section applies to
only the scenario in which you are using only the standard block
size.

By default, all tables are assigned to the DEFAULT pool. Tune this main cache buffer
using the DB_CACHE_SIZE initialization parameter and assign the appropriate
tables to the keep pool using the DB_KEEP_CACHE_SIZE initialization parameter
and to the recycle pool using the DB_RECYCLE_CACHE_SIZE initialization
parameter.

The keep pool contains buffers that always stay in memory and is intended for
frequently accessed tables that contain important data. The recycle pool contains
buffers that can always be recycled and is intended for infrequently accessed tables
that contain much less important data. The size of the main buffer cache
(DEFAULT) is calculated from the value specified for the DB_CACHE_SIZE
parameter minus the values specified for the DB_ KEEP_CACHE_SIZE and DB_
RECYCLE_CACHE_SIZE parameters. Tables are assigned to respective buffer pools
(KEEP, RECYCLE, DEFAULT) using the STORAGE (buffer_pool) clause of the
CREATE or ALTER TABLE statement. Determine what tables you want allocated to
which of these memory buffers and the ideal size of each buffer when you
implement your memory allocation design. These parameter values can be changed
only in the initialization parameter file and take effect only after stopping and
restarting the database.

When working with very large images, set the DB_CACHE_SIZE parameter to a
large number for your Oracle instance. For example, to cache a 40MB image, set this
parameter to a value of 48MB. Some general guidelines to consider when working
with LOB data are:

= You should have enough buffers to hold the object, regardless of table LOB
logging and cache settings. See Section 11.2 for more information.

=« When using log files you should make the log files larger, otherwise, more time
is spent waiting for log switches. See Section 11.2 for more information.

« Ifthe same BLOB is to be accessed frequently, set the table LOB CACHE
parameter to TRUE. See Section 11.2 for more information.

« Use alarge page size (DB_BLOCK_SIZE) if the database is going to contain
primarily large objects.

11-6 Oracle inteMedia User’s Guide and Reference

Setting Database Initialization Parameters

See Oracle9i Database Performance Guide and Reference for more information about
tuning multiple buffer pools.

SHARED_POOL_SIZE

The SHARED_POOL_SIZE parameter specifies the size in bytes of the shared pool
that contains the library cache of shared SQL requests, shared cursors, stored
procedures, the dictionary cache, and control structures, Parallel Execution message
buffers, and other cache structures specific to a particular instance configuration.
This parameter value is dynamic. This parameter represents most of the variable
size value that displays when you issue a SQL SHOW SGA statement. Specifying a
large value improves performance in multi-user systems. A large value for example,
accommodates the loading and execution of interMedia PL/SQL scripts and stored
procedures; otherwise, execution plans are more likely to be swapped out. A large
value can also accommodate many clients connecting to the server with each client
connection using some shared pool space. However, when the shared pool is full,
the server is unable to accept additional client connections.

SHARED_POOL_RESERVED_SIZE

The SHARED POOL_RESERVED_SIZE parameter specifies the shared pool space
that is reserved for large contiguous requests for shared pool memory. This static
parameter should be set high enough to avoid performance degradation in the
shared pool from situations where pool fragmentation forces Oracle to search for
free chunks of unused pool to satisfy the current request.

Ideally, this parameter should be large enough to satisfy any request scanning for
memory on the reserved list without flushing objects from the shared pool.

The default value is 5% of the shared pool size, while the maximum value is 50% of
the shared pool size. For interMedia applications, a value at or close to the
maximum can provide performance benefits.

LOG_BUFFER

The LOG_BUFFER parameter specifies the amount of memory, in bytes, used for
buffering redo entries to the redo log file. Redo entries are written to the on disk log
file when a transaction commits or when the LOG_BUFFER is full and space must
be made available for new redo entries. Large values for LOG_BUFFER can reduce
the number of redo log file 1/0 operations by allowing more data to be flushed per
write. Large values can also eliminate the waits that occur when redo entries are
flushed to make space in the log buffer pool. interMedia applications that have
buffering enabled for the LOB data can generate large amounts of redo data when

Tuning Tips for the DBA 11-7

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

media is inserted or updated. These applications would benefit from a larger LOG_
BUFFER size. This is a static parameter.

11.2 Issues to Consider in Creating Tables with interMedia Column
Objects Containing BLOBs

The following information provides some strategies to consider when you create
tables with interMedia column objects containing BLOBSs. You can explicitly indicate
the tablespace and storage characteristics for each BLOB. These topics are discussed
in more detail and with examples in Oracle9i Application Developer’s Guide - Large
Objects (LOBs). The information that follows is excerpted from Chapter 2 and is
briefly presented to give you an overview of the topic. Refer to Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information.

11.2.1 Initializing Internal interMedia Column Objects Containing BLOBs to NULL or
EMPTY

An interMedia column object containing a LOB value set to NULL has no locator. By
contrast, an empty LOB stored in a table is a LOB of zero length that has a locator.
So, if you select from an empty LOB column or attribute, you get back a locator,
which you can use to fill the LOB with data using the OCI or DBMS_LOB routines
or ORDxxx.import method.

Setting interMedia Column Objects Containing a BLOB to NULL

You may want to set the BLOB value to NULL upon inserting the row whenever
you do not have the BLOB data at the time of the INSERT operation. In this case,
you can issue a SELECT statement at some later time to obtain a count of the
number of rows in which the value of the BLOB is NULL, and determine how many
rows must be populated with BLOB data for that particular column object.

However, the drawback to this approach is that you must then issue a SQL
UPDATE statement to reset the NULL BLOB column to EMPTY_BLOB(). The point
is that you cannot call the OCI or the PL/SQL DBMS_LOB functions on a BLOB that
is NULL. These functions work only with a locator, and if the BLOB column is
NULL, there is no locator in the row.

Setting an interMedia Column Object Containing a BLOB to EMPTY

If you do not want to set an interMedia column object containing a BLOB to NULL,
another option is to set the BLOB value to EMPTY by using the EMPTY_BLOB()
function in the INSERT statement. Even better, set the BLOB value to EMPTY by

11-8 Oracle inteMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

using the EMPTY_BLOB() function in the INSERT statement, and use the
RETURNING clause (thereby eliminating a round-trip that is necessary for the
subsequent SELECT statement). Then, immediately call OCI, the import method, or
the PL/SQL DBMS_L OB functions to fill the LOB with data. See Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for an example.

11.2.2 Specifying Tablespace and Storage Characteristics for interMedia Column
Objects Containing BLOBs

When you create tables and define interMedia column objects containing BLOBS,
you can explicitly indicate the tablespace and storage characteristics for each BLOB.
The following guidelines can help you fine-tune BLOB storage.

Tablespace

The best performance for interMedia column objects containing BLOBs can often be
achieved by specifying storage for BLOBs in a tablespace that is different from the
one used for the table that contains the interMedia object with a BLOB. See the
ENABLE | DISABLE STORAGE IN ROW clause near the end of this section for
further considerations on storing BLOB data inline or out of line. If many different
LOBs are to be accessed frequently, it may also be useful to specify a separate
tablespace for each BLOB or attribute in order to reduce device contention.
Preallocate the tablespace to the required allocation size to avoid allocation when
inserting BLOB data. See the Oracle9i SQL Reference manual for examples,
specifically the CREATE TABLE statement and the LOB column example. See
Example 11-1.

Example 11-1 assumes that you have already issued a CONNECT statement as a
suitably privileged user. This example creates a separate tablespace, called
MONTANA, that is used to store the interMedia column object containing BLOB
data for the image column. Ideally, this tablespace would be located on its own
high-speed storage device to reduce contention. Other image attributes and the
imagelD column are stored in the default tablespace. The initial allocation allows
100MB of storage space. The images to be inserted are about 20KB in size. To
improve insert performance, NOCACHE and NOLOGGING options are specified
along with a CHUNK size of 24KB.

Example 11-1 Create a Separate Tablespace to Store an interMedia Column Object
Containing LOB Data

SVRMERR> CREATE TABLESPACE MONTANA DATAFI LE ' nont ana. t bs’ Sl ZE 400M
S atenent processed.
SVRMER> CREATE TABLE i nages (i magel D | NTEGER , i nage CRDSYS. CRO nage)

Tuning Tips for the DBA 11-9

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

L@B (i nage. source. | ocal Data) STARE AS
(
TABLESPACE MONTANA
STCRACE (
IN TI AL 100M
NEXT 100M
)
CHNK 24K
NOCACHE NOLGE3 NG

)

LOB Index and LOB_index_clause

The LOB index is an internal structure that is strongly associated with the LOB
storage.

Note: The LOB_index_clause in the CREATE TABLE statement is
deprecated beginning with release 8.1.5. Oracle generates an index
for each LOB column and beginning with release 8.1.5, LOB indexes
are system named and system managed. For information on how
Oracle manages LOB indexes in tables migrated from earlier
versions, see Oracle9i Database Migration.

PCTVERSION Option

When an interMedia column object containing a BLOB is modified, a new version of
the BLOB page is made in order to support consistent reading of prior versions of
the BLOB value.

PCTVERSION is the percent of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to
occupy more than the PCTVERSION amount of used LOB space, Oracle tries to
reclaim the old versions and reuses them. In other words, PCTVERSION is the
percentage of used LOB data blocks that is available for versions of old LOB data.

One way of approximating PCTVERSION is to set PCTVERSION = (% of LOBs
updated at any given point in time) times (% of each LOB updated whenever a LOB
is updated) times (% of LOBs being read at any given point in time). Allow for a
percentage of LOB storage space to be used as old versions of LOB pages so users
can get consistent read results of data that has been updated.

Setting PCTVERSION to twice the default allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reading of
LOBs, it is useful to keep more old versions of LOB pages around. LOB storage may

11-10 Oracle inteMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

increase if you increase the PCTVERSION value because Oracle will not be reusing
free pages aggressively.

The more infrequent and smaller the LOB updates are, the less space that needs to
be reserved for old versions of LOB data. If existing LOBs are known to be
read-only, you could safely set PCTVERSION to 0% because there would never be
any pages needed for old versions of data.

CACHE or NOCACHE Option

Use the CACHE option on interMedia column objects containing BLOBs if the same
BLOB data is to be accessed frequently. The CACHE option puts the data into the
database buffer and makes it accessible for subsequent read operations. If you
specify CACHE, then LOGGING is used; you cannot have CACHE and
NOLOGGING.

Use the NOCACHE option (the default) if BLOB data is to be read only once or
infrequently, or if you have too much BLOB data to cache, or if you are reading lots
of images but none more frequently than others.

See Example 11-1.

LOGGING or NOLOGGING Option

An example of when NOLOGGING is useful is with bulk loading or inserting of
data. See Example 11-1. For instance, when loading data into the interMedia column
objects containing BLOBs, if you do not care about redo logging and can just start
the load over if it fails, set the BLOB data segment storage characteristics to
NOCACHE NOLOGGING. This setting gives good performance for the initial
loading of data. Once you have successfully completed loading the data, you can
use the ALTER TABLE statement to modify the BLOB storage characteristics for the
BLOB data segment to the desired storage characteristics for normal BLOB
operations, such as CACHE or NOCACHE LOGGING.

CHUNK Option

Set the CHUNK option to the number of blocks of interMedia column objects
containing BLOB data that are to be accessed at one time. That is, the number of
blocks that are to be read or written using the object.readFromSource or
object.writeToSource interMedia audio and video object methods or call,
OCIlLobRead(), OCILobWrite(), DBMS_LOB.READ(), or DBMS_LOB.WRITE()
during one access of the BLOB value. Note that the default value for the CHUNK
option is 1 Oracle block and does not vary across systems. If only 1 block of BLOB

Tuning Tips for the DBA 11-11

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

data is accessed at a time, set the CHUNK option to the size of 1 block. For example,
if the database block size is 2K, then set the CHUNK option to 2K.

Set the CHUNK option to the next largest integer multiple of database block size
that is slightly larger than the audio, image, or video data size being inserted.
Specifying a slightly larger CHUNK option allows for some variation in the actual
sizes of the multimedia data and ensures that the benefit is realized. For large-sized
media data, a general rule is to set the CHUNK option as large as possible. The
maximum is 32K in Oracle9i. For example, if the database block size is 2K or 4K or
8K and the image data is mostly 21K in size, set the CHUNK option to 24K. See
Example 11-1.

INITIAL and NEXT Parameters

If you explicitly specify the storage characteristics for the interMedia column object
containing a BLOB, make sure that the INITIAL and NEXT parameters for the
BLOB data segment storage are set to a size that is larger than the CHUNK size. For
example, if the database block size is 2K and you specify a CHUNK value of 8K,
make sure that the INITIAL and NEXT parameters are at least 8K, preferably higher
(for example, at least 16K).

For LOB storage, Oracle automatically builds and maintains a LOB index that
allows quick access to any chunk and thus any portion of a LOB. The LOB index
gets the same storage extent parameter values as its LOBs. Consequently, to
optimize LOB storage space, you should calculate the size of your LOB index size as
well as the total storage space needed to store the media data including its
overhead.

Assume that N files comprising of M total bytes of media data are to be stored and
that the value C represents the size of the LOB chunk storage parameter. To
calculate the total number of bytes Y needed to store the media data:

Y = M + (N*C)

The expression (N*C) accounts for the worst case in which the last chunk of each
LOB contains a single byte. Therefore, an extra chunk is allowed for each file that is
stored. On average, the last chunk will be half full.

To calculate the total number of bytes X to store the LOB index:
X =CEIL(M/C) * 32

The value 32 indicates that the LOB index requires roughly 32 bytes for each chunk
that is stored.

The total storage space needed for the media data plus its LOB index is then X + Y.

11-12 Oracle inteMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

The following two examples describe these calculations in detail.

Example 1: Assume you have 500 video clips comprising a total size of 250MB with
an average size is 512K bytes. Assume a LOB chunk size of 32768 bytes. The total
space needed for the media data is 250MB + (5000*32768) or 266MB. The overhead
is 16MB or about 6.5% storage overhead. The total space needed to store the LOB
index is CEIL(250MB/32768) * 32 or 244KB. The total space needed to store the
media data plus its LOB index is then about 266.6MB.

SQ > SHECT 250000000+(500* 32768) +CH L(250000000/ 32768) *32 FROM dual ;

250000000+(500* 32768) +CH L(250000000/ 32768) * 32

266628160

The following table definition could be used to store this amount of data:

CREATE TABLE video_itens

(

video id NUMBER,

vi deo_clip CROSYS. GRDM deo
)

-- storage paraneters for table in general
TABLESPACE vi deol STCRACE (I N TIAL 1M NEXT 10N
-- special storage paraneters for the video content
LCB(vi deo_cl i p. sour ce. | ocal data) STCRE AS
(TABLESPACE vi deo2 STCRAGE (I N TIAL 260K NEXT 270N
D SABLE STGRAGE | N ROV NOCACHE NOLO33 NG CHUNK 32768) ;

Example 2: Assume you have 5000 images comprising a total size of 274MB with an
average size of 56K bytes. Because the average size of the images are smaller than
the video clips in the preceding example, it is more space efficient to choose a
smaller chunk size, for example 8192 bytes to store the data in the LOB. The total
space needed for the media data is 274MB + (5000*8192) or 314MB. The overhead is
about 40MB or about 15% storage overhead. The total space needed to store the
LOB index is CEIL(274MB/8192) * 32 or 1.05MB. The total space needed to store the
media data plus its LOB index is then about 316 MB.

SQA> SHECT 274000000+(5000*8192) +CH L(274000000/ 8192) *32 FRCOM dual ;
274000000+(5000* 8192) +CH L(274000000/ 8192) *32

316030336

The following table definition could be used to store this amount of data:

Tuning Tips for the DBA 11-13

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

CREATE TABLE i nage_itens
(
inmage_id NUMBER
i nage CROSYS. (RO nage
)
-- storage paraneters for table in general
TABLESPACE i magel STCRACE (I N TIAL 1M NEXT 10N
-- special storage paraneters for the i nage content
LCB(i nage. sour ce. | ocal data) STCRE AS
(TABLESPACE i mage2 STCRACGE (I N TI AL 1200K NEXT 320N
D SABLE STCRAGE | N ROVNOCACHE NOLOG3 NG (HUNK 8192) ;

When working with very large BLOBs on the order of 1 gigabyte in size, choose a
proportionately large INITIAL and NEXT extent parameter size, for example an
INITIAL value slightly larger than your calculated LOB index size and a NEXT
value of 100 megabytes, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment; otherwise, if the
number of extents is large, the rollback segment can become saturated.

PCTINCREASE Parameter

Set the PCTINCREASE parameter value to 0 to make the growth of new extent sizes
more manageable. When working with very large BLOBs and the BLOB is being
filled up piece by piece in a tablespace, numerous new extents are created in the
process. If the extent sizes keep increasing by the default value of 50 percent each
time one is created, extents will become unmanageably big and eventually will
waste space in the tablespace.

MAXEXTENTS Parameter

Set the MAXEXTENTS parameter value to suit the projected size of the BLOB or set
it to UNLIMITED for safety. That is, when MAXEXTENTS is set to UNLIMITED,
extents will be allocated automatically as needed and this minimizes fragmentation.

ENABLE | DISABLE STORAGE IN ROW Clause

You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether
the interMedia column objects containing a BLOB should be stored inline (that is, in
the row) or out of line. You may not alter this specification once you have made it: if
you ENABLE STORAGE IN ROW, you cannot alter it to DISABLE STORAGE IN
ROW or the reverse. The default is ENABLE STORAGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum
VARCHAR size (4000). Note that this includes the control information as well as the

11-14 Oracle inteMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

LOB value. If the user indicates that the LOB should be stored in the row, once the
LOB value and control information are larger than 4000 bytes, the LOB value is
automatically moved out of the row.

This suggests the following guideline: If the interMedia column object containing a
BLOB is small (that is, less than 4000 bytes), then storing the BLOB data out of line
will decrease performance. However, storing the BLOB in the row increases the size
of the row. This has a detrimental impact on performance if you are doing a lot of
base table processing, such as full table scans, multiple row accesses (range scans),
or doing many UPDATE or SELECT statements to columns other than the
interMedia column objects containing BLOBs. If you do not expect the BLOB data to
be less than 4000 bytes, that is, if all BLOBs are big, then the default is the best
choice because:

« The LOB data is automatically moved out of line once it gets bigger than 4000
bytes.

« Performance can be better if the BLOB data is small (less than 4000 bytes
including control information) and is stored inline because the LOB locator and
the BLOB data can be retrieved in the same buffer, thus reducing 1/0
operations.

11.2.3 Segment Attributes and Physical Attributes

The following physical attribute is important for optimum storage of BLOB data in
the data block and consequently achieving optimum retrieval performance.

PCTFREE Parameter

The PCTFREE parameter specifies the percentage of space in each data block of the
table or partition reserved for future updates to each row of the table. Setting this
parameter to an appropriate value is useful for efficient inline storage of multimedia
data. The default value is 10%.

Set this parameter to a high enough value to avoid row chaining or row migration.
Because the INSERT statement for BLOBs requires an EMPTY_BLOB column object
initialization followed by an UPDATE statement to load the BLOB data into the
data block, you must set the PCTFREE parameter value to a proper value especially
if the BLOB data will be stored inline. For example, row chaining can result after a
row INSERT operation when insufficient space is reserved in the existing data block
to store the entire row, including the inline BLOB data in the subsequent UPDATE
operation. As a result, the row would be broken into multiple pieces and each piece
stored in a separate data block. Consequently, more 1/0 operations would be
needed to retrieve the entire row, including the BLOB data, resulting in poorer

Tuning Tips for the DBA 11-15

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

performance. Row migration can also result if there is insufficient space in the data
block to store the entire row during the initial INSERT operation, and thus the row
is stored in another data block.

To make best use of the PCTFREE parameter, determine the average size of the
BLOB data being stored inline in each row, and then determine the entire row size,
including the inline BLOB data. Set the PCTFREE parameter value to allow for
sufficient free space to store an entire row of data in the data block. For example, if
you have a large number of thumbnail images that are about 3K bytes in size, and
each row is about 3.8K bytes in size, and the database block size is 8K, set the value
of PCTFREE to a value that ensures that two complete rows can be stored in each
data block in the initial INSERT operation. This approach initially uses 1.6K bytes of
space (0.8K bytes/row *2 rows) leaving 6.4K bytes of free space. Because two rows
initially use 20% of the data block and 95% after an UPDATE operation and adding
a third row would initially use 30% of the data block causing a chain to occur when
the third row is updated, set the PCTRFEE parameter value to 75. This setting
permits a maximum of two rows to be stored per data block and leaves sufficient
space to update each row with its 3K image thumbnail leaving about 0.4K bytes free
space minus overhead per data block.

11.2.4 Accommodating Temporary LOBs in the Buffer Cache

Temporary LOBs created when you have set the table LOB CACHE parameter to
TRUE move through the buffer cache; otherwise, they are read directly from and
written to disk if the CACHE parameter is set to FALSE.

Use durations for automatic cleanup to save time and effort. Let the database end a
duration and free all temporary LOBs associated with a duration because this is
more efficient than freeing each one explicitly.

Temporary LOBs create deep copies of themselves on assignments; that is, a new
copy of the temporary LOB is created. Use the OClLobLocatorAssign() call to
assign the source locator to the destination locator when assigning one LOB locator
to another. If the source locator refers to a temporary LOB, specify the equals sign
(=) in the assignment to ensure that the two LOB locator pointers refer to the same
LOB locator; otherwise, the source temporary LOB is deep-copied and a destination
locator is created to refer to the new deep copy of the temporary LOB.

You may also want to consider using pass-by reference semantics in PL/SQL or
declare pointers to locators, because a pointer assignment does not cause a deep
copy. Instead, it causes the pointer to point to the same thing. See the PL/SQL User’s
Guide and Reference, Oracle9i Database Performance Guide and Reference, and Oracle Call
Interface Programmer’s Guide for more information.

11-16 Oracle inteMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs

11.2.5 Using interMedia Column Objects Containing BLOBs in Table Partitions

Because you can partition tables containing interMedia column objects that have
BLOBs, BLOB segments can be spread between several tablespaces to:

« Balance I/0 load
« Make backup and recovery operations more manageable
« Make BLOB maintenance easier

interMedia column objects containing BLOB data can be partitioned to improve 1/0
problems and to better balance the 1/0 load across the data files of the tablespace
containing the BLOB data. You can allocate data storage across devices to further
improve performance in a practice known as striping. This permits multiple
processes to access different portions of the table concurrently, without disk
contention.

interMedia column objects containing BLOB data can be partitioned to tune
database backup and recovery operations to make more efficient use of resources.
For example, having two or more tablespaces that are partitioned lets you perform
partial database backup and recovery operations on specific data files.

Similarly, tablespaces with interMedia column objects containing BLOBs can be
partitioned for easy maintenance of the BLOB data. This is done by logically
grouping BLOB data together into smaller partitions that are grouped by date, by
subject, by category, and so forth. This makes it easier to add, merge, split, or delete
partitions as needed, based on your application.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for examples and
further discussion of each of these topics. See the Oracle9i SQL Reference manual for
examples, specifically the CREATE TABLE statement and the Partitioned Table with
LOB Columns example.

11.2.6 LOB Buffering for Client Applications

Use LOB buffering if you need to repeatedly read or write small pieces of
interMedia column objects containing BLOB data to specific regions of the BLOB on
the client. Typically, for releases of Oracle8i or higher, options, Web servers, and
other applications may need to buffer the contents of one or more LOBs in the client
address space. Using LOB buffering, you can use up to 512K bytes of buffered
access. The advantages of LOB buffering include:

« Allowing deferred write operations to the server. Flushing several write
operations in the LOB buffer to the server reduces the number of network

Tuning Tips for the DBA 11-17

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

round-trips from the client application to the server, thereby improving overall
LOB update performance.

« Reducing the overall number of interMedia column objects containing BLOB
update operations on the server reduces the number of BLOB versions and
amount of logging, which improves overall BLOB performance and disk space
usage.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for further
considerations and the use of LOB buffering.

11.3 Improving Multimedia Data INSERT Performance ininterMedia
Objects Containing LOBs

There are a number of bulk loading methods available for loading FILE data into
interMedia objects containing BLOBs. These include:

« interMedia import() method in a PL/SQL stored procedure

« SQL*Loader (conventional path load and direct path load)

« OCILobLoadFromFile() relational function

« DBMS_LOB.LOADFROMFILE() procedure in the DBMS_LOB package

« JavaloadDataFromFile() or loadDataFromlnputStream() methods of
interMedia Java Classes to load media data from a client file

Using interMedia Import() Method in a PL/SQL Stored Procedure

Example 11-2 shows the contents of the loadl.bat file, which invokes SQL*Plus and
runs the t1.sql procedure (Example 11-3). The db_block_size for this schema is 8K
bytes.

Example 11-2 Show the Loadl.bat File

sql pl us scott/tiger@ntertcp @1

Example 11-3 shows the contents of the t1.sql file. This procedure:
« Creates two tablespaces.

= Creates the image_items table and defines the physical properties of the table,
specifically the physical attributes and LOB storage attributes.

« Partitions the table storage into each tablespace by range using the image_id
value.

11-18 Oracle inteMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

« Creates the load_image stored procedure that:
— Declares a variable nxtseq defined as the ROWID data type.

— Inserts a row into the image_items table and uses the INSERT RETURNING
ROWID statement to return the ROWID value for fastest access to the row
for loading the image BLOB data into the object columns of each row using
the import method.

— Sets the image attribute properties automatically (by means of the import
operation) for each loaded image (note that thumbnail images are stored
inline, and regular images are stored out of line).

— Commits the update operation.

Example 11-3 Show the T1.SQL File

spool t1.log
set echo on
connect internal/internal

create tabl espace I nage h default storage (initial 30mnext 400m pctincrease 0)
datafile ' h:\1 MPB\| nage_h. DBF
si ze 2501M reuse;

create tabl espace Inage i default storage (initial 30mnext 400m pctincrease 0)
datafile "i:\1MPB\Inage i.DBF
si ze 2501M reuse;

connect scott/tiger

drop tabl e i nage_itens;

create tabl e i nage itens(

inage_id nunber, -- constraint pl _rmprinary key,
inage_title var char 2(128),

i nage_arti st var char 2(128),

i mage_publ i sher var char 2(128),

i mage_descri ption varchar 2(1000),

i nage_price nunber (6, 2),

i mage_file_path varchar2(128),

i nage_t hunb_pat h var char 2(128),

i nage_t hunb or dsys. or di nage,
image clip or dsys. or di nage

Tuning Tips for the DBA 11-19

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

-- physical properties of table
-- physical attributes clause
pctfree 35 storage (initial 30Mnext 400M pctincrease 0)

-- L@B storage clause (applies to LAB col umm)
L@B (i nmage_cl i p. source. | ocal dat a)
store as (disabl e storage i n row nocache nol oggi ng chunk 32768)

-- table properties (applies to whol e table)

Partition by range (inage_id)

(

Partition Partl val ues | ess than (110001)
Tabl espace i mage_h,

Partition Part2 val ues | ess than (naxval ue)
Tabl espace i mage_i

)
connect scott/tiger;

create or repl ace procedure | oad_i nage

(

inage id nunber ,
inage title var char 2,
i nage_arti st var char 2,
i mage_publ i sher var char 2,
i mage_description varchar2,
i nage_price nunber ,

inmage file path var char 2,
i mage_thunb_path varchar2,

thunb_dir var char 2,
content dir var char 2,
file namel var char 2,
file_name2 var char 2)
as
ctx raw(4000) := NULL;
obj 1 AROBYS (RO MACGE,
ohj 2 AROGYS. (RO MGE,
nxt seq row d;
Begi n
Insert into inage_itens(
i mage_i d,
i mage_title,

11-20 Oracle inteMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

i mage_arti st,
i mage_publ i sher,
i mage_descri ption,
i mage_pri ce,
i mage_file_path,
i mage_t hunb_path ,
i mage_t hunb,
i mage_clip)
val ues (
i mage_i d,
i mage_title,
i mage_arti st,
i mage_publ i sher,
i mage_descri ption,
i mage_pri ce,
i mage_file_path,
i mage_t hunb_pat h ,
CROSYS GROMNE init (" FILE , upper (thunb_dir), fil e_nanel),
CROSYS GROMANE init (" FILE , upper (content _dir), fil e_nane2))
returning rowid into nxtseq;

-- load up the thunbnail image
sel ect t.inmage_t hunb,
t.inmage clip
into obj1, ohj2
frominage_itens t
where t.row d = nxtseq for update;
obj 1.inport(ctx); -- inport sets properties
obj 2.inport(ctx);
Update inage_itens |
set |.inmage_thunb = obj 1,
I.inage clip = obj2
where i.row d = nxtseq;

Commit;
End;
/
spool of f
set echo of f

Example 11-4 shows the contents of the load1.sql file. The image load directories are
created and specified for each tablespace and user scott is granted read privilege on
each load directory. The stored procedure named load_image is then executed,

Tuning Tips for the DBA 11-21

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

which loads values for each column row. By partitioning the data into different
tablespaces, each partition can be loaded in a parallel data load operation.

Example 11-4 Show the Loadl.sql File that Executes the load_image Stored
Procedure

connect internal/internal

drop directory | MAGE H

drop directory | MACE |;

create directory IMME Has "h:\inmage files’;

create directory IMME | as 'i:\image files’;

grant read on directory | MME Hto scott;

grant read on directory IMMNE | to scott;

EXEC Load_i nage(100001, ' T_100001', 1916, ' Publ i sher’,” Visit our V¥B page’
,8.71," inmage_ |\ T_100001.) pg ,’ i mage I\ T_100001_t hunbl.jpg ,’inage |',’ inage_
I",’ T_100001_t hunbl. j pg’,’ T_100001.j pg’);

EXEC Load_i nage(100002, ' T_100002' , 2050, ' Publ i sher’ ,” Visit our VB page’
,9.61,"inage |\ T_100002.) pg ,’inage I\ T_100002_t hunbl0.jpg’, " inage |, inage_
", T_100002_t hunb10. j pg',’ T_100002.jpg’');

exit

Using SQL* Loader
SQL*Loader provides two methods for loading data:

= Conventional Path Load

A conventional path load (the default) uses the SQL INSERT statement and a
bind array buffer to load data into database tables. When SQL*Loader performs
a conventional path load, it competes equally with all other processes for buffer
resources. This can slow the load significantly. Extra overhead is added as SQL
commands are generated, passed to Oracle, and executed. Oracle looks for
partially filled blocks and attempts to fill them on each insert. Although
appropriate during normal use, this can slow bulk loads dramatically. Use
conventional path load if you encounter certain restrictions on direct path loads.

= Direct Path Load

A direct path load eliminates much of the Oracle database overhead by
formatting Oracle data blocks and writing the data blocks directly to the
database files. A direct load does not compete with other users for database
resources, so it can usually load data at near disk speed. In addition, if
asynchronous 170 operations is available on your host platform, multiple
buffers are used for the formatted data blocks to further increase load
performance.

11-22 Oracle inteMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

See Oracle9i Database Utilities for a complete list of restrictions for using either the
conventional path load or direct path load method for loading data using
SQL*Loader. See Oracle9i Application Developer’s Guide - Fundamentals for more
information on LOBs.

Using SQL*Loader to Load Multimedia Data into Oracle9i Using
interMedia Column Objects

Example 11-5 shows the use of the control file to load one ORDVideo object per file
into a table named JUKE that has three columns, with the last one being a column
object. Each LOB file is the source of a single LOB and follows the column object
name with the LOBFILE data type specifications. Two LOB files are loaded in this
example.

Example 11-5 Show the Control File for Loading Video Data

LQAD DATA
| NFI LE *
| NTO TABLE JWKE
REPLACE
FI ELDS TERM NATED BY '’
(idinteger external,
file_name char(1000),
nedi acont ent col unm obj ect

(

source col um obj ect

(
1) | ocal Dat a_fnane F LLER CHAR(128),
2) | ocal Dat a LCBFI LE (nedi acont ent . sour ce. | ocal Data_fnane) ternmnated by EGF

)

)

BEQ NDATA
1, sl ynne, sl ynne.rm
2, Cormodor es, Commodores - Brick House.rm

Notes:

1. The filler field is mapped to the 128-byte long data field which is read using the
SQL*Loader CHAR data type.

2. SQL*Loader gets the LOB file name from the localData_fname FILLER field. It
then loads the data from the LOB file (using the BLOB data type) from its

Tuning Tips for the DBA 11-23

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs

beginning to the EOF character, whichever is reached first. Note that if no
existing LOB file is specified, the localData field is initialized to empty.

Using the OCILobLoadFromFile() Relational Function

Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to manipulate data and schemas in an Oracle database using a host
programming language, such as C.

The OCI relational function, OCILobLoadFromFile(), loads or copies all or a
portion of a file into an interMedia column object containing a specified BLOB. The
data is copied from the source file to the destination interMedia column objects
containing a BLOB. When binary data is loaded into an interMedia column object
containing a BLOB, no character set conversions are performed. Therefore, the file
data must already be in the same character set as the BLOB in the database. No
error checking is performed to verify this.

See Oracle Call Interface Programmer’s Guide for more information.

Using the DBMS_LOB.LOADFROMFILE() Procedure in the DBMS_LOB
Package

The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs, and temporary LOBs. You can use the DBMS_LOB package for
access and manipulation of specific parts of an interMedia column object containing
a BLOB, as well as complete BLOBs. DBMS_LOB can read as well as modify BLOBs,
CLOBs, and NCLOBs, and provides read-only operations for BFILES. The majority
of the LOB operations are provided by this package.

The DBMS_LOB.LOADFROMFILE() procedure copies all, or part of, a
source-external LOB (BFILE) to a destination internal LOB.

You can specify the offsets for both the source LOB (BFILE) and destination
interMedia column object containing the BLOB and the number of bytes to copy
from the source BFILE. The amount and src_offset, because they refer to the BFILE,
are in terms of bytes, and the destination offset is either in bytes or characters for
BLOBs and CLOBs respectively.

The input BFILE must have been opened prior to using this procedure. No character
set conversions are performed implicitly when binary BFILE data is loaded into a
CLOB. The BFILE data must already be in the same character set as the CLOB in the
database. No error checking is performed to verify this. See Oracle9i Supplied
PL/SQL Packages Reference for more information.

11-24 Oracle inteMedia User’s Guide and Reference

Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/SQL Script

Using Java loadDataFrom...() Methods to Load Media Data from a Client
File

From the Java client, you can use the Java loadDataFromByteArray(),
loadDataFromFile(), or loadDataFromlInputStream(') methods of interMedia Java
Classes to load media data from a given file into a server-side media object
designated by the corresponding media locator parameters. You must specify the
name of the file from which to load the data and the method returns true if loading
is successful, false otherwise. See Oracle interMedia Java Classes User’s Guide and
Reference for more information.

11.4 Loading Multimedia Data Using the interMedia Clipboard
You can use the Oracle interMedia Clipboard (Release 2) to:
« Upload multimedia objects from files and URLs and store them in the database

See Oracle interMedia Cliphoard (Release2) Installation and Configuration Guide for more
information. See Section 1.13.5 for information on how obtain this software and
documentation.

11.5 Loading Multimedia Data Using interMedia Annotator Utility

You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle8i or higher database where Oracle interMedia
is installed. Annotator does this using an Oracle PL/SQL upload template, which
contains both PL/SQL calls and Annotator-specific keywords.

See Oracle interMedia Annotator User’s Guide for more information.

11.6 Reading Data from an ORDVideo Object Using the interMedia
readFromSource() Method in a PL/SQL Script

Example 11-6 shows the contents of the readvideol.sql file. This procedure reads
data from an ORDVideo object with the video stored in a BLOB in the database
using the readFromSource method in a PL/SQL script until no more data is found.
The procedure then returns a NO_DATA_FOUND exception when the read
operation is complete and displays an "End of data" message.

Note: This example can be modified to work with the ORDAudio
and ORDImage objects too.

Tuning Tips for the DBA 11-25

Reading Results of an interMedia Benchmark

Example 11-6 Read Data from an ORDVideo Column Object Using interMedia
readFromSource() Method in a PL/SQL Stored Procedure

create or replace procedure readVi deol(i integer) as

obj CRDBYS. GRDM deo;

buf fer RAW(32767);

nunbyt es Bl NARY | NTECGER : = 32767;
startpos integer := 1;

read_cnt integer := 1;

ctx RAWA4000) := N.LL;

BEG N

Sel ect nediacontent into obj fromjuke where id = 100001;

LooP
obj . r eadFr onSour ce(ct x, st art pos, nunbyt es, buf fer) ;
startpos := startpos + nunBytes;
read cnt :=read cnt + 1;
B\D LQCP,
EXCEPTI ON

WEN NO DATA FOND THEN
DBVS QUTPUT. PUT_LINE(’ End of data ’);

CBVE QUTPUT. PUT_LINK" doing read || read_cnt);
CBVB QUTPUT. PUT_LINE' start position :’|| startpos);
END

/
show errors

11.7 Reading Results of an interMedia Benchmark

The benchmark environment for the hardware and software for the interMedia
BLOB read tests that were performed are described in this section.

Benchmark Environment

The server side consisted of a quad 200MHz Pentium Pro processor with 3GB of
memory. The 1/0 disk subsystem consisted of a raid 0 stripe set supported by four
Adaptec controllers. The system was running MS Windows NT V4.0 Service Pack 3.

11-26 Oracle inteMedia User’s Guide and Reference

Reading Results of an interMedia Benchmark

The OCI experiments were conducted in a client/server environment where the
client was also a quad 200MHz Pentium Pro processor linked to the server using a
100Mbits Ethernet connection.

The database was partitioned by range using a range ID such that each client reader
or loader process used a dedicated database partition. Tests were conducted with a
database block size set to 8K and 16K, a LOB chunk size set to 32K, and a read size
(1 round-trip) set to 32K for the interMedia import() method in PL/SQL tests, and a
LOB buffer size set to 32K to 64K for the OCI tests.

Test Description and Results

BLOB 170 tests were conducted in an MS Windows NT environment running
Oracle interMedia. BLOB read tests were conducted with the interMedia
readFromSource() method in a PL/SQL script to read BLOBs from the database, as
well as making OCI calls without callbacks to perform BLOB read operations from
C++. Parallel processes were submitted on the client system to read BLOBs residing
on the server side making use of the 100 megabit network bandwidth. Database
connections ranged from 6 to 16 for the BLOB read tests.

A benchmark was performed to measure the performance of an Oracle-based
system in a setting modeling a real-life audio server application. The Oracle server
serves multiple requests by clients to a set of CDs. CDs are stored in Oracle8i or
higher using the Oracle interMedia. The CD access pattern is modeled by an
exponential distribution to simulate that some CDs are more popular than others. A
client has a tolerance on the response time of a request. Each request asks for a
particular amount of audio data. The throughput of the server, defined by the
amount of audio data provided per unit time, is measured, subjected to the
following constraints:

= Number of users

« Maximum or average response time of requests
« Size of each request

« Access patterns

Throughput levels as high as 29 MB/second using a large cache of 1.7GB, a LOB
chunk size set to 32K, and with OCI using buffered read operations to read BLOBs
locally on the backend, memory-rich server. Using a less memory-rich server
system with a 320MB cache buffer size, throughput decreased by one third to a low
of 20MB/second level.

The performance-limiting factor was the 100 megabit bandwidth, which became
saturated in the client/server tests. All tests with OCI had caching turned on. Using

Tuning Tips for the DBA 11-27

Getting the Best Performance Results

the interMedia readFromSource() method in a PL/SQL procedure, and with no
cache set, the throughput was limited to 18MB/second. The limiting factor for
performance for reading BLOB data was the 1/0 subsystem in the absence of
caching.

11.8 Getting the Best Performance Results

The following guidelines can be used to help you achieve the best performance
when working with interMedia objects:

Because interMedia objects are big, you can attain the best performance by
reading and writing large chunks of an interMedia object value at a time. This
helps in several respects:

— Ifyou are accessing the interMedia object from the client side and the client
is on a different node than the server, large read/write operations reduce
network overhead.

— Ifyou are using the NOCACHE option, each small read/write operation
incurs an 1/0 impact. Reading and writing large quantities of data reduces
the 170 impact.

— Writing to the interMedia object creates a new version of the interMedia
object chunk. Therefore, writing small amounts at a time will incur the cost
of a new version for each small write operation. If logging is on, the chunk
is also stored in the redo log.

If you need to read or write small pieces of interMedia object data on the client,
use LOB buffering (see OCILobEnableBuffering(), OCILobDisableBuffering(),
OCILobFlushBuffer(), OCILobWrite(), OCILobRead() in Oracle Call Interface
Programmer’s Guide for more information.). Turn on LOB buffering before
reading or writing small pieces of interMedia object data.

Use interMedia methods (readFromSource() and writeToSource()) for audio
and video data or OClILobWrite() and OCILobRead() with a callback for image
data so media data is streamed to and from the BLOB. Ensure that the length of
the entire write operation is set in the numBytes parameter using interMedia
methods or in the amount parameter using OCI calls on input. Whenever
possible, read and write in multiples of the LOB chunk size.

Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

— Updating interMedia object data: SQL UPDATE operations, which replaces
the entire BLOB value.

11-28 Oracle inteMedia User’s Guide and Reference

Improving Multimedia LOB Data Retrieval and Update Performance

— Copying the entire LOB data to the client, modifying the LOB data on the
client side, and copying the entire LOB data back to the database. This can
be done using OCILobRead() and OCILobWrite() with streaming.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for more
information.

11.9 Improving Multimedia LOB Data Retrieval and Update Performance

Once the LOB data is stored in the database, a modified strategy must be used to
improve the performance of retrieving and updating the LOB data compared to the
insertion strategy described in Section 11.3. The following guidelines should be
considered:

« Use the CACHE option on LOBs if the same LOB data is to be accessed
frequently by other users.

= Increase the number of buffers if you are going to use the CACHE option.

= Have enough buffers to hold the object. Using a small number of buffers for
large objects is not good. Set the DB_CACHE_SIZE parameter to a value that
you know will hold the object.

« Ensure that your redo log files are much larger than they usually are; otherwise,
you may be waiting for log switches, especially if you are making many
updates to your LOB data.

« Ensure that you use a larger page size (DB_BLOCK_SIZE), especially if the
majority of the data in the database is LOB data.

Tuning Tips for the DBA 11-29

Improving Multimedia LOB Data Retrieval and Update Performance

11-30 Oracle inteMedia User’s Guide and Reference

A

Audio File and Compression Formats

A.1 Supported Audio File and Compression Formats

The following tables describe the audio file and compression formats and other
audio features supported by interMedia.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table A-1 shows that interMedia supports
AIFF format for single channel, stereo, 8-bit and 16-bit samples, linear PCM
encoding, and uncompressed format.

Table A-1 AIFF Data Format

Format

Audio Feature

AIFF

Format ID ‘AlFF’

File Format: ‘AlFF’

File Ext: .aff

MIME type: audio/x-aiff

Single channel

Stereo

8-bit samples

16-bit samples

Linear PCM encoding

Format

Encoding/CompressionType

Standard AIFF Uncompressed

TWOS

Audio File and Compression Formats A-1

Supported Audio File and Compression Formats

Table A-2 AIFF-C Data Format

Format

Audio Feature

AIFF-C

Format ID ‘AIFC’

File Format: ‘AIFC’

File Ext: .afc

MIME type: audio/x-aiff

Single channel
Stereo

8-bit samples
16-bit samples

Format

Encoding/CompressionType

Choose one of these
compression formats!
Not compressed

ACE 2-to-1

ACE 8-to-3

MACE 3-to-1

MACE 6-to-1

Uncompressed (TWOS)
ACE2
ACES8
MAC3
MAC6

1 Other than "uncompressed (TWOS)", all other codes are the FourCC
(uppercased) directly from the compressionType field of Common

Chunk of the AIFC file. The table lists only the ones known.

Table A-3 AU Data Format

Format

Audio Feature

AU

Format ID ‘AUFF’

File Format: ‘AUFF’

File Ext: .au

MIME type: audio/basic

A-2 Oracle interMedia User’s Guide and Reference

Single channel

Stereo

8-bit samples

16-bit samples
Mu-law encoding
Linear PCM encoding

Supported Audio File and Compression Formats

Table A-3 AU Data Format

Format

Encoding/CompressionType

Choose one of these compression formats:
Unspecified format

8-bit mu-law samples

8-bit linear samples

16-bit linear samples

24-bit linear samples

32-bit linear samples
Floating-point samples
Double-precision float samples
Fragmented sample data
Nested format

DSP program

8-bit fixed-point samples
16-bit fixed-point samples
24-bit fixed-point samples
32-bit fixed-point samples
Unknown AU’s format
Non-audio display data
Squelch format

16-bit linear with emphasis
16-bit linear with compression

UNSPECIFIED
MULAW
LINEAR
LINEAR
LINEAR
LINEAR
FLOAT
DOUBLE
FRAGMENTED
NESTED

DSP_CORE
DSP_DATA
DSP_DATA
DSP_DATA
DSP_DATA
UNKNOWN
DISPLAY
MULAW_SQUELCH
EMPHASIZED
COMPRESSED

16-bit linear with emphasis and compression
Music Kit DSP commands

DSP commands samples

adpcm G721

adpcm G722

adpcm G723 _3

adpcm G723 5

8-bit a-law samples

COMPRESSED_EMPHASIZED
DSP_COMMANDS
DSP_COMMANDS_SAMPLES
ADPCM_G721

ADPCM_G722
ADPCM_G723 3
ADPCM_G723 5

ALAW

Table A—4 WAV Data Format

Format

Audio Feature

WAV

Format ID ‘WAVE’

File Format: ‘WAVE’

File Ext: .wav

MIME type: audio/x-wav

Single channel

Stereo

8-bit samples

16-bit samples

Linear PCM encoding

Format

Encoding/CompressionType

Audio File and Compression Formats A-3

Supported Audio File and Compression Formats

Table A—4 WAV Data Format

Choose one of these compression formats:

Unknown Wave Format UNKNOWN
Microsoft PCM Wave Format MS_PCM
Microsoft ADPCM Wave Format MS_ADPCM
IBM CVSD Wave Format IBM_CVSD
Microsoft aLaw Wave Format ALAW
Microsoft uLaw Wave Format MULAW
OKI ADPCM Wave Format OKI_ADPCM
Intel DVI/IMA ADPCM Wave Format DVI_ADPCM

VideoLogic Media Space ADPCM Wave Format
Sierra Semiconductor ADPCM Wave Format
Antex Electronics G723 ADPCM Wave Format
DSP Solutions DIGISTD Wave Format

DSP Solutions DIGIFIX Wave Format
Dialogic OKI ADPCM Wave Format
Yamaha ADPCM Wave Format

MEDIASPACE_ADPCM
SIERRA_ADPCM
ANTEX_G723 ADPCM
DIGISTD

DIGIFIX
DIALOGIC_OKI_ADPCM
YAMAHA_ADPCM

Speech Compression Sonarc Wave Format SONARC

DSP Group TrueSpeech Wave Format DSPGROUP_TRUESPEECH
Echo Speech Wave Format ECHOSC1

Audiofile AF36 Wave Format AUDIOFILE_AF36

Audio Processing Technology Wave Format APTX

Audiofile AF10 Wave Format AUDIOFILE_AF10

Dolby AC-2 Wave Format DOLBY_AC2

Microsoft GSM 610 Wave Format MS_GSM610

Antex Electronics ADPCME Wave Format

Control Resources VQLPC Wave Format

DSP Solutions DIGIREAL Wave Format

DSP Solutions DIGIADPCM Wave Format

Control Resources CR10 Wave Format

Natural Microsystems NMS VBXADPCM Wave Format
Crystal Semiconductor IMA ADPCM Wave Format
Antex Electronics G721 ADPCM Wave Format

MPEG-1 Audio Wave Format

Creative Labs ADPCM Wave Format
Creative Labs FastSpeech8 Wave Format
Creative Labs FastSpeech10 Wave Format
Fujitsu FM Towns Wave Format

Olivetti GSM Wave Format

Olivetti ADPCM Wave Format

Olivetti CELP Wave Format

Olivetti SBC Wave Format

Olivetti OPR Wave Format

ANTEX_ADPCME
CONTROL_RES_VQLPC
DIGIREAL

DIGIADPCM
CONTROL_RES_CR10
NMS_VBXADPCM
CS_IMAADPCM
ANTEX_G721_ADPCM
MPEG

CREATIVE_ADPCM
CREATIVE_FASTSPEECHS
CREATIVE_FASTSPEECH10
FM_TOWNS_SND

OLIGSM

OLIADPCM

OLICELP

OLISBC

OLIOPR

A-4 Oracle interMedia User’s Guide and Reference

Supported Audio File and Compression Formats

Table A-5 Audio MPEG Data Format

Format Audio Feature
MPEG Layer |
Format ID ‘MPEG’ Layer I

Layer 111

File Format: ‘MPGA’
File Ext: .mpg
MIME type: audio/mpeg

Format

Encoding/CompressionType

Choose one of these
compression formats:
MPEG Audio, Layer |
MPEG Audio, Layer Il
MPEG Audio, Layer IlI

LAYER1
LAYER2
LAYER3

Audio File and Compression Formats A-5

Supported Audio File and Compression Formats

A-6 Oracle interMedia User’s Guide and Reference

B

Image File and Compression Formats

B.1 Supported Image File and Compression Formats

Descriptions of each of the supported image file formats and image compression
formats are presented in Section B.1.1 and Section B.1.2.

B.1.1 Image File Formats
Image file formats are listed alphabetically.

BMPF
extension: .bmp

mime: image/bmp

BMPF is the Microsoft Windows bitmap format and is based on the internal data
structures used by Windows to store bitmap data in memory. This format is used
extensively by Microsoft Windows, and a variant of this format is used by the IBM
0OS/2 operating system. Because this format is supported directly by Windows, its
use is very popular in that environment and has spread to other systems.

BMPF is a very flexible image format in that it can store a wide variety of image
data types, but it does not offer powerful compression. The only compression
available is a run-length encoding variant that is supported only by certain content
formats. It is worth noting that BMPF is unusual in that the ordinary scanline order
for this format is bottom-up, which Oracle interMedia calls INVERSE.

CALS
extension: .cal

mime: image/x-ora-cals

Image File and Compression Formats B-1

Supported Image File and Compression Formats

CALS is an image format developed by the Computer Aided Acquisition and
Logistics Support office of the United States government for document interchange.
There are actually two variants of the CALS image format; Oracle interMedia
supports CALS Type I. Because the CALS format is monochrome-only;, it is
primarily useful for storing simple documents, scanned or otherwise.

Foreign Images

Foreign Images are images for which Oracle interMedia does not provide native
recognition and support, but that can sometimes be read if the image data complies
with the rules outlined in the Foreign Image Support section of the Raw Pixel
appendix (see Section E.10).

FPIX
extension: .fpx

mime: image/x-fpx

FPIX, or FlashPix, is a format developed by Kodak, Microsoft Corporation,
Hewlett-Packard Company, and Live Picture, Inc., for storing digital photography.
FlashPix images are composed of a series of different resolutions of the same image,
and each resolution is composed of individual tiles. These tiles can be
uncompressed or compressed using JPEG. The multi-resolution capability of
FlashPix images is intended to promote easy use in a wide variety of applications
by allowing low resolution versions of the image to be used where high resolution
versions are not necessary (such as browsing, viewing on screen), while high
resolution versions are available when needed (printing or zooming in on an image
detail).

Oracle interMedia includes a simple FlashPix decoder that always selects the largest
resolution plane in a FlashPix image. Lower resolutions are not accessible. Oracle
interMedia does not write FlashPix images.

GIFF
extension: .gif
mime: image/gif

GIFF is the Oracle interMedia name for the Graphics Interchange Format (GIF),
which was developed by CompuServe to transfer images between users in their
early network system. Because GIF (pronounced "jif") is an early format and was
developed for use on limited hardware it does not support content formats which
store more than 8 bits per pixel. This makes the format less suitable for storing

B-2 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

photographic or photo-realistic images than deeper formats such as PNG or JFIF,
but it is a good choice for other applications. There are two specific variants of the
GIF format, called 87a and 89a; Oracle interMedia reads both variants but writes the
87a variant.

Despite its pixel depth limitations, the GIF format remains a powerful and flexible
image format, and includes support for limited transparency effects and simple
animations by encoding a series of image frames and frame transition effects. Oracle
interMedia can read GIF images that include these options but only the first frame
of an animated GIF is made available, and there is no support for writing animated
GIFs.

All GIF images are compressed using a GIF-specific LZW compression scheme
which Oracle interMedia calls GIFLZW.

JFIF
extension: .jpg

mime: image/jpeg

JFIF is the JPEG File Interchange Format, developed by C-Cube Microsystems for
storing JPEG encoded images. The JFIF format is actually just a JPEG data stream
with an identifying header and a few enforced conventions. As such, it provides
minimal support for anything but the actual image data. By definition, all JFIF files
are JPEG compressed, making them less appropriate for some applications as
explained in the description of the JPEG compression format.

Oracle interMedia identifies several distinct image formats as JFIF, including actual
JFIF files, non-JFIF pure JPEG data streams, and EXIF files. The last is a JFIF variant
produced by digital cameras.

PBMF, PGMF, PPMF and PNMF

extension: .pbm, .pgm, .ppm, .pnm

mime: image/x-portable-bitmap, image/x-portable-graymap,
image/x-portable-pixmap, image/x-portable-anymap

These are a family of file formats derived from Jef Poskanzer’s Portable Bitmap
Utilities suite. These file formats are Portable Bitmap (PBM), Portable Graymap
(PGM), Portable Pixmap (PPM) and Portable Anymap (PNM). Because of their wide

support and the free availability of software to handle these formats, they are
frequently used for uncompressed image interchange.

Image File and Compression Formats B-3

Supported Image File and Compression Formats

PBM files are monochrome only files (the term "bitmap" being used in the sense of a
map of bits, that is, each pixel is either 0 or 1). PGM files are grayscale only, while
PPM files are full color pixel maps.

PNM does not refer to a distinct file format, but instead refers to any of the other
three types (PBM, PGM or PPM). Images written using the file format designation
PNMF will be written as the most appropriate variant depending on the input data
content format.

These formats do not include data compression, but have two encoding formats:
ASCII or RAW.

PCXF
extension: .pcx

mime: image/pcx

PCX, or PCXF in Oracle interMedia notation, is an early and widely used image file
format developed for ZSoft’s PC Paintbrush, and later used in derivatives of that
program. Despite its ancestry, it provides support for many pixel depths, from
monochrome to 24-bit color. It supports a fast compression scheme designated
PCXRLE by Oracle interMedia. Oracle interMedia reads but does not write PCX
images.

PICT
extension: .pct

mime: image/pict

The Macintosh PICT format was developed by Apple Computer, Inc., as part of the
QuickDraw toolkit built into the Macintosh ROM. It provides the ability to "record"
and "playback” QuickDraw sequences, including both vector and raster graphics
painting. Oracle interMedia supports only the raster elements of PICT files. Both
Packbits and JPEG compressed PICT images are supported.

PNGF
extension: .png

mime: image/png

PNGEF is the Oracle interMedia designation for the Portable Network Graphics
(PNG) format (pronounced "ping"). PNG was developed by the PNG Development
Group as a legally unencumbered and more capable replacement for some uses of
the GIF and TIFF file formats. PNG includes support for deep images (up to 16 bits

B-4 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

per sample and up to 4 samples per pixel), full alpha support, rich metadata storage
including metadata compression, built-in error and gamma correction, a powerful
and free compression algorithm called DEFLATE, and much more. The main feature
found in GIF that is absent in PNG is the ability to store animations.

PNG support for a broad variety of pixel depths (1 bit to 16 bits per sample) makes
it suitable for a very wide variety of applications, spanning the separate domains
previously filled by GIF and JPEG, and being very similar to the uses of the
powerful TIFF format. Because the DEFLATE compression scheme is lossless, PNG
is a good choice for storing deep images that must be edited often.

All PNG images are compressed using the DEFLATE scheme.

RPIX
extension: .rpx

mime: image/x-ora-rpix

RPIX, or Raw Pixel, is a format developed by Oracle Corporation for storing simple
raw pixel data without compression, and using a simple well-described header
structure. It was designed to be used by applications whose native image format is
not supported by Oracle interMedia but for which an external translation might be
available. It flexibly supports N-banded image data (8 bits per sample) where N <
256 bands, and can handle data that is encoded in a variety of channel orders (such
as RGB, BGR, BRG, and so forth), a variety of pixel orders (left-to-right and
right-to-left), a variety of scanline orders (top-down or bottom-up) and a variety of
band orders (band interleaved by pixel, by scanline, and by plane). The flexibility of
the format includes a data offset capability, which can allow an RPIX header to be
prepended to other image data, thus allowing the RPIX decoder to read an
otherwise compliant image format. See Appendix E for more information.

In addition to its support for 8 bits per sample data, RPIX supports single-band
monochrome images compressed using the FAX3 and FAX4 compression schemes.

When an RPIX image is decoded, only 1 or 3 bands are read. Which bands are
selected can be determined by the image header or by the InputChannels operator.
Similarly, Oracle interMedia writes only 1 or 3 band RPIX images.

RASF
extension: .ras

mime: image/x-ora-rasf

Image File and Compression Formats B-5

Supported Image File and Compression Formats

The Sun Raster image format, called RASF by Oracle interMedia, was developed by
Sun Microsystems for its UNIX operating systems and has a wide distribution in the
UNIX community. It supports a variety of pixel depths and includes support for a
format-specific, run-length encoding compression scheme called SUNRLE by Oracle
interMedia.

TGAF
extension: .tga

mime: image/x-ora-tgaf

The Truevision Graphics Adapter format (TGA, or TGAF to Oracle interMedia) was
developed by Truevision, Inc., for their line of Targa and related graphics adapters.
This format includes support for color images with 8, 16, 24 and 32 bits per pixel
and also includes support for a run-length encoding compression scheme called
TARGARLE by Oracle interMedia.

TIFF
extension: .tif

mime: image/tiff

The Tag Image File Format (TIFF) was originally developed by the Aldus
Corporation. The format has become something of a benchmark for image
interchange and is extremely versatile, including support for a wide variety of
compression and data formats, multiple image pages per file, and a wide variety of
metadata. Because of its many options, TIFF is a good choice for many applications,
including document storage, simple art, photographic and photo-realistic images,
and others.

Oracle interMedia supports the "baseline TIFF" specification and also includes
support for some TIFF "extensions," including tiled images and certain compression
formats not included as part of the baseline TIFF specification. "Planar” TIFF images
are not supported. It is important to note that the JPEG support in TIFF provided by
Oracle interMedia is based on the revised JPEG in TIFF specification and not the
original JPEG in TIFF specification. TIFF images in either big endian or little endian
format can be read, but Oracle interMedia always writes big endian TIFFs.

Although the TIFF decoder in Oracle interMedia includes support for page selection
using the "page" verb in the process() and processCopy() methods, the
setProperties() method always returns the properties of the initial page in the file. It
is important to note that this initial page is accessed by setting "page=0" in the

B-6 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

process command string. Oracle interMedia currently does not support writing
multiple page TIFF files.

WBMP
extension: .wbmp

mime: image/vnd.wap.wbmp

The Wireless Bitmap format (WBMP) was developed for the Wireless Application
Protocol as a means of transmitting bitmap (monochrome) images to
WAP-compliant devices. An extremely minimalist format, it does not even include
identifying markers or support for compression. It is most appropriate for very
small images being transmitted over limited bandwidth networks.

The WBMP format is not related to the BMPF format.

B.1.2 Image Compression Formats
Image compression formats are listed alphabetically.

ASCII

Not an actual compression format by itself, ASCII is an encoding used by PBM,
PGM, and PPM images to represent images in plain ASCII text form. Each pixel
value is represented by an individual integer in an ASClI-encoded PBM (or PGM or
PPM) file.

BMPRLE

BMPRLE is the description that Oracle interMedia gives to images that are
compressed with the BMP run-length encoding compression scheme. This
compression format is available only for 4-bit and 8-bit LUT data, and only for
images that are stored in INVERSE scanline order (the default order for BMP files).
For very complex images, this compression can occasionally actually increase the
file size.

DEFLATE

DEFLATE is the compression scheme employed by the PNG image format, and has
also been adapted to work in the TIFF image format. DEFLATE is based on the ZIP
algorithm and is a very adaptable compression scheme that handles a wide variety
of image data formats well. Besides being used to compress image data in PNG and
TIFF files, DEFLATE is also used within PNG files to compress some metadata.

Image File and Compression Formats B-7

Supported Image File and Compression Formats

DEFLATE-ADAMY

DEFLATE-ADAMY is the same compression format as DEFLATE, but refers to
images whose scanlines are interlaced for progressive display as the image is
decoded. The intention of this technique is to allow a user to observe the image
being progressively decoded as it is downloaded through a low bandwidth link and
abort the image before completion of the download. While the low bandwidth
requirement is not typically relevant anymore, many existing images employ this
encoding. Unlike JPEG-PROGRESSIVE and GIFLZW-INTERLACED,
DEFLATE-ADAMY interlaces images both horizontally and vertically.

Oracle interMedia provides read support for this encoding, but does not provide
write support.

FAX3

FAX3 is the Oracle interMedia designation for CCITT Group 3 2D compression,
which was developed by the CCITT (International Telegraph and Telephone
Consultative Committee) as a protocol for transmitting monochrome images over
telephone lines by facsimile and similar machines. The more official designation for
this compression scheme is CCITT T.4.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio
as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

FAX4

FAX4 is the Oracle interMedia designation for CCITT Group 4 2D compression,
which was developed by the CCITT (International Telegraph and Telephone
Consultative Committee) as a protocol for transmitting monochrome images over
telephone lines by facsimile and similar machines. The more official designation for
this compression scheme is CCITT T.6.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio

B-8 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

GIFLZW

GIFLZW is the Oracle interMedia designation for the LZW compression system
used within GIF format images, and is different from LZW compression as used by
other file formats. GIFLZW is an adaptive compression scheme that provides good
compression for a wide variety of image data, although it is least effective on very
complex images, such as photographs.

GIFLZW-INTERLACED

GIFLZW-INTERLACED is the same compression format as GIFLZW, but refers to
images whose scanlines are interlaced for progressive display as the image is
decoded. The intention of this technique is to allow a user to observe the image
being progressively decoded as it is downloaded through a low bandwidth link and
abort the image before completion of the download. While the low bandwidth
requirement is not typically relevant anymore, many existing images employ this
encoding.

Oracle interMedia provides read support for this encoding, but does not provide
write support.

HUFFMAN3

HUFFMANZ3 is the Oracle interMedia designation for the Modified Huffman
compression scheme used by the TIFF image format. This compression format is
based on the CCITT Group 3 1D compression format, but is not an official CCITT
standard compression format.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio
as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

JPEG

The JPEG compression format was developed by the Joint Photographic Experts
Group for storing photographic and photo-realistic images. The JPEG compression

Image File and Compression Formats B-9

Supported Image File and Compression Formats

format is very complex, but most images belong to a class called "baseline JPEG"
which is a much simpler subset. Oracle interMedia supports only baseline JPEG
compression.

The JPEG compression scheme is a lossy compression format; that is, images
compressed using JPEG can never be reconstructed exactly. JPEG works by
eliminating spatial and chromatic details that the eye will probably not notice.
While JPEG can compress most data quite well, the results may include serious
cosmetic flaws for images that are not photographic, such as monochrome or simple
art. Other compression schemes are more appropriate for those cases (FAX formats
or PNG and GIF). Also, the lossy nature of this compression scheme makes it
inappropriate for images that must be edited, but it is a good choice for finished
images that must be compressed as tightly as possible for storage or transmission.

JPEG-PROGRESSIVE

This compression format is a variation of the JPEG compression format in which
image scanlines are interlaced, or stored in several passes, all of which must be
decoded to compute the complete image. This variant is intended to be used in low
bandwidth environments where users can watch the image take form as
intermediate passes are decoded and abort the image display if desired. While the
low bandwidth requirement is not typically relevant anymore, this variant
sometimes results in a smaller encoded image and is still popular. Oracle interMedia
provides read, but not write, support for this encoding.

LZW

LZW is the Oracle interMedia designation for the LZW compression system used
within TIFF format images, and is different from LZW compression as used by
other file formats. TIFF LZW is an adaptive compression scheme that provides good
compression for a wide variety of image data, although it is least effective on very
complex images. TIFF LZW works best when applied to monochrome or 8-bit gray
or LUT data; the TIFF method of applying LZW compression to other data formats
results in much lower compression efficiency.

LZWHDIFF

LZWHDIFF is the description that Oracle interMedia gives to images employing the
TIFF LZW compression system and also utilizing the TIFF horizontal differencing
predictor. This scheme is a technique that can improve the compression ratios for
24-bit color and 8-bit grayscale images in some situations, without loss of data. It
generally does not improve compression ratios for other image types.

B-10 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

NONE

This is the description that Oracle interMedia gives to image data that is not
compressed.

PACKBITS

The Packbits compression scheme was developed by Apple Computer, Inc., as a
simple byte-oriented, run-length encoding scheme for general use. This scheme is
used by the PICT image format and has been adapted to work in TIFF images as
well. Like other run-length encoding schemes, this compression can actually
increase the data size for very complex images.

PCXRLE

PCXRLE is the description given by Oracle interMedia to images that are
compressed using the PCX run-length encoding scheme. For very complex images,
this compression can occasionally actually increase the file size.

RAW

Not an actual compression format by itself, RAW is encoding used by PBM, PGM,
and PPM images to represent images in binary form (versus the plain text form
employed by the ASCII encoding). The PBM family documentation refers to this
format as RAWBITS.

SUNRLE

SUNRLE is the description used within Oracle interMedia for the run-length
encoding scheme used in Sun Raster images. For very complex images, this
compression can occasionally actually increase the file size.

TARGARLE

TARGARLE is the description given by Oracle interMedia to images compressed
using the run-length encoding scheme supported by the TGAF file format. For very
complex images, this compression can occasionally actually increase the file size.

B.1.3 Summary of Image File Format and Image Compression Format

Table B-1 summarizes read/write support for image file formats relative to content
format characteristics, such as content format, pixel layout, interpretation, and color
space. Table B-2 summarizes read/write support for image file formats relative to
compression format and other format specific characteristics, such as channel order,
pixel order, and scanline order.

Image File and Compression Formats B-11

Supported Image File and Compression Formats

Table B-1 Summary of Read/Write Access ! for Supported Image File Formats -- Content Format
Specific Characteristics

File Pixel
Format Content Format Layout
1bitLUT M4bitLUT [8BbitLUT 4bit 8bit 16bit [24bit [32bit [48bit |64bit [Mon B B
(RGB& |[(RGB& |(RGB& (direct [direct (direct |direct [direct [direct |direct jochr I S
GRAY) |GRAY) |GRAY) |[GRAY [GRAY RGB |RGB |RGB [RGB |RGB pome BIP L [Q
BMPF [RW RW RW R RW R RW RW
CALS RW RW
FP1X? R R R
GIFE? Rw RW RW RW RW
UFIF* RW RW RW
PBMF RW RW
PCXF® R R R R R R
PGMF RW RW
PICT® R R RW RW R RW RW RW
PNGF |RW RW RW RW RW R RW R R R RW RW
PNMF’ w w w-w
PPMF RW RW
RPIX8 RW RW RW [RW R[R
WW,|
RASF RW RW RW RW [RW
TGAF RW RW R RW R RW
TIEE® RW RW RW RW [Rw R RW R R R RW RW
WBMP RW |[RW

R = Read access; W = Write access

No write support.

Animated GIFFs may not be encoded.

Supports EXIF images.

No write support.

Vector and object graphics are not supported.

PNMF format is supported as PBMF, PGMF, or PPMF; output will be PBMF, PGMF, or PPMF as appropriate.
Can decode 1 or 3 bands from an n-band image; only 1 or 3 bands may be encoded.

® N o o A~ W NP

B-12 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

9 TIFF image file format also supports the following content formats as read or read/write as specified: Tiled data - Read,
Photometric interpretation - Read/Write, MSB - Read/Write, and LSB - Read; Planar (BSQ) is not supported; both MSB and
LSB ordered files may be decoded; output is MSB.

Table B-2 Summary of Read/Write Access ! for Supported Image File Formats -- Compression Format
and Other Format Specific Characteristics

Scan
File Channel Pixel line Other
Format Compression Format Order Order | Order |Options
G
J I
P F |
E L n P
G z D o 2
- W E u 9
P - F i €
R I L
O N| L H A S
G T [T| I UiP| [T Cle
R Al E| W F A DE R I h |
EBPISRIGR| H F CE |- NE| N [N- fale
JISMCUIGI L| DIFIFMKIFIAIA RBG, OV| © |V |nf
NPSPXNAFIA| || AWABIL DS GRB, REIOIR [E |n [t [Tiled
OE| RRRRLICL|FXXNI| |AA|CR Quality GBR, MRISM R |e|i |Data/
NGV LLLILZEEZFPBKARBITT M| |ASpecifi BRG, AISY A |S | |o [Tiled
EFPEEEEEWDMWE [P PFISE[7| Wgation RGB BGR [LER L [E s |n |Output
BMPE’ R R RW R| R RW RW
W, W, W,
CALS R R RW
W W,
FPIX R R R R
GIFF R R RW R RW
W, W,
UFIF8 R R wW RW R RW
W, W,
PBMF R R R RW
IW|W| W,
PCXF R R R R
PGMF R R R RW
IW|W| W,

Image File and Compression Formats B-13

Supported Image File and Compression Formats

Table B-2 Summary of Read/Write Access * for Supported Image File Formats -- Compression Format

and Other Format Specific Characteristics (Cont.)

Scan
File Channel Pixel line Other
Format Compression Format Order Order | Order |Options
G
J |
P F |
E L h P
G z D D a
P - F i B
R | L
O N| [L H A S
G T [T| [UP| [T Cle
R Al E| W F A D E R | h |
EBIPISRGR| H F CIE | N [E N N- fa e
JISMCUIGI L| DIF[FMKIFIAIA RBG, OV o vV n c
NPISPXNAIFIA| | AWABIL DS GRB, REO R E n t [Tiled
OE| RRRRLICILFXXINI| |AJAICRIQuality GBR, MRIS M R e || |Data/
NGVLLILILLIZEZFBH BT M| |A|Specifi BRG, A |S A S | o [Tiled
EPEEEEEWDMWE [P FISE[7| Weation RGB BGR |[LER2 L [E |s |n |Output
PICT R R RW R RW
W, W| W,
PNGF R R RW R RW
W, W,
PNMF R R W W W
W|W|
PPMF R R RW R RW
WW,| W
RPIX R R R RW RW RR RW RW R
W, W|W| IW|W|
RASF R R RW R RW
W, W, W,
TGAF R R RW R RW
W, W, W,
TIFF R R RRRRRRR RW R RW R RW
IW|W| WWWWWWW| W,
WBMP R R RW
W, W,

! R =Read access; W = Write access
2 Supports 8-bit gray and 24-bit RGB data only.

B-14 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats

® N o o A~ W

Supports 8-bit and 24-bit data only.

Supports MONOCHROME data only.

Supports MONOCHROME data only.

Supports MONOCHROME data only.

Compression is supported only for scanlineOrder=INVERSE (inverse DIB), which is the default.
Supports EXIF images.

Image File and Compression Formats B-15

Supported Image File and Compression Formats

B-16 Oracle interMedia User’s Guide and Reference

C

Video File and Compression Formats

C.1 Supported Video File and Compression Formats

The following tables describe the video file and compression formats supported by
interMedia.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table C-1 shows that interMedia supports
Apple QuickTime 3.0 MOOV file format and a variety of compression formats from
Cinepak to Sorenson Video.

Video File and Compression Formats C-1

Supported Video File and Compression Formats

Table C-1 Apple QuickTime 3.0 Data Format

Format

Apple QuickTime 3.0

File Format: ‘MOQOV’
File Ext: .mov
MIME type: video/quicktime

Compression Format

Choose one of these compression

formats®:

Cinepak CVID
JPEG JPEG
Uncompressed RGB RGB
Uncompressed YUV422 YUV2
Graphics SMC
Animation: Run Length Encoded |RLE
Apple Video Compression RPZA
Kodak Photo CD KPCD
QuickDraw GX QDGX
MPEG Still Image MPEG
Motion-JPEG (Format A) MJPA
Motion-JPEG (Format B) MJPB
Sorenson Video SvQ1l

L All codes are the FourCC (uppercased) directly obtained from the
dataFormat field of the video sample description entry of ’stsd’ Atom of
the QuickTime file. The table lists only the ones known.

C-2 Oracle interMedia User’s Guide and Reference

Supported Video File and Compression Formats

Table C-2 Microsoft Video for Windows (AVI) Data Format

Format

Microsoft AVI

File Format: ‘AVI’
File Ext: .avi
MIME type: video/x-msvideo

Compression Format

Choose one of these
compression formats®:

Microsoft Video 1 CRAM
Intel Indeo 3.1 V31
Intel Indeo 3.2 V32
Intel Indeo 4.0 V40
Intel Indeo 4.1 \VZ/N}
Intel Indeo 5.0 V50
Intel Indeo 5.1 V51
Cinepak CVID

1 All codes are the FourCC (uppercased) directly obtained from the
compression field of 'strf’ Chunk of the AVI file. The table lists only the
ones known.

Table C-3 RealNetworks Real Video Data Format

Format

RealNetworks Real Video

File Format: ‘RMFF’
File Ext: .rm
MIME type: audio/x-pn-realaudio

Video File and Compression Formats C-3

Supported Video File and Compression Formats

C-4 Oracle interMedia User’s Guide and Reference

D

Image process() and processCopy()
Operators

This appendix describes the command options, or operators, used in the
process() and processCopy() methods.

The available operators fall into three broad categories, each described in its own
section:

« Section D.2, "Image Formatting Operators"
« Section D.3, "Image Processing Operators"
« Section D.4, "Format-Specific Operators"

Section D.1, "Common Concepts" describes the relative order of these operators.

D.1 Common Concepts

This section describes concepts common to all the image operators and the
process() and processCopy() methods.

D.1.1 Source and Destination Images

The process() and processCopy() methods operate on one image, called the source
image, and produce another image, called the destination image. In the case of the
process() method, the destination image is written into the same storage space as
the source image, replacing it permanently. For the processCopy() method, the
storage for the destination image is distinct from the storage for the source image.

Image process() and processCopy() Operators D-1

Image Formatting Operators

D.1.2 process() and processCopy()

The process() and processCopy() methods are functionally identical except for the
fact that process() writes its output into the same BLOB from which it takes its
input while processCopy() writes its output into a different BLOB. Their command
string options are identical and no distinction is drawn between them.

For the rest of this appendix, the names process() and processCopy() are used
interchangeably, and the use of the name process() implies both process() and
processCopy() unless explicitly noted otherwise.

D.1.3 Operator and Value

All of the process() operators appear in the command string in the form <operator>
= <value>. No operator takes effect merely by being present in the command string.
The right-hand side of the expression is called the value of the operator, and
determines how the operator will be applied.

D.1.4 Combining Operators

In general, any number of operators can be combined in the command string passed
into the process() method if the combination makes sense. However, certain
operators are supported only if other operators are present or if other conditions are
met. For example, the compressionQuality operator is supported only if the
compression format of the destination image is JPEG. Other operators require that
the source or destination image be a Raw Pixel or foreign image.

The flexibility in combining operators allows a single operation to change the
format of an image, reduce or increase the number of colors, compress the data, and
cut or scale the resulting image. This is highly preferable to making multiple calls to
do each of these operations sequentially.

D.2 Image Formatting Operators

At the most abstract level, the image formatting operators are used to change the
layout of the data within the image storage. They do not change the semantic
content of the image, and unless the source image contains more information than
the destination image can store, they do not change the visual appearance of the
image at all. Examples of a source image with more information than the
destination image can store are:

= Converting a 24-bit image to an 8-bit image (too many bits per pixel)

D-2 Oracle interMedia User’s Guide and Reference

Image Formatting Operators

= Converting a color image to a grayscale or monochrome image (too many color
planes)

= Converting an uncompressed image, or an image stored in a lossless
compression format, to a lossy compression format (too much detail)

D.2.1 FileFormat

The FileFormat operator determines the image file type, or format, of the output
image. The value of this operator is a 4-character code, which is a mnemonic for the
new file format name. The list of allowable values for the file format operator is
shown in Table 8-1. Appendix B contains basic information about each file format,
including its mnemonic (file format), typical file extension, allowable compression
and content formats, and other notable features.

The value given to the file format operator is the single most important detail when
specifying the output for process(). This value determines the range of allowable
content and compression formats, whether or not compression quality will be
useful, and whether or not the format-specific operators will be useful.

If the FileFormat operator is not used in the process() command string, interMedia
will determine the file format of the source image and use that as the default file
format value. If the file format of the source image does not support output, then an
error will occur. If the source image is a foreign image, then the output image will
be written as Raw Pixel.

D.2.2 ContentFormat

The ContentFormat operator determines the format of the image content. The
content means the number of colors supported by the image and the manner in
which they are supported. Depending on which file format is used to store the
output image, some or most of the content formats may not be supported.

The supported values for the ContentFormat operator are described in Table 8-1.

The content formats that specify gray[scale] or grey[scale] support only shades of
gray. The differences between these content formats is how many shades are
allowed. The “4bit” formats support 16 shades while the formats with “8bit”
support 256 shades of gray. There is no distinction between grayscale and greyscale.

The content formats that specify RGB store pixel data as Red, Green, Blue triplets.
The number of bits specified will determine how many colors are supported. If 8 or
fewer bits are specified, most formats will default to a LUT representation.
Otherwise, DRCT (direct) will be used.

Image process() and processCopy() Operators D-3

Image Formatting Operators

The content formats that specify LUT use a color lookup table to support various
colors. The “1bitlut” format allows 2 distinct colors, “4bitlut” supports 16 unique
colors, and “8bitlut” supports 256 colors.

The content formats that specify DRCT store the color values directly in the pixel
data as a Red, Green, Blue triplet or gray value. The total number of bits of data is
specified separately and individual formats allocate these bits to red, green, and
blue in different ways. However, more bits of data allow for finer distinctions
between different shades. Not all bits are used by some image formats. Note that
currently most formats allow only 8-bit gray or 24-bit RGB.

The monochrome content format allows only black and white to be stored, with no
gray shades in between.

If the ContentFormat operator is not passed to the process() method, then
interMedia attempts to duplicate the content format of the source image if it is
supported by the file format of the destination image. Otherwise, a default content
format is chosen depending on the destination file format.

D.2.3 CompressionFormat

The CompressionFormat operator determines the compression algorithm used to
compress the image data. The range of supported compression formats depends
heavily upon the file format of the output image. Some file formats support but a
single compression format, and some compression formats are supported only by
one file format.

The supported values for the CompressionFormat operator are listed in Table 8-1.

All compression formats that include RLE in their mnemonic are run-length
encoding compression schemes, and work well only for images that contain large
areas of identical color. The PACKBITS compression type is a run-length encoding
scheme that originates from the Macintosh system but is supported by other
systems. It has limitations that are similar to other run-length encoding compression
formats. Formats that contain LZW or HUFFMAN are more complex compression
schemes that examine the image for redundant information and are more useful for
a broader class of images. FAX3 and FAX4 are the CCITT Group 3 and Group 4
standards for compressing facsimile data and are useful only for monochrome
images. All the compression formats mentioned in this paragraph are lossless
compression schemes, which means that compressing the image does not discard
data. An image compressed into a lossless format and then decompressed will look
the same as the original image.

D-4 Oracle interMedia User’s Guide and Reference

Image Formatting Operators

The JPEG compression format is a special case. Developed to compress
photographic images, the JPEG format is a lossy format, which means that it
compresses the image typically by discarding unimportant details. Because this
format is optimized for compressing photographic and similarly noisy images, it
often produces poor results for other image types, such as line art images and
images with large areas of similar color. JPEG is the only lossy compression scheme
currently supported by interMedia.

The DEFLATE compression type is ZIP Deflate and is used by PNG image file
formats. The DEFLATE-ADAMY7 compression format is interlaced ZIP Deflate and
is used by PNG image file formats. The ASCII compression type is ASCII encoding
and the RAW compression type is binary encoding and both are for PNM image file
formats.

If the CompressionFormat operator is not specified, then interMedia will use the
default compression format; often this default is "None" or "No Compression."

If the CompressionFormat operator is not specified and the file format of the
destination image is different from that of the source image, then a default
compression format will be selected depending on the destination image file format.
This default compression is often "None" or "No Compression."

D.2.4 CompressionQuality

The CompressionQuality operator determines the relative quality of an image
compressed with a lossy compression format. This operator has no meaning for
lossless compression formats, and therefore is not currently supported for any
compression format except JPEG.

The CompressionQuality operator accepts integer values between 1 (lowest quality)
and 99 (highest quality) in addition to five values, ranging from most compressed
image (lowest visual quality) to least compressed image (highest visual quality):
MAXCOMPRATIO, HIGHCOMP, MEDCOMP, LOWCOMP, and MAXINTEGRITY.
Using the MAXCOMPRATIO value allows the image to be stored in the smallest
amount of space but may introduce visible aberrations into the image. Using the
MAXINTEGRITY value keeps the resulting image more faithful to the original but
will require more space to store.

If the CompressionQuality operator is not supplied and the destination
compression format supports compression quality control, the quality will default
to MEDCOMP for medium quality.

Image process() and processCopy() Operators D-5

Image Processing Operators

D.3 Image Processing Operators

The image processing operators supported by interMedia directly change the way
the image looks on the display. The operators supported by interMedia represent
only a fraction of all possible image processing operations, and are not intended for
users performing intricate image analysis.

D.3.1 Cut

The Cut operator is used to create a subset of the original image. The values
supplied to the cut operator are the origin coordinates (x,y) of the cut window in the
source image, and the width and height of the cut window in pixels. This operator
is applied before any scaling that is requested.

If the Cut operator is not supplied, the entire source image is used.

D.3.2 Scale

The Scale operator enlarges or reduces the image by the ratio given as the value for
the operator. If the value is greater than 1.0, then the destination image will be
scaled up (enlarged). If the value is less than 1.0, then the output will be scaled
down (reduced). A scale value of 1.0 has no effect, and is not an error. No scaling is
applied to the source image if the Scale operator is not passed to the process()
method.

There are two scaling techniques used by interMedia. The first technique is “scaling
by sampling” and is used only if the requested compression quality is
MAXCOMPRATIO or HIGHCOMP, or if the image is being scaled up in both
dimensions. This scaling technique works by selecting the source image pixel that is
closest to the pixel being computed by the scaling algorithm and using the color of
that pixel. This technique is faster, but results in a poorer quality image.

The second scaling technique is “scaling by averaging,” and is used in all other
cases. This technique works by selecting several pixels that are close to the pixel
being computed by the scaling algorithm and computing the average color. This
technique is slower, but results in a better quality image.

If the Scale operator is not used, the default scaling value is 1.0. This operator
cannot be combined with other scaling operators.

D.3.3 XScale

The XScale operator is similar to the scale operator but only affects the width
(x-dimension) of the image. The important difference between XScale and Scale is

D-6 Oracle interMedia User’s Guide and Reference

Image Processing Operators

D.3.4 YScale

that with XScale, scaling by sampling is used whenever the image quality is
specified to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on
whether the image is being scaled up or down.

This operator may be combined with the YScale operator to scale each axis
differently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).

The YScale operator is similar to the scale operator but only affects the height
(y-dimension) of the image. The important difference between YScale and Scale is
that with YScale, scaling by sampling is used whenever the image quality is
specified to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on
whether the image is being scaled up or down.

This operator may be combined with the XScale operator to scale each axis
differently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).

D.3.5 FixedScale

The FixedScale operator provides an alternate method for specifying scaling values.
The Scale, XScale, and YScale operators all accept floating-point scaling ratios, while
the FixedScale (and MaxScale) operators specify scaling values in pixels. This
operator is intended to simplify the creation of images with a specific size, such as
thumbnail images.

The two integer values supplied to the FixedScale operator are the desired
dimensions (width and height) of the destination image. The supplied dimensions
may be larger or smaller (or one larger and one smaller) than the dimensions of the
source image.

The scaling method used by this operator will be the same as used by the Scale
operator in all cases. This operator cannot be combined with other scaling
operators.

D.3.6 MaxScale

The MaxScale operator is a variant of the FixedScale operator that preserves the
aspect ratio (relative width and height) of the source image. MaxScale also accepts
two integer dimensions, but these values represent the maximum value of the

Image process() and processCopy() Operators D-7

Format-Specific Operators

appropriate dimension after scaling. The final dimension may actually be less than
the supplied value.

Like the FixedScale operator, this operator is also intended to simplify the creation
of images with a specific size. MaxScale is even better suited to thumbnail image
creation than the FixedScale operator because thumbnail images created using
MaxScale will have the correct aspect ratios.

The MaxScale operator scales the source image to fit within the dimensions
specified while preserving the aspect ratio of the source image. Because the aspect
ratio is preserved, only one dimension of the destination image may actually be
equal to the values supplied to the operator. The other dimension may be smaller
than or equal to the supplied value. Another way to think of this scaling method is
that the source image is scaled by a single scale factor that is as large as possible
with the constraint that the destination image fit entirely within the dimensions
specified by the MaxScale operator.

If the Cut operator is used in conjunction with the MaxScale operator, then the
aspect ratio of the cut window is preserved instead of the aspect ratio of the input
image.

The scaling method used by this operator is the same as used by the Scale operator
in all cases. This operator cannot be combined with other scaling operators.

D.4 Format-Specific Operators

The following operators are supported only when the destination image file format
is Raw Pixel or BMPF (ScanlineOrder operator only), with the exception of the
InputChannels operator, which is supported only when the source image is Raw
Pixel or a foreign image. It does not matter if the destination image format is set to
Raw Pixel or BMPF explicitly using the FileFormat operator, or if the Raw Pixel or
BMPF format is selected by interMedia automatically because the source format is
Raw Pixel, BMPF, or a foreign image.

D.4.1 ChannelOrder

The ChannelOrder operator determines the relative order of the red, green, and
blue channels (bands) within the destination Raw Pixel image. The order of the
characters R, G, and B within the mnemonic value passed to this operator
determine the order of these channels within the output. The header of the Raw
Pixel image will be written such that this order is not lost.

D-8 Oracle interMedia User’s Guide and Reference

Format-Specific Operators

For more information about the Raw Pixel file format and the ordering of channels
in that format, see Appendix E.

D.4.2 Interleaving

The Interleaving operator controls the layout of the red, green, and blue channels
(bands) within the destination Raw Pixel image.The three mnemonic values
supported by this operator: BIP, BIL, and BSQ force the output image to be “band
interleaved by pixel,” “band interleaved by line,” and “band sequential”
respectively.

For more information about the Raw Pixel file format, the interleaving of channels
in that format, or the meaning of these interleaving values, see Appendix E.

Note: The interleaving operator is deprecated beginning with
release 9.0.1 and its functionality has been moved into the
contentFormat operator.

D.4.3 PixelOrder

The PixelOrder operator controls the direction of pixels within a scanline in a Raw
Pixel Image. The value Normal indicates that the leftmost pixel of a scanline will
appear first in the image data stream. The value Reverse causes the rightmost pixel
of the scanline to appear first.

For more information about the Raw Pixel file format and pixel ordering, see
Appendix E.

D.4.4 ScanlineOrder

The ScanlineOrder operator controls the order of scanlines within a Raw Pixel or
BMPF image. The value Normal indicates that the top display scanline will appear
first in the image data stream. The value Inverse causes the bottom scanline to
appear first. For BMPF, ScanlineOrder = inverse is the default and ordinary value.

For more information about the Raw Pixel or BMPF file format and scanline
ordering, see Appendix E.

D.4.5 InputChannels

As stated in Section D.4, the InputChannels operator is supported only when the
source image is in Raw Pixel format or if the source is a foreign image.

Image process() and processCopy() Operators D-9

Format-Specific Operators

D.4.6 Dither

D.4.7 Page

The InputChannels operator assigns individual bands from a multiband image to be
the red, green, and blue channels for later image processing. Any band within the
source image can be assigned to any channel. If desired, only a single band may be
specified and the selected band will be used as the gray channel, resulting in a
grayscale output image. The first band in the image is number 1, and the band
numbers passed to the Input Channels operator must be greater than or equal to
one, and less than or equal to the total number of bands in the source image. Only
the bands selected the by InputChannels operator are written to the output. Other
bands are not transferred, even if the output image is in Raw Pixel format.

It should be noted that every Raw Pixel or foreign image has these input channel
assignments written into its header block, but that this operator overrides those
default assignments.

For more information about the Raw Pixel file format and input channels, see
Appendix E.

The Dither operator controls how dithering is done. Dithering happens whenever
needed to accomodate the user’s request for a change in content format; the Dither
operator can be used to change how the dithering happens.

Dithering is the process of approximating colors that do not actually exist in an
image by mixing pixels of other colors in a ratio that fools the eye into seeing the
approximated color. interMedia will dither images when required to accomodate a
requested ContentFormat that can specify fewer colors than are present in the input
image, or when a change in ContentFormat is required to store an image in the
requested FileFormat. The Dither operator can be used to select by value which of
the available dithering algorithms is used to perform this approximation.

The ORDEREDDITHER algorithm is a fast method for approximating colors based
on a conversion color table. The resulting image often contains areas of alternating
pixel values, which may be objectionable in some cases.

The ERRORDIFFUSION algorithm produces a more accurate destination image by
diffusing the error caused by changing one pixel value into neighboring pixels. The
resulting image is usually of higher quality than the ordereddither algorithm, but
this operator is slower and may produce poor results with certain images."

The Page operator selects a page from a multipage file and can only be used with
TIFF file format images.

D-10 Oracle interMedia User’s Guide and Reference

Format-Specific Operators

D.4.8 Tiled

The Tiled operator forces the output image to be tiled and can only be used with
TIFF file format images.

Image process() and processCopy() Operators D-11

Format-Specific Operators

D-12 Oracle interMedia User’s Guide and Reference

E

Image Raw Pixel Format

This appendix describes the Oracle Raw Pixel image format and is intended for

developers and advanced users who wish to use the Raw Pixel format to import
unsupported image formats into interMedia, or as a means to directly access the
pixel data in an image.

Much of this appendix is also applicable to foreign images.

E.1 Raw Pixel Introduction

interMedia supports many popular image formats suitable for storing artwork,
photographs, and other images in an efficient, compressed way, and provides the
ability to convert between these formats. However, most of these formats are
proprietary to at least some degree, and the format of their content is often widely
variable and not suited for easy access to the pixel data of the image.

The Raw Pixel format is useful for applications that need direct access to the pixel
data without the burden of the complex computations required to determine the
location of pixels within a compressed data stream. This simplifies reading the
image for applications that are performing pixel-oriented image processing, such as
filtering and edge detection. This format is even more useful to applications that
need to write data back to the image. Because changing even a single pixel in a
compressed image can have implications for the entire image stream, providing an
uncompressed format enables applications to write pixel data directly, and later
compress the image with a single process() command.

This format is also useful to users who have data in a format not directly supported
by interMedia, but is in a simple, uncompressed format. These users can prepend a
Raw Pixel identifier and header onto their data and import it into interMedia. For
users who only need to read these images (such as for import or conversion), this

Image Raw Pixel Format E-1

Raw Pixel Image Structure

capability is built into interMedia as “Foreign Image Support”. How this capability
is related to the Raw Pixel format is described in Section E.10.

In addition to supporting image types not already built into interMedia, the Raw
Pixel format also permits the interpretation of N-band imagery, such as satellite
images. Using Raw Pixel, one or three bands of an N-band image may be selected
during conversion to another image format, allowing easy visualization within
programs that do not otherwise support N-band images. Note that images written
with the Raw Pixel format still may only have one or three bands.

The current version of the Raw Pixel format is “1.0”. This appendix is applicable to
Raw Pixel images of this version only, as the particulars of the format may change
with other versions.

E.2 Raw Pixel Image Structure

A Raw Pixel image consists of a 4-byte image identifier, followed by a 30-byte image
header, followed by an arbitrary gap of zero or more bytes, followed by pixel data.

It is worth noting that Raw Pixel images are never color-mapped, and therefore do
not contain color lookup tables.

The Raw Pixel header consists of the “Image Identifier” and the “Image Header”.
The Image Header is actually composed of several fields.

Note that the first byte in the image is actually offset ‘0’. All integer fields are
unsigned and stored in big endian byte order.

Name Byte(s) Description
Image Tdentifier 03 4-pyte character array containing ASCIT values for
RPIX.

This array identifies the image as a Raw Pixel image.

Image Header Length 4.7 Length of this header in bytes, excluding the
identifier field.

The value of this field may be increased to create a
gap between the header fields and the pixel data in

the image.

Major Version 8 Major version number of the Raw Pixel format used
in the image.

Minor Version 9 Minor version number of the Raw Pixel format used
in the image.

Image Width 10:13 Width of the image in pixels.

E-2 Oracle interMedia User’s Guide and Reference

Raw Pixel Header Field Descriptions

Image Height 14:17 Height of the image in pixels.

Compression Type 18 Compression type of the image: None, CCITT FAX
Group 3, or CCITT FAX Group 4.

Pixel Order 19 Pixel order of the image: Normal or Reverse.

Scanline Order 20 Scanline order of the image: Normal or Inverse.

Interleave 21 Interleave type of the image: BIP, BIL, or BSQ.

Number of Bands 22 Number of bands in the image. Must be in the range
1 to 255.

Red Channel Number 23 The band number of the channel to use as a default
for red.
This field is the gray channel number if the image is
grayscale.

Green Channel 24 The band number of the channel to use as a default

Number for green.

This field is zero if the image is grayscale.

Blue Channel Number 25 The band number of the channel to use as a default
for blue.

This field is zero if the image is grayscale.

Reserved Area 26:33 Not currently used. All bytes must be zero.

E.3 Raw Pixel Header Field Descriptions

This section describes the fields of the Raw Pixel Header in greater detail.

Image Identifier

Occupying the first 4 bytes of a Raw Pixel image, the identifier string must always
be set to the ASCII values “RPIX” (hex 52 50 49 58). These characters identify the
image as being encoded in RPIX format.

This string is currently independent of the Raw Pixel version.

Image Header Length

The Raw Pixel reader uses the value stored in this field to find the start of the pixel
data section within a Raw Pixel image. To find the offset of the pixel data in the
image, the reader adds the length of the image identifier (always ‘4’) to the value in
the image header length field. Thus, for Raw Pixel 1.0 images with no post-header
gap, the pixel data starts at offset 34.

Image Raw Pixel Format E-3

Raw Pixel Header Field Descriptions

For Raw Pixel version 1.0 images, this field normally contains the integer value ‘30’
which is the length of the Raw Pixel image header (not including the image
identifier). However, the Raw Pixel format allows this field to contain any value
equal to or greater than 30. Any information in the space between the end of the
header data and the start of the pixel data specified by this header length is ignored
by the Raw Pixel reader. This is useful for users who wish to prepend a Raw Pixel
header onto an existing image whose pixel data area is compatible with Raw Pixel.
In this case, the header length would be set to 30 plus the length of the existing
header. The maximum length of this header is 4,294,967,265 bytes (the maximum
value that can be stored in the 4-byte unsigned field minus the 30-byte header
required by Raw Pixel). This field is stored in big endian byte order.

Major Version

A single-byte integer containing the major version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘1’

Minor Version

A single-byte integer containing the minor version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘0’

Image Width
The width (x-dimension) of the image in pixels.
Although this field is capable of storing an image dimension in excess of 4 billion

pixels, limitations within interMedia require that this field be in the range 1<= width
<= 32767. This field is stored in big endian byte order.

Image Height
The height (y-dimension) of the image in pixels.
Although this field is capable of storing an image dimension in excess of 4 billion

pixels, limitations within interMedia require that this field be in the range
1 <= height <= 32767. This field is stored in big endian byte order.

Compression Type

This field contains the compression type of the Raw Pixel image. As of version 1.0,
this field may contain the following values:

E-4 Oracle interMedia User’s Guide and Reference

Raw Pixel Header Field Descriptions

Value Name Compression

T NONE NO compression

2 FAX3 CCITT Group 3 compression
3 FAX4 CCITT Group 4 compression

For grayscale, RGB, and N-band images, the image is always uncompressed, and
only a value of 0 is valid. If the compression type is value 1 or 2, then the image is
presumed to be monochrome. In this case the image is presumed to contain only a
single band, and must specify normal pixel order, normal scanline order, and BIP
interleave.

Pixel Order

This field describes the pixel order within the Raw Pixel image. Normally, pixels in
a scanline are ordered from left to right, along the traditional positive x-axis.
However, some applications require that scanlines be ordered from right to left.

This field may contain the following values:

Value Name Pixel Order
1 NORMAL Leftmost pixel first
2 REVERSE Rightmost pixel first

This field cannot contain 0, as this indicates an unspecified pixel order; this would
mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value ‘1’.

Scanline Order

This field describes the scanline order within the Raw Pixel image. Normally,
scanlines in an image are ordered from top to bottom. However, some applications
require that scanlines are ordered from bottom to top.

This field may contain the following values:

Value Name Scanline Order
T NORMAL Topmost scanline first
2 INVERSE Bottommost scanline first

This field cannot contain 0, as this indicates an unspecified scanline order; this
would mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value 1.

Image Raw Pixel Format E-5

Raw Pixel Header Field Descriptions

Interleave

This field describes the interleaving of the various bands within a Raw Pixel image.
For more information on the meaning of the various interleave options, see
Section E.5.3.

This field may contain the following values:

Value Name Interleave

1 BIP Band Interleave by Pixel, or “chunky™
2 BIL Band Interleave by Line

3 BSQ Band SeQuential, or “planar”

This field cannot contain 0, as this indicates an unspecified interleave; this would
mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value 1.

Number of Bands

This field contains the number of bands or planes in the image, and must be in the
range 1 <= number of bands <= 255. This field may not contain the value 0.

For CCITT images, this field must contain the value 1.

Red Channel Number

This field contains the number of the band that is to be used as the red channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as red in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() methods.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may not contain the value 0; only values in the range (1 <=red <=
number of bands) may be specified.

Green Channel Number

This field contains the number of the band that is to be used as the green channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as green in an

E-6 Oracle interMedia User’s Guide and Reference

Raw Pixel Post-Header Gap

N-band image. This default may be overridden using the inputChannels operator in
the process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= green <= number of bands.

Blue Channel Number

This field contains the number of the band that is to be used as the blue channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as blue in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= blue <= number of bands.

Reserved Area

The application of these 8 bytes titled Reserved Area is currently under
development, but they are reserved even within Raw Pixel 1.0 images. These bytes
must all be cleared to zero. Failure to do so will create undefined results.

E.4 Raw Pixel Post-Header Gap

Apart from the image identifier and the image header, Raw Pixel version 1.0 images
contain an optional post-header gap, which precedes the actual pixel data. Unlike
the reserved area of the image header, the bytes in this gap can contain any values
you want. This is useful to store additional metadata about the image, which in
some cases may be the actual image header from another file format.

However, because there is no standard for the information stored in this gap, care
must be taken if metadata is stored in this area as other users may interpret this
data differently. It is also worth noting that when a Raw Pixel image is processed,
information stored in this gap is not copied to the destination image. In the case of
the process() method, which writes its output to the same location as the input, the
source information will be lost unless the transaction in which the processing took
place is rolled back.

Image Raw Pixel Format E-7

Raw Pixel Data Section and Pixel Data Format

E.5 Raw Pixel Data Section and Pixel Data Format

The data section of a Raw Pixel image is where the actual pixel data of an image is
stored; this area is sometimes called the bitmap data. This section describes the
layout of the bitmap data.

For images using CCITT compression, the bitmap data area stores the raw CCITT
stream with no additional header. The rest of this section applies only to
uncompressed images.

Bitmap data in a Raw Pixel image is stored as 8-bit per plane, per pixel, direct color,
packed data. There is no pixel, scanline, or band blocking or padding. Scanlines
may be presented in the image as either topmost first, or bottommost first. Within a
scanline, pixels may be ordered leftmost first, or rightmost first. All these options
are affected by interleaving in a relatively straightforward way; see the sections that
follow for examples.

E.5.1 Scanline Ordering

On the screen, an image may look like the following:

1111111111,

Each digit represents a single pixel; the value of the digit is the scanline that the
pixel is on.

Generally the scanline that forms the upper or topmost row of pixels is stored in the
image data stream before lower scanlines. The preceding image would appear as
follows in the bitmap data stream:

LGA111111111...2222222222. ..3333333333. ..4444444444,,
Note that the first scanline appears earlier than the remaining scanlines. The Raw
Pixel format refers to this scanline ordering as normal.

However, some applications prefer that the bottommost scanline appear in the data
stream first:

. 4444444444, 3333333333...2222222222...1111111111.....
The Raw Pixel format refers to this scanline ordering as inverse.

E.5.2 Pixel Ordering

On the screen, a scanline of an image may look like the following:

E-8 Oracle interMedia User’s Guide and Reference

Raw Pixel Data Section and Pixel Data Format

...123456789. ..

Each digit represents a single pixel; the value of the digit is the column that the
pixel is on.

Generally the data that forms the leftmost pixels is stored in the image data stream
before pixels toward the right. The preceding scanline would appear as follows in
the bitmap data stream:

...123456789...
Note that the left pixel appears earlier than the remaining pixels. The Raw Pixel
format refers to this pixel ordering as normal.

However, some applications prefer that the rightmost pixel appear in the data
stream first:

...987654321...
The Raw Pixel format refers to this pixel ordering as reverse.

E.5.3 Band Interleaving

Band interleaving describes the relative location of different bands of pixel data
within the image buffer.

Bands are ordered by their appearance in an image data stream, with 1 being the
first band, n being the last band. Band 0 would indicate no band or no data.

Band Interleaved by Pixel (BIP), or Chunky

BIP, or chunky, images place the various bands or channels of pixel data sequentially
by pixel, so that all data for one pixel is in one place. If the bands of the image are
the red, green, and blue channels, then a BIP image might look like this:

scanline 1: RGBRGBRGBRGBRGBRGBRGB. ..
scanline 2: RGBRGBRGBRGBRGBRGBRGB. ..
scanline 3: RGBRGBRGBRGBRGBRGBRGB. ..

Band Interleaved by Line (BIL)

BIL images place the various bands of pixel data sequentially by scanline, so that
data for one pixel is spread across multiple notional rows of the image. This reflects
the data organization of a sensor that buffers data by scanline. If the bands of the
image are the red, green, and blue channels, then a BIL image might look like this;

scanline 1: RRRRRRRRRRRRRRRRRRRRR...
GGGGGGGGGGGGGGGGGGGEE. .

Image Raw Pixel Format E-9

Raw Pixel Data Section and Pixel Data Format

BBBBBBBBBBBBBBBBBBBEB. ..
scanline 2: RRRRRRRRRRRRRRRRRRRRR...
GGGGGGGGGGGGGGGGGGGEE. ..
BBBBBBBBBBBBBBBBBBBEB. ..
scaniine 3: RRRRRRRRRRRRRRRRRRRRR...
GGGGGGGGGGGGGGGGGGGEE. ..
BBBBBBBBBBBBBBBBBBBEB. ..

Band Sequential (BSQ), or Planar

Planar images place the various bands of pixel data sequentially by bit plane, so
that data for one pixel is spread across multiple planes of the image. This reflects the
data organization of some video buffer systems, which control the different electron
guns of a display from different locations in memory:. If the bands of the image are
the red, green, and blue channels, then a planar image might look like this:

plane 1: RRRRRRRRRRRRRRRRRR... (partof scanline 1)
RRRRRRRRRRRRRRRRRR... (partof scanline 2)
RRRRRRRRRRRRRRRRRR... (partof scaniine 3)

plane 2: GGGGGGGGGGGGGGGGEG. .. (partof scanline 1)
GGGGGGGGGGGGGGGGEE. .. (partof scaniine 2)
GGGGGGGGGGGGGGGGEE. .. (partof scaniine 3)

plane 3: BBBBBBBBBBBBBBBBBB. .. (part of scanline 1)
BBBBBBBBBBBBBBBBBB. .. (partof scanline 2)
BBBBBBBBBBBBBBBBBB... (partof scanline 3)

E.5.4 N-Band Data

The Raw Pixel format supports up to 255 bands of data in an image. The relative
location of these bands of data in the image is described in Section E.5.3, which
gives examples of interleaving for 3 bands of data.

In the case of a single band of data, there is no interleaving; all three schemes are
equivalent. Examples of interleaving other numbers of bands are given in the
following table. All images have three scanlines and four columns. Each band of
each pixel is represented by a single-digit band number. Normal text numbers in
italic represent the second scanline of the image, and numbers in boldface represent
the third scanline of the image.

E-10 Oracle interMedia User’s Guide and Reference

Raw Pixel Header “C” Structure

Bands BIP BIL BSQ
2 12121212 11112222 TITTIITITIIT
12121212 11112222 222222222222
12121212 11112222
4 1234123412341234 1111222233334444 111111111111
1234123412341234 1111222233334444 222222222222
1234123412341234 1111222233334444 333333333333
444444444444
5 12345123451234512345 11112222333344445555 111111111111
12345123451234512345 11112222333344445555 222222222222
12345123451234512345 11112222333344445555 333333333333
444444444444
555555555555

E.6 Raw Pixel Header “C” Structure

The following C language structure describes the Raw Pixel header in a

programmatic way. This structure is stored unaligned in the image file (that is,
fields are aligned on 1 byte boundaries) and all integers are stored in big endian

byte order.

struct RawP xel Header

{

unsi gned char identifier[4]; /* Aways "RAIX' */

unsi gned longhdrlength; /* Length of this header in bytes */
/* Including the hdrlength field */

/* Not including the identifier field */
[* &.hdrlength + k. hdrlength = pixel s */

unsi gned
unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned

char
char

long wi dth;
| ong
char
char
char
char

conpt ype;
scnl or der;
char

char
char

/* Image wdth in pixels */
height; /* Inage height in pixels */
/* Conpressi on (none, FAXE, FAX&,
pi xel order; /* Pixel order */

/* Scanline order */
interleave; /* Interleaving (BIP B L/MAanar) */

nmaj orversion; /* Myjor revision # of RAIX format */
mnorversion; /* Mnor revision # of RPIX format */

L) %l

nunbands; /* Nunber of bands in inmage (1-255) */
rchannel ; /* Default red channel assignment */
gchannel ; /* Default green channel assignnment */

Image Raw Pixel Format

E-11

Raw Pixel Header “C" Constants

unsi gned char bchannel ; /* Default blue channel assignnent */
/* Gayscal e images are encoded in R*/

/* The first band is 1, not 'O */

/* Avalue of 'O neans "no band" */

unsi gned char reserved[8]; /* For later use */

h

E.7 Raw Pixel Header “C” Constants
The following C language constants define the values used in the Raw Pixel header.
#define RP X | DENTI FI ER "RAI X'

#defi ne RPl X HEADERLENGTH 30

#defi ne RP X MAJCR VERSI ON 1
#define R X MNCR VERSI ON 0

#define RA X COMPRESS ON_UNDEFI NED 0

#defi ne RPI X OOMPRESSI ON_NONE 1

#define RAX COMPRESS ON O TT_FAX & 2

#defi ne R X OOMPRESSI ON GO TT_FAX &4 3

#defi ne R X OOMPRESS ON DEFALLT RPI X OOMPRESS ON NONE

#define RPI X Pl XE._CROER UNDEFI NED 0

#define RPI X Pl XEL_CRDER NCRWVAL 1

#define RPI X Pl XE._CRDER REVERSE 2

#defi ne RA X Pl XBL ORDER DEFALLT RA X Pl XBL GRDER NORVAL

#defi ne RP X SCANLI NE CRDER UNDEFI NED 0

#define RPI X SCANLI NE CRDER NCRWVAL 1

#define R X SCANLI NE CRDER | NVERSE 2

#defi ne RPI X_SCANLI NE_ CRDER DEFALLT RPI X SCANLI NE_CRDER NCRVAL

#defi ne RPI X | NTERLEAVI NG UNDEFI NED 0

#define RA X INTERLEAVING BIP 1

#define R X | NTERLEAVING BIL 2

#defi ne RPI X | NTERLEAVI NG BSQ 3

#define RP X | NTERLEAVI NG DEFALLT RPI X | NTERLEAVI NG Bl P

#def i ne RPI X_CHANNEL_UNDEFI NED 0

E-12 Oracle interMedia User’s Guide and Reference

Raw Pixel Images Using CCITT Compression

Note that the various macros for the UNDEFINED values are meant to be
illustrative and not necessarily used, except for "RPIX_CHANNEL_UNDEFINED"
which is used for the green and blue channels of single band images.

E.8 Raw Pixel PL/SQL Constants

The following PL/SQL constants define the values used in the raw pixel
information. The constants represent the length of the RP1X image identifier plus
the length of the RPIX header.

CREATE (R REPLACE PACKACE (RO mageQonst ant s AS
R X HEADER LENGTH 1 0 QONSTANT | NTEEER : = 34;
BEND CRO nageConst ant s;

E.9 Raw Pixel Images Using CCITT Compression

Although the Raw Pixel format is generally aimed at uncompressed direct color
images, provision is also made to store monochrome images using CCITT Fax
Group 3 or Fax Group 4 compression. This is useful for storing scans of black and
white pages, such as for document management applications. These images are
generally impractical to store as even grayscale, as the unused data bits combined
with the very high resolution used in these images would use excessive disk space.

Raw Pixels images using CCITT compression are treated as normal Raw Pixel
images, with the following restrictions:

= The “compression type” field must contain the value 1 or 2 as outlined in
Section E.3 (FAX3 or FAX4).

« The “pixel order” field must contain the value 1 (normal pixel order).

= The “scanline order” field must contain the value 1 (normal scanline order).
« The “interleave” field must contain the value 1 (BIP interleave).

= The “number of bands” field must contain the value 1 (one band).

= The “red channel number” field must contain the value 1.

= The “green channel number” and “blue channel number” fields must contain
the value 0 (no band).

In addition to these restrictions, applications which attempt to access pixel data
directly will need to understand how to read and write the CCITT formatted data.

Image Raw Pixel Format E-13

Foreign Image Support and the Raw Pixel Format

E.10 Foreign Image Support and the Raw Pixel Format

interMedia provides support for reading certain foreign images that can be
described in terms of a few simple parameters, and whose data is arranged in a
certain straightforward way within the image file. There is no list of the supported
formats because the list would be so large and continually changing. Instead, there
are some simple guidelines to determine if an image can be read using the foreign
image support in interMedia. These rules are summarized in the following sections.

Header

Foreign images may have any header (or no header), in any format, as long as its
length does not exceed 4,294,967,265 bytes. As has been noted before, all
information in this header will be ignored.

Image Width
Foreign images may be up to 32,767 pixels wide.

Image Height
Foreign images may be up to 32,767 pixels high.

Compression Type

Foreign images must be uncompressed or compressed using CCITT Fax Group 3 or
Fax Group 4. Other compression schemes, such as run-length encoding, are not
currently supported.

Pixel Order

Foreign images may store pixels from left-to-right or right-to-left. Other pixel
ordering schemes, such as boustrophedonic ordering, are not currently supported.

Scanline Order

Foreign images may have top-first or bottom-first scanline orders. Scanlines that are
adjacent in the image display must be adjacent in the image storage. Some image
formats stagger their image scanlines so that, for example, scanlines 1,5,9, and so
forth are adjacent, and then 2,6,10 are also adjacent. This is not currently supported.

Interleaving

Foreign images must use BIP, BIL, or BSQ interleaving. Other arrangements of data
bands are not allowed, nor may bands have any pixel, scanline, or band-level
blocking or padding.

E-14 Oracle interMedia User’s Guide and Reference

Foreign Image Support and the Raw Pixel Format

Number of Bands

Foreign images may have up to 255 bands of data. If there are more bands of data,
the first 255 can be accessed if the interleaving of the image is “band sequential.” In
this case, the additional bands of data lie past the accessible bands and do not affect
the layout of the first 255 bands. Images with other interleaving types may not have
more than 255 bands because the additional bands will change the layout of the
bitmap data.

Trailer

Foreign images may have an image trailer following the bitmap data, and this
trailer may be of arbitrary length. However, such data is completely ignored by
interMedia, and there is no method (or need) to specify the presence or length of
such a trailer.

If an image with such a trailer is modified with the process() or processCopy()
methods, the resulting image will not contain this trailer. In the case of the
processCopy() method, the source image will still be intact.

Image Raw Pixel Format E-15

Foreign Image Support and the Raw Pixel Format

E-16 Oracle interMedia User’s Guide and Reference

-

Sample Programs

Oracle interMedia includes a number of scripts and sample programs that you can
use.

Sample Oracle interMedia scripts and programs are available in the following
directories after you install this product:

$ORAAE HOME or d/ aud/ deno/
$ORAAE HOME or d/ doc/ deno/
$ORAAE HOME or d/ i ng/ deno/
$CRACLE HOMA or d/ vi d/ deno/

F.1 Sample Audio Scripts
The audio scripts consist of the following files:

« auddemo.sql - audio demonstration (demo) that shows features of the audio
object including:

— Checking interMedia objects

— Creating a sample table with audio in it

— Inserting NULL rows into the audio table

— Checking the rows out

— Checking all the audio attributes directly

— Checking all the audio attributes by calling methods

— Installing your own format plug-in using the two files, fplugins.sqgl and
fpluginb.sqgl described in the next two list items and in Section 3.1.12 on
how to extend interMedia audio services to support a new audio data
format

Sample Programs F-1

Sample Document Scripts

« fplugins.sqgl - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support

« fpluginb.sqgl - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the$GQRAQE HOVH or d/ aud/ deno directory for
requirements and instructions on running this SQL demo.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the audio client-side Java classes so you can build your own applications.

F.2 Sample Document Scripts

The document scripts consist of the following files:

« docdemo.sqgl - document demonstration (demo) that shows features of the
document object and includes the testaud.dat, testdoc.dat, testimg.dat, and
testvid.dat files.

See the README.txt files in the$QRAQ.E HOMA or di ni denwo/ doccheck and QRAQLE
HOVH or di nt deno/ doccj pub directories for requirements and instructions on running
this SQL demo.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the document client-side Java classes so you can build your own applications.

F.3 Sample Program for Modifying Images or Testing the Image

Installation

Once you have installed Oracle interMedia, you may choose to run the Oracle
interMedia image services demonstration program. This program can also be used
as a test to confirm successful installation.

This section contains the steps required to build and run the interMedia image
services demo.

The interMedia image services demo files are located in <ORACLE_
HOME>/ord/img/demo, where <ORACLE_HOME> is the ORACLE_HOME
directory.

F-2 Oracle inteMedia User’s Guide and Reference

Sample Program for Modifying Images or Testing the Image Installation

F.3.1 Demonstration (Demo) Installation Steps

For interMedia image services, see the README.txt file at <ORACLE _
HOME>/ord/img/demo/README.txt (on UNIX), and <ORACLE _
HOME>\ord\img\demo\README.txt (on Windows NT), where <ORACLE_
HOME> is the ORACLE_HOME directory.

F.3.2 Running the Demo

The file imgdemo is a sample program that shows how Oracle interMedia image
services can be used from within a program. The demo is written in C and uses
OCIl, Oracle Call Interface, to access the database and exercise Oracle interMedia
image services.

The program operates on imgdemo.dat, which is a bitmap (BMP) image in the
demo directory. Optionally, you can supply an image file name on the command
line, provided the file resides in the same directory as the demo. In either case, once
the image has been manipulated by Oracle interMedia image services, the resulting
image is written to the file imgdemo.out and can then be viewed with common
rendering tools that you supply.

When the demo is run, it deletes and re-creates a table named IMGDEMOTAB in
the SCOTT/TIGER schema of the default database. This table is used to hold the
demo data. Once the table is created, a reference to the image file is inserted into the
table. The data is then loaded into the table and converted to JFIF using the
processCopy() method of ORDImage.

The image properties are extracted within the database using the setProperties()
method. An UPDATE command is issued after the setProperties() invocation. This
is required because the setProperties() invocation has only updated a local copy of
the type attributes.

Next, the Oracle interMedia image services process() method is used to cut and
scale the image within the database. This is followed by an update that commits the
change. The program cuts a portion of the image 100 pixels wide by 100 pixels high
starting from pixel location (100,100). This subimage is scaled to twice its original
size and the resulting image is written out to the file system in a file named
imgdemo.out.

Upon completion, the demo program leaves the imgdemo.out file in the current
directory. It also leaves the table IMGDEMOTAB in the SCOTT/TIGER schema of
the database.

Execute the demo by typing imgdemo on the command line. Optionally, a different
image can be used in the demo by first copying the file to the directory in which the

Sample Programs F-3

Sample Video Scripts

demo resides and then specifying its file name on the command line as an argument
to imgdemo.

Use the command shown in Example F-1.

Example F-1 Execute the Demo from the Command Line
$ i ngdeno <optional -i nage-fi | ename>

The demo displays a number of messages describing its progress, along with any
errors encountered in the event that something was not set up correctly. Expect to
see the following messages:

Droppi ng tabl e | MDEMOTAB. . .

Qeating and popul ating table | MDEMOTAB. . .
Loading data into cartridge. ..

Mbdi fyi ng i mage characteristics...

Witing inage to file ingdeno.out. ..

O sconnecti ng from dat abase. . .

Logged of f and detached from server.

Deno conpl et ed successful ly.

If the program encounters any errors, it is likely that either Oracle interMedia image
services software has not been installed correctly or the database has not been
started. If the program completes successfully, the original image and the resultant
image, which has undergone the cutting and scaling described earlier, can be
viewed with common image rendering tools.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the image client-side Java classes so you can build your own applications.

F.4 Sample Video Scripts
The video scripts consist of the following files:
« viddemo.sql - video demo that shows features of the video object including:
— Checking interMedia objects
— Creating a sample table with video in it
— Inserting NULL rows into the video table
— Checking the rows out

— Checking all the video attributes directly

F-4 Oracle interMedia User’s Guide and Reference

Java Demo

— Checking all the video attributes by calling methods

— Installing your own format plug-in using the two files, fplugins.sqgl and
fpluginb.sqgl described in the next two list items and in Section 3.4.12 on
how to extend interMedia video services to support a new video data
format

« fplugins.sqgl - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support

« fpluginb.sqgl - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the $GRAQ E HOVH or d/ vi d/ demo directory for
requirements and instructions on how to run this SQL demao.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the video client-side Java classes so you can build your own applications.

F.5 Java Demo

A Java demo has been provided to help you learn to use both the audio, video,
image, and document client-side Java classes so you can build your own
applications. In these four demos, the audio, video, image, and document object is
instantiated at the client side and a number of accessor methods are invoked. The
audio Java demo files are located in the QRAQ.E HOVH or d/ aud/ deno/ j ava directory,
the video Java demo files are located in the $GRAQ E HOVH or d/ vi d/ deno/ j ava
directory, the image Java demo files are located in the GRAQE

HOVH ord/ i ng/ deno/ j ava directory, and the document Java demo files are located in
the $GRAQE HOVAH or d/ doc/ deno/ j ava directory. See the README.txt file in each
directory for requirements and instructions on how to run each respective Java
demo.

Sample Programs F-5

Java Demo

F-6 Oracle inteMedia User’s Guide and Reference

G

Frequently Asked Questions

A text file containing a list of frequently asked questions is available on line after
installing Oracle interMedia.

This text file can be found as follows:
$ORAAE HOME or d/ i i admi n/ i nf aq. t xt

Frequently Asked Questions G-1

G-2 Oracle interiMedia User’s Guide and Reference

H

Exceptions and Error Messages

H.1 Exceptions

The following sections describe the exceptions and error messages of interMedia
objects.

H.1.1 ORDAudioExceptions Exceptions
The following exceptions are associated with the ORDAudio object:
LOCAL_DATA_SOURCE_REQUIRED
Cause: This exception is raised if the data source is external.
Action: Set the source information to a local source.

DESCRIPTION_IS_NOT_SET

Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_DESCRIPTION

Cause: This exception is raised when you call the setDescription() method
with a value that is not valid.

Action: Set the value of the user_description parameter to an acceptable value.

INVALID_MIME_TYPE

Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.

Action: Set the MIME parameter value to a known value.

AUDIO_FORMAT _IS_NULL

Exceptions and Error Messages H-1

Exceptions

Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the audio object to a known format.

AUDIO_ENCODING_IS_NULL

Cause: This exception is raised when calling the getEncoding function and the
encoding is NULL.

Action: Set the encoding for the audio object to a known value.

AUDIO_NUM_CHANNELS_IS_NULL

Cause: This exception is raised when calling the getNumberOf Channels
function and the number of channels is NULL.

Action:; Set the number of channels for the audio object to a known value.

AUDIO_SAMPLING_RATE_IS_NULL

Cause: This exception is raised when calling the getSamplingRate function and
the sampling rate is NULL.

Action: Set the sampling rate for the audio object to a known value.

AUDIO_SAMPLE_SIZE_IS_NULL

Cause: This exception is raised when calling the getSampleSize function and
the sample size is NULL.

Action: Set the sample size for the audio object to a known value.

AUDIO_DURATION_IS_NULL

Cause: This exception is raised when calling the getAudioDuration function
and the duration is NULL.

Action: Set the duration for the audio object to a known value.

NULL_INPUT_VALUE

Cause: This exception is raised if the knownFormat parameter value of the
setFormat procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

AUDIO_PLUGIN_EXCEPTION

H-2 Oracle interMedia User’s Guide and Reference

Exceptions

Cause: This exception is raised when the audio plug-in raises an exception.
Action: Refer to Section 6.4.1 for more information.

H.1.2 ORDDocExceptions Exceptions
The following exceptions are associated with the ORDDoc object:
DOC_PLUGIN_EXCEPTION
Cause: This exception is raised when the document plug-in raises an exception.
Action: Refer to Section 7.4.1 for more information.

INVALID_MIME_TYPE

Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.

Action:; Set the MIME parameter value to a known value.

INVALID_FORMAT_TYPE

Cause: This exception is raised if the FORMAT parameter value of the
setFormat procedure is NULL.

Action: Set the FORMAT parameter value to a known value.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

NULL_INPUT_VALUE

Cause: This exception is raised if the knownFormat parameter value of the
setFormat procedure is NULL.

Action: Set these parameters with known values.

H.1.3 ORDImageExceptions Exceptions
The following exceptions are associated with the ORDImage object:

NULL_LOCAL_DATA
Cause: This exception is raised when source.localData is NULL.

Action: Initialize source.localData with an empty_blob().

NULL_PROPERTIES_DESCRIPTION

Exceptions and Error Messages H-3

Exceptions

Cause: This exception is raised when the description parameter to setProperties
is not set.

Action: Set the description attribute if you are using a foreign image. Other-
wise, do not pass the description parameter.

NULL_DESTINATION
Cause: This exception is raised when the destination image is NULL.

Action: Pass an initialized destination image.

DATA_NOT_LOCAL
Cause: This exception is raised when the source information is not set to local.

Action: Reset the source attribute information to a local image source. Call the
import() or importFrom() method to import the data into the local BLOB.

NULL_CONTENT
Cause: This exception is raised when the content attribute of an ORDImgB or
ORDImgF image is NULL.

Action: Initialize the content attribute.

NULL_SOURCE
Cause: This exception is raised when the source image is NULL.

Action:; Pass an initialized source image.

H.1.4 ORDVideoExceptions Exceptions
The following exceptions are associated with the ORDVideo object:
LOCAL_DATA_SOURCE_REQUIRED
Cause: This exception is raised if the data source is external.
Action: Set the source information to a local source.

DESCRIPTION_IS NOT_SET
Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.

H-4 Oracle interMedia User’s Guide and Reference

Exceptions

Action: Set the MIME parameter value to a known value.

VIDEO_FORMAT _IS_NULL

Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the video object to a known format.

NULL_INPUT_VALUE

Cause: This exception is raised if either the knownWidth or knownHeight
parameter values of the setFrameSize procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.
Action: Call a supported method.

VIDEO_PLUGIN_EXCEPTION
Cause: This exception is raised when the video plug-in raises an exception.
Action: Refer to Section 9.4.1 for more information.

H.1.5 ORDSourceExceptions Exceptions
The following exceptions are associated with the ORDSource object:

INCOMPLETE_SOURCE_INFORMATION

Cause: This exception is raised when the source information is incomplete or
srcType is NULL and data is not stored locally in the BLOB.

Action: Check your source information and set srcType, srcLocation, or src-
Name attributes as needed.

INCOMPLETE_SOURCE_LOCATION
Cause: This exception is raised when the value of srcLocation is NULL.

Action: Check your source location and set the srcLocation attribute.

INCOMPLETE_SOURCE_NAME
Cause: This exception is raised when the value of srcName is NULL.
Action: Check your source name and set the srcName attribute.

EMPTY_SOURCE

Exceptions and Error Messages H-5

ORDAudio Error Messages

Cause: This exception is raised when the source is local but the source is
NULL.

Action: Pass an initialized source.

NULL_SOURCE
Cause: This exception is raised when the local source is NULL.

Action: Pass an initialized source.

INVALID_SOURCE_TYPE

Cause: This exception is raised when the getBFile method detects a source type
other than *file’.

Action: Ensure that the source type is 'file’.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

SOURCE_PLUGIN_EXCEPTION
Cause: This exception is raised when the source plug-in raises an exception.

Action: Refer to Section 1.3.1, Section 1.3.2, and Section 1.3.3 for more informa-
tion.

H.2 ORDAudio Error Messages

AUD-00702 unable to initialize audio processing environment
Cause: The initalization of the audio processing external procedure failed.

Action: See the database administrator to make sure that enough memory has
been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

AUD-00703 unable to read audio data
Cause: An error occurred while accessing the audio source.

Action: Make sure the audio source is valid. For external sources, make sure all
access priviliges are granted.

AUD-00704 invalid input format

H-6 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Cause: The audio data in the source was not in the format specified by the
format field of the audio object. In some unusual case, the audio data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format

plug-in.

AUD-00705 unsupported input format

Cause: The file format of the audio data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

AUD-00706 unsupported or corrupted input format

Cause: The audio data was either corrupted or the file format was not
supported.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats. If the audio data is not corrupted and is in a supported file format, con-
tact Oracle Customer Support Services.

AUD-00713 internal error while parsing audio data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

AUD-00714 internal error
Cause: An internal error occurred.

Action: Contact Oracle Customer Support Services.

H.3 ORDImage Error Messages

IMG-00001, "unable to initialize Oracle interMedia environment"
Cause: The image processing external procedure initialization process failed.

Action: Contact Oracle Customer Support Services.

IMG-0002,"unrecoverable error"
Cause: Thisis an internal error.

Action: Contact Oracle Customer Support Services.

Exceptions and Error Messages H-7

ORDImage Error Messages

IMG-00502, "invalid scale value"

Cause: An invalid scale value was found while parsing the parameters for the
image process function.

Action: Correct the statement by using a valid scale value. Refer to Oracle inter-
Media User’s Guide and Reference documentation for a description of the correct
usage and syntax for the image processing command string.

IMG-00505, "missing value in CUT rectangle"
Cause: An incorrect number of values was used to specify a rectangle.

Action: Use exactly four integer values for the lower-left and upper-right verti-
ces.

IMG-00506, "extra value in CUT rectangle"
Cause: An incorrect number of values was used to specify a rectangle.

Action: Use exactly four integer values for the lower-left and upper-right verti-
ces.

IMG-00510, application-specific-message
Cause: A syntax error was found while parsing the parameters for the image
process function.

Action: Correct the statement by using valid parameter values. Refer to Oracle
interMedia User’s Guide and Reference documentation for a description of the cor-
rect usage and syntax for the image processing command string.

IMG-00511, application-specific-message
Cause: An error was found while accessing image data.
Action: Contact Oracle Customer Support Services.

IMG-00512, "multiple incompatible scaling parameters found"

Cause: Multiple incompatible scaling parameters were found in the image
process command string. With the exception of XSCALE and YSCALE, which
can be used together in a process command string, scaling functions are
mutually exclusive and cannot be combined.

Action: Remove scaling functions until only one remains (or two, if they are
XSCALE and YSCALE).

IMG-00513, "missing value in scaling operation”

H-8 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00514, "extra value in scaling operation"

Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00515, "incorrect number of input channels”

Cause: An incorrect number of values was used to specify input channels.
InputChannels requires either one or three channel numbers for the gray or red,
green, and blue channel assignments.

Action: Use either one or three values to specify the input channels.

IMG-00516, "default channel out of range"
Cause: An incorrect value was used to specify the default channel selection.

Action: Use a channel number that is less than or equal to the number of bands
and greater than zero.

IMG-00517, "height or width not present in parameter string"
Cause: Height and/or width were not specified in the setProperties parameter
string.
Action: Specify both the height and width.

IMG-00518, "invalid value for height or width"
Cause: Height and width were not positive integers.

Action: Specify both the height and width as positive integers.

IMG-00519, "illegal combination of parameters"

Cause: Other than height, width, dataOffset, and userString, no other
parameters may be specified in the setProperties parameter string when
CCITTG3 or CCITTG4 is used as the compressionFormat.

Action: Supply only the height and width when compressionFormat is either
CCITTG3 or CCITTG4. The dataOffset and userString may optionally be sup-
plied as well.

Exceptions and Error Messages H-9

ORDImage Error Messages

IMG-00520, "invalid value for numberOfBands"
Cause: NumberOfBands was not a positive integer.

Action: Specify numberOfBands as a positive integer.

IMG-00521, "invalid value for dataOffset"
Cause: dataOffset was not a positive integer.

Action: Specify dataOffset as a positive integer.

IMG-00522, "invalid format for parameter value"

Cause: A floating-point value was specified where an integer is required, or a
character value was specified where a numeric value is required.

Action:; Specify the correct type of values for process parameters.

IMG-00523, "invalid process verb"

Cause: A process verb was specified that is not understood by Oracle
interMedia.

Action:; Refer to the Oracle interMedia documentation for a description of valid
process verbs.

IMG-00524, "mismatched quotes"

Cause: Quotation marks used within a process command string were not
matched.

Action: Ensure that quotation marks occur in pairs.

IMG-00525,"locale error”
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00526,"error parsing foreign image description”
Cause: An internal error occurred while processing a foreign image.
Action: Use setProperties to correct the foreign image description. Contact Ora-
cle Customer Support Services.

IMG-00530, "internal error while parsing command"

Cause: An internal error occurred while parsing the command passed to the
image processing function or the foreign image setProperties function.

H-10 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Action: Check the command passed to the function. Refer to Oracle interMedia
User’s Guide and Reference for a description of the correct usage and syntax for
the image processing command string or the foreign image setProperties func-
tion. If you are certain that your command is correct, then contact Oracle Cus-
tomer Support Services.

IMG-00531, "empty or null image processing command"
Cause: An empty or null image processing command was passed to the image
process function.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax for the image processing command string.

IMG-00540,"contentFormat and interleave conflict"
Cause: Interleave values were specified using both the contentFormat and
interleave verbs.

Action:; Specify interleave values using either contentFormat or interleave, but
not both.

IMG-00541,"invalid contentFormat specified"
Cause: The specified contentFormat was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid contentFormat specifications.

IMG-00542,"contentFormat includes invalid extra information"

Cause: The specified contentFormat included invalid characters at the end of
the parameter string.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid contentFormat specifications.

IMG-00543,"invalid compressionFormat specified"
Cause: The specified compressionFormat was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid compressionFormat specifications.

IMG-00544,"invalid compressionQuality specified"
Cause: The specified compressionQuality was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid compressionQuality specifications.

Exceptions and Error Messages H-11

ORDImage Error Messages

IMG-00545,"invalid cut values specified"

Cause: An invalid value was found while parsing the parameters for the cut
operation.

Action: Correct the statement by using valid values for the cut operation that
are not negative. Refer to Oracle interMedia User’s Guide and Reference for a
description of the correct usage and syntax for the image processing command
string.

IMG-00546,"invalid page number specified"
Cause: An invalid page number was specified.

Action: Specify page numbers that are not negative.

IMG-00547,"invalid channelOrder specified"
Cause: The specified channel order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid channelOrder specifications.

IMG-00548,"invalid interleave specified"
Cause: The specified interleave was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid interleave specifications.

IMG-00549,"invalid pixelOrder specified"
Cause: The specified pixel order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid pixelOrder specifications.

IMG-00550,"invalid scanlineOrder specified"
Cause: The specified scanline order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid scanlineOrder specifications.

IMG-00551,"invalid dither type specified"
Cause: The specified dither type was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid dither specifications.

IMG-00552,"invalid inputChannels specified"
Cause: An invalid value was specified for the inputChannels verb.

H-12 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Action: Specify non-negative values for inputChannels. Refer to Oracle interMe-
dia User’s Guide and Reference for a description of the correct usage and syntax
for the image processing command string.

IMG-00560,"input format does not support page selection”
Cause: The page verb was specified for an input format that does not support
selecting pages.

Action: Remove the page selection verb. Refer to Oracle interMedia User’s Guide
and Reference for a description of which image formats support page selection.

IMG-00561,"input format does not support channel selection”
Cause: The inputChannels verb was specified for an input format that does not
support selecting channels.

Action; Remove the inputChannels verb. Refer to Oracle interMedia User’s Guide
and Reference for a description of which image formats support input channel
selection.

IMG-00580,"specified format does not support output"
Cause: The output format specified by fileFormat does support output.
Action: Change the specified fileFormat to one that supports output. Refer to

Oracle interMedia User’s Guide and Reference for a description of which formats
support output.

IMG-00581,"output format does not support the specified contentFormat"
Cause: The specified contentFormat is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which contentFormat values are supported for each output format.

IMG-00582,"output format does not support the specified interleave"
Cause: The specified interleave is not supported by the explicitly or implicitly
specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which interleave values are supported for each output format.

IMG-00583,"output format does not support the specified compressionFormat"

Cause: The specified compressionFormat is not supported by the explicitly or
implicitly specified output format.

Exceptions and Error Messages H-13

ORDImage Error Messages

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which compressionFormat values are supported for each output format.

IMG-00584,"output format does not support the specified compressionQuality"
Cause: The specified compressionQuality is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which compressionQuality values are supported for each output format.

IMG-00585,"output format does not support the specified channelOrder"
Cause: The specified channelOrder is not supported by the explicitly or
implicitly specified output format.

Action:; Refer to Oracle interMedia User’s Guide and Reference for a description of
which channelOrder values are supported for each output format.

IMG-00586,"output format does not support the specified pixelOrder"

Cause: The specified pixelOrder is not supported by the explicitly or implicitly
specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which pixelOrder values are supported for each output format.

IMG-00587,"output format does not support the specified scanlineOrder"

Cause: The specified scanlineOrder is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which scanlineOrder values are supported for each output format.

IMG-00599, "internal error”
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services.

IMG-00601, "out of memory while copying image"

Cause: Operating system process memory has been exhausted while copying
the image.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00602, "unable to access image data"
Cause: An error occurred while reading or writing image data.

H-14 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Action: Contact your system administrator.

IMG-00603, "unable to access source image data"
Cause: The source image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the source image is populated
with image data.

IMG-00604, "unable to access destination image data"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is popu-
lated with image data.

IMG-00606, "unable to access image data"
Cause: An attempt was made to access an invalid image.

Action: Ensure that the SOURCE attribute of the image is populated with
image data.

IMG-00607, "unable to write to destination image"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized correctly and that you have sufficient tablespace.

IMG-00609, "unable to read image stored in a BFILE"
Cause: The image stored in a BFILE cannot be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00701, "unable to set the properties of an empty image"
Cause: There is no data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to put image data into the image object.

IMG-00702, "unable to initialize image processing environment"
Cause: The image processing external procedure initialization process failed.

Action: Contact Oracle Customer Support Services.

IMG-00703, "unable to read image data"
Cause: There is no image data in the image object.

Exceptions and Error Messages H-15

ORDImage Error Messages

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate image data into the image object.

IMG-00704, "unable to read image data"
Cause: There is no image data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate image data into the image object.

IMG-00705, "unsupported or corrupted input format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00706, "unsupported or corrupted output format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00707, "unable to access image data"
Cause: An error occurred while reading or writing image data.

Action: Contact your system administrator.

IMG-00710, "unable write to destination image"
Cause: The destination image is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized and that you have sufficient tablespace.

IMG-00711, "unable to set properties of destination image"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00712, "unable to write to destination image"
Cause: The destination image is invalid.
Action: Ensure that the SOURCE attribute of the destination image is initial-

ized and that you have sufficient tablespace. Ensure the row containing the des-
tination image has been locked (this does not apply to temporary BLOBS).

IMG-00713, "unsupported destination image format"

Cause: A request was made to convert an image to a format that is not
supported.

H-16 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

IMG-00714, "internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00715, "Unable to open image stored in a BFILE"
Cause: The image stored in a BFILE could not be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00716, "source image format does not support process options"

Cause: A request was made to apply a processing option not supported by the
source image format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a discussion of
supported processing options.

IMG-00717, "destination image format does not support process options"

Cause: A request was made to apply a processing option not supported by the
destination image format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a discussion of
supported processing options.

IMG-00718, "the same Temporary LOB cannot be used as both source and
destination”

Cause: A call was made to processCopy with the same temporary LOB being
specified as both the source and destination.

Action: Specify a different LOB for parameter "dest".

IMG-00719,"image processing internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00720,"image processing internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00730,"unable to process empty image"

Exceptions and Error Messages H-17

ORDImage Error Messages

Cause: There is no data in the input image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to put image data into the image object.

IMG-00731,"specified page could not be found in input image"
Cause: The specified page does not exist in the input image.

Action: Restrict the value of the page parameter to values specifying pages that
exist within the input image object.

IMG-00732,"specified inputChannels could not be found in input image"
Cause: The specified input channel does not exist in the input image.

Action:; Restrict the value of the inputChannels parameter to values specifying
channels that exist within the input image object.

IMG-00800, "internal error while parsing attribute string"
Cause: An internal error occurred while parsing the attribute string containing
the weights of the attributes.

Action: Check the command passed to the function. Refer to Oracle interMedia
User’s Guide and Reference for a description of the correct usage and syntax for
the attributes string for image matching. If you are certain that your command
is correct, then contact Oracle Customer Support Services.

IMG-00801, "cannot extract height and width"
Cause: Height and width are not set in the image object.

Action: Set the properties of the image object by calling setProperties and then
generate the signature.

IMG-00802, "empty or null attributes string"
Cause: An empty or null attributes string was passed to the image matching
operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax of the attributes string.

IMG-00803, "invalid attributes value"

Cause: An invalid value was found while parsing the attributes string for the
image matching operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax for the attributes string. The weight values should
be between 0.0 and 1.0.

H-18 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

IMG-00804," Syntax error in attributes string"

Cause: A syntax error was found while parsing the attributes string for the
image matching operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax of the attributes string.

IMG-00805, "SIGNATURE data has been corrupted or is invalid"
Cause: The data in the signature is not a valid signature.

Action: Re-create the signature using the generateSignature method.

IMG-00806, "invalid input image"
Cause: The image data is either corrupt or is in an unsupported format.

Action: Repopulate the image object, set properties of the image, and generate
the signature.

IMG-00807, "no weights specified in weight string"
Cause: All weights passed were zero. At least one attribute must be weighted.

Action: Specify a non-zero weight for at least one attribute.

IMG-00808, "unable to read an empty image"
Cause: There is no data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate the image object with image data.

IMG-00809, "usage of IMGSimilar is incorrect”
Cause: Syntax error while using IMGSimilar.
Action: Refer to Oracle interMedia User’s Guide and Reference for information on

how to use the IMGSimilar operator. Check if the value returned by IMGSimi-
lar is compared to the value 1.

IMG-00810, "Boundary queue initialization failed"
Cause: Operating system process memory has been exhausted while
initializing the boundary queue.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00811, "Fail queue initialization failed"

Cause: Operating system process memory has been exhausted while
initializing the fail queue.

Exceptions and Error Messages H-19

ORDImage Error Messages

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00812, "Merged area queue initialization failed"

Cause: Operating system process memory has been exhausted while
initializing the merged area queue.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00813, "Boundary queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00814, "Fail queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00815, "Merged area queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00820, "Area 0 queue clear failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00821, "Area N queue clear failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00822, "Area queue reset failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00823, "Boundary queue pop failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00824, "Fail queue pop failed"
Cause: An internal error has occurred.

H-20 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

Action: Contact Oracle Customer Support Services with the error number.

IMG-00825, "Merged area queue pop failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00830, "Boundary queue is full”
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00831, "Boundary queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00832, "Fail queue is full"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00833, "Boundary queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00834, "Merged area queue is full”
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00835, "Merged area queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00836, "Area queue merge failed"
Cause: An internal error has occurred.

Exceptions and Error Messages H-21

ORDImage Error Messages

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00840, "Image structure allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image structure.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00841, "Image data allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image data.

Action:; See the database administrator or operating system administrator to
increase process memory quota.

IMG-00842, "Image index allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image index.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00843, "Internal image structure allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the internal image structure.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00844, "Internal image data allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the internal image data.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00845, "Internal image index allocation failed"

Cause: Operating system process memory has been exhausted while
initializing the internal image index.

Action:; See the database administrator or operating system administrator to
increase process memory quota.

H-22 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages

IMG-00846, "Adjacency matrix allocation failed"

Cause: Operating system process memory has been exhausted while
initializing the adjacency matrix.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00847, "Area list allocation failed"

Cause: Operating system process memory has been exhausted while
initializing the area list.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00850, "Image structure free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00851, "Image data free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00852, "Image index free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00853, "Internal image structure free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00854, "Internal image data free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00855, "Internal image index free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00856, "Adjacency matrix free failed"
Cause: An internal error has occurred.

Exceptions and Error Messages H-23

ORDImage Error Messages

Action: Contact Oracle Customer Support Services with the error number.

IMG-00857, "Area list free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00860, "Assert failure, number of regions exceeds allocated"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00861, "Assert failure, inconsistency in area merge operation”
Cause: An internal error has occurred.

Action; Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00862, "Assert failure, inconsistency in merged area labels"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00870, "Unsupported aspect ratio or image size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00871, "Unexpected number of seeds"
Cause: An internal error has occurred.
Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00872, "Unsupported image model"
Cause: An internal error has occurred.
Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00899, "Signature cannot be generated"
Cause: generateSignature could not generate the signature.

Action:; Verify that the input image is a format supported by interMedia.

H-24 Oracle interMedia User’s Guide and Reference

ORDVideo Error Messages

H.4 ORDVideo Error Messages

VID-00702 unable to initialize video processing environment
Cause: The initialization of the video processing procedure failed.
Action: See the database administrator to make sure that enough memory has

been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

VID-00703 unable to read video data
Cause: An error occurred while accessing the video source.

Action: Make sure the video source is valid. For external sources, make sure all
access priviliges are granted.

VID-00704 invalid input format

Cause: The video data in the source was not in the format specified by the
format field of the video object. In some unusual case, the video data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format

plug-in.

VID-00705 unsupported input format

Cause: The file format of the video data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

VI1D-00706 unsupported or corrupted input format

Cause: The video data was either corrupted or the file format was not
supported.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats. If the video data is not corrupted and is in a supported file format, con-
tact Oracle Customer Support Services.

VID-00713 internal error while parsing video data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

VID-00714 internal error

Exceptions and Error Messages H-25

ORDVideo Error Messages

Cause: An internal error occurred.
Action: Contact Oracle Customer Support Services.

H-26 Oracle interMedia User’s Guide and Reference

ORDSource Reference Information

Oracle interMedia contains the following information about the ORDSource type:
« Object type -- see Section I.1.

= Methods -- see Section |.2.

« Packages or PL/SQL plug-ins -- see Section I.3.

This object is used only by other Oracle interMedia objects. The information in this
chapter is included for reference only. Oracle Corporation does not recommend that
you use this type.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the open() method. At this point, the source plug-in can
initialize context for this client. When processing is complete, the client should
invoke the close() method.

Methods invoked from a source plug-in call have the first argument as obj
(ORDSource) and the second argument as ctx (RAW(4000)).

Note: Inthe current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your application
should work with any current or future source plug-in.

The ORDSource object does not attempt to maintain consistency, for example, with
local and upDateTime attributes. It is up to you to maintain consistency.
ORDAudio, ORDDoc, ORDImage, and ORDVideo objects all maintain consistency
of their included ORDSource object.

ORDSource Reference Information |-1

Object Types

l.1 Object Types

Oracle interMedia provides the ORDSource object type, which supports access to a
variety of sources of multimedia data.

I-2 Oracle interMedia User’s Guide and Reference

ORDSource Object Type

ORDSource Object Type

The ORDSource object type supports access to data sources locally in a BLOB
within an Oracle database, externally from a BFILE on a local file system, externally
from a URL on an HTTP server (within the firewall), or externally from a
user-defined source on another server. This object type is defined as follows:

CREATE (R REPLACE TYPE CRDsour ce

AS BIECT
(

-- ATTR BUTES
| ocal Dat a BLCB,
srcType VARCHAR2(4000) ,
srclLocati on VARCHAR2(4000) ,
srcNane VARCHAR2(4000) ,
updat eTi ne DATE,
| ocal NUMVBER

-- METHIS

-- Methods associated wth the local attribute

MEMBER PROCEDURE set Local

MEMBER PROCEDURE cl ear Local

MEMBER FUNCTI ON i sLocal RETURN BOOLEAN

PRAGVA RESTR CT_REFERENCES(i sLocal , WADS, WPS, R\D5, R\PS),
-- Methods associated with the updateTine attribute

MEMBER FUNCTI ON get Updat eTi ne RETURN DATE,

PRAGVA RESTR CT_REFERENCES(get Lpdat eTi ne, VWADS, VWPS, R\DS, R\PS),
MEMBER PROCEDURE set Updat eTi ne(current _ti ne DATE),

-- Methods associated with the source infornation

MEMBER PROCEDURE set Sour cel nf or mat i on(

sour ce_type I N VARCHAR2,
source_ | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,

MEMBER FUNCTI ON get Sour cel nf or mat i on RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour cel nfornati on, VIWOS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceType RETURN VARCHAR2,
PRAGVA RESTR CT_REFERENCES(get Sour ceType, VDS, WAPS, R\CS5, R\PS),

MEMBER FUNCTI ON get Sour celLocat i on RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceLocati on, VDS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceName RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(get Sour ceNane, VDS, WAPS, R\CS5, R\PS),

ORDSource Reference Information -3

ORDSource Object Type

MEMBER FUNCTI CN get BF | e RETURN BFI LE,
PRAGVA RESTR CT_REFERENCES(get BFi | e, VWDS, VWWPS, R\DS, R\PS),

-- Methods associ ated w th source inport/export operations
MEMBER PROCEDURE i npor t (

ctx IN QJT RAW
nm net ype QJI VARCHAR2,
f or mat QUT VARCHAR?) ,

MEMBER PROCEDURE i npor t Fr ong

MEMBER PROCEDURE expor t (

ctx IN QJT RAW
m net ype QJUT VARCHAR?,
f or mat QJT VARCHAR2,
sour ce_type I'N VARCHAR?,
source | ocation | N VARCHAR2,
sour ce_nane I'N VARCHAR?) ,

ctx IN QJT RAW

sour ce_type I N VARCHARZ,

source_l ocation | N VARCHAR?,

sour ce_narne IN VARCHAR?) ,

-- Methods associ ated w th source content-rel ated operations
MEMBER FUNCTI ON get Gontent Lengt h(ctx | N QJT RAW RETURN | NTECER
PRAGVA RESTR CT_REFERENCES(get Gont ent Lengt h, WADS, WWPS, R\DS, R\PS),

MEMBER FUNCTI ON get Sour ceAddress(ctx | N QUT RAW

userData | N VARCHAR?)
RETURN VARCHARZ,

PRAGVA RESTR CT_REFERENCES(get Sour ceAddress, VDS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Local Content RETURN BLCB,
PRAGVA RESTR CT_REFERENCES(geLocal Gontent, WD, VWPS, R\DS, R\PS),

MEMBER PROCEDURE get (ont ent | nTenpLob(

ctx IN QJI RAW

tenpLob | N QUT NOOCPY BLCB,

m net ype QUT VARCHAR?,

f or mat QJT VARCHAR2,
duration IN PLS | NTEGR : = 10,
cache I N BOOLEAN : = TRUE),

MEMBER PROCEDURE del et eLocal Cont ent

-- Methods associ ated w th source access net hods

MEMBER FUNCTI ON open(user Arg | N RAW ctx QU RAW RETURN | NTEGER

MEMBER FUNCTI ON cl ose(ctx | N QJT RAW RETURN | NTEGER

I-4 Oracle interMedia User’s Guide and Reference

ORDSource Object Type

MEMBER FUNCTI N tri n{ct x IN QJT RAW
newen |NINEER RETURN | NTEGER

-- Methods associated with content read/wite operations
MEMBER PROCEDURE r ead(
ct X IN QJT RAW
startPos I N | NTEGER
nunBytes I N QJT | NTECGER
buf f er QJT RAWY,
MEMBER PROCEDURE wri t e(
ctx IN QJT RAW
startPos I N I NTEGER
nunBytes I N QJT | NTEGER
buffer I N RAWY,
-- Methods associ ated with any coomands to be sent to the external source
MEMBER FUNCTI ON pr ocessConmand(
ctx IN QJT RAW
command | N VARCHARZ,
arglist IN VARCHAR?,
result QJT RAWY
RETURN RAW

E

where:

« localData: contains the locally stored multimedia data stored as a BLOB within
the object. Up to 4 gigabytes of data can be stored as a BLOB within an Oracle
database and is protected by the Oracle security and transaction environment.

= srcType: identifies the data source type. Supported values for srcType are:

srcType Source Type

"file" A BFILE on a local file system
"HTTP" An HTTP server

"<name>" User-defined

ORDSource Reference Information |-5

Methods

Note: The keyword file for the plug-in is a reserved word for the
BFILE source provided by Oracle Corporation. To implement for
your own file plug-in, select a different name, for example,
MYFILE.

« srcLocation: identifies the place where data can be found based on the srcType
value. Valid srcLocation values for corresponding srcType values are:

srcType Location Value

"file" <DIR> or name of the directory object

"HTTP" <SourceBase> or URL needed to find the base directory

"<name>" <iden> or identifier string required to access a user-defined source

= srcName: identifies the data object name. Valid srcName values for
corresponding srcType values are;

srcType Name Value

"file" <file> or name of the file

"HTTP" <Source> or name of the object
"<pname>" <object name> or name of the object

« updateTime: the time at which the data was last updated.
« local: a flag to determine whether or not the data is local:
1 means the data is in the BLOB.
0 means the data is in external sources.

NULL, which may be a default state when you first insert an empty row, is
assumed to mean data is local.

.2 Methods

This section presents ORDSource reference information on the Oracle interMedia
methods provided for source data manipulation. These methods are described in
the following groupings:

-6 Oracle interMedia User’s Guide and Reference

Methods

ORDSource Methods Associated with the local Attribute

« setLocal: sets the flag value for the local attribute to "1", meaning that the source
of the data is local.

« clearLocal: resets the flag value for the local attribute to "0", meaning that the
source of the data is external.

« isLocal: returns TRUE to indicate that the source of the data is local or in the
BLOB, or FALSE, meaning the data is in an external source. The value of the
local attribute is used to determine the return value.

ORDSource Methods Associated with the updateTime Attribute
« getUpdateTime: returns the value of the updateTime attribute.

« setUpdateTime: sets the value of the updateTime attribute to the specified time
provided in the argument.

ORDSource Methods Associated with the srcType, srcLocation, and
srcName Attributes

« setSourcelnformation(): sets or alters information about the source of the data.

« getSourcelnformation: returns a formatted string containing complete
information about the data source formatted as a URL.

« getSourceType: returns the external source type of the data.
= getSourcelLocation: returns the external source location of the data.
« getSourceName: returns the external source name of the data.

« getBFile: returns the external content as a BFILE, if srcType is of type file.

ORDSource Methods Associated with import and export Operations

« import(): transfers data from an external data source (specified by calling
setSourcelnformation()) to the local source (localData) within an Oracle
database.

« importFrom(): transfers data from the specified external data source (source,
location, name) to the local source (localData) within an Oracle database.

= export(): copies data from a local source (localData) within an Oracle database
to the specified external data source.

ORDSource Reference Information -7

Methods

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.

ORDSource Methods Associated with the localData Attribute
« getContentLength(): returns the length of the data source (as number of bytes).

= getSourceAddress(): returns the address of the data source.
« getLocalContent: returns the handle to the BLOB used to store contents locally.
« getContentinTempLob(): returns content into a temporary LOB.

= deleteLocalContent: deletes the content of the local BLOB.

ORDSource Methods Associated with Source Input/Output Operations
= open(): opens a data source.

« close(): closes a data source.
« trim(): trims a data source.
« read(): reads a buffer of n bytes from a source beginning at a start position.

= write(): writes a buffer of n bytes to a source beginning at a start position.

ORDSource Methods Associated with Processing Commands to the
External Source

« processCommand(): process as any command to the external source. This
method is supported only for user-defined sources.

For more information on object types and methods, see Oracle9i Database Concepts.

I-8 Oracle interMedia User’s Guide and Reference

clearLocal

clearLocal

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

clearLocal;

Resets the flag value from local, meaning the source of the data is stored locally in a
BLOB in Oracle, to nonlocal meaning the source of the data is stored externally.

None.

This method sets the local attribute to a 0, meaning the data is stored externally or

outside of Oracle.

None.

None.

None.

ORDSource Reference Information

1-9

close()

close()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

close(ctx IN OUT RAW) RETURN INTEGER;

Closes a data source.

ctx
The source plug-in context information.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

None.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the close() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the close() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

I-10 Oracle inteiMedia User’s Guide and Reference

close()

This exception is raised if you call the close() method within a source plug-in when
any other exception is raised.

Examples
None.

ORDSource Reference Information [-11

deleteLocalContent

deleteLocalContent

Format

deleteLocalContent;
Description

Deletes the local data from the current local source (localData).
Parameters

None.

Usage Notes

This method can be called after you export the data from the local source to an
external data source and you no longer need this data in the local source.

Pragmas

None.
Exceptions

None.
Examples

None.

I-12 Oracle inteiMedia User’s Guide and Reference

export()

export()
Format
export(
ctx IN OUT RAW,
source_type IN VARCHAR?2,
source_location IN VARCHAR2,
source_name IN VARCHAR?2);
Description
Copies data from a local source (localData) within an Oracle database to an external
data source.
Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Usage Notes
This method exports data out of the localData to another source.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

ORDSource Reference Information [-13

export()

Pragmas

After exporting data, the srcType, srcLocation, and srcName attributes are updated
with input parameter values. After calling the export() method, call the
clearLocal() method to indicate the data is stored outside the database and call the
deleteLocalContent method if you want to delete the content of the local data.

This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType file.

The export() method for a source type of file is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteLocalContent method after calling the export() method to delete the
content from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT _
PERMISSION call to specify to which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBVB JAVA GRANT_PERM SSI O\
" MED ALBER
"java.io. H |l ePermssion’,
" [actual / server/directory/ path/fil enane. dat’,
‘wite');

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

None.

I-14 Oracle inteiMedia User’s Guide and Reference

export()

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

Examples
None.

ORDSource Reference Information [-15

getBFile

getBFile

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getBFile RETURN BFILE;

Returns a BFILE handle, if the srcType is file.

None.

This method can only be used for a srcType of file or BFILE sources.

PRAGMA RESTRICT_REFERENCES(getBFile, WNDS, WNPS, RNDS, RNPS)

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getBFILE method and the value of srcType is
NULL.

INVALID_SOURCE_TYPE

This exception is raised if you call the getBFile method and the value of srcType is
other than file.

None.

I-16 Oracle inteiMedia User’s Guide and Reference

getContentinTempLob()

getContentinTempLob()
Format
getContentinTempLob(

ctx IN OUT RAW,
tempLob IN OUT NOCOPY BLOB,
mimetype OUT VARCHAR?2,
format OUT VARCHAR2,
duration IN PLS_INTEGER := 10,
cache IN BOOLEAN := TRUE);

Description

Parameters

Transfers data from the current data source into a temporary LOB, which will be
allocated and initialized as a part of this call.

ctx
The source plug-in context information.

tempLob
Uninitialized BLOB locator, which will be allocated in this call.

mimetype
Out parameter to receive the MIME type of the data, for example, 'audio/basic’.

format
Out parameter to receive the format of the data, for example, ’AUFF’.

duration

The life of the temporary LOB to be allocated. The life of the temporary LOB can be
for the duration of the call, the transaction, or for the session. The default is DBMS _
LOB.SESSION. Valid values for each duration state are as follows:

DBMS_LOB.CALL
DBMS_LOB.TRANSACTION

ORDSource Reference Information [-17

getContentinTempLob()

Usage Notes

Pragmas

Exceptions

Examples

DBMS_LOB.SESSION

cache
Whether or not you want to keep the data cached. The value is either TRUE or
FALSE. The default is TRUE.

None.

None.

NO_DATA_FOUND

This exception is raised if you call the getContentinLob() method when working
with temporary LOBs for looping read operations that reach the end of the LOB,
and there are no more bytes to be read from the LOB.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentinLob() method within a source
plug-in when any other exception is raised.

None.

I-18 Oracle inteiMedia User’s Guide and Reference

getContentLength()

getContentLength()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Returns the length of the data content stored in the source. For a file source and for
data in a local BLOB data source, the length is returned as a number of bytes. The
unit type of the returned value is defined by the plug-in that implements this
method.

ctx
The source plug-in context information.

This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source plug-in and implement
this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

SOURCE_PLUGIN_EXCEPTION

ORDSource Reference Information [1-19

getContentLength()

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

Examples
None.

I-20 Oracle inteiMedia User’s Guide and Reference

getLocalContent

getLocalContent

Format
getLocalContent RETURN BLOB;

Description
Returns the content or BLOB handle of the local data.
Parameters
None.
Usage Notes
None.
Pragmas
PRAGMA RESTRICT_REFERENCES(getLocalContent, WNDS,
WNPS, RNDS, RNPS)
Exceptions
None.
Examples
None.

ORDSource Reference Information [-21

getSourceAddress()

getSourceAddress()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

getSourceAddress(ctx IN OUT RAW,
userData IN VARCHAR2) RETURN VARCHAR?;

Returns the source address for data located in an external data source. This method
is only implemented for user-defined sources.

ctx
The source plug-in context information.

userData
Information input by the user needed by some sources to obtain the desired source
address.

Use this method to return the address of an external data source when the source
needs to format this information in some unique way. For example, call the
getSourceAddress()method to obtain the address for RealNetworks server sources
or URLs containing data sources located on Oracle Application Server.

Calling this method uses the ORDPLUGINS.ORDX_<srcType> SOURCE plug-in
package.

PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS,
WNPS, RNDS, RNPS)

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getSourceAddress() method and the value of
srcType is NULL.

I-22 Oracle interiMedia User’s Guide and Reference

getSourceAddress()

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getSource Address() method within a source
plug-in when any other exception is raised.

Examples
None.

ORDSource Reference Information [-23

getSourcelnformation

getSourcelnformation

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getSourcelnformation RETURN VARCHARZ;

Returns a URL formatted string containing complete information about the external
data source.

None.

This method returns a VARCHAR?2 string formatted as:
<srcType>://<srcLocation>/<srcName>, where srcType, srcLocation, and srcName
are the ORDSource attribute values.

PRAGMA RESTRICT_REFERENCES(getSourcelnformation, WNDS,
WNPS, RNDS, RNPS)

None.

None.

I-24 Oracle inteiMedia User’s Guide and Reference

getSourceLocation

getSourcelLocation

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getSourceLocation RETURN VARCHARZ2;

Returns the external data source location.

None.

This method returns the current value of the srcLocation attribute, for example

BFILEDIR.

PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,

WNPS, RNDS, RNPS)

INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the setSourceLocation() method and the value of

srcLocation is NULL.

None.

ORDSource Reference Information

1-25

getSourceName

getSourceName

Format
getSourceName RETURN VARCHAR?;

Description
Returns the external data source name.

Parameters
None.

Usage Notes

This method returns the current value of the srcName attribute, for example
testaud.dat.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)
Exceptions
INCOMPLETE_SOURCE_NAME
This exception is raised if you call the setSourceName(') method and the value of
srcName is NULL.
Examples

None.

I-26 Oracle inteiMedia User’s Guide and Reference

getSourceType

getSourceType

Format
getSourceType RETURN VARCHARZ2;

Description
Returns the external data source type.

Parameters
None.

Usage Notes
This method returns the current value of the srcType attribute, for example file.

Pragmas

PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)
Exceptions

None.
Examples

None.

ORDSource Reference Information [-27

getUpdateTime

getUpdateTime

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

getUpdateTime RETURN DATE;

Returns the value of the updateTime attribute for the ORDSource object. This is the
timestamp when the object was last changed, or what the user explicitly set by
calling the setUpdateTime() method.

None.

None.

PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

None.

None.

I-28 Oracle inteiMedia User’s Guide and Reference

import()

import()

Format

Description

Parameters

Usage Notes

Pragmas

import(
ctx IN OUT RAW,
mimetype OUT VARCHAR?Z,
format OUT VARCHAR2);

Transfers data from an external data source (specified by first calling
setSourcelnformation()) to a local source within an Oracle database.

ctx
The source plug-in context information.This information is passed along
uninterpreted to the source plug-in handling the import() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example,
"audio/basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

Call setSourcelnformation() to set the srcType, srcLocation, and srcName attribute
information to describe where the data source is located prior to calling the
import() method.

You must ensure that the directory exists or is created before you use this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType> SOURCE plug-in
package.

None.

ORDSource Reference Information [1-29

import()

Exceptions

Examples

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised, raises a exception.

None.

I-30 Oracle interMedia User’s Guide and Reference

importFrom()

importFrom()
Format
importFrom(

ctx IN OUT RAW,
mimetype OUT VARCHARZ2,
format OUT VARCHAR2
source_type IN VARCHAR?2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2);

Description

Parameters

Transfers data from the specified external data source (type, location, name) to a
local source within an Oracle database, and resets the source attributes and the
timestamp.

ctx
The source plug-in context information.This information is passed along
uninterpreted to the source plug-in handling the importFrom() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example,
"audio/basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

source_type
Source type from where the data is to be imported. This also sets the srcType
attribute.

source_location
Source location from where the data is to be imported. This also sets the srcLocation
attribute.

ORDSource Reference Information [-31

importFrom()

Usage Notes

Pragmas

Exceptions

Examples

source_name
Name of the source to be imported. This also sets the srcName attribute.

This method describes where the data source is located by specifying values for the
type, location, and name parameters, which set the srcType, srcLocation, and
srcName attribute values, respectively, after the importFrom operation succeeds.

You must ensure that the directory exists or is created before you use this method.

This method is a combination of a setSourcelnformation() call followed by an
import() call.

Calling this method uses the ORDPLUGINS.ORDX_<srcType> SOURCE plug-in
package.

None.

NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom(') method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

None.

I-32 Oracle interiMedia User’s Guide and Reference

isLocal

isLocal

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

Examples

isLocal RETURN BOOLEAN,;

Returns TRUE if the data is stored locally in a BLOB in Oracle9i or FALSE if the data

is stored externally.

None.

If the local attribute is set tol or NULL, this method returns TRUE, otherwise this

method returns FALSE.

PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS)

None.

None.

ORDSource Reference Information

1-33

open()

open()

Format

Description

Parameters

Usage Notes

Pragmas

Exceptions

open(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Opens a data source. It is recommended that this method be called before invoking
any other methods that accept the ctx parameter.

userArg
The user argument.

ctx
The source plug-in context information.

Calling this method uses the ORDPLUGINS.ORDX_<srcType> SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

None.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the open() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the open() method and this method is not
supported by the source plug-in being used.

I-34 Oracle interiMedia User’s Guide and Reference

open()

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the open() method within a source plug-in when
any other exception is raised.

Examples
None.

ORDSource Reference Information [-35

processCommand()

processCommand()
Format
processCommand(
ctx IN OUT RAW,
command IN VARCHAR?2,
arglist IN VARCHAR2,
result OUT RAW)
RETURN RAW;
Description

Parameters

Usage Notes

Allows you to send commands and related arguments to the source plug-in. This
method is supported only for user-defined sources.

ctx
The source plug-in context information.

command
Any command recognized by the source plug-in.

arglist
The arguments for the command.

result
The result of calling this method returned by the plug-in.

Use this method to send any commands and their respective arguments to the
plug-in. Commands are not interpreted; they are taken and passed through to be
processed.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

I-36 Oracle interiMedia User’s Guide and Reference

processCommand()

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processCommand() method and the value of
srcType is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the processCommand() method and this method
is not supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processCommand() method within a source
plug-in when any other exception is raised.

Examples
None.

ORDSource Reference Information [-37

read()

read()

Format

Description

Parameters

Usage Notes

read(
ctx IN OUT RAW,
startPos IN INTEGER,
numBytes IN OUT INTEGER,
buffer ~ OUT RAW);

Allows you to read a buffer of numBytes from a source beginning at a start position
(startPos).

ctx
The source plug-in context information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer to where the data will be read.

This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

I-38 Oracle interiMedia User’s Guide and Reference

read()

Pragmas

Exceptions

Examples

None.

NULL_SOURCE

This exception is raised if you call the read() method and the data is stored locally
and localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the read() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the read() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the read() method within a source plug-in when
any other exception is raised.

None.

ORDSource Reference Information -39

setLocal

setLocal
Format
setLocal;
Description
Sets the local attribute to indicate that the data is stored in a BLOB within Oracle9i.
Parameters

None.

Usage Notes

This method sets the local attribute to 1, meaning the data is stored locally in the
localData attribute.

Pragmas

None.
Exceptions

None.
Examples

None.

I-40 Oracle interiMedia User’s Guide and Reference

setSourcelnformation()

setSourcelnformation()

Format

Description

Parameters

Usage Notes

setSourcelnformation(
source_type IN VARCHAR2,
source_location IN VARCHAR?2,
source_name IN VARCHAR2);

Sets the provided subcomponent information for the srcType, srcLocation, and
srcName that describes the external data source.

source_type
The source type of the external data. See the "ORDSource Object Type" definition in
this chapter for more information.

source_location
The source location of the external data. See the "ORDSource Object Type"
definition in this chapter for more information.

source_name
The source name of the external data. See the "ORDSource Object Type" definition
in this chapter for more information.

Before you call the import() method, you must call the setSourcelnformation()
method to set the srcType, srcLocation, and srcName attribute information to
describe where the data source is located. If you call the importFrom() or the
export() method, then these attributes are set after the importFrom()) or export()
call succeeds.

You must ensure that the directory exists or is created before you use this method.

ORDSource Reference Information [-41

setSourcelnformation()

Pragmas
None.
Exceptions
INCOMPLETE_SOURCE_INFORMATION
This exception is raised if you call the setSourcelnformation() method and the value
for source_type is NULL.
Examples

None.

I-42 Oracle interiMedia User’s Guide and Reference

setUpdateTime()

setUpdateTime()

Format
setUpdateTime(current_time DATE);

Description
Sets the value of the updateTime attribute to the time you specify.

Parameters

current_time
The update time.

Usage Notes
If current_time is NULL, updateTime is set to SYSDATE (the current time).

Pragmas

None.
Exceptions

None.
Examples

None.

ORDSource Reference Information [-43

trim()

trim()

Format
trim(ctx IN OUT RAW,
newlen IN INTEGER) RETURN INTEGER;
Description
Trims a data source.
Parameters

ctx
The source plug-in context information.

newlen
The trimmed new length.

Usage Notes

Calling this method uses the ORDPLUGINS.ORDX_<srcType> SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trim() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

I-44 Oracle interMedia User’s Guide and Reference

trim()

This exception is raised if you call the trim() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION
This exception is raised if you call the trim() method within a source plug-in when
any other exception is raised.

Examples
None.

ORDSource Reference Information [-45

write()

write()

Format

Description

Parameters

Usage Notes

write(
ctx IN OUT RAW,
startPos IN INTEGER,
numBytes IN OUT INTEGER,
buffer IN RAW);

Allows you to write a buffer of numBytes to a source beginning at a start position
(startPos).

ctx
The source plug-in context information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

This method assumes that the writable source allows you to write numBytes at a
random byte location. For example, the file and HTTP source types are not writable
sources and do not support this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

I-46 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

Pragmas

Exceptions

Examples

None.

NULL_SOURCE

This exception is raised if you call the write() method and local is 1 or NULL and
localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the write() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the write() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the write() method within a source plug-in when
any other exception is raised.

None.

|.3 Packages or PL/SQL Plug-ins

This section presents reference information on the packages or PL/SQL plug-ins
provided.

Any method invoked from a source plug-in call has the first argument as obj
(ORDSource) and the second argument as ctx (RAW).

Plug-ins must be named as ORDX_<name>_<module_name> where the <module_
name> is SOURCE for ORDSource. For example, the file plug-in described in
Section 1.3.1, is named ORDX_FILE_SOURCE and <name> is the source type.

Exceptions must be raised from and recorded in a package named as ORD _
<module_name>Exceptions. For example, ORDSource exceptions are raised and
recorded in a package named ORDSourceExceptions (see Appendix H).

ORDSource Reference Information 1-47

Packages or PL/SQL Plug-ins

.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package or PL/SQL plug-in is provided.

CREATE (R REPLACE PACKACE CRDX_FI LE SORCE AS
-- functi ons/ procedur es

FUNCTI ON pr ocessConmand(obj IN QJT NOOCPY CROSYS. GRDSour ce,
ctx IN QJT RAW
cnd IN VARCHARZ,

arglist INVARHAR?,
result QJT RAWY

RETURN RAWY
PROCEDURE i npor t (obj I'N QJT NOOCPY CROSYS. GRDSour ce,
ctx IN QJT RAW

m net ype QJT VARCHAR?,
format QJT VARCHAR?);

PROCEDURE i npor t (obj IN QJT NOOCPY CRDSYS. GRDSour ce,
ctx IN QUT RAW
dl ob I'N QJT NOOCPY BL(B,

m net ype QJT VARCHAR?,
f or mat QUT VARCHAR?) ;
PROCEDURE i npor t Fr onf obj I N QJT NOOCPY CRDSYS. GRDSour ce,
ctx IN QJT RAW
m net ype QJT VARCHAR2,
format QUT VARCHARZ,

| oc IN VARCHARZ,
nane I N VARCHAR?) ;
PROCEDURE i npor t Fr ong obj IN QJT NOOCPY CRDSYS. GRCSour ce,
ctx IN QJr RAW
dl ob IN QJr NOOCPY BLCB,

m net ype QJT VARCHAR2,
f or mat QJT VARCHAR?,
| oc I N VARCHAR?,
nane IN VARCHAR?) ;
PROCEDURE export (obj |N QJI NOOOPY CRDSYS. CRDSour ce,
ctx IN QU RAW
slob I N QUI NOOCPY BLCB,
loc | NVARCHAR?,
nane | N VARCHAR?) ;
FUNCTI ON get Cont ent Lengt h(obj | N CRDSYS. GRDSour ce,
ctx INQJT RAVY,
RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Cont ent Lengt h, WADS, VI\PS, R\DS, R\PS);
FUNCTI ON get Sour ceAddress(obj | N CRDBYS. GRDSour ce,
ctx |INQJT RAW
user Data | N VARCHAR?)

I1-48 Oracle interiMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

RETURN VARCHAR?;
PRAGVA RESTR CT_REFERENCES(get Sour ceAddress, WADS, VIWPS, R\DS, R\FS);

FUNCTI ON open(obj 1IN QJT NOOCPY QRDSYS. CRCSour ce,
user Arg | N RAWY
ctx QJT RAW RETURN | NTEGER
FUNCTI ON cl ose(obj | N QUI NOOPY CRDSYS. CGRDSource, ctx |N QJT RAW
RETURN | NTEGER
FUNCTION trinfobj 1IN QJI NOOCPY GRDSYS. CRCSour ce,
ctx N QJT RAW
new en I N I NTEGER RETURN | NTECGER
PROCEDURE r ead(obj I N QJT NOOCPY CRDSYS. CRDSour ce,
ctx IN QJr RAW
startPos | N | NTEGER
nunBytes | N QJT | NTEGER
buf f er QJr RAWY;
PROCEDURE wri t e(obj IN QJT NOOCPY CRDSYS. GRDSour ce,
ctx IN QJT RAWY
startPos I N | NTECER
nunBytes I N QUT | NTECER
buf f er QJT RAVY;
BE\D CGRDX_FI LE_SORCE,
/

Table I-1 shows the methods supported in the ORDX_FILE_SOURCE package and
the exceptions raised if you call a method that is not supported.

Table I-1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported
import Supported
importFrom Supported
importFrom Supported
export Supported

getContentLength Supported
getSourceAddress Supported
open Supported

ORDSource Reference Information [1-49

Packages or PL/SQL Plug-ins

Table -1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package (Cont.)

Name of Method Level of Support

close Supported
trim Not supported - raises exception: METHOD_NOT_SUPPORTED
read Supported
write Not supported - raises exception: METHOD_NOT_SUPPORTED

.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package

The ORDPLUGINS.ORDX_HTTP_SOURCE package or PL/SQL plug-in is
provided.

CREATE (R REPLACE PACKACE CRDX_HTTP_SORCE AS
-- functi ons/ procedur es

FUNCTI ON pr ocessConmand(obj I'N QJT NOOCPY CROSYS. GRDSour ce,
ctx IN QJT RAWY
cnd I N VARCHAR?,

arglist INVARCHAR?,
result QJT RAWY

RETURN RAWY
PROCEDURE i npor t (obj IN QJT NOOCPY CRDSYS. GRDSour ce,
ctx IN QUT RAW

m net ype QJT VARCHAR?,
f or mat QJT VARCHAR?) ;

PROCEDURE i npor t (obj I'N QJT NOOCPY CROSYS. GRDSour ce,
ctx IN QJT RAW
dl ob IN QJT NOOCPY BLCB,

m net ype QJT VARCHARZ,
f or mat QUT VARCHAR?) ;
PROCEDURE i npor t Fr ong obj IN QJT NOOCPY CRDSYS. GRCSour ce,
ctx IN QJT RAW
m net ype QJT VARCHAR2,
format QUT VARCHARZ,

| oc IN VARCHAR?,
nane I'N VARCHAR?) ;
PROCEDURE i npor t Fr ong obj IN QJT NOOCPY CRDSYS. GRCSour ce,
ctx IN QJT RAW
dl ob IN QJT NOOCPY BLCB,

m net ype QJT VARCHAR2,
f or mat QJT VARCHARZ,
| oc I N VARCHAR?,

nane I N VARCHAR?) ;

I-50 Oracle inteiMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

PROCEDURE export (obj |N QJI NOOPY CRDSYS. CRDSour ce,
ctx |INQJ RAW
dlob IN QUI NOOCPY BLCB,
loc | N VARCHAR?,
nane | N VARCHAR?) ;
FUNCTI ON get Gont ent Lengt h(obj I N CRDSYS. CRDSour ce,
ctx IN QT RAWY
RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Cont ent Lengt h, VWADS, VINPS, R\DS, R\FS);
FUNCTI ON get Sour ceAddress(obj | N CRDBYS. GRDSour ce,
ctx INQJT RAW
user Data | N VARCHAR?)
RETURN VARCHAR?;
PRAGVA RESTR CT_REFERENCES(get Sour ceAddress, WADS, VIWPS, R\DS, R\PS);
FUNCTI ON open(obj 1IN QJT NOOCPY CRDSYS CRCSource, user Arg |N RAWY
ctx QUT RAW RETURN | NTECGER
FUNCTI ON cl ose(obj | N QJI NOOPY CRDSYS. GRDSource, ctx |N QJT RAW
RETURN | NTEGER
FUNCTION trinfobj I N QJI NOOCPY CRDSYS. CRDSour ce,
ctx N QUT RAW
new en I N INTEGER) RETURN | NTECGER
PROCEDURE r ead(obj I N QJT NOOCPY CRDSYS. (RCSour ce,
ctx IN QJT RAW
startPos I N | NTEGER
nunBytes I N QJT | NTEGER
buffer QJI RAW;
PROCEDURE wri t e(obj I'N QUT NOOCPY CGRDSYS. CRESour ce,
ctx IN QJT RAW
startPos | N | NTECER
nunBytes | N QUJT | NTEGER
buffer QJI RAW;
BEND CRDX_HTTP_SOURCE,
/

Table 1-2 shows the methods supported in the ORDX_HTTP_SOURCE package and
the exceptions raised if you call a method that is not supported.

Table -2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED
import Supported

ORDSource Reference Information [-51

Packages or PL/SQL Plug-ins

Table -2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package (Cont.)

Name of Method Level of Support

import Supported
importFrom Supported
importFrom Supported
export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported
getSourceAddress Supported

open Supported
close Supported
trim Not supported - raises exception: METHOD_NOT_SUPPORTED
read Not supported - raises exception: METHOD_NOT_SUPPORTED
write Not supported - raises exception: METHOD_NOT_SUPPORTED

.3.3 ORDPLUGINS.ORDX_<srcType> SOURCE Package

Use the ORDPLUGINS.ORDX_<srcType> SOURCE package or PL/SQL plug-in as
a template to create your own source type. Use the
ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE
packages as a guide in developing your new source type package.

.3.4 Extending interMedia to Support a New Data Source
Extending interMedia to support a new data source consists of four steps:

1. Design your new data source.

2. Implement your new data source and name it, for example, ORDX_MY _
SOURCE.SQL.

3. Install your new ORDX_MY_SOURCE.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY _
SOURCE.SQL plug-in to PUBLIC.

Section 3.5 briefly describes how to extend interMedia to support a new data source
for audio and video data and describe the interfaces. A package body listing is
provided in Example I-1 to assist you in this operation. Add your variables to the

I-52 Oracle interiMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

places that say "--Your variables go here" and add your code to the places that say
"--Your code goes here".

Example I-1 Show the Package Body for Extending Support to a New Data Source

CREATE (R REPLACE PACKACGE BADY CRDX_WY_SOURCE
AS

-- functi ons/ procedur es

FUNCTI ON pr ocessCommand(
obj N QJI NOOCPY CRDSYS. CRDSour ce,
ctx INQJT RAW
cnd | N VARCHAR?,
arglist I N VARCHAR2,
result QJI RAW

RETURN RAW

IS

--Your variables go here

BEQ N

--Your code goes here

END pr ocessConmand;

PROCEDURE i nport (obj I N GQJT NOOCPY CRDSYS. CRDSour ce,
ctx INQJT RAW
m net ype QJT VARCHAR2,
format QUT VARCHAR?)

IS

--Your variables go here

BEQ N

--Your code goes here

END i nport;

PROCEDURE i nport (obj I N QJT NOOCPY CRDSYS. GRDSour ce,
ctx IN QJT RAW
diob IN QJI NOOCPY BLCB,
m net ype QJT VARCHAR2,
format QUT VARCHAR?)

1S

--Your variables go here

BEA N

--Your code goes here

END i nport;

PROCEDURE i nport Fron{ obj I'N QJT NOOCPY QRDSYS. CRDSour ce,

ctx IN QJT RAW
nm net ype QJI VARCHAR2,
f or mat QJT VARCHAR2,
| oc I N VARCHARZ,
nane I N VARCHAR?)

ORDSource Reference Information [-53

Packages or PL/SQL Plug-ins

IS

--Your variables go here
BEA N

--Your code goes here

END i npor t From

PROCEDURE i nport Fron{ obj I'N QJT NOOCPY CRDSYS. CRDSour ce,
ctx IN QJT RAW
dl ob IN QJT NOOCPY BLCB,

m net ype QJT VARCHAR?,
format OJT VARCHARZ,

| oc I N VARCHAR2,
nane I N VARCHARR)
IS
--Your variables go here
BEA N

--Your code goes here

END i nport From

PROCEDURE export(obj I N QJT NOOCPY CRDSYS. GRDSour ce,
ctx |IN QU RAW
dl ob IN QUI NOOCPY BLCB,
loc I N VARCHAR?,
nane | N VARCHAR?)

1S

--Your variables go here

BEA N

--Your code goes here

END export;

FUNCTI ON get Gontent Lengt h(obj | N CRDSYS. CRDSour ce,
ctx |IN QU RAW

RETURN | NTECER

IS

--Your variables go here

BEA N

--Your code goes here

END get Cont ent Lengt h;

FUNCTI ON get Sour ceAddress(obj | N CRDBYS. CRDSour ce,
ctx INQUT RAW
user Data | N VARCHAR?)

RETURN VARCHAR?

1S

--Your variables go here

BEA N

--Your code goes here

END get Sour ceAddr ess;

I-54 Oracle interiMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins

FUNCTI ON open(obj I N QJT NOOCPY CRDSYS CRDSource, userArg |N RAW ctx QJT RAW
RETURN | NTEGER

1S

--Your variables go here

BEA N

--Your code goes here

END open;

FUNCTI ON cl ose(obj | N QJI NOOPY CRDSYS. GRDSource, ctx |N QJT RAW

RETURN | NTECER

1S

--Your variables go here

BEA N

--Your code goes here

END cl ose;

FUNCTI ON tri nf obj I N QJT NOOCPY CRDSYS. CRCSour ce,
ctx IN QJT RAW
new en I N | NTEGER

RETURN | NTECER

IS

--Your variables go here

BEA N

--Your code goes here

ENDtrim

PROCEDURE r ead(obj I N QJT NOOCPY CRDSYS. GRCSour ce,
ctx IN QUT RAW
startPos I N | NTEGER
nunBytes | N QJT | NTECER
buffer QJI RAW

1S

--Your variables go here

BEA N

--Your code goes here

BEN\D read;

PROCEDURE wri t e(obj I'N QUT NOOCPY CGRDSYS. CRESour ce,
ctx IN QJT RAW
startPos | N | NTEGER
nunBytes | N QJT | NTEGER
buffer QJI RAW

1S

--Your variables go here

BEA N

--Your code goes here

END wite;

END CRDX_W_SOLRCE:
/

ORDSource Reference Information [-55

Packages or PL/SQL Plug-ins

show errors;

I-56 Oracle interMedia User’s Guide and Reference

J

Deprecated Methods

J.1 Deprecated Audio and Video Methods

The following ORDAudio and ORDVideo get methods that accept a ctx parameter
were deprecated in release 8.1.6:

ORDAudio

get Fornmat (ctx | N QUT RAVW RETURN VARCHAR2

get Encodi ng(ctx IN QJT RAW RETURN VARCHAR?

get Nuniber &0 Channel s(ctx I N QJT RAVW RETURN | NTEGER
get Sanpl i ngRate(ctx | N QUT RAW RETURN | NTEGER

get Sanpl eS ze(ctx |N QJT RAVY RETURN | NTEGER

get Conpr essi onType(ctx | N QJI RAVW RETURN VARCHAR?
get Audi oDuration(ctx IN QJI RAW RETURN | NTEGER

ORDVideo

get Fornat (ctx I N QU RAVW RETURN VARCHAR2
get FraneS ze(SELF | N QJT NOOCPY CGRDM deo,
ctx IN QJI RAW
retWdth QUT | NTEGER
retHei ght QJT | NTEGER
get FraneResol ution(ctx | N QJI RAW RETURN | NTEGER
get FraneRate(ctx | N QUT RAVY RETURN | NTEGER
getVideoDuration(ctx IN QJI RAW RETURN | NTECGER
get Nuniber &0 Franes(ctx | N QU RAVW RETURN | NTEGER
get Conpr essi onType(ctx | N QJI RAVW RETURN VARCHAR2
get Nunber &0 Gol ors(ctx | N QUT RAVY RETURN | NTEGER
getBitRate(ctx I N QJT RAW RETURN | NTEGER

The following ORDAudio and ORDVideo comments methods were deprecated in
release 9.0.1:

Deprecated Methods J-1

Deprecated Audio and Video Methods

ORDAudio

-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComment s(anount | N Bl NARY | NTEGER,
buffer I N VARHAR?) ,

MEMBER PROCEDURE wri t eToComment s(of f set | N | NTEGER

anount | N Bl NARY_| NTECER

buffer I N VARCHAR?),
MEMBER FUNCTI ON r eadFr onCorment s(of f set | N | NTEGER

amount | N Bl NARY_| NTECER : = 32767)

RETURN VARCHAR?,

PRAGVA RESTR CT_REFERENCES(r eadFr onComment s, WADS, VIWPS, R\DS, R\PS),

MEMBER FUNCTI ON | ocat el nCommrent s(patt er n I N VARCHAR?,
of f set ININTEER : = 1,
occurrence I N INTEGER : = 1)
RETURN | NTEGER
MEMBER PROCEDURE tri nConment s(new en | N | NTEGER),
MEMBER PROCEDURE er aseFr onComment s(anount | N QJT NOOCPY | NTECER
offset ININEGER:= 1),

MEMBER PROCEDURE del et eComment s,
MEMBER PROCEDURE | oadConment sFronH | e(fil eobj | N BFILE,
anount I N I NTECGER
fromloc ININEER:= 1,
toloc ININTEER:=1),
MEMBER PROCEDURE copyConment sQut (dest I'N QJT NOOCPY OLCB,
anount IN I NTECER

fromloc ININEER: =1,
toloc ININEGR:=1),
MEMBER FUNCTI ON conpar eConment s(
conpare_with | ob IN QLGB
anmount IN I NTEGER : = 4294967295,

starting_pos_in comment |NINEER:=1,
starting_pos_in _conpare | N INEER := 1)
RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(conpar eConment s, VWOS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Comrment Lengt h RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Corment Lengt h, VIRDS, WAPS, R\DS, R\PS),

ORDVideo

-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComent s(anount | N Bl NARY | NTEGER
buf fer I N VARCHAR?) ,

J-2 Oracle interMedia User’s Guide and Reference

Deprecated Audio and Video Methods

MEMBER PROCEDURE wri t eToComment s(of f set | N | NTEGER
anount | N Bl NARY | NTECGER
buffer I N VARCHAR?),
MEMBER FUNCTI ON r eadFr onComment s(of f set | N | NTEGER
anount | N Bl NARY_| NTEGER : = 32767)
RETURN VARCHAR?,
PRAGVA RESTR CT_REFERENCES(r eadFr onComment s, WADS, VIWPS, R\DS, R\PS),

MEMBER FUNCTI ON | ocat el nCommrent s(patt er n I N VARCHAR?,
of f set I N I NTECER :
occurrence I N I NTEEER :

1,
1)

RETURN | NTEGER
MEMBER PROCEDURE tri nConment s(new en | N | NTEGER),
MEMBER PROCEDURE er aseFr onComment s(anount | N QJT NOOCPY | NTECER
offset ININEGER:= 1),

MEMBER PROCEDURE del et eComment s,

MEMBER PROCEDURE | oadComment sFronH | e(fil eobj | N BFILE,
anount I N I NTECER
fromloc ININEER: =1,
toloc ININEER:=1),

MEMBER PROCEDURE copyComment sQut (dest I'N QJT NOOCPY ALCB,

anount I N I NTECER
fromloc ININEER : =1,
toloc ININEER:=1),

MEMBER FUNCTI ON conpar eConment s(

conpare_with | ob IN QLGB

anmount I N I NTEGER : = 4294967295,
starting_pos_in comment |NINEER:=1,
starting_pos_in _conpare | N INEER : = 1)

RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(conpar eConment s, VWOS, WAPS, R\DS, R\PS),

MEMBER FUNCTI ON get Comrment Lengt h RETURN | NTEGER
PRAGVA RESTR CT_REFERENCES(get Corment Lengt h, VDS, WAPS, R\DS, R\PS),

The following ORDAudio and ORDVideo accessor methods were deprecated in
release 9.0.1:

ORDAudio
MEMBER PROCEDURE set Properties(ctx |N QJI RAW,

ORDVideo
MEMBER PROCEDURE set Properties(ctx |N QJT RAW,

Deprecated Methods J-3

Deprecated Audio and Video Methods

J-4 Oracle interMedia User’s Guide and Reference

A

adding images, 3-42
advantages of using
LOB buffering, 11-17
AIFF data format, A-1
AIFF-C data format, A-2
Apple QuickTime data format, C-2
AU data format, A-2
AVI data format, C-3

B

BFILE, 3-45, 3-46
BLOBs in table partitions

using interMedia column objects, 11-17
BUFFER_POOL_KEEP parameter, 11-5
BUFFER_POOL_RECYCLE parameter, 11-5
bulk data loading methods, 11-18

C

CACHE option, 11-11
checkProperties() method, 6-17, 8-15, 9-18
CHUNK option, 11-11
clearLocal() method, 5-5, 1-9
close() method, 1-10
closeSource() method, 5-6
codecs (compression and decompression
schemes), 1-4
color visual attribute, 2-4
location visual attribute, 2-5
specified with location, 2-5
compatibility, 4-1

Index

compatibilityInit() method, 4-3
compression

formats, A-1,B-1,C-1
content-based retrieval

benefits, 2-1

example, 3-50

overview, 2-1
converting

images, 3-54
copy() method, 8-16
copying

images, 3-53

D

data
loading multimedia, 1-15

data format, 1-8

database initialization parameter
BUFFER_POOL_KEEP, 11-5
BUFFER_POOL_RECYCLE, 11-5
DB_BLOCK SIZE, 11-2,11-4,11-29
DB_CACHE_SIZE, 11-3,11-5,11-29
LARGE_POOL_SIZE, 11-3
LOG_BUFFER, 11-7
setting, 11-2
SHARED_POOL_RESERVED_SIZE, 11-7
SHARED_POOL_SIZE, 11-3,11-7

DB_BLOCK_SIZE parameter, 11-2,11-4,11-29

DB_CACHE_SIZE parameter, 11-3,11-5, 11-29

DBA tuning tips, 11-1

DBMS_LOB package
loading data, 11-24

deleteContent() method, 5-8

Index-1

deleteLocalContent method, 1-12
distance, 2-8
domain index, 2-12

E

ensuring future compatibility
with evolving interMedia object types,
evaluateScore() method, 8-46
evolving interMedia object types
ensuring future compatibility, 4-1
examples

retrieving an image (simple read), 3-48

retrieving images similar to an image
(content-based), 3-50

retrieving video data (simple read), 3-76

exceptions and error messages, H-1
export() method, 5-9, 10-5, I-13
extending interMedia
audio default format, 6-56
document default format, 7-29
new audio format, 3-9, 3-27, 6-59
new audio object type, 3-9, 3-28
new data source, 3-86, I-52
new document format, 7-30
new image object type, 3-55
new video format, 3-76, 9-68
new video object type, 3-77
video default format, 9-65
extensible index, 2-12

F

file format, A-1,B-1,C-1
formats
compression, A-1,B-1, C-1
file, A-1,B-1,C-1
frequently asked questions (FAQ), G-1

G

generateSignature() method, 8-48
getAllAttributes() method, 6-19, 9-20
getAttribute() method, 6-21, 9-22
getAudioDuration() method, 6-23

Index-2

getBFILE() method, 5-13

getBFile() method, 1-16

getBitRate method, 9-24
getCompressionFormat() method, 8-18

getCompressionType() method, 6-25, 9-25

getContent() method, 5-15
getContentFormat() method, 8-19

getContentinLob() method, 6-26, 7-14, 9-26

getContentinTempLob() method, 1-17

getContentLength() method, 6-24, 7-16, 8-20, 9-28,

1-19
getDescription() method, 6-28, 9-29
getEncoding() method, 6-29
getFileFormat() method, 8-21
getFormat() method, 6-30, 7-17, 9-30
getFrameRate method, 9-32
getFrameResolution method, 9-33
getFrameSize() method, 9-34
getHeight() method, 8-22
getLocalContent method, [-21
getMimeType() method, 5-17
getNumberOfChannels() method, 6-31
getNumberOfColors method, 9-36
getNumberOfFrames method, 9-37
getProperties() method (all attributes) for

BFILEs, 10-24, 10-36, 10-48, 10-68
getProperties() method (all attributes) for

BLOBs, 10-18,10-31, 10-43, 10-62

getProperties() method for BFILEs, 10-22, 10-34,

10-46, 10-66

getProperties() method for BLOBs, 10-16, 10-29,

10-41, 10-60
getSampleSize() method, 6-32
getSamplingRate() method, 6-33
getSource() method, 5-19
getSourceAddress() method, 1-22
getSourcelnformation method, 1-24
getSourceLocation() method, 5-21, 1-25
getSourceName() method, 5-22,1-26
getSourceType() method, 5-23, 1-27
getUpdateTime() method, 5-25, 1-28
getVideoDuration method, 9-38
getWidth() method, 8-23

image
attributes, 2-2
import() method, 6-34, 7-18, 8-24, 9-39, 1-29
importFrom() method, 6-36, 7-21, 8-26, 9-41, 10-8,
1-31
importFrom() method (all attributes), 10-11
indexing signatures, 2-12
init() for ORDImage method, 8-7
init() for ORDImageSignature method, 8-44
init() method, 6-8, 7-6, 9-9
init(srcType,srcLocation,srcName) for ORDImage
method, 8-9
init(srcType,srcLocation,srcName) method, 6-10,
7-8,9-11
INITIAL and NEXT parameters, 11-12
initializing interMedia column objects, 11-8
inserting images, 3-43
interchange format, 1-8
interMedia
guidelines for best performance results, 11-28
improving multimedia LOB data retrieval and
update performance, 11-29
initializing column objects, 11-8
media data storage model, 1-3
objects types, 1-3
reading data from an object, 11-25
relational functional interface, 10-1
setting column object to empty, 11-8
setting column objects to NULL, 11-8
strategies with column objects, 11-8
interMedia Clipboard
loading data, 11-25
interMedia column objects
tablespace, 11-9
interMedia object types evolution
ensuring future compatibility, 4-1
isLocal method, 1-33
isLocal() method, 5-26
isSimilar() method, 8-49

L

LARGE_POOL_SIZE parameter, 11-3

loading data
bulk methods, 11-18
multimedia, 1-15
using DBMS_LOB package, 11-24
using interMedia Clipboard, 1-15, 11-25
using OCI, 11-24
using PL/SQL, 1-15,11-18
using SQL*Loader, 1-15
loading FILE data into interMedia objects, 11-18
LOB buffering
advantages of using, 11-17
LOB index
using with interMedia column objects, 11-10
location visual attribute, 2-5
specified with color, 2-5
LOG_BUFFER parameter, 11-7
LOGGING option, 11-11
lossless compression, 1-8
lossy compression, 1-8

M

matching
preparing or selecting images for, 2-13
MAXEXTENTS parameter, 11-14
memory allocation
tuning, 11-5
messages, error, exceptions, H-1
methods, 8-45, I-6
checkProperties(), 6-17, 8-15,9-18
clearLocal(), 5-5,1-9
close(), 1-10
closeSource(), 5-6
common, 5-1
compatibilityInit(), 4-3
copy(), 8-16
deleteContent(), 5-8
deleteLocalContent, 1-12
evaluateScore(), 8-46
export(), 5-9,10-5,1-13
for ORDDoc, 7-10
generateSignature(), 8-48
getAllAttributes(), 6-19, 9-20
getAttribute(), 6-21,9-22
getAudioDuration(), 6-23

Index-3

getBFILE(), 5-13

getBFile(), 1-16

getBitRate, 9-24

getCompressionFormat(), 8-18

getCompressionType(), 6-25, 9-25

getContent(), 5-15

getContentFormat(), 8-19

getContentinLob(), 6-26, 7-14, 9-26

getContentinTempLob(), 1-17

getContentLength(), 6-24, 7-16, 8-20, 9-28, 1-19

getDescription(), 6-28,9-29

getEncoding(), 6-29

getFileFormat(), 8-21

getFormat(), 6-30, 7-17, 9-30

getFrameRate, 9-32

getFrameResolution, 9-33

getFrameSize(), 9-34

getHeight(), 8-22

getLocalContent, 1-21

getMimeType(), 5-17

getNumberOfChannels(), 6-31

getNumberOfColors, 9-36

getNumberOfFrames, 9-37

getProperties() (all attributes) for
BFILEs, 10-24, 10-36, 10-48, 10-68

getProperties() (all attributes) for BLOBs, 10-18,
10-31, 10-43, 10-62

getProperties() for BFILEs, 10-22, 10-34, 10-46,
10-66

getProperties() for BLOBs, 10-16, 10-29, 10-41,
10-60

getSampleSize(), 6-32

getSamplingRate(), 6-33

getSource(), 5-19

getSourceAddress(), 1-22

getSourcelnformation, 1-24

getSourcelLocation(), 5-21,1-25

getSourceName(), 5-22,1-26

getSourceType(), 5-23,1-27

getUpdateTime(), 5-25,1-28

getVideoDuration, 9-38

getWidth(), 8-23

import(), 6-34, 7-18, 8-24, 9-39, 1-29

importFrom(), 6-36, 7-21, 8-26, 9-41, 10-8, 1-31

importFrom() (all attributes), 10-11

Index-4

init(), 6-8,7-6,9-9
init() for ORDImage, 8-7
init() for ORDImageSignature, 8-44
init(srcType,srcLocation,srcName), 6-10, 7-8,
9-11
init(srcType,srcLocation,srcName) for
ORDImage, 8-9
isLocal, 1-33
isLocal(), 5-26
isSimilar(), 8-49
open(), 1-34
openSource(), 5-27
ORDAudio, 6-12
ORDDoc, 7-10
ORDimage, 8-10
ORDImageSignature, 8-45
ORDSource, -6
ORDVideo, 9-13
process(), 8-29,10-51
processAudioCommand(), 6-39
processCommand(), 1-36
processCopy(), 8-34
processCopy() for BFILEs, 10-55
processCopy() for BLOBs, 10-53
processSourceCommand(), 5-29
processVideoCommand(), 9-44
read(), 1-38
readFromSource(), 5-32
relational interface, 10-2
setAudioDuration(), 6-42
setBitRate(), 9-47
setCompressionType(), 6-43,9-48
setDescription(), 6-44, 9-49
setEncoding(), 6-46
setFormat(), 6-47,7-24,9-51
setFrameRate(), 9-53
setFrameResolution(), 9-54
setFrameSize(), 9-55
setKnownAttributes(), 6-49, 9-57
setLocal, 1-40
setLocal(), 5-34
setMimeType(), 5-35
setNumberOfChannels, 6-51
setNumberOfColors(), 9-60
setNumberOfFrames(), 9-61

setProperties, 8-36

setProperties(), 6-52, 9-62
setProperties() (XML), 6-52, 7-26
setProperties() for foreign images, 8-38
setSampleSize(), 6-55
setSamplingRate(), 6-54

setSource(), 5-37
setSourcelnformation(), [-41
setUpdateTime(), 5-39, 1-43
setVideoDuration(), 9-64

trim(), 1-44
trimSource(), 5-40
write(), 1-46

writeToSource(), 5-42
multimedia LOB data retrieval and update
performance
improving, 11-29

O

object relational technology, 1-1
object types

ORDAudio, 6-3

ORDDoc, 7-3

ORDImage, 8-3

ORDImageSignature, 8-42

ORDSource, -3

ORDVideo, 9-3
object views, 3-10, 3-28, 3-57, 3-77
OCl

loading data, 11-24
open() method, 1-34
openSource() method, 5-27
ORDAudio object type

reference information, 6-3
ORDDoc object type

reference information, 7-3
ORDImage object type

reference information, 8-3
ORDImageSignature object type

reference information, 8-42
ORDPLUGINS.ORDX_<srcType>_SOURCE

package, 1-52
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, 9-65

ORDPLUGINS.ORDX_FILE_SOURCE
package, 1-48
ORDPLUGINS.ORDX_HTTP_SOURCE
package, 1-50
ORDSource object type
reference information, 1-3
ORDVideo object type
reference information, 9-3
ORDX_DEFAULT_AUDIO package, 6-56
ORDX_DEFAULT_DOC package, 7-29

P

packages
ORDPLUGINS.ORDX_<srcType>_
SOURCE, 1-52
ORDPLUGINS.ORDX_DEFAULT_VIDEO, 9-65
ORDPLUGINS.ORDX_FILE_SOURCE, 1-48
ORDPLUGINS.ORDX_HTTP_SOURCE, I-50
ORDX_DEFAULT_AUDIO, 6-56
ORDX_DEFAULT_DOC, 7-29
packages or PL/SQL plug-ins, 6-56, 7-29, 9-65, 1-47
PCTFREE parameter, 11-15
PCTINCREASE parameter, 11-14
PCTVERSION option, 11-10
performance results
guidelines for using interMedia objects, 11-28
PL/SQL
loading data, 1-15
example, 11-18
populating rows, 3-44
preparing
images for matching, 2-13
process() method, 8-29, 10-51
processAudioCommand() method, 6-39
processCommand() method, 1-36
processCopy() method, 8-34
processCopy() method for BFILEs, 10-55
processCopy() method for BLOBs, 10-53
processSourceCommand() method, 5-29
processVideoCommand() method, 9-44
protocol, 1-9

Index-5

Q

querying rows, 3-46

R

read() method, 1-38
readFromSource() method, 5-32
reading data from an interMedia object, 11-25
reading interMedia data
example, 11-26
reference information
ORDAudio, 6-1
ORDDoc, 7-1
ORDImage, 8-1
ORDImageSignature, 8-40
ORDSource, I-1
ORDVideo, 9-1
related documents, xxvii
relational functional interface reference
information, 10-1
retrieval, content-based

benefits, 2-1
overview, 2-1
retrieving

images from tables, 3-48
images similar to an image
(content-based), 3-50
video data from table, 3-76
RMFF data format, C-3
roll back, 3-55

S

sample program, F-1,J-1
segment and physical attributes
PCTFREE parameter, 11-15
selecting
images for matching, 2-13
setAudioDuration() method, 6-42
setBitRate() method, 9-47
setCompressionType() method, 6-43, 9-48
setDescription() method, 6-44, 9-49
setEncoding() method, 6-46
setFormat() method, 6-47, 7-24,9-51
setFrameRate() method, 9-53

Index-6

setFrameResolution() method, 9-54
setFrameSize() method, 9-55
setKnownAttributes() method, 6-49, 9-57
setLocal method, 1-40
setLocal() method, 5-34
setMimeType() method, 5-35
setNumberOfChannels method, 6-51
setNumberOfColors() method, 9-60
setNumberOfFrames() method, 9-61
setProperties method, 8-36
setProperties() method, 6-52, 9-62
setProperties() method (XML), 6-52, 7-26
setProperties() method for foreign images, 8-38
setSampleSize() method, 6-55
setSamplingRate() method, 6-54
setSource() method, 5-37
setSourcelnformation() method, [-41
setting
column object to empty, 11-8
column objects to NULL, 11-8
setting database initialization parameters, 11-2
setUpdateTime() method, 5-39, 1-43
setVideoDuration() method, 9-64
SGA, 11-2
database initialization parameters, 11-2
sizing, 11-2
sizing using DB_BLOCK_SIZE parameter, 11-2
sizing using DB_CACHE_SIZE parameter, 11-3
sizing using LARGE_POOL_SIZE
parameter, 11-3
sizing using SHARED_POOL_SIZE
parameter, 11-3
shape (visual attribute), 2-4
SHARED_POOL_RESERVED_SIZE
parameter, 11-7
SHARED_POOL_SIZE parameter, 11-3,11-7
signature, 2-2
indexing, 2-12
similarity calculation, 2-9
SQL*Loader
example loading multimedia data, 11-23
loading data, 1-15
static methods
ORDAudio relational functional interface, 10-4,
10-13

ORDDoc relational functional interface, 10-26
ORDImage relational functional interface, 10-38
ORDVideo relational functional interface, 10-56
storage characteristics
CACHE option, 11-11
CHUNK option, 11-11
DB_BLOCK_SIZE parameter, 11-4
INITIAL and NEXT parameters, 11-12
LOGGING option, 11-11
MAXEXTENTS parameter, 11-14
PCTINCREASE parameter, 11-14
PCTVERSION option, 11-10
STORAGE IN ROW clause, 11-14
STORAGE IN ROW clause, 11-14
strategies for column objects, 11-8
system global area
See SGA

T

table partitions

using interMedia column objects containing

BLOBs, 11-17

tablespace characteristics

LOB index, 11-10

tablespace, 11-9
temporary conversions, 3-55
texture (visual attribute), 2-4
threshold, 2-11
thumbnail images, 8-33, 10-52
trim() method, 1-44
trimSource() method, 5-40
tuning

memory allocation, 11-5

\Y,

visual attributes, 2-2

w

WAV data format, A-3, A-5
weight, 2-8
write methods

write(), 1-46

writeToSource() method,

5-42

Index-7

Index-8

	User’s Guide and Reference
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Changes to This Guide
	Documentation Accessibility

	1 Introduction
	1.1� Object Relational Technology
	1.2� Multimedia Content Management
	1.3� Audio Concepts
	1.3.1� Digitized Audio
	1.3.2� Audio Components

	1.4� ORDDoc or Heterogeneous Media Data Concepts
	1.4.1� Digitized Heterogeneous Media Data
	1.4.2� Heterogeneous Media Data Components

	1.5� Image Concepts
	1.5.1� Digitized Images
	1.5.2� Image Components

	1.6� Video Concepts
	1.6.1� Digitized Video
	1.6.2� Video Components

	1.7� Multimedia Object Types and Methods
	1.8� Multimedia Storage
	1.8.1� Storing Multimedia Data
	1.8.2� Querying Multimedia Data
	1.8.3� Accessing Multimedia Data

	1.9� Extending Oracle interMedia
	1.9.1� Supporting Other External Sources and Other Media Data Formats
	1.9.2� Supporting Audio Data Processing
	1.9.3� Supporting Video Data Processing

	1.10� Relational Interface
	1.11� Loading Multimedia Data into Oracle9i Using interMedia
	1.12� Reading Data from a LOB
	1.13� interMedia Architecture
	1.13.1� Oracle interMedia Java Classes
	1.13.2� Oracle interMedia Java Classes for Servlets and JSPs
	1.13.3� Annotation Services for Multimedia Data
	1.13.4� Streaming Content from an Oracle Database
	1.13.5� Support for Web Technologies
	1.13.6� Geocoding Services

	2 Content-Based Retrieval Concepts
	2.1� Overview and Benefits
	2.2� How Content-Based Retrieval Works
	2.2.1� Color
	2.2.2� Texture
	2.2.3� Shape

	2.3� How Matching Works
	2.3.1� Weight
	2.3.2� Score
	2.3.3� Similarity Calculation
	2.3.4� Threshold Value

	2.4� Using an Index to Compare Signatures
	2.5� Preparing or Selecting Images for Useful Matching

	3 interMedia Examples
	3.1� Audio Data Examples
	3.1.1� Defining a Song Object
	3.1.2� Creating an Object Table SongsTable
	3.1.3� Creating a List Object Containing a List of References to Songs
	3.1.4� Defining the Implementation of the songList Object
	3.1.5� Creating a CD Object and a CD Table
	3.1.6� Inserting a Song into the SongsTable Table
	3.1.7� Inserting a CD into the CdTable Table
	3.1.8� Loading a Song into the SongsTable Table
	3.1.9� Inserting a Reference to a Song Object into the Songs List in the CdTable Table
	3.1.10� Adding a CD Reference to a Song
	3.1.11� Retrieving Audio Data from a Song in a CD
	3.1.12� Extending interMedia to Support a New Audio Data Format
	3.1.13� Extending interMedia with a New Type
	3.1.14� Using Audio Types with Object Views
	3.1.15� Scripts for Creating and Populating an Audio Table from a BFILE Data Source

	3.2� Media Data Examples
	3.2.1� Defining a Media Object
	3.2.2� Creating an Object Table DocumentsTable
	3.2.3� Creating a List Object Containing a List of References to Media
	3.2.4� Defining the Implementation of the documentList Object
	3.2.5� Creating a Library Object and a Library Table
	3.2.6� Inserting Media into the DocumentsTable Table
	3.2.7� Inserting a Library into the LibraryTable Table
	3.2.8� Loading Media into the DocumentsTable Table
	3.2.9� Inserting a Reference to a Document Object into the Documents List in the LibraryTable Table
	3.2.10� Adding a Library Reference to a Document
	3.2.11� Extending interMedia to Support a New Media Data Format
	3.2.12� Extending interMedia with a New Type
	3.2.13� Using Document Types with Object Views
	3.2.14� Using the ORDDoc Object Type as a Repository
	3.2.15� Scripts for Creating and Populating a Media Table from a BFILE Data Source

	3.3� Image Data Examples
	3.3.1� Adding Image Types to an Existing Table
	3.3.2� Adding Image Types to a New Table
	3.3.3� Inserting a Row Using BLOB Images
	3.3.4� Populating a Row Using BLOB Images
	3.3.5� Inserting a Row Using BFILE Images
	3.3.6� Populating a Row Using BFILE Images
	3.3.7� Querying a Row
	3.3.8� Importing an Image from an External File into the Database
	3.3.9� Retrieving an Image
	3.3.10� Retrieving Images Similar to a Comparison Image (Content-Based Retrieval)
	3.3.11� Creating a Domain Index
	3.3.12� Retrieving Images Similar to a Comparison Image Using Index Operations (Indexed Content-B...
	3.3.13� Copying an Image
	3.3.14� Converting an Image Format
	3.3.15� Copying and Converting in One Step
	3.3.16� Extending interMedia with a New Type
	3.3.17� Using Image Types with Object Views
	3.3.18� Scripts for Creating and Populating an Image Table from a BFILE Data Source
	3.3.19� Scripts for Populating an Image Table from an HTTP Data Source
	3.3.20� Addressing Globalization Support Issues

	3.4� Video Data Examples
	3.4.1� Defining a Clip Object
	3.4.2� Creating an Object Table ClipsTable
	3.4.3� Creating a List Object Containing a List of Clips
	3.4.4� Defining the Implementation of the clipList Object
	3.4.5� Creating a Video Object and a Video Table
	3.4.6� Inserting a Video Clip into the ClipsTable Table
	3.4.7� Inserting a Row into the VideoTable Table
	3.4.8� Loading a Video into the ClipsTable Table
	3.4.9� Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table
	3.4.10� Inserting a Reference to a Video Object into the Clip
	3.4.11� Retrieving a Video Clip from the VideoTable Table
	3.4.12� Extending interMedia to Support a New Video Data Format
	3.4.13� Extending interMedia with a New Object Type
	3.4.14� Using Video Types with Object Views
	3.4.15� Scripts for Creating and Populating a Video Table from a BFILE Data Source

	3.5� Extending interMedia to Support a New Data Source

	4 Ensuring Future Compatibility with Evolving interMedia Object Types
	4.1� When and How to Call the Compatibility Initialization Function
	compatibilityInit()

	5 Common Methods for interMedia Object Types Reference Information
	5.1� Important Notes
	5.2� Methods
	clearLocal()
	closeSource()
	deleteContent()
	export()
	getBFILE()
	getContent()
	getMimeType()
	getSource()
	getSourceLocation()
	getSourceName()
	getSourceType()
	getUpdateTime()
	isLocal()
	openSource()
	processSourceCommand()
	readFromSource()
	setLocal()
	setMimeType()
	setSource()
	setUpdateTime()
	trimSource()
	writeToSource()

	6 ORDAudio Reference Information
	6.1� Object Types
	ORDAudio Object Type

	6.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	6.3� Methods
	6.3.1� Example Table Definitions
	checkProperties()
	getAllAttributes()
	getAttribute()
	getAudioDuration()
	getContentLength()
	getCompressionType()
	getContentInLob()
	getDescription()
	getEncoding()
	getFormat()
	getNumberOfChannels()
	getSampleSize()
	getSamplingRate()
	import()
	importFrom()
	processAudioCommand()
	setAudioDuration()
	setCompressionType()
	setDescription()
	setEncoding()
	setFormat()
	setKnownAttributes()
	setNumberOfChannels()
	setProperties()
	setSamplingRate()
	setSampleSize()

	6.4� Packages or PL/SQL Plug-ins
	6.4.1� ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	6.4.2� Extending interMedia to Support a New Audio Data Format

	7 ORDDoc Reference Information
	7.1� Object Types
	ORDDoc Object Type

	7.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	7.3� Methods
	7.3.1� Example Table Definitions
	getContentInLob()
	getContentLength()
	getFormat
	import()
	importFrom()
	setFormat()
	setProperties()

	7.4� Packages or PL/SQL Plug-ins
	7.4.1� ORDPLUGINS.ORDX_DEFAULT_DOC Package
	7.4.2� Extending interMedia to Support a New Media Data Format

	8 Image Object Types Reference Information
	8.1� ORDImage Object Types
	ORDImage Object Type
	8.1.1� Constructors
	init() for ORDImage
	init(srcType,srcLocation,srcName) for ORDImage
	8.1.2� Methods
	8.1.3� Example Table Definitions
	checkProperties
	copy()
	getCompressionFormat
	getContentFormat
	getContentLength
	getFileFormat
	getHeight
	getWidth
	import()
	importFrom()
	process()
	processCopy()
	setProperties
	setProperties() for Foreign Images

	8.2� ORDImageSignature Object Type
	ORDImageSignature Object Type
	8.2.1� Constructors
	init() for ORDImageSignature
	8.2.2� Methods
	evaluateScore()
	generateSignature()
	isSimilar()
	8.2.3� ORDImageSignature Operators
	IMGSimilar Operator
	IMGScore Operator

	9 ORDVideo Reference Information
	9.1� Object Types
	ORDVideo Object Type

	9.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	9.3� Methods
	9.3.1� Example Table Definitions
	checkProperties()
	getAllAttributes()
	getAttribute()
	getBitRate
	getCompressionType
	getContentInLob()
	getContentLength()
	getDescription
	getFormat
	getFrameRate
	getFrameResolution
	getFrameSize()
	getNumberOfColors
	getNumberOfFrames
	getVideoDuration
	import()
	importFrom()
	processVideoCommand()
	setBitRate()
	setCompressionType()
	setDescription()
	setFormat()
	setFrameRate()
	setFrameResolution()
	setFrameSize()
	setKnownAttributes()
	setNumberOfColors()
	setNumberOfFrames()
	setProperties()
	setVideoDuration()

	9.4� Packages or PL/SQL Plug-ins
	9.4.1� ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	9.4.2� Extending interMedia to Support a New Video Data Format

	10 interMedia Relational Interface Reference
	10.1� Static Methods for the Relational Interface
	10.1.1� Static Methods Common to All Object Types
	10.1.2� Static Methods Uniquely Associated with Each Object Type

	10.2� Static Methods Common to All Object Types
	export()
	importFrom()
	importFrom() (all attributes)

	10.3� Static Methods Unique to the ORDAudio Object Type Relational Interface
	10.3.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	10.4� Static Methods Unique to the ORDDoc Object Type Relational Interface
	10.4.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	10.5� Static Methods Unique to the ORDImage Object Type Relational Interface
	10.5.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs
	process()
	processCopy() for BLOBs
	processCopy() for BFILEs

	10.6� Static Methods Unique to the ORDVideo Object Type Relational Interface
	10.6.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	11 Tuning Tips for the DBA
	11.1� Setting Database Initialization Parameters
	11.2� Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
	11.2.1� Initializing Internal interMedia Column Objects Containing BLOBs to NULL or EMPTY
	11.2.2� Specifying Tablespace and Storage Characteristics for interMedia Column Objects Containin...
	11.2.3� Segment Attributes and Physical Attributes
	11.2.4� Accommodating Temporary LOBs in the Buffer Cache
	11.2.5� Using interMedia Column Objects Containing BLOBs in Table Partitions
	11.2.6� LOB Buffering for Client Applications

	11.3� Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
	11.4� Loading Multimedia Data Using the interMedia Clipboard
	11.5� Loading Multimedia Data Using interMedia Annotator Utility
	11.6� Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/...
	11.7� Reading Results of an interMedia Benchmark
	11.8� Getting the Best Performance Results
	11.9� Improving Multimedia LOB Data Retrieval and Update Performance

	A Audio File and Compression Formats
	A.1� Supported Audio File and Compression Formats

	B Image File and Compression Formats
	B.1� Supported Image File and Compression Formats
	B.1.1� Image File Formats
	B.1.2� Image Compression Formats
	B.1.3� Summary of Image File Format and Image Compression Format

	C Video File and Compression Formats
	C.1� Supported Video File and Compression Formats

	D Image process() and processCopy() Operators
	D.1� Common Concepts
	D.1.1� Source and Destination Images
	D.1.2� process() and processCopy()
	D.1.3� Operator and Value
	D.1.4� Combining Operators

	D.2� Image Formatting Operators
	D.2.1� FileFormat
	D.2.2� ContentFormat
	D.2.3� CompressionFormat
	D.2.4� CompressionQuality

	D.3� Image Processing Operators
	D.3.1� Cut
	D.3.2� Scale
	D.3.3� XScale
	D.3.4� YScale
	D.3.5� FixedScale
	D.3.6� MaxScale

	D.4� Format-Specific Operators
	D.4.1� ChannelOrder
	D.4.2� Interleaving
	D.4.3� PixelOrder
	D.4.4� ScanlineOrder
	D.4.5� InputChannels
	D.4.6� Dither
	D.4.7� Page
	D.4.8� Tiled

	E Image Raw Pixel Format
	E.1� Raw Pixel Introduction
	E.2� Raw Pixel Image Structure
	E.3� Raw Pixel Header Field Descriptions
	E.4� Raw Pixel Post-Header Gap
	E.5� Raw Pixel Data Section and Pixel Data Format
	E.5.1� Scanline Ordering
	E.5.2� Pixel Ordering
	E.5.3� Band Interleaving
	E.5.4� N-Band Data

	E.6� Raw Pixel Header “C” Structure
	E.7� Raw Pixel Header “C” Constants
	E.8� Raw Pixel PL/SQL Constants
	E.9� Raw Pixel Images Using CCITT Compression
	E.10� Foreign Image Support and the Raw Pixel Format

	F Sample Programs
	F.1� Sample Audio Scripts
	F.2� Sample Document Scripts
	F.3� Sample Program for Modifying Images or Testing the Image Installation
	F.3.1� Demonstration (Demo) Installation Steps
	F.3.2� Running the Demo

	F.4� Sample Video Scripts
	F.5� Java Demo

	G Frequently Asked Questions
	H Exceptions and Error Messages
	H.1� Exceptions
	H.1.1� ORDAudioExceptions Exceptions
	H.1.2� ORDDocExceptions Exceptions
	H.1.3� ORDImageExceptions Exceptions
	H.1.4� ORDVideoExceptions Exceptions
	H.1.5� ORDSourceExceptions Exceptions

	H.2� ORDAudio Error Messages
	H.3� ORDImage Error Messages
	H.4� ORDVideo Error Messages

	I ORDSource Reference Information
	I.1� Object Types
	I.2� Methods
	I.3� Packages or PL/SQL Plug-ins
	I.3.1� ORDPLUGINS.ORDX_FILE_SOURCE Package
	I.3.2� ORDPLUGINS.ORDX_HTTP_SOURCE Package
	I.3.3� ORDPLUGINS.ORDX_<srcType>_SOURCE Package
	I.3.4� Extending interMedia to Support a New Data Source

	J Deprecated Methods
	J.1� Deprecated Audio and Video Methods

	Index

