
Oracle® interMedia

User’s Guide and Reference

Release 9.0.1

June 2001

Part No. A88786-01

Oracle interMedia audio, document, image, and video is designed to manage
Internet media content. interMedia is a standard feature, enabling Oracle9i to
manage rich content, including text, documents, images, audio, video, and
location information, in an integrated fashion with traditional business data.

Oracle interMedia User’s Guide and Reference, Release 9.0.1

Part No. A88786-01

Copyright © 1999, 2001, Oracle Corporation. All rights reserved.

Primary Author: Rod Ward

Contributors: Susan Mavris, Melli Annamalai, Todd Rowell, Raja Chatterjee, Robert Abbott, Albert
Landeck, Vishal Rao, Dongbai Guo, Fengting Chen, Joseph Mauro, Rabah Mediouni, Sanjay Agarwal,
Bill Voss, Susan Kotsovolos, Rosanne Toohey, Bill Beauregard, Susan Shepard, Helen Grembowicz

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Plus are registered trademarks, and Oracle9i and PL/SQL are trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments .. xxiii

Preface... xxv

Audience .. xxv
Organization... xxvi
Related Documents... xxvii
Conventions... xxvii
Changes to This Guide... xxviii
Documentation Accessibility ... xxix

1 Introduction

1.1 Object Relational Technology.. 1-1
1.2 Multimedia Content Management ... 1-2
1.3 Audio Concepts ... 1-5
1.3.1 Digitized Audio.. 1-6
1.3.2 Audio Components.. 1-6
1.4 ORDDoc or Heterogeneous Media Data Concepts .. 1-6
1.4.1 Digitized Heterogeneous Media Data... 1-7
1.4.2 Heterogeneous Media Data Components .. 1-7
1.5 Image Concepts ... 1-7
1.5.1 Digitized Images .. 1-8
1.5.2 Image Components .. 1-8
1.6 Video Concepts.. 1-9
 iii

1.6.1 Digitized Video... 1-9
1.6.2 Video Components... 1-9
1.7 Multimedia Object Types and Methods... 1-10
1.8 Multimedia Storage... 1-10
1.8.1 Storing Multimedia Data... 1-11
1.8.2 Querying Multimedia Data... 1-12
1.8.3 Accessing Multimedia Data.. 1-12
1.9 Extending Oracle interMedia ... 1-12
1.9.1 Supporting Other External Sources and Other Media Data Formats................... 1-13
1.9.2 Supporting Audio Data Processing ... 1-14
1.9.3 Supporting Video Data Processing.. 1-14
1.10 Relational Interface.. 1-15
1.11 Loading Multimedia Data into Oracle9i Using interMedia... 1-15
1.12 Reading Data from a LOB .. 1-16
1.13 interMedia Architecture.. 1-17
1.13.1 Oracle interMedia Java Classes... 1-21
1.13.2 Oracle interMedia Java Classes for Servlets and JSPs ... 1-22
1.13.3 Annotation Services for Multimedia Data.. 1-23
1.13.4 Streaming Content from an Oracle Database... 1-24
1.13.5 Support for Web Technologies ... 1-25
1.13.6 Geocoding Services .. 1-25

2 Content-Based Retrieval Concepts

2.1 Overview and Benefits.. 2-1
2.2 How Content-Based Retrieval Works... 2-2
2.2.1 Color ... 2-5
2.2.2 Texture ... 2-7
2.2.3 Shape .. 2-7
2.3 How Matching Works... 2-8
2.3.1 Weight .. 2-8
2.3.2 Score ... 2-8
2.3.3 Similarity Calculation .. 2-9
2.3.4 Threshold Value ... 2-11
2.4 Using an Index to Compare Signatures ... 2-12
2.5 Preparing or Selecting Images for Useful Matching .. 2-13
iv

3 interMedia Examples

3.1 Audio Data Examples ... 3-1
3.1.1 Defining a Song Object .. 3-2
3.1.2 Creating an Object Table SongsTable.. 3-2
3.1.3 Creating a List Object Containing a List of References to Songs 3-2
3.1.4 Defining the Implementation of the songList Object.. 3-3
3.1.5 Creating a CD Object and a CD Table... 3-3
3.1.6 Inserting a Song into the SongsTable Table ... 3-4
3.1.7 Inserting a CD into the CdTable Table.. 3-5
3.1.8 Loading a Song into the SongsTable Table .. 3-5
3.1.9 Inserting a Reference to a Song Object into the Songs List in the CdTable Table 3-6
3.1.10 Adding a CD Reference to a Song ... 3-8
3.1.11 Retrieving Audio Data from a Song in a CD.. 3-8
3.1.12 Extending interMedia to Support a New Audio Data Format 3-9
3.1.13 Extending interMedia with a New Type... 3-9
3.1.14 Using Audio Types with Object Views... 3-10
3.1.15 Scripts for Creating and Populating an Audio Table from a BFILE Data Source..........

..3-11
3.2 Media Data Examples ... 3-19
3.2.1 Defining a Media Object.. 3-20
3.2.2 Creating an Object Table DocumentsTable .. 3-21
3.2.3 Creating a List Object Containing a List of References to Media.......................... 3-21
3.2.4 Defining the Implementation of the documentList Object 3-21
3.2.5 Creating a Library Object and a Library Table .. 3-22
3.2.6 Inserting Media into the DocumentsTable Table .. 3-23
3.2.7 Inserting a Library into the LibraryTable Table .. 3-24
3.2.8 Loading Media into the DocumentsTable Table ... 3-24
3.2.9 Inserting a Reference to a Document Object into the Documents List in the

LibraryTable Table ...3-25
3.2.10 Adding a Library Reference to a Document .. 3-26
3.2.11 Extending interMedia to Support a New Media Data Format 3-27
3.2.12 Extending interMedia with a New Type... 3-28
3.2.13 Using Document Types with Object Views ... 3-28
3.2.14 Using the ORDDoc Object Type as a Repository .. 3-29
3.2.15 Scripts for Creating and Populating a Media Table from a BFILE Data Source. 3-34
v

3.3 Image Data Examples ... 3-41
3.3.1 Adding Image Types to an Existing Table ... 3-42
3.3.2 Adding Image Types to a New Table.. 3-42
3.3.3 Inserting a Row Using BLOB Images .. 3-43
3.3.4 Populating a Row Using BLOB Images .. 3-44
3.3.5 Inserting a Row Using BFILE Images.. 3-45
3.3.6 Populating a Row Using BFILE Images .. 3-46
3.3.7 Querying a Row.. 3-46
3.3.8 Importing an Image from an External File into the Database 3-47
3.3.9 Retrieving an Image ... 3-48
3.3.10 Retrieving Images Similar to a Comparison Image (Content-Based Retrieval).. 3-50
3.3.11 Creating a Domain Index .. 3-52
3.3.12 Retrieving Images Similar to a Comparison Image Using Index Operations (Indexed

Content-Based Retrieval) ... 3-53
3.3.13 Copying an Image .. 3-53
3.3.14 Converting an Image Format.. 3-54
3.3.15 Copying and Converting in One Step ... 3-54
3.3.16 Extending interMedia with a New Type... 3-55
3.3.17 Using Image Types with Object Views ... 3-57
3.3.18 Scripts for Creating and Populating an Image Table from a BFILE Data Source 3-59
3.3.19 Scripts for Populating an Image Table from an HTTP Data Source 3-66
3.3.20 Addressing Globalization Support Issues .. 3-68
3.4 Video Data Examples.. 3-69
3.4.1 Defining a Clip Object ... 3-70
3.4.2 Creating an Object Table ClipsTable ... 3-70
3.4.3 Creating a List Object Containing a List of Clips .. 3-71
3.4.4 Defining the Implementation of the clipList Object .. 3-71
3.4.5 Creating a Video Object and a Video Table.. 3-71
3.4.6 Inserting a Video Clip into the ClipsTable Table... 3-72
3.4.7 Inserting a Row into the VideoTable Table .. 3-73
3.4.8 Loading a Video into the ClipsTable Table .. 3-73
3.4.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table.......

... 3-74
3.4.10 Inserting a Reference to a Video Object into the Clip ... 3-75
3.4.11 Retrieving a Video Clip from the VideoTable Table ... 3-76
3.4.12 Extending interMedia to Support a New Video Data Format 3-76
vi

3.4.13 Extending interMedia with a New Object Type .. 3-77
3.4.14 Using Video Types with Object Views ... 3-77
3.4.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source.. 3-79
3.5 Extending interMedia to Support a New Data Source... 3-86

4 Ensuring Future Compatibility with Evolving interMedia Object Types

4.1 When and How to Call the Compatibility Initialization Function 4-1

compatibilityInit() .. 4-3

5 Common Methods for interMedia Object Types Reference Information

5.1 Important Notes .. 5-2
5.2 Methods .. 5-3

clearLocal() .. 5-5

closeSource().. 5-6

deleteContent() ... 5-8

export()... 5-9

getBFILE() .. 5-13

getContent()... 5-15

getMimeType() ... 5-17

getSource()... 5-19

getSourceLocation() ... 5-21

getSourceName() .. 5-22

getSourceType().. 5-23

getUpdateTime()... 5-25

isLocal().. 5-26

openSource() ... 5-27

processSourceCommand() .. 5-29

readFromSource()... 5-32

setLocal().. 5-34

setMimeType() .. 5-35

setSource() ... 5-37

setUpdateTime() ... 5-39
vii

trimSource() ... 5-40

writeToSource()... 5-42

6 ORDAudio Reference Information

6.1 Object Types ... 6-2

ORDAudio Object Type.. 6-3
6.2 Constructors ... 6-7

init() .. 6-8

init(srcType,srcLocation,srcName) ... 6-10
6.3 Methods .. 6-12
6.3.1 Example Table Definitions.. 6-16

checkProperties() .. 6-17

getAllAttributes().. 6-19

getAttribute()... 6-21

getAudioDuration().. 6-23

getContentLength() .. 6-24

getCompressionType() .. 6-25

getContentInLob() .. 6-26

getDescription() .. 6-28

getEncoding() .. 6-29

getFormat() .. 6-30

getNumberOfChannels() ... 6-31

getSampleSize()... 6-32

getSamplingRate() .. 6-33

import() .. 6-34

importFrom()... 6-36

processAudioCommand() ... 6-39

setAudioDuration() .. 6-42

setCompressionType() ... 6-43

setDescription() ... 6-44

setEncoding()... 6-46
viii

setFormat() .. 6-47

setKnownAttributes() .. 6-49

setNumberOfChannels() ... 6-51

setProperties() ... 6-52

setSamplingRate() .. 6-54

setSampleSize() ... 6-55
6.4 Packages or PL/SQL Plug-ins ... 6-56
6.4.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package ... 6-56
6.4.2 Extending interMedia to Support a New Audio Data Format 6-59

7 ORDDoc Reference Information

7.1 Object Types... 7-2

ORDDoc Object Type.. 7-3
7.2 Constructors ... 7-5

init() .. 7-6

init(srcType,srcLocation,srcName) ... 7-8
7.3 Methods .. 7-10
7.3.1 Example Table Definitions.. 7-12

getContentInLob() .. 7-14

getContentLength() .. 7-16

getFormat.. 7-17

import() .. 7-18

importFrom()... 7-21

setFormat() .. 7-24

setProperties() ... 7-26
7.4 Packages or PL/SQL Plug-ins ... 7-29
7.4.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package.. 7-29
7.4.2 Extending interMedia to Support a New Media Data Format 7-30

8 Image Object Types Reference Information

8.1 ORDImage Object Types .. 8-2

ORDImage Object Type.. 8-3
ix

8.1.1 Constructors .. 8-6

init() for ORDImage ... 8-7

init(srcType,srcLocation,srcName) for ORDImage .. 8-9
8.1.2 Methods ... 8-10
8.1.3 Example Table Definitions.. 8-13

checkProperties .. 8-15

copy() .. 8-16

getCompressionFormat .. 8-18

getContentFormat.. 8-19

getContentLength.. 8-20

getFileFormat ... 8-21

getHeight .. 8-22

getWidth ... 8-23

import() .. 8-24

importFrom()... 8-26

process() ... 8-29

processCopy().. 8-34

setProperties ... 8-36

setProperties() for Foreign Images... 8-38
8.2 ORDImageSignature Object Type... 8-40

ORDImageSignature Object Type... 8-42
8.2.1 Constructors .. 8-42

init() for ORDImageSignature .. 8-44
8.2.2 Methods ... 8-45

evaluateScore() .. 8-46

generateSignature() .. 8-48

isSimilar() ... 8-49
8.2.3 ORDImageSignature Operators ... 8-51

IMGSimilar Operator .. 8-52

IMGScore Operator ... 8-56
x

9 ORDVideo Reference Information

9.1 Object Types... 9-2

ORDVideo Object Type .. 9-3
9.2 Constructors ... 9-8

init() .. 9-9

init(srcType,srcLocation,srcName) ... 9-11
9.3 Methods .. 9-13
9.3.1 Example Table Definitions.. 9-17

checkProperties() .. 9-18

getAllAttributes() ... 9-20

getAttribute() .. 9-22

getBitRate.. 9-24

getCompressionType.. 9-25

getContentInLob() .. 9-26

getContentLength() .. 9-28

getDescription.. 9-29

getFormat.. 9-30

getFrameRate ... 9-32

getFrameResolution .. 9-33

getFrameSize() .. 9-34

getNumberOfColors ... 9-36

getNumberOfFrames .. 9-37

getVideoDuration.. 9-38

import() .. 9-39

importFrom()... 9-41

processVideoCommand().. 9-44

setBitRate() .. 9-47

setCompressionType()... 9-48

setDescription()... 9-49

setFormat() .. 9-51

setFrameRate() .. 9-53
xi

setFrameResolution() ... 9-54

setFrameSize() ... 9-55

setKnownAttributes() .. 9-57

setNumberOfColors() .. 9-60

setNumberOfFrames() ... 9-61

setProperties() ... 9-62

setVideoDuration() ... 9-64
9.4 Packages or PL/SQL Plug-ins ... 9-65
9.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package .. 9-65
9.4.2 Extending interMedia to Support a New Video Data Format 9-68

10 interMedia Relational Interface Reference

10.1 Static Methods for the Relational Interface.. 10-2
10.1.1 Static Methods Common to All Object Types .. 10-2
10.1.2 Static Methods Uniquely Associated with Each Object Type................................ 10-2
10.2 Static Methods Common to All Object Types ... 10-4

export() ... 10-5

importFrom()... 10-8

importFrom() (all attributes)... 10-11
10.3 Static Methods Unique to the ORDAudio Object Type Relational Interface............ 10-13
10.3.1 Example Table Definitions... 10-14

getProperties() for BLOBs.. 10-16

getProperties() (all attributes) for BLOBs.. 10-18

getProperties() for BFILEs ... 10-22

getProperties() (all attributes) for BFILEs ... 10-24
10.4 Static Methods Unique to the ORDDoc Object Type Relational Interface 10-26
10.4.1 Example Table Definitions.. 10-28

getProperties() for BLOBs.. 10-29

getProperties() (all attributes) for BLOBs.. 10-31

getProperties() for BFILEs ... 10-34

getProperties() (all attributes) for BFILEs ... 10-36
10.5 Static Methods Unique to the ORDImage Object Type Relational Interface 10-38
10.5.1 Example Table Definitions.. 10-39
xii

getProperties() for BLOBs ... 10-41

getProperties() (all attributes) for BLOBs ... 10-43

getProperties() for BFILEs... 10-46

getProperties() (all attributes) for BFILEs ... 10-48

process() ... 10-51

processCopy() for BLOBs .. 10-53

processCopy() for BFILEs.. 10-55
10.6 Static Methods Unique to the ORDVideo Object Type Relational Interface 10-56
10.6.1 Example Table Definitions.. 10-58

getProperties() for BLOBs ... 10-60

getProperties() (all attributes) for BLOBs ... 10-62

getProperties() for BFILEs... 10-66

getProperties() (all attributes) for BFILEs ... 10-68

11 Tuning Tips for the DBA

11.1 Setting Database Initialization Parameters.. 11-2
11.2 Issues to Consider in Creating Tables with interMedia Column Objects Containing

BLOBs ...11-8
11.2.1 Initializing Internal interMedia Column Objects Containing BLOBs to NULL or

EMPTY ...11-8
11.2.2 Specifying Tablespace and Storage Characteristics for interMedia Column Objects

Containing BLOBs ..11-9
11.2.3 Segment Attributes and Physical Attributes.. 11-15
11.2.4 Accommodating Temporary LOBs in the Buffer Cache....................................... 11-16
11.2.5 Using interMedia Column Objects Containing BLOBs in Table Partitions 11-17
11.2.6 LOB Buffering for Client Applications ... 11-17
11.3 Improving Multimedia Data INSERT Performance in interMedia Objects Containing

LOBs ...11-18
11.4 Loading Multimedia Data Using the interMedia Clipboard....................................... 11-25
11.5 Loading Multimedia Data Using interMedia Annotator Utility 11-25
11.6 Reading Data from an ORDVideo Object Using the interMedia readFromSource()

Method in a PL/SQL Script ..11-25
11.7 Reading Results of an interMedia Benchmark .. 11-26
11.8 Getting the Best Performance Results .. 11-28
xiii

11.9 Improving Multimedia LOB Data Retrieval and Update Performance 11-29

A Audio File and Compression Formats

A.1 Supported Audio File and Compression Formats.. A-1

B Image File and Compression Formats

B.1 Supported Image File and Compression Formats .. B-1
B.1.1 Image File Formats... B-1
B.1.2 Image Compression Formats.. B-7
B.1.3 Summary of Image File Format and Image Compression Format........................ B-11

C Video File and Compression Formats

C.1 Supported Video File and Compression Formats .. C-1

D Image process() and processCopy() Operators

D.1 Common Concepts .. D-1
D.1.1 Source and Destination Images .. D-1
D.1.2 process() and processCopy()... D-2
D.1.3 Operator and Value.. D-2
D.1.4 Combining Operators .. D-2
D.2 Image Formatting Operators ... D-2
D.2.1 FileFormat.. D-3
D.2.2 ContentFormat.. D-3
D.2.3 CompressionFormat... D-4
D.2.4 CompressionQuality .. D-5
D.3 Image Processing Operators .. D-6
D.3.1 Cut .. D-6
D.3.2 Scale .. D-6
D.3.3 XScale ... D-6
D.3.4 YScale ... D-7
D.3.5 FixedScale .. D-7
D.3.6 MaxScale .. D-7
D.4 Format-Specific Operators ... D-8
D.4.1 ChannelOrder ... D-8
xiv

D.4.2 Interleaving ... D-9
D.4.3 PixelOrder ... D-9
D.4.4 ScanlineOrder ... D-9
D.4.5 InputChannels .. D-9
D.4.6 Dither ... D-10
D.4.7 Page .. D-10
D.4.8 Tiled.. D-11

E Image Raw Pixel Format

E.1 Raw Pixel Introduction... E-1
E.2 Raw Pixel Image Structure... E-2
E.3 Raw Pixel Header Field Descriptions... E-3
E.4 Raw Pixel Post-Header Gap... E-7
E.5 Raw Pixel Data Section and Pixel Data Format .. E-8
E.5.1 Scanline Ordering... E-8
E.5.2 Pixel Ordering... E-8
E.5.3 Band Interleaving... E-9
E.5.4 N-Band Data ... E-10
E.6 Raw Pixel Header “C” Structure... E-11
E.7 Raw Pixel Header “C” Constants ... E-12
E.8 Raw Pixel PL/SQL Constants ... E-13
E.9 Raw Pixel Images Using CCITT Compression ... E-13
E.10 Foreign Image Support and the Raw Pixel Format .. E-14

F Sample Programs

F.1 Sample Audio Scripts ... F-1
F.2 Sample Document Scripts .. F-2
F.3 Sample Program for Modifying Images or Testing the Image Installation F-2
F.3.1 Demonstration (Demo) Installation Steps .. F-3
F.3.2 Running the Demo... F-3
F.4 Sample Video Scripts .. F-4
F.5 Java Demo... F-5
xv

G Frequently Asked Questions

H Exceptions and Error Messages

H.1 Exceptions... H-1
H.1.1 ORDAudioExceptions Exceptions ... H-1
H.1.2 ORDDocExceptions Exceptions ... H-3
H.1.3 ORDImageExceptions Exceptions ... H-3
H.1.4 ORDVideoExceptions Exceptions.. H-4
H.1.5 ORDSourceExceptions Exceptions .. H-5
H.2 ORDAudio Error Messages.. H-6
H.3 ORDImage Error Messages.. H-7
H.4 ORDVideo Error Messages ... H-25

I ORDSource Reference Information

I.1 Object Types .. I-2

ORDSource Object Type.. I-3
I.2 Methods ... I-6

clearLocal ... I-9

close()... I-10

deleteLocalContent... I-12

export() .. I-13

getBFile... I-16

getContentInTempLob() ... I-17

getContentLength() ... I-19

getLocalContent.. I-21

getSourceAddress() ... I-22

getSourceInformation .. I-24

getSourceLocation .. I-25

getSourceName... I-26

getSourceType... I-27

getUpdateTime ... I-28

import() ... I-29
xvi

importFrom().. I-31

isLocal .. I-33

open() .. I-34

processCommand() ... I-36

read() ... I-38

setLocal .. I-40

setSourceInformation() ... I-41

setUpdateTime() .. I-43

trim().. I-44

write() .. I-46
I.3 Packages or PL/SQL Plug-ins .. I-47
I.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Package .. I-48
I.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package.. I-50
I.3.3 ORDPLUGINS.ORDX_<srcType>_SOURCE Package.. I-52
I.3.4 Extending interMedia to Support a New Data Source... I-52

J Deprecated Methods

J.1 Deprecated Audio and Video Methods .. J-1

Index
xvii

List of Examples

3–1 Define a Song Object ... 3-2
3–2 Create a Table Named SongsTable ... 3-2
3–3 Create a List Object Containing a List of References to Songs.. 3-2
3–4 Define the Implementation of the songList Object ... 3-3
3–5 Create a CD Table Containing CD Information.. 3-4
3–6 Insert a Song into the SongsTable Table... 3-4
3–7 Insert a CD into the CdTable Table... 3-5
3–8 Load a Song into the SongsTable Table.. 3-5
3–9 Insert a Reference to a Song Object into the Songs List in the CdTable Table 3-7
3–10 Add a CD Reference to a Song .. 3-8
3–11 Retrieve Audio Data from a Song in a CD... 3-9
3–12 Define a Relational Table Containing No ORDAudio Object....................................... 3-10
3–13 Define an Object View Containing an ORDAudio Object and Relational Columns. 3-11
3–14 Define a Media Object... 3-20
3–15 Create a Table Named DocumentsTable.. 3-21
3–16 Create a List Object Containing a List of References to Media..................................... 3-21
3–17 Define the Implementation of the documentList Object ... 3-21
3–18 Create a Library Table Containing Library Information ... 3-22
3–19 Insert Media into the DocumentsTable Table ... 3-23
3–20 Insert a Library into the LibraryTable Table ... 3-24
3–21 Load Media into the DocumentsTable Table .. 3-24
3–22 Insert a Reference to a Document Object into the Documents List in the LibraryTable

Table .. 3-25
3–23 Add a Library Reference to a Document ... 3-26
3–24 Build a Repository of Media .. 3-29
3–25 Add New Columns of Type ORDImage and ORDImageSignature to the stockphotos

Table .. 3-42
3–26 Create the stockphotos Table and Add ORDImage and ORDImageSignature Types.........

.. 3-43
3–27 Insert a Row into a Table with Empty Data in the ORDImage Type Column 3-43
3–28 Populate a Row with ORDImage BLOB Data ... 3-44
3–29 Insert a Row into a Table Pointing to an External Image Data File 3-45
3–30 Populate a Row with ORDImage External File Data ... 3-46
3–31 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels 3-46
3–32 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels and a Minimum

Content Length .. 3-47
3–33 Import an Image from an External File .. 3-47
3–34 Table stockphotos Definition Used for Content-Based Retrieval of Images............... 3-48
3–35 Load the stockphotos Table with Image Data... 3-48
3–36 Check the Contents of the stockphotos Table ... 3-49
xviii

3–37 Create the Tablespaces for the Index.. 3-49
3–38 Retrieve an Image (Simple Read).. 3-50
3–39 Retrieve Images Similar to a Comparison Image ... 3-51
3–40 Find photo_id and Score of Similar Image .. 3-52
3–41 Create an interMedia Index.. 3-52
3–42 Copy an Image... 3-53
3–43 Convert an Image Format .. 3-54
3–44 Copy and Convert an Image Format.. 3-55
3–45 Extend Oracle interMedia with a New Object Type... 3-56
3–46 Define a Relational Table Containing No ORDImage Object 3-57
3–47 Define an Object View Containing an ORDImage Object and Relational Columns . 3-58
3–48 Address a Globalization Support Issue.. 3-69
3–49 Define a Clip Object .. 3-70
3–50 Create a Table Named ClipsTable .. 3-71
3–51 Create a List Object Containing a List of Clips ... 3-71
3–52 Define the Implementation of the clipList Object... 3-71
3–53 Create a Video Table Containing Video Information .. 3-72
3–54 Insert a Video Clip into the ClipsTable Table ... 3-72
3–55 Insert a Row into the VideoTable Table ... 3-73
3–56 Load a Video into the ClipsTable Table ... 3-73
3–57 Insert a Reference to a Clip Object into the Clips List in the VideoTable Table 3-74
3–58 Insert a Reference to a Video Object into the Clip .. 3-75
3–59 Retrieve a Video Clip .. 3-76
3–60 Define a Relational Table Containing No ORDVideo Object 3-78
3–61 Define an Object View Containing an ORDVideo Object and Relational Columns . 3-78
6–1 Show the Package Body for Extending Support to a New Audio

Data Format ..6-60
7–1 Show the Package Body for Extending Support to a New Media

Data Format ..7-30
9–1 Show the Package Body for Extending Support to a New Video

Data Format ..9-69
11–1 Create a Separate Tablespace to Store an interMedia Column Object Containing LOB

Data ..11-9
11–2 Show the Load1.bat File ... 11-18
11–3 Show the T1.SQL File.. 11-19
11–4 Show the Load1.sql File that Executes the load_image Stored Procedure 11-22
11–5 Show the Control File for Loading Video Data .. 11-23
11–6 Read Data from an ORDVideo Column Object Using interMedia readFromSource()

Method in a PL/SQL Stored Procedure ..11-26
F–1 Execute the Demo from the Command Line... F-4
I–1 Show the Package Body for Extending Support to a New Data Source I-53
 xix

xx

List of Figures

1–1 interMedia Architecture.. 1-19
2–1 Unsegmented Image ... 2-3
2–2 Segmented Image .. 2-4
2–3 Image Comparison: Color and Location .. 2-5
2–4 Images Very Similar in Color... 2-6
2–5 Images Very Similar in Color and Location .. 2-6
2–6 Fabric Images with Similar Texture .. 2-7
2–7 Images with Very Similar Shape ... 2-8
2–8 Score and Distance Relationship ... 2-9
8–1 Use and Syntax Flow Diagram for the contentFormat Operator Values 8-32

List of Tables

1–1 interMedia Services and Features -- Supported Systems and Oracle9i Releases 1-20
2–1 Distances for Visual Attributes Between Image1 and Image2 2-10
6–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema 6-56
6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package 6-58
7–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema 7-29
7–2 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package 7-29
8–1 Image Processing Operators .. 8-29
8–2 Additional Image Processing Operators for Raw Pixel and Foreign Images............. 8-31
8–3 Image Characteristics for Foreign Files.. 8-39
9–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema 9-65
9–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package 9-67
A–1 AIFF Data Format.. A-1
A–2 AIFF-C Data Format.. A-2
A–3 AU Data Format .. A-2
A–4 WAV Data Format... A-3
A–5 Audio MPEG Data Format... A-5
B–1 Summary of Read/Write Access for Supported Image File Formats -- Content Format

Specific Characteristics .. B-12
B–2 Summary of Read/Write Access for Supported Image File Formats -- Compression

Format and Other Format Specific Characteristics .. B-13
C–1 Apple QuickTime 3.0 Data Format... C-2
C–2 Microsoft Video for Windows (AVI) Data Format... C-3
C–3 RealNetworks Real Video Data Format ... C-3
I–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package............. I-49
I–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package........... I-51
 xxi

xxii

Send Us Your Comments

Oracle interMedia User’s Guide and Reference , Release 9.0.1

Part No. A88786-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle interMedia Documentation
■ Postal service:

Oracle Corporation
Oracle interMedia Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xxiii

xxiv

Preface

This guide describes how to use Oracle interMedia.

Oracle interMedia ships with Oracle9i.

For information about Oracle9i and the features and options that are available to
you, see Oracle9i Database New Features.

Audience
This guide is for application developers and database administrators who are
interested in storing, retrieving, and manipulating audio, document, image, and
video data in an Oracle database, including developers of audio, document, image,
and video specialization options.

If you are interested in only one particular object type, see Chapter 1 for general
introductory information, then, for a description of the methods that are common
for all object types, refer to Chapter 5. If, for example, you are interested in the
ORDImage object type, refer to Chapter 8, the ORDImage reference chapter for a
description of the image-specific methods, then for a description of content-based
retrieval and image matching, refer to Chapter 2.

Also, for examples about using the ORDImage methods, see Chapter 3 and for a
description of using the relational interface with images, see Chapter 10. Then, for
tuning tips for storing image files, see Chapter 11.

For information on supported image content and compression formats, see
Appendix B. For information about using image processing methods, see
Appendix D. Finally, for information about the raw pixel image format, see
Appendix E.
xxv

Organization
This guide contains the following chapters and appendixes:

Chapter 1 Introduces multimedia and Oracle interMedia; explains multimedia-related
concepts.

Chapter 2 Explains concepts, operations, and techniques related to content-based retrieval.

Chapter 3 Provides basic examples of using Oracle interMedia object types and methods.

Chapter 4 Provides compatibility information for ensuring future compatibility with
evolving object types.

Chapter 5 Provides reference information about methods that are common to ORDAudio,
ORDDoc, ORDImage, and ORDVideo object types.

Chapter 6 Provides reference information on Oracle interMedia ORDAudio object type and
methods.

Chapter 7 Provides reference information on Oracle interMedia ORDDoc object type and
methods.

Chapter 8 Provides reference information on Oracle interMedia ORDImage object type and
methods.

Chapter 9 Provides reference information on Oracle interMedia ORDVideo object type and
methods.

Chapter 10 Provides reference information on interMedia relational interface methods for the
ORDAudio, ORDDoc, ORDImage, and ORDVideo object types.

Chapter 11 Provides tuning tips for the DBA for more efficient storage of multimedia data.

Appendix A Describes the supported audio data formats.

Appendix B Describes the supported image data formats.

Appendix C Describes the supported video data formats.

Appendix D Describes the process and processCopy operators.

Appendix E Describes the raw pixel format.

Appendix F Describes how to run the sample program and includes the source program.

Appendix G Emphasizes several entries from the online FAQ.
xxvi

Related Documents

For more information about using interMedia in a development environment, see
the following documents in the release 9.0.1 Oracle database server documentation
set:

■ Oracle Call Interface Programmer’s Guide

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle9i Database Concepts

■ PL/SQL User’s Guide and Reference

■ Oracle interMedia Java Classes User’s Guide and Reference

Conventions
In this guide, Oracle interMedia is sometimes referred to as interMedia.

Appendix H Lists exceptions raised and potential errors, their causes, and user actions to
correct them.

Appendix I Provides reference information on Oracle interMedia ORDSource object type and
methods.

Appendix J Describes the deprecated audio and video methods.

Note: For information added after the release of this guide, refer
to the online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

ORACLE_HOME/ord/im/admin/README.txt

Please see your operating-system specific installation guide for
more information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://otn.oracle.com/
xxvii

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this guide:

Changes to This Guide
The following substantive changes have been made to this guide since its previous
version for release 8.1.7 on the Oracle Technology Network (OTN) Web site.

Other minor corrections and clarifications have also been included.

A new document object, ORDDoc, is available. The ORDDoc document type can be
used in applications that require you to store different types of documents, such as
audio, image, video, and any other type of document in the same column so you
can build a common metadata index on all the different types of documents and
search across different types of documents using this index. See Chapter 7 for more
information.

Content-based retrieval of images with extensible indexing is supported for image
matching. See Chapter 2, the ORDImageSignature Object Type, the evaluateScore()
method, and the image operators described in Section 8.2.3 for more information.

interMedia image supports the Java Advanced Imaging engine. See the process()
method, Appendix B, and Appendix D for more information.

An interMedia relational interface is available for application developers, who
created multimedia applications without using the interMedia object types to store

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface text indicates a term defined in the text.

italic text Italic text is used for emphasis, book titles, and variable names.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xxviii

and manage media data in relational tables, and who do not want to migrate their
existing multimedia applications to use interMedia objects. See Chapter 10 for more
information.

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.
xxix

xxx

Introd
1

Introduction

Oracle interMedia is a feature that enables Oracle9i to store, manage, and retrieve
geographic location information, images, audio, video, or other heterogeneous
media data in an integrated fashion with other enterprise information. Oracle
interMedia extends Oracle9i reliability, availability, and data management to
multimedia content in Internet, electronic commerce, and media-rich applications as
well as online Internet-based geocoding services for locator applications.

Oracle interMedia provides services for managing Web content. These services
include:

■ Media and application metadata management services (see Section 1.3,
Section 1.4, Section 1.5, Section 1.6, and Section 1.13.3)

■ Storage and retrieval services (see Section 1.11 and Section 1.12)

■ Support for popular formats (see Appendix A, Appendix B, and Appendix C)

■ Access through traditional and Web interfaces (see Section 1.13.5) and a search
capability using associated relational data or using specialized indexing.

Oracle interMedia provides media content services to JDeveloper, Oracle Internet
File System, Oracle Portal, and Oracle partners. This guide describes only the
management of audio, image, and video, or other heterogeneous media data.

1.1 Object Relational Technology
Oracle9i is an object relational database management system. This means that in
addition to its traditional role in the safe and efficient management of relational
data, it provides support for the definition of object types, including the data
associated with objects and the operations (methods) that can be performed on
them. This powerful mechanism, well established in the object-oriented world,
uction 1-1

Multimedia Content Management
includes integral support for BLOBs to provide the basis for adding complex
objects, such as digitized audio, image, and video to Oracle9i databases.

Within Oracle interMedia, audio data characteristics have an object relational type
known as ORDAudio, heterogeneous data characteristics have an object relational
type known as ORDDoc, image data characteristics have an object relational type
known as ORDImage, and video data characteristics have an object relational type
known as ORDVideo. All four store data source information in an object relational
type known as ORDSource.

See the following references for extensive information on using BLOBs and BFILEs:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle9i Database Concepts -- see the chapter on Object Views.

See Section 1.7 for more information about the multimedia object types and
methods and Section 1.8 for more information about the ORDSource object type and
methods.

1.2 Multimedia Content Management
The capabilities of interMedia include the storage, retrieval, management, and
manipulation of multimedia data managed by Oracle9i. Oracle interMedia supports
multimedia storage, retrieval, and management of:

■ Binary large objects (BLOBs) stored locally in Oracle9i and containing audio,
image, or video data, or other heterogeneous media data

■ File-based large objects, or BFILEs, stored locally in operating system-specific
file systems and containing audio, image, or video data, or other heterogeneous
media data

■ URLs containing audio, image, or video data or other heterogeneous media
data, stored on any HTTP server such as Oracle Internet Application Server,
Netscape Application Server, Microsoft Internet Information Server, Apache
HTTPD server, and Spyglass servers

■ Streaming audio or video data stored on specialized media

Multimedia applications have common and unique requirements. Oracle interMedia
object types support common application requirements and can be extended to
address application-specific requirements. With Oracle interMedia, multimedia data
can be managed as easily as standard attribute data.
1-2 Oracle interMedia User’s Guide and Reference

Multimedia Content Management
Oracle interMedia is accessible to applications through both relational and object
interfaces. Database applications written in Java, C++, or traditional 3GLs can
interact with interMedia through modern class library interfaces, or PL/SQL and
Oracle Call Interface (OCI).

interMedia supports storage of the popular file formats, including desktop
publishing image, and streaming audio and video formats in Oracle9i databases.
interMedia provides the means to add audio, image, and video, or other
heterogeneous media columns or objects to existing tables, and insert and retrieve
multimedia data. This enables database designers to extend existing application
databases with multimedia data or to build new end-user multimedia database
applications. interMedia developers can use the basic functions provided here to
build specialized multimedia applications.

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. These object types are called ORDAudio, ORDDoc, ORDImage,
and ORDVideo. An instance of these object types consists of attributes, including
metadata and the media data, and methods. Media data is the actual audio, image,
or video, or other heterogeneous media data. Metadata is information about the
data, such as object length, compression type, or format. Methods are procedures
that can be performed on the object like getContent() and setProperties().

interMedia objects have a common media data storage model. The media data
component of these objects can be stored in the database, in a binary large object
(BLOB) under transaction control. The media data can also be stored outside the
database, without transaction control. In this case, a pointer is stored in the database
under transaction control, and the media data is stored in:

■ An external binary file (BFILE)

■ An HTTP server-based URL

■ A user-defined source on a specialized media data server or other server

Media data stored outside the database can provide a convenient mechanism for
managing large, pre-existing, or new media repositories that reside as flat files on
erasable or read-only media. This data can be imported into BLOBs at any time for
transaction control. Section 1.11 describes several ways of loading multimedia data
into an Oracle9i database.

Media metadata is stored in the database under Oracle interMedia control. Whether
media data is stored within or outside the database, interMedia manages metadata
for all the media types and may automatically extract it for audio, image, and video.
This metadata includes the following attributes:
Introduction 1-3

Multimedia Content Management
■ Audio, image, and video, or other heterogeneous media data storage
information including the source type, location, and source name, and whether
the data is stored locally (in the database) or externally

■ Audio, image, and video, or other heterogeneous media data update timestamp

■ Audio and video data description

■ Audio, image, and video, or other heterogeneous media data format

■ MIME type of the audio, image, and video, or other heterogeneous media data

■ Audio and video metadata, or other heterogeneous media metadata in XML

■ Audio characteristics: encoding type, number of channels, sampling rate,
sample size, compression type, and play time (duration)

■ Image characteristics: height and width, image content length, image content
format, and image compression format

■ Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

In addition to metadata extraction methods, a minimal set of image manipulation
methods is provided. For image, this includes performing format conversion and
compression, scaling, cropping, and copying images.

interMedia is designed to be extensible. It supports a base set of popular audio,
image, and video data formats for multimedia processing that also can be extended,
for example, to support additional formats, new digital compression and
decompression schemes (codecs), data sources, and even specialized data
processing algorithms for audio and video data.

It is possible to extend Oracle interMedia by:

■ Creating a new object type or a new composite object type based on the
provided multimedia object types. See the examples in Section 3.1.13,
Section 3.3.16, and Section 3.4.13 for more information.

■ Creating specialized plug-ins to support other external sources of audio, image,
and video data, or other heterogeneous media data that are not currently
supported. See Section 1.9.1 for more information.

■ Creating specialized audio and video data, or other heterogeneous media data
format plug-ins to support other audio and video data, or other heterogeneous
media data formats that are not currently supported. See Section 1.9.1 for more
information.
1-4 Oracle interMedia User’s Guide and Reference

Audio Concepts
■ Using the setProperties() method for foreign images, which allows certain other
image formats to be recognized. See Section 1.9.1 and "setProperties() for
Foreign Images" in Section 8.1.2 for more information.

■ Using the audio and video data processing methods to allow a specific audio or
video command and its arguments to be passed through to process audio or
video data. See Section 1.9.2 and Section 1.9.3 for more information.

interMedia is a building block for various multimedia applications rather than being
an end-user application. It consists of object types along with related methods for
managing and processing multimedia data. Some example applications for
interMedia are:

■ Internet music stores that provide music samplings of CD quality

■ Digital sound repositories

■ Dictation and telephone conversation repositories

■ Audio archives and collections (for example, for musicians)

■ Digital art galleries

■ Real estate marketing

■ Document imaging

■ Photograph collections (for example, for professional photographers)

■ Internet video stores and digital video-clip previews

■ Digital video sources for streaming video delivery systems

■ Digital video libraries, archives, and repositories

■ Libraries of digital video training programs

■ Digital video repositories (for example, for motion picture production,
television broadcasting, documentaries, advertisements, and so forth)

1.3 Audio Concepts
This section contains information about digitized audio concepts and using the
ORDAudio object type to build audio applications or specialized ORDAudio
objects.
Introduction 1-5

ORDDoc or Heterogeneous Media Data Concepts
1.3.1 Digitized Audio
ORDAudio integrates the storage, retrieval, and management of digitized audio
data in Oracle databases using Oracle9i.

Audio may be produced by an audio recorder, an audio source such as a
microphone, digitized audio, other specialized audio recording devices, or even by
program algorithms. Audio recording devices take an analog or continuous signal,
such as the sound picked up by a microphone or sound recorded on magnetic
media, and convert it into digital values with specific audio characteristics such as
format, encoding type, number of channels, sampling rate, sample size,
compression type, and audio duration.

1.3.2 Audio Components
Digitized audio consists of the audio data (digitized bits) and attributes that
describe and characterize the audio data. Audio applications sometimes associate
application-specific information, such as the description of the audio clip, date
recorded, author or artist, and so forth, with audio data by storing descriptive text
in an attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. ORDAudio can store
and retrieve audio data of any data format. ORDAudio can automatically extract
metadata from audio data of a variety of popular audio formats. ORDAudio can
also extract application attributes and store them in the comments field of the object
in XML form identical to what is provided by interMedia Annotator utility. See
Appendix A for a list of supported data formats from which ORDAudio can extract
and store attributes and other audio features. ORDAudio is extensible and can be
made to recognize and support additional audio formats.

The size of digitized audio (number of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze audio data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.4 ORDDoc or Heterogeneous Media Data Concepts
This section contains information about heterogeneous media data concepts and
using the ORDDoc object type to build applications or specialized ORDDoc objects.
1-6 Oracle interMedia User’s Guide and Reference

Image Concepts
1.4.1 Digitized Heterogeneous Media Data
ORDDoc integrates the storage, retrieval, and management of heterogeneous media
data in Oracle databases using Oracle9i.

Text documents may be produced by application software, text conversion utilities,
speech to text processing software, and so forth. Heterogeneous media data can be
ASCII text files or binary files formatted by a particular application.

interMedia ORDDoc can store any heterogeneous media data including audio,
image, and video data in a database column. Instead of having separate columns for
audio, image, text, and video objects, you can use one column of ORDDoc objects to
represent all types of multimedia.

1.4.2 Heterogeneous Media Data Components
Heterogeneous media data consist of the data (digitized bits) and attributes that
describe and characterize the heterogeneous media data.

Heterogeneous media data can have different formats depending upon the
application generating the media data. interMedia can store and retrieve media data
of any data format. The ORDDoc heterogeneous media data type can be used in
applications that require you to store different types of heterogeneous media data,
such as audio, image, video, and any other type of media data in the same column
so you can build a common metadata index on all the different types of
heterogeneous media data. Using this index, you can search across all the different
types of heterogeneous media data. Note that you cannot use this same search
technique if the different types of heterogeneous media data are stored in different
types of objects in different columns of relational tables.

ORDDoc can automatically extract metadata from data of a variety of popular
audio, image, and video data formats. ORDDoc can also extract application
attributes and store them in the comments field of the object in XML form. See
Appendix A, Appendix B, and Appendix C for a list of supported data formats
from which interMedia can extract and store attributes. ORDDoc is extensible and
can be made to recognize and support other heterogeneous media data formats.

1.5 Image Concepts
This section contains information about digitized image concepts and using the
ORDImage object type to build image applications or specialized ORDImage
objects.
Introduction 1-7

Image Concepts
1.5.1 Digitized Images
ORDImage integrates the storage, retrieval, and management of digitized images in
Oracle databases using Oracle9i.

ORDImage supports two-dimensional, static, digitized raster images stored as
binary representations of real-world objects or scenes. Images may be produced by
a document or photograph scanner, a video source such as a camera or VCR
connected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or
continuous signal such as the light that falls onto the film in a camera, and convert
it into digital values on a two-dimensional grid of data points known as pixels.
Devices involved in the capture and display of images are under application
control.

1.5.2 Image Components
Digitized images consist of the image data (digitized bits) and attributes that
describe and characterize the image data. Image applications sometimes associate
application-specific information, such as including the name of the person pictured
in a photograph, description of the image, date photographed, photographer, and
so forth, with image data by storing this descriptive text in an attribute or column in
the database table.

The image data (pixels) can have varying depths (bits per pixel) depending on how
the image was captured, and can be organized in various ways. The organization of
the image data is known as the data format. ORDImage can store and retrieve
image data of any data format. ORDImage can process and automatically extract
properties of images of a variety of popular data formats. See Appendix B for a list
of supported data formats for which ORDImage can process and extract metadata.
In addition, certain foreign images (formats not natively supported by ORDImage)
have limited support for image processing. See Appendix E for more information.

The storage space required for digitized images can be large compared to
traditional attribute data such as numbers and text. Many compression schemes are
available to squeeze an image into fewer bytes, thus reducing storage device and
network load. Lossless compression schemes squeeze an image so that when it is
decompressed, the resulting image is bit-for-bit identical with the original. Lossy
compression schemes do not result in an identical image when decompressed, but
rather, one in which the changes may be imperceptible to the human eye.

Image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, allowing different applications to
create, exchange, and use images. Interchange formats are often stored in or as disk
1-8 Oracle interMedia User’s Guide and Reference

Video Concepts
files. They may also be exchanged in a sequential fashion over a network and be
referred to as a protocol. There are many application subdomains within the
digitized imaging world and many applications that create or utilize digitized
images within these. ORDImage supports storage and retrieval of all image data
formats and processing and attribute extraction of many image data formats (see
Appendix B).

Content-based retrieval of images with extensible indexing is supported for image
matching. An overview of the benefits of content-based retrieval is described in
Chapter 2 along with how content-based retrieval works, including definitions and
explanations of the visual attributes (color, texture, shape, and location) and why
you might emphasize specific attributes in certain situations. In addition, the use of
indexing to improve search and retrieval performance is described in Section 2.4.

1.6 Video Concepts
This section contains information about digitized video concepts and using
ORDVideo to build video applications or specialized ORDVideo objects.

1.6.1 Digitized Video
ORDVideo integrates the storage, retrieval, and management of digitized video
data in Oracle databases using Oracle9i.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the
video picked up by a video camera or video recorded on magnetic media, and
convert it into digital values with specific video characteristics such as format,
encoding type, frame rate, frame size (width and height), frame resolution, video
length, compression type, number of colors, and bit rate.

1.6.2 Video Components
Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
application-specific information, such as the description of the video training tape,
date recorded, instructor’s name, producer’s name, and so forth, with video data by
storing descriptive text in an attribute or column in the database table.

The video data can have different formats, compression types, frame rates, frame
sizes, frame resolutions, playing times, compression types, number of colors, and
Introduction 1-9

Multimedia Object Types and Methods
bit rates depending upon how the video data was digitally recorded. ORDVideo can
store and retrieve video data of any data format. ORDVideo can automatically
extract metadata from video data of a variety of popular video formats. ORDVideo
can also extract application attributes and store them in the comments field of the
object in XML form identical to what is provided by the interMedia Annotator
utility. See Appendix C for a list of supported data formats from which interMedia
can extract and store attributes and other video features. ORDVideo is extensible
and can be made to recognize and support additional video formats.

The size of digitized video (number of bytes) tends to be large compared to
traditional computer objects, such as numbers and text. Therefore, several encoding
schemes are used that squeeze video data into fewer bytes, thus putting a smaller
load on storage devices and networks.

1.7 Multimedia Object Types and Methods
Oracle interMedia provides the ORDAudio, ORDDoc, ORDImage, and ORDVideo
object types and methods for:

■ Modifying the time an object was last updated

■ Manipulating the location of media data

■ Extracting attributes from multimedia data

■ Getting and managing multimedia data from Oracle interMedia, Web servers,
and other servers

■ Performing a minimal set of manipulation operations on multimedia data
(ORDImage only)

■ Performing file operations on the source and metadata extraction in XML
format (ORDAudio, ORDDoc, and ORDVideo only)

1.8 Multimedia Storage
Oracle interMedia provides the ORDSource object type and methods for multimedia
data source manipulation. The ORDAudio, ORDDoc, ORDImage, and ORDVideo
object types all contain an attribute of type ORDSource. This section presents a
conceptual overview of the ORDSource object type methods.
1-10 Oracle interMedia User’s Guide and Reference

Multimedia Storage
1.8.1 Storing Multimedia Data
interMedia can store multimedia data as an internal source within the Oracle9i
database, under transactional control as a BLOB. It can also externally reference
digitized multimedia data stored as an external source in an operating
system-specific BFILE in a local file-system, as a URL on an HTTP server, as audio,
image, or video stored on media servers, or as a user-defined source on other
servers. Although these external storage mechanisms are particularly convenient for
integrating pre-existing sets of multimedia data with an Oracle9i database, the
multimedia data will not be under transactional control.

BLOBs are stored in the database tablespaces in a way that optimizes space and
provides efficient access. Large BLOBs may not be stored inline (BLOBs under 4K
bytes in size can be stored inline) with other row data. Depending on the size of the
BLOB, a locator is stored in the row and the actual BLOB (up to 4 gigabytes) is
stored in other tablespaces. The locator can be considered a pointer to the actual
location of the BLOB value. When you select a BLOB, you are selecting the locator
instead of the value, although this is done transparently. An advantage of this
design is that multiple BLOB locators can exist in a single row. For example, you
might want to store a short video clip of a training tape, an audio recording
containing a brief description of its contents, a syllabus of the course, a picture of
the instructor, and a set of maps and directions to each training center.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an
inconsistency with the BFILE locator. See Oracle9i Application Developer’s Guide -
Large Objects (LOBs) and Oracle Call Interface Programmer’s Guide for detailed
information on using BLOBs and BFILEs.

interMedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types provide
wrapper methods to set the source of the data as local or external; modifying the
time an object was last updated; setting information about the external source type,
location, and file name of the data; transferring data into or out of the database;
obtaining information about the local data content such as its length and location,
its handle to the BLOB, putting the content into a temporary BLOB, or deleting it;
accessing source data by opening it, reading it, writing to it, trimming it, and

Note: ORDSource methods should not be called directly. Instead,
invoke the wrapper method of the media object corresponding to
the ORDSource method. This information is presented for users
who want to write their own user-defined sources.
Introduction 1-11

Extending Oracle interMedia
closing it; and passing in a series of methods and related arguments to be processed
by calling a single method.

1.8.2 Querying Multimedia Data
Once stored within an Oracle9i database, multimedia data can be queried and
retrieved by using the various alphanumeric columns or object attributes of the
table to find a row that contains the desired data. For example, you can select a
video clip from the Training table where the course name is ’Oracle9i Concepts’.

The collection of multimedia data in the database can be related to some set of
attributes or keywords that describe the associated content. The multimedia data
content can be described with textual components and numeric attributes such as
dates and identification numbers. With Oracle9i, data attributes can reside in the
same table as the object type with objects also containing the metadata.
Alternatively, the application designer could define a composite object type that
contains one of the interMedia object types along with other attributes.

1.8.3 Accessing Multimedia Data
Applications access and manipulate multimedia data using SQL, PL/SQL, OCI, or
Java through the object relational types ORDAudio, ORDDoc, ORDImage, and
ORDVideo. See Oracle interMedia Java Classes User’s Guide and Reference for more
information about using Java.

The object syntax for accessing attributes within a complex object is the dot
notation:

variable.data_attribute

The syntax for invoking methods of a complex object is also the dot notation:

variable.function(parameter1, parameter2, ...)

A complete set of media attribute accessors (get methods) are provided for
accessing attributes for each media type.

See Oracle9i Database Concepts for information on this and other SQL syntax.

1.9 Extending Oracle interMedia
interMedia can be extended to support:

■ Other external sources of media data not currently supported
1-12 Oracle interMedia User’s Guide and Reference

Extending Oracle interMedia
■ Other media data formats not currently supported

■ Audio and video data processing

The following sections describe each of these topics and where to find more
information.

1.9.1 Supporting Other External Sources and Other Media Data Formats
For each unique external media data source or each unique ORDAudio, ORDDoc,
or ORDVideo data format that you want to support, you must:

1. Design your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

2. Implement your new data source or new ORDAudio, ORDDoc, or ORDVideo
data format.

3. Install your new plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in to PUBLIC.

Supporting Other External Sources
To implement your new data source, you must implement the required interfaces in
the ORDX_<srcType>_SOURCE package in the ORDPLUGINS schema (where
<srcType> represents the name of the new external source type). Use the package
body example in Section I.3.4 as a template to create the package body. Then set the
source type parameter in the setSourceInformation() call to the appropriate source
value to indicate to the ORDAudio, ORDImage, ORDDoc, or ORDVideo object that
package ORDPLUGINS.ORDX_<srcType>_SOURCE is available as a plug-in. Use
the ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_
SOURCE packages as guides when you extend support to other external audio,
image, video, or other heterogeneous media data sources.

See Section 3.5, Section I.3.1, Section I.3.2, and Section I.3.4 for examples and for
more information on extending the supported external sources of audio, image,
video, or other heterogeneous media data.

Supporting Other ORDAudio, ORDDoc, and ORDVideo Data Formats
To implement your new ORDAudio, ORDDoc, or ORDVideo data format, you must
implement the required interfaces in the ORDPLUGINS.ORDX_<format>_<media>
package in the ORDPLUGINS schema (where <format> represents the name of the
new audio or video, or other heterogeneous media data format and <media>
represents the type of media ("AUDIO" or "VIDEO", or "DOC"). Use the
Introduction 1-13

Extending Oracle interMedia
ORDPLUGINS.ORDX_DEFAULT_<media> package as a guide when you extend
support to other audio or video data formats or other heterogeneous media data
formats. Use the package body examples in Section 6.4.2, Section 7.4.2, and
Section 9.4.2 as templates to create the audio or video, or other heterogeneous
media data package body, respectively. Then set the new format parameter in the
setFormat() call to the appropriate format value to indicate to the ORDAudio,
ORDDoc, or ORDVideo object that package ORDPLUGINS.ORDX_<format>_
<media> is available as a plug-in.

See Section F.1 and Section F.4 for more information on installing your own format
plug-in and running the sample scripts provided.

See Section 3.1.12, Section 3.2.11, Section 3.4.12, Section 6.4.2, Section 7.4.2, and
Section 9.4.2 for examples and for more information on extending the supported
audio and video, or other heterogeneous media data formats.

Supporting Other Image Data Formats
Oracle interMedia supports certain other image formats through the setProperties()
method for foreign images. This method allows other image formats to be
recognized by writing the values supplied to the setProperties() method for foreign
images to the existing ORDImage data attributes. See "setProperties() for Foreign
Images" in Section 8.1.2 for more information.

1.9.2 Supporting Audio Data Processing
To support audio data processing, that is, the passing of an audio processing
command and set of arguments to a format plug-in for processing, use the
processAudioCommand() method. This method is available only for user-defined
formats.

See "processAudioCommand()" in Section 6.3 and Section 3.1.12 for a description.

1.9.3 Supporting Video Data Processing
To support video data processing, that is, the passing of a command and set of
arguments to a format plug-in for processing, use the processVideoCommand()
method. This method is only available for user-defined formats.

See "processVideoCommand()" in Section 9.3 and Section 3.4.12 for a description.
1-14 Oracle interMedia User’s Guide and Reference

Loading Multimedia Data into Oracle9i Using interMedia
1.10 Relational Interface
Oracle interMedia relational interface gives developers the power of interMedia to
annotate and manipulate media data stored in BLOBs and BFILEs without requiring
changes to the existing application schema or instantiation of interMedia object
types, ORDAudio, ORDDoc, ORDVideo, and ORDImage.

Developers can now use static methods of interMedia objects with existing and new
media stored in BLOBS and BFILEs to move media data between the local file
system and the database, to parse and extract the properties of the media data, and
to store these properties in an XML formatted CLOB and optionally individual
relational columns. interMedia static methods can also be used to perform image
processing operations such as cut, scale, compress, and convert format.

See Chapter 10 for a description of the relational interface for each media type,
including reference information, and information about using the relational
interface. See Table 1–1 for a description on the availability of the relational interface
and form of distribution.

1.11 Loading Multimedia Data into Oracle9i Using interMedia
Multimedia data can be managed best by the Oracle9i database. Your multimedia
data should be loaded into Oracle9i to take advantage of its reliability, scalability,
availability, and data management capabilities. To bulk load multimedia data into
Oracle9i, you can use:

■ SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case,
multimedia data (LOB data), from external multimedia files into a table of an
Oracle9i database containing interMedia column objects.

■ PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation
programming language (4GL) of Oracle Corporation.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation. See Section 11.3 for a description of a
sample control file. See also Oracle9i Database Utilities for more information.

An advantage of using PL/SQL scripts to load your data is that you can call
methods as you load data to generate image thumbnails, extract properties, or
import data. See Section 11.3 for a description of a sample PL/SQL multimedia data
load script. See also PL/SQL User’s Guide and Reference for more information.
Introduction 1-15

Reading Data from a LOB
Loading Multimedia Data Using Oracle interMedia Clipboard, Version 2
You can also use the Oracle interMedia feature, the Clipboard Version 2, to
individually store and retrieve multimedia objects, such as audio, video, and image
data, in an Oracle9i database server.

See Setting Up the Oracle interMedia Clipboard, Version 2 for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://otn.oracle.com/

Loading Multimedia Data Using Oracle interMedia Annotator Utility
You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle9i database. Annotator does this using an
Oracle PL/SQL Upload Template, which contains both PL/SQL calls and
Annotator-specific keywords.

Advanced users with PL/SQL experience can create their own PL/SQL Upload
Templates in a text editor. Novice users can use the PL/SQL Template Wizard,
which is a graphical user interface that progresses through each step of PL/SQL
Upload Template creation.

With a PL/SQL Upload Template created, you use the Annotator utility to invoke
the Upload Annotation window and perform a series of operations, entering user
name, password, service name, and the path to the PL/SQL Template Folder and
file specification for your PL/SQL Upload Template.

See Chapter 5 "Uploading Structured Annotations into a Database" in Oracle
interMedia Annotator User’s Guide for more information.

1.12 Reading Data from a LOB
LOB read tests were conducted with:

■ PL/SQL scripts used to read LOBs from the database

■ OCI calls to perform LOB read operations from C++

A benchmark measured the performance of an Oracle-based system in a setting
modeling a real-life video server application. See Section 11.6 for a description of the
PL/SQL script used to read LOBs from the database. See Section 11.7 for a
description of the LOB-read benchmark tests and the results of these tests for
measuring the performance of an Oracle-based system in a setting modeling a
real-life audio server application.
1-16 Oracle interMedia User’s Guide and Reference

interMedia Architecture
1.13 interMedia Architecture
Oracle interMedia is a single, integrated feature that extends Oracle9i by offering
services to store, manage, and retrieve image, audio, and video data, location
services, support for Web technologies, and annotation services for multimedia
data.

The interMedia architecture defines the framework (see Figure 1–1) through which
media-rich content as well as traditional data are supported in the database. This
content and data can then be securely shared across multiple applications written
with popular languages and tools, easily managed and administered by relational
database management and administration technologies, and offered on a scalable
server that supports thousands of users.

Figure 1–1 shows the interMedia architecture from a 3-tier perspective: database
server tier -- Oracle9i; application server tier -- Internet Application Server (iAS);
and client tier -- thin and thick Java clients.

Through the use of interMedia, Oracle9i holds rich content in tables along with
traditional data. Through the Oracle9i Java Virtual Machine (JVM), a server-side
media parser is supported as well as an image processor. The media parser has
object-oriented and relational interfaces, supports format and application metadata
parsing, and includes a registry for new formats and extensions. The image
processor includes Java Advanced Imaging (JAI) and provides image processing for
producing thumbnail-sized images, for converting images, and image indexing and
matching.

Beginning with Oracle9i, interMedia supports a heterogeneous media column,
known as the ORDDoc object type. This allows a column to hold a mixture of
image, audio, and video data, or other heterogeneous media data. Using interMedia
import and export methods for each object type and for the relational interface,
import and export between media objects and operating system files (external file
storage) is possible. interMedia also supports special delivery types of servers, such
as streaming content from an Oracle database. Using the Oracle interMedia plug-in
for RealServer G2 6.0, 7.0, or 8.0, the RealServer G2 can stream multimedia data to a
client directly out of the Oracle9i database using rtsp and iip protocols. In addition,
media content indexing generators run external to the database.

In the middle tier, the Internet Application Server (iAS) or other Web server,
provides access to interMedia through Oracle interMedia Java Classes, which
enables Java applications on any tier (client, application server, or database server)
to access, manipulate, and modify audio, image, and video data stored in Oracle9i.
interMedia Java Classes makes it possible for JDBC result sets to include both
traditional relational data and interMedia media objects (OrdAudio, OrdDoc,
Introduction 1-17

interMedia Architecture
OrdImage, and OrdVideo). This support enables applications to easily select and
operate on a result set that contains interMedia columns plus other relational data.
These classes also enable access to interMedia object attributes and invocation of
interMedia object methods.

In addition, Oracle interMedia Java classes for servlets and JSPs facilitates the
upload and retrieval of multimedia data stored in an Oracle9i database using the
interMedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types. Oracle
interMedia Java classes for servlets and JSPs can access data stored in the interMedia
objects or BLOBs directly.

On the client tier, the browser-based interMedia Clipboard is provided and uses the
webdav-enabled HTTP protocol for communication with the application server
(iAS) tier. For thick clients and tools, client-side media processing and media
parsing is supported through JAI, and the Java Media Framework (JMF). With
Business Components for Java (BC4J), Oracle JDeveloper’s programming
framework can build scalable, multitier database applications from reusable
business components.
1-18 Oracle interMedia User’s Guide and Reference

interMedia Architecture
Figure 1–1 interMedia Architecture
Introduction 1-19

interMedia Architecture
Table 1–1 describes the interMedia services and features for specified operating
systems and releases of Oracle9i.

Table 1–1 interMedia Services and Features -- Supported Systems and Oracle9i Releases

 Form of
Distribution1

inter Media
Services and
Features Operating Systems and Platforms2 Release

Solaris Linux
Windows
NT Macintosh 8.1.5

8.1.6
or
8.1.7 9.0.1

CD-ROM interMedia
server-side

Yes Yes Yes No Yes Yes Yes

CD-ROM Java classes Yes Yes Yes No No Yes Yes

OTN Java Classes Yes Yes Yes No Yes Yes No

OTN and/or
CD-ROM

Java Classes for
Servlets and JSPs

Yes Yes Yes No No Yes3 Yes4

OTN Clipboard
(Release 2)

Yes Yes- Yes No No No Yes

OTN
CD-ROM

Annotator utility No No Yes Yes (MacOS
8.6)

Yes Yes Yes5

OTN
CD-ROM

MediaFinder Yes No Yes No Yes Yes Yes6

OTN Plug-in for
RealServer G2
6.0, 7.0 or 8.0

Yes Yes Yes No Yes Yes Yes

OTN Plug-in for
Macromedia
UltraDev

No No Yes Yes No Yes7 Yes

CD-ROM Locator Yes Yes Yes No Yes Yes Yes

CD-ROM Generic
Geocoding
interface8

Yes Yes Yes No No Yes Yes

OTN Custom
DataSource and
DataSink for JMF
2.09

YesYes No Yes No No Yes Yes
1-20 Oracle interMedia User’s Guide and Reference

interMedia Architecture
Section 1.13.1 through Section 1.13.6 describe the additional interMedia services and
features that comprise interMedia.

1.13.1 Oracle interMedia Java Classes
Oracle interMedia Java Classes enables Java applications on any tier (client,
application server, or database server) to manipulate and modify audio, image, and
video data, or heterogeneous media data stored in Oracle9i. interMedia Java Classes
makes it possible for JDBC result sets to include both traditional relational data and
interMedia media objects. This support enables applications to easily select and
operate on a result set that contains sets of interMedia columns plus other relational
data. These classes also enable access to object attributes and invocation of object
methods. See Oracle interMedia Java Classes User’s Guide and Reference for more
information.

CD-ROM BFILE and BLOB
Stream Adaptors
for JAI

Yes Yes Yes No No No Yes

OTN/
CD-ROM

interMedia
Relational
interface

Yes Yes Yes No No Yes10 Yes11

1 Oracle software is distributed from CD-ROM or OTN -- Oracle Technology Network Web site:
http://otn.oracle.com/

2 interMedia server and client software are available on many other platforms; the platforms shown in this table describe
only the ones on which the respective interMedia services and features listed are known to run.

3 Available on OTN for release 8.1.7.
4 Available for release 9.0.1 CD-ROM only.
5 Available for release 9.0.1 CD-ROM only.
6 Available for release 9.0.1 CD-ROM only.
7 Available on OTN for release 8.1.7.
8 Generic geocoding client written in Java, is embedded in Oracle9i database as a JSP, and published using PL/SQL

interface.
9 Requires JMF V2.0, Oracle JDBC 8.1.5 or later. JDK version 1.1.n.
10 Available on OTN for release 8.1.7.
11 Available for release 9.0.1 CD-ROM only.

Table 1–1 interMedia Services and Features -- Supported Systems and Oracle9i Releases (Cont.)

 Form of
Distribution1

inter Media
Services and
Features Operating Systems and Platforms2 Release

Solaris Linux
Windows
NT Macintosh 8.1.5

8.1.6
or
8.1.7 9.0.1
Introduction 1-21

interMedia Architecture
1.13.2 Oracle interMedia Java Classes for Servlets and JSPs
Oracle interMedia Java Classes for servlets and JSPs facilitates the upload and
retrieval of multimedia data stored in an Oracle9i database using the interMedia
ORDAudio, ORDDoc, ORDImage, and ORDVideo object types. Oracle interMedia
Java Classes for servlets and JSPs accesses data stored in the interMedia object types
using Oracle interMedia Java Classes. However, Oracle interMedia Java Classes for
servlets and JSPs can also be used to handle upload and retrieval of data using
BLOBs directly.

The OrdHttpResponseHandler class facilitates the retrieval of multimedia data from
an Oracle9i database and its delivery to a browser or other HTTP client from a Java
servlet. The OrdHttpJspResponseHandler class provides the same features for Java
Server Pages (JSPs).

Form-based file uploading using HTML forms encodes form data and uploaded
files in POST requests using the multipart/form-data format. The
OrdHttpUploadFormData class facilitates the processing of such requests by
parsing the POST data and making the contents of regular form fields and the
contents of uploaded files readily accessible to a Java servlet or Java Server Page.
The handling of uploaded files is facilitated by the OrdHttpUploadFile class, which
provides an easy-to-use API that applications call to load audio, image, and video
data, or heterogeneous media data into a database.

To read the Javadoc documentation that describes how to use interMedia Java
Classes for Servlets and JSPs, expand the zip file:

 <ORACLE_HOME>/ord/http/doc/ordhttpdoc.zip (on Unix)
 <ORACLE_HOME>\ord\http\doc\ordhttpdoc.zip (on Windows NT)

Also, see Oracle interMedia Java Classes User’s Guide and Reference for more
information.

Note: JSP engines are not required to support access to the servlet
binary output stream. Therefore, not all JSP engines support the
delivery of multimedia data using the
OrdHttpJspResponseHandler class. See Oracle interMedia Java
Classes User’s Guide and Reference for more information.
1-22 Oracle interMedia User’s Guide and Reference

interMedia Architecture
1.13.3 Annotation Services for Multimedia Data
One application for which annotation services can be used is for constructing and
operating a media archive. In the sections that follow, Oracle interMedia Annotator
and a MediaFinder sample application are described. An annotation utility shows
how content and format properties can be extracted from media data, collected as
an annotation, stored in the database, and queried to locate media data based on the
annotation’s content. MediaFinder is a sample application that demonstrates how to
build a media library.

interMedia Annotator Utility
Oracle interMedia Annotator is a utility that makes it easy to store and search for
rich media content in Oracle9i. Oracle interMedia Annotator utility extracts content
and format attributes from media sources (image, audio, and video files, audio CD,
and URLs), and organizes the attributes into an XML formatted annotation. It lets
you customize annotations to further describe the data, loads the annotation and
the media data into Oracle9i, and allows you to index the annotation for powerful
full text and thematic media searches using Oracle9i Text. Thus, the database can be
queried to locate the media data based on the annotation’s content. See Oracle
interMedia Annotator User’s Guide for more information.

MediaFinder - a Sample Application That Uses Oracle interMedia
Annotator
MediaFinder is a sample application that demonstrates how to build a media
library by using Oracle interMedia components. The open source code is provided
to assist developers in building their own applications.

MediaFinder is an application that uses Oracle interMedia to let you search a video
library built using Oracle interMedia Annotator. MediaFinder allows searching by
movie title or by keyword, retrieving movie annotation information along with the
video clip, and launching QuickTime to play the video. During a keyword search
that will result in text sample matches, MediaFinder will locate the point where the
match occurred, and allow you to start the playback from that point.

With the Apple QuickTime-For-Java library, interMedia Annotator can extract video
frames as well as the text-track samples from the specified QuickTime movie.
Consequently, MediaFinder can enrich the result set of your keyword search by
retrieving the video frame that is closest to the matching text sample by means of
timestamp comparisons.
Introduction 1-23

interMedia Architecture
MediaFinder uses Oracle9i Text to perform a text search against an XML document
as well as a plain text string. For more information, refer to the Oracle9i Text
information provided on the Oracle Technology Network Web site:

http://otn.oracle.com/

MediaFinder also uses Oracle interMedia ORDImage and ORDVideo objects for the
storage of images and video in the Oracle9i database.

MediaFinder has a graphical user interface that allows you to use a Web interface to
search a video library for a specific text sample, and retrieve the video frames
associated with each text sample.

See "MediaFinder" - a Sample Application That Uses Oracle interMedia Annotator Utility
Readme for Installation, Configuration, and Use for more information, which can be
found on the Oracle interMedia Utilities and Plugins section of the Oracle
Technology Network Web site:

http://otn.oracle.com/

1.13.4 Streaming Content from an Oracle Database
You can stream content stored in an Oracle database using an Oracle interMedia
plug-in that supports the streaming server, and deliver this content for play on a
client that uses the browser-supported streaming player.

Oracle interMedia Plug-in for RealServer G2 6.0, 7.0, or 8.0
Oracle interMedia Plug-in for RealServer G2 6.0, 7.0, or 8.0 allows RealServer G2 to
stream multimedia data to a client directly out of the Oracle9i database. This plug-in
is installed in RealServer G2 and defined in the RealServer G2 configuration file.
The data is requested with a URL, which contains information necessary to select
the multimedia data from the database.

For information on RealNetwork RealServer G2 Streaming Server, see the following
URL:

http://www.real.com/

See Oracle interMedia Plug-in for RealNetworks G2 Streaming Server Readme for
Installation and Configuration for more information. The Oracle interMedia Plug-in
for RealServer G2 can be downloaded from the Oracle interMedia Utilities and
Plugins section of the Oracle Technology Network Web site:

http://otn.oracle.com/
1-24 Oracle interMedia User’s Guide and Reference

interMedia Architecture
1.13.5 Support for Web Technologies
Using interMedia support for Web technologies, you can easily integrate
multimedia data into Web and Java applications. You can also store, retrieve, and
manage rich media content in an Oracle9i database.

Oracle interMedia Clipboard Features
The interMedia Clipboard (Version 2) enables users to access Oracle interMedia data
from the Web. You can configure the Clipboard to enable access in the following
ways:

■ Through the Clipboard Web browser interface

■ Through the OraDav programming interface

See Setting Up the Oracle interMedia Clipboard, Version 2 for more information.

The Clipboard can be downloaded from the Oracle interMedia Utilities and Plugins
section of the Oracle Technology Network Web site:

http://otn.oracle.com/

1.13.6 Geocoding Services
Geocoding represents addresses and locations of interest (postal codes,
demographic regions, and so forth) as geometric factors (points). These enable
distances to be calculated and sites to be represented graphically in Web, data
warehousing, customer information system, and enterprise resource planning
applications. Geocoding services can be used to add the exact location (latitude and
longitude) of points of interest to existing data files stored in Oracle9i.

A geocoding service is used for converting tables of address data into standardized
address, location, and possibly other data.

Oracle9i Locator
Oracle9i Locator is an Internet-ready tool developed exclusively to support
standalone and online geocoding and Internet mapping requirements. Geocoded
business information provides a necessary step in cleansing, enhancing, and
visualizing customer records. Such information is proving vital in data
warehousing, customer information systems, electronic commerce, and enterprise
resource planning. In addition to geocoding support, Oracle9i Locator provides the
technology that enables the deployment of simple, easy-to-use Internet-based
mapping applications.
Introduction 1-25

interMedia Architecture
Oracle9i Locator enables Oracle9i to support online Internet-based geocoding
facilities for locator applications and proximity queries.

Oracle9i Locator supports the leading online and batch geocoding services
including MapXtreme from MapInfo Corporation, Centrus from Qualitative
Marketing Software, MapQuest destination information solutions from
MapQuest.com ("MapQuest"), and GeoZip from whereonearth.com Ltd.

MapInfo Corporation, Qualitative Marketing Software, MapQuest.com, and
whereonearth.com currently provide the online and batch geocoding services for
the Locator features. Each service offers a number of free geocoding calls at its Web
site for trial purposes for online geocoding, and geocoding service software for
batch geocoding. Locator users need to consent to the vendor policies and possibly
register with them:

MapInfo Corporation: http://www.MapMarker.com/

Qualitative Marketing Software: http://www.centrus-software.com/oracle/

MapQuest.com: http://www.mapquest.com/

whereonearth.com: http://www.whereonearth.com/

During registration for online geocoding services, you are asked to create your own
user ID and password. Please make a note of them for embedding into your sample
geocoding service because the user ID/password combination is required for each
geocoding call. Your free account is limited to a small number of address records
per day.

Should you require the ability to geocode larger data sets, or for further
information, contact:

■ MapInfo technologies to complement your Oracle solution; call 1.800.FASTMAP
(1.800.327.8627); or send e-mail to custserv@mapinfo.com (see their Web site for
more specific geographic contact information)

■ QMSoft technologies to complement your Oracle solution; call QMSoft at
1.800.782.7988; or send e-mail to oracle@qmsoft.com

■ MapQuest.com technologies to complement your Oracle solution; call
1.888.MAPQUEST (1.888.627.7837) or in Europe, (31) 70.426.2660; or send e-mail
to info@mapquest.com

■ whereonearth.com technologies to complement your Oracle solution; call +44
(0) 207 246 1400; or send e-mail to enquiries@whereonearth.com

These companies’ Web sites will also have detailed documentation about the
vendor-specific parameter information of the Locator features, such as match code
1-26 Oracle interMedia User’s Guide and Reference

interMedia Architecture
or error code. Because Oracle provides an interface to facilitate the geocoding
functions, you should contact the vendors with your questions.

See Oracle9i Locator Release Notes (depending on your operating system,
<ORACLE_HOME>/md/doc/README.txt) for additional information about the
geocoding services provided by these Oracle partners.

Oracle9i Locator also supports server-based geocoding and data scrubbing
operations for data warehouse applications.

Using simple location queries, Oracle9i Locator allows Web and other applications
to retrieve information based on distance. For example, using a set of geocoded
address data and simple query-by-text or query-by-map operations, users can use a
Web browser-based application, enter a distance, and identify the nearest location
from a specific address or reference point on a map. For example, Oracle9i Locator
applications can help you locate stores, offices, distribution points, and other points
of interest based on their distance from a given postal (zip) code, address, or other
reference point.

See the <ORACLE_HOME>/md/doc/LOCATOR_README.txt file or <ORACLE_
HOME>/md/doc/LOCATOR_README.htm file for more information.

These features enable database designers to extend existing application databases
with geocoded, spatial-point data, or to build new geocoded spatial-point
applications. Web application developers can build specialized Web-enabled
Oracle9i Locator applications.

Oracle9i Locator is Web-based and requests are formatted in HTTP. Thus, each
request in SQL must contain the URL of the Web site, proxy for the firewall (if any),
and user account information on the service provider’s Web site. An HTTP
approach potentially limits the utility or practicality of the service when dealing
with large tables or undertaking frequent updates to the base address information.
In such situations, it is preferable to use a batch geocoding service made available
within an Intranet or local area network. The next section describes the interface for
a facility that potentially contains this existing Oracle9i Locator HTTP-based
solution.

Generic Geocoding Interface
A generic geocoding interface is available with Oracle Spatial for release 8.1.6 and
later. This is a generic interface to third-party geocoding software that lets users
geocode their address information stored in database tables, standardized
addresses, and corresponding location information as instances of predefined object
types. This interface is part of the geocoding framework in Oracle Spatial for release
8.1.6 and later and Oracle9i Locator.
Introduction 1-27

interMedia Architecture
This generic geocoding interface describes a set of interfaces and metadata schema
that enables geocoding of an entire address table, or a single row. It also describes
the procedures for inserting new or updated standardized address and spatial data
into another table (or the same table). The third-party geocoding service is assumed
to have been installed on a local network and to be accessible through standard
communication protocols such as sockets or HTTP.

The generic geocoding client is written in Java and embedded in the Oracle9i
database as a Java stored procedure. A fast, scalable, highly available, and secure
Java Virtual Machine (Java VM or JVM) is integrated in the Oracle9i database server.
The Java VM provides an ideal platform for enterprise applications written in Java
as Java stored procedures, Enterprise JavaBeans (EJBs), or Java Methods of Oracle9i
object types.

Java stored procedures are published using the PL/SQL interface; thus, the generic
geocoding interface can be compatible with existing Locator APIs.

The stored procedures have an interface, oracle.spatial.geocoder, that must be
implemented by each vendor whose geocoder is integrated with Oracle Spatial and
Oracle9i Locator. The procedures also require certain object types to be defined and
metadata tables to be populated. The object types, metadata schema, and geocoder
interface are described in <ORACLE_HOME>/md/doc/LOCATOR_README.txt
file or <ORACLE_HOME>/md/doc/LOCATOR_README.htm file and Oracle
Spatial User’s Guide and Reference.
1-28 Oracle interMedia User’s Guide and Reference

Content-Based Retrieval Con
2

Content-Based Retrieval Concepts

This chapter explains, at a high level, why and how to use content-based retrieval. It
covers the following topics:

■ Overview and benefits of content-based retrieval

■ How content-based retrieval works, including definitions and explanations of
the visual attributes (color, texture, shape, location) and why you might
emphasize specific attributes in certain situations

■ Image matching using a specified comparison image, including comparing how
the weights of visual attributes determine the degree of similarity between
images

■ Use of indexing to improve search and retrieval performance

■ Image preparation or selection to maximize the usefulness of comparisons

2.1 Overview and Benefits
Inexpensive image-capture and storage technologies have allowed massive
collections of digital images to be created. However, as an image database grows,
the difficulty of finding relevant images increases. Two general approaches to this
problem have been developed, both of which use metadata for image retrieval:

■ Using information manually entered or included in the table design, such as
titles, descriptive keywords from a limited vocabulary, and predetermined
classification schemes

■ Using automated image feature extraction and object recognition to classify
image content -- that is, using capabilities unique to content-based retrieval

With interMedia, you can combine both approaches in designing a table to
accommodate images: use traditional text columns to describe the semantic
cepts 2-1

How Content-Based Retrieval Works
significance of the image (for example, that the pictured automobile won a
particular award, or that its engine has six or eight cylinders), and use the
ORDImage type for the image, to permit content-based queries based on intrinsic
attributes of the image (for example, how closely its color and shape match a picture
of a specific automobile).

As an alternative to defining image-related attributes in columns separate from the
image, a database designer could create a specialized composite data type that
combines interMedia and the appropriate text, numeric, and date attributes.

The primary benefit of using content-based retrieval is reduced time and effort
required to obtain image-based information. With frequent adding and updating of
images in massive databases, it is often not practical to require manual entry of all
attributes that might be needed for queries, and content-based retrieval provides
increased flexibility and practical value. It is also useful in providing the ability to
query on attributes such as texture or shape that are difficult to represent using
keywords.

Examples of database applications where content-based retrieval is useful -- where
the query is semantically of the form, “find objects that look like this one” --
include:

■ Trademarks, copyrights, and logos

■ Art galleries and museums

■ Retailing

■ Fashion and fabric design

■ Interior design or decorating

For example, a Web-based interface to a retail clothing catalog might allow users to
search by traditional categories (such as style or price range) and also by image
properties (such as color or texture). Thus, a user might ask for formal shirts in a
particular price range that are off-white with pin stripes. Similarly, fashion
designers could use a database with images of fabric swatches, designs, concept
sketches, and finished garments to facilitate their creative processes.

2.2 How Content-Based Retrieval Works
A content-based retrieval system processes the information contained in image data
and creates an abstraction of its content in terms of visual attributes. Any query
operations deal solely with this abstraction rather than with the image itself. Thus,
2-2 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works
every image inserted into the database is analyzed, and a compact representation of
its content is stored in a feature vector, or signature.

The signature for the image in Figure 2–1 is extracted by segmenting the image into
regions based on color as shown in Figure 2–2. Each region has associated with it
color, texture, and shape information. The signature contains this region-based
information along with global color, texture, and shape information to represent
these attributes for the entire image. In Figure 2–2, there are a total of 55 shapes
(patches of connected pixels with similar color) in this segmented image. In
addition, there is also a "background" shape, which consists of small disjoint dark
patches. These tiny patches (usually having distinct colors) do not belong to any of
their adjacent shapes and are all classified into a single "background" shape. This
background shape is also taken into consideration for image retrieval.

Figure 2–1 Unsegmented Image
Content-Based Retrieval Concepts 2-3

How Content-Based Retrieval Works
Figure 2–2 Segmented Image

Images are matched based on the color, texture, and shape attributes. The positions
of these visual attributes in the image are represented by location. Location by itself
is not a meaningful search parameter, but in conjunction with one of the three visual
attributes represents a search where the visual attribute and the location of that
visual attribute are both important.

The signature contains information about the following visual attributes:

■ Color represents the distribution of colors within the entire image. This
distribution includes the amounts of each color, but not the locations of colors.

■ Texture represents the low-level patterns and textures within the image, such as
graininess or smoothness. Unlike shape, texture is very sensitive to features that
appear with great frequency in the image.

■ Shape represents the shapes that appear in the image, as determined by
color-based segmentation techniques. A shape is characterized by a region of
uniform color.
2-4 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works
■ Location represents the positions of the shapes, color, and texture components.
For example, the color blue could be located in the top half of the image. A
certain texture could be located in the bottom right corner of the image.

Feature data for all these visual attributes is stored in the signature, whose size
typically ranges from 3000 to 4000 bytes. For better performance with large image
databases, you can create an index based on the signatures of your images. See
Section 2.4 for more information on indexing.

Images in the database can be retrieved by matching them with a comparison
image. The comparison image can be any image inside or outside the current
database, a sketch, an algorithmically generated image, and so forth.

The matching process requires that signatures be generated for the comparison
image and each image to be compared with it. Images are seldom identical, and
therefore matching is based on a similarity-measuring function for the visual
attributes and a set of weights for each attribute. The score is the relative distance
between two images being compared. The score for each attribute is used to
determine the degree of similarity when images are compared, with a smaller
distance reflecting a closer match, as explained in Section 2.3.3.

2.2.1 Color
Color reflects the distribution of colors within the entire image.

Color and location specified together reflect the color distributions and where they
occur in the image. To illustrate the relationship between color and location,
consider Figure 2–3.

Figure 2–3 Image Comparison: Color and Location

Red

Blue

Image 1 Image 2

Blue

Red
Yellow Yellow

Content-Based Retrieval Concepts 2-5

How Content-Based Retrieval Works
Image 1 and Image 2 are the same size and are filled with solid colors. In Image 1,
the top left quarter (25%) is red, the bottom left quarter (25%) is blue, and the right
half (50%) is yellow. In Image 2, the top right quarter (25%) is blue, the bottom right
quarter (25%) is red, and the left half (50%) is yellow.

If the two images are compared first solely on color and then color and location, the
following are the similarity results:

■ Color: complete similarity (score = 0.0), because each color (red, blue, yellow)
occupies the same percentage of the total image in each one

■ Color and location: no similarity (score = 100), because there is no overlap in the
placement of any of the colors between the two images

Thus, if you need to select images based on the dominant color or colors (for
example, to find apartments with blue interiors), give greater relative weight to
color. If you need to find images with common colors in common locations (for
example, red dominant in the upper portion to find sunsets), give greater relative
weight to location.

Figure 2–4 shows two images very close in color. Figure 2–5 shows two images very
close in both color and location.

Figure 2–4 Images Very Similar in Color

Figure 2–5 Images Very Similar in Color and Location
2-6 Oracle interMedia User’s Guide and Reference

How Content-Based Retrieval Works
2.2.2 Texture
Texture reflects the texture of the entire image. Texture is most useful for full images
of textures, such as catalogs of wood grains, marble, sand, or stones. These images
are generally hard to categorize using keywords alone because our vocabulary for
textures is limited. Texture can be used effectively alone (without color) for pure
textures, but also with a little bit of color for some kinds of textures, like wood or
fabrics. Figure 2–6 shows two similar fabric samples.

Figure 2–6 Fabric Images with Similar Texture

Texture and location specified together compare texture and location of the textured
regions in the image.

2.2.3 Shape
Shape represents the shapes that appear in the image. Shapes are determined by
identifying regions of uniform color.

Shape is useful to capture objects such as horizon lines in landscapes, rectangular
shapes in buildings, and organic shapes such as trees. Shape is very useful for
querying on simple shapes (like circles, polygons, or diagonal lines) especially
when the query image is drawn by hand and color is not considered important
when the drawing is made. Figure 2–7 shows two images very close in shape.

Content-Based Retrieval Concepts 2-7

How Matching Works
Figure 2–7 Images with Very Similar Shape

Shape and location specified together compare shapes and location of the shapes in
the images.

2.3 How Matching Works
When you match images, you assign an importance measure, or weight, to each of
the visual attributes, and interMedia calculates a similarity measure for each visual
attribute.

2.3.1 Weight
Each weight value reflects how sensitive the matching process for a given attribute
should be to the degree of similarity or dissimilarity between two images. For
example, if you want color to be completely ignored in matching, assign a weight of
0.0 to color; in this case, any similarity or difference between the color of the two
images is totally irrelevant in matching. On the other hand, if color is extremely
important, assign it a weight greater than any of the other attributes; this will cause
any similarity or dissimilarity between the two images with respect to color to
contribute greatly to whether or not the two images match.

Weight values can be between 0.0 and 1.0. During processing, the values are
normalized such that they total 1.0. The weight of at least one of the color, texture,
or shape attributes must be set to greater than zero. See Section 2.3.3 for details of
the calculation.

2.3.2 Score
The similarity measure for each visual attribute is calculated as the score or distance
between the two images with respect to that attribute. The score can range from 0.00
(no difference) to 100.0 (maximum possible difference). Thus, the more similar two
images are with respect to a visual attribute, the smaller the score will be for that
attribute.
2-8 Oracle interMedia User’s Guide and Reference

How Matching Works
As an example of how distance is determined, assume that the dots in Figure 2–8
represent scores for three images with respect to two visual attributes, such as color
and shape, plotted along the x-axis and y-axis of a graph.

Figure 2–8 Score and Distance Relationship

For matching, assume Image 1 is the comparison image, and Image 2 and Image 3
are each being compared with Image 1. With respect to the color attribute plotted on
the x-axis, the distance between Image 1 and Image 2 is relatively small (for
example, 15), whereas the distance between Image 1 and Image 3 is much greater
(for example, 75). If the color attribute is given more weight, then the fact that the
two distance values differ by a great deal will probably be very important in
determining whether or not Image 2 and Image 3 match Image 1. However, if color
is minimized and the shape attribute is emphasized instead, then Image 3 will
match Image 1 better than Image 2 matches Image 1.

2.3.3 Similarity Calculation
In Section 2.3.2, Figure 2–8 showed a graph of only two of the attributes that
interMedia can consider. In reality, when images are matched, the degree of
similarity depends on a weighted sum reflecting the weight and distance of all three
of the visual attributes in conjunction with location of the comparison image and
the test image.

Image 1

Image 3

Image 2

Color Score

increasing
difference

Shape Score

increasing difference
Content-Based Retrieval Concepts 2-9

How Matching Works
For example, assume that for the comparison image (Image 1) and one of the
images being tested for matching (Image 2), Table 2–1 lists the relative distances
between the two images for each attribute. Note that you would never see these
individual numbers unless you computed three separate scores, each time
highlighting one attribute and setting the others to zero. For simplicity, the three
attributes are not considered in conjunction with location in this example.

In this example, the two images are most similar with respect to texture (distance =
5) and most different with respect to shape (distance = 50).

Assume that for the matching process, the following weights have been assigned to
each visual attribute:

■ Color = 0.7

■ Texture = 0.2

■ Shape = 0.1

The weights are supplied in the range of 0.0 to 1.0. Within this range, a weight of 1
indicates the strongest emphasis, and a weight of 0 means the attribute should be
ignored. The values you supply are automatically normalized such that the weights
total 1.0, still maintaining the ratios you have supplied. In this example, the weights
were specified such that normalization was not necessary.

The following formula is used to calculate the weighted sum of the distances, which
is used to determine the degree of similarity between two images:

weighted_sum = color_weight * color_distance +
 texture_weight * texture_distance +
 shape_weight * shape_distance+

The degree of similarity between two images in this case is computed as:

0.7*c_distance + 0.2*tex_distance + 0.1*shape_distance

Using the supplied values, this becomes:

Table 2–1 Distances for Visual Attributes Between Image1 and Image2

Visual Attribute Distance

Color 15

Texture 5

Shape 50
2-10 Oracle interMedia User’s Guide and Reference

How Matching Works
(0.7*15 + 0.2*5 + 0.1*50) = (10.5 + 1.0 + 5.0) = 16.5

To illustrate the effect of different weights in this case, assume that the weights for
color and shape were reversed. In this case, the degree of similarity between two
images is computed as:

0.1*c_distance +0.2*tex_distance + 0.7*shape_distance

That is:

(0.1*15 + 0.2*5 + 0.7*50) = (1.5 + 1.0 + 35.0) = 37.5

In this second case, the images are considered to be less similar than in the first case,
because the overall score (37.5) is greater than in the first case (16.5). Whether or not
the two images are considered matching depends on the threshold value (explained
in Section 2.3.4). If the weighted sum is less than or equal to the threshold, the
images match; if the weighted sum is greater than the threshold, the images do not
match.

In these two cases, the correct weight assignments depend on what you are looking
for in the images. If color is extremely important, then the first set of weights is a
better choice than the second set of weights, because the first set of weights grants
greater significance to the disparity between these two specific images with respect
to color. The two images differ greatly in shape (50) but that difference contributes
less to the final score because the weight assigned to the attribute shape is low. With
the second set of weights, the images have a higher score when shape is assigned a
higher weight and the images are less similar with respect to shape than with
respect to color.

2.3.4 Threshold Value
When you match images, you assign a threshold value. If the weighted sum of the
distances for the visual attributes is less than or equal to the threshold, the images
match; if the weighted sum is greater than the threshold, the images do not match.

Using the examples in Section 2.3.3, if you assign a threshold of 20, the images do
not match when the weighted sum is 37.5, but they do match when the weighted
sum is 16.5. If the threshold is 10, the images do not match in either case; and if the
threshold is 37.5 or greater, the images match in both cases.

The following example shows a cursor (getphotos) that selects the photo_id,
annotation, and photo from the Pictures table where the threshold value is 20 for
comparing photographs with a comparison image:

CURSOR getphotos IS
 SELECT photo_id, annotation, photo FROM Pictures WHERE
Content-Based Retrieval Concepts 2-11

Using an Index to Compare Signatures
 ORDSYS.IMGSimilar(photo_sig, comparison_sig, ’color="0.4",
 texture="0.10", shape="0.3", location="0.2"’, 20)=1;

Before the cursor executes, the generateSignature() method must be called to
compute the signature of the comparison image (comparison_sig), and to compute
signatures for each image in the table. Chapter 8 describes all the operators,
including IMGSimilar and IMGScore.

The number of matches returned generally increases as the threshold increases.
Setting the threshold to 100 would return all images as matches. Such a result, of
course, defeats the purpose of content-based retrieval. If your images are all very
similar, you may find that even a threshold of 50 returns too many (or all) images as
matches. Through trial and error, adjust the threshold to an appropriate value for
your application.

You will probably want to experiment with different weights for the visual
attributes and different threshold values, to see which combinations retrieve the
kinds and approximate number of matches you want.

2.4 Using an Index to Compare Signatures
A domain index, or extensible index, is an approach for supporting complex data
objects. The Oracle database and interMedia cooperate to define, build, and
maintain an index for image data. This index is of type ORDImageIndex. Once it is
created, the index automatically updates itself every time an image is inserted or
removed from the database table. The index is created, managed, and accessed by
routines supplied by the index type.

For better performance with large image databases, you should always create and
use an index for searching through the image signatures. The default search model
compares the signature of the query image to the signatures of all images stored in
the database. This works well for simple queries against a few images such as,
"Does this picture of an automobile match the image stored with the client’s
insurance records?" However, if you want to compare that image with thousands or
millions of images to determine what kind of vehicle it is, then a linear search
though the database would be impractical. In this case, an index based on the image
signatures would greatly improve performance.

Assume you have a table T containing fabric ID numbers and pattern photographs
and signatures:

CREATE TABLE T (fabric_id NUMBER, pattern_photo ORDSYS.ORDIMAGE, pattern_
signature ORDSYS.ORDImageSignature);
2-12 Oracle interMedia User’s Guide and Reference

Preparing or Selecting Images for Useful Matching
Load the table with images, and process each image using the generateSignature()
method to generate the signatures.

Once the signatures are created, the following command creates an index on this
table, based on the data in the pattern_photo column.

CREATE INDEX idx1 ON T(pattern_signature) INDEXTYPE IS ORDSYS.ORDIMAGEINDEX
 PARAMETERS (’ORDImage_Filter_Tablespace = <name>,ORDImage_Index_Tablespace =
<name>’);

The index name is limited to 24 or fewer characters.1 As with any Oracle table, do
not use pound signs (#) or dollar signs ($) in the name. Also as usual, the tablespace
must be created before creating the table.

The index data resides in two tablespaces. The first contains the actual index data,
and the second is an internal index created on that data. See Section 3.3.11 for
suggestions concerning the sizes of these tablespaces.

Finally, as with other Oracle indexes, you should analyze the new index as follows:

ANALYZE INDEX idx1 COMPUTE STATISTICS;

Two operators, IMGSimilar and IMGScore support queries using the index. The
operators automatically use the index if it is present. See Section 8.2.3 for syntax
information and examples.

2.5 Preparing or Selecting Images for Useful Matching
The human mind is infinitely smarter than a computer in matching images. If we
are near a street and want to identify all red automobiles, we can easily do so
because our minds rapidly adjust for the following factors:

■ Whether the automobile is stopped or moving

■ The distinction between red automobiles, red motorcycles, and red trailers

■ The absolute size of the automobile, as well as its relative size in our field of
vision (because of its distance from us)

Note: Performance is greatly improved by loading the data tables
prior to creating the index.

1 The standard Oracle restriction is 30 characters for table or index names. However,
interMedia requires an extra 6 characters for internal processing of the domain index.
Content-Based Retrieval Concepts 2-13

Preparing or Selecting Images for Useful Matching
■ The location of the automobile in our field of vision (center, left, right, top,
bottom)

■ The direction in which the automobile is pointing or traveling (left or right,
toward us, or away from us)

However, for a computer to find red automobiles (retrieving all red automobiles
and no or very few images that are not red or not automobiles), it is helpful if all the
automobile images have the automobile occupy almost the entire image, have no
extraneous elements (people, plants, decorations, and so on), and have the
automobiles pointing in the same direction. In this case, a match emphasizing color
and shape would produce useful results. However, if the pictures show automobiles
in different locations, with different relative sizes in the image, pointing in different
directions, and with different backgrounds, it will be difficult to perform
content-based retrieval with these images.

The following are some suggestions for selecting images or preparing images for
comparison. The list is not exhaustive, but the basic principle to keep in mind is
this: Know what you are looking for, and use common sense. If possible, crop and
edit images in accordance with the following suggestions before performing
content-based retrieval:

■ Have what you expect to be looking for occupy almost all the image space, or at
least occupy the same size and position on each image. For example, if you
want to find all the red automobiles, each automobile image should show only
the automobile and should have the automobile in approximately the same
position within the overall image.

■ Minimize any extraneous elements that might prevent desired matches or cause
unwanted matches. For example, if you want to match red automobiles and if
each automobile has a person standing in front of it, the color, shape, and
position of the person (skin and clothing) will cause color and shape similarities
to be detected, and might reduce the importance of color and shape similarities
between automobiles (because part of the automobile is behind the person and
thus not visible). If you know that your images vary in this way, experiment
with different thresholds and different weights for the various visual attributes
until you find a combination that provides the best result set for your needs.

■ During analysis, images are temporarily scaled to a common size such that the
resulting signatures are based on a common frame of reference. If you crop a
section of an image, and then compare that piece back to the original,
2-14 Oracle interMedia User’s Guide and Reference

Preparing or Selecting Images for Useful Matching
interMedia will likely find that the images are less similar than you would
expect.

■ When there are several objects in the image, interMedia matches them best
when:

– The colors in the image are distinct from each other. For example, an image
of green and red as opposed to an image of dark green and light green.

– The color in adjacent objects in the image contrast with each other.

– The image consists of a few, simple shapes.

Note: interMedia has a fuzzy search engine, and is not designed to
do correlations. For example, interMedia cannot find a specific
automobile in a parking lot. However, if you crop an individual
automobile from a picture of a parking lot, you can then compare
the automobile to known automobile images.
Content-Based Retrieval Concepts 2-15

Preparing or Selecting Images for Useful Matching
2-16 Oracle interMedia User’s Guide and Reference

interMedia Exa
3

interMedia Examples

This chapter provides examples that show common operations with Oracle
interMedia. Examples are presented by audio, media, image, and video data groups
followed by a section that describes how to extend interMedia to support a new
data source.

3.1 Audio Data Examples
Audio data examples using interMedia include the following common operations:

■ Defining a song object named songObject

■ Creating an object table named SongsTable

■ Creating a list object named songList that contains a list of songs

■ Defining the implementation of the songList object

■ Creating a CD object and CdTable table

■ Inserting a song into the SongsTable table

■ Inserting a CD into the CdTable table

■ Loading a song into the SongsTable table

■ Inserting a reference to a song object into the songs list in the CdTable table

■ Adding a CD reference to a song

■ Retrieving audio data from a song in a CD

■ Extending interMedia to support a new audio data format

■ Extending interMedia with new object types

■ Using interMedia with object views
mples 3-1

Audio Data Examples
■ Using a set of scripts for creating and populating an audio table from a BFILE
data source

Reference information on the methods used in these examples is presented in
Chapter 6.

3.1.1 Defining a Song Object
Example 3–1 describes how to define a Song object.

Example 3–1 Define a Song Object

CREATE TYPE songObject as OBJECT (
 cdRef REF CdObject, -- REF into the cd table
 songId VARCHAR2(20),
 title VARCHAR2(4000),
 artist VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 duration INTEGER,
 clipRef REF clipObject, -- REF into the clips table (music video)
 txtcontent CLOB,
 audioSource ORDSYS.ORDAUDIO
);

3.1.2 Creating an Object Table SongsTable
Example 3–2 describes how to create an object table named SongsTable.

Example 3–2 Create a Table Named SongsTable

CREATE TABLE SongsTable of songObject (UNIQUE (songId), songId NOT NULL);

3.1.3 Creating a List Object Containing a List of References to Songs
Example 3–3 describes how to create a list object containing a list of references to
songs.

Example 3–3 Create a List Object Containing a List of References to Songs

CREATE TYPE songNstType AS TABLE of REF songObject;

CREATE TYPE songList AS OBJECT (songs songNstType,
 MEMBER PROCEDURE addSong(s IN REF songObject));
3-2 Oracle interMedia User’s Guide and Reference

Audio Data Examples
3.1.4 Defining the Implementation of the songList Object
Example 3–4 describes how to define the implementation of the songList object.

Example 3–4 Define the Implementation of the songList Object

CREATE TYPE BODY songList AS
 MEMBER PROCEDURE addSong(s IN REF songObject)
 IS
 pos INTEGER := 0;
 BEGIN
 IF songs IS NULL THEN
 songs := songNstType(NULL);
 pos := 0;
 ELSE
 pos := songs.count;
 END IF;
 songs.EXTEND;
 songs(pos+1) := s;
 END;
END;

3.1.5 Creating a CD Object and a CD Table
This section describes how to create a CD object and a CD table of audio clips that
includes, for each audio clip, the following information:

■ Item ID

■ CD DB ID

■ CD title

■ CD artist

■ CD category

■ Copyright

■ Name of producer

■ Awards

■ Time period
interMedia Examples 3-3

Audio Data Examples
■ Rating

■ Duration

■ Text content

■ Cover image

■ Songs

Example 3–5 creates a CD object named CdObject, and a CD table named CdTable
that contains the CD information.

Example 3–5 Create a CD Table Containing CD Information

CREATE TYPE CdObject as OBJECT (
 itemId INTEGER,
 cddbID INTEGER,
 title VARCHAR2(4000),
 artist VARCHAR2(4000),
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 producer VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 rating VARCHAR2(256),
 duration INTEGER,
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage,
 songs songList);

CREATE TABLE CdTable OF CdObject (UNIQUE(itemId), itemId NOT NULL)
 NESTED TABLE songs.songs STORE AS song_store_table;

3.1.6 Inserting a Song into the SongsTable Table
Example 3–6 describes how to insert a song into the SongsTable table.

Example 3–6 Insert a Song into the SongsTable Table

-- Insert a song into the songs table
INSERT INTO SongsTable VALUES (NULL,
 ’00’,
 ’Under Pressure’,
 ’Queen’,
 ’no awards’,
 ’80-90’,
3-4 Oracle interMedia User’s Guide and Reference

Audio Data Examples
 243,
 NULL,
 EMPTY_CLOB(),
 ORDSYS.ORDAudio.init());

-- Check songs insertion
SELECT s.title
FROM SongsTable s
WHERE songId = ’00’;

3.1.7 Inserting a CD into the CdTable Table
Example 3–7 describes how to insert a CD into the CdTable table.

Example 3–7 Insert a CD into the CdTable Table

-- Insert a cd into the cd table
INSERT INTO CdTable VALUES (1, 23232323,
 ’Queen Classics’,
 ’Queen’,
 ’rock’,
 ’BMV Company’,
 ’BMV’,
 ’Grammy’,
 ’80-90’,
 ’no rating’,
 4000, -- in seconds
 EMPTY_CLOB(),
 NULL,
 songList(NULL));

-- Check cd insertion
SELECT cd.title
FROM Cdtable cd;

3.1.8 Loading a Song into the SongsTable Table
Example 3–8 describes how to load a song into the SongsTable table. This example
requires an AUDDIR directory to be defined; see the comments in the example.

Example 3–8 Load a Song into the SongsTable Table

-- Load a Song into the SongsTable
interMedia Examples 3-5

Audio Data Examples
-- Create your directory specification below
-- CREATE OR REPLACE DIRECTORY AUDDIR AS ’/audio/’;
-- GRANT READ ON DIRECTORY AUDDIR TO PUBLIC WITH GRANT OPTION;
DECLARE
 audioObj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S.audioSource INTO audioObj
 FROM SongsTable S
 WHERE S.songId = ’00’
 FOR UPDATE;

 audioObj.setSource(’file’, ’AUDDIR’, ’UnderPressure.au’);
 audioObj.import(ctx);
 audioObj.setProperties(ctx);

 UPDATE SongsTable S
 SET S.audioSource = audioObj
 WHERE S.songId = ’00’;
 COMMIT;
END;

-- Check song insertion
DECLARE
 audioObj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT S.audioSource INTO audioObj
 FROM SongsTable S
 WHERE S.songId = ’00’;

 dbms_output.put_line(’Content Length: ’ ||
 audioObj.getContentLength(ctx));
 dbms_output.put_line(’Content MimeType: ’ ||
 audioObj.getMimeType());
END;

3.1.9 Inserting a Reference to a Song Object into the Songs List in the CdTable Table
Example 3–9 describes how to insert a reference to a song object into the songs list
in the CdTable table.
3-6 Oracle interMedia User’s Guide and Reference

Audio Data Examples
Example 3–9 Insert a Reference to a Song Object into the Songs List in the CdTable
Table

-- Insert a reference to a SongObject into the Songs List in the CdTable Table
DECLARE
 songRef REF SongObject;
 songListInstance songList;
BEGIN
 SELECT REF(S) into songRef
 FROM SongsTable S
 where S.songId = ’00’;

 SELECT C.songs INTO songListInstance
 FROM CdTable C
 WHERE C.itemId = 1
 FOR UPDATE;

 songListInstance.addSong(songRef);

 UPDATE CdTable C
 SET C.songs = songListInstance
 WHERE C.itemId = 1;

 COMMIT;
END;

-- Check insertion of ref
-- This example works for the first entry inserted in the songList
DECLARE
 song SongObject;
 songRef REF SongObject;
 songListInstance songList;
 songType songNstType;
BEGIN
 SELECT C.songs INTO songListInstance
 FROM CdTable C
 WHERE C.itemId = 1;

 SELECT songListInstance.songs INTO songType FROM DUAL;
 songRef := songType(1);
 SELECT DEREF(songRef) INTO song FROM DUAL;

 dbms_output.put_line(’Song Title: ’ ||
 song.title);
END;
interMedia Examples 3-7

Audio Data Examples
3.1.10 Adding a CD Reference to a Song
Example 3–10 describes how to add a CD reference to a song.

Example 3–10 Add a CD Reference to a Song

-- Adding a cd reference to a song
DECLARE
 songCdRef REF CdObject;
BEGIN
 SELECT S.cdRef INTO songCdRef
 FROM SongsTable S
 WHERE S.songId = ’00’
 FOR UPDATE;

 SELECT REF(C) INTO songCdRef
 FROM CdTable C
 WHERE C.itemId = 1;

 UPDATE SongsTable S
 SET S.cdRef = songCdRef
 WHERE S.songId = ’00’;

 COMMIT;
END;

-- Check cd Ref
DECLARE
 cdRef REF CdObject;
 cd CdObject;
BEGIN
 SELECT S.cdRef INTO cdRef
 FROM SongsTable S
 WHERE S.songId = ’00’;

 SELECT DEREF(cdRef) INTO cd FROM DUAL;
 dbms_output.put_line(’Cd Title: ’ ||
 cd.title);
END;

3.1.11 Retrieving Audio Data from a Song in a CD
Example 3–11 describes how to retrieve audio data from a song in a CD.
3-8 Oracle interMedia User’s Guide and Reference

Audio Data Examples
Example 3–11 Retrieve Audio Data from a Song in a CD

FUNCTION retrieveAudio(itemID IN INTEGER,
 songId IN INTEGER)
 RETURN BLOB IS
 obj ORDSYS.ORDAudio;
BEGIN
 select S.audioSource into obj from SongsTable S
 where S.songId = songId;
 return obj.getContent();
END;

3.1.12 Extending interMedia to Support a New Audio Data Format
To support a new audio data format, implement the required interfaces in the
ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where <format>
represents the name of the new audio data format). See Section 6.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_AUDIO package. Use the
package body example in Section 6.4.2 as a template to create the audio package
body. Then set the new format parameter in the setFormat call to the appropriate
format value to indicate to the audio object that package ORDPLUG-INS.ORDX_
<format>_AUDIO is available as a plug-in.

See Section F.1 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and fpluginb.sql files that
are installed in the $ORACLE_HOME/ord/aud/demo/ directory. These are demonstration
(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the auddemo.sql file in this same directory to learn how to
install your own format plug-in.

3.1.13 Extending interMedia with a New Type
This section describes how to extend Oracle interMedia with a new object type.

You can use any of the interMedia objects types as the basis for a new type of your
own creation.

See Example 3–45 for a more complete example and description.
interMedia Examples 3-9

Audio Data Examples
3.1.14 Using Audio Types with Object Views
This section describes how to use audio types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data --
of either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3–12, consider the following relational table (containing no ORDAudio
objects).

Example 3–12 Define a Relational Table Containing No ORDAudio Object

create table flat (
 id NUMBER,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDAudio attribute and the interMedia
ORDAudio type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;
3-10 Oracle interMedia User’s Guide and Reference

Audio Data Examples
 comments CLOB,
 encoding VARCHAR2(256),
 numberOfChannels NUMBER,
 samplingRate NUMBER,
 sampleSize NUMBER,
 compressionType VARCHAR2(4000),
 audioDuration NUMBER,
);

You can create an object view on the relational table shown in Example 3–12 as
follows in Example 3–13.

Example 3–13 Define an Object View Containing an ORDAudio Object and Relational
Columns

create or replace view object_audio_v as
 select
 id,
 ORDSYS.ORDAudio(
 ORDSYS.ORDSource(
 T.srctype, T.srcLocation, T.srcName,, T.updateTime, T.Local),
 T.description,
 T.localData,
 T.format,
 T.mimeType,
 T.comments,
 T.encoding,
 T.numberOfChannels,
 T.samplingRate,
 T.sampleSize,
 T.compressionType,
 T.audioDuration)
 from flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

3.1.15 Scripts for Creating and Populating an Audio Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://otn.oracle.com/ as an end-to-end script that creates and
interMedia Examples 3-11

Audio Data Examples
populates an audio table from a BFILE data source. You can get to this site by
selecting the Oracle interMedia Plugins and Utilities page and from the interMedia
page, select Sample Code.

The following set of scripts:

1. Creates a tablespace for the audio data, creates a user and grants certain
privileges to this new user, creates an audio data load directory (create_
auduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_audtable.sql).

3. Loads the audio data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importaud.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_audschema.sql) automates this entire process by running
each script in the required order. The last script (readaudio.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of audio
data from the BLOB, beginning at a particular offset, until all the audio data is read.
To successfully load the audio data, you must have an auddir directory created on
your system. This directory contains the aud1.wav and aud2.mp3 files, which are
installed in <ORACLE_HOME>/ord/aud/demo directory; this directory path and
disk drive must be specified in the CREATE DIRECTORY statement in the create_
auduser.sql file.

Script 1: Create a Tablespace, Create an Audio User, Grant Privileges to
the Audio User, and Create an Audio Data Load Directory (create_
auduser.sql)
This script creates the auddemo tablespace. It contains a data file named
auddemo.dbf of 200MB in size, an initial extent of 64K, and a next extent of 128K,
and turns on table logging. Next, the auddemo user is created and given connect,
resource, create library, and create directory privileges followed by creating the
3-12 Oracle interMedia User’s Guide and Reference

Audio Data Examples
audio data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

-- create_auduser.sql
-- Connect as admin
connect system/<system password>;

-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete auddemo user if you do not delete
-- the auddemo tablespace, therefore comment out the next line.

-- drop user auddemo cascade;

-- Need system manager privileges to delete a directory. If there is no need to
-- delete it, then comment out the next line.

-- drop directory auddir;

-- Delete then create tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace auddemo including contents;

-- If you uncomment the preceding line and really want to delete the
-- auddemo tablespace, remember to manually delete the auddemo.dbf
-- file to complete this operation. Otherwise, you cannot create

Note: You must edit the create_auduser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.
interMedia Examples 3-13

Audio Data Examples
-- the auddemo tablespace again because the auddemo.dbf file
-- already exists. Therefore, it might be best to create this tablespace
-- once and not delete it.

create tablespace auddemo
 datafile ’auddemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create auddemo user.
create user auddemo identified by auddemo
default tablespace auddemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will have to
-- create it first for this script to work.

grant connect, resource, create library to auddemo;
grant create any directory to auddemo;

-- Note: If this user already exists, you get an error message
-- when you try and create this user again.

-- Connect as auddemo.
connect auddemo/auddemo

-- Create the auddir load directory; this is the directory where the audio
-- files are residing.

create or replace directory auddir
 as ’e:\oracle\ord\aud\demo’;
grant read on directory auddir to public with grant option;

-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.

Script 2: Create the Audio Table and Initialize the Column Object
(create_audtable.sql)
This script creates the audio table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.
3-14 Oracle interMedia User’s Guide and Reference

Audio Data Examples
--create_audtable.sql

connect auddemo/auddemo;
set serveroutput on
set echo on

drop table audtable;
create table audtable (id number,
 Audio ordsys.ordAudio);

-- Insert a row with empty BLOB.
insert into audtable values(1,ORDSYS.ORDAudio.init());

-- Insert a row with empty BLOB.
insert into audtable values(2,ORDSYS.ORDAudio.init());
commit;

Script 3: Load the Audio Data (importaud.sql)
This script performs a SELECT FOR UPDATE operation to load the audio data by
first setting the source for loading the audio data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two audio clips to your
AUDDIR directory using the names specified in this script, or modify this script to
match the file names of your audio clips.

-- importaud.sql

set serveroutput on
set echo on
-- Import two files into the database.

DECLARE
 obj ORDSYS.ORDAUDIO;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the audio file aud1.wav from the auddir directory
-- on a local file system (srcType=file) and sets the properties.

 select Audio into obj from audtable where id = 1 for update;
 obj.setSource(’file’,’AUDDIR’,’aud1.wav’);
 obj.import(ctx);
 obj.setProperties(ctx);
interMedia Examples 3-15

Audio Data Examples
 update audtable set audio = obj where id = 1;
 commit;

-- This imports the audio file aud2.mp3 from the auddir directory
-- on a local file system (srcType=file) and sets the properties.

 select Audio into obj from audtable where id = 2 for update;
 obj.setSource(’file’,’AUDDIR’,’aud2.mp3’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update audtable set audio = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the audio table, then gets
the audio characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--Connect auddemo/auddemo
--Query audtable for ORDSYS.ORDAudio.
DECLARE
 audio ORDSYS.ORDAudio;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(4000) := NULL;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, audio into idnum, audio from audtable where id=I;
 dbms_output.put_line(’audio id: ’|| idnum);

 properties_match := audio.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

dbms_output.put_line(’audio encoding: ’|| audio.getEncoding()); dbms_
output.put_line(’audio number of channels:’|| audio.getNumberOfChannels());
dbms_output.put_line(’audio MIME type: ’|| audio.getMimeType());
dbms_output.put_line(’audio file format: ’|| audio.getFormat());
 dbms_output.put_line(’BLOB Length: ’|| TO_
3-16 Oracle interMedia User’s Guide and Reference

Audio Data Examples
CHAR(audio.getContentLength(ctx)));
dbms_output.put_line(’--’);

 END loop;
END;

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
audio id: 1
Check Properties Succeeded
audio encoding: MS-PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
BLOB Length: 93594
--
audio id: 2
Check Properties Succeeded
audio encoding: LAYER3
audio number of channels: 1
audio MIME type: audio/mpeg
audio file format: MPGA
BLOB Length: 51537
--
PL/SQL procedure successfully completed.

Automated Script (setup_audschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

--setup_audschema.sql
-- Create auddemo user, tablespace, and load directory to
-- hold the audio files:
@create_auduser.sql

-- Create Audio table:
@create_audtable.sql

--Import 2 audio clips and set properties:
@importaud.sql

--Check the properties of the audio clips:
@chkprop.sql
interMedia Examples 3-17

Audio Data Examples
--exit;

Read Data from the BLOB (readaudio.sql)
This script creates a stored procedure that performs a SELECT operation to read a
specified amount of audio data from the BLOB, beginning at a particular offset,
until all the audio data is read.

--readaudio.sql

set serveroutput on
set echo on

create or replace procedure readaudio as

 obj ORDSYS.ORDAudio;
 buffer RAW (32767);
 numBytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select audio into obj from audtable where id = 1;

 LOOP
 obj.readFromSource(ctx,startPos,numBytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’BLOB Length: ’ || TO_CHAR(obj.getContentLength(ctx)));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startPos);
 DBMS_OUTPUT.PUT_LINE(’doing read: ’ || read_cnt);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;
 END LOOP;
-- Note: Add your own code here to process the audio data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
3-18 Oracle interMedia User’s Guide and Reference

Media Data Examples
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readaudio
Content Length: 93594
start position: 1
doing read: 1
start position: 32768
doing read: 2
start position: 65535
doing read: 3

End of data

PL/SQL procedure successfully completed.

3.2 Media Data Examples
Media data examples using interMedia include the following common operations:

■ Defining a media object named documentObject

■ Creating an object table named DocumentsTable

■ Creating a list object named docList that contains a list of media

■ Defining the implementation of the docList object

■ Creating a library object and LibraryTable table

■ Inserting media into the DocumentsTable table

■ Inserting a library into the LibraryTable table

■ Loading media into the DocumentsTable table

■ Inserting a reference to a document object into the media list in the LibraryTable
table

■ Adding a library reference to document
interMedia Examples 3-19

Media Data Examples
■ Extending interMedia to support a new media data format

■ Extending interMedia with new object types

■ Using interMedia with object views

■ Using the ORDDoc object type as a repository

■ Using a set of scripts for creating and populating a media table from a BFILE
data source

Reference information on the methods used in these examples is presented in
Chapter 7.

3.2.1 Defining a Media Object
Example 3–14 describes how to define a media object. You must create an empty
LibraryObject object type first for the REF to work in this example. The actual
LibraryObject is created in Example 3–18.

Example 3–14 Define a Media Object

-- Forward Declarations --
-- -------------------- --
CREATE OR REPLACE TYPE LibraryObject;
/

CREATE TYPE DocumentObject as OBJECT (
 LibraryRef REF LibraryObject, -- REF into the library table
 documentId VARCHAR2(40),
 title VARCHAR2(4000),
 author VARCHAR2(4000),
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 publisher VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 length INTEGER,
 txtcontent CLOB,
 coverImage REF ORDSYS.ORDImage,
 documentSource ORDSYS.ORDDOC
);
/
show errors
3-20 Oracle interMedia User’s Guide and Reference

Media Data Examples
3.2.2 Creating an Object Table DocumentsTable
Example 3–15 describes how to create an object table named DocumentsTable.

Example 3–15 Create a Table Named DocumentsTable

CREATE TABLE DocumentsTable of DocumentObject (UNIQUE (documentId), documentId
NOT NULL);

3.2.3 Creating a List Object Containing a List of References to Media
Example 3–16 describes how to create a list object containing a list of references to
media.

Example 3–16 Create a List Object Containing a List of References to Media

CREATE TYPE documentNstType AS TABLE of REF DocumentObject;
/
show errors

CREATE TYPE documentList AS OBJECT (documents documentNstType,
 MEMBER PROCEDURE addDocument(d IN REF DocumentObject));
/
show errors

3.2.4 Defining the Implementation of the documentList Object
Example 3–17 describes how to define the implementation of the documentList
object.

Example 3–17 Define the Implementation of the documentList Object

CREATE TYPE BODY documentList AS
 MEMBER PROCEDURE addDocument(d IN REF DocumentObject)
 IS
 pos INTEGER := 0;
 BEGIN
 IF documents IS NULL THEN
 documents := documentNstType(NULL);
 pos := 0;
 ELSE
 pos := document.count;
 END IF;
 documents.EXTEND;
interMedia Examples 3-21

Media Data Examples
 documents(pos+1) := d;
 END;
END;
/
show errors

3.2.5 Creating a Library Object and a Library Table
This section describes how to create a Library object and a Library table of media
abstracts that includes, for each media abstract, the following information:

■ Item ID

■ Library DB ID

■ Library title

■ Library author

■ Library category

■ Copyright

■ Name of publisher

■ Awards

■ Time period

■ Rating

■ Length of media in bytes

■ Text content

■ Cover image

■ Documents

Example 3–18 creates a Library object named LibraryObject, a Library table named
LibraryTable that contains the Library information, and an Image table named
ImageTable that contains the media cover images.

Example 3–18 Create a Library Table Containing Library Information

CREATE TYPE LibraryObject as OBJECT (
 itemId INTEGER,
 librarydbID INTEGER,
 title VARCHAR2(4000),
 author VARCHAR2(4000),
3-22 Oracle interMedia User’s Guide and Reference

Media Data Examples
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 publisher VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 rating VARCHAR2(256),
 length INTEGER,
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage,
 documents documentsList);
/
show errors

CREATE TABLE LibraryTable OF LibraryObject (UNIQUE(itemId), itemId NOT NULL)
 NESTED TABLE documents.documents STORE AS document_store_table;
CREATE TABLE ImageTable OF ORDSYS.ORDImage;

3.2.6 Inserting Media into the DocumentsTable Table
Example 3–19 describes how to insert media into the DocumentsTable table.

Example 3–19 Insert Media into the DocumentsTable Table

-- Insert media into the documents table
INSERT INTO DocumentsTable VALUES (NULL,
 ’00’,
 ’The Big Wind Storm’,
 ’author’,
 ’storms’,
 ’1999’,
 ’Windy Rivers Publishers’,
 ’Classic Tales Award’,
 ’1992’,
 2430000,
 EMPTY_CLOB(),
 NULL,
 ORDSYS.ORDDoc.init());

-- Check media insertion
SELECT d.title
FROM DocumentsTable d
WHERE documentId = ’00’;
interMedia Examples 3-23

Media Data Examples
3.2.7 Inserting a Library into the LibraryTable Table
Example 3–20 describes how to insert a Library into the LibraryTable table.

Example 3–20 Insert a Library into the LibraryTable Table

-- Insert a library into the library table
INSERT INTO LibraryTable VALUES (1, 23232323,
 ’Sailing Classics’,
 ’authors’,
 ’sailing’,
 ’1998’,
 ’BMV Company’,
 ’Young Authors Award’,
 ’90s’,
 ’no rating’,
 4000000, -- in characters
 EMPTY_CLOB(),
 NULL,
 documentList(NULL));

-- Check library insertion
SELECT library.title
FROM Librarytable library;

3.2.8 Loading Media into the DocumentsTable Table
Example 3–21 describes how to load media into the DocumentsTable table. This
example requires a DOCDIR directory to be defined; see the comments in the
example.

Example 3–21 Load Media into the DocumentsTable Table

-- Load media into the DocumentsTable
-- Create your directory specification below
-- CREATE OR REPLACE DIRECTORY DOCDIR AS ’/document/’;
DECLARE
 documentObj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT D.documentSource INTO documentObj
 FROM DocumentsTable D
 WHERE D.documentId = ’00’
 FOR UPDATE;
3-24 Oracle interMedia User’s Guide and Reference

Media Data Examples
 documentObj.setSource(’file’, ’DOCDIR’, ’BigWindStorm.pdf’);
 documentObj.setMimeType(’application/pdf’);
 documentObj.import(ctx,FALSE);
 documentObj.setProperties(ctx,FALSE);

 UPDATE DocumentsTable D
 SET D.documentSource = documentObj
 WHERE D.documentId = ’00’;
 COMMIT;
END;
/
-- Check document insertion
DECLARE
 documentObj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT D.documentSource INTO documentObj
 FROM DocumentsTable D
 WHERE D.documentId = ’00’;

 dbms_output.put_line(’Content Length: ’ ||
 documentObj.getContentLength());
 dbms_output.put_line(’Content MimeType: ’ ||
 documentObj.getMimeType());
END;
/

3.2.9 Inserting a Reference to a Document Object into the Documents List in the
LibraryTable Table

Example 3–22 describes how to insert a reference to a document object into the
documents list in the LibraryTable table.

Example 3–22 Insert a Reference to a Document Object into the Documents List in
the LibraryTable Table

-- Insert a reference to a DocumentObject into the Documents List in the
LibraryTable Table
DECLARE
 documentRef REF DocumentObject;
 documentListInstance documentList;
BEGIN
 SELECT REF(D) into documentRef
interMedia Examples 3-25

Media Data Examples
 FROM DocumentsTable D
 where D.documentId = ’00’;

 SELECT L.documents INTO documentListInstance
 FROM LibraryTable L
 WHERE L.itemId = 1
 FOR UPDATE;

 documentListInstance.addDocument(documentRef);

 UPDATE LibraryTable L
 SET L.documents = documentListInstance
 WHERE L.itemId = 1;

 COMMIT;
END;
-- Check insertion of ref
-- This example works for the first entry inserted in the documentList
DECLARE
 document DocumentObject;
 documentRef REF DocumentObject;
 documentListInstance documentList;
 documentType documentNstType;
BEGIN
 SELECT L.documents INTO documentListInstance
 FROM LibraryTable L
 WHERE L.itemId = 1;

 SELECT documentListInstance.documents INTO documentType FROM DUAL;
 documentRef := documentType(1);
 SELECT DEREF(documentRef) INTO document FROM DUAL;

 dbms_output.put_line(’Document Title: ’ ||
 document.title);
END;
/

3.2.10 Adding a Library Reference to a Document
Example 3–23 describes how to add a library reference to a document.

Example 3–23 Add a Library Reference to a Document

-- Adding a library reference to a document
DECLARE
3-26 Oracle interMedia User’s Guide and Reference

Media Data Examples
 documentLibraryRef REF LibraryObject;
BEGIN
 SELECT D.libraryRef INTO documentLibraryRef
 FROM DocumentsTable D
 WHERE D.documentId = ’00’
 FOR UPDATE;

 SELECT REF(L) INTO documentLibraryRef
 FROM LibraryTable L
 WHERE L.itemId = 1;

 UPDATE DocumentsTable D
 SET D.libraryRef = documentLibraryRef
 WHERE D.documentId = ’00’;

 COMMIT;
END;

-- Check library Ref
DECLARE
 libraryRef REF LibraryObject;
 library LibraryObject;
BEGIN
 SELECT D.libraryRef INTO libraryRef
 FROM DocumentsTable D
 WHERE D.documentId = ’00’;

 SELECT DEREF(libraryRef) INTO library FROM DUAL;
 dbms_output.put_line(’Library Title: ’ ||
 library.title);
END;
/

3.2.11 Extending interMedia to Support a New Media Data Format
To support a new media data format, implement the required interfaces in the
ORDX_<format>_DOC package in the ORDPLUGINS schema (where <format>
represents the name of the new media data format). See Section 7.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_DOC package. Use the
package body example in Section 7.4.2 as a template to create the media package
body. Then set the new format parameter in the setFormat call to the appropriate
format value to indicate to the media object that package ORDPLUG-INS.ORDX_
<format>_DOC is available as a plug-in. See Section 7.4.2 for more information
about extending interMedia to support a new media data format.
interMedia Examples 3-27

Media Data Examples
3.2.12 Extending interMedia with a New Type
This section describes how to extend Oracle interMedia with a new object type.

You can use any of the interMedia objects types as the basis for a new type of your
own creation.

See Example 3–45 for a more complete example and description.

3.2.13 Using Document Types with Object Views
This section describes how to use document types with object views. Just as a view
is a virtual table, an object view is a virtual object table.

The Oracle database provides object views as an extension of the basic relational
view mechanism. By using object views, you can create virtual object tables from
data -- of either built-in or user-defined types -- stored in the columns of relational
or object tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.
See Example 3–12 and Example 3–13 for examples of defining a relational table
containing no media (ORDAudio) object type and how to define an object view
containing a media (ORDAudio) object type and relational columns.

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDDoc attribute and the interMedia
ORDDoc type is altered, which always occurs during an interMedia
installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;
3-28 Oracle interMedia User’s Guide and Reference

Media Data Examples
3.2.14 Using the ORDDoc Object Type as a Repository
The ORDDoc document object type is most useful for applications that require the
storage of different types of media, such as audio, image, video, and any other type
of document in the same column so you can build a common metadata index on all
the different types of media and perform searches across different types of media
using this index.

Example 3–24 shows how to create a repository of media using the tdoc table. A
requirement for creating the metadata index is to create a primary key constraint on
column n. After initializing each row, load each row with a different media, in this
case two audio clips, two video clips, and two images. For each media file, call the
setProperties() method after each row is loaded and specify the setComments =
TRUE value for this parameter to populate the comments field of the object with an
extensive set of format and application properties in XML form. Because the format
of each media type is natively supported by interMedia, the setProperties method is
used to extract the properties from the media source and the comments field of the
object is populated in XML form. If the format of the media type is not known, then
the setProperties() method raises a DOC_PLUGIN_EXCEPTION exception.
interMedia does not support any document media type file (html, pdf, doc, and so
forth), therefore you must create your own format plug-in in order to extract the
media attributes from the media data.

Next, use Oracle Text and create the metadata index on the comments attribute of
the doc column. Then, begin to search for interesting formats, mimeTypes, and so
forth.

Example 3–24 Build a Repository of Media

-- Connect as system manager to create a tablespace and a user.
-- May need to create a temp tablespace for this to work.

CONNECT SYSTEM/MANAGER

--Create tablespace docrepository.

CREATE TABLESPACE docrepository
 DATAFILE ’docrepos.dbf’ SIZE 200M

Note: You cannot use this same search technique if the different
types of media are stored in different types of objects in different
columns of relational tables.
interMedia Examples 3-29

Media Data Examples
 MINIMUM EXTENT 64K
 DEFAULT STORAGE (INITIAL 64K NEXT 128K)
 LOGGING;

-- Create a docuser user.
-- Create a temp tablespace if you do not have one.

CREATE USER DOCUSER IDENTIFIED BY DOCUSER
DEFAULT TABLESPACE docrepository;
-- TEMPORARY TABLESPACE temp;

GRANT CONNECT, RESOURCE, CREATE LIBRARY to docuser;
GRANT CREATE ANY DIRECTORY TO docuser;

-- End of system manager tasks.

-- Begin user tasks.

CONNECT docuser/docuser

-- Create the docdir directory.

CREATE OR REPLACE DIRECTORY docdir
 as ’e:\oracle\ord\aud\demo’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;

-- Create the tdoc table.

CREATE TABLE tdoc (n NUMBER CONSTRAINT n_pk PRIMARY KEY, doc ORDSYS.ORDDoc)
 STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO tdoc VALUES(1, ORDSYS.ORDDoc.init());
INSERT INTO tdoc VALUES(2, ORDSYS.ORDDoc.init());

DECLARE
 obj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the audio file aud1.wav from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 1 FOR UPDATE;
3-30 Oracle interMedia User’s Guide and Reference

Media Data Examples
 obj.setSource(’file’,’DOCDIR’,’aud1.wav’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx,TRUE);
UPDATE tdoc SET doc = obj WHERE n = 1;
COMMIT;

-- This imports the audio file aud2.mp3 from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 2 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’aud2.mp3’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 2;
COMMIT;
END;
/

INSERT INTO tdoc VALUES(3, ORDSYS.ORDDoc.init());
INSERT INTO tdoc VALUES(4, ORDSYS.ORDDoc.init());

CREATE OR REPLACE DIRECTORY docdir
 as ’e:\oracle\ord\vid\demo’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;

DECLARE
 obj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the video file vid1.mov from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 3 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’vid1.mov’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx,TRUE);
UPDATE tdoc SET doc = obj WHERE n = 3;
COMMIT;

-- This imports the video file vid2.mov from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 4 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’vid2.mov’);
interMedia Examples 3-31

Media Data Examples
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 4;
COMMIT;
END;
/

INSERT INTO tdoc VALUES(5, ORDSYS.ORDDoc.init());
INSERT INTO tdoc VALUES(6, ORDSYS.ORDDoc.init());

CREATE OR REPLACE DIRECTORY docdir
 as ’e:\oracle\ord\img\demo’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;

DECLARE
 obj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the image file img71.gif from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 5 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’img71.gif’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 5;
COMMIT;

-- This imports the image file img50.gif from the docdir directory
-- on a local file system (srcType=file) and sets the properties.

SELECT doc INTO obj FROM tdoc WHERE n = 6 FOR UPDATE;
 obj.setSource(’file’,’DOCDIR’,’img50.gif’);
 obj.import(ctx,FALSE);
 obj.setProperties(ctx, TRUE);
UPDATE tdoc SET doc = obj WHERE n = 6;
COMMIT;
END;
/

-- Create the index using Oracle Text.
--
CREATE INDEX mediaidx ON tdoc(doc.comments) INDEXTYPE IS ctxsys.context;
COMMIT;
3-32 Oracle interMedia User’s Guide and Reference

Media Data Examples
-- As part of the CREATE INDEX statement, you can create a preference,
-- create media attribute sections for each media attribute,
-- that is, format, mimeType, and contentLength.
-- For example,
--
-- Create a preference.

EXECUTE ctx_ddl.create_preference(’ANNOT_WORDLIST’, ’BASIC_WORDLIST’);
EXECUTE ctx_ddl.set_attribute(’ANNOT_WORDLIST’, ’stemmer’, ’ENGLISH’);
EXECUTE ctx_ddl.set_attribute(’ANNOT_WORDLIST’, ’fuzzy_match’, ’ENGLISH’);

-- Create a section group.
-- Define Media Attribute sections, that is, the XML tags for the attributes
-- or samples.

EXECUTE CTX_DDL.DROP_SECTION_GROUP(’MEDIAANN_TAGS’);
EXECUTE CTX_DDL.CREATE_SECTION_GROUP(’MEDIAANN_TAGS’,’xml_section_group’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’,
’MEDIAFORMATENCODINGTAG’,’MEDIA_FORMAT_ENCODING_CODE’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’,’MEDIASOURCEMIMETYPETAG’,
’MEDIA_SOURCE_MIME_TYPE’);
EXECUTE CTX_DDL.ADD_ZONE_SECTION(’MEDIAANN_TAGS’, ’MEDIASIZETAG’,’MEDIA_SIZE’);
--
-- Add the following PARAMETERS clause to the end of the CREATE INDEX statement:
-- PARAMETERS (’section group MEDIAANN_TAGS’), so the statement appears
-- as follows:

CREATE INDEX mediaidx ON tdoc(doc.comments) INDEXTYPE IS
 CTXSYS.CONTEXT PARAMETERS(’stoplist CTXSYS.EMPTY_STOPLIST wordlist
 ANN_WORDLIST filter CTXSYS.NULL_FILTER section group MEDIAANN_TAGS’);
COMMIT;
--
-- Now, perform a SELECT statement on the attributes in the doc.comments column.

SELECT n from tdoc;
-- Should display 6 rows.

SELECT n, score(99) from tdoc t WHERE CONTAINS(t.doc.comments, ’(MPEG) WITHIN
MEDIAFORMATENCODINGTAG’,99)>0;
-- Should find one row for the aud2.mp3 audio file.
interMedia Examples 3-33

Media Data Examples
3.2.15 Scripts for Creating and Populating a Media Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://otn.oracle.com/ as an end-to-end script that creates and
populates a media table from a BFILE data source. You can get to this site by
selecting the Oracle interMedia Plugins and Utilities page and from the interMedia
page, select Sample Code.

The following set of scripts:

1. Creates a tablespace for the media data, creates a user and grants certain
privileges to this new user, and creates a media data load directory (create_
docuser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_doctable.sql).

3. Loads the media data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importdoc.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_docschema.sql) automates this entire process by running
each script in the required order. The last script (readdoc.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of media
data from the BLOB, beginning at a particular offset, until all the media data is read.
To successfully load the media data, you must have a docdir directory created on
your system. This directory contains the aud1.wav and aud2.mp3 files, which are
installed in <ORACLE_HOME>/ord/aud/demo directory; this directory path and
disk drive must be specified in the CREATE DIRECTORY statement in the create_
docuser.sql file.

Script 1: Create a Tablespace, Create a Media User, Grant Privileges to
the Media User, and Create a Media Data Load Directory (create_
docuser.sql)
This script creates the docdemo tablespace. It contains a data file named
docdemo.dbf of 200MB in size, an initial extent of 64K, and a next extent of 128K,
and turns on table logging. Next, the docdemo user is created and given connect,
resource, create library, and create directory privileges followed by creating the
3-34 Oracle interMedia User’s Guide and Reference

Media Data Examples
media data load directory. Before running this script, you must change the create
directory line to point to your data load directory location.

-- create_docuser.sql
-- Connect as admin
connect system/<system password>;

-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete docdemo user if you do not delete
-- the docdemo tablespace, therefore comment out the next line.

-- drop user docdemo cascade;

-- Need system manager privileges to delete a directory. If there is no need to
-- delete it, then comment out the next line.

-- drop directory docdir;

-- Delete then create tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace docdemo including contents;

-- If you uncomment the preceding line and really want to delete the
-- docdemo tablespace, remember to manually delete the docdemo.dbf
-- file to complete this operation. Otherwise, you cannot create

Note: You must edit the create_docuser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.
interMedia Examples 3-35

Media Data Examples
-- the docdemo tablespace again because the docdemo.dbf file
-- already exists. Therefore, it might be best to create this tablespace
-- once and not delete it.

create tablespace docdemo
 datafile ’docdemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create docdemo user.
create user docdemo identified by docdemo
default tablespace docdemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will have to
-- create it first for this script to work.

grant connect, resource, create library to docdemo;
grant create any directory to docdemo;

-- Note: If this user already exists, you get an error message
-- when you try and create this user again.

-- Connect as docdemo.
connect docdemo/docdemo

-- Create the docdir load directory; this is the directory where the media
-- files are residing.

create or replace directory docdir
 as ’e:\oracle\ord\aud\demo’;
grant read on directory docdir to public with grant option;
-- Note for Solaris, the directory specification could be ’/user/local’
-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.

Script 2: Create the Media Table and Initialize the Column Object
(create_doctable.sql)
This script creates the media table and then performs an insert operation to
initialize the column object to empty for two rows. Initializing the column object
creates the BLOB locator that is required for populating each row with BLOB data in
a subsequent data load operation.
3-36 Oracle interMedia User’s Guide and Reference

Media Data Examples
--create_doctable.sql

connect docdemo/docdemo;
set serveroutput on
set echo on

drop table doctable;
create table doctable (id number,
 Document ordsys.ordDoc);

-- Insert a row with empty BLOB.
insert into doctable values(1,ORDSYS.ORDDoc.init());

-- Insert a row with empty BLOB.
insert into doctable values(2,ORDSYS.ORDDoc.init());
commit;

Script 3: Load the Media Data (importdoc.sql)
This script performs a SELECT FOR UPDATE operation to load the media data by
first setting the source for loading the media data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two media files to your
DOCDIR directory using the names specified in this script, or modify this script to
match the file names of your media.

-- importdoc.sql

set serveroutput on
set echo on
-- Import two files into the database.

DECLARE
 obj ORDSYS.ORDDOC;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the audio file aud1.wav from the DOCDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Document into obj from doctable where id = 1 for update;
 obj.setSource(’file’,’DOCDIR’,’aud1.wav’);
 obj.import(ctx,TRUE);
 update doctable set document = obj where id = 1;
 commit;
interMedia Examples 3-37

Media Data Examples
-- This imports the audio file aud2.mp3 from the DOCDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Document into obj from doctable where id = 2 for update;
 obj.setSource(’file’,’DOCDIR’,’aud2.mp3’);
 obj.import(ctx,TRUE);
 update doctable set document = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the media table, then gets
the media characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--Connect docdemo/docdemo
--Query doctable for ORDSYS.ORDDoc.
DECLARE
 document ORDSYS.ORDDoc;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(4000) := NULL;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, document into idnum, document from doctable where id=I;
 dbms_output.put_line(’document id: ’|| idnum);

 dbms_output.put_line(’document MIME type: ’|| document.getMimeType());
 dbms_output.put_line(’document file format: ’|| document.getFormat());
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(document.getContentLength()));
dbms_output.put_line(’--’);

 END loop;
END;
/

Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
document id: 1
3-38 Oracle interMedia User’s Guide and Reference

Media Data Examples
document MIME type: audio/xwav
document file format: WAVE
BLOB Length: 93594
--
document id: 2
document MIME type: audio/mpeg
document file format: MPGA
BLOB Length: 51537
--
PL/SQL procedure successfully completed.

Automated Script (setup_docschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

--setup_docschema.sql
-- Create docdemo user, tablespace, and load directory to
-- hold the media files:
@create_docuser.sql

-- Create Media table:
@create_doctable.sql

--Import 2 media clips and set properties:
@importdoc.sql

--Check the properties of the media clips:
@chkprop.sql

--exit;

Read Data from the BLOB (readdoc.sql)
This script creates a stored procedure that performs a select operation to read a
specified amount of media data from the BLOB, beginning at a particular offset,
until all the media data is read.

--readdoc.sql

set serveroutput on
set echo on

create or replace procedure readdocument as

 obj ORDSYS.ORDDoc;
interMedia Examples 3-39

Media Data Examples
 buffer RAW (32767);
 numBytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select document into obj from doctable where id = 1;

 LOOP
 obj.readFromSource(ctx,startPos,numBytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’BLOB Length: ’ || TO_CHAR(obj.getContentLength()));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startPos);
 DBMS_OUTPUT.PUT_LINE(’doing read: ’ || read_cnt);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;
 END LOOP;
-- Note: Add your own code here to process the media data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readdocument
Content Length: 93594
start position: 1
doing read: 1
start position: 32768
3-40 Oracle interMedia User’s Guide and Reference

Image Data Examples
doing read: 2
start position: 65535
doing read: 3

End of data

PL/SQL procedure successfully completed.

3.3 Image Data Examples
Image data examples using interMedia include the following common operations:

■ Adding types to a new or existing table

■ Inserting a row using BLOB images

■ Populating a row using BLOB images

■ Inserting a row using BFILE images

■ Populating a row using BFILE images

■ Querying a row

■ Importing an image from an external file into the database

■ Retrieving images (simple read operation; no content-based retrieval)

■ Retrieving images similar to a comparison image (content-based retrieval)

■ Creating a domain index

■ Retrieving images similar to a comparison image using indexing operations
(indexed content-based retrieval)

■ Copying an image

■ Converting an image format

■ Copying and converting an image in one step

■ Extending interMedia with new object types

■ Using image types with object views

■ Using a set of scripts for creating and populating an image table from a BFILE
data source
interMedia Examples 3-41

Image Data Examples
■ Using a set of scripts for creating and populating an image table from an HTTP
data source

■ Addressing Globalization Support issues

3.3.1 Adding Image Types to an Existing Table
Suppose you have an existing table named ’stockphotos’ with the following
columns:

photo_id NUMBER
photographer VARCHAR2(64)
annotation VARCHAR2(255)

To add two new columns to the ’stockphotos’ table called ’photo’ using the
ORDImage type and photo_sig using the ORDImageSignature type, issue the
statement in Example 3–25. The photo column will store images and the photo_sig
column will store image signatures, so you can later compare these images to a
comparison image by means of their image signature.

Example 3–25 adds two new columns of type ORDImage and ORDImageSignature
to the stockphotos table.

Example 3–25 Add New Columns of Type ORDImage and ORDImageSignature to the
stockphotos Table

ALTER TABLE stockphotos
ADD (photo ORDSYS.ORDImage, photo_sig ORDSYS.ORDImageSignature);

3.3.2 Adding Image Types to a New Table
Suppose you are creating a new table called ’stockphotos’ with the following
information:

■ Photo ID number

■ Photographer’s name

■ Descriptive annotation

■ Photographic image

■ Photograph signature

The column for the photograph is for photographs of cloth patterns and uses the
ORDImage type, and the column for the photograph signature 'photo_sig' uses the
3-42 Oracle interMedia User’s Guide and Reference

Image Data Examples
ORDImageSignature type. The statement in Example 3–26 creates the table and
adds ORDImage and ORDImageSignature types to the new table.

Example 3–26 Create the stockphotos Table and Add ORDImage and
ORDImageSignature Types

CREATE TABLE stockphotos (
 photo_id NUMBER,
 photographer VARCHAR2(64),
 annotation VARCHAR2(255),
 photo ORDSYS.ORDImage,
 photo_sig ORDSYS.ORDImageSignature);

3.3.3 Inserting a Row Using BLOB Images
To insert a row into a table that has storage for image content using the ORDImage
and ORDImageSignature types, you must populate each type with an initializer.
Note that this is different from NULL. Attempting to use the ORDImage or
ORDImageSignature types with a NULL value results in an error.

Example 3–27 describes how to insert rows into the table using the ORDImage and
ORDImageSignature types. Assume you have a table 'stockphotos' with the
following columns:

photo_id NUMBER
photographer VARCHAR2(64)
annotation VARCHER2(255)
photo ORDImage
photo_sig ORDImageSignature

If you are going to store image data in the database (in a binary large object
(BLOB)), you must populate the ORDSource.localData attribute with a value and
initialize storage for the localData attribute with an empty_blob() constructor. To
insert a row into the table with empty data in the 'photo' and 'photo_sig' columns,
issue the statement in Example 3–27.

Example 3–27 inserts a row into a table with empty data in the ORDImage type
column.

Example 3–27 Insert a Row into a Table with Empty Data in the ORDImage Type
Column

INSERT INTO stockphotos VALUES (
 1, ’John Doe’, ’red plaid’,
 ORDSYS.ORDImage.init(),
interMedia Examples 3-43

Image Data Examples
 ORDSYS.ORDImageSignature.init());

3.3.4 Populating a Row Using BLOB Images
Prior to updating a BLOB value, you must lock the row containing the BLOB
locator. This is usually done using a SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or using an Oracle Call Interface (OCI) pin or lock function in
OCI programs.

Example 3–28 populates a row with ORDImage BLOB data and
ORDImageSignature data. See Section 3.1.15 for another set of examples for
populating rows using BLOB images.

Example 3–28 Populate a Row with ORDImage BLOB Data

DECLARE
 -- application variables
 Image ORDSYS.ORDImage;
 ctx RAW(4000) := NULL;
BEGIN
 INSERT INTO stockphotos VALUES (
 1,’John Doe’, red plaid,
 ORDSYS.ORDImage.init(),
 ORDSYS.ORDImageSignature.init());
 -- Select the newly inserted row for update
 SELECT photo INTO Image FROM stockphotos
 WHERE photo_id = 1 for UPDATE;
 -- Can use the getContent method to get the LOB locator.
 -- Populate the data with DBMS LOB calls or write an OCI program to
 -- fill in the image BLOB.
 -- This example imports the image file test.gif from the ORDIMGDIR
 -- directory on a local file system
 -- (srcType=FILE) and automatically sets the properties.

 Image.setSource(’file’,’ORDIMGDIR’,’redplaid.gif’);
 Image.import(ctx);

 UPDATE stockphotos SET photo = Image WHERE photo_id = 1;
 COMMIT;
 -- Continue processing
END;
/

An UPDATE statement is required to update the property attributes. If you do not
use the UPDATE statement now, you can still commit, and the change to the image
3-44 Oracle interMedia User’s Guide and Reference

Image Data Examples
will be reflected in the BLOB attribute, but not in the properties. See Oracle9i
Application Developer’s Guide - Large Objects (LOBs) for more information on BLOBs.

3.3.5 Inserting a Row Using BFILE Images
To insert a row into a table that has storage for image content in external files using
the ORDImage type, you must populate the type with an initializer. Note that this is
different from NULL. Attempting to use the ORDImage type with a NULL value
results in an error.

Example 3–29 describes how to insert rows into the table using the ORDImage type.
Assume you have a table 'stockphotos' with the following columns:

photo_id NUMBER
photographer VARCHAR2(64)
annotation VARCHAR2(255)
photo ORDImage
photo_sig ORDImageSignature

If you are going to use the ORDImage and ORDImageSignature type columns, you
must first populate the columns with a value. To populate the value of the
ORDImage type column with an image stored externally in a file, you must
populate the row with a file constructor.

Example 3–29 inserts a row into the table with an image called ’redplaid.gif’ from
the ORDIMGDIR directory.

Example 3–29 Insert a Row into a Table Pointing to an External Image Data File

INSERT INTO stockphotos VALUES (
 1,’John Doe’,’red plaid’,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’redplaid.gif’),
 ORDSYS.ORDImageSignature.init());

For a description of row insertion into an object type, see Chapter 8, and the Oracle9i
Application Developer’s Guide - Large Objects (LOBs) manual.

The sourceLocation argument ’ORDIMGDIR’ is a directory referring to a file system
directory. Note that the directory name must be in uppercase. The following
sequence creates a directory named ORDIMGDIR:

-- Make a directory referring to a file system directory
CREATE DIRECTORY ORDIMGDIR AS ’<MYIMAGEDIRECTORY>’;
GRANT READ ON DIRECTORY ORDIMGDIR TO <user-or-role>;
interMedia Examples 3-45

Image Data Examples
<MYIMAGEDIRECTORY> is the file system directory, and <user-or-role> is the
specific user to whom to grant read access.

3.3.6 Populating a Row Using BFILE Images
Example 3–30 populates the row with ORDImage data stored externally in files.

Example 3–30 Populate a Row with ORDImage External File Data

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 INSERT INTO stockphotos VALUES (1,’John Doe’,’red plaid’,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’redplaid.gif’),
 ORDSYS.ORDImageSignature.init());
 -- Select the newly inserted row for update
 SELECT photo INTO Image FROM stockphotos
 WHERE photo_id = 1 FOR UPDATE;
 -- Set property attributes for the image data
 Image.setProperties;
 UPDATE stockphotos SET photo = Image WHERE photo_id = 1;
 COMMIT;
 -- Continue processing
END;
/

3.3.7 Querying a Row
Example 3–31 and Example 3–32 assume you have this table:

CREATE TABLE stockphotos (
photo_id NUMBER,
photographer VARCHAR2(64),
annotation VARCHAR2(255),
photo ORDSYS.ORDImage,
photo_sig ORDSYS.ORDImageSignature);

Example 3–31 queries the stockphotos table for the photo_id of 1 and the
ORDImage data for rows with minimum photo widths (greater than 32 pixels).You
must create a table alias (E in this example) when you refer to a type in a SELECT
statement.

Example 3–31 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels

SELECT photo_id, s.photo.getWidth()
3-46 Oracle interMedia User’s Guide and Reference

Image Data Examples
 FROM stockphotos S
 WHERE photo_id = 1 and
 S.photo.getWidth() > 32;

Example 3–32 queries the stockphotos table for photo_id =1 and the ORDImage
data for rows with minimum photo widths (greater than 32 pixels) and a minimum
content length (greater than 10000 bytes).

Example 3–32 Query Rows of ORDImage Data for Widths Greater Than 32 Pixels and
a Minimum Content Length

SELECT photo_id, S.photo.getCompressionFormat()
 FROM stockphotos S
 WHERE photo_id = 1 and
 S.photo.getWidth() > 32 and
 S.photo.getContentLength() > 10000;

3.3.8 Importing an Image from an External File into the Database
To import an image from an external file into the database, use the
ORDImage.import method. Example 3–33 imports image data from an external file
into the database. The source type, source location, and source name must be set
prior to calling the import() method.

Example 3–33 Import an Image from an External File

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT photo
 INTO Image FROM stockphotos
 WHERE photo_id = 1 FOR UPDATE;
 -- Import the image into the database
 Image.import(ctx);
 UPDATE stockphotos SET photo = IMAGE
 WHERE photo_id = 1;
 COMMIT;
END;
/

interMedia Examples 3-47

Image Data Examples
3.3.9 Retrieving an Image
The following examples, Example 3–38 through Example 3–41 use the table
definition described in Example 3–34 that includes both an image object and image
signature object for content-based retrieval of images.

Example 3–34 Table stockphotos Definition Used for Content-Based Retrieval of
Images

CREATE TABLE stockphotos(photo_id INTEGER,
 photographer VARCHAR2(64),
 annotation VARCHAR2(255),
 photo ORDSYS.ORDImage,
 photo_signature ORDSYS.ORDImageSignature);

The stockphotos table is loaded with image data as described in Example 3–35.

Example 3–35 Load the stockphotos Table with Image Data

DECLARE
 myimg ORDSYS.ORDImage;
 mysig ORDSYS.ORDImageSignature;
 x INTEGER;
 ctx RAW(4000):= NULL;
BEGIN
 -- create 4 plaid patterns, for each get an image from ORDIMGDIR directory
 INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)
 VALUES(1,
 ’John MacIvor’,
 ’red plaid’,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’redplaid.gif’),
 ORDSYS.ORDImageSignature.init());
 INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)
 VALUES(2,
 'Jane Cranston',
 'green plaid',
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’greenplaid.gif’),
 ORDSYS.ORDImageSignature.init());
 INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)
 VALUES(3,
 'Clark Gordon',
 'blue plaid',
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’blueplaid.gif’),
 ORDSYS.ORDImageSignature.init());
 INSERT INTO stockphotos(photo_id,photographer,annotation,photo,photo_sig)
3-48 Oracle interMedia User’s Guide and Reference

Image Data Examples
 VALUES(4,
 ’Bruce MacLeod’,
 ’yellow plaid’,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’yellowplaid.gif’),
 ORDSYS.ORDImageSignature.init());

 -- import images and generate signatures
 FOR x in 1..4 LOOP
 SELECT S.photo, S.photo_sig INTO myimg, mysig
 FROM stockphotos S
 WHERE S.photo_id = x FOR UPDATE;
 myimg.import(ctx);
 mysig.generateSignature(myimg);
 UPDATE stockphotos S
 SET S.photo = myimg,
 S.photo_sig = mysig
 WHERE S.photo_id = x;
 END LOOP;
END;
/

Rows can be read from the emp table as shown in Example 3–36 to check the
contents of the table.

Example 3–36 Check the Contents of the stockphotos Table

SELECT photo_id, photographer, annotation
 FROM stockphotos
 ORDER BY photo_id;

Finally, Example 3–37 shows how to create the tablespaces needed for index
creation by the imageuser user in Example 3–41.

Example 3–37 Create the Tablespaces for the Index

CONNECT system/<system-password>;

GRANT CREATE TABLESPACE TO imageuser;
GRANT DROP TABLESPACE TO imageuser;

CONNECT imageuser/imageuser;
CREATE TABLESPACE ordimage_idx_tbs_1
 DATAFILE ’e:\<ORACLE_HOME>\DATABASE\ordimage_idx_tbs_1.dbf’ SIZE 1M REUSE;
CREATE TABLESPACE ordimage_idx_tbs_2
 DATAFILE ’e:\<ORACLE_HOME>\DATABASE\ordimage_idx_tbs_2.dbf’ SIZE 1M REUSE;
interMedia Examples 3-49

Image Data Examples
Example 3–38 reads an image from the table and prepares it to be passed along,
either directly to the end user or to the application for further processing. The
program segment selects the desired photograph (where photo_id = 1) and places
it in an image storage area.

Example 3–38 Retrieve an Image (Simple Read)

SET SERVEROUTPUT ON
SET ECHO ON

DECLARE
 image ORDSYS.ORDIMAGE;
BEGIN
 -- Select the desired photograph from the stockphotos table.
 SELECT photo INTO image FROM stockphotos
 WHERE photo_id = 1;
END;
/

3.3.10 Retrieving Images Similar to a Comparison Image (Content-Based Retrieval)
Example 3–39 performs content-based retrieval; it finds images that are similar to an
image chosen for comparison.

The program segment performs the following operations:

1. Defines a cursor to perform the matching. The cursor sets the following weight
values:

■ Color: 0.2

■ Texture: 0.1

■ Shape: 0.4

■ Location: 0.3

2. The example assumes that all signatures for images are generated and stored in
the photo_sig column.

3. Selects all photo signatures in the photo_sig column to compare with the
comparison image signature (compare_img) and where the photo_id is not 1
(photo_id <> 1).

4. Sets the threshold value at 25.

5. Selects the matching images, using the cursor.
3-50 Oracle interMedia User’s Guide and Reference

Image Data Examples
Example 3–39 Retrieve Images Similar to a Comparison Image

SET SERVEROUTPUT ON
SET ECHO ON

DECLARE
 threshold NUMBER;
 compare_sig ORDSYS.ORDImageSignature;
 photographer VARCHAR2(64);
 annotation VARCHAR2(255);
 photo ORDSYS.ORDIMAGE;

-- Define cursor for matching. Set weights for the visual attributes.
CURSOR getphotos IS
 SELECT photograpger, annotation, photo FROM stockphotos S
 WHERE ORDSYS.IMGSimilar(S.photo_sig, compare_sig,
 ’color="0.2" texture="0.1" shape="0.4"
 location="0.3"’, threshold)=1 AND photo_id <> 1;

BEGIN
 -- select signature of image you want to match against
 SELECT P.photo_sig INTO compare_img FROM stockphotos P
 WHERE P.photo_id = 1;

 -- Set the threshold value.
 threshold := 25;

 -- Retrieve rows for matching images.
 OPEN getphotos;
 LOOP
 FETCH getphotos INTO photographer, annotation, photo;
 EXIT WHEN getphotos%NOTFOUND;
 -- Display or store the results.
 -- .
 -- .
 END LOOP;
 CLOSE getphotos;
END;
/

Example 3–40 finds the photo_id and score of the image that is most similar to a
comparison image with respect to texture. None of the other image characteristics is
considered. This example uses the IMGScore() operator, which is an ancillary
operator used in conjunction with the IMGSimilar operator. The parameter passed
to IMGScore() (123 in this example) is an identifier to an IMGSimilar() operator,
interMedia Examples 3-51

Image Data Examples
indicates that the image matching score value returned by an IMGScore() operator
is the same one used in the corresponding IMGSimilar() operator (with label 123).
In this example, one of the three images compared to the comparison image were
identical to the comparison image and showed a score of zero (0).

Example 3–40 Find photo_id and Score of Similar Image

SET SERVEROUTPUT ON
SET ECHO ON

SELECT Q.photo_id,
 ORDSYS.IMGScore(123) SCORE
 FROM stockphotos Q, stockphotos E
 WHERE E.photo_id=1 AND Q.photo_id != E.photo_id AND
 ORDSYS.IMGSimilar(Q.photo_sig, E.photo_sig,
 ’texture=1’, 20.0, 123)=1;
PHOTO_ID SCORE
--------- ---------
 1 0

3.3.11 Creating a Domain Index
To improve performance, you can create a domain index on the image signature
attribute. Example 3–41 creates an index called imgindex.

Example 3–41 Create an interMedia Index

SET SERVEROUTPUT ON
SET ECHO ON

CREATE INDEX imgindex ON stockphotos(photo_sig)
 INDEXTYPE IS ORDSYS.ORDImageIndex
 PARAMETERS(’
 ORDIMG_FILTER_TABLESPACE = ordimage_idx_tbs_1,
 ORDIMG_INDEX_TABLESPACE = ordimage_idx_tbs_2’);

As with any index, the tablespace (ordimage_idx_tbs_1 and ordimage_idx_tbs_2)
must be created first.

The following recommendations are good starting points for further index tuning:

■ ORDIMG_FILTER_TABLESPACE -- Each signature requires approximately 350
bytes in this tablespace. The tablespace should be at least 350 times the number
of signatures in the table.
3-52 Oracle interMedia User’s Guide and Reference

Image Data Examples
■ ORDIMG_INDEX_TABLESPACE -- The size of the tablespace should be 100
times the size of the initial and final extents specified. For example, if an extent
is 10 KB, the tablespace size should be 1 MB. The initial and final extents should
be equal to each other. The size of the tablespace should also be approximately
equal to the size of ORDIMG_DATA_TABLESPACE.

■ Typically, it will be much faster if you create the index after the images are
loaded into the database and analyzed.

■ Creating an index for large tables can be very time consuming. When importing
a large number of images, you should postpone index creation until after the
import operation completes. Do this by specifying the following parameters to
the IMPORT statement: INDEXES=N and INDEXNAME=<filename>. See
Oracle9i Database Utilities for details.

■ Rollback segments of an appropriate size are required. The size depends on the
size of your transactions, such as, how many signatures are indexed at one time.

■ Analyze the new index. See Section 2.4.

3.3.12 Retrieving Images Similar to a Comparison Image Using Index Operations
(Indexed Content-Based Retrieval)

Queries for indexed and nonindexed comparisons are identical. The Oracle
optimizer uses the domain index if it determines that the first argument passed to
the IMGSimilar operator is a domain-indexed column. Otherwise, the optimizer
invokes a functional implementation of the operator that compares the query
signature with the stored signatures, one row at a time.

See Section 3.3.10 for examples of retrieving similar images. As in the example, be
sure to specify the query signature as the second parameter.

3.3.13 Copying an Image
To copy an image, use the ORDImage.copy method. Example 3–42 copies image
data.

Example 3–42 Copy an Image

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image_1
interMedia Examples 3-53

Image Data Examples
 FROM stockphotos WHERE photo_id = 1;
 SELECT photo INTO Image_2
 FROM stockphotos WHERE photo_id = 1 FOR UPDATE;
 -- Copy the data from Image_1 to Image_2
 Image_1.copy(Image_2);
 -- Continue processing
 UPDATE stockphotos SET photo = Image_2
 WHERE photo_id = 1;
 COMMIT;
END;
/

3.3.14 Converting an Image Format
To convert the image data into a different format, use the process() method.

Example 3–43 converts the image data to the TIFF image file format.

Example 3–43 Convert an Image Format

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image FROM stockphotos
 WHERE photo_id = 1 FOR UPDATE;
 -- Convert the image to TIFF (in place)
 Image.process(’fileFormat=TIFF’);
 UPDATE stockphotos SET photo = Image WHERE photo_id = 1;
 COMMIT;
END;
/

3.3.15 Copying and Converting in One Step
To make a copy of the image and convert it in one step, use the processCopy()
method.

Note: The process() method processes only into a BLOB, so the
image data must be stored locally.
3-54 Oracle interMedia User’s Guide and Reference

Image Data Examples

Example 3–44 creates a thumbnail image, converts the image data to the TIFF image
file format, copies it to a BLOB, and leaves the original image intact.

Example 3–44 Copy and Convert an Image Format

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image_1
 FROM stockphotos WHERE photo_id = 1;
 SELECT photo INTO Image_2
 FROM stockphotos WHERE photo_id = 2 FOR UPDATE;
 -- Convert the image to a TIFF thumbnail image and store the
 -- result in Image_2
 Image_1.processCopy(’fileFormat=TIFF fixedScale=32 32’, Image_2);
 -- Continue processing
 UPDATE stockphotos SET photo = Image_2 WHERE photo_id = 2;
 COMMIT;
END;
/

Changes made by the processCopy() method can be rolled back. This technique
may be useful for a temporary format conversion.

3.3.16 Extending interMedia with a New Type
You can use the ORDImage type as the basis for a new type of your own creation as
shown in Example 3–45.

Note: The processCopy() method processes only into a BLOB, so
the destination image must be set to local and the localData
attribute in the source must be initialized.
interMedia Examples 3-55

Image Data Examples
Example 3–45 Extend Oracle interMedia with a New Object Type

CREATE TYPE AnnotatedImage AS OBJECT
 (image ORDSYS.ORDImage,
 description VARCHAR2(2000),
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage),
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage),
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage)
);
/

CREATE TYPE BODY AnnotatedImage AS
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.setProperties();
 SELF.description :=
 ’This is an example of using Image object as a subtype’;
 END SetProperties;
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.copy(dest.image);
 dest.description := SELF.description;
 END Copy;
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.Image.processCopy(command,dest.image);
 dest.description := SELF.description;
 END ProcessCopy;
END;
/

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDImage attribute and the interMedia
ORDImage type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;
3-56 Oracle interMedia User’s Guide and Reference

Image Data Examples
After creating the new type, you can use it as you would any other type. For
example:

CREATE OR REPLACE DIRECTORY ORDIMGDIR AS ’C:\TESTS’;

CREATE TABLE my_example(id NUMBER, an_image AnnotatedImage);
INSERT INTO my_example VALUES (1,
 AnnotatedImage(
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’plaid.gif’));
COMMIT;
DECLARE
 myimage AnnotatedImage;
BEGIN
 SELECT an_image INTO myimage FROM my_example;
 myimage.SetProperties;
 DBMS_OUTPUT.PUT_LINE(’This image has a description of ’);
 DBMS_OUTPUT.PUT_LINE(myimage.description);
 UPDATE my_example SET an_image = myimage;
END;
/

3.3.17 Using Image Types with Object Views
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data-- of
either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3–46, consider the following relational table (containing no ORDImage
objects):

Example 3–46 Define a Relational Table Containing No ORDImage Object

CREATE TABLE flat(
 id NUMBER,
 localData BLOB,
interMedia Examples 3-57

Image Data Examples
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 updateTime DATE,
 local NUMBER,
 height INTEGER,
 width INTEGER,
 contentLength INTEGER,
 fileFormat VARCHAR2(4000),
 contentFormat VARCHAR2(4000),
 compressionFormat VARCHAR2(4000),
 mimeType VARCHAR2(4000)
);

You can create an object view on the relational table shown in Example 3–46 as
follows in Example 3–47.

Example 3–47 Define an Object View Containing an ORDImage Object and Relational
Columns

CREATE OR REPLACE VIEW object_images_v AS
 SELECT
 id,
 ORDSYS.ORDImage(
 ORDSYS.ORDSource(
 T.localData,
 T.srcType,
 T.srcLocation,
 T.srcName,
 T.updateTime,
 T.local),
 T.height,
 T.width,
 T.contentLength,
 T.fileFormat,
 T.contentFormat,
 T.compressionFormat,
 T.mimeType
) IMAGE
 FROM flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Thus you can use different in-memory object representations
for different applications without changing the way you store the data in the
3-58 Oracle interMedia User’s Guide and Reference

Image Data Examples
database. See the Oracle9i Database Concepts manual for more information on
defining, using, and updating object views.

3.3.18 Scripts for Creating and Populating an Image Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://otn.oracle.com/ as end-to-end scripts that create and populate an
image table from a BFILE data source. You can get to this site by selecting the Oracle
interMedia Plugins and Utilities page and from the interMedia page, select Sample
Code.

The following set of scripts:

1. Creates a tablespace for the image data, creates a user and grants certain
privileges to this new user, creates an image data load directory (create_
imguser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_imgtable.sql).

3. Loads the image data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importimg.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_imgschema.sql) automates this entire process by running
each script in the required order. The last script (readimage.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of image
data from the BLOB beginning at a particular offset until all the image data is read.
To successfully load the image data, you must have an imgdir directory created on
your system containing the img71.gif and img50.gif files, which are installed in the
<ORACLE_HOME>/ord/img/demo directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_imguser.sql
file.

Script 1: Create a Tablespace, Create an Image User, Grant Privileges to
the Image User, and Create an Image Data Load Directory (create_
imguser.sql)
This script creates the imgdemo tablespace with a data file named imgdemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the imgdemo user is created and given connect, resource, create
interMedia Examples 3-59

Image Data Examples
library, and create directory privileges, followed by creating the image data load
directory.

-- create_imguser.sql
-- Connect as admin.
connect system/<system password>;
-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete imgdemo user if you do not delete the
-- imgdemo tablespace, therefore comment out the next line.

-- drop user imgdemo cascade;

-- Need system manager privileges to delete a directory. If threre is
-- no need to really delete it, then comment out the next line.

-- drop directory imgdir;

-- Delete then create the tablespace.

-- Note: It is better to not delete and create tablespaces,
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace imgdemo including contents;

-- If you uncomment the preceding line and really want to delete the
-- imgdemo tablespace, remember to manually delete the imgdemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the imgdemo tablespace again because the imgdemo.dbf file

Note: You must edit the create_imguser.sql file and either enter
the system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.
3-60 Oracle interMedia User’s Guide and Reference

Image Data Examples
-- already exists. Therefore, it might be best to create this
-- tablespace once and not delete it.

-- Create tablespace.
create tablespace imgdemo
 datafile ’imgdemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create imgdemo user.
create user imgdemo identified by imgdemo
default tablespace imgdemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you will
-- have to create it first for this script to work.

grant connect, resource, create library to imgdemo;
grant create any directory to imgdemo;

-- Note: If this user already exists, you get an error message when you
-- try and create this user again.

-- Connect as imgdemo.
connect imgdemo/imgdemo

-- Create the imgdir load directory; this is the directory where the image
-- files are residing.

create or replace directory imgdir
 as ’e:\oracle\ord\img\demo’;
grant read on directory imgdir to public with grant option;
-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.

Script 2: Create the Image Table and Initialize the Column Object
(create_imgtable.sql)
This script creates the image table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.
interMedia Examples 3-61

Image Data Examples
-- create_imgtable.sql
connect imgdemo/imgdemo;
set serveroutput on
set echo on

drop table imgtable;
create table imgtable (id number,
 Image ordsys.ordImage);

-- Insert a row with empty BLOB.
insert into imgtable values(1,ORDSYS.ORDImage.init());

-- Insert a row with empty BLOB.
insert into imgtable values(2,ORDSYS.ORDImage.init());
commit;

Script 3: Load the Image Data (importimg.sql)
This script performs a SELECT FOR UPDATE operation to load the image data by
first setting the source for loading the image data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two image files to your
IMGDIR directory using the names specified in this script, or modify this script to
match the file names of your image files.

--importimg.sql
set serveroutput on
set echo on
-- Import the two files into the database.

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(4000) := NULL;
BEGIN
-- This imports the image file img71.gif from the IMGDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Image into obj from imgtable where id = 1 for update;
 obj.setSource(’file’,’IMGDIR’,’img71.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 1;
 commit;
3-62 Oracle interMedia User’s Guide and Reference

Image Data Examples
-- This imports the image file img50.gif from the IMGDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Image into obj from imgtable where id = 2 for update;
 obj.setSource(’file’,’IMGDIR’,’img50.gif’);
 obj.import(ctx);

 update imgtable set image = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

-- chkprop.sql
set serveroutput on;
--connect imgdemo/imgdemo
--Query imgtable for ORDSYS.ORDImage.
DECLARE
 image ORDSYS.ORDImage;
 idnum integer;
 properties_match BOOLEAN;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id into idnum from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);

 SELECT Image into image from imgtable where id=I;

 properties_match := image.checkProperties();
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 dbms_output.put_line(’image height: ’|| image.getHeight());
 dbms_output.put_line(’image width: ’|| image.getWidth());
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType());
 dbms_output.put_line(’image file format: ’|| image.getFileFormat());
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(image.getContentLength()));

 dbms_output.put_line(’---’);
interMedia Examples 3-63

Image Data Examples
 END loop;
END;
/
Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
image id: 1
Check Properties Succeeded
image height: 15
image width: 43
image MIME type: image/gif
image file format: GIFF
BLOB Length: 1124

image id: 2
Check Properties Succeeded
image height: 32
image width: 110
image MIME type: image/gif
image file format: GIFF
BLOB Length: 686

PL/SQL procedure successfully completed.

Automated Script (setup_imgschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_imgschema.sql
-- Create imgdemo user, tablespace, and load directory to
-- hold image files:
@create_imguser.sql

-- Create image table:
@create_imgtable.sql

--Import 2 images and set properties:
@importimg.sql

--Check the properties of the images:
@chkprop.sql

--exit;
3-64 Oracle interMedia User’s Guide and Reference

Image Data Examples
Read Data from the BLOB (readimage.sql)
This script performs a SELECT operation to read a specified amount of image data
from the BLOB, beginning at a particular offset until all the image data is read.

-- readimage.sql

set serveroutput on
set echo on

create or replace procedure readimage as

-- Note: ORDImage has no readFromSource method like ORDAudio
-- and ORDVideo; therefore, you must use the DBMS_LOB package to
-- read image data from a BLOB.

 buffer RAW (32767);
 src BLOB;
 obj ORDSYS.ORDImage;
 amt BINARY_INTEGER := 32767;
 pos integer := 1;
 read_cnt integer := 1;

BEGIN

 Select t.image.getcontent into src from imgtable t where t.id = 1;
 Select image into obj from imgtable t where t.id = 1;
 DBMS_OUTPUT.PUT_LINE(’Content length is: ’|| TO_CHAR(obj.getContentLength()));

 LOOP
 DBMS_LOB.READ(src,amt,pos,buffer);
 DBMS_OUTPUT.PUT_LINE(’start position: ’|| pos);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 pos := pos + amt;
 read_cnt := read_cnt + 1;

-- Note: Add your own code here to process the image data being read;
-- this routine just reads data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.
 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
interMedia Examples 3-65

Image Data Examples
END;

/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readimage(1);
Content length is: 1124
start position: 1
doing read 1

End of data

PL/SQL procedure successfully completed.

3.3.19 Scripts for Populating an Image Table from an HTTP Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://otn.oracle.com/ as end-to-end scripts that create and populate an
image table from an HTTP data source. You can get to this site by selecting the
Oracle interMedia Plugins and Utilities page and from the interMedia page, select
Sample Code.

The following set of scripts performs a row insert operation and an import
operation, then checks the properties of the loaded images to ensure that the images
are really loaded.

Initialize the Column Object and Import the Image Data
(importimghttp.sql)
This script inserts two rows into the imgtable table, initializing the object column
for each row to empty with a locator, and indicating the HTTP source information
(source type (HTTP), URL location, and HTTP object name). Within a SELECT FOR
UPDATE statement, an import operation loads each image object into the database

Note: Before you run the importimg.sql script described in this
section to load image data from an HTTP data source, check to
ensure you have already run the create_imguser.sql and create_
imgtable.sql scripts described in Section 3.3.18.
3-66 Oracle interMedia User’s Guide and Reference

Image Data Examples
followed by an UPDATE statement to update the object attributes for each image,
and finally a COMMIT statement to commit the transaction.

To successfully run this script, you must modify this script to point to two images
located on your own Web site.

--importimghttp.sql
-- Import the two HTTP images from a Web site into the database.
-- Running this script assumes you have already run the
-- create_imguser.sql and create_imgtable.sql scripts.
-- Modify the HTTP URL and object name to point to two images
-- on your own Web site.

set serveroutput on
set echo on

-- Import two images from HTTP source URLs.

connect imgdemo/imgdemo;

-- Insert two rows with empty BLOB.

insert into imgtable values (7,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image1.gif’));

insert into imgtable values (8,ORDSYS.ORDImage.init(
 ’http’,’your.web.site.com/intermedia’,’image2.gif’));

DECLARE
 obj ORDSYS.ORDIMAGE;
 ctx RAW(4000) := NULL;
BEGIN
-- This imports the image file image1.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 7 for update;
 obj.import(ctx);

 update imgtable set image = obj where id = 7;
 commit;

-- This imports the image file image2.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from imgtable where id = 8 for update;
interMedia Examples 3-67

Image Data Examples
 obj.import(ctx);

 update imgtable set image = obj where id = 8;
 commit;
END;
/

Check the Properties of the Loaded Data
This script performs a SELECT operation of the rows of the image table, then gets
the image characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--connect imgdemo/imgdemo
--Query imgtable for ORDSYS.ORDImage.
DECLARE
image ORDSYS.ORDImage;
idnum integer;
properties_match BOOLEAN;

BEGIN
 FOR I IN 7..8 LOOP
 SELECT id into idnum from imgtable where id=I;
 dbms_output.put_line(’image id: ’|| idnum);
 SELECT Image into image from imgtable where id=I for update;
 properties_match := image.checkProperties();
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;
 dbms_output.put_line(’image height: ’|| image.getHeight());
 dbms_output.put_line(’image width: ’|| image.getWidth());
 dbms_output.put_line(’image MIME type: ’|| image.getMimeType());
 dbms_output.put_line(’image file format: ’|| image.getFileFormat());
 dbms_output.put_line(’BLOB length: ’|| TO_CHAR(image.getContentLength()));
 dbms_output.put_line(’---’);
 END loop;
END;
/

3.3.20 Addressing Globalization Support Issues
Example 3–48 shows how to use the processCopy() method with language settings
that use the comma as the decimal point. For example, when the territory is
3-68 Oracle interMedia User’s Guide and Reference

Video Data Examples
FRANCE, the decimal point is expected to be a comma. Notice the ",75" specified as
the scale factor. This application addresses Globalization Support issues.

Example 3–48 Address a Globalization Support Issue

ALTER SESSION SET NLS_LANGUAGE = FRENCH;
ALTER SESSION SET NLS_TERRITORY = FRANCE;
DECLARE
 myimage ORDSYS.ORDImage;
 mylargeimage ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo INTO myimage, mylargeimage
 FROM emp FOR UPDATE;
 myimage.setProperties();
 myimage.ProcessCopy(’scale=",75"’, mylargeimage);
 UPDATE emp SET photo = myimage, large_photo = mylargeimage;
 COMMIT;
END;
/

3.4 Video Data Examples
Video data examples using interMedia include the following common operations:

■ Defining a clip object named clipObject

■ Creating an object table named clipsTable

■ Creating a list object named clipList that contains a list of clips

■ Defining the implementation of the clipList object

■ Creating a video object and VideoTable table

■ Inserting a video clip into the ClipsTable table

■ Inserting a row into the VideoTable table

■ Loading a video into the ClipsTable table

■ Inserting a reference to a clipObject into the clips list in the video table

■ Inserting a reference to a video object into the clip

■ Retrieving a video clip from the VideoTable table

■ Extending interMedia to support a new video data format

■ Extending interMedia with new object types
interMedia Examples 3-69

Video Data Examples
■ Using video types with object views

■ Using a set of scripts for creating and populating a video table from a BFILE
data source

The video examples in this section use a table of video clips and a table of videos.
For each video clip the following are stored: a videoRef (REF into the video table),
clip ID, title, director, category, copyright, producer, awards, time period, rating,
duration, cdRef (REF into CdObject for sound tracks), text content (indexed by
CONTEXT), cover image (REF into the image table), and video source. For each
video the following are stored: an item ID, duration, text content (indexed by
CONTEXT), cover image (REF into the image table), and a list of clips on the video.

Reference information on the methods used in these examples is presented in
Chapter 9.

3.4.1 Defining a Clip Object
Example 3–49 describes how to define a clip object.

Example 3–49 Define a Clip Object

CREATE TYPE clipObject as OBJECT (
 videoRef REF VideoObject, -- REF into the video table
 clipId VARCHAR2(20), -- Id inside of the clip table
 title VARCHAR2(4000),
 director VARCHAR2(4000),
 category VARCHAR2(20),
 copyright VARCHAR2(4000),
 producer VARCHAR2(4000),
 awards VARCHAR2(4000),
 timePeriod VARCHAR2(20),
 rating VARCHAR2(256),
 duration INTEGER,
 cdRef REF CdObject, -- REF into a CdObject(soundtrack)
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage, -- REF into the ImageTable
 videoSource ORDSYS.ORDVideo);

3.4.2 Creating an Object Table ClipsTable
Example 3–50 describes how to create an object table named ClipsTable.
3-70 Oracle interMedia User’s Guide and Reference

Video Data Examples
Example 3–50 Create a Table Named ClipsTable

CREATE TABLE ClipsTable of clipObject (UNIQUE (clipId), clipId NOT NULL);

3.4.3 Creating a List Object Containing a List of Clips
Example 3–51 describes how to create a list object containing a list of clips.

Example 3–51 Create a List Object Containing a List of Clips

CREATE TYPE clipNstType AS TABLE of REF clipObject;

CREATE TYPE clipList AS OBJECT (clips clipNstType,
 MEMBER PROCEDURE addClip(c IN REF clipObject));

3.4.4 Defining the Implementation of the clipList Object
Example 3–52 describes how to define the implementation of the clipList object.

Example 3–52 Define the Implementation of the clipList Object

CREATE TYPE BODY clipList AS
 MEMBER PROCEDURE addClip(c IN REF clipObject)
 IS
 pos INTEGER := 0;
 BEGIN
 IF clips IS NULL THEN
 clips := clipNstType(NULL);
 pos := 0;
 ELSE
 pos := clips.count;
 END IF;
 clips.EXTEND;
 clips(pos+1) := c;
 END;
END;

3.4.5 Creating a Video Object and a Video Table
This section describes how to create a video object and a video table of video clips
that includes, for each video clip, the following information:

■ Item ID

■ Duration
interMedia Examples 3-71

Video Data Examples
■ Text content

■ Cover image

■ Clips

Example 3–53 creates a video object named videoObject and a video table named
VideoTable that contains the video information.

Example 3–53 Create a Video Table Containing Video Information

CREATE TYPE VideoObject as OBJECT (
 itemId INTEGER,
 duration INTEGER,
 txtcontent CLOB,
 coverImg REF ORDSYS.ORDImage,
 clips clipList);

CREATE TABLE VideoTable OF VideoObject (UNIQUE(itemId),itemId NOT NULL)
 NESTED TABLE clips.clips STORE AS clip_store_table;

3.4.6 Inserting a Video Clip into the ClipsTable Table
Example 3–54 describes how to insert a video clip into the ClipsTable table.

Example 3–54 Insert a Video Clip into the ClipsTable Table

-- Insert a Video Clip into the ClipsTable
insert into ClipsTable values (NULL,
 ’11’,
 ’Oracle Commercial’,
 ’Larry Ellison’,
 ’commercial’,
 ’Oracle Corporation’,
 ’’,
 ’no awards’,
 ’90s’
 ’no rating’,
 30,
 NULL,
 EMPTY_CLOB(),
 NULL,
 ORDSYS.ORDVIDEO.init());
3-72 Oracle interMedia User’s Guide and Reference

Video Data Examples
3.4.7 Inserting a Row into the VideoTable Table
Example 3–55 describes how to insert a row into the VideoTable table.

Example 3–55 Insert a Row into the VideoTable Table

-- Insert a row into the VideoTable
insert into VideoTable values (11,
 30,
 NULL,
 NULL,
 clipList(NULL));

3.4.8 Loading a Video into the ClipsTable Table
Example 3–56 describes how to load a video into the ClipsTable table. This example
requires a VIDDIR directory to be defined; see the comments in the example.

Example 3–56 Load a Video into the ClipsTable Table

-- Load a Video into a clip
-- Create your directory specification below
-- CREATE OR REPLACE DIRECTORY VIDDIR AS ’/video/’;
DECLARE
 videoObj ORDSYS.ORDVIDEO;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT C.videoSource INTO videoObj
 FROM ClipsTable C
 WHERE C.clipId = ’11’
 FOR UPDATE;

 videoObj.setDescription(’Under Pressure Video Clip’);
 videoObj.setSource(’file’, ’VIDDIR’, ’UnderPressure.mov’);
 videoObj.import(ctx);
 videoObj.setProperties(ctx,TRUE)

 UPDATE ClipsTable C
 SET C.videoSource = videoObj
 WHERE C.clipId = ’11’;
 COMMIT;
END;

-- Check video insertion
DECLARE
interMedia Examples 3-73

Video Data Examples
 videoObj ORDSYS.ORDVideo;
 ctx RAW(4000) := NULL;
BEGIN
 SELECT C.videoSource INTO videoObj
 FROM ClipsTable C
 WHERE C.clipId = ’11’;

 dbms_output.put_line(’Content Length: ’ ||
 videoObj.getContentLength(ctx));
 dbms_output.put_line(’Content MimeType: ’ ||
 videoObj.getMimeType());
END;

3.4.9 Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table
Example 3–57 describes how to insert a reference to a clip object into the clips list in
the VideoTable table.

Example 3–57 Insert a Reference to a Clip Object into the Clips List in the VideoTable
Table

-- Insert a reference to a ClipObject into the Clips List in the VideoTable
DECLARE
 clipRef REF ClipObject;
 clipListInstance clipList;
BEGIN
 SELECT REF(C) into clipRef
 FROM ClipsTable C
 where C.clipId = ’11’;

 SELECT V.clips INTO clipListInstance
 FROM VideoTable V
 WHERE V.itemId = 11
 FOR UPDATE;

 clipListInstance.addClip(clipRef);

 UPDATE VideoTable V
 SET V.clips = clipListInstance
 WHERE V.itemId = 11;

 COMMIT;
END;

-- Check insertion of clip ref
3-74 Oracle interMedia User’s Guide and Reference

Video Data Examples
DECLARE
 clip ClipObject;
 clipRef REF ClipObject;
 clipListInstance clipList;
 clipType clipNstType;
BEGIN
 SELECT V.clips INTO clipListInstance
 FROM VideoTable V
 WHERE V.itemId = 11;

 SELECT clipListInstance.clips INTO clipType FROM DUAL;
 clipRef := clipType(1);
 SELECT DEREF(clipRef) INTO clip FROM DUAL;

 dbms_output.put_line(’Clip Title: ’ ||
 clip.title);
END;

3.4.10 Inserting a Reference to a Video Object into the Clip
Example 3–58 describes how to insert a reference to a video object into the clip.

Example 3–58 Insert a Reference to a Video Object into the Clip

-- Insert a reference to a video object into the clip
DECLARE
 aVideoRef REF VideoObject;
BEGIN
-- Make a VideoRef an obj to use for update
 SELECT Cp.videoRef INTO aVideoRef
 FROM ClipsTable Cp
 WHERE Cp.clipId = ’11’
 FOR UPDATE;

-- Change its value
 SELECT REF(V) INTO aVideoRef
 FROM VideoTable V
 WHERE V.itemId = 11;

-- Update database
 UPDATE ClipsTable C
 SET C.videoRef = aVideoRef
 WHERE C.clipId = ’11’;

 COMMIT;
interMedia Examples 3-75

Video Data Examples
END;

3.4.11 Retrieving a Video Clip from the VideoTable Table
Example 3–59 describes how to retrieve a video clip from the VideoTable table and
return it as a BLOB. The program segment performs these operations:

1. Defines the retrieveVideo() method to retrieve the video clip by its clipId as an
ORDVideo BLOB.

2. Selects the desired video clip (where C.clipId = clipId) and returns it
using the getContent method.

Example 3–59 Retrieve a Video Clip

FUNCTION retrieveVideo(clipId IN INTEGER)
RETURN BLOB IS
 obj ORDSYS.ORDVideo;

BEGIN
 -- Select the desired video clip from the ClipTable table.
 SELECT C.videoSource INTO obj from ClipTable C
 WHERE C.clipId = clipId;
 return obj.getContent;
END;

3.4.12 Extending interMedia to Support a New Video Data Format
This section describes how to extend Oracle interMedia to support a new video data
format.

To support a new video data format, implement the required interfaces in the
ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where <format>
represents the name of the new video data format). See Section 9.4.1 for a complete
description of the interfaces for the ORDX_DEFAULT_VIDEO package. Use the
package body example in Section 9.4.2 as a template to create the video package
body.

Then set the new format parameter in the setFormat call to the appropriate format
value to indicate to the video object that package ORDPLUGINS.ORDX_<format> _
VIDEO is available as a plug-in.

See Section F.4 for more information on installing your own format plug-in and
running the sample scripts provided. See the fplugins.sql and fpluginb.sql files that
are installed in the$ORACLE_HOME/ord/vid/demo/ directory. These are demonstration
3-76 Oracle interMedia User’s Guide and Reference

Video Data Examples
(demo) plug-ins that you can use as a guideline to write any format plug-in that you
want to support. See the viddemo.sql file in this same directory to learn how to
install your own format plug-in.

3.4.13 Extending interMedia with a New Object Type
This section describes how to extend Oracle interMedia with a new object type.

You can use the ORDVideo type as the basis for a new type of your own creation.

See Example 3–45 for a more complete example and description.

3.4.14 Using Video Types with Object Views
This section describes how to use video types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view
mechanism. By using object views, you can create virtual object tables from data --
of either built-in or user-defined types -- stored in the columns of relational or object
tables in the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming
without permanently converting your tables. Using object views, you can convert
data gradually and transparently from relational tables to object-relational tables.

In Example 3–60, consider the following relational table (containing no ORDVideo
objects).

Note: When a type is altered any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an ORDVideo attribute and the interMedia
ORDVideo type is altered, which always occurs during an
interMedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;
interMedia Examples 3-77

Video Data Examples
Example 3–60 Define a Relational Table Containing No ORDVideo Object

create table flat (
 id number,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),
 comments CLOB,
 width INTEGER,
 height INTEGER,
 frameResolution INTEGER,
 frameRate INTEGER,
 videoDuration INTEGER,
 numberOfFrames INTEGER,
 compressionType VARCHAR2(4000),
 numberOfColors INTEGER,
 bitRate INTEGER,
);

You can create an object view on the relational table shown in Example 3–60 as
follows in Example 3–61.

Example 3–61 Define an Object View Containing an ORDVideo Object and Relational
Columns

create or replace view object_video_v as
 select
 id,
 ORDSYS.ORDVideo(
 ORDSYS.ORDSource(
 T.localData, T.srcType, T.srcLocation, T.srcName, T.updateTime,
 T.local),
 T.description,
 T.format,
 T.mimeType,
 T.comments,
 T.width,
 T.height,
 T.frameResolution,
 T.frameRate,
3-78 Oracle interMedia User’s Guide and Reference

Video Data Examples
 T.videoDuration,
 T.numberofFrames,
 T.compressionType,
 T.numberOfColors,
 T.bitRate) VIDEO
 from flat T;

Object views provide the flexibility of looking at the same relational or object data
in more than one way. Therefore, you can use different in-memory object
representations for different applications without changing the way you store the
data in the database. See the Oracle9i Database Concepts manual for more
information on defining, using, and updating object views.

3.4.15 Scripts for Creating and Populating a Video Table from a BFILE Data Source
The following scripts can be found on the Oracle Technology Network (OTN) Web
site: http://otn.oracle.com/ as end-to-end scripts that create and populate a
video table from a BFILE data source. You can get to this site by selecting the Oracle
interMedia Plugins and Utilities page and from the interMedia page, select Sample
Code.

The following set of scripts:

1. Creates a tablespace for the video data, creates a user and grants certain
privileges to this new user, creates a video data load directory (create_
viduser.sql).

2. Creates a table with two columns, inserts two rows into the table and initializes
the object column to empty with a locator (create_vidtable.sql).

3. Loads the video data with a SELECT FOR UPDATE operation using an import
method to import the data from a BFILE (importvid.sql).

4. Performs a check of the properties for the loaded data to ensure that it is really
there (chkprop.sql).

The fifth script (setup_vidschema.sql) automates this entire process by running each
script in the required order. The last script (readvideo.sql) creates a stored
procedure that performs a SELECT operation to read a specified amount of video
data from the BLOB, beginning at a particular offset, until all the video data is read.
To successfully load the video data, you must have a viddir directory created on
your system containing the vid1.mov and vid2.mov files, which are installed in the
<ORACLE_HOME>/ord/vid/demo directory; this directory path and disk drive
must be specified in the CREATE DIRECTORY statement in the create_viduser.sql
file.
interMedia Examples 3-79

Video Data Examples
Script 1: Create a Tablespace, Create a Video User, Grant Privileges to
the Video User, and Create a Video Data Load Directory (create_
viduser.sql)
This script creates the viddemo tablespace with a data file named viddemo.dbf of
200MB in size, with an initial extent of 64K, a next extent of 128K, and turns on table
logging. Next, the viddemo user is created and given connect, resource, create
library, and create directory privileges followed by creating the video data load
directory.

-- create_viduser.sql

-- Connect as admin.
connect system/<system password>;

-- Edit this script and either enter your system password here
-- to replace <system password> or comment out this connect
-- statement and connect as system before running this script.

set serveroutput on
set echo on

-- Need system manager privileges to delete a user.
-- Note: There is no need to delete viddemo user if you do not
-- delete the viddemo tablespace, therefore comment out the next line.

-- drop user viddemo cascade;

-- Need system manager privileges to delete a directory. If there is no
-- need to really delete it, then comment out the next line.

-- drop directory viddir;

-- Delete then create tablespace.

-- Note: It is better to not delete and create tablespaces,

Note: You must edit the create_viduser.sql file and either enter the
system password in the connect statement or comment out the
connect statement and run this file in the system account. You must
specify the disk drive in the CREATE DIRECTORY statement. Also,
create the temp temporary tablespace if you have not already
created it, otherwise this file will not run.
3-80 Oracle interMedia User’s Guide and Reference

Video Data Examples
-- so comment this next line out. The create tablespace statement
-- will fail if it already exists.

-- drop tablespace viddemo including contents;

-- If you uncomment the previous line and want to delete the
-- viddemo tablespace, remember to manually delete the viddemo.dbf
-- file to complete the operation. Otherwise, you cannot create
-- the viddemo tablespace again because the viddemo.dbf file
-- already exists. Therefore, it might be best to create this
-- tablespace once and not delete it.

-- Create tablespace.
create tablespace viddemo
 datafile ’viddemo.dbf’ size 200M
 minimum extent 64K
 default storage (initial 64K next 128K)
 logging;

-- Create viddemo user.
create user viddemo identified by viddemo
default tablespace viddemo
temporary tablespace temp;

-- Note: If you do not have a temp tablespace already defined, you
-- will have to create it first for this script to work.

grant connect, resource, create library to viddemo;
grant create any directory to viddemo;

-- Note: If this user already exists, you get an error message
-- when you try and create this user again.

-- Connect as viddemo.
connect viddemo/viddemo

-- Create the viddir load directory; this is the directory where the video
-- files are residing.

create or replace directory viddir
 as ’e:\oracle\ord\vid\demo’;
grant read on directory viddir to public with grant option;

-- Note: If this directory already exists, an error message
-- is returned stating the operation will fail; ignore the message.
interMedia Examples 3-81

Video Data Examples
Script 2: Create the Video Table and Initialize the Column Object (create_
vidtable.sql)
This script creates the video table and then performs an insert operation to initialize
the column object to empty for two rows. Initializing the column object creates the
BLOB locator that is required for populating each row with BLOB data in a
subsequent data load operation.

--create_vidtable.sql
connect viddemo/viddemo;
set serveroutput on
set echo on

drop table vidtable;
create table vidtable (id number,
 Video ordsys.ordVideo);

-- Insert a row with empty BLOB.
insert into vidtable values(1,ORDSYS.ORDVideo.init());

-- Insert a row with empty BLOB.
insert into vidtable values(2,ORDSYS.ORDVideo.init());
commit;

Script 3: Load the Video Data (importvid.sql)
This script performs a SELECT FOR UPDATE operation to load the video data by
first setting the source for loading the video data from a file, importing the data,
setting the properties for the BLOB data, updating the row, and committing the
transaction. To successfully run this script, you must copy two video clips to your
VIDDIR directory using the names specified in this script, or modify this script to
match the file names of your video clips.

-- importvid.sql

set serveroutput on
set echo on
-- Import the two files into the database.

DECLARE
 obj ORDSYS.ORDVIDEO;
 ctx RAW(4000) := NULL;

BEGIN
-- This imports the video file vid1.mov from the VIDDIR directory
-- on a local file system (srcType=file) and sets the properties.
3-82 Oracle interMedia User’s Guide and Reference

Video Data Examples
 select Video into obj from vidtable where id = 1 for update;
 obj.setSource(’file’,’VIDDIR’,’vid1.mov’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update vidtable set video = obj where id = 1;
 commit;

-- This imports the video file vid2.mov from the VIDDIR directory
-- on a local file system (srcType=file) and sets the properties.

 select Video into obj from vidtable where id = 2 for update;
 obj.setSource(’file’,’VIDDIR’,’vid2.mov’);
 obj.import(ctx);
 obj.setProperties(ctx);

 update vidtable set video = obj where id = 2;
 commit;
END;
/

Script 4: Check the Properties of the Loaded Data (chkprop.sql)
This script performs a SELECT operation of the rows of the video table, then gets
the video characteristics of the BLOB data to check that the BLOB data is in fact
loaded.

--chkprop.sql
set serveroutput on;
--connect viddemo/viddemo
--Query vidtable for ORDSYS.ORDVideo.
DECLARE
 video ORDSYS.ORDVideo;
 idnum integer;
 properties_match BOOLEAN;
 ctx RAW(4000) := NULL;
 width integer;
 height integer;

BEGIN
 FOR I IN 1..2 LOOP
 SELECT id, video into idnum, video from vidtable where id=I;
 dbms_output.put_line(’video id: ’|| idnum);
interMedia Examples 3-83

Video Data Examples
 properties_match := video.checkProperties(ctx);
 IF properties_match THEN DBMS_OUTPUT.PUT_LINE(’Check Properties Succeeded’);
 END IF;

 --dbms_output.put_line(’video frame rate: ’|| video.getFrameRate(ctx));
 --dbms_output.put_line(’video width & height: ’|| video.getFrameSize(ctx,width,height);
 dbms_output.put_line(’video MIME type: ’|| video.getMimeType());
 dbms_output.put_line(’video file format: ’|| video.getFormat(ctx));
 dbms_output.put_line(’BLOB Length: ’|| TO_CHAR(video.getContentLength(ctx)));
 dbms_output.put_line(’--’);

 END loop;
END;
/
Results from running the script chkprop.sql are the following:

SQL> @chkprop.sql
video id: 1
Check Properties Succeeded
video MIME type: video/quicktime
video file format: MOOV
BLOB Length: 4958415
--
video id: 2
Check Properties Succeeded
video MIME type: video/quicktime
video file format: MOOV
BLOB Length: 2891247
--

Automated Script (setup_vidschema.sql)
This script runs each of the previous four scripts in the correct order to automate
this entire process.

-- setup_vidschema.sql
-- Create viddemo user, tablespace, and load directory to
-- hold the video files:
@create_viduser.sql

-- Create Video table:
@create_vidtable.sql

--Import 2 video clips and set properties:
@importvid.sql

--Check the properties of the video clips:
@chkprop.sql
3-84 Oracle interMedia User’s Guide and Reference

Video Data Examples
--exit;

Read Data from the BLOB (readvideo.sql)
This script creates a stored procedure that performs a SELECT operation to read a
specified amount of video data from the BLOB, beginning at a particular offset,
until all the video data is read.

-- readvideo.sql

set serveroutput on
set echo on

create or replace procedure readvideo as

 obj ORDSYS.ORDVideo;
 buffer RAW (32767);
 numbytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select video into obj from vidtable where id = 1;

 LOOP
 obj.readFromSource(ctx,startpos,numbytes,buffer);
 DBMS_OUTPUT.PUT_LINE(’Content length is: ’|| TO_CHAR(obj.getContentLength()));

 DBMS_OUTPUT.PUT_LINE(’start position: ’|| startpos);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 startpos := startpos + numbytes;
 read_cnt := read_cnt + 1;

-- Note: Add your own code here to process the video data being read;
-- this routine just reads the data into the buffer 32767 bytes
-- at a time, then reads the next chunk, overwriting the first
-- buffer full of data.
 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
interMedia Examples 3-85

Extending interMedia to Support a New Data Source
 DBMS_OUTPUT.PUT_LINE(’----------------’);

 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);

END;
/
show errors
To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute readvideo
Content Length: 4958415
start position: 1
doing read 1
start position: 32768
doing read 2
start position: 65535
.
.
.
doing read 151
start position: 4947818
doing read 152

End of data

PL/SQL procedure successfully completed.

3.5 Extending interMedia to Support a New Data Source
This section describes how to extend Oracle interMedia to support a new data
source.

To support a new data source, implement the required interfaces in the ORDX_
<srcType>_SOURCE package in the ORDPLUGINS schema (where <srcType>
represents the name of the new external source type). See Section I.3.1 and
Section I.3.2 for a complete description of the interfaces for the ORDX_FILE_
SOURCE and ORDX_HTTP_SOURCE packages. See Section I.3.4 for an example of
modifying the package body listing that is provided. Then set the source type
parameter in the setSourceInformation call to the appropriate source type to
3-86 Oracle interMedia User’s Guide and Reference

Extending interMedia to Support a New Data Source
indicate to the video object that package ORDPLUGINS.ORDX_<srcType>_
SOURCE is available as a plug-in.
interMedia Examples 3-87

Extending interMedia to Support a New Data Source
3-88 Oracle interMedia User’s Guide and Reference

Ensuring Future Compatibility with Evolving interMedia Object
4

Ensuring Future Compatibility with

Evolving interMedia Object Types

The interMedia object types may evolve by adding new object attributes in a future
release. Client-side applications that want to maintain compatibility with the
current release of the interMedia object types (ORDAudio, ORDImage, ORDVideo,
and ORDSource), even after a server upgrade that includes evolved object types, are
advised to do the following:

■ Make a call to the compatibility initialization function at the beginning of the
application, if necessary (see Section 4.1).

■ Use the static constructor functions, init(), in INSERT statements that are
provided beginning with release 8.1.7 (see Section 6.2, Section 8.1.1, and
Section 9.2). Do not use the default constructors because INSERT statements
using the default constructor will fail if the interMedia object types have added
new attributes.

4.1 When and How to Call the Compatibility Initialization Function
Only client-side applications that statically recognize the structure of the interMedia
object types need to make a call to the compatibility initialization function.
Server-side stored procedures will automatically use the newly installed
(potentially changed) interMedia object types after an upgrade, so you do not need
to call the compatibility initialization function from server-side stored procedures.

Note: If you do not do the preceding recommended actions, you
may have to upgrade your client and perhaps even recompile your
application when you upgrade to a newer server release with
evolved types.
Types 4-1

When and How to Call the Compatibility Initialization Function
Client-side applications that do not statically (at compile time) recognize the
structure of interMedia object types do not need to call the compatibility
initialization function. OCI applications that determine the structure of the
interMedia object types at runtime, through the OCIDescribeAny call, do not need
to call the compatibility initialization function.

Client-side applications written in OCI that have been compiled with the C
structure of interMedia object types (generated by OTT) should make a call to the
server-side PL/SQL function, ORDSYS.IM.compatibilityInit(), at the beginning of
the application. See the compatibilityInit() method description of this function in
this section.

Client-side applications written in Java using the interMedia Java Classes for release
8.1.7 or higher, should call the OrdMediaUtil.imCompatibilityInit() function after
connecting to the Oracle database server.

public static void imCompatibilityInit(OracleConnection con)
 throws Exception

This Java function takes OracleConnection as an argument. The included interMedia
release 8.1.7 or higher Java API will ensure that your 8.1.7 or higher application will
work (without upgrading) with a potential future release of interMedia with
evolved object types.

There is not yet a way for client-side PL/SQL applications to maintain compatibility
with the current release of the interMedia object types if the objects add new
attributes in a future release.

See the compatibilityInit() method in this section, and Oracle interMedia Java Classes
User’s Guide and Reference for further information, and detailed descriptions and
examples. This guide is on the Oracle Technology Network,
http://otn.oracle.com/.
4-2 Oracle interMedia User’s Guide and Reference

compatibilityInit()
compatibilityInit()

Format
compatibilityInit(release IN VARCHAR2,

 errmsg OUT VARCHAR2)

RETURN NUMBER;

Description
Allows for compatibly evolving the interMedia object types in a future release.

Parameters

release
The release number. This string should be set to ’9.0.1’ to allow a 9.0.1 application to
work (without upgrading) with a potential future release of the Oracle database and
interMedia with evolved object types.

errmsg
String output parameter. If the function returns a status other than 0, this errmsg
string contains the reason for the failure.

Pragmas
None.

Exceptions
None.

Usage Notes
You should begin using the compatibilityInit() method as soon as possible to
ensure you will not have to upgrade the Oracle software on your client node, or
recompile your client application in order to work with a future release of the
Oracle database server if the interMedia object types change in a future release. See
Section 4.1 to determine if you need to call this function.

The compatibility initialization function for interMedia is located in the ORDSYS.IM
package.
Ensuring Future Compatibility with Evolving interMedia Object Types 4-3

compatibilityInit()
Examples
Using OCI and setting the compatibilityInit() method release parameter to release
9.0.1 to allow a 9.0.1 application to work with a future release of the Oracle database
and interMedia with changed object types; note, that this is not a standalone
program in that it assumes that you have allocated handles beforehand:

void prepareExecuteStmt(OCIEnv *envHndl,
 OCIStmt **stmtHndl,
 OCIError *errorHndl,
 OCISvcCtx *serviceCtx,
 OCIBind *bindhp[])
{
 text *statement = (text *)
 "begin :sts := ORDSYS.IM.compatibilityInit(:vers, :errText);
end;";
 sword sts = 0;
 text *vers = (text *)"9.0.1";
 text errText[512];
 sb2 nullInd;

 printf(" Preparing statement\n");

 OCIHandleAlloc(envHndl, (void **) stmtHndl, OCI_HTYPE_STMT, 0, NULL
);

 OCIStmtPrepare(*stmtHndl, errorHndl, (text *)statement,
 (ub4)strlen((char *)statement), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

 printf(" Executing statement\n");

 OCIBindByPos(*stmtHndl, &bindhp[0], errorHndl, 1, (void *)&sts,
 sizeof(sts), SQLT_INT, (void *)0, NULL, 0, 0,
 NULL, OCI_DEFAULT);

 OCIBindByPos(*stmtHndl, &bindhp[1], errorHndl, 2, vers,
 strlen((char *)vers) + 1, SQLT_STR, (void *)0, NULL,
 0, 0, NULL, OCI_DEFAULT);

 OCIBindByPos(*stmtHndl, &bindhp[2], errorHndl, 3, errText,
 sizeof(errText), SQLT_STR, &nullInd, NULL, 0, 0,
 NULL, OCI_DEFAULT);

 OCIStmtExecute(serviceCtx, *stmtHndl, errorHndl, 1, 0,
 (OCISnapshot *)NULL, (OCISnapshot *)NULL, OCI_DEFAULT);
4-4

compatibilityInit()
 printf(" Statement executed\n");
 if (sts != 0)
 {
 printf("CompatibilityInit failed with Sts = %d\n", sts);
 printf("%s\n", errText);
 }

}

Ensuring Future Compatibility with Evolving interMedia Object Types 4-5

compatibilityInit()
4-6 Oracle interMedia User’s Guide and Reference

Common Methods for interMedia Object Types Reference Inform
5

Common Methods for interMedia Object

Types Reference Information

 This chapter presents reference information on the common methods used for the
following Oracle interMedia data types:

■ ORDAudio

■ ORDDoc

■ ORDImage

■ ORDVideo

See Section 5.2 for a list of methods described in this chapter.

The examples in this chapter assume that you have created the test tables as
described in Section 6.3.1, Section 7.3.1, Section 8.1.3, and Section 9.3.1.
ation 5-1

Important Notes
5.1 Important Notes
Methods invoked at the ORDSource level that are handed off to a source plug-in for
processing have ctx (RAW(4000)) as the first argument. Before calling any of these
methods for the first time, the client must allocate the ctx structure, initialize it to
NULL, and invoke the openSource() method. At this point, the source plug-in can
initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked at the ORDAudio, ORDDoc, or ORDVideo level that are handed
off to a format plug-in for processing have ctx (RAW(4000)) as the first argument.
Before calling any of these methods for the first time, the client must allocate the ctx
structure and initialize it to NULL.

For ORDAudio, ORDDoc, or ORDVideo object types, you should use any of the
individual set methods to set the value of the attribute for an object for formats not
natively supported or write a format plug-in and call setProperties(); otherwise, for
formats natively supported, use the setProperties() method to populate the
attributes of the object.

For ORDImage object types, use the setProperties() method to populate the
attributes of the object. Use the setProperties() for Foreign Images method for
foreign image formats.

Note: The interMedia methods are designed to be internally
consistent. If you use interMedia methods (such as import() or
image process()) to modify the media data, interMedia will ensure
that object attributes remain synchronized with the media data.
However, if you manipulate the data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the data.

Note: In the current release, not all source plug-ins and format
plug-ins will use the ctx argument, but if you code as previously
described, your application should work with any current or future
source and format plug-in.
5-2 Oracle interMedia User’s Guide and Reference

Methods
5.2 Methods
This section presents reference information on the Oracle interMedia methods that
are common to all object types. These common methods are described in the
following groupings. Other methods, which are particular to a particular object type
or which are implemented differently for the different object types, are described in
Section 6.3, Section 7.3, Section 8.1.2, and Section 9.3.

Common Methods Associated with the updateTime Attribute
■ getUpdateTime(): returns the time when the object was last updated. See

"getUpdateTime()" on page 5-25 for information.

■ setUpdateTime(): sets the update time for the object. This method is called
implicitly by methods that modify the media data. See "setUpdateTime()" on
page 5-39 for information.

Common Methods Associated with mimeType Attribute
■ setMimeType(): sets the MIME type of the stored data. This method is called

implicitly by methods for natively supported formats. See "setMimeType()" on
page 5-35 for information.

■ getMimeType(): returns the MIME type of the stored data. See "getMimeType(
)" on page 5-17 for information.

Common Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in. See "processSourceCommand()" on page 5-29 for information.

■ isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

■ setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

■ clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

■ setSource(): sets the source information to where data is found. See "setSource(
)" on page 5-37 for information.

■ getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.
Common Methods for interMedia Object Types Reference Information 5-3

Methods
■ getSourceLocation(): returns the external source location of the data. See
"getSourceLocation()" on page 5-21 for information.

■ getSourceName(): returns the external source name of the data. See
"getSourceName()" on page 5-22 for information.

■ getSourceType(): returns the external source type of the data. See
"getSourceType()" on page 5-23 for information.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

■ getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

■ deleteContent(): deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

■ getBFILE(): returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

Common Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27

for information.

■ closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

■ trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

For more information on object types and methods, see Oracle9i Database Concepts.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
5-4

clearLocal()
clearLocal()

Format
clearLocal();

Description
Resets the local flag to indicate that the data is stored externally. When the local flag
is set to clear, media methods look for corresponding data using the srcLocation,
srcName, and srcType attributes.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle9i.

Pragmas
None.

Exceptions
None.

Examples
Clear the value of the local flag for the data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 FOR UPDATE;
 obj.clearLocal();
 UPDATE TAUD SET aud=obj WHERE N = 1;
 COMMIT;
END;
/

Common Methods for interMedia Object Types Reference Information 5-5

closeSource()
closeSource()

Format
closeSource(ctx IN OUT RAW) RETURN INTEGER;

Description
Closes a data source.

Parameters

ctx
The source plug-in context information. You must call the openSource() method;
see Section 5.1 on page 5-2 for more information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the closeSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the closeSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the closeSource() method within a source plug-in
when any other exception is raised.
5-6 Oracle interMedia User’s Guide and Reference

closeSource()
See Appendix H for more information about these exceptions.

Examples
Close an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM taud WHERE N =2 FOR UPDATE;
 res := obj.closeSource(ctx);
 UPDATE TAUD SET aud=obj WHERE N=2 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

Common Methods for interMedia Object Types Reference Information 5-7

deleteContent()
deleteContent()

Format
deleteContent();

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external data source and you no longer need this data in the local source.

Call this method when you want to update the object with a new object.

Pragmas
None.

Exceptions
None.

Examples
Delete the local data from the current local source:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- delete the local content of the image
 Image.deleteContent();
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

5-8 Oracle interMedia User’s Guide and Reference

export()
export()

Format
export(

 ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies data from a local source (localData) within an Oracle database to a
corresponding external data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where the data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Usage Notes
After exporting data, all attributes remain unchanged and srcType, srcLocation, and
srcName are updated with input values. After calling the export() method, you can

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
Common Methods for interMedia Object Types Reference Information 5-9

export()
call the clearLocal() method to indicate the data is stored outside the database and
call the deleteContent() method if you want to delete the content of the local data.

This method is also available for user-defined sources that can support the export
method.

The export() method for a source type of file is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteContent() method after calling the export() method to delete the
content from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT_
PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
5-10 Oracle interMedia User’s Guide and Reference

export()
This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

ORDSourceExceptions.IO_ERROR

This exception is raised if the export() method encounters an error writing the
BLOB data to the file specified.

Examples
Export data from a local source to an external data source.

-- Create the directory to which you
-- want to export your files.

CREATE OR REPLACE DIRECTORY docdir
 as ’e:\<ORACLE_HOME>\ord\doc\demo’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;

SET ECHO ON;
SET SERVEROUTPUT ON;
CONNECT SYSTEM AS SYSDBA;
BEGIN
 DBMS_JAVA.GRANT_PERMISSION(’PUBLIC’, ’java.io.FilePermission’, ’e:\ORACLE_
HOME>\ord\doc\demo\testdoc.dat’,
 ’WRITE’);

Note: You must first create the directory to which you want to
export your data. Create this directory using the following SQL
statement and then grant read access to PUBLIC to this directory.
Change this directory specification to match the location to where
you want to export your media files.
Common Methods for interMedia Object Types Reference Information 5-11

export()
 COMMIT;
END;
/
DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N = 1 FOR UPDATE;
 obj.export(ctx,’file’,’DOCDIR’,’testdoc.dat’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’OTHER EXCEPTION caught’);
END;
/

5-12 Oracle interMedia User’s Guide and Reference

getBFILE()
getBFILE()

Format
getBFILE() RETURN BFILE;

Description
Returns the LOB locator of the BFILE containing the media.

Parameters
None.

Usage Notes
This method constructs and returns a BFILE using the stored source.srcLocation and
source.srcName attribute information. The source.srcLocation attribute must
contain a defined directory object. The source.srcName attribute must be a valid file
name and source.srcType must be "file".

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS)

Exceptions
If the source.srcType attribute value is NULL, calling this method raises an
INCOMPLETE_SOURCE_INFORMATION exception.

If the value of srcType is other than file, then calling this method raises an
INVALID_SOURCE_TYPE exception.

Examples
Return the BFILE for the stored source directory and file name attributes:

DECLARE
 obj ORDSYS.ORDVideo;
 videobfile BFILE;
BEGIN
 SELECT vid INTO obj FROM tvid
 WHERE N=1;
 -- get the video BFILE
Common Methods for interMedia Object Types Reference Information 5-13

getBFILE()
 videobfile := obj.getBFILE();
END;
/

5-14 Oracle interMedia User’s Guide and Reference

getContent()
getContent()

Format
getContent() RETURN BLOB;

Description
Returns a handle to the local BLOB storage, that is the BLOB within the object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
A client accesses video data to be put on a Web-based player:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 -- import data
 obj.importFrom(ctx,’file’,’VIDEODIR’,’MV1.AVI’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent())));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
Common Methods for interMedia Object Types Reference Information 5-15

getContent()
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

5-16 Oracle interMedia User’s Guide and Reference

getMimeType()
getMimeType()

Format
getMimeType() RETURN VARCHAR2;

Description
Returns the MIME type for the data. This is a simple access method that returns the
value of the mimeType attribute.

Parameters
None.

Usage Notes
If the source is an HTTP server, the MIME type information is read from the HTTP
header information when the media is imported and stored in the object attribute. If
the source is a file or BLOB, the MIME type information is extracted when the
setProperties() method is called.

For unrecognized file formats, users must call the setMimeType() method and
specify the MIME type.

Use this method rather than accessing the mimeType attribute directly to protect
yourself from potential changes to the internal representation of the object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Set the MIME type for some stored image data:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
Common Methods for interMedia Object Types Reference Information 5-17

getMimeType()
 WHERE ename = ’John Doe’;
 -- set the image mime type
 Image.setMimeType(’image/myformat’);
END;
/

5-18 Oracle interMedia User’s Guide and Reference

getSource()
getSource()

Format
getSource() RETURN VARCHAR2;

Description
Returns information about the external location of the data in URL format.

Parameters
None.

Usage Notes
Possible return values are:

■ FILE://<DIR OBJECT NAME>/<FILE NAME> for a file source

■ HTTP://<URL> for an HTTP source

■ User-defined source; for example, TYPE://<USER-DEFINED SOURCE
LOCATION>/<USER-DEFINED SOURCE NAME>

Pragmas
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source of the image data:

DECLARE
 Image ORDSYS.ORDImage;
 SourceInfo VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source information
 SourceInfo := Image.getSource();
Common Methods for interMedia Object Types Reference Information 5-19

getSource()
END;
5-20 Oracle interMedia User’s Guide and Reference

getSourceLocation()
getSourceLocation()

Format
getSourceLocation() RETURN VARCHAR2;

Description
Returns a string containing the value of the external data source location.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the value of the external data
location, for example "BFILEDIR".

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the getSourceLocation method and the value of
srcLocation is NULL.

Examples
Get the source location information about an image data source:

DECLARE
 Image ORDSYS.ORDImage;
 SourceLocation VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source location
 SourceLocation := Image.getSourceLocation();
END;
Common Methods for interMedia Object Types Reference Information 5-21

getSourceName()
getSourceName()

Format
getSourceName() RETURN VARCHAR2;

Description
Returns a string containing of the name of the external data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string containing the name of the external data
source, for example "testimg.dat".

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_NAME

This exception is raised if you call the getSourceName() method and the value of
srcName is NULL.

Examples
Get the source name information about an image data source:

DECLARE
 Image ORDSYS.ORDImage;
 SourceName VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image source name
 SourceName := Image.getSourceName();
END;
5-22 Oracle interMedia User’s Guide and Reference

getSourceType()
getSourceType()

Format
getSourceType() RETURN VARCHAR2;

Description
Returns a string containing the type of the external data source.

Parameters
None.

Usage Notes
Returns a VARCHAR2 string containing the type of the external data source, for
example "file".

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the source type information about a media data source:

DECLARE
 obj ORDSYS.ORDDoc;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’file’,’DOCDIR’,’testdoc.dat’);
 -- get source information
 DBMS_OUTPUT.put_line(obj.getSource());
 DBMS_OUTPUT.put_line(obj.getSourceType());
 DBMS_OUTPUT.put_line(obj.getSourceLocation());
 DBMS_OUTPUT.put_line(obj.getSourceName());
Common Methods for interMedia Object Types Reference Information 5-23

getSourceType()
 UPDATE TDOC SET doc=obj WHERE N=1;
 COMMIT;
END;
/

5-24 Oracle interMedia User’s Guide and Reference

getUpdateTime()
getUpdateTime()

Format
getUpdateTime() RETURN DATE;

Description
Returns the time when the object was last updated.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the updated time of some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 ;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getUpdateTime(),’MM-DD-YYYY HH24:MI:SS’));
END;
/

Common Methods for interMedia Object Types Reference Information 5-25

isLocal()
isLocal()

Format
isLocal() RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB or FALSE if the data is stored
externally.

Parameters
None.

Usage Notes
If the local attribute is set to 1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(getLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Determine whether or not the audio data is local:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 ;
 if(obj.isLocal() = TRUE) then
 DBMS_OUTPUT.put_line(’local is set true’);
 else
 DBMS_OUTPUT.put_line(’local is set false’);
 end if;
END;
/

5-26 Oracle interMedia User’s Guide and Reference

openSource()
openSource()

Format
openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Description
Opens a data source.

Parameters

userArg
The user argument. This may be used by user-defined source plug-ins.

ctx
The source plug-in context information.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the openSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the openSource() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION
Common Methods for interMedia Object Types Reference Information 5-27

openSource()
This exception is raised if you call the openSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Open an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
 userArg RAW(4000);
BEGIN
 SELECT aud INTO obj FROM taud WHERE N =1 FOR UPDATE;
 res := obj.openSource(userArg, ctx);
 UPDATE taud SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

5-28 Oracle interMedia User’s Guide and Reference

processSourceCommand()
processSourceCommand()

Format
processSourceCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send any command and its arguments to the source plug-in. This
method is available only for user-defined source plug-ins.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

cmd
Any command recognized by the source plug-in.

arguments
The arguments of the command.

result
The result of calling this method returned by the source plug-in.

Usage Notes
Use this method to send any command and its respective arguments to the source
plug-in. Commands are not interpreted; they are just taken and passed through to
be processed.
Common Methods for interMedia Object Types Reference Information 5-29

processSourceCommand()
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processSourceCommand() method and the
value of srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the processSourceCommand() method and this
method is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processSourceCommand() method within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Process some commands:

DECLARE
 obj ORDSYS.ORDVideo;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
select vid into obj from TVID where N =1 for UPDATE;
-- assign command
-- assign argList
res := obj.processSourceCommand(ctx, command, argList, result);
UPDATE TVID SET vid=obj WHERE N=1 ;
COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION THEN
 DBMS_OUTPUT.put_line(’SOURCE INCOMPLETE_SOURCE_INFORMATION EXCEPTION
5-30 Oracle interMedia User’s Guide and Reference

processSourceCommand()
caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

Common Methods for interMedia Object Types Reference Information 5-31

readFromSource()
readFromSource()

Format
readFromSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer OUT RAW);

Description
Allows you to read a buffer of n bytes from a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer into which the data will be read.

Usage Notes
This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.
5-32 Oracle interMedia User’s Guide and Reference

readFromSource()
Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the readFromSource() method and the value of
srcType is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the readFromSource() method and the data is
local but localData is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the readFromSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the readFromSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Read a buffer from the source:

DECLARE
 obj ORDSYS.ORDAudio;
 buffer RAW(4000);
 i INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 i := 20;
 select aud into obj from TAUD where N =1 ;
 obj.readFromSource(ctx,1,i,buffer);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
Common Methods for interMedia Object Types Reference Information 5-33

setLocal()
setLocal()

Format
setLocal();

Description
Sets the local attribute to indicate that the data is stored internally in a BLOB. When
local is set, methods look for corresponding data in the source.localData attribute.

Parameters
None.

Usage Notes
This method sets the local attribute to 1 meaning the data is stored locally in
localData.

Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the setLocal method and the source.localData
attribute value is NULL.

Examples
Set the flag to local for the data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT s INTO obj FROM TAUD WHERE N = 1 FOR UPDATE;
 obj.setLocal();
 UPDATE TAUD SET s=obj WHERE N = 1;
 COMMIT;
END;
/

5-34 Oracle interMedia User’s Guide and Reference

setMimeType()
setMimeType()

Format
setMimeType(mime IN VARCHAR2);

Description
Allows you to set the MIME type of the data.

Parameters

mime
The MIME type.

Usage Notes
You can override the automatic setting of MIME information by calling this method
with a specified MIME value.

Calling this method implicitly calls the setUpdateTime() method.

The method setProperties() calls this method implicitly.

For image objects, the methods setProperties(), process(), and processCopy() call
this method implicitly.

Pragmas
None.

Exceptions
INVALID_MIME_TYPE

This exception is raised if you call the setMimeType() method and the value for
mimeType is NULL.

Examples
Set the MIME type for some stored data:

DECLARE
 obj ORDSYS.ORDAudio;
Common Methods for interMedia Object Types Reference Information 5-35

setMimeType()
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing mimetype’);
 DBMS_OUTPUT.PUT_LINE(’----------------’);
 obj.setMimeType(’audio/basic’);
 DBMS_OUTPUT.PUT_LINE(obj.getMimeType);
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

5-36 Oracle interMedia User’s Guide and Reference

setSource()
setSource()

Format
setSource(

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets or alters information about the external source of the data.

Parameters

source_type
The source type of the external data. See the ORDSource Object Type definition in
Appendix I for more information.

source_location
The source location of the external data. See the ORDSource Object Type definition
in Appendix I for more information.

source_name
The source name of the external data. See the ORDSource Object Type definition in
Appendix I for more information.

Usage Notes
Users can use this method to set the data source to a new BFILE or URL.

You must ensure that the directory exists or is created before you use this method.

Calling this method implicitly calls the setUpdateTime() method and the
clearLocal() method.

Pragmas
None.
Common Methods for interMedia Object Types Reference Information 5-37

setSource()
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the setSource() method and the value of srcType
is NULL.

Examples
Set the source of the data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 obj.setSource(’file’,’AUDIODIR’,’audio.au’);
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

5-38 Oracle interMedia User’s Guide and Reference

setUpdateTime()
setUpdateTime()

Format
setUpdateTime(current_time DATE);

Description
Sets the time when the data was last updated. Use this method whenever you
modify the data. Methods that modify the object attributes and all set media access
methods call this method implicitly. For example, the methods setMimeType(),
setSource(), and deleteContent() call setUpdateTime() explicitly.

Parameters

current_time
The timestamp to be stored. Defaults to SYSDATE.

Usage Notes
You must invoke this method whenever you modify the data without using object
methods.

Pragmas
None.

Exceptions
None.

Examples
Set the updated time of some data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1;
 obj.setUpdateTime(SYSDATE);
 UPDATE TAUD SET aud=obj WHERE N = 1;
 COMMIT;
END;
Common Methods for interMedia Object Types Reference Information 5-39

trimSource()
trimSource()

Format
trim(ctx IN OUT RAW,

 newlen IN INTEGER) RETURN INTEGER;

Description
Trims a data source.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

newlen
The trimmed new length.

Usage Notes
The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trimSource() method and the value for
srcType is NULL and data is not local.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the trimSource() method and this method is not
supported by the source plug-in being used.
5-40 Oracle interMedia User’s Guide and Reference

trimSource()
ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trimSource() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Trim an external data source:

DECLARE
 obj ORDSYS.ORDAudio;
 res INTEGER;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for UPDATE;
 res := obj.trimSource(ctx,0);
 UPDATE TAUD SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

Common Methods for interMedia Object Types Reference Information 5-41

writeToSource()
writeToSource()

Format
writeToSource(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer IN RAW);

Description
Allows you to write a buffer of n bytes to a source beginning at a start position.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see Section 5.1 on page 5-2 for more information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes
This method assumes that the source allows you to write n number of bytes starting
at a random byte location. The file and HTTP source types will not permit you to
write, and do not support this method. This method will work if data is stored in a
local BLOB or is accessible through a user-defined source plug-in.

Pragmas
None.
5-42 Oracle interMedia User’s Guide and Reference

writeToSource()
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the writeToSource() method and the value of
srcType is NULL and data is not local.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the writeToSource() method and the data is local
but localData is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the writeToSource() method and this method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the writeToSource() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Write a buffer to the source:

DECLARE
 obj ORDSYS.ORDAudio;
 n INTEGER := 6;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.writeToSource(ctx,1,n,UTL_RAW.CAST_TO_RAW(’helloP’));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 update TAUD set aud = obj where N =1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

Common Methods for interMedia Object Types Reference Information 5-43

writeToSource()
5-44 Oracle interMedia User’s Guide and Reference

ORDAudio Reference Inform
6

ORDAudio Reference Information

Oracle interMedia contains information about the ORDAudio type:

■ Object type -- see Section 6.1.

■ Constructors -- see Section 6.2.

■ Methods -- see Section 6.3.

■ Packages or PL/SQL plug-ins -- see Section 6.4.

The examples in this chapter assume that the test audio table TAUD has been
created and filled with data. This table was created using the SQL statements
described in Section 6.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx(RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the audio data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the audio data.
ation 6-1

Object Types
Methods invoked at the ORDAudio level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and
initialize it to NULL.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

6.1 Object Types
Oracle interMedia describes the ORDAudio object type, which supports the storage
and management of audio data.

Note: In the current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.
6-2 Oracle interMedia User’s Guide and Reference

ORDAudio Object Type
ORDAudio Object Type

The ORDAudio object type supports the storage and management of audio data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDAudio
AS OBJECT
(
 -- ATTRIBUTES
description VARCHAR2(4000),
source ORDSource,
format VARCHAR2(31),
mimeType VARCHAR2(4000),
comments CLOB,
 -- AUDIO RELATED ATTRIBUTES
encoding VARCHAR2(256),
numberOfChannels INTEGER,
samplingRate INTEGER,
sampleSize INTEGER,
compressionType VARCHAR2(4000),
audioDuration INTEGER,

 -- METHODS
-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDAudio,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDAudio,
-- Methods associated with the date attribute
MEMBER FUNCTION getUpdateTime() RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the description attribute
MEMBER PROCEDURE setDescription(user_description IN VARCHAR2),
MEMBER FUNCTION getDescription() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the mimeType attribute
MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),
MEMBER FUNCTION getMimeType() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),
ORDAudio Reference Information 6-3

ORDAudio Object Type
-- Methods associated with the source attribute
MEMBER FUNCTION processSourceCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW,

MEMBER FUNCTION isLocal() RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setLocal(),
MEMBER PROCEDURE clearLocal(),

MEMBER PROCEDURE setSource(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSource() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE import(ctx IN OUT RAW),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE getContentInLob(
6-4

ORDAudio Object Type
 ctx IN OUT RAW,
 dest_lob IN OUT NOCOPY BLOB,
 mimeType OUT VARCHAR2,
 format OUT VARCHAR2),

MEMBER FUNCTION getContent() RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE deleteContent(),

MEMBER FUNCTION getBFILE() RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with file operations on the source
MEMBER FUNCTION openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION closeSource(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trimSource(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,
MEMBER PROCEDURE readFromSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE writeToSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),

-- Methods associated with audio attributes accessors
MEMBER PROCEDURE setFormat(knownformat IN VARCHAR2),
MEMBER FUNCTION getFormat() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setEncoding(knownEncoding IN VARCHAR2),
MEMBER FUNCTION getEncoding() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfChannels(knownNumberOfChannels IN INTEGER),
MEMBER FUNCTION getNumberOfChannels() RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfChannels, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setSamplingRate(knownSamplingRate IN INTEGER),
MEMBER FUNCTION getSamplingRate() RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS, WNPS, RNDS, RNPS),
ORDAudio Reference Information 6-5

ORDAudio Object Type
MEMBER PROCEDURE setSampleSize(knownSampleSize IN INTEGER),
MEMBER FUNCTION getSampleSize() RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setCompressionType(knownCompressionType IN VARCHAR2),
MEMBER FUNCTION getCompressionType() RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setAudioDuration(knownAudioDuration IN INTEGER),
MEMBER FUNCTION getAudioDuration() RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setKnownAttributes(
 knownFormat IN VARCHAR2,
 knownEncoding IN VARCHAR2,
 knownNumberOfChannels IN INTEGER,
 knownSamplingRate IN INTEGER,
 knownSampleSize IN INTEGER,
 knownCompressionType IN VARCHAR2,
 knownAudioDuration IN INTEGER),

-- Methods associated with setting all the properties
MEMBER PROCEDURE setProperties(ctx IN OUT RAW,
 setComments IN BOOLEAN),
MEMBER FUNCTION checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,

MEMBER FUNCTION getAttribute(
 ctx IN OUT RAW,
 name IN VARCHAR2) RETURN VARCHAR2,

MEMBER PROCEDURE getAllAttributes(
 ctx IN OUT RAW,
 attributes IN OUT NOCOPY CLOB),

-- Methods associated with audio processing
MEMBER FUNCTION processAudioCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);
where:
6-6 Oracle interMedia User’s Guide and Reference

Constructors
■ description: the description of the audio object.

■ source: the ORDSource where the audio data is to be found.

■ format: the format in which the audio data is stored.

■ mimeType: the MIME type information.

■ comments: the comment information of the audio object.

■ encoding: the encoding type of the audio data.

■ numberOfChannels: the number of audio channels in the audio data.

■ samplingRate: the rate in Hz at which the audio data was recorded.

■ sampleSize: the sample width or number of samples of audio in the data.

■ compressionType: the compression type of the audio data.

■ audioDuration: the total duration of the audio data stored.

6.2 Constructors
This section describes the constructor functions.

The interMedia constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle
interMedia Annotator utility. Oracle Corporation recommends that
you not write to this attribute directly.
ORDAudio Reference Information 6-7

init()
init()

Format
init() RETURN ORDAudio;

Description
Allows for easy initialization of instances of the ORDAudio object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDAudio object attributes:

BEGIN
INSERT INTO taud VALUES (ORDSYS.ORDAudio.init());
6-8 Oracle interMedia User’s Guide and Reference

init()
END;
/

ORDAudio Reference Information 6-9

init(srcType,srcLocation,srcName)
init(srcType,srcLocation,srcName)

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDAudio;

Description
Allows for easy initialization of instances of the ORDAudio object type.

Parameters

srcType
The source type of the audio data.

srcLocation
The source location of the audio data.

srcName
The source name of the audio data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDAudio attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
6-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDAudio object type, especially if the ORDAudio type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDAudio object attributes:

BEGIN
INSERT INTO taud VALUES (ORDSYS.ORDAudio.init(’file’,’AUDDIR’,’audio1.au’));
END;
/

ORDAudio Reference Information 6-11

Methods
6.3 Methods
This section presents reference information on the Oracle interMedia methods used
for audio data manipulation. These methods are described in the following
groupings:

ORDAudio Methods Associated with the updateTime Attribute
■ getUpdateTime(): returns the time when the audio object was last updated. See

"getUpdateTime()" on page 5-25 for information.

■ setUpdateTime(): sets the update time for the audio object. This method is
called implicitly by methods that modify natively supported audio formats. See
"setUpdateTime()" on page 5-39 for information.

ORDAudio Methods Associated with the description Attribute
■ setDescription(): sets the description of the audio data. See "setDescription()"

on page 6-44.

■ getDescription(): returns the description of the audio data. See "getDescription(
)" on page 6-28.

ORDAudio Methods Associated with mimeType Attribute
■ setMimeType(): sets the MIME type of the stored audio data. This method is

called implicitly by any method that modifies natively supported audio
formats. See "setMimeType()" on page 5-35 for information.

■ getMimeType(): returns the MIME type of the stored audio data. See
"getMimeType()" on page 5-17 for information.

ORDAudio Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in. See "processSourceCommand()" on page 5-29 for information.

■ isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

■ setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

■ clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.
6-12 Oracle interMedia User’s Guide and Reference

Methods
■ setSource(): sets the source information to where audio data is found. See
"setSource()" on page 5-37 for information.

■ getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

■ getSourceType(): returns the external source type of the audio data. See
"getSourceType()" on page 5-23 for information.

■ getSourceLocation(): returns the external source location of the audio data. See
"getSourceLocation()" on page 5-21 for information.

■ getSourceName(): returns the external source name of the audio data. See
"getSourceName()" on page 5-22 for information.

■ import(): transfers data from an external data source (specified by calling
setSourceInformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local and
updating the timestamp. See "import()" on page 6-36.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 6-36.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

■ getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 6-24.

■ getContentInLob(): returns content into a temporary LOB. See
"getContentInLob()" on page 6-26 for information.

■ getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

■ deleteContent(): deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
ORDAudio Reference Information 6-13

Methods
■ getBFILE(): returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

ORDAudio Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27

for information.

■ closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

■ trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

ORDAudio Methods Associated with Audio Attributes Accessors
■ setFormat(): sets the object attribute value of the format of the audio data. See

"setFormat()" on page 6-47 for information.

■ getFormat(): returns the object attribute value of the format in which the audio
data is stored. See "getFormat()" on page 6-30.

■ setEncoding(): sets the object attribute value of the encoding type of the audio
data. See "setEncoding()" on page 6-46.

■ getEncoding(): returns the object attribute value of the encoding type of the
audio data. See "getEncoding()" on page 6-29.

■ setNumberOfChannels(): sets the object attribute value of the number of audio
channels of the audio data. See "setNumberOfChannels()" on page 6-51.

■ getNumberOfChannels(): returns the object attribute value of the number of
audio channels in the audio data. See "getNumberOfChannels()" on page 6-31.

■ setSamplingRate(): sets the object attribute value of the sampling rate of the
audio data. See "setSamplingRate()" on page 6-54.

■ getSamplingRate(): returns the object attribute value of the sampling rate in
samples per second at which the audio data was recorded. See
"getSamplingRate()" on page 6-33.
6-14 Oracle interMedia User’s Guide and Reference

Methods
■ setSampleSize(): sets the object attribute value of the sample width or number
of samples of audio in the data. See "setSampleSize()" on page 6-55.

■ getSampleSize(): returns the object attribute value of the sample width or
number of samples of audio in the data. See "getSampleSize()" on page 6-32.

■ setCompressionType(): sets the object attribute value of the compression type
of the audio data. See "setCompressionType()" on page 6-43.

■ getCompressionType(): returns the object attribute value of the compression
type of the audio data. See "getCompressionType()" on page 6-25.

■ setAudioDuration(): sets the object attribute value of the total time value for
the time required to play the audio data. See "setAudioDuration()" on
page 6-42.

■ getAudioDuration(): returns the object attribute value of the total time required
to play the audio data. See "getAudioDuration()" on page 6-23.

■ setKnownAttributes(): sets known audio attributes including format, encoding
type, number of channels, sampling rate, sample size, compression type, and
audio duration of the audio data. The parameters are passed in with this call.
See "setKnownAttributes()" on page 6-49.

■ setProperties(): reads the audio data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility. See "setProperties()" on
page 6-52.

For the known attributes that ORDAudio understands, it sets the properties for
these attributes. These include: format, encoding type, data type, number of
channels, sampling rate, and sample size of the audio data. See "setMimeType(
)" on page 5-35 for information.

■ checkProperties(): calls the format plug-in to check the properties including
format, encoding type, number of channels, sampling rate, and sample size of
the audio data, and returns a Boolean value TRUE if the properties stored in
object attributes match those in the audio data. See "checkProperties()" on
page 6-17.

■ getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins. See "getAttribute()" on page 6-21.

■ getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of audio data
ORDAudio Reference Information 6-15

Methods
attributes separated by a comma (,): FileFormat, Encoding, NumberOfChannels,
SamplingRate, and SampleSize. Different format plug-ins can return data in any
format in this call. For user-defined formats, the string is defined by the format
plug-in. See "getAllAttributes()" on page 6-19.

ORDAudio Methods Associated with Processing Audio Data
■ processAudioCommand(): sends commands and related arguments to the

format plug-in for processing. This method is available only for user-defined
format plug-ins. See "processAudioCommand()" on page 6-39.

For more information on object types and methods, see Oracle9i Database Concepts.

6.3.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
audio table TAUD. Refer to the TAUD table definition that follows when reading
through the examples:

TAUD Table Definition
CREATE TABLE TAUD(n NUMBER, aud ORDSYS.ORDAUDIO)
storage (initial 100K next 100K pctincrease 0);

INSERT INTO TAUD VALUES(1, ORDSYS.ORDAudio.init());
INSERT INTO TAUD VALUES(2, ORDSYS.ORDAudio.init());
6-16 Oracle interMedia User’s Guide and Reference

checkProperties()
checkProperties()

Format
checkProperties(ctx IN OUT RAW) RETURN BOOLEAN;

Description
Checks the properties of the stored audio data, including the following audio
attributes: sample size, sample rate, number of channels, format, and encoding type.

Parameters

ctx
The format plug-in context information.

Usage Notes
If the format is set to NULL, then the checkProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the audio
plug-in raises an exception.

Examples
Check property information for known audio attributes:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
ORDAudio Reference Information 6-17

checkProperties()
 if(obj.checkProperties(ctx) = TRUE) then
 DBMS_OUTPUT.put_line(’true’);
 else
 DBMS_OUTPUT.put_line(’false’);
 end if;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-18 Oracle interMedia User’s Guide and Reference

getAllAttributes()
getAllAttributes()

Format
getAllAttributes(

 ctx IN OUT RAW,

 attributes IN OUT NOCOPY CLOB);

Description
Returns a formatted string for convenient client access. For natively supported
formats, the string includes the following list of audio data attributes separated by a
comma (,): fileFormat, mimeType, encoding, numberOfChannels, samplingRate,
sampleSize, compressionType, and audioDuration. For user-defined formats, the
string is defined by the format plug-in.

Parameters

ctx
The format plug-in context information.

attributes
The attributes.

Usage Notes
These audio data attributes are available from the header of the formatted audio
data.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getAllAttributes() method and the audio
plug-in raises an exception.
ORDAudio Reference Information 6-19

getAllAttributes()
Examples
Return all audio attributes for audio data stored in the database:

DECLARE
 obj ORDSYS.ORDAudio;
 tempLob CLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting comma separated list of all attribs’);
 DBMS_OUTPUT.PUT_LINE(’---’);
 DBMS_LOB.CREATETEMPORARY(tempLob, FALSE, DBMS_LOB.CALL);
 obj.getAllAttributes(ctx,tempLob);
 DBMS_OUTPUT.put_line(DBMS_LOB.substr(tempLob, DBMS_LOB.getLength(tempLob) , 1));

 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.PUT_LINE(’ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION caught’);
END;
/

6-20 Oracle interMedia User’s Guide and Reference

getAttribute()
getAttribute()

Format
getAttribute(

 ctx IN OUT RAW,

 name IN VARCHAR2)

RETURN VARCHAR2;

Description
Returns the value of the requested attribute from audio data for user-defined
formats only.

Parameters

ctx
The format plug-in context information.

name
The name of the attribute.

Usage Notes
The audio data attributes are available from the header of the formatted audio data.

Audio data attribute information can be extracted from the audio data itself. You
can extend support to a format not understood by the ORDAudio object by
implementing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 3.4.13 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getAttribute() method and the audio plug-in
raises an exception.
ORDAudio Reference Information 6-21

getAttribute()
Examples
Return information for the specified audio attribute for audio data stored in the
database:

DECLARE
 obj ORDSYS.ORDAudio;
 res VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting audio sample size’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 res := obj.getAttribute(ctx,’sample_size’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

6-22 Oracle interMedia User’s Guide and Reference

getAudioDuration()
getAudioDuration()

Format
getAudioDuration() RETURN INTEGER;

Description
Returns the value of the audioDuration attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-23

getContentLength()
getContentLength()

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the audio data content stored in the source.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
See the example in import() on page 6-35.
6-24 Oracle interMedia User’s Guide and Reference

getCompressionType()
getCompressionType()

Format
getCompressionType() RETURN VARCHAR2;

Description
Returns the value of the compressionType attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-25

getContentInLob()
getContentInLob()

Format
getContentInLob(

 ctx IN OUT RAW,

 dest_lob IN OUT NOCOPY BLOB,

 mimeType OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
6-26 Oracle interMedia User’s Guide and Reference

getContentInLob()
This exception is raised if you call the getContentInLob() method and the value of
srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentInLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Get data from a data source and put it into the specified BLOB:

DECLARE
 obj ORDSYS.ORDAudio;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N = 1 ;
 if(obj.isLocal) then
 DBMS_OUTPUT.put_line(’local is true’);
 end if;
 DBMS_LOB.CREATETEMPORARY(tempBLob, true, 10);
 obj.getContentInLob(ctx,tempBLob, mimeType,format);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(tempBLob)));
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDAudio Reference Information 6-27

getDescription()
getDescription()

Format
getDescription() RETURN VARCHAR2;

Description
Returns the description of the audio data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS)

Exceptions
DESCRIPTION_IS_NOT_SET

This exception is raised if you call the getDescription() method and the description
is not set.

Examples
See the example in setDescription() on page 6-44.
6-28 Oracle interMedia User’s Guide and Reference

getEncoding()
getEncoding()

Format
getEncoding() RETURN VARCHAR2;

Description
Returns the value of the encoding attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-29

getFormat()
getFormat()

Format
getFormat() RETURN VARCHAR2;

Description
Returns the value of the format attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS)

Exceptions
AUDIO_FORMAT_IS_NULL

This exception is raised if you call the getFormat() method and the value for format
is NULL.

Examples
See the example in setProperties() on page 6-52.
6-30 Oracle interMedia User’s Guide and Reference

getNumberOfChannels()
getNumberOfChannels()

Format
getNumberOfChannels() RETURN INTEGER;

Description
Returns the value of the numberOfChannels attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfChannels, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-31

getSampleSize()
getSampleSize()

Format
getSampleSize() RETURN INTEGER;

Description
Returns the value of the sampleSize attribute of the audio object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
6-32 Oracle interMedia User’s Guide and Reference

getSamplingRate()
getSamplingRate()

Format
getSamplingRate() IN INTEGER;

Description
Returns the value of the samplingRate attribute of the audio object. The unit is Hz.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-33

import()
import()

Format
import(ctx IN OUT RAW);

Description
Transfers audio data from an external audio data source to a local source (localData)
within an Oracle database.

Parameters

ctx
The source plug-in context information.This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE
6-34 Oracle interMedia User’s Guide and Reference

import()
This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and the import() method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import audio data from an external audio data source into the local source:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’file’,’AUDIODIR’,’testaud.dat’);
 -- get source information
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 -- import data
 obj.import(ctx);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

ORDAudio Reference Information 6-35

importFrom()
importFrom()

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers audio data from the specified external audio data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the audio data.

source_location
The location from where the audio data is to be imported.

source_name
The name of the audio data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external audio data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.
6-36 Oracle interMedia User’s Guide and Reference

importFrom()
Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import audio data from the specified external data source into the local source:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 -- import data
 obj.importFrom(ctx,’file’,’AUDIODIR’,’testaud.dat’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent())));
ORDAudio Reference Information 6-37

importFrom()
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’Source not specified’);
END;
/

6-38 Oracle interMedia User’s Guide and Reference

processAudioCommand()
processAudioCommand()

Format
processAudioCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send a command and related arguments to the format plug-in for
processing.

Parameters

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Usage Notes
Use this method to send any audio commands and their respective arguments to
the format plug-in. Commands are not interpreted; they are taken and passed
through to a format plug-in to be processed.

Note: This method is supported only for user-defined format
plug-ins.
ORDAudio Reference Information 6-39

processAudioCommand()
If the format is set to NULL, then the processAudioCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDAudio object
by preparing an ORDPLUGINS.ORDX_<format>_AUDIO package that supports
that format. See Section 3.4.13 for more information.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the processAudioCommand() method and the
audio plug-in raises an exception.

Examples
Process a set of commands:

DECLARE
 obj ORDSYS.ORDAudio;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for UPDATE;
 -- assign command
 -- assign argList
 res := obj.processAudioCommand (ctx, command, argList, result);
 UPDATE TAUD SET aud=obj WHERE N=1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’AUDIO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDAudioExceptions.AUDIO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’AUDIO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
6-40 Oracle interMedia User’s Guide and Reference

processAudioCommand()
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDAudio Reference Information 6-41

setAudioDuration()
setAudioDuration()

Format
setAudioDuration(knownAudioDuration IN INTEGER);

Description
Sets the value of the audioDuration attribute of the audio object.

Parameters

knownAudioDuration
A known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setAudioDuration() method and the value
for the knownAudioDuration parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
6-42 Oracle interMedia User’s Guide and Reference

setCompressionType()
setCompressionType()

Format
setCompressionType(knownCompressionType IN VARCHAR2);

Description
Sets the value of the compressionType attribute of the audio object.

Parameters

knownCompressionType
A known compression type.

Usage Notes
The value of the compressionType always matches that of the encoding value
because in many audio formats, encoding and compression type are tightly
integrated. See Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-43

setDescription()
setDescription()

Format
setDescription (user_description IN VARCHAR2);

Description
Sets the description of the audio data.

Parameters

user_description
The description of the audio data.

Usage Notes
Each audio object may need a description to help some client applications. For
example, a Web-based client can show a list of audio descriptions from which a user
can select one to access the audio data.

Web-access components and other client components provided with Oracle
interMedia make use of this description attribute to present audio data to users.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the description attribute for some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 SELECT aud INTO obj FROM TAUD WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing title’);
 DBMS_OUTPUT.PUT_LINE(’-------------’);
6-44 Oracle interMedia User’s Guide and Reference

setDescription()
 obj.setDescription(’audio1.wav’);
 DBMS_OUTPUT.PUT_LINE(obj.getDescription());
 UPDATE TAUD SET aud=obj WHERE N=1;
 COMMIT;
END;
/

ORDAudio Reference Information 6-45

setEncoding()
setEncoding()

Format
setEncoding(knownEncoding IN VARCHAR2);

Description
Sets the value of the encoding attribute of the audio object.

Parameters

knownEncoding
A known encoding type.

Usage Notes
The value of encoding always matches that of the compressionType value because
in many audio formats, encoding and compression type are tightly integrated. See
Appendix A for more information.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setEncoding() method and the value for the
knownEncoding parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
6-46 Oracle interMedia User’s Guide and Reference

setFormat()
setFormat()

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the audio object.

Parameters

knownFormat
The known format of the audio data to be set in the audio object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some audio data:

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setFormat(’AUFF’);
 obj.setEncoding(’MULAW’);
 obj.setNumberOfChannels(1);
 obj.setSamplingRate(8);
 obj.setSampleSize(8);
 obj.setCompressionType(’8BITMONOAUDIO’);
 obj.setAudioDuration(16);
ORDAudio Reference Information 6-47

setFormat()
 DBMS_OUTPUT.put_line(’format: ’ || obj.getformat);
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize));
 DBMS_OUTPUT.put_line(’compressionType : ’ || obj.getCompressionType);
 DBMS_OUTPUT.put_line(’audioDuration: ’ || TO_CHAR(obj.getAudioDuration));
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.NULL_INPUT_VALUE THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.NULL_INPUT_VALUE caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-48 Oracle interMedia User’s Guide and Reference

setKnownAttributes()
setKnownAttributes()

Format
setKnownAttributes(

 knownFormat IN VARCHAR2,

 knownEncoding IN VARCHAR2,

 knownNumberOfChannels IN INTEGER,

 knownSamplingRate IN INTEGER,

 knownSamleSize IN INTEGER,

 knownCompressionType IN VARCHAR2,

 knownAudioDuration IN INTEGER);

Description
Sets the known audio attributes for the audio object.

Parameters

knownFormat
The known format.

knownEncoding
The known encoding type.

knownNumberOfChannels
The known number of channels.

knownSamplingRate
The known sampling rate.

knownSampleSize
The known sample size.

knownCompressionType
The known compression type.
ORDAudio Reference Information 6-49

setKnownAttributes()
knownAudioDuration
The known audio duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the known attributes for the audio data.

DECLARE
 obj ORDSYS.ORDAudio;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setKnownAttributes(’AUFF’,’MULAW’, 1, 8, 8, ’8BITMONOAUDIO’,16);
 DBMS_OUTPUT.put_line(’format: ’ || obj.getformat());
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding());
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels()));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate()));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize()));
 DBMS_OUTPUT.put_line(’compressionType : ’ || obj.getCompressionType());
 DBMS_OUTPUT.put_line(’audioDuration: ’ || TO_CHAR(obj.getAudioDuration()));
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

6-50 Oracle interMedia User’s Guide and Reference

setNumberOfChannels()
setNumberOfChannels()

Format
setNumberOfChannels(knownNumberOfChannels IN INTEGER);

Description
Sets the value of the numberOfChannels attribute for the audio object.

Parameters

knownNumberOfChannels
A known number of channels.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfChannels() method and the
value for the knownNumberOfChannels parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-51

setProperties()
setProperties()

Format
setProperties(ctx IN OUT RAW,

 setComments IN BOOLEAN);

Description
Reads the audio data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the audio data: format, encoding type, number of channels, sampling rate, and
sample size. It populates the comments field of the object with a rich set of format
and application properties in XML form if the value of the setComments parameter
is TRUE.

Parameters

ctx
The format plug-in context information.

setComments
If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the audio object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

Pragmas
None.
6-52 Oracle interMedia User’s Guide and Reference

setProperties()
Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the audio plug-in
raises an exception.

Examples
Set the property information for known audio attributes:

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(4000) :=NULL;
BEGIN
 select aud into obj from TAUD where N =1 for update;
 obj.setProperties(ctx,FALSE);
 --DBMS_OUTPUT.put_line(’format: ’ || obj.getformat());
 DBMS_OUTPUT.put_line(’encoding: ’ || obj.getEncoding());
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || TO_CHAR(obj.getNumberOfChannels()));
 DBMS_OUTPUT.put_line(’samplingRate: ’ || TO_CHAR(obj.getSamplingRate()));
 DBMS_OUTPUT.put_line(’sampleSize: ’ || TO_CHAR(obj.getSampleSize()));
 update TAUD set aud = obj where N =1 ;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDAudioExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDAudio Reference Information 6-53

setSamplingRate()
setSamplingRate()

Format
setSamplingRate(knownSamplingRate IN INTEGER);

Description
Sets the value of the samplingRate attribute of the audio object. The unit is Hz.

Parameters

knownSamplingRate
A known sampling rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setSamplingRate() method and the value for
the knownSamplingRate parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
6-54 Oracle interMedia User’s Guide and Reference

setSampleSize()
setSampleSize()

Format
setSampleSize(knownSampleSize IN INTEGER);

Description
Sets the value of the sampleSize attribute of the audio object.

Parameters

knownSampleSize
A known sample size.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setSampleSize() method and the value for the
knownSampleSize parameter is NULL.

Examples
See the example in setProperties() on page 6-52.
ORDAudio Reference Information 6-55

Packages or PL/SQL Plug-ins
6.4 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 6–1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Section 6.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_AUDIO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 6–1
are identical for all plug-in packages, therefore, refer to Section 6.4.1.

6.4.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the following provided ORDPLUGINS.ORDX_DEFAULT_AUDIO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_AUDIO audio
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_AUDIO
authid current_user
AS
--AUDIO ATTRIBUTES ACCESSORS
--Deprecated Functions Deprecated in Release 8.1.6 Begin Here
FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getEncoding(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getNumberOfChannels(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
FUNCTION getSamplingRate(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;

Table 6–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_AUDIO <format> Dependent on file format

ORDPLUGINS.ORDX_AUFF_AUDIO AUFF audio/basic

ORDPLUGINS.ORDX_AIFF_AUDIO AIFF audio/x-aiff

ORDPLUGINS.ORDX_AIFC_AUDIO AIFC audio/x-aiff

ORDPLUGINS.ORDX_WAVE_AUDIO WAVE audio/x-wave

ORDPLUGINS.ORDX_MPGA_AUDIO MPGA audio/mpeg
6-56 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
FUNCTION getSampleSize(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2;
FUNCTION getAudioDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER;
--Deprecated Functions Deprecated in Release 8.1.6 End Here

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER;
FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB);
--AUDIO PROCESSING METHODS
FUNCTION processCommand(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARHAR2,
 result OUT RAW)
 RETURN RAW;

PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getEncoding, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfChennels, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getSamplingRate, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getSampleSize, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAttribute, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAudioDuration, WNDS, WNPS, RNDS, RNPS);

END;
/

Table 6–2 shows the methods supported in the
ORDPLUGINS.ORDX_DEFAULT_AUDIO package and the exceptions raised if you
call a method that is not supported.
ORDAudio Reference Information 6-57

Packages or PL/SQL Plug-ins
Table 6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

Name of Method Level of Support

getFormat Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getEncoding Supported; if the source is local, get the attribute and return the encoding, but
if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfChannels Supported; if the source is local, get the attribute and return the number of
channels, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSamplingRate Supported; if the source is local, get the attribute and return the sampling
rate, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getSampleSize Supported; if the source is local, get the attribute and return the sample size,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getCompressionType Supported; if the source is local, get the attribute and return the compression
type, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getAudioDuration Supported; if the source is local, get the attribute and return the audio
duration, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.
6-58 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
6.4.2 Extending interMedia to Support a New Audio Data Format
Extending interMedia to support a new audio data format consists of four steps:

1. Design your new audio data format.

2. Implement your new audio data format and name it, for example, ORDX_MY_
AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
AUDIO.SQL plug-in, to PUBLIC.

Section 3.1.12 briefly describes how to extend interMedia to support a new audio
data format and describes the interface. A package body listing is provided in
Example 6–1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

setProperties Supported; if the source is local, process the local data and set the properties,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and set the properties; if the source is neither
local nor a BFILE, get the media content into a temporary LOB, process the
data, and set the properties.

checkProperties Supported; if the source is local, process the local data and check the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and check the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and check the properties.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them, but if the
source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY_SOURCE
exception; otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
AUDIO_PLUGIN_EXCEPTION.

Table 6–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package(Cont.)

Name of Method Level of Support
ORDAudio Reference Information 6-59

Packages or PL/SQL Plug-ins
See Section F.1 for more information on installing your own audio format plug-in
and running the sample scripts provided.

Example 6–1 Show the Package Body for Extending Support to a New Audio
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_AUDIO
AS
 --AUDIO ATTRIBUTES ACCESSORS
 FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getEncoding(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfChannels(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getSamplingRate(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getSampleSize(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDAudio)
6-60 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAudioDuration(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER :=0)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB)
 IS
--Your variables go here
 BEGIN
--Your code goes here
ORDAudio Reference Information 6-61

Packages or PL/SQL Plug-ins
 END;
 -- AUDIO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
END;
/
show errors;
6-62 Oracle interMedia User’s Guide and Reference

ORDDoc Reference Inform
7

ORDDoc Reference Information

Oracle interMedia contains information about the ORDDoc type:

■ Object type -- see Section 7.1.

■ Constructors -- see Section 7.2.

■ Methods -- see Section 7.3.

■ Packages or PL/SQL plug-ins -- see Section 7.4.

The examples in this chapter assume that the test media table TDOC has been
created and filled with data. This table was created using the SQL statements
described in Section 7.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx(RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the media data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the media data.
ation 7-1

Object Types
Methods invoked at the ORDDoc level that are handed off to the format plug-in for
processing have ctx (RAW(4000)) as the first argument. Before calling any of these
methods for the first time, the client must allocate the ctx structure and initialize it
to NULL.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

7.1 Object Types
Oracle interMedia describes the ORDDoc object type, which supports the storage
and management of any media data including text, image, audio, and video.

Note: In the current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.
7-2 Oracle interMedia User’s Guide and Reference

ORDDoc Object Type
ORDDoc Object Type

The ORDDoc object type supports the storage and management of media data. This
object type is defined as follows:

CREATE OR REPLACE TYPE ORDDoc
AS OBJECT
(
 -- ATTRIBUTES
source ORDSource,
format VARCHAR(80),
mimeType VARCHAR(80),
contentLength INTEGER,
comments CLOB,

 -- METHODS
-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDDoc,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDDoc,
-- Methods associated with the mimeType attribute
MEMBER FUNCTION getMimeType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),

-- Methods associated with the date attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),

-- Methods associated with the format attribute
MEMBER FUNCTION getFormat RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setFormat(format IN VARCHAR2),

-- Methods associated with the source attribute
MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,
ORDDoc Reference Information 7-3

ORDDoc Object Type
MEMBER PROCEDURE setSource(source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSource RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setProperties(ctx IN OUT RAW,
 setComments IN BOOLEAN),

MEMBER FUNCTION getBFILE RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE import(ctx IN OUT RAW,
 set_prop IN BOOLEAN),
MEMBER PROCEDURE importFrom(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2
 set_prop IN BOOLEAN),
MEMBER PROCEDURE export(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),

MEMBER FUNCTION openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION closeSource(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trimSource(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,
MEMBER PROCEDURE readFromSource(ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE writeToSource(ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),
7-4

Constructors
MEMBER FUNCTION getContentLength RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE getContentInLob(ctx IN OUT RAW,
 dest_lob IN OUT NOCOPY BLOB,
 mimeType OUT VARCHAR2,
 format OUT VARCHAR2),

MEMBER FUNCTION getContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE deleteContent,

MEMBER FUNCTION processSourceCommand(ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW

);
where:

■ source: the ORDSource where the media data is found.

■ format: the format in which the media data is stored.

■ mimeType: the MIME type information.

■ contentLength: the length of the media data stored in the source.

■ comments: the metadata information of the media object.

7.2 Constructors
This section describes the constructor functions.

The interMedia constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)
ORDDoc Reference Information 7-5

init()
init()

Format
init() RETURN ORDDoc;

Description
Allows for easy initialization of instances of the ORDDoc object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDDoc attributes to NULL with the following
exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDDoc object type, especially if the ORDDoc type evolves and
attributes are added in a future release. INSERT statements left unchanged using
the default constructor (which initializes each object attribute), will fail under these
circumstances.

Examples
Initialize the ORDDoc object attributes:

BEGIN
 INSERT INTO tdoc VALUES (1,ORDSYS.ORDDoc.init());
7-6 Oracle interMedia User’s Guide and Reference

init()
END;
/

ORDDoc Reference Information 7-7

init(srcType,srcLocation,srcName)
init(srcType,srcLocation,srcName)

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDDoc;

Description
Allows for easy initialization of instances of the ORDDoc object type.

Parameters

srcType
The source type of the media data.

srcLocation
The source location of the media data.

srcName
The source name of the mediamedia data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDDoc attributes to NULL with the following
exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
7-8 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDDoc object type, especially if the ORDDoc type evolves and
attributes are added in a future release. INSERT statements left unchanged using
the default constructor (which initializes each object attribute), will fail under these
circumstances.

Examples
Initialize the ORDDoc object attributes.

-- Create the DOCDIR load directory; this is the directory where the media
-- files reside.

CREATE OR REPLACE DIRECTORY docdir
 as ’e:\oracle\ord\doc\demo’;
GRANT READ ON DIRECTORY docdir TO PUBLIC WITH GRANT OPTION;

BEGIN
 INSERT INTO tdoc VALUES (2, ORDSYS.ORDDoc.init(’file’,’DOCDIR’,’doc1.pdf’);
END;
/

Note: You must first create the DOCDIR directory; this is the
directory where your media files reside. Create this directory using
the following SQL statement and then grant read access to PUBLIC
to this directory. Change this directory specification to match the
location of your media files.
ORDDoc Reference Information 7-9

Methods
7.3 Methods
This section presents reference information on the Oracle interMedia methods used
for media data manipulation. These methods are described in the following
groupings:

ORDDoc Methods Associated with mimeType Attribute
■ getMimeType: returns the MIME type of the stored media data. See

"getMimeType()" on page 5-17 for information.

■ setMimeType(): sets the MIME type of the stored media data. This method is
called implicitly by any method that modifies natively supported media
formats. See "setMimeType()" on page 5-35 for information.

ORDDoc Methods Associated with the updateTime Attribute
■ getUpdateTime: returns the time when the media object was last updated. See

"getUpdateTime()" on page 5-25 for information.

■ setUpdateTime(): sets the update time for the media object. This method is
called implicitly by methods that modify natively supported media formats. See
"setUpdateTime()" on page 5-39 for information.

ORDDoc Methods Associated with the format Attribute
■ setFormat(): sets the object attribute value of the format of the media data. See

"setFormat()" on page 7-24 for information.

■ getFormat: returns the object attribute value of the format in which the media
data is stored. See "getFormat" on page 7-17.

ORDDoc Methods Associated with the source Attribute
■ isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the

data is external. See "isLocal()" on page 5-26 for information.

■ setLocal: sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

■ clearLocal: clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

■ setSource(): sets the source information to where media data is found. See
"setSource()" on page 5-37 for information.
7-10 Oracle interMedia User’s Guide and Reference

Methods
■ getSource: returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

■ getSourceType: returns the external source type of the media data. See
"getSourceType()" on page 5-23 for information.

■ getSourceLocation: returns the external source location of the media data. See
"getSourceLocation()" on page 5-21 for information.

■ getSourceName: returns the external source name of the media data. See
"getSourceName()" on page 5-22 for information.

■ setProperties(): reads the media data to get the values of the object attributes
and then stores them in the object for known format types. If the value for the
setComments parameter is TRUE, then the comments field of the object will be
populated with an extensive set of format and application properties of the
media object in XML form, identical to what is provided by the interMedia
Annotator utility. For the known attributes that ORDDoc understands, it sets
the properties for these attributes. These include the format of the media data.
This method also automatically sets the content length of the media and sets the
update time. See "setProperties()" on page 7-26.

■ import(): transfers data from an external data source (specified by calling
setSourceInformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local, and
updating the timestamp. See "import()" on page 7-18.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 7-21.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

■ getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 7-16.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
ORDDoc Reference Information 7-11

Methods
■ getContentInLob(): returns content into a temporary LOB. See
"getContentInLob()" on page 7-14 for information.

■ getContent: returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

■ deleteContent: deletes the content of the local BLOB. See "deleteContent()" on
page 5-8 for information.

■ getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

■ processSourceCommand(): sends a command and related arguments to the
source plug-in. See "processSourceCommand()" on page 5-29 for information.

ORDDoc Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27

for information.

■ closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

■ trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

For more information on object types and methods, see Oracle9i Database Concepts.

7.3.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
media table TDOC. Refer to the TDOC table definition that follows when reading
through the examples:

TDOC Table Definition
CREATE TABLE TDOC(n NUMBER CONSTRAINT n_pk PRIMARY KEY,
 doc ORDSYS.ORDDOC)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO tdoc VALUES(1, ORDSYS.ORDDoc.init());
7-12 Oracle interMedia User’s Guide and Reference

Methods
INSERT INTO tdoc VALUES(2, ORDSYS.ORDDoc.init());
ORDDoc Reference Information 7-13

getContentInLob()
getContentInLob()

Format
getContentInLob(

 ctx IN OUT RAW,

 dest_lob IN OUT NOCOPY BLOB,

 mimeType OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
7-14 Oracle interMedia User’s Guide and Reference

getContentInLob()
This exception is raised if you call the getContentInLob() method and the value of
srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentInLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Get data from a data source and put it into the specified BLOB:

DECLARE
 obj ORDSYS.ORDDoc;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N = 1 ;
 if(obj.isLocal()) then
 DBMS_OUTPUT.put_line(’local is true’);
 end if;
 DBMS_LOB.CREATETEMPORARY(tempBLob, true, 10);
 obj.getContentInLob(ctx,tempBLob, mimeType,format);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(tempBLob)));
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDDoc Reference Information 7-15

getContentLength()
getContentLength()

Format
getContentLength RETURN INTEGER;

Description
Returns the length of the media data content stored in the source.

Parameters
None.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
See the example in import() on page 7-19.
7-16 Oracle interMedia User’s Guide and Reference

getFormat
getFormat

Format
getFormat RETURN VARCHAR2;

Description
Returns the value of the format attribute of the media object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS)

Exceptions
INVALID_FORMAT_TYPE

This exception is raised if you call the getFormat() method and the value for format
is NULL.

Examples
See the example in setProperties() on page 7-26.
ORDDoc Reference Information 7-17

import()
import()

Format
import(ctx IN OUT RAW

 set_prop IN BOOLEAN);

Description
Transfers media data from an external media data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information.This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

set_prop
If the value is TRUE, then the setProperties() method is called to read the media
data to get the values of the object attributes and store them in the object attributes,
otherwise, if the value is FALSE, the set Properties() method is not called. The
default value is FALSE.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external media data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.
7-18 Oracle interMedia User’s Guide and Reference

import()
Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and the import() method is
not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION

This exception is raised if you call the import() method and the setProperties()
method raises an exception from within the media plug-in.

See Appendix H for more information about these exceptions.

Examples
Import media data from an external media data source into the local source:

DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’file’,’DOCDIR’,’testdoc.dat’);
 -- get source information
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 -- import data
 obj.import(ctx,FALSE);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(obj.getContent())));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
ORDDoc Reference Information 7-19

import()
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(obj.getContent())));
 UPDATE tdoc SET doc=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’DOC PLUGIN EXCEPTION caught’);
END;
/

7-20 Oracle interMedia User’s Guide and Reference

importFrom()
importFrom()

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2

 set_prop IN BOOLEAN);

Description
Transfers media data from the specified external media data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the media data.

source_location
The location from where the media data is to be imported.

source_name
The name of the media data.

set_prop
If the value is TRUE, then the setProperties() method is called to read the media
data to get the values of the object attributes and store them in the object attributes,
otherwise, if the value is FALSE, the set Properties() method is not called. The
default value is FALSE.
ORDDoc Reference Information 7-21

importFrom()
Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method.

After importing data from an external media data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION

This exception is raised if you call the import() method and the setProperties()
method raises an exception from within the media plug-in.

See Appendix H for more information about these exceptions.

Examples
Import media data from the specified external data source into the local source:

DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(4000) :=NULL;
BEGIN
7-22 Oracle interMedia User’s Guide and Reference

importFrom()
 SELECT doc INTO obj FROM tdoc WHERE N=1 FOR UPDATE FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 -- import data
 obj.importFrom(ctx,’file’,’DOCDIR’,’testdoc.dat’,FALSE);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent())));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent())));
 UPDATE tdoc SET doc=obj WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’DOC PLUGIN EXCEPTION caught’);
END;
/

ORDDoc Reference Information 7-23

setFormat()
setFormat()

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the media object.

Parameters

knownFormat
The known format of the data to be set in the corresponding media object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some media data:

DECLARE
 obj ORDSYS.ORDDoc;
BEGIN
 select doc into obj from tdoc where N =1 for update;
 obj.setFormat(’PDF’);
 DBMS_OUTPUT.put_line(’format: ’ || obj.getformat());
 COMMIT;
 EXCEPTION
 WHEN ORDSYS.ORDAudioExceptions.NULL_INPUT_VALUE THEN
 DBMS_OUTPUT.put_line(’ORDSourceExceptions.NULL_INPUT_VALUE caught’);
 WHEN OTHERS THEN
7-24 Oracle interMedia User’s Guide and Reference

setFormat()
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDDoc Reference Information 7-25

setProperties()
setProperties()

Format
setProperties(ctx IN OUT RAW,

 setComments IN BOOLEAN);

Description
Reads the media data to get the values of the object attributes and then stores them
in the object attributes. This method sets the properties for the following attributes
of the media data: format, MIME type, and content length. It populates the
comments field of the object with an extensive set of format and application
properties in XML form if the value of the setComments parameter is TRUE.

Parameters

ctx
The format plug-in context information.

setComments
If the value is TRUE, then the comments field of the object is populated with an
extensive set of format and application properties of the media object in XML form,
identical to what is provided by the interMedia Annotator utility; otherwise, if the
value is FALSE, the comments field of the object remains unpopulated. The default
value is FALSE.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses the plug-in specified by the format.

Note: Some audio, image, and video formats are supported, but
no media formats are supported. This method works for only
natively supported formats. See Appendix A, Appendix B, and
Appendix C for information on natively supported media formats.
7-26 Oracle interMedia User’s Guide and Reference

setProperties()
Pragmas
None.

Exceptions
DOC_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the media
plug-in raises an exception.

Examples
Example 1: Set the property information for known media attributes:

DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N =1 FOR UPDATE;
 obj.setProperties(ctx,FALSE);
 --DBMS_OUTPUT.put_line(’format: ’ || obj.getformat());
 UPDATE tdoc SET doc = obj WHERE N =1 ;
 COMMIT;
 EXCEPTION

 WHEN ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’DOC PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

Example 2: Set the property information for known media attributes and store the
format and application properties in the comments attribute. Create an extensible
index on the contents of the comments attribute using Oracle Text.

DECLARE
 obj ORDSYS.ORDDoc;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT doc INTO obj FROM tdoc WHERE N =1 FOR UPDATE;
 obj.setProperties(ctx,TRUE);
 --DBMS_OUTPUT.put_line(’format: ’ || obj.getformat());
 UPDATE tdoc SET doc = obj WHERE N =1 ;
 COMMIT;
 EXCEPTION

 WHEN ORDSYS.ORDDocExceptions.DOC_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’DOC PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
ORDDoc Reference Information 7-27

setProperties()
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/
-- Must have interMedia text installed on your system.
CREATE INDEX mediaindex ON tdoc(doc.comments) INDEXTYPE IS ctxsys.context;
7-28 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
7.4 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 7–1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Section 7.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_DOC package, the
method supported, and the level of support. The method supported and the level of
support for the PL/SQL plug-in package is described in Table 7–2.

7.4.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package
Use the following provided ORDPLUGINS.ORDX_DEFAULT_DOC package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_DOC media
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_DOC
authid current_user
AS

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER := 0);

END;
/

Table 7–2 shows the method supported in the ORDPLUGINS.ORDX_DEFAULT_
DOC package and the exception raised if the source is null.

Table 7–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Media Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_DOC <format> Dependent on file format

Table 7–2 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package

Name of Method Level of Support

setProperties Supported; if the source is local, process the local data and set the properties,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source is
a BFILE, then process the BFILE and set the properties; if the source is neither
local nor a BFILE, get the media content into a temporary LOB, process the
data, and set the properties.
ORDDoc Reference Information 7-29

Packages or PL/SQL Plug-ins
7.4.2 Extending interMedia to Support a New Media Data Format
Extending interMedia to support a new media data format consists of four steps:

1. Design your new media data format.

2. Implement your new media data format and name it, for example, ORDX_MY_
DOC.SQL.

3. Install your new ORDX_MY_DOC.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
DOC.SQL plug-in, to PUBLIC.

Section 3.2.11 briefly describes how to extend interMedia to support a new media
data format and describes the interface. A package body listing is provided in
Example 7–1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.2 for more information on installing your own media format plug-in
and running the sample scripts provided.

Example 7–1 Show the Package Body for Extending Support to a New Media
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_DOC
AS
 --DOCUMENT ATTRIBUTES ACCESSORS
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER :=FALSE)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
END;
/
show errors;
7-30 Oracle interMedia User’s Guide and Reference

Image Object Types Reference Inform
8

Image Object Types Reference Information

Oracle interMedia contains the following information about the ORDImage type
and the ORDImageSignature type:

■ ORDImage Object type -- see Section 8.1.

■ ORDImage Constructors -- see Section 8.1.1.

■ ORDImage Methods -- see Section 8.1.2.

■ ORDImageSignature Object type -- see Section 8.2.

■ ORDImageSignature Constructor -- see Section 8.2.1.

■ ORDImageSignature Methods -- see Section 8.2.2.

■ ORDImageSignature Operators -- see Section 8.2.3.

The examples in this chapter assume that the test image table EMP has been created
and filled with data. These tables were created using the SQL statements described
in Section 8.1.3.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the source.open() method. At this point, the source plug-in

Note: If you manipulate the image data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the image data.
ation 8-1

ORDImage Object Types
can initialize the context for this client. When processing is complete, the client
should invoke the source.close() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

8.1 ORDImage Object Types
Oracle interMedia describes the ORDImage object type, which supports the storage,
management, and manipulation of image data and the ORDImageSignature object
type, which supports content-based retrieval (image matching).

Note: In the current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your application
should work with any current or future source plug-in.
8-2 Oracle interMedia User’s Guide and Reference

ORDImage Object Type
ORDImage Object Type

The ORDImage object type supports the storage and management of image data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDImage
AS OBJECT
(

 -- TYPE ATTRIBUTES

 source ORDSource,
 height INTEGER,
 width INTEGER,
 contentLength INTEGER,
 fileFormat VARCHAR2(4000),
 contentFormat VARCHAR2(4000),
 compressionFormat VARCHAR2(4000),
 mimeType VARCHAR2(4000),

-- METHOD DECLARATION

-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDImage,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDImage,

 -- Methods associated with copy operations
 MEMBER PROCEDURE copy(dest IN OUT ORDImage),

 -- Methods associated with image process operations
 MEMBER PROCEDURE process(command IN VARCHAR2),

 MEMBER PROCEDURE processCopy(command IN VARCHAR2,
 dest IN OUT ORDImage),

 -- Methods associated with image property set and check operations
 MEMBER PROCEDURE setProperties,

 MEMBER PROCEDURE setProperties(description IN VARCHAR2),
Image Object Types Reference Information 8-3

ORDImage Object Type
 MEMBER FUNCTION checkProperties RETURN BOOLEAN,

 -- Methods associated with image attributes accessors
 MEMBER FUNCTION getHeight RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getHeight, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getWidth RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getWidth, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getContentLength RETURN INTEGER,
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getFileFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getFileFormat, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getContentFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getContentFormat, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getCompressionFormat RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getCompressionFormat, WNDS, WNPS, RNDS, RNPS),

 -- Methods associated with the local attribute
 MEMBER PROCEDURE setLocal,
 MEMBER PROCEDURE clearLocal,
 MEMBER FUNCTION isLocal RETURN BOOLEAN,
 PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

 -- Methods associated with the date attribute
 MEMBER FUNCTION getUpdateTime RETURN DATE,
 PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
 MEMBER PROCEDURE setUpdateTime(current_time DATE),

 -- Methods associated with the mimeType attribute
 MEMBER FUNCTION getMimeType RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),
 MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),

 -- Methods associated with the source attribute
 MEMBER FUNCTION getContent RETURN BLOB,
 PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getBFILE RETURN BFILE,
 PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),
8-4

ORDImage Object Type
 MEMBER PROCEDURE deleteContent,

 MEMBER PROCEDURE setSource(source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 MEMBER FUNCTION getSource RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceType RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

 MEMBER FUNCTION getSourceName RETURN VARCHAR2,
 PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

 MEMBER PROCEDURE import(ctx IN OUT RAW),
 MEMBER PROCEDURE importFrom(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 MEMBER PROCEDURE export(ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),

);
where:

■ source: the source of the stored image data.

■ height: the height of the image in pixels.

■ width: the width of the image in pixels.

■ contentLength: the size of the on-disk image file in bytes.

■ fileFormat: the file type or format in which the image data is stored (TIFF,
JIFF, and so forth.).

■ contentFormat: the type of image (monochrome and so forth).

■ compressionFormat: the compression algorithm used on the image data.

■ mimeType: the MIME type information.
Image Object Types Reference Information 8-5

ORDImage Object Type
8.1.1 Constructors
This section describes the constructor functions.

The interMedia constructor functions are as follows:

■ init() for ORDImage

■ init(srcType,srcLocation,srcName) for ORDImage
8-6 Oracle interMedia User’s Guide and Reference

init() for ORDImage
init() for ORDImage

Format
init() RETURN ORDImage;

Description
Allows for easy initialization of instances of the ORDImage object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDImage object attributes:

BEGIN
 INSERT INTO emp VALUES (ORDSYS.ORDImage.init());
Image Object Types Reference Information 8-7

init() for ORDImage
END;
/

8-8 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage
init(srcType,srcLocation,srcName) for ORDImage

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDImage;

Description
Allows for easy initialization of instances of the ORDImage object type.

Parameters

srcType
The source type of the image data.

srcLocation
The source location of the image data.

srcName
The source name of the image data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDImage attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
Image Object Types Reference Information 8-9

init(srcType,srcLocation,srcName) for ORDImage
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDImage object type, especially if the ORDImage type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDImage object attributes:

BEGIN
 INSERT INTO emp VALUES (ORDSYS.ORDImage.init(’file’,’IMGDIR’,’image1.gif’));
END;
/

8.1.2 Methods
This section presents reference information on the Oracle interMedia methods used
for image data manipulation. These methods are described in the following
groupings:

ORDImage Methods Associated with copy Operations
■ copy(): creates a copy of an image in another ORDImage. See "copy()" on

page 8-16.

ORDImage Methods Associated with process Operations
■ process(): performs in-place image processing on an image stored in a BLOB.

See "process()" on page 8-29.

■ processCopy(): performs image processing while copying an image to another
ORDImage BLOB data type. See "processCopy()" on page 8-34.

ORDImage Methods Associated with properties set and check
Operations
■ setProperties: fills in the attribute fields of an image for native image formats.

See "setProperties" on page 8-36.
8-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage
■ setProperties(): fills in the attribute fields of an image and includes a
description parameter for foreign image formats. See "setProperties() for
Foreign Images" on page 8-38 for a description of what a foreign image is.

■ checkProperties: verifies the stored image attributes match the actual image. See
"checkProperties" on page 8-15.

ORDImage Methods Associated with image Attributes
■ getHeight: returns the height of the image in pixels. See "getHeight" on

page 8-22.

■ getWidth: returns the width of the image in pixels. See "getWidth" on page 8-23.

■ getContentLength: returns the size of the image in bytes. See
"getContentLength" on page 8-20.

■ getFileFormat: returns the file type of an image. See "getFileFormat" on
page 8-21.

■ getContentFormat: returns the format of the image. See "getContentFormat" on
page 8-19.

■ getCompressionFormat: returns the type of compression used on the image. See
"getCompressionFormat" on page 8-18.

ORDImage Methods Associated with the local Attribute
■ setLocal: sets a flag to indicate that the data is stored locally in a BLOB. See

"setLocal()" on page 5-34 for information.

■ clearLocal: clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.

■ isLocal: returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

ORDImage Methods Associated with the date Attribute
■ getUpdateTime: returns the time when the image object was last updated. See

"getUpdateTime()" on page 5-25 for information.

■ setUpdateTime(): sets the update time for the image object. This method is
called implicitly by methods that modify natively supported images. See
"setUpdateTime()" on page 5-39 for information.
Image Object Types Reference Information 8-11

init(srcType,srcLocation,srcName) for ORDImage
ORDImage Methods Associated with the mimeType Attribute
■ getMimeType: returns the MIME type of the stored image data. See

"getMimeType()" on page 5-17 for information.

■ setMimeType(): sets the MIME type of the stored image data. This method is
called implicitly by any method that modifies natively supported images. See
"setMimeType()" on page 5-35 for information.

ORDImage Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in. See "processSourceCommand()" on page 5-29 for information.

■ getContent: returns the content of the local data. See "getContent()" on
page 5-15 for information.

■ getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

■ deleteContent: deletes the content of the local data. See "deleteContent()" on
page 5-8 for information.

■ setSource(): sets the source information to where external image data is to be
found. See "setSource()" on page 5-37 for information.

■ getSource: returns a string containing complete information about the external
data source formatted as a URL. See "getSource()" on page 5-19 for information.

■ getSourceType: returns the external source type of the image data. See
"getSourceType()" on page 5-23 for information.

■ getSourceLocation: returns the external source location of the image data. See
"getSourceLocation()" on page 5-21 for information.

■ getSourceName: returns the external source name of the image data. See
"getSourceName()" on page 5-22 for information.

■ import(): transfers data from an external data source (specified by calling
setSourceInformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local, and
updating the timestamp and image attributes. See "import()" on page 8-24.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local, and updating the
timestamp and image attributes. See "importFrom()" on page 8-26.
8-12 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName) for ORDImage
■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, setting source information to parameters
supplied, and leaving all attributes unchanged. See "export()" on page 5-9 for
information.

.

ORDImage Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27

for information.

■ closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

■ trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

8.1.3 Example Table Definitions
The methods described in this chapter show examples based on a test image table
EMP. Refer to the EMP table definition that follows when reading through the
examples:

EMP Table Definition
CREATE TABLE emp (
 ename VARCHAR2(50),
 salary NUMBER,
 job VARCHAR2(50),
 department INTEGER,
 photo ORDSYS.ORDImage,
 large_photo ORDSYS.ORDImage);
DECLARE
 Image ORDSYS.ORDImage;
BEGIN

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
Image Object Types Reference Information 8-13

init(srcType,srcLocation,srcName) for ORDImage
 INSERT INTO emp VALUES (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jdoe.gif’));
 INSERT INTO emp VALUES (’Jane Doe’, 24000, ’Technical Writer’, 456,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jadoe.gif’));
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 Image.setProperties;
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
 COMMIT;
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’Jane Doe’ FOR UPDATE;
 Image.setProperties;
 UPDATE emp SET large_photo = Image WHERE ename = ’Jane Doe’;
 COMMIT;
END;
/

8-14 Oracle interMedia User’s Guide and Reference

checkProperties
checkProperties

Format
checkProperties RETURN BOOLEAN;

Description
Verifies that the properties stored in attributes of the image object match the
properties of the image. This method should not be used for foreign images (those
formats not natively supported by interMedia).

Parameters
None.

Usage Notes
Use this method to verify that the image attributes match the actual image.

Pragmas
None.

Exceptions
None.

Examples
Check the image attributes:

DECLARE
 Image ORDSYS.ORDImage;
 properties_match BOOLEAN;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- check that properties match the image
 properties_match := Image.checkProperties();
 IF properties_match THEN
 DBMS_OUTPUT.PUT_LINE(’Check Properties succeeded’);
 END IF;
END;
Image Object Types Reference Information 8-15

copy()
copy()

Format
copy(dest IN OUT ORDImage);

Description
Copies an image without changing it.

Parameters

dest
The destination of the new image.

Usage Notes
This method copies the image data, as is, including all source and image attributes,
into the supplied local destination image.

If the data is stored locally in the source, then calling this method copies the BLOB
to the destination source.localData attribute.

Calling this method copies the external source information to the external source
information of the new image whether or not source data is stored locally.

Calling this method implicitly calls the setUpdateTime() method on the destination
object to update its timestamp information.

Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the copy() method and the destination
source.localData attribute is not initialized.

This exception is raised if you call the copy() method and the source.isLocal
attribute value is 1 and the source.localData attribute value is NULL.
8-16 Oracle interMedia User’s Guide and Reference

copy()
Examples
Create a copy of the image:

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
BEGIN
 SELECT photo, large_photo
 INTO Image_2, Image_1
 FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- copy the data from Image_1 to Image_2
 Image_1.copy(Image_2);
 UPDATE emp SET photo = Image_2
 WHERE ename = ’John Doe’;
END;
/

Image Object Types Reference Information 8-17

getCompressionFormat
getCompressionFormat

Format
getCompressionFormat RETURN VARCHAR2;

Description
Returns the compression type of an image. This method does not actually read the
image, it is a simple access method that returns the value of the compressionFormat
attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the compressionFormat attribute directly to
protect yourself from potential changes to the internal representation of the
ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the compression type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 CompressionFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image compression format
 CompressionFormat := Image.getCompressionFormat();
END;
8-18 Oracle interMedia User’s Guide and Reference

getContentFormat
getContentFormat

Format
getContentFormat RETURN VARCHAR2;

Description
Returns the content type of an image (such as monochrome). This method does not
actually read the image; it is a simple access method that returns the value of the
contentFormat attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the contentFormat attribute directly to
protect yourself from potential changes to the internal representation of the
ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 ContentFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image content format
 ContentFormat := Image.getContentFormat();
END;
Image Object Types Reference Information 8-19

getContentLength
getContentLength

Format
getContentLength RETURN INTEGER;

Description
Returns the length of the image data content stored in the source. This method does
not actually read the image; it is a simple access method that returns the value of
the content length attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the contentLength attribute directly to
protect from potential future changes to the internal representation of the
ORDImage object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the length of the image data content stored in the source:

DECLARE
 Image ORDSYS.ORDImage;
 ContentLength INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image size
 ContentLength := Image.getContentLength();
END;
8-20 Oracle interMedia User’s Guide and Reference

getFileFormat
getFileFormat

Format
getFileFormat RETURN VARCHAR2;

Description
Returns the file type of an image (such as TIFF or JFIF). This method does not
actually read the image; it is a simple access method that returns the value of the
fileFormat attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the fileFormat attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFileFormat, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the file type of an image:

DECLARE
 Image ORDSYS.ORDImage;
 FileFormat VARCHAR2(4000);
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image file format
 FileFormat := Image.getFileFormat();
END;
Image Object Types Reference Information 8-21

getHeight
getHeight

Format
getHeight RETURN INTEGER;

Description
Returns the height of an image in pixels. This method does not actually read the
image; it is a simple access method that returns the value of the height attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the height attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getHeight, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the height of an image:

DECLARE
 Image ORDSYS.ORDImage;
 Height INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image height
 Height := Image.getHeight();
END;
/

8-22 Oracle interMedia User’s Guide and Reference

getWidth
getWidth

Format
getWidth RETURN INTEGER;

Description
Returns the width of an image in pixels. This method does not actually read the
image; it is a simple access method that returns the value of the width attribute.

Parameters
None.

Usage Notes
Use this method rather than accessing the width attribute directly to protect
yourself from potential changes to the internal representation of the ORDImage
object.

Pragmas
PRAGMA RESTRICT_REFERENCES(getWidth, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Get the width of an image:

DECLARE
 Image ORDSYS.ORDImage;
 Width INTEGER;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’;
 -- get the image width
 Width := Image.getWidth();
END;
/

Image Object Types Reference Information 8-23

import()
import()

Format
 MEMBER PROCEDURE import(ctx IN OUT RAW);

Description
Transfers image data from an external image data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling the import() method.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external image data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
8-24 Oracle interMedia User’s Guide and Reference

import()
This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptionsMETHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

See Appendix H for more information about these exceptions.

Examples
Import image data from an external image data source into the local source:

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) :=NULL;
BEGIN
 -- select the image to be imported
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- import the image into the database
 Image.import(ctx);
 -- update the image object
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

Image Object Types Reference Information 8-25

importFrom()
importFrom()

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers image data from the specified external image data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
source.open() method; see the introduction to this chapter for more information.

source_type
The source type of the image data.

source_location
The location from where the image data is to be imported.

source_name
The name of the image data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external image data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.
8-26 Oracle interMedia User’s Guide and Reference

importFrom()
Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

If the file format of the imported image is not previously set to a string beginning
with "OTHER", the setProperties() method is also called. Set the file format to a
string preceded by "OTHER" for foreign image formats; calling the setProperties()
method for Foreign Images does this for you.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import image data from the specified external data source into the local source:

DECLARE
 Image ORDSYS.ORDImage;
 ctx RAW(4000) :=NULL;
BEGIN
 -- select the image to be imported
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- import the image into the database
 Image.importFrom(ctx,
 ’file’,
 ’ORDIMGDIR’,
 ’jdoe.gif’);
 -- update the image object
Image Object Types Reference Information 8-27

importFrom()
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

8-28 Oracle interMedia User’s Guide and Reference

process()
process()

Format
process(command IN VARCHAR2);

Description
Performs one or more image processing operations on a BLOB, writing the image
back onto itself.

Parameters

command
A list of image processing operations to perform on the image.

Usage Notes
You can change one or more of the image attributes shown in Table 8–1. Table 8–2
shows additional changes that can be made only to raw pixel and foreign images.

Table 8–1 Image Processing Operators

Operator Name Usage Values

compressionFormat Compression type/format;
coerces output to specified
compression format if supported
by file format.

JPEG, SUNRLE, BMPRLE,TARGARLE,
LZW, LZWHDIFF, FAX3, FAX4,
HUFFMAN3, PACKBITS, GIFLZW,
ASCII, RAW, DEFLATE, NONE

compressionQuality Compression quality; determines
quality of lossy compression;
JPEG only.

MAXCOMPRATIO, MAXINTEGRITY,
LOWCOMP, MEDCOMP, HIGHCOMP

contentFormat Image type/pixel/data format

MONOCHROME | nBIT[BIP |
BIL | BSQ] {LUT[RGB | GRAY] |
{[DRCT]RGB | GREY}}; coerces
output to specified content format.

See Figure 8–1 for use and syntax flow of
the following values: MONOCHROME,
1BIT, 2BIT, 4BIT, 8BIT, 12BIT, 16BIT, 24BIT,
32BIT, 48BIT, BIP, BIL, BSQ, LUT, DRCT,
RGB, GRAY [SCALE], GREY [SCALE]

cut Window to cut or crop (origin.x
origin.y width height); first pixel
in x or y is 0 (zero); must define a
window inside image.

positive INTEGER INTEGER INTEGER
INTEGER
maximum value is 2147483648
Image Object Types Reference Information 8-29

process()
fileFormat File format of the image; coerces
output to specified file format.

BMPF, CALS, GIFF, JFIF, PBMF, PGMF,
PICT, PNGF, PNMF, PPMF, RASF, RPIX,
TGAF, TIFF, WBMP

fixedScale Scale to a specific size in pixels
(width, height); may not be
combined with other scale verbs.

positive INTEGER INTEGER

maxScale Scale to a specific size in pixels,
while maintaining the aspect ratio
(maxWidth, maxHeight); may not
be combined with other scale
verbs.

positive INTEGER INTEGER

scale Scale factor (for example, 0.5 or
2.0); uniformly scales image; may
not be combined with other scale
verbs.

<FLOAT> positive

xScale X-axis scale factor (default is 1);
non-uniformly scales image; may
be combined only with the yScale
operator; may not be combined
with any other scale verbs.

<FLOAT> positive

yScale Y-axis scale factor (default is 1);
non-uniformly scales image; may
only be combined with the xScale
operator; may not be combined
with any other scale verbs.

<FLOAT> positive

Table 8–1 Image Processing Operators(Cont.)

Operator Name Usage Values
8-30 Oracle interMedia User’s Guide and Reference

process()
Table 8–2 Additional Image Processing Operators for Raw Pixel and Foreign Images

Operator Name Usage Values

channelOrder Indicates the relative position of
the red, green, and blue channels
(bands) within the image; changes
order of output channels. Only for
RPIX.

RGB (default), RBG, GRB, GBR, BRG,
BGR

inputChannels For multiband images, specify
either one (grayscale) or three
integers indicating which
channels to assign to red (first),
green (second), and blue (third).
Note that this parameter affects
the source image, not the
destination; RPIX only.

INTEGER or
INTEGER INTEGER INTEGER

interleave (deprecated in
release 9.0.1; functions moved
to ContentFormat operator)

Controls band layout within the
image:
 Band Interleaved by Pixel
 Band Interleaved by Line
 Band Sequential

Coerces output to be BIP, BIL, or
BSQ; RPIX only.

BIP (default), BIL, BSQ

pixelOrder If NORMAL, then the leftmost
pixel appears first in the image;
coerces pixel direction. RPIX only.

NORMAL (default), REVERSE

scanlineOrder If NORMAL, then the top scanline
appears first in the image; coerces
scanline direction. RPIX and
BMPF only.

NORMAL (default), INVERSE

Dither See Section D.4.6 for more
information.

ERRORDIFFUSION, ORDEREDDITHER

Page Selects a page from a multipage
file; for use with TIFF only; first
page is 0 (zero).

positive INTEGER

Tiled No arguments; forces output
image to be tiled; for use with
TIFF only.
Image Object Types Reference Information 8-31

process()
Figure 8–1 Use and Syntax Flow Diagram for the contentFormat Operator Values

There is no implicit import() or importFrom() call performed when you call this
method; if data is external, you must first call import() or importFrom() to make
the data local before you can process it.

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
after the process() method is called.

See Appendix D for more information on process() method operators.

Pragmas
None.

Exceptions
DATA_NOT_LOCAL

This exception is raised if you call the process() method and the data is not local or
the source.localData attribute is not initialized.

Note: When specifying values that include floating-point
numbers, you must use double quotation marks ("") around the
value. If you do not, the wrong values may be passed and you will
get incorrect results.
8-32 Oracle interMedia User’s Guide and Reference

process()
Examples
Example 1: Change the file format of image1 to GIF:

image1.process(’fileFormat=GIFF’);

Example 2: Change image1 to use lower quality JPEG compression and double the
length of the image along the X-axis:

image1.process(’compressionFormat=JPEG, compressionQuality=MAXCOMPRATIO,
xScale="2.0"’);

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single operation. Any other
combinations of scale operators result in an error.

The maxScale and fixedScale operators are especially useful for creating thumbnail
images from various-sized originals. The following line creates at most a 32-by-32
pixel thumbnail image, preserving the original aspect ratio:

image1.process(’maxScale=32 32’);

Example 3: Convert the image to TIFF:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image FROM emp
 WHERE ename = 'John Doe' FOR UPDATE;
 Image.process('fileFormat=TIFF');
 UPDATE emp SET photo = Image WHERE ename = 'John Doe';
END;
/

Example 4: Change the content format to 8BIT, BIP pixel layout, LUT interpretation,
and RGB color space:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT photo INTO Image FROM emp
 WHERE ename = 'John Doe' FOR UPDATE;
 Image.process('fileFormat=TIFF','contentFormat=8BITBIPLUTRGB');
 UPDATE emp SET photo = Image WHERE ename = 'John Doe';
END;
/

Image Object Types Reference Information 8-33

processCopy()
processCopy()

Format
processCopy(command IN VARCHAR2,

 dest IN OUT ORDImage);

Description
Copies an image stored internally or externally to another image stored internally in
a BLOB.

Parameters

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

Usage Notes
See Table 8–1, "Image Processing Operators" and Table 8–2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

You cannot specify the same BLOB as both the source and destination.

Calling this method processes the image into the destination BLOB from any source
(local or external).

Implicit setProperties(), setUpdateTime(), and setMimeType() methods are done
on the destination image after the processCopy() method is called.

See Appendix D for more information on processCopy operators.

Pragmas
None.

Exceptions
NULL_DESTINATION
8-34 Oracle interMedia User’s Guide and Reference

processCopy()
This exception is raised if you call the processCopy() method and the value of dest
is NULL.

DATA_NOT_LOCAL

This exception is raised if you call the processCopy() method and the
dest.source.isLocal attribute value is FALSE, (the destination image must be local).

NULL_LOCAL_DATA

This exception is raised if you call the processCopy() method and the
dest.source.localData attribute value is NULL (destination image must be
initialized).

This exception is raised if you call the processCopy() method and the source.isLocal
attribute value is 1 and the source.localData attribute value is NULL.

Examples
Copy an image, changing the file format, compression format, and data format in
the destination image:

DECLARE
 Image_1 ORDSYS.ORDImage;
 Image_2 ORDSYS.ORDImage;
 mycommand VARCHAR2(400);
BEGIN
 SELECT photo, large_photo
 INTO Image_2, Image_1
 FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 mycommand := ’fileFormat=tiff compressionFormat=packbits
 contentFormat = 8bitlut’;
 Image_1.processCopy(mycommand, Image_2);
 UPDATE emp SET photo = Image_2 WHERE ename = ’John Doe’;
END;
/

Image Object Types Reference Information 8-35

setProperties
setProperties

Format
setProperties;

Description
Reads the image data to get the values of the object attributes, then stores them into
the appropriate attribute fields. The image data can be stored in the database in a
BLOB, or externally in a BFILE or URL. If the data is stored externally in anything
other than a BFILE, the data is read into a temporary BLOB in order to determine
the image characteristics.

This method should not be called for foreign images. Use the
setProperties(description) method for foreign images.

Parameters
None.

Usage Notes
After you have copied, stored, or processed a native format image, call this method
to set the current characteristics of the new content, except when this method is
called implicitly.

This method sets the following information about an image:

■ Height in pixels

■ Width in pixels

■ Data size of the on-disk image in bytes

■ File type (TIFF, JFIF, and so forth)

■ Image type (monochrome and so forth)

■ Compression type (JPEG, LZW, and so forth)

■ MIME type (generated based on file format)

Calling this method implicitly calls the setUpdateTime() and the setMimeType()
methods.
8-36 Oracle interMedia User’s Guide and Reference

setProperties
Pragmas
None.

Exceptions
NULL_LOCAL_DATA

This exception is raised if you call the setProperties() method and the
source.isLocal attribute value is 1 and the source.localData attribute value is NULL.

Examples
Select the image, and then set the attributes using the setProperties method:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 INSERT INTO emp VALUES (’John Doe’, 24000, ’Technical Writer’, 123,
 ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’jdoe.gif’);
 -- select the newly inserted row for update
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- set property attributes for the image data
 Image.setProperties();
 DBMS_OUTPUT.PUT_LINE(’image width = ’ || image.getWidth());
 DBMS_OUTPUT.PUT_LINE(’image height = ’ || image.getHeight());
 DBMS_OUTPUT.PUT_LINE(’image size = ’ || image.getContentLength());
 DBMS_OUTPUT.PUT_LINE(’image file type = ’ || image.getFileFormat());
 DBMS_OUTPUT.PUT_LINE(’image type = ’ || image.getContentFormat());
 DBMS_OUTPUT.PUT_LINE(’image compression = ’ || image.getCompressionFormat());
 DBMS_OUTPUT.PUT_LINE(’image mime type = ’ || image.getMimeType());
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
 END;
/

Example output:

image width = 360
image height = 490
image size = 66318
image file type = JFIF
image type = 24BITRGB
image compression = JPEG
image mime type = image/jpeg
Image Object Types Reference Information 8-37

setProperties() for Foreign Images
setProperties() for Foreign Images

Format
setProperties(description IN VARCHAR2);

Description
Allows you to write the characteristics of a foreign image into the appropriate
attribute fields.

Parameters

description
Specifies the image characteristics to set for the foreign image.

Usage Notes

After you have copied, stored, or processed a foreign image, call this method to set
the characteristics of the new image content. Unlike the native image types
described in Appendix E, foreign images either do not contain information on how
to interpret the bits in the file or, interMedia does not understand the information. In
this case, you must set the information explicitly.

You can set the following image characteristics for foreign images, as shown in
Table 8–3.

Note: Once you have set the properties for a foreign image, it is
up to you to keep the properties consistent. If interMedia detects an
unknown file format, it will not implicitly set the properties.
8-38 Oracle interMedia User’s Guide and Reference

setProperties() for Foreign Images
The values supplied to setProperties() are written to the existing ORDImage data
attributes. The fileFormat is set to "OTHER" and includes the user string, if
supplied; for example, ’OTHER: LANDSAT’.

Table 8–3 Image Characteristics for Foreign Files

Field Data Type Description

CompressionFormat STRING Value must be CCITG3, CCITG4, or NONE (default).

DataOffset INTEGER The offset allows the image to have a header that interMedia does
not try to interpret. Set the offset to avoid any potential header. The
value must be a positive integer less than the LOB length. Default is
zero.

DefaultChannelSelection INTEGER For multiband images, specify either one (grayscale) or three
integers indicating which channels to assign to red (first), green
(second), and blue (third). For example, DefaultChannelSelection =
1 for single-band images and DefaultChannelSelection = 1, 2, 3 for
triple-band images.

Height INTEGER Height of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

Interleaving STRING Band layout within the image. Valid styles are:

■ BIP (default) Band Interleaved by Pixel

■ BIL Band Interleaved by Line

■ BSQ Band Sequential

NumberOfBands INTEGER Value must be a positive integer less than 255 describing the
number of color bands in the image. Default is 3.

PixelOrder STRING If NORMAL (default), the leftmost pixel appears first in the file. If
REVERSE, the rightmost pixel appears first.

ScanlineOrder STRING If NORMAL (default), the top scanline appears first in the file. If
INVERSE, then the bottom scanline appears first.

UserString STRING A 4-character descriptive string. If used, the string is stored in the
fileFormat field, appended to the file format ("OTHER:"). Default is
blank and fileFormat is set to "OTHER".

Width INTEGER Width of the image in pixels. Value must be a positive integer.
There is no default, thus a value must be specified.

MimeType STRING Value must be a MIME type, such as img/gif.
Image Object Types Reference Information 8-39

ORDImageSignature Object Type
Pragmas
None.

Exceptions
NULL_PROPERTIES_DESCRIPTION

This exception is raised if you call the setProperties() method for Foreign Images
and the description attribute value is NULL.

Examples
Select the foreign image and then set the properties for the image:

DECLARE
 Image ORDSYS.ORDImage;
BEGIN
 SELECT large_photo INTO Image FROM emp
 WHERE ename = ’John Doe’ FOR UPDATE;
 -- set property attributes for the image data
 Image.setProperties(’width=123 height=321 compressionFormat=NONE’ ||
 ’ userString=DJM dataOffset=128’ ||
 ’ scanlineOrder=INVERSE pixelOrder=REVERSE’ ||
 ’ interleaving=BIL numberOfBands=1’ ||
 ’ defaultChannelSelection=1’);
 UPDATE emp SET large_photo = Image WHERE ename = ’John Doe’;
END;
/

8.2 ORDImageSignature Object Type
Oracle interMedia describes the ORDImageSignature object type, which supports
content-based retrieval (image matching).

The examples in this section assume that a table called stockphotos has been created
and filled with some photographic images. The table was created using the
following SQL statement:

CREATE TABLE stockphotos (photo_id NUMBER,
 photographer VARCHAR2(64),
 annotation VARCHAR2(255),
 photo ORDSYS.ORDImage,
 photo_sig ORDSYS.ORDImageSignature);
8-40 Oracle interMedia User’s Guide and Reference

ORDImageSignature Object Type
When you are storing or copying images, you must first create an empty BLOB in
the table. The following method invocation creates an empty ORDImageSignature
object:

ORDSYS.ORDImageSignature.init();
Image Object Types Reference Information 8-41

ORDImageSignature Object Type
ORDImageSignature Object Type

The ORDImageSignature object type supports content-based retrieval or image
matching. This object type is defined as follows:

CREATE OR REPLACE TYPE ORDImageSignature
AS OBJECT
(
 -- Signature of the image. Contains color, texture
 -- and shape information of the image. It is stored
 -- in a BLOB.

 signature BLOB,

-- METHOD DECLARATION

-- Makes the callout

STATIC FUNCTION init RETURN ORDImageSignature,

STATIC FUNCTION evaluateScore(sig1 IN ORDImageSignature,
 sig2 IN ORDImageSignature,
 weights IN VARCHAR2)
 RETURN FLOAT,

STATIC FUNCTION isSimilar(sig1 IN ORDImageSignature,
 sig2 IN ORDImageSignature,
 weights IN VARCHAR2,
 threshold IN FLOAT)
 RETURN INTEGER,

MEMBER PROCEDURE generateSignature(image IN ORDImage)
);
where:

■ signature: holds the signature of the stored image data.

8.2.1 Constructors
This section describes the constructor functions.
8-42 Oracle interMedia User’s Guide and Reference

ORDImageSignature Object Type
The interMedia constructor functions are as follows:

■ init() for ORDImageSignature
Image Object Types Reference Information 8-43

init() for ORDImageSignature
init() for ORDImageSignature

Format
init() RETURN ORDImageSignature;

Description
Allows for easy initialization of instances of the ORDImageSignature object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes the ORDImageSignature signature attribute to empty_
blob.

You should always use the init() method to initialize the ORDImageSignature
object type, which will be especially useful if the ORDImageSignature type evolves
and attributes are added in a future release.

Examples
Initialize the ORDImageSignature object attribute:

BEGIN
INSERT INTO stockphotos VALUES (
5,Al MacFarlane,’red plaid’,
ORDSYS.ORDImage.init(’file’,’ORDIMGDIR’,’macfarlane.gif’),
ORDSYS.ORDImageSignature.init());
END;
/

8-44 Oracle interMedia User’s Guide and Reference

init() for ORDImageSignature
8.2.2 Methods
This section presents reference information on the Oracle interMedia methods used
for image data manipulation. These methods are described in the following
groupings:

ORDImage Signature Methods Associated with Signature Operations
■ evaluateScore(): evaluates the distance between two input signatures based on

the influence of specified attributes in the weights parameter.

■ isSimilar(): computes the distance between two input signatures based on the
influence of specified attributes in the weights parameter and the specified
threshold value.

■ generateSignature(): generates a signature for the specified ORDImage object.
Image Object Types Reference Information 8-45

evaluateScore()
evaluateScore()

Format
evaluateScore(

 sig1 IN ORDImageSignature,

 sig2 IN ORDImageSignature,

 weights IN VARCHAR2)

RETURN FLOAT;

Description
A static method of the ORDImageSignature object type that evaluates the distance
between two input signatures based on the influence of the specified attributes in
the weights parameter.

Parameters

sig1
Signature object.

sig2
Signature object.

weights
A string consisting of matching attribute names followed by values. The matching
attributes refer to the weights assigned by the user to the different attributes that
influences the kind of match. The string can have all or some of the following
attributes. Attributes not specified by the user have a default value of 0. At least one
of the attributes, color, texture, and shape, must have a value greater than 0.

color: The importance of the feature color. It is a value between 0.0 and 1.0.
DEFAULT: 0

texture: The importance of the feature texture. It is a value between 0.0 and 1.0.
DEFAULT: 0

shape: The importance of the feature shape. It is a value between 0.0 and 1.0.
DEFAULT: 0
8-46 Oracle interMedia User’s Guide and Reference

evaluateScore()
location: The importance of the location of the regions in the image. It is a value
between 0.0 and 1.0. DEFAULT: 0. Location weight string cannot be specified alone,
it must be used with another weight string.

Usage Notes
None.

Pragmas
None.

Exceptions
None.

Examples
Compare two signatures and evaluate the score between them:

DECLARE
 t_image ORDSYS.ORDImage;
 image_sig ORDSYS.ORDImageSignature;
 compare_sig ORDSYS.ORDImageSignature;
BEGIN
 SELECT photo, photo_sig INTO t_image, image_sig FROM stockphotos
 WHERE photo_id=1 FOR UPDATE;
 -- evaluate the signature of two images
 ORDSYS.ORDImageSignature.evaluateScore(image_sig,compare_sig,
 ’color=1.0,texture=0,shape=0,location=0’);
 UPDATE stockphotos SET photo = t_image WHERE photo_id=1;
END;
/

Image Object Types Reference Information 8-47

generateSignature()
generateSignature()

Format
generateSignature (image IN ORDImage);

Description
Generates a signature for a given input image that is passed back as the signature
object.

Parameters

image
The image object whose signature is to be generated.

Usage Notes
None.

Pragmas
None.

Exceptions
None.

Examples
Generate a signature for an image object:

DECLARE
 t_image ORDSYS.ORDImage;
 image_sig ORDSYS.ORDImageSignature;
BEGIN
 SELECT photo, photo_sig INTO t_image, image_sig FROM stockphotos
 WHERE photo_id=1 FOR UPDATE;
 -- generate a signature
 image_sig.generateSignature(t_image);
 UPDATE stockphotos SET photo_sig = image_sig WHERE photo_id =1;
END;
/

8-48 Oracle interMedia User’s Guide and Reference

isSimilar()
isSimilar()

Format
isSimilar(

 sig1 IN ORDImageSignature,

 sig2 IN ORDImageSignature,

 weights IN VARCHAR2,

 threshold IN FLOAT)

RETURN INTEGER;

Description
A static method of the ORDImageSignature object type that compares two
signatures and computes the distance between them based on the influence of the
specified attributes in the weights parameter and the specified threshold value. If
the distance is less than the specified threshold, a value of 1 is returned, otherwise a
value of 0 is returned.

Parameters

sig1
Signature object.

sig2
Signature object.

weights
A string consisting of matching attribute names followed by values. The matching
attributes refer to the weights assigned by the user to the different attributes that
influences the kind of match. The string can have all or some of the following
attributes. Attributes not specified by the user have a default value of 0. At least one
of the attributes, color, texture, or shape, must have a value greater than 0.

color: The importance of the feature color. It is a value between 0.0 and 1.0.
DEFAULT: 0

texture: The importance of the feature texture. It is a value between 0.0 and 1.0.
DEFAULT: 0
Image Object Types Reference Information 8-49

isSimilar()
shape: The importance of the feature shape. It is a value between 0.0 and 1.0.
DEFAULT: 0

location: The importance of the location of the regions in the image. It is a value
between 0.0 and 1.0. DEFAULT: 0. This attribute must be specified with one other
attribute; it cannot be specified by itself.

threshold
The degree of the match that the user desires. For example, if the value is specified
as 10, then only those images whose signatures are a distance of 10 or less (score of
10 or less) from the query signature will be returned. The value of the threshold
ranges from 0 to 100, which is the range of the distance.

Usage Notes
You can use this method to compare two signatures not stored in the database or
when you must perform a comparison within a PL/SQL construct.

Pragmas
None.

Exceptions
None.

Examples
Compute the distance between two signatures:

DECLARE
 t_image ORDSYS.ORDImage;
 image_sig ORDSYS.ORDImageSignature;
 imagesig2 ORDSYS.ORDImageSignature;
BEGIN
 SELECT photo, photo_sig INTO t_image, image_sig FROM stockphotos
 WHERE photo_id = 1 FOR UPDATE;
 -- compute the distance between two signatures
ORDSYS.ORDImageSignature.isSimilar(image_sig,imagesig2,’color=1.0,texture=0,shape=0,location=0’,10);
 UPDATE stockphotos SET photo = t_image WHERE photo_id = 1;
END;
/

8-50 Oracle interMedia User’s Guide and Reference

isSimilar()
8.2.3 ORDImageSignature Operators
The following ORDImageSignature operators are schema level operators and do not
reside within a package. These operators use the domain index, if it exists.

■ ORDSYS.IMGSimilar(): Compares the signature of a query image with the
signatures of images stored in a table and determines whether or not the images
match, based on the weights and threshold. Returns 1 if the computed distance
measure (weighted average) is less than or equal to the threshold value, and
returns 0 when the distance between the two images is more than the threshold.

■ ORDSYS.IMGScore(): IMGScore() is an ancillary operator to IMGSimilar() and
returns the score of similarity value computed by the primary operator,
IMGSimilar().
Image Object Types Reference Information 8-51

IMGSimilar Operator
IMGSimilar Operator

Format
...IMGSimilar (ORDSYS.ORDImageSignature,

 ORDSYS.ORDImageSignature,

 VARCHAR2,

 FLOAT

 [,referencetoScore IN NUMBER])...;

Description
Determines whether or not two images match. Specifically, the operator compares
the signatures of two images, computes a weighted sum of the distance between the
two images using user-supplied weight values for the visual attributes, compares
the weighted sum with the threshold value, and returns the integer value 1 if the
weighted sum is less than or equal to the threshold value. Otherwise, the operator
returns 0.

Parameters

ORDSYS.ORDImageSignature (signature)
The signature of the image to which you are comparing the query image. Data type
is ORDImageSignature. To use the domain index for the comparison, this first
parameter must be the signature column on which the domain index has been
created. Otherwise, Oracle9i uses the non-indexed implementation of query
evaluation.

ORDSYS.ORDImageSignature (query signature)
The signature of the query or test image. Data type is ORDImageSignature.

VARCHAR2 (weightstring)
A list of weights to apply to each visual attribute. Data type is VARCHAR2. The
following attributes can be specified, with a value of 0.0 specifying no importance
8-52 Oracle interMedia User’s Guide and Reference

IMGSimilar Operator
and a value of 1.0 specifying highest importance. You must specify a value greater
than zero for at least one of the attributes, not including location.

FLOAT (threshold)
The threshold value with which the weighted sum of the distances is to be
compared. If the weighted sum is less than or equal to the threshold value, the
images are considered to match. The range of this parameter is from 0.0 to 100.0.

referencetoScore
An optional parameter used when ancillary data (score of similarity) is required
elsewhere in the query. Set this parameter to the same value here as used in the
IMGScore() operator. Data type is NUMBER.

Return Value
Returns an integer value of 0 (not similar) or 1 (match).

Pragmas
None.

Exceptions
None.

Attribute Description

color The weight value (0.0 to 1.0) assigned to the color visual attribute.
Data type is number. Default is 0.0.

texture The weight value (0.0 to 1.0) assigned to the texture visual attribute.
Data type is number. Default is 0.0.

shape The weight value (0.0 to 1.0) assigned to the shape visual attribute.
Data type is number. Default is 0.0.

location The weight value (0.0 to 1.0) assigned to the location visual attribute.
Data type is number. Default is 0.0. This attribute must be specified
with one other attribute; it cannot be specified by itself.

Note: When specifying parameter values that include
floating-point numbers, you should use double quotation marks
(" ") around the value. If you do not, this may result in incorrect
values being passed, and you will get incorrect results.
Image Object Types Reference Information 8-53

IMGSimilar Operator
Usage Notes
Before the IMGSimilar operator can be used, the image signatures must be created
with the generateSignature() method. Also, to use the domain index, the index of
type ORDImageIndex must have already been created. See Section 2.4 for
information on creating and using the index and see Section 2.5 for additional
performance tips.

The IMGSimilar() operator returns Boolean values to indicate whether two images
match (true, if their image matching score is below the threshold). If you want to
know the score value itself, you can use the IMGScore() operator in conjunction
with the IMGSimilar() operator to retrieve the score computed in the IMGSimilar()
operator.

The IMGSimilar() operator is useful when the application needs a simple Yes or No
for whether or not two images match. The IMGScore() operator is useful when an
application wants to make finer distinctions about matching or to perform special
processing based on the degree of similarity between images.

The weights supplied for the four visual attributes are normalized prior to
processing such that they add up to 1.0.

You must specify at least one of the three image attributes color, texture, or shape in
the weightstring.

Examples
Using the IMG index, find all images similar to the query image using a threshold
value of 25 and the following weights for the visual attributes:

■ Color: 0.2

■ Texture: 0.1

■ Shape: 0.5

■ Location: 0.2

This example assumes you already used the generateSignature() method to
generate a signature for the query image. If an index exists on the signature column,
it will be used automatically. See the IMGScore() operator for an example that uses
the referenceToScore parameter.

DECLARE
 t_img ORDSYS.ORDImage;
 i INTEGER;
 image_sig ORDSYS.ORDImageSignature;
 query_signature ORDSYS.ORDImageSignature;
8-54 Oracle interMedia User’s Guide and Reference

IMGSimilar Operator
BEGIN
 SELECT photo_id, photo, photo_sig
 INTO i, t_img, image_sig FROM stockphotos WHERE
 ORDSYS.IMGSimilar(photo_sig, query_signature,
 ’color="0.2" texture="0.1" shape="0.5" location="0.2"’, 25) = 1;
END;
/

Image Object Types Reference Information 8-55

IMGScore Operator
IMGScore Operator

Format
...IMGScore (NUMBER)...;

Description
Compares the signatures of two images and returns a number representing the
weighted sum of the distances for the visual attributes. IMGScore() is an ancillary
operator, used only in conjunction with the primary operator, IMGSimilar() to
retrieve the score computed in the IMGSimilar() operator. Each IMGScore() and
IMGSimilar() operator shares the same reference number.

Parameters

NUMBER (referencetoSimilar)
Identifier to an IMGSimilar() operator. This identifier indicates that the image
matching score value returned by the IMGScore() operator is the same one used in
the corresponding IMGSimilar() operator. This parameter can also be used to
maintain references for multiple invocations of the IMGSimilar() operator. Data
type is NUMBER.

Return Value
This function returns a FLOAT value between 0.0 and 100.0, where 0.0 means the
images are identical and 100.0 means the images are completely different.

Pragmas
None.

Exceptions
None.

Usage Notes
Before the IMGScore() operator can be used, the image signatures must be created
with the generateSignature() method. Also, if you want the comparison to use the
domain index, the index of type ORDImageIndex must have already been created.
8-56 Oracle interMedia User’s Guide and Reference

IMGScore Operator
See Section 2.4 for information on creating and using the index, and see Section 2.5
for additional performance tips.

The IMGScore() operator can be useful when an application wants to make finer
distinctions about matching than the simple Yes or No returned by IMGSimilar().
For example, using the score returned by IMGScore(), the application might assign
each image being compared to one of several categories, such as Definite Matches,
Probable Matches, Possible Matches, and Nonmatches. The IMGScore() operator
can also be useful if the application needs to perform special processing based on
the degree of similarity between images.

Examples
Example 1

Find the weighted sum of the distances between a test image and the other images
in the stockphotos table, using a threshold of 50 and the following weights for the
visual attributes:

■ Color: 0.2

■ Texture: 0.1

■ Shape: 0.5

■ Location: 0.2

This example assumes that the signatures were already created using the
generateSignature() method and they are stored in the database. Notice that both
IMGScore() and IMGSimilar() are using 123 as the reference number in this
example.

DECLARE
 img_score NUMBER;
 i INTEGER;
 query_signature ORDSYS.ORDImageSignature;
 image_sig ORDSYS.ORDImageSignature;
 t_img ORDSYS.ORDImage;

BEGIN
SELECT photo_id, ORDSYS.IMGScore(123), photo, photo_sig
 INTO i, img_score, t_img, image_sig FROM stockphotos
WHERE
 ORDSYS.IMGSimilar(image_sig, query_signature,
 ’color="0.2" texture="0.1" shape="0.5" location="0.2"’, 50, 123) = 1
END;

/

Image Object Types Reference Information 8-57

IMGScore Operator
The following shows possible results from this example. The first image has the
lowest score, and therefore is the best match of the test image. Changing the
weights used in the scoring would lead to different results.

ENAME SCORE
---------- ------------
1 10.5
 1 row selected.

Example 2

The following example demonstrates the use of reference numbers to refer to scores
evaluated in different IMGSimilar calls. In this example, a query is searching for a
stock image in the stockphotos table that is similar in color to query image 1 and
similar in shape and location to query image 2.

DECLARE
img_score NUMBER;
i INTEGER;
query_sig1 ORDSYS.ORDImageSignature;
query_sig2 ORDSYS.ORDImageSignature;
image1_sig ORDSYS.ORDImageSignature;
t_img ORDSYS.ORDImage;
BEGIN
SELECT photo_id, ORDSYS.IMGScore(1), ORDSYS.IMGScore(2), photo,
photo_sig
INTO i, img_score, t_img, image_sig FROM stockphotos
WHERE
ORDSYS.IMGSimilar(image_sig, query_sig1,
’color="1.0"’, 50, 1) = 1
AND
ORDSYS.IMGSimilar(image_sig, query_sig2,
’shape="0.5" location="0.2"’, 50, 2) = 1
END;
/

8-58 Oracle interMedia User’s Guide and Reference

ORDVideo Reference Inform
9

ORDVideo Reference Information

Oracle interMedia contains the following information about the ORDVideo type:

■ Object type -- see Section 9.1.

■ Constructors -- see Section 9.2.

■ Methods -- see Section 9.3.

■ Packages or PL/SQL plug-ins -- see Section 9.4.

The examples in this chapter assume that the test video table TVID has been created
and filled with data. This table was created using the SQL statements described in
Section 9.3.1.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the openSource() method. At this point, the source plug-in
can initialize context for this client. When processing is complete, the client should
invoke the closeSource() method.

Methods invoked from a source plug-in call have the first argument as ctx
(RAW(4000)).

Note: If you manipulate the video data itself (by either directly
modifying the BLOB or changing the external source), then you
must ensure that the object attributes stay synchronized and the
update time is modified; otherwise, the object attributes will not
match the video data.
ation 9-1

Object Types
Methods invoked at the ORDVideo level that are handed off to the format plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure and
initialize it to NULL.

You should use any of the individual set methods to set the value of the attribute for
an object for formats not natively supported; otherwise, for formats natively
supported, use the setProperties() method to populate the attributes of the object.

9.1 Object Types
Oracle interMedia describes the ORDVideo object type, which supports the storage
and management of video data.

Note: In the current release, not all source or format plug-ins will
use the ctx argument, but if you code as previously described, your
application should work with any current or future source or
format plug-in.
9-2 Oracle interMedia User’s Guide and Reference

ORDVideo Object Type
ORDVideo Object Type

The ORDVideo object type supports the storage and management of video data.
This object type is defined as follows:

CREATE OR REPLACE TYPE ORDVideo
AS OBJECT
(
 -- ATTRIBUTES
description VARCHAR2(4000),
source ORDSource,
format VARCHAR2(31),
mimeType VARCHAR2(4000),
comments CLOB,
 -- VIDEO RELATED ATTRIBUTES
width INTEGER,
height INTEGER,
frameResolution INTEGER,
frameRate INTEGER,
videoDuration INTEGER,
numberOfFrames INTEGER,
compressionType VARCHAR2(4000),
numberOfColors INTEGER,
bitRate INTEGER,

 -- METHODS
-- CONSTRUCTORS
--
STATIC FUNCTION init() RETURN ORDVideo,
STATIC FUNCTION init(srcType IN VARCHAR2,
 srcLocation IN VARCHAR2,
 srcName IN VARCHAR2) RETURN ORDVideo,
-- Methods associated with the date attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the description attribute
MEMBER PROCEDURE setDescription(user_description IN VARCHAR2),
MEMBER FUNCTION getDescription RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the mimeType attribute
MEMBER PROCEDURE setMimeType(mime IN VARCHAR2),
ORDVideo Reference Information 9-3

ORDVideo Object Type
MEMBER FUNCTION getMimeType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getMimeType, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with the source attribute
MEMBER FUNCTION processSourceCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW,

MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,

MEMBER PROCEDURE setSource(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSource RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSource, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE import(ctx IN OUT RAW),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
9-4

ORDVideo Object Type
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE getContentInLob(
 ctx IN OUT RAW,
 dest_lob IN OUT NOCOPY BLOB,
 mimeType OUT VARCHAR2,
 format OUT VARCHAR2),

MEMBER FUNCTION getContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(getContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE deleteContent,

MEMBER FUNCTION getBFILE RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFILE, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with file operations on the source
MEMBER FUNCTION openSource(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION closeSource(ctx IN OUT RAW) RETURN INTEGER,
MEMBER FUNCTION trimSource(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,
MEMBER PROCEDURE readFromSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE writeToSource(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),

-- Methods associated with the video attributes accessors
MEMBER PROCEDURE setFormat(knownformat IN VARCHAR2),
MEMBER FUNCTION getFormat RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setFrameSize(knownWidth IN INTEGER, knownHeight IN INTEGER),
MEMBER PROCEDURE getFrameSize(retWidth OUT INTEGER, retHeight OUT INTEGER),
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setFrameResolution(knownFrameResolution IN INTEGER),
MEMBER FUNCTION getFrameResolution RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS, WNPS, RNDS, RNPS),
ORDVideo Reference Information 9-5

ORDVideo Object Type
MEMBER PROCEDURE setFrameRate(knownFrameRate IN INTEGER),
MEMBER FUNCTION getFrameRate RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setVideoDuration(knownVideoDuration IN INTEGER),
MEMBER FUNCTION getVideoDuration RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfFrames(knownNumberOfFrames IN INTEGER),
MEMBER FUNCTION getNumberOfFrames RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setCompressionType(knownCompressionType IN VARCHAR2),
MEMBER FUNCTION getCompressionType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setNumberOfColors(knownNumberOfColors IN INTEGER),
MEMBER FUNCTION getNumberOfColors RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setBitRate(knownBitRate IN INTEGER),
MEMBER FUNCTION getBitRate RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE setKnownAttributes(
 knownFormat IN VARCHAR2,
 knownWidth IN INTEGER,
 knownHeight IN INTEGER,
 knownFrameResolution IN INTEGER,
 knownFrameRate IN INTEGER,
 knownVideoDuration IN INTEGER
 knownNumberOfFrames IN INTEGER,
 knownCompressionType IN VARCHAR2,
 knownNumberOfColors IN INTEGER,
 knownBitRate IN INTEGER),

-- Methods associated with setting all the properties
MEMBER PROCEDURE setProperties(ctx IN OUT RAW,
 setComments IN BOOLEAN),
MEMBER FUNCTION checkProperties(ctx IN OUT RAW) RETURN BOOLEAN,

MEMBER FUNCTION getAttribute(
 ctx IN OUT RAW,
 name IN VARCHAR2) RETURN VARCHAR2,
9-6 Oracle interMedia User’s Guide and Reference

ORDVideo Object Type
MEMBER PROCEDURE getAllAttributes(
 ctx IN OUT RAW,
 attributes IN OUT NOCOPY CLOB),

-- Methods associated with video processing
MEMBER FUNCTION processVideoCommand(
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);

where:

■ description: the description of the video object.

■ source: the ORDSource where the video data is to be found.

■ format: the format in which the video data is stored.

■ mimeType: the MIME type information.

■ comments: the metadata information of the video object.

■ width: the width of each frame of the video data.

■ height: the height of each frame of the video data.

■ frameResolution: the frame resolution of the video data.

■ frameRate: the frame rate of the video data.

■ videoDuration: the total duration of the video data stored.

■ numberOfFrames: the number of frames in the video data.

■ compressionType: the compression type of the video data.

■ numberOfColors: the number of colors in the video data.

■ bitRate: the bit rate of the video data.
ORDVideo Reference Information 9-7

Constructors
9.2 Constructors
This section describes the constructor functions.

The interMedia constructor functions are as follows:

■ init()

■ init(srcType,srcLocation,srcName)

Note: The comments attribute is populated by setProperties()
when the setComments parameter is TRUE and by the Oracle
interMedia Annotator utility. Oracle Corporation recommends that
you not write to this attribute directly.
9-8 Oracle interMedia User’s Guide and Reference

init()
init()

Format
init() RETURN ORDVideo;

Description
Allows for easy initialization of instances of the ORDVideo object type.

Parameters
None.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 1 (local)

■ source.localData is set to empty_blob

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDVideo object attributes:

BEGIN
 INSERT INTO tvid VALUES (ORDSYS.ORDVideo.init());
ORDVideo Reference Information 9-9

init()
END;
/

9-10 Oracle interMedia User’s Guide and Reference

init(srcType,srcLocation,srcName)
init(srcType,srcLocation,srcName)

Format
init(srcType IN VARCHAR2,

 srcLocation IN VARCHAR2,

 srcName IN VARCHAR2)

 RETURN ORDVideo;

Description
Allows for easy initialization of instances of the ORDVideo object type.

Parameters

srcType
The source type of the video data.

srcLocation
The source location of the video data.

srcName
The source name of the video data.

Pragmas
None.

Exceptions
None.

Usage Notes
This static method initializes all the ORDVideo attributes to NULL with the
following exceptions:

■ source.updateTime is set to SYSDATE

■ source.local is set to 0

■ source.localData is set to empty_blob
ORDVideo Reference Information 9-11

init(srcType,srcLocation,srcName)
■ source.srcType is set to the input value

■ source.srcLocation is set to the input value

■ source.srcName is set to the input value

You should begin using the init() method as soon as possible to allow you to more
easily initialize the ORDVideo object type, especially if the ORDVideo type evolves
and attributes are added in a future release. INSERT statements left unchanged
using the default constructor (which initializes each object attribute), will fail under
these circumstances.

Examples
Initialize the ORDVideo object attributes:

BEGIN
 INSERT INTO tvid VALUES (ORDSYS.ORDVideo.init(’file’,’VIDDIR’,’video1.rm’));
END;
/

9-12 Oracle interMedia User’s Guide and Reference

Methods
9.3 Methods
This section presents reference information on the Oracle interMedia methods used
for video data manipulation. These methods are described in the following
groupings:

ORDVideo Methods Associated with the updateTime Attribute
■ getUpdateTime(): returns the time when the video object was last updated. See

"getUpdateTime()" on page 5-25 for information.

■ setUpdateTime(): sets the update time for the video object. This method is
called implicitly by methods that modify natively supported video formats. See
"setUpdateTime()" on page 5-39 for information.

ORDVideo Methods Associated with the description Attribute
■ setDescription(): sets the description of the video data. See "setDescription()"

on page 9-49.

■ getDescription: returns the description of the video data. See "getDescription"
on page 9-29.

ORDVideo Methods Associated with mimeType Attribute
■ setMimeType(): sets the MIME type of the stored video data. This method is

called implicitly by any method that modifies natively supported video
formats. See "setMimeType()" on page 5-35 for information.

■ getMimeType(): returns the MIME type for video data. See "getMimeType()"
on page 5-17 for information.

ORDVideo Methods Associated with the source Attribute
■ processSourceCommand(): sends a command and related arguments to the

source plug-in. See "processSourceCommand()" on page 5-29 for information.

■ isLocal(): returns TRUE if the data is stored locally in a BLOB or FALSE if the
data is external. See "isLocal()" on page 5-26 for information.

■ setLocal(): sets a flag to indicate that the data is stored locally in a BLOB. See
"setLocal()" on page 5-34 for information.

■ clearLocal(): clears the flag to indicate that the data is stored externally. See
"clearLocal()" on page 5-5 for information.
ORDVideo Reference Information 9-13

Methods
■ setSource(): sets the source information to where video data is to be found. See
"setSource()" on page 5-37 for information.

■ getSource(): returns a formatted string containing complete information about
the external data source formatted as a URL. See "getSource()" on page 5-19 for
information.

■ getSourceType(): returns the external source type of the video data. See
"getSourceType()" on page 5-23 for information.

■ getSourceLocation(): returns the external source location of the video data. See
"getSourceLocation()" on page 5-21 for information.

■ getSourceName(): returns the external source name of the video data. See
"getSourceName()" on page 5-22 for information.

■ import(): transfers data from an external data source (specified by calling
setSourceInformation()) to the local source (localData) within an Oracle
database, setting the value of the local attribute to "1", meaning local and
updating the timestamp. See "import()" on page 9-39.

■ importFrom(): transfers data from the specified external data source (source
type, location, name) to the local source (localData) within an Oracle database,
setting the value of the local attribute to "1", meaning local and updating the
timestamp. See "importFrom()" on page 9-41.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source, and stores source information in the
source. See "export()" on page 5-9 for information.

■ getContentLength(): returns the length of the data source (as number of bytes).
See "getContentLength()" on page 9-28.

■ getContentInLob(): returns content into a temporary LOB. See
"getContentInLob()" on page 9-26 for information.

■ getContent(): returns the handle to the BLOB used to store contents locally. See
"getContent()" on page 5-15 for information.

■ deleteContent(): deletes the content of the local BLOB. See "deleteContent()"
on page 5-8 for information.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
9-14 Oracle interMedia User’s Guide and Reference

Methods
■ getBFILE: returns the external content as a BFILE. See "getBFILE()" on
page 5-13 for information.

ORDVideo Methods Associated with File Operations
■ openSource(): opens a data source or a BLOB. See "openSource()" on page 5-27

for information.

■ closeSource(): closes a data source or a BLOB. See "closeSource()" on page 5-6
for information.

■ trimSource(): trims a data source or a BLOB. See "trimSource()" on page 5-40
for information.

■ readFromSource(): reads a buffer of n bytes from a source beginning at a start
position. See "readFromSource()" on page 5-32 for information.

■ writeToSource(): writes a buffer of n bytes to a source beginning at a start
position. See "writeToSource()" on page 5-42 for information.

ORDVideo Methods Associated with Video Attributes Accessors
■ setFormat(): sets the object attribute value of the format of the video data. See

"setFormat()" on page 9-51 for information.

■ getFormat: returns the object attribute value of the format in which the video
data is stored. See "getFormat" on page 9-30.

■ setFrameSize(): sets the object attribute value of the width and height in pixels
of each frame in the video data. See "setFrameSize()" on page 9-55.

■ getFrameSize: returns the object attribute value of the width and height in
pixels of each frame in the video data. See "getFrameSize()" on page 9-34.

■ setFrameResolution(): sets the object attribute value of the number of pixels per
inch of frames in the video data. See "setFrameResolution()" on page 9-54.

■ getFrameResolution: returns the object attribute value of the number of pixels
per inch of frames in the video data. See "getFrameResolution" on page 9-33.

■ setFrameRate(): sets the object attribute value of the rate in frames per second
at which the video data was recorded. See "setFrameRate()" on page 9-53.

■ getFrameRate: returns the object attribute value of the rate in frames per second
at which the video data was recorded. See "getFrameRate" on page 9-32.

■ setVideoDuration(): sets the object attribute value of the total time it takes to
play the entire video data. See "setVideoDuration()" on page 9-64.
ORDVideo Reference Information 9-15

Methods
■ getVideoDuration: returns the object attribute value of the total time it takes to
play the entire video data. See "getVideoDuration" on page 9-38.

■ setNumberOfFrames(): sets the object attribute value of the total number of
frames in the video data. See "setNumberOfFrames()" on page 9-61.

■ getNumberOfFrames: returns the object attribute value of the total number of
frames in the video data. See "getNumberOfFrames" on page 9-37.

■ setCompressionType(): sets the value of the compression type attribute of the
video object. See "setCompressionType()" on page 9-48.

■ getCompressionType: returns the object attribute value of the compression type
in the video data. See "getCompressionType" on page 9-25.

■ setNumberOfColors(): sets the object attribute value of the number of colors in
the video data. See "setNumberOfColors()" on page 9-60.

■ getNumberOfColors: returns the object attribute value of the number of colors
in the video data. See "getNumberOfColors" on page 9-36.

■ setBitRate(): sets the object attribute value of the bit rate in the video data. See
"setBitRate()" on page 9-47.

■ getBitRate: returns the object attribute value of the bit rate in the video data. See
"getBitRate" on page 9-24.

■ setKnownAttributes(): sets known video attributes including format, frame
size, frame resolution, frame rate, video duration, number of frames,
compression type, number of colors, and bit rate of the video data. The
parameters are passed in with this call. See "setKnownAttributes()" on
page 9-57.

■ setProperties(): reads the video data to get the values of the object attributes
and then stores them in the object. If the value for the setComments parameter
is TRUE, then the comments field of the object will be populated with a rich set
of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility. For the known
attributes that ORDVideo understands, it sets the properties for these attributes,
which include: format, frame size, frame resolution, frame rate, video duration,
number of frames, compression type, number of colors, and bit rate of the video
data. See "setProperties()" on page 9-62.

■ checkProperties(): calls the format plug-in to check the properties including
format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate of the video data; it
9-16 Oracle interMedia User’s Guide and Reference

Methods
returns a Boolean value TRUE if the properties stored in object attributes match
those in the video data. See "checkProperties()" on page 9-18.

■ getAttribute(): returns the value of the requested attribute. This method is only
available for user-defined format plug-ins. See "getAttribute()" on page 9-22.

■ getAllAttributes(): returns a formatted string for convenient client access. For
natively supported formats, the string includes the following list of video data
attributes separated by a comma (,): format, frameSize, frameResolution,
frameRate, videoDuration, numberOfFrames, compressionType,
numberOfColors, and bitRate. The string is defined by the user-defined format
plug-in. See "getAllAttributes()" on page 9-20.

ORDVideo Methods Associated with Processing Video Data
■ processVideoCommand(): sends commands and related arguments to the

format plug-in for processing. See "processVideoCommand()" on page 9-44.

For more information on object types and methods, see Oracle9i Database Concepts.

9.3.1 Example Table Definitions
The methods described in this reference chapter show examples based on a test
video table TVID. Refer to the TVID table definition that follows when reading
through the examples:

TVID Table Definition
CREATE TABLE TVID(n NUMBER, vid ORDSYS.ORDVideo)
storage (initial 100K next 100K pctincrease 0);

INSERT INTO TVID VALUES(1, ORDSYS.ORDVideo.init());
INSERT INTO TVID VALUES(2, ORDSYS.ORDVideo.init());
ORDVideo Reference Information 9-17

checkProperties()
checkProperties()

Format
checkProperties(ctx IN OUT RAW) RETURN BOOLEAN;

Description
Checks all the properties of the stored video data, including the following video
attributes: format, frame size, frame resolution, frame rate, video duration, number
of frames, compression type, number of colors, and bit rate.

Parameters

ctx
The format plug-in context information.

Usage Notes
The checkProperties() method does not check the MIME type because a file can
have multiple correct MIME types and this is not well defined.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the checkProperties() method and the video
plug-in raises an exception when calling this method.

Examples
Check property information for known video attributes:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 ;
 if (obj.checkProperties(ctx)) then
9-18 Oracle interMedia User’s Guide and Reference

checkProperties()
 DBMS_OUTPUT.put_line(’check Properties returned true’);
else
 DBMS_OUTPUT.put_line(’check Properties returned false’);
 end if;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’exception raised’);
END;
/

ORDVideo Reference Information 9-19

getAllAttributes()
getAllAttributes()

Format
getAllAttributes(

 ctx IN OUT RAW,

 attributes IN OUT NOCOPY CLOB);

Description
Returns a formatted string for convenient client access. For natively supported
formats, the string includes the following list of audio data attributes separated by a
comma (,): width, height, format, frameResolution, frameRate, videoDuration,
numberOfFrames, compressionType, numberOfColors, and bitRate. For
user-defined formats, the string is defined by the format plug-in.

Parameters

ctx
The format plug-in context information.

attributes
The attributes.

Usage Notes
These video data attributes are available from the header of the formatted video
data.

Video data attribute information can be extracted from the video data itself. You can
extend support to a video format that is not understood by the ORDVideo object by
implementing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 3.4.13 for more information.

Pragmas
None.

Exceptions
METHOD_NOT_SUPPORTED
9-20 Oracle interMedia User’s Guide and Reference

getAllAttributes()
This exception is raised if you call the getAllAttributes() method and the video
plug-in raises an exception when calling this method.

Examples
Return all video attributes for video data stored in the database:

DECLARE
 obj ORDSYS.ORDVideo;
 tempLob CLOB;
 ctx RAW(4000) :=NULL;
BEGIN

 SELECT vid INTO obj FROM TVID WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting comma separated list of all attributes’);
 DBMS_OUTPUT.PUT_LINE(’---’);

 DBMS_LOB.CREATETEMPORARY(tempLob, FALSE, DBMS_LOB.CALL);
 obj.getAllAttributes(ctx,tempLob);
 DBMS_OUTPUT.put_line(DBMS_LOB.substr(tempLob, DBMS_LOB.getLength(tempLob), 1));

 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION CAUGHT’);
END;
/

ORDVideo Reference Information 9-21

getAttribute()
getAttribute()

Format
getAttribute(

 ctx IN OUT RAW,

 name IN VARCHAR2)

RETURN VARCHAR2;

Description
Returns the value of the requested attribute from video data for user-defined
formats only.

Parameters

ctx
The format plug-in context information.

name
The name of the attribute.

Usage Notes
The video data attributes are available from the header of the formatted video data.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getAttribute() method and the video plug-in
raises an exception when calling this method.

Examples
Return information for the specified video attribute for video data stored in the
database:
9-22 Oracle interMedia User’s Guide and Reference

getAttribute()
DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1;
 DBMS_OUTPUT.PUT_LINE(’getting video duration’);
 DBMS_OUTPUT.PUT_LINE(’---------------------’);
 res := obj.getAttribute(ctx,’video_duration’);
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION caught’);
END;
/

ORDVideo Reference Information 9-23

getBitRate
getBitRate

Format
getBitRate RETURN INTEGER;

Description
Returns the value of the bitRate attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the bitRate attribute of the video object:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getBitRate();
 DBMS_OUTPUT.put_line(’bit rate : ’ || res);
END;
/

9-24 Oracle interMedia User’s Guide and Reference

getCompressionType
getCompressionType

Format
getCompressionType RETURN VARCHAR2;

Description
Returns the value of the compressionType attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS,
RNPS)

Exceptions
None.

Examples
Return the object attribute value of the compressionType attribute of the video
object:

DECLARE
 obj ORDSYS.ORDVideo;
 res VARCHAR2(4000);
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getCompressionType();
 DBMS_OUTPUT.put_line(’compression type: ’ ||res);
END;
/

ORDVideo Reference Information 9-25

getContentInLob()
getContentInLob()

Format
getContentInLob(

 ctx IN OUT RAW,

 dest_lob IN OUT NOCOPY BLOB,

 mimeType OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Copies data from a data source into the specified BLOB. The BLOB must not be the
BLOB in source.localData.

Parameters

ctx
The source plug-in context information.

dest_lob
The LOB in which to receive data.

mimeType
The MIME type of the data; this may or may not be returned.

format
The format of the data; this may or may not be returned.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION
9-26 Oracle interMedia User’s Guide and Reference

getContentInLob()
This exception is raised if you call the getContentInLob() method and the value of
srcType is NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the getContentInLob() method and this method
is not supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method and within a
source plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Get data from a data source into the specified BLOB on the local source:

DECLARE
 obj ORDSYS.ORDVideo;
 tempBLob BLOB;
 mimeType VARCHAR2(4000);
 format VARCHAR2(4000);
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N = 1 ;
 if(obj.isLocal) then
 DBMS_OUTPUT.put_line(’local is true’);
 end if;
 DBMS_LOB.CREATETEMPORARY(tempBLob, true, 10);
 obj.getContentInLob(ctx,tempBLob, mimeType,format);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.getLength(tempBLob)));
EXCEPTION
WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
DBMS_OUTPUT.put_line(’ORDSourceExceptions.METHOD_NOT_SUPPORTED caught’);
WHEN OTHERS THEN
DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

ORDVideo Reference Information 9-27

getContentLength()
getContentLength()

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the video data content stored in the source.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source type and implement this
method on it.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
ORDSourceExceptions.INCOM-PLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about this exception.

Examples
See the example in "import()" on page 9-40.
9-28 Oracle interMedia User’s Guide and Reference

getDescription
getDescription

Format
getDescription RETURN VARCHAR2;

Description
Returns the description of the video data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getDescription, WNDS, WNPS, RNDS, RNPS)

Exceptions
DESCRIPTION_IS_NOT_SET

This exception is raised if you call the getDescription method and the description is
not set.

Examples
See the example in setDescription() on page 9-49.
ORDVideo Reference Information 9-29

getFormat
getFormat

Format
getFormat RETURN VARCHAR2;

Description
Returns the value of the format attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getStoredFormat, WNDS,
WNPS, RNDS, RNPS)

Exceptions
VIDEO_FORMAT_IS_NULL

This exception is raised if you call the getFormat() method and the value for format
is NULL.

Examples
Set the format and then get it for some stored video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing format’);
 DBMS_OUTPUT.PUT_LINE(’--------------’);
 obj.setFormat(’avi’);
 DBMS_OUTPUT.PUT_LINE(obj.getFormat());
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
9-30 Oracle interMedia User’s Guide and Reference

getFormat
END;
/

ORDVideo Reference Information 9-31

getFrameRate
getFrameRate

Format
getFrameRate RETURN INTEGER;

Description
Returns the value of the frameRate attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the frame rate for video data stored in the
database:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getFrameRate();
 DBMS_OUTPUT.put_line(’frame rate : ’ ||res);
END;
/

9-32 Oracle interMedia User’s Guide and Reference

getFrameResolution
getFrameResolution

Format
getFrameResolution RETURN INTEGER;

Description
Returns the value of the frameResolution attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the value of the frame resolution for the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getFrameResolution();
 DBMS_OUTPUT.put_line(’resolution : ’ ||res);
END;
/

ORDVideo Reference Information 9-33

getFrameSize()
getFrameSize()

Format
getFrameSize(

 retWidth OUT INTEGER,

 retHeight OUT INTEGER);

Description
Returns the value of the height and width attributes of the video object.

Parameters

retWidth
The frame width in pixels.

retHeight
The frame height in pixels.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the frame size for video data:

DECLARE
 obj ORDSYS.ORDVideo;
 width INTEGER;
 height INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
9-34 Oracle interMedia User’s Guide and Reference

getFrameSize()
 obj.getFrameSize(width, height);
 DBMS_OUTPUT.put_line(’width :’ || width);
 DBMS_OUTPUT.put_line(’height :’ || height);
END;
/

ORDVideo Reference Information 9-35

getNumberOfColors
getNumberOfColors

Format
getNumberOfColors RETURN INTEGER;

Description
Returns the value of the numberOfColors attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the numberOfColors attribute of the video
object:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getNumberOfColors();
 DBMS_OUTPUT.put_line(’number of colors: ’ ||res);
END;
/

9-36 Oracle interMedia User’s Guide and Reference

getNumberOfFrames
getNumberOfFrames

Format
getNumberOfFrames RETURN INTEGER;

Description
Returns the value of the numberOfFrames attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the object attribute value of the total number of frames in the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getNumberOfFrames();
 DBMS_OUTPUT.put_line(’number of frames : ’ ||res);
END;
/

ORDVideo Reference Information 9-37

getVideoDuration
getVideoDuration

Format
getVideoDuration RETURN INTEGER;

Description
Returns the value of the videoDuration attribute of the video object.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
Return the total time to play the video data:

DECLARE
 obj ORDSYS.ORDVideo;
 res INTEGER;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 ;
 res := obj.getVideoDuration();
 DBMS_OUTPUT.put_line(’video duration : ’ ||res);
END;
/

9-38 Oracle interMedia User’s Guide and Reference

import()
import()

Format
import(ctx IN OUT RAW);

Description
Transfers video data from an external video data source to a local source (localData)
within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

Usage Notes
Use the setSource() method to set the external source type, location, and name prior
to calling import.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external video data source to a local source (within an
Oracle database), the source information remains unchanged (that is, pointing to the
source from where the data was imported).

Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

ORDSourceExceptions.NULL_SOURCE
ORDVideo Reference Information 9-39

import()
This exception is raised if you call the import() method and the value of dlob is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data by first setting the source and then importing it:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- set source to a file
 obj.setSource(’file’,’VIDEODIR’,’testvid.dat’);
 -- get source information
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 -- import data
 obj.import(ctx);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

9-40 Oracle interMedia User’s Guide and Reference

importFrom()
importFrom()

Format
importFrom(ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers video data from the specified external video data source to a local source
(localData) within an Oracle database.

Parameters

ctx
The source plug-in context information. This must be allocated. You must call the
openSource() method; see the introduction to this chapter for more information.

source_type
The source type of the video data.

source_location
The location from where the video data is to be imported.

source_name
The name of the video data.

Usage Notes
This method is similar to the import() method except the source information is
specified as parameters to the method instead of separately.

You must ensure that the directory exists or is created before you use this method
for srcType ’file’.

After importing data from an external video data source to a local source (within an
Oracle database), the source information (that is, pointing to the source from where
the data was imported) is set to the input values.
ORDVideo Reference Information 9-41

importFrom()
Invoking this method implicitly calls the setUpdateTime() and setLocal methods.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE exception

This exception is raised if you call the importFrom() method and the value dlob is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import video data from the specified external data source into the local source:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’setting and getting source’);
 DBMS_OUTPUT.PUT_LINE(’--------------------------’);
 -- import data
 obj.importFrom(ctx,’file’,’VIDEODIR’,’MV1.AVI’);
 -- check size
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(DBMS_LOB.GETLENGTH(obj.getContent)));
 DBMS_OUTPUT.PUT_LINE(obj.getSource());
 DBMS_OUTPUT.PUT_LINE(’deleting contents’);
 DBMS_OUTPUT.PUT_LINE(’-----------------’);
 obj.deleteContent();
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(obj.getContentLength(ctx)));
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
9-42 Oracle interMedia User’s Guide and Reference

importFrom()
 EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’EXCEPTION Caught’);
END;
/

ORDVideo Reference Information 9-43

processVideoCommand()
processVideoCommand()

Format
processVideoCommand(

 ctx IN OUT RAW,

 cmd IN VARCHAR2,

 arguments IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send a command and related arguments to the format plug-in for
processing.

Parameters

ctx
The format plug-in context information.

cmd
Any command recognized by the format plug-in.

arguments
The arguments of the command.

result
The result of calling this function returned by the format plug-in.

Usage Notes
Use this method to send any video commands and their respective arguments to the
format plug-in. Commands are not interpreted; they are taken and passed through
to a format plug-in to be processed.

Note: This method is supported only for user-defined format
plug-ins.
9-44 Oracle interMedia User’s Guide and Reference

processVideoCommand()
If the format is set to NULL, then the processVideoCommand() method uses the
default format plug-in; otherwise, it uses your user-defined format plug-in.

You can extend support to a format that is not understood by the ORDVideo object
by preparing an ORDPLUGINS.ORDX_<format>_VIDEO package that supports
that format. See Section 3.4.13 for more information.

Pragmas
None.

Exceptions
METHOD_NOT_SUPPORTED or VIDEO_PLUGIN_EXCEPTION

Either exception is raised if you call the ProcessVideoCommand() method and the
video plug-in raises an exception when calling this method.

Examples
Process a set of commands:

DECLARE
 obj ORDSYS.ORDVideo;
 res RAW(4000);
 result RAW(4000);
 command VARCHAR(4000);
 argList VARCHAR(4000);
 ctx RAW(4000) :=NULL;
BEGIN
select vid into obj from TVID where N =1 for UPDATE;
-- assign command
-- assign argList
res := obj.processVideoCommand(ctx, command, argList, result);
UPDATE TVID SET vid=obj WHERE N=1 ;
COMMIT;
EXCEPTION
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’Source METHOD_NOT_SUPPORTED caught’);
 WHEN ORDSYS.ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’SOURCE PLUGIN EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.put_line(’VIDEO METHOD_NOT_SUPPORTED EXCEPTION caught’);
 WHEN ORDSYS.ORDVideoExceptions.VIDEO_PLUGIN_EXCEPTION THEN
 DBMS_OUTPUT.put_line(’VIDEO PLUGIN EXCEPTION caught’);
 WHEN OTHERS THEN
ORDVideo Reference Information 9-45

processVideoCommand()
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

9-46 Oracle interMedia User’s Guide and Reference

setBitRate()
setBitRate()

Format
setBitRate(knownBitRate IN INTEGER);

Description
Sets the value of the bitRate attribute of the video object.

Parameters

knownBitRate
The bit rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setBitRate() method and the value for the
knownBitRate parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
ORDVideo Reference Information 9-47

setCompressionType()
setCompressionType()

Format
setCompressionType(knownCompressionType IN VARCHAR2);

Description
Sets the value of the compressionType attribute of the video object.

Parameters

knownCompressionType
A known compression type.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setCompressionType() method and the value
for the knownCompressionType parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
9-48 Oracle interMedia User’s Guide and Reference

setDescription()
setDescription()

Format
setDescription (user_description IN VARCHAR2);

Description
Sets the description of the video data.

Parameters

user_description
The description of the video data.

Usage Notes
Each video object may need a description to help some client applications. For
example, a Web-based client can show a list of video descriptions from which a user
can select one to access the video data.

Web access components and other client components provided with Oracle
interMedia make use of this description attribute to present video data to users.

Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the description attribute for some video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing description’);
 DBMS_OUTPUT.PUT_LINE(’-------------’);
ORDVideo Reference Information 9-49

setDescription()
 obj.setDescription(’video1’);
 DBMS_OUTPUT.PUT_LINE(obj.getDescription());
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
END;
/

9-50 Oracle interMedia User’s Guide and Reference

setFormat()
setFormat()

Format
setFormat(knownFormat IN VARCHAR2);

Description
Sets the format attribute of the video object.

Parameters

knownFormat
The known format of the video data to be set in the video object.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFormat() method and the value for the
knownFormat parameter is NULL.

Examples
Set the format for some stored video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
 SELECT vid INTO obj FROM TVID WHERE N=1 FOR UPDATE;
 DBMS_OUTPUT.PUT_LINE(’writing format’);
 DBMS_OUTPUT.PUT_LINE(’--------------’);
 obj.setFormat(’avi’);
 DBMS_OUTPUT.PUT_LINE(obj.getFormat);
 UPDATE TVID SET vid=obj WHERE N=1;
 COMMIT;
ORDVideo Reference Information 9-51

setFormat()
 EXCEPTION
 WHEN ORDSYS.ORDVideoExceptions.NULL_INPUT_VALUE THEN
 DBMS_OUTPUT.put_line(’ORDVideoExceptions.NULL_INPUT_VALUE caught’);
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’EXCEPTION caught’);
END;
/

9-52 Oracle interMedia User’s Guide and Reference

setFrameRate()
setFrameRate()

Format
setFrameRate(knownFrameRate IN INTEGER);

Description
Sets the value of the frameRate attribute of the video object.

Parameters

knownFrameRate
The frame rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameRate() method and the value for the
knownFrameRate parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
ORDVideo Reference Information 9-53

setFrameResolution()
setFrameResolution()

Format
setFrameResolution(knownFrameResolution IN INTEGER);

Description
Sets the value of the frameResolution attribute of the video object.

Parameters

knownFrameResolution
The known frame resolution in pixels per inch.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameResolution() method and the value
for the knownFrameResolution parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
9-54 Oracle interMedia User’s Guide and Reference

setFrameSize()
setFrameSize()

Format
setFrameSize(

 knownWidth IN INTEGER,

 knownHeight IN INTEGER);

Description
Sets the value of the height and width attributes of the video object.

Parameters

knownWidth
The frame width in pixels.

knownHeight
The frame height in pixels.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setFrameSize() method and the value for
either the knownWidth or knownHeight parameter is NULL.

Examples
Set the frame size for video data:

DECLARE
 obj ORDSYS.ORDVideo;
BEGIN
ORDVideo Reference Information 9-55

setFrameSize()
 select vid into obj from TVID where N =1 for update;
 obj.setFrameSize(1,2);
 obj.setFrameResolution(4);
 obj.setFrameRate(5);
 obj.setVideoDuration(20);
 obj.setNumberOfFrames(8);
 obj.setCompressionType(’Cinepak’);
 obj.setBitRate(1500);
 obj.setNumberOfColors(256);
 update TVID set vid = obj where N = 1;
 COMMIT;
END;
/

9-56 Oracle interMedia User’s Guide and Reference

setKnownAttributes()
setKnownAttributes()

Format
setKnownAttributes(

 knownFormat IN VARCHAR2,

 knownWidth IN INTEGER,

 knownHeight IN INTEGER,

 knownFrameResolution IN INTEGER,

 knownFrameRate IN INTEGER,

 knownVideoDuration IN INTEGER,

 knownNumberOfFrames IN INTEGER,

 knownCompressionType IN VARCHAR2,

 knownNumberOfColors IN INTEGER,

 knownBitRate IN INTEGER);

Description
Sets the known video attributes for the video data.

Parameters

knownFormat
The known format.

knownWidth
The known width.

knownHeight
The known height.

knownFrameResolution
The known frame resolution.

knownFrameRate
The known frame rate.
ORDVideo Reference Information 9-57

setKnownAttributes()
knownVideoDuration
The known video duration.

knownNumberOfFrames
The known number of frames.

knownCompressionType
The known compression type.

knownNumberOfColors
The known number of colors.

knownBitRate
The known bit rate.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
None.

Examples
Set the property information for all known attributes for video data:

DECLARE
 obj ORDSYS.ORDVideo;
 width integer;
 height integer;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.setKnownAttributes(’MOOV’,1,2,4,5,20,8,’Cinepak’, 256, 1500);
 obj.getFrameSize(width, height);
 DBMS_OUTPUT.put_line(’width: ’ || TO_CHAR(width));
 DBMS_OUTPUT.put_line(’height: ’ || TO_CHAR(height));
 DBMS_OUTPUT.put_line(’format: ’ || obj.getFormat());
 DBMS_OUTPUT.put_line(’frame resolution: ’ ||TO_CHAR(obj.getFrameResolution()));
 DBMS_OUTPUT.put_line(’frame rate: ’ || TO_CHAR(obj.getFrameRate()));
 DBMS_OUTPUT.put_line(’video duration: ’ || TO_CHAR(obj.getVideoDuration()));
9-58 Oracle interMedia User’s Guide and Reference

setKnownAttributes()
 DBMS_OUTPUT.put_line(’number of frames: ’ || TO_CHAR(obj.getNumberOfFrames()));
 DBMS_OUTPUT.put_line(’compression type: ’ || obj.getCompressionType());
 DBMS_OUTPUT.put_line(’bite rate: ’ || TO_CHAR(obj.getBitRate()));
 DBMS_OUTPUT.put_line(’number of colors: ’ || TO_CHAR(obj.getNumberOfColors()));
 update TVID set vid = obj where N = 1;
 COMMIT;
END;
/

ORDVideo Reference Information 9-59

setNumberOfColors()
setNumberOfColors()

Format
setNumberOfColors(knownNumberOfColors RETURN INTEGER);

Description
Sets the value of the numberOfColors attribute of the video object.

Parameters

knownNumberOfColors
A known number of colors.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfColors() method and the value
for the knownNumberOfColors parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
9-60 Oracle interMedia User’s Guide and Reference

setNumberOfFrames()
setNumberOfFrames()

Format
setNumberOfFrames(knownNumberOfFrames RETURN INTEGER);

Description
Sets the value of the numberOfFrames attribute of the video object.

Parameters

knownNumberOfFrames
A known number of frames.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setNumberOfFrames() method and the value
for the knownNumberOfFrames parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
ORDVideo Reference Information 9-61

setProperties()
setProperties()

Format
setProperties(ctx IN OUT RAW,

 setComments IN BOOLEAN);

Description
Reads the video data to get the values of the object attributes and then stores them
in the object. For the known attributes that ORDVideo understands, it sets the
properties for these attributes, which include: format, frame size, frame resolution,
frame rate, video duration, number of frames, compression type, number of colors,
and bit rate. It populates the comments field of the object with a rich set of format
and application properties in XML form if the value of the setComments parameter
is TRUE.

Parameters

ctx
The format plug-in context information.

setComments
If the value is TRUE, then the comments field of the object is populated with a rich
set of format and application properties of the video object in XML form, identical
to what is provided by the interMedia Annotator utility; otherwise, if the value is
FALSE, the comments field of the object remains unpopulated. The default value is
FALSE.

Usage Notes
If the property cannot be extracted from the media source, then the respective
attribute is set to NULL.

If the format is set to NULL, then the setProperties() method uses the default
format plug-in; otherwise, it uses your user-defined format plug-in.

Pragmas
None.
9-62 Oracle interMedia User’s Guide and Reference

setProperties()
Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the setProperties() method and the video plug-in
raises an exception when calling this method.

Examples
Set the property information for known video attributes:

DECLARE
 obj ORDSYS.ORDVideo;
 ctx RAW(4000) :=NULL;
BEGIN
 select vid into obj from TVID where N =1 for update;
 obj.setProperties(ctx,FALSE);
 update TVID set vid = obj where N = 1;
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(’exception raised’);
END;
/

ORDVideo Reference Information 9-63

setVideoDuration()
setVideoDuration()

Format
setVideoDuration(knownVideoDuration RETURN INTEGER);

Description
Sets the value of the videoDuration attribute of the video object.

Parameters

knownVideoDuration
A known video duration.

Usage Notes
Calling this method implicitly calls the setUpdateTime() method.

Pragmas
None.

Exceptions
NULL_INPUT_VALUE

This exception is raised if you call the setVideoDuration() method and the value for
the knownVideoDuration parameter is NULL.

Examples
See the example in "setFrameSize()" on page 9-55.
9-64 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
9.4 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided. Table 9–1 describes the PL/SQL plug-in packages provided in the
ORDPLUGINS schema.

Section 9.4.1 describes the ORDPLUGINS.ORDX_DEFAULT_VIDEO package, the
methods supported, and the level of support. Note that the methods supported and
the level of support for the other PL/SQL plug-in packages described in Table 9–1
are identical for all plug-in packages, therefore, refer to Section 9.4.1.

9.4.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the following provided ORDPLUGINS.ORDX_DEFAULT_VIDEO package as a
guide in developing your own ORDPLUGINS.ORDX_<format>_VIDEO video
format package. This package sets the mimeType field in the setProperties()
method with a MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_VIDEO
authid current_user
AS
--VIDEO ATTRIBUTES ACCESSORS
FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2;
FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2;
PROCEDURE getFrameSize(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 width OUT INTEGER,
 height OUT INTEGER);
FUNCTION getFrameResolution(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;

Table 9–1 PL/SQL Plug-ins Provided in the ORDPLUGINS Schema

PL/SQL Plug-in Packages Audio Format MIME Type

ORDPLUGINS.ORDX_DEFAULT_VIDEO <format> Dependent on file format

ORDPLUGINS.ORDX_AVI_VIDEO AVI video/x-msvideo

ORDPLUGINS.ORDX_MOOV_VIDEO MOOV video/quicktime

ORDPLUGINS.ORDX_RMFF_VIDEO RMFF audio/x-pn-realaudio
ORDVideo Reference Information 9-65

Packages or PL/SQL Plug-ins
FUNCTION getFrameRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getVideoDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getNumberOfFrames(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2;
FUNCTION getNumberOfColors(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
FUNCTION getBitRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER;
PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW,obj IN ORDSYS.ORDVideo) RETURN NUMBER;

-- must return name=value; name=value; ... pairs
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB);
-- VIDEO PROCESSING METHODS
FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
PRAGMA RESTRICT_REFERENCES(getFormat, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getAttribute, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameSize, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameResolution, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getFrameRate, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getVideoDuration, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfFrames, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getCompressionType, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getNumberOfColors, WNDS, WNPS, RNDS, RNPS);
PRAGMA RESTRICT_REFERENCES(getBitRate, WNDS, WNPS, RNDS, RNPS);

END;
/

9-66 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
Table 9–2 shows the methods supported in the ORDPLUGINS.ORDX_DEFAULT_
VIDEO package and the exceptions raised if you call a method that is not
supported.

Table 9–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method Level of Support

getFormat Supported; if the source is local, get the attribute and return the file format,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

getFrameSize Supported; if the source is local, get the attribute and return the frame size,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getFrameResolution Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

getFrameRate Supported; if the source is local, get the attribute and return the frame rate,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getVideoDuration Supported; if the source is local, get the attribute and return the video
duration, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getNumberOfFrames Supported; if the source is local, get the attribute and return the number of
frames, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getCompressionType Supported; if the source is local, get the attribute and return the
compression type, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.
ORDVideo Reference Information 9-67

Packages or PL/SQL Plug-ins
9.4.2 Extending interMedia to Support a New Video Data Format
Extending interMedia to support a new video data format consists of four steps:

1. Design your new video data format.

2. Implement your new video data format and name it, for example, ORDX_MY_
VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL plug-in in the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
VIDEO.SQL plug-in, to PUBLIC.

getNumberOfColors Supported; if the source is local, get the attribute and return the number of
colors, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

getBitRate Supported; if the source is local, get the attribute and return the bit rate, but
if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

setProperties Supported; if the source is local, process the local data and set the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and set the properties.

checkProperties Supported; if the source is local, process the local data and set the
properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the source
is a BFILE, then process the BFILE and set the properties; if the source is
neither local nor a BFILE, get the media content into a temporary LOB,
process the data, and set the properties.

getAllAttributes Supported; if the source is local, get the attributes and return them, but if
the source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY_
SOURCE exception; otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_REQUIRED
exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

Table 9–2 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package (Cont.)

Name of Method Level of Support
9-68 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
Section 3.4.12 briefly describes how to extend interMedia to support a new video
data format and describes the interface. A package body listing is provided in
Example 9–1 to assist you in this operation. Add your variables to the places that
say "--Your variables go here" and add your code to the places that say "--Your code
goes here".

See Section F.4 for more information on installing your own video format plug-in
and running the sample scripts provided.

Example 9–1 Show the Package Body for Extending Support to a New Video
Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_VIDEO
AS
 --VIDEO ATTRIBUTES ACCESSORS
 FUNCTION getFormat(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getFrameSize(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 width OUT INTEGER,
 height OUT INTEGER)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getFrameResolution(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
ORDVideo Reference Information 9-69

Packages or PL/SQL Plug-ins
--Your code goes here
 END;
 FUNCTION getFrameRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getVideoDuration(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfFrames(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getCompressionType(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN VARCHAR2
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getNumberOfColors(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION getBitRate(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo)
 RETURN INTEGER
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;

9-70 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER :=0)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo) RETURN NUMBER
 IS
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB)
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
 -- VIDEO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here
 BEGIN
--Your code goes here
 END;
END;
/
show errors;
ORDVideo Reference Information 9-71

Packages or PL/SQL Plug-ins
9-72 Oracle interMedia User’s Guide and Reference

interMedia Relational Interface
10

interMedia Relational Interface Reference

Application developers, who created multimedia applications without using the
interMedia object types to store and manage media data in relational tables, and
who do not want to migrate their existing multimedia applications to use
interMedia objects, can use the interMedia relational interface for managing their
media data. The interMedia relational interface consists of a set of methods for:

■ Extracting information directly from their media data as either an XML string or
as XML and individual attributes

■ Processing and copying image data

■ Loading media data into the Oracle database

■ Exporting media data from the Oracle database into operating system files

The primary benefit of using the interMedia relational interface is to let application
developers take advantage of interMedia functions with only minimal changes to
their applications, and all without having to change their schemas to the interMedia
objects to store their data.

The Oracle interMedia relational interface consists of a set of static methods (see
Section 10.1) for the interMedia objects: ORDAudio, ORDDoc, ORDImage, and
ORDVideo. Because these are static methods, no object is instantiated. Data is
passed by method arguments rather than by object attributes.

The examples in this chapter assume that each of the media tables described in the
respective sections of this chapter has been created and filled with data.

Methods related to the source of the media have ctx(RAW(4000)) as the first
argument. Before calling any of these methods for the first time, the client must
allocate the ctx structure and initialize it to NULL.
Reference 10-1

Static Methods for the Relational Interface
ORDAudio, ORDDoc, and ORDVideo methods related to media parsing have ctx
(RAW(4000)) as the first argument. Before calling any of these methods for the first
time, the client must allocate the ctx structure and initialize it to NULL.

10.1 Static Methods for the Relational Interface
This section presents reference information on the static methods for the relational
interface. It is divided into subsections that describe those static methods (export(),
import(), and importFrom()) that are common to all object types and those static
methods that are unique to a particular object type or implemented differently for
the different object type.

10.1.1 Static Methods Common to All Object Types
The following static methods common to all object types for the relational interface
are all associated with the source of the media.

export() -- copies data from a local source within an Oracle database to the
specified external data source.

importFrom() -- transfers data from the specified external data source to the
specified local source within an Oracle database.

importFrom() (all attributes) -- transfers data (all attributes) from the specified
external data source to the specified local source within an Oracle database and
returns format and mimeType if available.

10.1.2 Static Methods Uniquely Associated with Each Object Type
The following static methods (grouped by object type) for the relational interface
are either unique to a particular object type or are implemented differently for each
object type.

ORDAudio
getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.
10-2 Oracle interMedia User’s Guide and Reference

Static Methods for the Relational Interface
getProperties() for BFiles (all attributes) -- reads the BFILE data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

ORDDoc
getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

ORDImage
getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

process() -- performs in-place image processing on an image stored in a BLOB.

processCopy() for BLOBs -- copies an image from a BLOB to the destination BLOB
while performing image processing on the destination BLOB.

processCopy() for BFILEs -- copies an image from a BFILE to the destination BLOB
while performing image processing on the destination BLOB.
interMedia Relational Interface Reference 10-3

Static Methods Common to All Object Types
ORDVideo
getProperties() for BLOBs -- reads the BLOB data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BLOBs (all attributes) -- reads the BLOB data to get the values of
the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

getProperties() for BFILES -- reads the BFILE data to get the values of the media
attributes and then stores them in the input CLOB in XML form.

getProperties() for BFILES (all attributes) -- reads the BFILE data to get the values
of the media attributes and then stores them in the input CLOB in XML form and
returns them as explicit parameters.

10.2 Static Methods Common to All Object Types
The examples in this section assume that you have created the test tables as
described in Section 10.3.1, Section 10.4.1, Section 10.5.1, and Section 10.6.1,
respectively for each object type.

This section presents reference information on the Oracle interMedia common static
methods used for the relational interface.
10-4

export()
export()

Format
export(

 ctx IN OUT RAW,

 local_data IN BLOB,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies data from a local source (local_data) within an Oracle database to an
external data source.

Parameters

ctx
The source plug-in context information.

local_data
The BLOB location that is being exported.

source_type
The source type of the location to where the data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
interMedia Relational Interface Reference 10-5

export()
Usage Notes
After calling the export() method, you can issue a SQL DELETE statement or call
the DBMS_LOB.TRIM procedure to delete the content stored locally, if desired.

The export() method for a source type of ’file’ is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT_
PERMISSION call to specify which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

Pragmas
None.

Exceptions
ORDSourceExceptions.INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.
10-6 Oracle interMedia User’s Guide and Reference

export()
ORDSourceExceptions.IO_ERROR

This exception is raised if the export() method encounters an error writing the
BLOB data to the file specified.

See Appendix H for more information about these exceptions.

Examples
Export data from a local source to an external audio data source:

CONNECT SYSTEM/<system-password>;
CREATE OR REPLACE DIRECTORY AUDIODIR AS ’e:\<ORACLE_HOME>\ord\aud\demo’;
GRANT READ ON DIRECTORY AUDIODIR TO PUBLIC WITH GRANT OPTION;

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’e:\<ORACLE_HOME>\ord\aud\demo\testaud.dat’,
 ’write’);
CONNECT MEDIAUSER/MEDIAUSER;
DECLARE
 audio_data BLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT aud INTO audio_data FROM taud WHERE N = 1;
 ORDSYS.ORDAudio.export(ctx,audio_data,’file’,’AUDIODIR’,’testaud.dat’);
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

Note: <ORACLE_HOME> must be replaced with your Oracle home
and <system-password> with the system password.
interMedia Relational Interface Reference 10-7

importFrom()
importFrom()

Format
importFrom(ctx IN OUT RAW,

 local_data IN OUT NOCOPY BLOB,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers data from the specified external data source to a local source (local_data)
within an Oracle database.

Parameters

ctx
The source plug-in context information.

local_data
The BLOB location to receive the data.

source_type
The source type of the data.

source_location
The location from where the data is to be imported.

source_name
The name of the data.

Usage Notes
You must ensure that the directory exists or is created before you use this method
for file sources.

Pragmas
None.
10-8 Oracle interMedia User’s Guide and Reference

importFrom()
Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of local_
data is NULL or has not been initialized.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import document data from the specified external data source into the local source:

CONNECT system/<system-password>;
CREATE OR REPLACE DIRECTORY DOCDIR AS ’e:\<ORACLE_HOME>\ord\doc\demo’;
GRANT READ ON DIRECTORY DOCDIR TO PUBLIC WITH GRANT OPTION;

CONNECT MEDIAUSER/MEDIAUSER;

DECLARE
 document_data BLOB;
 ctx RAW(4000) :=NULL;
BEGIN
 SELECT document INTO document_data FROM tdoc WHERE N = 1 FOR UPDATE;
 ORDSYS.ORDDoc.importFrom(ctx,document_data,’file’,’DOCDIR’,’testimg.dat’);
 UPDATE tdoc SET document = document_data WHERE N = 1;
 COMMIT;
 SELECT document INTO document_data FROM tdoc WHERE N = 2 FOR UPDATE;
 ORDSYS.ORDDoc.importFrom(ctx,document_data,’file’,’DOCDIR’,’testaud.dat’);
 UPDATE tdoc SET document = document_data WHERE N = 2;
 COMMIT;
 SELECT document INTO document_data FROM tdoc WHERE N = 3 FOR UPDATE;
 ORDSYS.ORDDoc.importFrom(ctx,document_data,’file’,’DOCDIR’,’testvid.dat’);
 UPDATE tdoc SET document = document_data WHERE N = 3;

Note: <ORACLE_HOME> must be replaced with your Oracle home.
interMedia Relational Interface Reference 10-9

importFrom()
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-10 Oracle interMedia User’s Guide and Reference

importFrom() (all attributes)
importFrom() (all attributes)

Format
importFrom(ctx IN OUT RAW,

 local_data IN OUT NOCOPY BLOB,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2,

 format OUT VARCHAR2,

 mime_type OUT VARCHAR2);

Description
Transfers data from the specified external data source to a local source (local_data)
within an Oracle database.

Parameters

ctx
The source plug-in context information.

local_data
The BLOB location to receive the data.

source_type
The source type of the data.

source_location
The location from where the data is to be imported.

source_name
The name of the data.

format
The format of the data. The value is returned if it is available (from HTTP sources).
interMedia Relational Interface Reference 10-11

importFrom() (all attributes)
mime_type
The MIME type of the data. The value is returned if it is available (from HTTP
sources).

Usage Notes
You must ensure that the directory exists or is created before you use this method
for file sources.

Pragmas
None.

Exceptions
ORDSourceExceptions.NULL_SOURCE

This exception is raised if you call the importFrom() method and the value local_
data is NULL or has not been initialized.

ORDSourceExceptions.METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

ORDSourceExceptions.SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

See Appendix H for more information about these exceptions.

Examples
Import image data from the specified external data source into the local source:

CONNECT system/<system-password>;
CREATE OR REPLACE DIRECTORY IMAGEDIR AS ’e:\<ORACLE_HOME>\ord\img\demo’;
GRANT READ ON DIRECTORY IMAGEDIR TO PUBLIC WITH GRANT OPTION;

DECLARE
 image_data BLOB;
 ctx RAW(4000) :=NULL;
 img_format VARCHAR2(32) := NULL;

Note: <ORACLE_HOME> must be replaced with your Oracle home.
10-12 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDAudio Object Type Relational Interface
 img_mime_type VARCHAR2(80);
BEGIN
 SELECT img INTO image_data FROM timg WHERE N = 1 FOR UPDATE;
 ORDSYS.ORDImage.importFrom(ctx,image_data,’file’,’IMAGEDIR’,’testimg.dat’,img_format,img_mime_type);
 UPDATE timg SET img = image_data WHERE N = 1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10.3 Static Methods Unique to the ORDAudio Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDAudio relational interface.

The relational interface adds interMedia support to audio data stored in BLOBs and
BFILEs rather than in the ORDAudio type. The following interface is defined in the
ordaspec.sql file:

.

.

.
 -- Static Methods for the relational interface
 STATIC PROCEDURE export(ctx IN OUT RAW,
 local_data IN BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2,
 format OUT VARCHAR2,
interMedia Relational Interface Reference 10-13

Static Methods Unique to the ORDAudio Object Type Relational Interface
 mime_type OUT VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 audioBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 audioBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 encoding OUT VARCHAR2,
 numberOfChannels OUT INTEGER,
 samplingRate OUT INTEGER,
 sampleSize OUT INTEGER,
 compressionType OUT VARCHAR2,
 audioDuration OUT INTEGER),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 audioBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 audioBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 encoding OUT VARCHAR2,
 numberOfChannels OUT INTEGER,
 samplingRate OUT INTEGER,
 sampleSize OUT INTEGER,
 compressionType OUT VARCHAR2,
 audioDuration OUT INTEGER),
.
.
.

10.3.1 Example Table Definitions
The methods described in this section show examples based on a test audio table
TAUD. Refer to the TAUD table definition that follows when reading through the
examples:
10-14 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDAudio Object Type Relational Interface
TAUD Table Definition
CREATE TABLE taud(n NUMBER,
 aud BLOB,
 attributes CLOB,
 mimetype VARCHAR2(4000),
 format VARCHAR2(31),
 encoding VARCHAR2(256),
 numberofchannels INTEGER,
 samplingrate INTEGER,
 samplesize INTEGER,
 compressiontype VARCHAR2(4000),
 audioduration INTEGER)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO taud VALUES(1,EMPTY_BLOB(),EMPTY_CLOB(), NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);
INSERT INTO taud VALUES(2,EMPTY_BLOB(),EMPTY_CLOB(), NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);
COMMIT;
interMedia Relational Interface Reference 10-15

getProperties() for BLOBs
getProperties() for BLOBs

Format
getProperties(ctx IN OUT RAW,

 audioBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the audio BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

audioBlob
The audio data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BLOB data in XML form.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
10-16 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs
Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known audio attributes:

DECLARE
 aud_attrib CLOB;
 ctx RAW(4000) :=NULL;
 aud_data BLOB;
 aud_format VARCHAR2(160) := NULL;
BEGIN
 SELECT aud,attributes INTO aud_data,aud_attrib FROM taud WHERE N =1 FOR UPDATE;
 ORDSYS.ORDAudio.getProperties(ctx,aud_data,aud_attrib,aud_format);
 DBMS_OUTPUT.put_line('Size of XML Annotations: ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(aud_attrib)));
 UPDATE taud SET aud=aud_data, attributes=aud_attrib WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-17

getProperties() (all attributes) for BLOBs
getProperties() (all attributes) for BLOBs

Format
getProperties(ctx IN OUT RAW,

 audioBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2

 encoding OUT VARCHAR2,

 numberOfChannels OUT INTEGER,

 samplingRate OUT INTEGER,

 sampleSize OUT INTEGER,

 compressionType OUT VARCHAR2,

 audioDuration OUT INTEGER);

Description
Reads the audio BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the audio data: duration,
MIME type, compression type, format, encoding type, number of channels,
sampling rate, and sample size. It populates the CLOB with an extensive set of
format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

audioBlob
The audio data represented as a BLOB.
10-18 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BLOB data in XML form.

mimeType
The MIME type of the audio data.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked. If not specified, the derived format value is
returned.

encoding
The encoding type of the audio data.

numberOfChannels
The number of channels in the audio data.

samplingRate
The sampling rate in samples per second at which the audio data was recorded.

sampleSize
The sample width or number of samples of audio in the data.

compressionType
The compression type of the audio data.

audioDuration
The total time required to play the audio data.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION
interMedia Relational Interface Reference 10-19

getProperties() (all attributes) for BLOBs
This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known audio attributes:

DECLARE
 aud_attrib CLOB;
 ctx RAW(4000) :=NULL;
 aud_data BLOB;
 mimeType VARCHAR2(80);
 format VARCHAR2(32);
 encoding VARCHAR2(160);
 numberOfChannels NUMBER;
 samplingRate NUMBER;
 sampleSize NUMBER;
 compressionType VARCHAR2(160);
 audioDuration NUMBER;
BEGIN
 SELECT aud, attributes, mimetype, format, encoding, numberofchannels, samplingrate,
samplesize, compressiontype, audioduration INTO aud_data, aud_attrib, mimeType, format,
encoding, numberOfChannels, samplingRate, sampleSize, compressionType, audioDuration FROM
taud WHERE N = 1 FOR UPDATE;

 ORDSYS.ORDAudio.getProperties(ctx, aud_data, aud_attrib, mimeType, format, encoding,
 numberOfChannels, samplingRate, sampleSize, compressionType, audioDuration);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(aud_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
 DBMS_OUTPUT.put_line(’format: ’ || format);
 DBMS_OUTPUT.put_line(’encoding: ’ || encoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || numberOfChannels);
 DBMS_OUTPUT.put_line(’samplingRate: ’ || samplingRate);
 DBMS_OUTPUT.put_line(’sampleSize: ’ || sampleSize);
 DBMS_OUTPUT.put_line(’compressionType: ’ || compressionType);
 DBMS_OUTPUT.put_line(’audioDuration: ’ || audioDuration);
 UPDATE taud SET
 aud=aud_data,
 attributes=aud_attrib,
 mimetype=mimeType,
 format=format,
 encoding=encoding,
 numberofchannels=numberOfChannels,
 samplingrate=samplingRate,
10-20 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
 samplesize=sampleSize,
 compressiontype=compressionType,
 audioduration=audioDuration
 WHERE n=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-21

getProperties() for BFILEs
getProperties() for BFILEs

Format
getProperties(ctx IN OUT RAW,

 audioBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the audio BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

audioBfile
The audio data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the audio BFILE data in XML form.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
10-22 Oracle interMedia User’s Guide and Reference

getProperties() for BFILEs
Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known audio attributes:

DECLARE
 aud_attrib CLOB;
 ctx RAW(4000) :=NULL;
 aud_data BFILE := BFILENAME(’AUDIODIR’,’testaud.dat’);
 aud_format VARCHAR2(160) := NULL;
BEGIN
 DBMS_LOB.CREATETEMPORARY(aud_attrib, FALSE, DBMS_LOB.CALL);
 ORDSYS.ORDAudio.getProperties(ctx, aud_data, aud_attrib, aud_format);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(aud_attrib)));
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-23

getProperties() (all attributes) for BFILEs
getProperties() (all attributes) for BFILEs

Format
getProperties(ctx IN OUT RAW,

 audioBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2

 encoding OUT VARCHAR2,

 numberOfChannels OUT INTEGER,

 samplingRate OUT INTEGER,

 sampleSize OUT INTEGER,

 compressionType OUT VARCHAR2,

 audioDuration OUT INTEGER);

Description
Reads the audio BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the audio data: duration,
MIME type, compression type, format, encoding type, number of channels,
sampling rate, and sample size. It populates the CLOB with an extensive set of
format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

audioBfile
The audio data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
10-24 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs
properties of the audio BFILE data in XML form, identical to what is provided by
the interMedia Annotator utility.

mimeType
The MIME type of the audio data.

format
The optional format of the audio data. If this parameter is specified, then the format
plug-in for this format type is invoked. If not specified, the derived format value is
returned.

encoding
The encoding type of the audio data.

numberOfChannels
The number of channels in the audio data.

samplingRate
The sampling rate in samples per second at which the audio data was recorded.

sampleSize
The sample width or number of samples of audio in the data.

compressionType
The compression type of the audio data.

audioDuration
The total time required to play the audio data.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
AUDIO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the audio plug-in
raises an exception.
interMedia Relational Interface Reference 10-25

Static Methods Unique to the ORDDoc Object Type Relational Interface
ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known audio attributes:

DECLARE
 aud_attrib CLOB;
 ctx RAW(4000) :=NULL;
 data BFILE := BFILENAME(’AUDIODIR’,’testaud.dat’);
 mimeType VARCHAR2(80);
 format VARCHAR2(32);
 encoding VARCHAR2(160);
 numberOfChannels NUMBER;
 samplingRate NUMBER;
 sampleSize NUMBER;
 compressionType VARCHAR2(160);
 audioDuration NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(aud_attrib, FALSE, DBMS_LOB.CALL);

 ORDSYS.ORDAudio.getProperties(ctx, data, aud_attrib, mimeType, format, encoding,
 numberOfChannels, samplingRate, sampleSize, compressionType, audioDuration);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(aud_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
 DBMS_OUTPUT.put_line(’format: ’ || format);
 DBMS_OUTPUT.put_line(’encoding: ’ || encoding);
 DBMS_OUTPUT.put_line(’numberOfChannels: ’ || numberOfChannels);
 DBMS_OUTPUT.put_line(’samplingRate: ’ || samplingRate);
 DBMS_OUTPUT.put_line(’sampleSize: ’ || sampleSize);
 DBMS_OUTPUT.put_line(’compressionType: ’ || compressionType);
 DBMS_OUTPUT.put_line(’audioDuration: ’ || audioDuration);
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10.4 Static Methods Unique to the ORDDoc Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDDoc relational interface.
10-26 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDDoc Object Type Relational Interface
The relational interface adds interMedia support to audio, document, image, and
video data stored in BLOBs and BFILEs rather than in the ORDDoc type. The
following interface is defined in the orddspec.sql file:

.

.

.
 -- Static Methods for the relational interface
 STATIC PROCEDURE export(ctx IN OUT RAW,
 local_data IN BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2,
 format OUT VARCHAR2,
 mime_type OUT VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 docBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 docBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 contentLength OUT INTEGER),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 docBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
interMedia Relational Interface Reference 10-27

Static Methods Unique to the ORDDoc Object Type Relational Interface
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 docBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 contentLength OUT INTEGER),
.
.
.

10.4.1 Example Table Definitions
The methods described in this section show examples based on a test document
table TDOC. Refer to the TDOC table definition that follows when reading through
the examples:

TDOC Table Definition
CREATE TABLE tdoc(n NUMBER,
 document BLOB,
 attributes CLOB,
 mimetype VARCHAR2(80),
 format VARCHAR2(80),
 contentlength INTEGER)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO tdoc VALUES(1, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL, NULL);
INSERT INTO tdoc VALUES(2, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL, NULL);
INSERT INTO tdoc VALUES(3, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL, NULL);
INSERT INTO tdoc VALUES(4, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL, NULL);
COMMIT;
10-28 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs
getProperties() for BLOBs

Format
getProperties(ctx IN OUT RAW,

 docBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the document BLOB data to get the values of the media attributes and then
stores them in the input CLOB. This method populates the CLOB with an extensive
set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

docBlob
The document data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BLOB data in XML form.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
interMedia Relational Interface Reference 10-29

getProperties() for BLOBs
Exceptions
DOC_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known document attributes:

DECLARE
 doc_attrib CLOB;
 ctx RAW(4000) :=NULL;
 doc_data BLOB;
 doc_format VARCHAR2(160) := NULL;

BEGIN
 SELECT document,attributes INTO doc_data,doc_attrib FROM tdoc WHERE N = 1 FOR UPDATE;
 ORDSYS.ORDDoc.getProperties(ctx, doc_data, doc_attrib, doc_format);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(doc_attrib)));
 UPDATE tdoc SET document=doc_data, attributes=doc_attrib WHERE N=1;
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-30 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
getProperties() (all attributes) for BLOBs

Format
getProperties(ctx IN OUT RAW,

 docBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2,

 contentLength OUT INTEGER);

Description
Reads the document BLOB data to get the values of the media attributes and then
stores them in the input CLOB as explicit parameters. This method gets the
properties for the following attributes of the document data: MIME type, content
length, and format. It populates the CLOB with an extensive set of format and
application properties in XML form.

Parameters

ctx
The format plug-in context information.

docBlob
The document data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BLOB data in XML form.

mimeType
The MIME type of the document data.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.
interMedia Relational Interface Reference 10-31

getProperties() (all attributes) for BLOBs
contentLength
The length in bytes of the content.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
DOC_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known document attributes:

DECLARE
 doc_attrib CLOB;
 ctx RAW(4000) :=NULL;
 doc_data BLOB;
 doc_mimeType VARCHAR2(80);
 doc_format VARCHAR2(32);
 doc_contentLength NUMBER;
BEGIN
 SELECT document, attributes, mimetype, format, contentlength INTO doc_data, doc_attrib,
doc_mimeType, doc_format, doc_contentLength FROM tdoc WHERE N = 1 FOR UPDATE;

 ORDSYS.ORDDoc.getProperties(ctx, doc_data, doc_attrib,
 doc_mimeType, doc_format, doc_contentLength);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(doc_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || doc_mimeType);
 DBMS_OUTPUT.put_line(’format: ’ || doc_format);
 DBMS_OUTPUT.put_line(’contentLength: ’ || doc_contentLength);
 UPDATE tdoc SET
 document=doc_data,
 attributes=doc_attrib,
10-32 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
 mimetype=doc_mimeType,
 format=doc_format,
 contentlength=doc_contentLength
 WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-33

getProperties() for BFILEs
getProperties() for BFILEs

Format
getProperties(ctx IN OUT RAW,

 docBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the document BFILE data to get the values of the media attributes and then
stores them in the input CLOB. It populates the CLOB with an extensive set of
format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

docBfile
The document data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BFILE data in XML form.

format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
10-34 Oracle interMedia User’s Guide and Reference

getProperties() for BFILEs
Exceptions
DOC_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known document attributes:

DECLARE
 doc_attrib CLOB;
 ctx RAW(4000) :=NULL;
 doc_data BFILE := BFILENAME(’DOCDIR’,’testvid.dat’);
 doc_format VARCHAR2(160) := NULL;
BEGIN
 DBMS_LOB.CREATETEMPORARY(doc_attrib, FALSE, DBMS_LOB.CALL);
 ORDSYS.ORDDoc.getProperties(ctx, doc_data, doc_attrib, doc_format);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(doc_attrib)));
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-35

getProperties() (all attributes) for BFILEs
getProperties() (all attributes) for BFILEs

Format
getProperties(ctx IN OUT RAW,

 docBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2,

 contentLength OUT INTEGER);

Description
Reads the document BFILE data to get the values of the media attributes for
supported formats and then stores them in the input CLOB as explicit parameters.
This method gets the properties for the following attributes of the document data:
MIME type, content length, and format. It populates the CLOB with an extensive set
of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

docBfile
The document data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the document BFILE data in XML form.

mimeType
The MIME type of the document data.
10-36 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs
format
The optional format of the document data. If this parameter is specified, then the
format plug-in for this format type is invoked. If not specified, the derived format is
returned.

contentLength
The length in bytes of the content.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
DOC_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the document
plug-in raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known document attributes:

DECLARE
 doc_attrib CLOB;
 ctx RAW(4000) :=NULL;
 doc_data BFILE := BFILENAME(’DOCDIR’,’testimg.dat’);
 doc_mimeType VARCHAR2(80);
 doc_format VARCHAR2(32);
 doc_contentLength NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(doc_attrib, FALSE, DBMS_LOB.CALL);
 ORDSYS.ORDDoc.getProperties(ctx, doc_data, doc_attrib,
 doc_mimeType, doc_format, doc_contentLength);
 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(doc_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || doc_mimeType);
 DBMS_OUTPUT.put_line(’format: ’ || doc_format);
 DBMS_OUTPUT.put_line(’contentLength: ’ || doc_contentLength);
interMedia Relational Interface Reference 10-37

Static Methods Unique to the ORDImage Object Type Relational Interface
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10.5 Static Methods Unique to the ORDImage Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDImage relational interface.

The relational interface adds interMedia support to image data stored in BLOBs and
BFILEs rather than in the ORDImage type. The following interface is defined in the
ordispec.sql file:

.

.

.
 -- Static Methods for the relational interface
 STATIC PROCEDURE export(ctx IN OUT RAW,
 local_data IN BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2,
 format OUT VARCHAR2,
 mime_type OUT VARCHAR2),
 --
 STATIC PROCEDURE getProperties(imageBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 width OUT INTEGER,
 height OUT INTEGER,
10-38 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDImage Object Type Relational Interface
 fileFormat OUT VARCHAR2,
 contentFormat OUT VARCHAR2,
 compressionFormat OUT VARCHAR2,
 contentLength OUT INTEGER),
 --
 STATIC PROCEDURE getProperties(imageBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB),
 --
 STATIC PROCEDURE getProperties(imageBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 width OUT INTEGER,
 height OUT INTEGER,
 fileFormat OUT VARCHAR2,
 contentFormat OUT VARCHAR2,
 compressionFormat OUT VARCHAR2,
 contentLength OUT INTEGER),
 --
 STATIC PROCEDURE getProperties(imageBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB),
 --
 STATIC PROCEDURE process(imageBlob IN OUT NOCOPY BLOB,
 command IN VARCHAR2),
 --
 STATIC PROCEDURE processCopy(imageBlob IN OUT NOCOPY BLOB,
 command IN VARCHAR2,
 dest IN OUT NOCOPY BLOB),
 --
 STATIC PROCEDURE processCopy(imageBfile IN OUT BFILE,
 command IN VARCHAR2,
 dest IN OUT NOCOPY BLOB),
.
.
.

10.5.1 Example Table Definitions
The methods described in this section show examples based on a test image table
TIMG. Refer to the TIMG table definition that follows when reading through the
examples:

TIMG Table Definition
CREATE TABLE timg(n NUMBER,
 img BLOB,
interMedia Relational Interface Reference 10-39

Static Methods Unique to the ORDImage Object Type Relational Interface
 attributes CLOB,
 mimetype VARCHAR2(4000),
 width INTEGER,
 height INTEGER,
 fileformat VARCHAR2(4000),
 contentformat VARCHAR2(4000),
 compressionformat VARCHAR2(4000),
 contentlength INTEGER)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO timg VALUES(1, EMPTY_BLOB(), EMPTY_CLOB(), NULL,
 NULL, NULL, NULL, NULL, NULL, NULL);
INSERT INTO timg VALUES(2, EMPTY_BLOB(), EMPTY_CLOB(), NULL,
 NULL, NULL, NULL, NULL, NULL, NULL);
COMMIT;
10-40 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs
getProperties() for BLOBs

Format
getProperties(imageBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB);

Description
Reads the image BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with a set of format properties in XML form.

Parameters

imageBlob
The image data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BLOB
data in XML form.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Examples
Get the property information for known image attributes:

DECLARE
 img_attrib CLOB;
interMedia Relational Interface Reference 10-41

getProperties() for BLOBs
 img_data BLOB;
BEGIN
 SELECT img, attributes INTO img_data, img_attrib FROM timg WHERE N = 1 FOR UPDATE;
 ORDSYS.ORDImage.getProperties(img_data, img_attrib);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(img_attrib)));
 UPDATE timg SET img=img_data, attributes=img_attrib WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-42 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
getProperties() (all attributes) for BLOBs

Format
getProperties(imageBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 width OUT INTEGER,

 height OUT INTEGER,

 fileFormat OUT VARCHAR2,

 contentFormat OUT VARCHAR2,

 compressionFormat OUT VARCHAR2,

 contentLength OUT INTEGER);

Description
Reads the image BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the image data: MIME
type, width, height, file format, content format, compression format, and content
length. It populates the CLOB with a set of format properties in XML form.

Parameters

imageBlob
The image data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BLOB
data in XML form.

mimeType
The MIME type of the image data.

width
The width of the image in pixels.
interMedia Relational Interface Reference 10-43

getProperties() (all attributes) for BLOBs
height
The height of the image in pixels.

fileFormat
The format of the image data.

contentFormat
The type of image (monochrome, and so forth).

compressionFormat
The compression algorithm used on the image data.

contentLength
The size of the on-disk image file in bytes.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Examples
Get the property information for known image attributes:

DECLARE
 img_data BLOB;
 img_attrib CLOB;
 mimeType VARCHAR2(4000);
 width NUMBER;
 height NUMBER;
 fileFormat VARCHAR2(32);
 contentFormat VARCHAR2(4000);
 compressionFormat VARCHAR2(4000);
 contentLength NUMBER;
BEGIN
 SELECT img, attributes, mimetype, width, height, fileformat, contentformat,
compressionformat, contentlength INTO img_data, img_attrib, mimeType, width, height,
10-44 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
fileFormat, contentFormat, compressionFormat, contentLength FROM timg WHERE N = 1 FOR
UPDATE;

 ORDSYS.ORDImage.getProperties(img_data, img_attrib,
 mimeType, width, height, fileFormat,
 contentFormat, compressionFormat, contentLength);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(img_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
 DBMS_OUTPUT.put_line(’width: ’ || width);
 DBMS_OUTPUT.put_line(’height: ’ || height);
 DBMS_OUTPUT.put_line(’fileFormat: ’ || fileFormat);
 DBMS_OUTPUT.put_line(’contentFormat: ’ || contentFormat);
 DBMS_OUTPUT.put_line(’compressionFormat: ’ || compressionFormat);
 DBMS_OUTPUT.put_line(’contentLength: ’ || contentLength);
 UPDATE timg SET
 img=img_data,
 attributes=img_attrib,
 mimetype=mimeType,
 width=width,
 height=height,
 fileformat=fileFormat,
 contentformat=contentFormat,
 compressionformat=compressionFormat,
 contentlength=contentLength
 WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-45

getProperties() for BFILEs
getProperties() for BFILEs

Format
getProperties(imageBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB);

Description
Reads the image BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with a set of format properties in XML form.

Parameters

imageBfile
The image data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BFILE
data in XML form.

Usage Notes
None.

Pragmas
None.

Exceptions
ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Examples
Get the property information for known image attributes:

DECLARE
 img_attrib CLOB;
10-46 Oracle interMedia User’s Guide and Reference

getProperties() for BFILEs
 data BFILE := BFILENAME(’IMAGEDIR’,’testimg.dat’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(img_attrib, FALSE, DBMS_LOB.CALL);
 ORDSYS.ORDImage.getProperties(data, img_attrib);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(img_attrib)));
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-47

getProperties() (all attributes) for BFILEs
getProperties() (all attributes) for BFILEs

Format
getProperties(imageBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 width OUT INTEGER,

 height OUT INTEGER,

 fileFormat OUT VARCHAR2,

 contentFormat OUT VARCHAR2,

 compressionFormat OUT VARCHAR2,

 contentLength OUT INTEGER);

Description
Reads the image BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the image data: MIME
type, width, height, file format, content format, compression format, and content
length. It populates the CLOB with a set of format properties in XML form.

Parameters

imageBfile
The image data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with a set of format properties of the image BFILE
data in XML form.

mimeType
The MIME type of the image data.

width
The width of the image in pixels.
10-48 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs
height
The height of the image in pixels.

fileFormat
The format of the image data.

contentFormat
The type of image (monochrome, and so forth).

compressionFormat
The compression algorithm used on the image data.

contentLength
The size of the on-disk image file in bytes.

Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
ORDImageExceptions.NULL_CONTENT

This exception is raised when the content attribute is NULL.

Examples
Get the property information for known image attributes:

DECLARE
 img_data BFILE := BFILENAME(’IMAGEDIR’,’testimg.dat’);
 img_attrib CLOB;
 mimeType VARCHAR2(80);
 width NUMBER;
 height NUMBER;
 fileFormat VARCHAR2(32);
 contentFormat VARCHAR2(4000);
 compressionFormat VARCHAR2(4000);
 contentLength NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(img_attrib, FALSE, DBMS_LOB.CALL);
interMedia Relational Interface Reference 10-49

getProperties() (all attributes) for BFILEs
 ORDSYS.ORDImage.getProperties(img_data, img_attrib,
 mimeType, width, height, fileFormat,
 contentFormat, compressionFormat, contentLength);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(img_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
 DBMS_OUTPUT.put_line(’width: ’ || width);
 DBMS_OUTPUT.put_line(’height: ’ || height);
 DBMS_OUTPUT.put_line(’fileFormat: ’ || fileFormat);
 DBMS_OUTPUT.put_line(’contentFormat: ’ || contentFormat);
 DBMS_OUTPUT.put_line(’compressionFormat: ’ || compressionFormat);
 DBMS_OUTPUT.put_line(’contentLength: ’ || contentLength);
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-50 Oracle interMedia User’s Guide and Reference

process()
process()

Format
process(imageBlob IN OUT NOCOPY BLOB,

 command IN VARCHAR2);

Description
Performs one or more image processing operations on a BLOB, writing the image
back onto itself.

Parameters

imageBlob
The image data represented as a BLOB.

command
A list of image processing operations to perform on the image.

Usage Notes
You can change one or more of the image attributes shown in Table 8–1. Table 8–2
shows additional changes that can be made only to raw pixel and foreign images.
See Appendix D for more information on process() method operators.

The process() method changes image attributes, therefore if you are storing image
attributes, you should call the getProperties() method after calling the process()
method.

Pragmas
None.

Exceptions
DATA_NOT_LOCAL

This exception is raised if you call the process() method and the imageBlob
parameter is not initialized.
interMedia Relational Interface Reference 10-51

process()
Examples
Example 1: Change the file format of an image in the image_data BLOB to GIF:

ORDSYS.ORDImage.process(image_data, ’fileFormat=GIFF’);

Example 2: Change the image in the image_data BLOB to use higher quality JPEG
compression and double the length of the image along the X-axis:

ORDSYS.ORDImage.process(image_data, ’compressionFormat=JPEG,
 compressionQuality=MAXCOMPRATIO, xScale="2.0"’);

Note that changing the length on only one axis (for example, xScale=2.0) does not
affect the length on the other axis, and would result in image distortion. Also, only
the xScale and yScale parameters can be combined in a single scale operation. Any
other combinations of scale operators result in an error.

Example 3: The maxScale and fixedScale operators are especially useful for creating
thumbnail images from various-sized originals. The following line creates at most a
32-by-32 pixel thumbnail image, preserving the original aspect ratio:

ORDSYS.ORDImage.process(image_data, ’maxScale=32 32’);

Example 4: Convert the image to TIFF:

DECLARE
img_attrib CLOB;
image_data BLOB;
BEGIN
 SELECT img, attributes INTO image_data, img_attrib FROM timg WHERE N = 1 FOR
UPDATE;
 ORDSYS.ORDImage.process(image_data, 'fileFormat=TIFF');
 ORDSYS.ORDImage.getProp(image_data, img_attrib);
 UPDATE timg SET img = image_data, attributes=img_attrib WHERE N = 1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-52 Oracle interMedia User’s Guide and Reference

processCopy() for BLOBs
processCopy() for BLOBs

Format
processCopy(imageBlob IN BLOB,

 command IN VARCHAR2,

 dest IN OUT NOCOPY BLOB);

Description
Copies an image stored internally to another image stored internally in a BLOB and
processes the destination image.

Parameters

imageBlob
The source image data represented as a BLOB.

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

Usage Notes
See Table 8–1, "Image Processing Operators" and Table 8–2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

You cannot specify the same BLOB as both the source and destination.

Calling this method processes the image into the destination BLOB from any source
BLOB.

The processCopy() method changes image attributes, therefore if you are storing
image attributes, you should call the getProperties() method after calling the
processCopy() method.

See Appendix D for more information on processCopy operators.
interMedia Relational Interface Reference 10-53

processCopy() for BLOBs
Pragmas
None.

Exceptions
DATA_NOT_LOCAL

This exception is raised if you call the processCopy() method and the imageBlob
parameter is not initialized.

Examples
Copy an image, changing the file format, compression format, and content format
in the destination image:

DECLARE
 dest_attrib CLOB;
 image_data BLOB;
 destination_data BLOB;
 the_Command VARCHAR2(4000);
BEGIN
 SELECT img INTO image_data FROM timg WHERE N = 1;
 SELECT img, attributes INTO destination_data, dest_attrib FROM timg
 WHERE N = 2 FOR UPDATE;

 the_Command := ’fileFormat=tiff, compressionFormat=packbits,
 contentFormat=8bitlut’;
 ORDSYS.ORDImage.processCopy(image_data, the_Command, destination_data);
 ORDSYS.ORDImage.getProperties(destination_data, dest_attrib);
 UPDATE timg SET img = destination_data, attributes=dest_attrib WHERE N = 2;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10-54 Oracle interMedia User’s Guide and Reference

processCopy() for BFILEs
processCopy() for BFILEs

Format
processCopy(imageBfile IN OUT NOCOPY BFILE,

 command IN VARCHAR2,

 dest IN OUT NOCOPY BLOB);

Description
Copies an image stored externally to another image stored internally in a BLOB and
processes the destination image.

Parameters

imageBfile
The image data represented as a BFILE.

command
A list of image processing changes to make for the image in the new copy.

dest
The destination of the new image.

Usage Notes
See Table 8–1, "Image Processing Operators" and Table 8–2, "Additional Image
Processing Operators for Raw Pixel and Foreign Images".

Calling this method processes the image into the destination BLOB from any source
BFILE.

The processCopy() method changes image attributes, therefore if you are storing
image attributes, you should call the getProperties() method after calling the
processCopy() method.

See Appendix D for more information on processCopy operators.

Pragmas
None.
interMedia Relational Interface Reference 10-55

Static Methods Unique to the ORDVideo Object Type Relational Interface
Exceptions
NULL_DESTINATION

This exception is raised if you call the processCopy() method and the value of dest
is NULL.

NULL_LOCAL_DATA

This exception is raised when source.localData is NULL.

Examples
Copy an image, generating a thumbnail of, at most, 32 x 32 pixels in the destination
image:

DECLARE
 dest_attrib CLOB;
 image_data BFILE := BFILENAME(’IMAGEDIR’,’testimg.dat’);
 destination_data BLOB;
 the_Command VARCHAR2(4000);
BEGIN
 SELECT img, attributes INTO destination_data, dest_attrib FROM timg
 WHERE N = 2 FOR UPDATE;

 the_Command := ’maxScale=32 32’;
 ORDSYS.ORDImage.processCopy(image_data, the_Command, destination_data);
 ORDSYS.ORDImage.getProperties(destination_data, dest_attrib);
 UPDATE timg SET img = destination_data, attributes=dest_attrib WHERE N = 2;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

10.6 Static Methods Unique to the ORDVideo Object Type Relational
Interface

This section presents reference information on the Oracle interMedia static methods
unique to the ORDVideo relational interface.

The relational interface adds interMedia support to video data stored in BLOBs and
BFILEs rather than in the ORDVideo type. The following interface is defined in the
ordvspec.sql file:
10-56 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDVideo Object Type Relational Interface
.

.

.
 -- Static Methods for the relational interface
 STATIC PROCEDURE export(ctx IN OUT RAW,
 local_data IN BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
 --
 STATIC PROCEDURE importFrom(ctx IN OUT RAW,
 local_data IN OUT NOCOPY BLOB,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2,
 format OUT VARCHAR2,
 mime_type OUT VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 videoBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 videoBlob IN BLOB,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 width OUT INTEGER,
 height OUT INTEGER,
 frameResolution OUT INTEGER,
 frameRate OUT INTEGER,
 videoDuration OUT INTEGER,
 numberOfFrames OUT INTEGER,
 compressionType OUT VARCHAR2,
 numberOfColors OUT INTEGER,
 bitRate OUT INTEGER),

 --
interMedia Relational Interface Reference 10-57

Static Methods Unique to the ORDVideo Object Type Relational Interface
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 videoBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 format IN VARCHAR2),
 --
 STATIC PROCEDURE getProperties(ctx IN OUT RAW,
 videoBfile IN OUT NOCOPY BFILE,
 attributes IN OUT NOCOPY CLOB,
 mimeType OUT VARCHAR2,
 format IN OUT VARCHAR2,
 width OUT INTEGER,
 height OUT INTEGER,
 frameResolution OUT INTEGER,
 frameRate OUT INTEGER,
 videoDuration OUT INTEGER,
 numberOfFrames OUT INTEGER,
 compressionType OUT VARCHAR2,
 numberOfColors OUT INTEGER,
 bitRate OUT INTEGER),
.
.
.

10.6.1 Example Table Definitions
The methods described in this section show examples based on a test video table
TVID. Refer to the TVID table definition that follows when reading through the
examples:

TVID Table Definition
CREATE TABLE tvid(n NUMBER,
 vid BLOB,
 attributes CLOB,
 mimetype VARCHAR2(4000),
 format VARCHAR2(31),
 width INTEGER,
 height INTEGER,
 frameresolution INTEGER,
 framerate INTEGER,
 videoduration INTEGER,
 numberofframes INTEGER,
 compressiontype VARCHAR2(4000),
 numberofcolors INTEGER,
 bitrate INTEGER)
10-58 Oracle interMedia User’s Guide and Reference

Static Methods Unique to the ORDVideo Object Type Relational Interface
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

INSERT INTO tvid VALUES(1, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL,
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
INSERT INTO tvid VALUES(2, EMPTY_BLOB(), EMPTY_CLOB(), NULL, NULL,
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
COMMIT;
interMedia Relational Interface Reference 10-59

getProperties() for BLOBs
getProperties() for BLOBs

Format
getProperties(ctx IN OUT RAW,

 videoBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the video BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

videoBlob
The video data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BLOB data in XML form.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
10-60 Oracle interMedia User’s Guide and Reference

getProperties() for BLOBs
Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known video attributes:

DECLARE
 vid_attrib CLOB;
 ctx RAW(4000) :=NULL;
 vid_data BLOB;
 vid_format VARCHAR2(31) := NULL;
BEGIN
 SELECT vid, attributes INTO vid_data, vid_attrib FROM tvid WHERE N = 1 FOR UPDATE;
 ORDSYS.ORDVideo.getProperties(ctx, vid_data, vid_attrib, vid_format);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(vid_attrib)));
 UPDATE tvid SET vid=vid_data, attributes=vid_attrib WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-61

getProperties() (all attributes) for BLOBs
getProperties() (all attributes) for BLOBs

Format
getProperties(ctx IN OUT RAW,

 videoBlob IN BLOB,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2

 width OUT INTEGER,

 height OUT INTEGER,

 frameResolution OUT INTEGER,

 frameRate OUT INTEGER,

 videoDuration OUT INTEGER,

 numberOfFrames OUT INTEGER,

 compressionType OUT VARCHAR2,

 numberOfColors OUT INTEGER,

 bitRate OUT INTEGER);

Description
Reads the video BLOB data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the video data: MIME
type, format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate. It populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.
10-62 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
videoBlob
The video data represented as a BLOB.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BLOB data in XML form.

mimeType
The MIME type of the video data.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked. If specified as NULL, the format of the video
data is returned.

width
The width of the frame in pixels of the video data.

height
The height of the frame in pixels of the video data.

frameResolution
The number of pixels per inch of frames in the video data.

frameRate
The number of frames per second at which the video data was recorded.

videoDuration
The total time required to play the video data.

numberOfFrames
The total number of frames in the video data.

compressionType
The compression type of the video data.

numberOfColors
The number of colors in the video data.

bitRate
The bit rate in the video data.
interMedia Relational Interface Reference 10-63

getProperties() (all attributes) for BLOBs
Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known video attributes:

DECLARE
 vid_attrib CLOB;
 ctx RAW(4000) :=NULL;
 vid_data BLOB;
 mimeType VARCHAR2(80);
 format VARCHAR2(32);
 width NUMBER;
 height NUMBER;
 frameResolution NUMBER;
 frameRate NUMBER;
 videoDuration NUMBER;
 numberOfFrames NUMBER;
 compressionType VARCHAR2(160);
 numberOfColors NUMBER;
 bitRate NUMBER;
BEGIN
 SELECT vid, attributes, mimetype, format, width, height, frameresolution, framerate,
videoduration, numberofframes, compressiontype, numberofcolors, bitrate INTO vid_data,
vid_attrib, mimeType, format, width, height, frameResolution, frameRate, videoDuration,
numberOfFrames, compressionType, numberOfColors, bitRate FROM tvid WHERE N = 1;

 ORDSYS.ORDVideo.getProperties(ctx, vid_data, vid_attrib, mimeType, format,
 width, height, frameResolution, frameRate,
 videoDuration, numberOfFrames, compressionType, numberOfColors, bitRate);
10-64 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BLOBs
 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(vid_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
 DBMS_OUTPUT.put_line(’format: ’ || format);
 DBMS_OUTPUT.put_line(’width: ’ || width);
 DBMS_OUTPUT.put_line(’height: ’ || height);
 DBMS_OUTPUT.put_line(’frameResolution: ’ || frameResolution);
 DBMS_OUTPUT.put_line(’frameRate: ’ || frameRate);
 DBMS_OUTPUT.put_line(’videoDuration: ’ || videoDuration);
 DBMS_OUTPUT.put_line(’numberOfFrames: ’ || numberOfFrames);
 DBMS_OUTPUT.put_line(’compressionType: ’ || compressionType);
 DBMS_OUTPUT.put_line(’numberOfColors: ’ || numberOfColors);
 DBMS_OUTPUT.put_line(’bitRate: ’ || bitRate);
 UPDATE tvid SET
 vid=vid_data,
 attributes=vid_attrib,
 mimetype=mimeType,
 format=format,
 width=width,
 height=height,
 frameresolution=frameResolution,
 framerate=frameRate,
 videoduration=videoDuration,
 numberofframes=numberOfFrames,
 compressiontype=compressionType,
 numberofcolors=numberOfColors,
 bitrate=bitRate
 WHERE N=1;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-65

getProperties() for BFILEs
getProperties() for BFILEs

Format
getProperties(ctx IN OUT RAW,

 videoBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 format IN VARCHAR2);

Description
Reads the video BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB. This method populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.

videoBfile
The video data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BFILE data in XML form.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked.

Usage Notes
None.

Pragmas
None.
10-66 Oracle interMedia User’s Guide and Reference

getProperties() for BFILEs
Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known video attributes:

DECLARE
 vid_attrib CLOB;
 ctx RAW(4000) :=NULL;
 vid_data BFILE := BFILENAME(’VIDEODIR’,’testvid.dat’);
 vid_format VARCHAR2(160) := NULL;
BEGIN
 DBMS_LOB.CREATETEMPORARY(vid_attrib, FALSE, DBMS_LOB.CALL);
 ORDSYS.ORDVideo.getProperties(ctx, vid_data, vid_attrib, vid_format);

 DBMS_OUTPUT.put_line('Size of XML Annotations ' ||
 TO_CHAR(DBMS_LOB.GETLENGTH(vid_attrib)));
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-67

getProperties() (all attributes) for BFILEs
getProperties() (all attributes) for BFILEs

Format
getProperties(ctx IN OUT RAW,

 videoBfile IN OUT NOCOPY BFILE,

 attributes IN OUT NOCOPY CLOB,

 mimeType OUT VARCHAR2,

 format IN OUT VARCHAR2,

 width OUT INRTEGER,

 height OUT INTEGER,

 frameResolution OUT INTEGER,

 frameRate OUT INTEGER,

 videoDuration OUT INTEGER,

 numberOfFrames OUT INTEGER,

 compressionType OUT VARCHAR2,

 numberOfColors OUT INTEGER,

 bitRate OUT INTEGER);

Description
Reads the video BFILE data to get the values of the media attributes for supported
formats and then stores them in the input CLOB as explicit parameters. This
method gets the properties for the following attributes of the video data: MIME
type, format, frame size, frame resolution, frame rate, video duration, number of
frames, compression type, number of colors, and bit rate. It populates the CLOB
with an extensive set of format and application properties in XML form.

Parameters

ctx
The format plug-in context information.
10-68 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs
videoBfile
The video data represented as a BFILE.

attributes
The CLOB to hold the XML attribute information generated by the getProperties()
method. This CLOB is populated with an extensive set of format and application
properties of the video BFILE data in XML form.

mimeType
The MIME type of the video data.

format
The optional format of the video data. If this parameter is specified, then the format
plug-in for this format type is invoked. If specified as NULL, the format of the video
data is returned.

width
The width of the frame in pixels of the video data.

height
The height of the frame in pixels of the video data.

frameResolution
The number of pixels per inch of frames in the video data.

frameRate
The number of frames per second at which the video data was recorded.

videoDuration
The total time required to play the video data.

numberOfFrames
The total number of frames in the video data.

compressionType
The compression type of the video data.

numberOfColors
The number of colors in the video data.

bitRate
The bit rate in the video data.
interMedia Relational Interface Reference 10-69

getProperties() (all attributes) for BFILEs
Usage Notes
If the property cannot be extracted from the media source, then the respective
parameter is set to NULL.

Pragmas
None.

Exceptions
VIDEO_PLUGIN_EXCEPTION

This exception is raised if you call the getProperties() method and the video plug-in
raises an exception.

ORDSourceExceptions.EMPTY_SOURCE

This exception is raised when the source is local but the source is NULL.

Examples
Get the property information for known video attributes:

DECLARE
 vid_attrib CLOB;
 ctx RAW(4000) :=NULL;
 vid_data BFILE := BFILENAME(’VIDEODIR’,’testvid.dat’);
 mimeType VARCHAR2(80);
 format VARCHAR2(32);
 width NUMBER;
 height NUMBER;
 frameResolution NUMBER;
 frameRate NUMBER;
 videoDuration NUMBER;
 numberOfFrames NUMBER;
 compressionType VARCHAR2(160);
 numberOfColors NUMBER;
 bitRate NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(vid_attrib, FALSE, DBMS_LOB.CALL);

 ORDSYS.ORDVideo.getProperties(ctx, vid_data, vid_attrib, mimeType, format,
 width, height, frameResolution, frameRate,
 videoDuration, numberOfFrames, compressionType, numberOfColors, bitRate);

 DBMS_OUTPUT.put_line(’Size of XML Annotations ’ ||
 TO_CHAR(DBMS_LOB.GETLENGTH(vid_attrib)));
 DBMS_OUTPUT.put_line(’mimeType: ’ || mimeType);
10-70 Oracle interMedia User’s Guide and Reference

getProperties() (all attributes) for BFILEs
 DBMS_OUTPUT.put_line(’format: ’ || format);
 DBMS_OUTPUT.put_line(’width: ’ || width);
 DBMS_OUTPUT.put_line(’height: ’ || height);
 DBMS_OUTPUT.put_line(’frameResolution: ’ || frameResolution);
 DBMS_OUTPUT.put_line(’frameRate: ’ || frameRate);
 DBMS_OUTPUT.put_line(’videoDuration: ’ || videoDuration);
 DBMS_OUTPUT.put_line(’numberOfFrames: ’ || numberOfFrames);
 DBMS_OUTPUT.put_line(’compressionType: ’ || compressionType);
 DBMS_OUTPUT.put_line(’numberOfColors: ’ || numberOfColors);
 DBMS_OUTPUT.put_line(’bitRate: ’ || bitRate);
EXCEPTION
 WHEN OTHERS THEN
 RAISE;
END;
/

interMedia Relational Interface Reference 10-71

getProperties() (all attributes) for BFILEs
10-72 Oracle interMedia User’s Guide and Reference

Tuning Tip
11

Tuning Tips for the DBA

This chapter provides tuning tips for the Oracle DBA who wants to achieve more
efficient storage and management of multimedia data in the database when using
Oracle interMedia.

The goals of your interMedia application determine the resource needs and how
those resources should be allocated. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your interMedia application in a production
environment.

Multimedia data consists of a variety of media types including character text,
images, audio clips, video clips, line drawings, and so forth. All these media types
are typically stored in LOBs, in either internal LOBs (stored in an internal database
tablespace) or in BFILEs (external LOBs in operating system files outside of the
database tablespaces). This chapter discusses only the management of audio, image,
and video data.

Internal LOBs consist of: CLOBs, NCLOBs, and BLOBs and can be up to 4 gigabytes
in size. BFILEs can be as large as the operating system will allow up to a maximum
of 4 gigabytes.

Oracle interMedia manages a variety of LOB types. The following general topics
will help you to better manage your interMedia LOB data:

■ Setting database initialization parameters

■ Issues to consider in creating tables with interMedia objects containing LOBs

■ Improving multimedia data INSERT performance in interMedia objects
containing LOBs

■ Putting into practice user guidelines for best performance results
s for the DBA 11-1

Setting Database Initialization Parameters
■ Improving interMedia LOB data retrieval and update performance

For more information about LOB partitioning, LOB tuning, and LOB buffering, see
Oracle9i Application Developer’s Guide - Large Objects (LOBs), Oracle Call Interface
Programmer’s Guide, Oracle9i Database Concepts, and Oracle9i Database Performance
Guide and Reference.

For information on restrictions to consider when using LOBs, see Oracle9i
Application Developer’s Guide - Large Objects (LOBs).

For guidelines on using the DIRECTORY feature in Oracle9i, see Oracle9i Application
Developer’s Guide - Large Objects (LOBs). This feature enables a simple, flexible,
nonintrusive, and secure mechanism for the DBA to manage access to large files in
the server file system.

11.1 Setting Database Initialization Parameters
The information that follows is an excerpt from Oracle9i Database Performance Guide
and Reference and Oracle9i Database Reference, and is presented as an overview of the
topic. Refer to Oracle9i Database Performance Guide and Reference and Oracle9i
Database Reference for more information.

Database tuning of the Oracle instance consists of tuning the system global area
(SGA). The SGA is used to store data in memory for fast access. The SGA consumes
a portion of your system’s physical memory. The SGA must be sufficiently large to
keep your data in memory but neither too small nor so large that performance
begins to degrade. Degrading performance occurs when the operating system
begins to page unused information to disk to make room for new information
needed in memory, or begins to temporarily swap active processes to disk so other
processes needing memory can use it. Excessive paging and swapping can bring a
system to a standstill. The goal in sizing the SGA is to size it for the data that must
be kept in main memory to keep performance optimal. With this in mind, you must
size the SGA required for your interMedia application. This may mean increasing
the physical memory of your system and monitoring your operating system
behavior to ensure paging and swapping remains minimal.

The size of the SGA is determined by the values of the following database
initialization parameters: DB_BLOCK_SIZE, DB_CACHE_SIZE, SHARED_POOL_
SIZE, and LOG_BUFFER.

Beginning with Oracle9i, the SGA infrastructure is dynamic. This means that the
following primary parameters used to size the SGA can be changed while the
instance is running:
11-2 Oracle interMedia User’s Guide and Reference

Setting Database Initialization Parameters
■ Buffer cache (DB_CACHE_SIZE) -- the size in bytes of the cache of standard
blocks

■ Shared pool (SHARED _POOL_SIZE) -- the size in bytes of the area devoted to
shared SQL and PL/SQL statements

■ Large pool (LARGE_POOL_SIZE) (default is 0 bytes) -- the size in bytes of the
large pool used in shared server systems for session memory, parallel execution
for message buffers, and by backup and restore processes for disk I/O buffers

The LOG_BUFFER parameter is used when buffering redo entries to a redo log. It is
a static parameter and represents a very small portion of the SGA and can be
changed only by stopping and restarting the database to read the changed value for
this parameter from the initialization parameter file (init.ora).

Note that even though you cannot change the MAX_SGA_SIZE parameter value
dynamically, you do have the option of changing any of its three dependent
primary parameters (DB_CACHE_SIZE, SHARED_POOL_SIZE, and LARGE_
POOL_SIZE) to make memory tuning adjustments on the fly. To help you specify an
optimal cache value, you can use the dynamic DB_CACHE_ADVICE parameter
with statistics gathering enabled to predict behavior with different cache sizes
through the V$DB_CACHE_ADVICE performance view. Use the ALTER
SYSTEM...SET clause... statement to enable this parameter. See Oracle9i Database
Performance Guide and Reference for more information about using this parameter.

Beginning with Oracle9i, there is a concept of creating tablespaces with multiple
block sizes and specifying cache sizes corresponding with each block size. The
SYSTEM tablespace uses a standard block size and additional tablespaces can use
up to five non-standard block sizes.

The standard block size is specified by the DB_BLOCK_SIZE parameter. Its cache
size is specified by the DB_CACHE_SIZE parameter. Non-standard block sizes are
specified by the BLOCKSIZE clause of the CREATE TABLESPACE statement. The
cache size for each corresponding non-standard block size is specified using the
notation: DB_nK_CACHE_SIZE parameter, where the value n is 2, 4, 8, 16, or 32 K
bytes.

The standard block size, known as the default block size, is usually set to the same
size in bytes as the operating system block size, or a multiple of this size. The DB_
CACHE_SIZE parameter, known as the DEFAULT cache size, specifies the size of
the cache of standard block size (default is 48M bytes). The system tablespace uses
the standard block size and the DEFAULT cache size.

Either the standard block size or any of the non-standard block sizes and their
associated cache sizes can be used for any of your other tablespaces. If you intend to
Tuning Tips for the DBA 11-3

Setting Database Initialization Parameters
use multiple block sizes in your database storage design, you must specify at least
the DB_CACHE_SIZE and one DB_nK_CACHE_SIZE parameter value. You must
specify all sub-caches for all the other non-standard block sizes that you intend to
use. This block size/cache sizing scheme lets you use up to five different
non-standard block sizes for your tablespaces and lets you specify respective cache
sizes for each corresponding block size. For example, you can size your system
tablespace to the normal 2K or 4K bytes standard block size with a default DB_
CACHE_SIZE of 48M bytes or whatever size you want to specify. Then you can use
the remaining non-standard block sizes of 2K or 4K, 8K, 16K, or the maximum 32K
bytes for storing your interMedia LOB data in appropriate block-sized tablespaces
and respective caches to achieve optimal LOB storage and retrieval performance.

Because the DB_BLOCK_SIZE parameter value can be changed only by re-creating
the database, the value for this parameter must be chosen carefully and remain
unchanged for the life of the database. See the next section “DB_BLOCK_SIZE” for
more information about this parameter.

The following sections describe these and some related initialization parameters
and their importance to interMedia performance.

DB_BLOCK_SIZE
The DB_BLOCK_SIZE parameter is the size in bytes of Oracle database blocks
(2048-32768). Oracle manages the storage space in the data files of a database in
units called data blocks. The data block is the smallest unit of I/O operation used by
a database; this value should be a multiple of the operating system’s block size
within the maximum (port-specific) limit to avoid unnecessary I/O operations. This
parameter value is set for each Oracle database from the DB_BLOCK_SIZE
parameter value in the initialization parameter file when you create the database.
This value cannot be changed unless you create the database again.

The size of a database block determines how many rows of data Oracle can store in
a single database page. The size of an average row is one piece of data that a DBA
can use to determine the correct database block size. interMedia objects with
instantiated LOB locators range in size from 175 bytes for ORDImage to 260 bytes
for ORDAudio and ORDVideo. This figure does not include the size of the media
data. (The difference in row sizes between instantiated image and audio and video
data is that audio and video data contain a Comments attribute that is about 85
bytes in size to hold the LOB locator.)

If LOB data is less than 4000 bytes, then it can be stored in line or on the same
database page as the rest of the row data. LOB data can be stored in line only when
the block size is large enough to accommodate it.
11-4 Oracle interMedia User’s Guide and Reference

Setting Database Initialization Parameters
LOB data that is stored out of line, on database pages that are separate from the row
data, is accessed (read and written) by Oracle in CHUNK size pieces where
CHUNK is specified in the LOB storage clause (see Section 11.2 for more
information about the CHUNK option). CHUNK must be an integer multiple of
DB_BLOCK_SIZE and defaults to DB_BLOCK_SIZE if not specified. Generally, it is
more efficient for Oracle to access LOB data in large chunks, up to 32 KB. However,
when LOB data is updated, it may be versioned (for read consistency) and logged
both to the rollback segments and the redo log in CHUNK size pieces. If updates to
LOB data are frequent then it may be more efficient space wise to manipulate
smaller chunks of LOB data, especially when the granularity of the update is much
less than 32 KB.

The preceding discussion is meant to highlight the differences between the
initialization parameter DB_BLOCK_SIZE and the LOB storage parameter CHUNK.
Each parameter controls different aspects of the database design, and though
related, they should not be automatically equated.

Tuning Memory Allocation
Allocating memory to database structures and proper sizing of these structures can
greatly improve database performance when working with LOB data. See Oracle9i
Database Performance Guide and Reference for a comprehensive, in-depth presentation
of this subject, including understanding memory allocation issues as well as
detecting and solving memory allocation problems. The following sections describe
a few of the important initialization parameters specifically useful for optimizing
LOB performance relative to tuning memory allocation.

DB_CACHE_SIZE
The DB_CACHE_SIZE parameter specifies the size of the DEFAULT buffer pool for
buffers in bytes. This value is the database buffer value that is displayed when you
issue a SQL SHOW SGA statement. Because you cannot change the value of the
DB_BLOCK_SIZE parameter without re-creating the database, change the value of
the DB_CACHE_SIZE parameter to control the size of the database buffer cache
using the ALTER SYSTEM...SET clause... statement. The DB_CACHE_SIZE
parameter is dynamic.

BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE - Tuning Multiple
Buffer Pools Using the Standard Block Size
To greatly reduce I/O operations while reading and processing LOB data, tune the
database instance by partitioning your buffer cache into multiple buffer pools for
the tables containing the LOB columns.
Tuning Tips for the DBA 11-5

Setting Database Initialization Parameters
By default, all tables are assigned to the DEFAULT pool. Tune this main cache buffer
using the DB_CACHE_SIZE initialization parameter and assign the appropriate
tables to the keep pool using the DB_KEEP_CACHE_SIZE initialization parameter
and to the recycle pool using the DB_RECYCLE_CACHE_SIZE initialization
parameter.

The keep pool contains buffers that always stay in memory and is intended for
frequently accessed tables that contain important data. The recycle pool contains
buffers that can always be recycled and is intended for infrequently accessed tables
that contain much less important data. The size of the main buffer cache
(DEFAULT) is calculated from the value specified for the DB_CACHE_SIZE
parameter minus the values specified for the DB_KEEP_CACHE_SIZE and DB_
RECYCLE_CACHE_SIZE parameters. Tables are assigned to respective buffer pools
(KEEP, RECYCLE, DEFAULT) using the STORAGE (buffer_pool) clause of the
CREATE or ALTER TABLE statement. Determine what tables you want allocated to
which of these memory buffers and the ideal size of each buffer when you
implement your memory allocation design. These parameter values can be changed
only in the initialization parameter file and take effect only after stopping and
restarting the database.

When working with very large images, set the DB_CACHE_SIZE parameter to a
large number for your Oracle instance. For example, to cache a 40MB image, set this
parameter to a value of 48MB. Some general guidelines to consider when working
with LOB data are:

■ You should have enough buffers to hold the object, regardless of table LOB
logging and cache settings. See Section 11.2 for more information.

■ When using log files you should make the log files larger, otherwise, more time
is spent waiting for log switches. See Section 11.2 for more information.

■ If the same BLOB is to be accessed frequently, set the table LOB CACHE
parameter to TRUE. See Section 11.2 for more information.

■ Use a large page size (DB_BLOCK_SIZE) if the database is going to contain
primarily large objects.

Note: Multiple buffer pools are available only for the standard
block size. Non-standard block size caches have a single DEFAULT
pool. Therefore, the information presented in this section applies to
only the scenario in which you are using only the standard block
size.
11-6 Oracle interMedia User’s Guide and Reference

Setting Database Initialization Parameters
See Oracle9i Database Performance Guide and Reference for more information about
tuning multiple buffer pools.

SHARED_POOL_SIZE
The SHARED_POOL_SIZE parameter specifies the size in bytes of the shared pool
that contains the library cache of shared SQL requests, shared cursors, stored
procedures, the dictionary cache, and control structures, Parallel Execution message
buffers, and other cache structures specific to a particular instance configuration.
This parameter value is dynamic. This parameter represents most of the variable
size value that displays when you issue a SQL SHOW SGA statement. Specifying a
large value improves performance in multi-user systems. A large value for example,
accommodates the loading and execution of interMedia PL/SQL scripts and stored
procedures; otherwise, execution plans are more likely to be swapped out. A large
value can also accommodate many clients connecting to the server with each client
connection using some shared pool space. However, when the shared pool is full,
the server is unable to accept additional client connections.

SHARED_POOL_RESERVED_SIZE
The SHARED_POOL_RESERVED_SIZE parameter specifies the shared pool space
that is reserved for large contiguous requests for shared pool memory. This static
parameter should be set high enough to avoid performance degradation in the
shared pool from situations where pool fragmentation forces Oracle to search for
free chunks of unused pool to satisfy the current request.

Ideally, this parameter should be large enough to satisfy any request scanning for
memory on the reserved list without flushing objects from the shared pool.

The default value is 5% of the shared pool size, while the maximum value is 50% of
the shared pool size. For interMedia applications, a value at or close to the
maximum can provide performance benefits.

LOG_BUFFER
The LOG_BUFFER parameter specifies the amount of memory, in bytes, used for
buffering redo entries to the redo log file. Redo entries are written to the on disk log
file when a transaction commits or when the LOG_BUFFER is full and space must
be made available for new redo entries. Large values for LOG_BUFFER can reduce
the number of redo log file I/O operations by allowing more data to be flushed per
write. Large values can also eliminate the waits that occur when redo entries are
flushed to make space in the log buffer pool. interMedia applications that have
buffering enabled for the LOB data can generate large amounts of redo data when
Tuning Tips for the DBA 11-7

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
media is inserted or updated. These applications would benefit from a larger LOG_
BUFFER size. This is a static parameter.

11.2 Issues to Consider in Creating Tables with interMedia Column
Objects Containing BLOBs

The following information provides some strategies to consider when you create
tables with interMedia column objects containing BLOBs. You can explicitly indicate
the tablespace and storage characteristics for each BLOB. These topics are discussed
in more detail and with examples in Oracle9i Application Developer’s Guide - Large
Objects (LOBs). The information that follows is excerpted from Chapter 2 and is
briefly presented to give you an overview of the topic. Refer to Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information.

11.2.1 Initializing Internal interMedia Column Objects Containing BLOBs to NULL or
EMPTY

An interMedia column object containing a LOB value set to NULL has no locator. By
contrast, an empty LOB stored in a table is a LOB of zero length that has a locator.
So, if you select from an empty LOB column or attribute, you get back a locator,
which you can use to fill the LOB with data using the OCI or DBMS_LOB routines
or ORDxxx.import method.

Setting interMedia Column Objects Containing a BLOB to NULL
You may want to set the BLOB value to NULL upon inserting the row whenever
you do not have the BLOB data at the time of the INSERT operation. In this case,
you can issue a SELECT statement at some later time to obtain a count of the
number of rows in which the value of the BLOB is NULL, and determine how many
rows must be populated with BLOB data for that particular column object.

However, the drawback to this approach is that you must then issue a SQL
UPDATE statement to reset the NULL BLOB column to EMPTY_BLOB(). The point
is that you cannot call the OCI or the PL/SQL DBMS_LOB functions on a BLOB that
is NULL. These functions work only with a locator, and if the BLOB column is
NULL, there is no locator in the row.

Setting an interMedia Column Object Containing a BLOB to EMPTY
If you do not want to set an interMedia column object containing a BLOB to NULL,
another option is to set the BLOB value to EMPTY by using the EMPTY_BLOB()
function in the INSERT statement. Even better, set the BLOB value to EMPTY by
11-8 Oracle interMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
using the EMPTY_BLOB() function in the INSERT statement, and use the
RETURNING clause (thereby eliminating a round-trip that is necessary for the
subsequent SELECT statement). Then, immediately call OCI, the import method, or
the PL/SQL DBMS_LOB functions to fill the LOB with data. See Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for an example.

11.2.2 Specifying Tablespace and Storage Characteristics for interMedia Column
Objects Containing BLOBs

When you create tables and define interMedia column objects containing BLOBs,
you can explicitly indicate the tablespace and storage characteristics for each BLOB.
The following guidelines can help you fine-tune BLOB storage.

Tablespace
The best performance for interMedia column objects containing BLOBs can often be
achieved by specifying storage for BLOBs in a tablespace that is different from the
one used for the table that contains the interMedia object with a BLOB. See the
ENABLE | DISABLE STORAGE IN ROW clause near the end of this section for
further considerations on storing BLOB data inline or out of line. If many different
LOBs are to be accessed frequently, it may also be useful to specify a separate
tablespace for each BLOB or attribute in order to reduce device contention.
Preallocate the tablespace to the required allocation size to avoid allocation when
inserting BLOB data. See the Oracle9i SQL Reference manual for examples,
specifically the CREATE TABLE statement and the LOB column example. See
Example 11–1.

Example 11–1 assumes that you have already issued a CONNECT statement as a
suitably privileged user. This example creates a separate tablespace, called
MONTANA, that is used to store the interMedia column object containing BLOB
data for the image column. Ideally, this tablespace would be located on its own
high-speed storage device to reduce contention. Other image attributes and the
imageID column are stored in the default tablespace. The initial allocation allows
100MB of storage space. The images to be inserted are about 20KB in size. To
improve insert performance, NOCACHE and NOLOGGING options are specified
along with a CHUNK size of 24KB.

Example 11–1 Create a Separate Tablespace to Store an interMedia Column Object
Containing LOB Data

SVRMGR> CREATE TABLESPACE MONTANA DATAFILE ’montana.tbs’ SIZE 400M;
Statement processed.
SVRMGR> CREATE TABLE images (imageID INTEGER ,image ORDSYS.ORDImage)
Tuning Tips for the DBA 11-9

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
 LOB (image.source.localData) STORE AS
 (
 TABLESPACE MONTANA
 STORAGE (
 INITIAL 100M
 NEXT 100M
)
 CHUNK 24K
 NOCACHE NOLOGGING
);

LOB Index and LOB_index_clause
The LOB index is an internal structure that is strongly associated with the LOB
storage.

PCTVERSION Option
When an interMedia column object containing a BLOB is modified, a new version of
the BLOB page is made in order to support consistent reading of prior versions of
the BLOB value.

PCTVERSION is the percent of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to
occupy more than the PCTVERSION amount of used LOB space, Oracle tries to
reclaim the old versions and reuses them. In other words, PCTVERSION is the
percentage of used LOB data blocks that is available for versions of old LOB data.

One way of approximating PCTVERSION is to set PCTVERSION = (% of LOBs
updated at any given point in time) times (% of each LOB updated whenever a LOB
is updated) times (% of LOBs being read at any given point in time). Allow for a
percentage of LOB storage space to be used as old versions of LOB pages so users
can get consistent read results of data that has been updated.

Setting PCTVERSION to twice the default allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reading of
LOBs, it is useful to keep more old versions of LOB pages around. LOB storage may

Note: The LOB_index_clause in the CREATE TABLE statement is
deprecated beginning with release 8.1.5. Oracle generates an index
for each LOB column and beginning with release 8.1.5, LOB indexes
are system named and system managed. For information on how
Oracle manages LOB indexes in tables migrated from earlier
versions, see Oracle9i Database Migration.
11-10 Oracle interMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
increase if you increase the PCTVERSION value because Oracle will not be reusing
free pages aggressively.

The more infrequent and smaller the LOB updates are, the less space that needs to
be reserved for old versions of LOB data. If existing LOBs are known to be
read-only, you could safely set PCTVERSION to 0% because there would never be
any pages needed for old versions of data.

CACHE or NOCACHE Option
Use the CACHE option on interMedia column objects containing BLOBs if the same
BLOB data is to be accessed frequently. The CACHE option puts the data into the
database buffer and makes it accessible for subsequent read operations. If you
specify CACHE, then LOGGING is used; you cannot have CACHE and
NOLOGGING.

Use the NOCACHE option (the default) if BLOB data is to be read only once or
infrequently, or if you have too much BLOB data to cache, or if you are reading lots
of images but none more frequently than others.

See Example 11–1.

LOGGING or NOLOGGING Option
An example of when NOLOGGING is useful is with bulk loading or inserting of
data. See Example 11–1. For instance, when loading data into the interMedia column
objects containing BLOBs, if you do not care about redo logging and can just start
the load over if it fails, set the BLOB data segment storage characteristics to
NOCACHE NOLOGGING. This setting gives good performance for the initial
loading of data. Once you have successfully completed loading the data, you can
use the ALTER TABLE statement to modify the BLOB storage characteristics for the
BLOB data segment to the desired storage characteristics for normal BLOB
operations, such as CACHE or NOCACHE LOGGING.

CHUNK Option
Set the CHUNK option to the number of blocks of interMedia column objects
containing BLOB data that are to be accessed at one time. That is, the number of
blocks that are to be read or written using the object.readFromSource or
object.writeToSource interMedia audio and video object methods or call,
OCILobRead(), OCILobWrite(), DBMS_LOB.READ(), or DBMS_LOB.WRITE()
during one access of the BLOB value. Note that the default value for the CHUNK
option is 1 Oracle block and does not vary across systems. If only 1 block of BLOB
Tuning Tips for the DBA 11-11

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
data is accessed at a time, set the CHUNK option to the size of 1 block. For example,
if the database block size is 2K, then set the CHUNK option to 2K.

Set the CHUNK option to the next largest integer multiple of database block size
that is slightly larger than the audio, image, or video data size being inserted.
Specifying a slightly larger CHUNK option allows for some variation in the actual
sizes of the multimedia data and ensures that the benefit is realized. For large-sized
media data, a general rule is to set the CHUNK option as large as possible. The
maximum is 32K in Oracle9i. For example, if the database block size is 2K or 4K or
8K and the image data is mostly 21K in size, set the CHUNK option to 24K. See
Example 11–1.

INITIAL and NEXT Parameters
If you explicitly specify the storage characteristics for the interMedia column object
containing a BLOB, make sure that the INITIAL and NEXT parameters for the
BLOB data segment storage are set to a size that is larger than the CHUNK size. For
example, if the database block size is 2K and you specify a CHUNK value of 8K,
make sure that the INITIAL and NEXT parameters are at least 8K, preferably higher
(for example, at least 16K).

For LOB storage, Oracle automatically builds and maintains a LOB index that
allows quick access to any chunk and thus any portion of a LOB. The LOB index
gets the same storage extent parameter values as its LOBs. Consequently, to
optimize LOB storage space, you should calculate the size of your LOB index size as
well as the total storage space needed to store the media data including its
overhead.

Assume that N files comprising of M total bytes of media data are to be stored and
that the value C represents the size of the LOB chunk storage parameter. To
calculate the total number of bytes Y needed to store the media data:

Y = M + (N*C)

The expression (N*C) accounts for the worst case in which the last chunk of each
LOB contains a single byte. Therefore, an extra chunk is allowed for each file that is
stored. On average, the last chunk will be half full.

To calculate the total number of bytes X to store the LOB index:

X = CEIL(M/C) * 32

The value 32 indicates that the LOB index requires roughly 32 bytes for each chunk
that is stored.

The total storage space needed for the media data plus its LOB index is then X + Y.
11-12 Oracle interMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
The following two examples describe these calculations in detail.

Example 1: Assume you have 500 video clips comprising a total size of 250MB with
an average size is 512K bytes. Assume a LOB chunk size of 32768 bytes. The total
space needed for the media data is 250MB + (5000*32768) or 266MB. The overhead
is 16MB or about 6.5% storage overhead. The total space needed to store the LOB
index is CEIL(250MB/32768) * 32 or 244KB. The total space needed to store the
media data plus its LOB index is then about 266.6MB.

SQL> SELECT 250000000+(500*32768)+CEIL(250000000/32768)*32 FROM dual;

250000000+(500*32768)+CEIL(250000000/32768)*32
--
 266628160

The following table definition could be used to store this amount of data:

CREATE TABLE video_items
(
 video_id NUMBER,
 video_clip ORDSYS.ORDVideo
)
-- storage parameters for table in general
TABLESPACE video1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the video content
LOB(video_clip.source.localdata) STORE AS
 (TABLESPACE video2 STORAGE (INITIAL 260K NEXT 270M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 32768);

Example 2: Assume you have 5000 images comprising a total size of 274MB with an
average size of 56K bytes. Because the average size of the images are smaller than
the video clips in the preceding example, it is more space efficient to choose a
smaller chunk size, for example 8192 bytes to store the data in the LOB. The total
space needed for the media data is 274MB + (5000*8192) or 314MB. The overhead is
about 40MB or about 15% storage overhead. The total space needed to store the
LOB index is CEIL(274MB/8192) * 32 or 1.05MB. The total space needed to store the
media data plus its LOB index is then about 316MB.

SQL> SELECT 274000000+(5000*8192)+CEIL(274000000/8192)*32 FROM dual;

274000000+(5000*8192)+CEIL(274000000/8192)*32

 316030336

The following table definition could be used to store this amount of data:
Tuning Tips for the DBA 11-13

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
CREATE TABLE image_items
(
 image_id NUMBER,
 image ORDSYS.ORDImage
)
-- storage parameters for table in general
TABLESPACE image1 STORAGE (INITIAL 1M NEXT 10M)
-- special storage parameters for the image content
LOB(image.source.localdata) STORE AS
 (TABLESPACE image2 STORAGE (INITIAL 1200K NEXT 320M)
 DISABLE STORAGE IN ROW NOCACHE NOLOGGING CHUNK 8192);

When working with very large BLOBs on the order of 1 gigabyte in size, choose a
proportionately large INITIAL and NEXT extent parameter size, for example an
INITIAL value slightly larger than your calculated LOB index size and a NEXT
value of 100 megabytes, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment; otherwise, if the
number of extents is large, the rollback segment can become saturated.

PCTINCREASE Parameter
Set the PCTINCREASE parameter value to 0 to make the growth of new extent sizes
more manageable. When working with very large BLOBs and the BLOB is being
filled up piece by piece in a tablespace, numerous new extents are created in the
process. If the extent sizes keep increasing by the default value of 50 percent each
time one is created, extents will become unmanageably big and eventually will
waste space in the tablespace.

MAXEXTENTS Parameter
Set the MAXEXTENTS parameter value to suit the projected size of the BLOB or set
it to UNLIMITED for safety. That is, when MAXEXTENTS is set to UNLIMITED,
extents will be allocated automatically as needed and this minimizes fragmentation.

ENABLE | DISABLE STORAGE IN ROW Clause
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether
the interMedia column objects containing a BLOB should be stored inline (that is, in
the row) or out of line. You may not alter this specification once you have made it: if
you ENABLE STORAGE IN ROW, you cannot alter it to DISABLE STORAGE IN
ROW or the reverse. The default is ENABLE STORAGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum
VARCHAR size (4000). Note that this includes the control information as well as the
11-14 Oracle interMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
LOB value. If the user indicates that the LOB should be stored in the row, once the
LOB value and control information are larger than 4000 bytes, the LOB value is
automatically moved out of the row.

This suggests the following guideline: If the interMedia column object containing a
BLOB is small (that is, less than 4000 bytes), then storing the BLOB data out of line
will decrease performance. However, storing the BLOB in the row increases the size
of the row. This has a detrimental impact on performance if you are doing a lot of
base table processing, such as full table scans, multiple row accesses (range scans),
or doing many UPDATE or SELECT statements to columns other than the
interMedia column objects containing BLOBs. If you do not expect the BLOB data to
be less than 4000 bytes, that is, if all BLOBs are big, then the default is the best
choice because:

■ The LOB data is automatically moved out of line once it gets bigger than 4000
bytes.

■ Performance can be better if the BLOB data is small (less than 4000 bytes
including control information) and is stored inline because the LOB locator and
the BLOB data can be retrieved in the same buffer, thus reducing I/O
operations.

11.2.3 Segment Attributes and Physical Attributes
The following physical attribute is important for optimum storage of BLOB data in
the data block and consequently achieving optimum retrieval performance.

PCTFREE Parameter
The PCTFREE parameter specifies the percentage of space in each data block of the
table or partition reserved for future updates to each row of the table. Setting this
parameter to an appropriate value is useful for efficient inline storage of multimedia
data. The default value is 10%.

Set this parameter to a high enough value to avoid row chaining or row migration.
Because the INSERT statement for BLOBs requires an EMPTY_BLOB column object
initialization followed by an UPDATE statement to load the BLOB data into the
data block, you must set the PCTFREE parameter value to a proper value especially
if the BLOB data will be stored inline. For example, row chaining can result after a
row INSERT operation when insufficient space is reserved in the existing data block
to store the entire row, including the inline BLOB data in the subsequent UPDATE
operation. As a result, the row would be broken into multiple pieces and each piece
stored in a separate data block. Consequently, more I/O operations would be
needed to retrieve the entire row, including the BLOB data, resulting in poorer
Tuning Tips for the DBA 11-15

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
performance. Row migration can also result if there is insufficient space in the data
block to store the entire row during the initial INSERT operation, and thus the row
is stored in another data block.

To make best use of the PCTFREE parameter, determine the average size of the
BLOB data being stored inline in each row, and then determine the entire row size,
including the inline BLOB data. Set the PCTFREE parameter value to allow for
sufficient free space to store an entire row of data in the data block. For example, if
you have a large number of thumbnail images that are about 3K bytes in size, and
each row is about 3.8K bytes in size, and the database block size is 8K, set the value
of PCTFREE to a value that ensures that two complete rows can be stored in each
data block in the initial INSERT operation. This approach initially uses 1.6K bytes of
space (0.8K bytes/row *2 rows) leaving 6.4K bytes of free space. Because two rows
initially use 20% of the data block and 95% after an UPDATE operation and adding
a third row would initially use 30% of the data block causing a chain to occur when
the third row is updated, set the PCTRFEE parameter value to 75. This setting
permits a maximum of two rows to be stored per data block and leaves sufficient
space to update each row with its 3K image thumbnail leaving about 0.4K bytes free
space minus overhead per data block.

11.2.4 Accommodating Temporary LOBs in the Buffer Cache
Temporary LOBs created when you have set the table LOB CACHE parameter to
TRUE move through the buffer cache; otherwise, they are read directly from and
written to disk if the CACHE parameter is set to FALSE.

Use durations for automatic cleanup to save time and effort. Let the database end a
duration and free all temporary LOBs associated with a duration because this is
more efficient than freeing each one explicitly.

Temporary LOBs create deep copies of themselves on assignments; that is, a new
copy of the temporary LOB is created. Use the OCILobLocatorAssign() call to
assign the source locator to the destination locator when assigning one LOB locator
to another. If the source locator refers to a temporary LOB, specify the equals sign
(=) in the assignment to ensure that the two LOB locator pointers refer to the same
LOB locator; otherwise, the source temporary LOB is deep-copied and a destination
locator is created to refer to the new deep copy of the temporary LOB.

You may also want to consider using pass-by reference semantics in PL/SQL or
declare pointers to locators, because a pointer assignment does not cause a deep
copy. Instead, it causes the pointer to point to the same thing. See the PL/SQL User’s
Guide and Reference, Oracle9i Database Performance Guide and Reference, and Oracle Call
Interface Programmer’s Guide for more information.
11-16 Oracle interMedia User’s Guide and Reference

Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
11.2.5 Using interMedia Column Objects Containing BLOBs in Table Partitions
Because you can partition tables containing interMedia column objects that have
BLOBs, BLOB segments can be spread between several tablespaces to:

■ Balance I/O load

■ Make backup and recovery operations more manageable

■ Make BLOB maintenance easier

interMedia column objects containing BLOB data can be partitioned to improve I/O
problems and to better balance the I/O load across the data files of the tablespace
containing the BLOB data. You can allocate data storage across devices to further
improve performance in a practice known as striping. This permits multiple
processes to access different portions of the table concurrently, without disk
contention.

interMedia column objects containing BLOB data can be partitioned to tune
database backup and recovery operations to make more efficient use of resources.
For example, having two or more tablespaces that are partitioned lets you perform
partial database backup and recovery operations on specific data files.

Similarly, tablespaces with interMedia column objects containing BLOBs can be
partitioned for easy maintenance of the BLOB data. This is done by logically
grouping BLOB data together into smaller partitions that are grouped by date, by
subject, by category, and so forth. This makes it easier to add, merge, split, or delete
partitions as needed, based on your application.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for examples and
further discussion of each of these topics. See the Oracle9i SQL Reference manual for
examples, specifically the CREATE TABLE statement and the Partitioned Table with
LOB Columns example.

11.2.6 LOB Buffering for Client Applications
Use LOB buffering if you need to repeatedly read or write small pieces of
interMedia column objects containing BLOB data to specific regions of the BLOB on
the client. Typically, for releases of Oracle8i or higher, options, Web servers, and
other applications may need to buffer the contents of one or more LOBs in the client
address space. Using LOB buffering, you can use up to 512K bytes of buffered
access. The advantages of LOB buffering include:

■ Allowing deferred write operations to the server. Flushing several write
operations in the LOB buffer to the server reduces the number of network
Tuning Tips for the DBA 11-17

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
round-trips from the client application to the server, thereby improving overall
LOB update performance.

■ Reducing the overall number of interMedia column objects containing BLOB
update operations on the server reduces the number of BLOB versions and
amount of logging, which improves overall BLOB performance and disk space
usage.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for further
considerations and the use of LOB buffering.

11.3 Improving Multimedia Data INSERT Performance in interMedia
Objects Containing LOBs

There are a number of bulk loading methods available for loading FILE data into
interMedia objects containing BLOBs. These include:

■ interMedia import() method in a PL/SQL stored procedure

■ SQL*Loader (conventional path load and direct path load)

■ OCILobLoadFromFile() relational function

■ DBMS_LOB.LOADFROMFILE() procedure in the DBMS_LOB package

■ Java loadDataFromFile() or loadDataFromInputStream() methods of
interMedia Java Classes to load media data from a client file

Using interMedia Import() Method in a PL/SQL Stored Procedure
Example 11–2 shows the contents of the load1.bat file, which invokes SQL*Plus and
runs the t1.sql procedure (Example 11–3). The db_block_size for this schema is 8K
bytes.

Example 11–2 Show the Load1.bat File

sqlplus scott/tiger@intertcp @t1

Example 11–3 shows the contents of the t1.sql file. This procedure:

■ Creates two tablespaces.

■ Creates the image_items table and defines the physical properties of the table,
specifically the physical attributes and LOB storage attributes.

■ Partitions the table storage into each tablespace by range using the image_id
value.
11-18 Oracle interMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
■ Creates the load_image stored procedure that:

– Declares a variable nxtseq defined as the ROWID data type.

– Inserts a row into the image_items table and uses the INSERT RETURNING
ROWID statement to return the ROWID value for fastest access to the row
for loading the image BLOB data into the object columns of each row using
the import method.

– Sets the image attribute properties automatically (by means of the import
operation) for each loaded image (note that thumbnail images are stored
inline, and regular images are stored out of line).

– Commits the update operation.

Example 11–3 Show the T1.SQL File

spool t1.log
set echo on
connect internal/internal

create tablespace Image_h default storage (initial 30m next 400m pctincrease 0)
 datafile ’h:\IMPB\Image_h.DBF’
 size 2501M reuse;

create tablespace Image_i default storage (initial 30m next 400m pctincrease 0)
 datafile ’i:\IMPB\Image_i.DBF’
 size 2501M reuse;

connect scott/tiger

drop table image_items;

create table image_items(
 image_id number,-- constraint pl_rm primary key,
 image_title varchar2(128),
 image_artist varchar2(128),
 image_publisher varchar2(128),
 image_description varchar2(1000),
 image_price number(6,2),
 image_file_path varchar2(128),
 image_thumb_path varchar2(128),
 image_thumb ordsys.ordimage,
 image_clip ordsys.ordimage
)
--
Tuning Tips for the DBA 11-19

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
-- physical properties of table
--
 -- physical attributes clause
 pctfree 35 storage (initial 30M next 400M pctincrease 0)

 -- LOB storage clause (applies to LOB column)
 LOB (image_clip.source.localdata)
 store as (disable storage in row nocache nologging chunk 32768)
--
-- table properties (applies to whole table)
--
Partition by range (image_id)
(
Partition Part1 values less than (110001)
Tablespace image_h,
Partition Part2 values less than (maxvalue)
Tablespace image_i
);

connect scott/tiger;

create or replace procedure load_image
(
 image_id number,
 image_title varchar2,
 image_artist varchar2,
 image_publisher varchar2,
 image_description varchar2,
 image_price number,
 image_file_path varchar2,
 image_thumb_path varchar2,
 thumb_dir varchar2,
 content_dir varchar2,
 file_name1 varchar2,
 file_name2 varchar2)
as
 ctx raw(4000) := NULL;
 obj1 ORDSYS.ORDIMAGE;
 obj2 ORDSYS.ORDIMAGE;
 nxtseq rowid;

Begin
 Insert into image_items(
 image_id,
 image_title,
11-20 Oracle interMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 image_thumb,
 image_clip)
 values (
 image_id,
 image_title,
 image_artist,
 image_publisher,
 image_description,
 image_price,
 image_file_path,
 image_thumb_path ,
 ORDSYS.ORDIMAGE.init(’FILE’,upper(thumb_dir),file_name1),
 ORDSYS.ORDIMAGE.init(’FILE’,upper(content_dir),file_name2))
 returning rowid into nxtseq;

-- load up the thumbnail image
 select t.image_thumb,
t.image_clip
 into obj1, obj2
 from image_items t
 where t.rowid = nxtseq for update;
 obj1.import(ctx); -- import sets properties
 obj2.import(ctx);
 Update image_items I
 set I.image_thumb = obj1,
 I.image_clip = obj2
 where i.rowid = nxtseq;

 Commit;
End;
/
spool off
set echo off

Example 11–4 shows the contents of the load1.sql file. The image load directories are
created and specified for each tablespace and user scott is granted read privilege on
each load directory. The stored procedure named load_image is then executed,
Tuning Tips for the DBA 11-21

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
which loads values for each column row. By partitioning the data into different
tablespaces, each partition can be loaded in a parallel data load operation.

Example 11–4 Show the Load1.sql File that Executes the load_image Stored
Procedure

connect internal/internal
drop directory IMAGE_H;
drop directory IMAGE_I;
create directory IMAGE_H as ’h:\image_files’;
create directory IMAGE_I as ’i:\image_files’;
grant read on directory IMAGE_H to scott;
grant read on directory IMAGE_I to scott;
EXEC Load_image(100001,’T_100001’,1916,’Publisher’,’Visit our WEB page’
,8.71,’image_I\T_100001.jpg’,’image_I\T_100001_thumb1.jpg’,’image_I’,’image_
I’,’T_100001_thumb1.jpg’,’T_100001.jpg’);
EXEC Load_image(100002,’T_100002’,2050,’Publisher’,’Visit our WEB page’
,9.61,’image_I\T_100002.jpg’,’image_I\T_100002_thumb10.jpg’,’image_I’,’image_
I’,’T_100002_thumb10.jpg’,’T_100002.jpg’);
exit

Using SQL*Loader
SQL*Loader provides two methods for loading data:

■ Conventional Path Load

A conventional path load (the default) uses the SQL INSERT statement and a
bind array buffer to load data into database tables. When SQL*Loader performs
a conventional path load, it competes equally with all other processes for buffer
resources. This can slow the load significantly. Extra overhead is added as SQL
commands are generated, passed to Oracle, and executed. Oracle looks for
partially filled blocks and attempts to fill them on each insert. Although
appropriate during normal use, this can slow bulk loads dramatically. Use
conventional path load if you encounter certain restrictions on direct path loads.

■ Direct Path Load

A direct path load eliminates much of the Oracle database overhead by
formatting Oracle data blocks and writing the data blocks directly to the
database files. A direct load does not compete with other users for database
resources, so it can usually load data at near disk speed. In addition, if
asynchronous I/O operations is available on your host platform, multiple
buffers are used for the formatted data blocks to further increase load
performance.
11-22 Oracle interMedia User’s Guide and Reference

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
See Oracle9i Database Utilities for a complete list of restrictions for using either the
conventional path load or direct path load method for loading data using
SQL*Loader. See Oracle9i Application Developer’s Guide - Fundamentals for more
information on LOBs.

Using SQL*Loader to Load Multimedia Data into Oracle9i Using
interMedia Column Objects
Example 11–5 shows the use of the control file to load one ORDVideo object per file
into a table named JUKE that has three columns, with the last one being a column
object. Each LOB file is the source of a single LOB and follows the column object
name with the LOBFILE data type specifications. Two LOB files are loaded in this
example.

Example 11–5 Show the Control File for Loading Video Data

LOAD DATA
INFILE *
INTO TABLE JUKE
REPLACE
FIELDS TERMINATED BY ’,’
(id integer external,
 file_name char(1000),
 mediacontent column object
 (
 source column object
 (
1) localData_fname FILLER CHAR(128),

 2) localData LOBFILE (mediacontent.source.localData_fname) terminated by EOF

)

)
)

BEGINDATA
1,slynne,slynne.rm
2,Commodores,Commodores - Brick House.rm

Notes:

1. The filler field is mapped to the 128-byte long data field which is read using the
SQL*Loader CHAR data type.

2. SQL*Loader gets the LOB file name from the localData_fname FILLER field. It
then loads the data from the LOB file (using the BLOB data type) from its
Tuning Tips for the DBA 11-23

Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
beginning to the EOF character, whichever is reached first. Note that if no
existing LOB file is specified, the localData field is initialized to empty.

Using the OCILobLoadFromFile() Relational Function
Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to manipulate data and schemas in an Oracle database using a host
programming language, such as C.

The OCI relational function, OCILobLoadFromFile(), loads or copies all or a
portion of a file into an interMedia column object containing a specified BLOB. The
data is copied from the source file to the destination interMedia column objects
containing a BLOB. When binary data is loaded into an interMedia column object
containing a BLOB, no character set conversions are performed. Therefore, the file
data must already be in the same character set as the BLOB in the database. No
error checking is performed to verify this.

See Oracle Call Interface Programmer’s Guide for more information.

Using the DBMS_LOB.LOADFROMFILE() Procedure in the DBMS_LOB
Package
The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs,
NCLOBs, BFILEs, and temporary LOBs. You can use the DBMS_LOB package for
access and manipulation of specific parts of an interMedia column object containing
a BLOB, as well as complete BLOBs. DBMS_LOB can read as well as modify BLOBs,
CLOBs, and NCLOBs, and provides read-only operations for BFILEs. The majority
of the LOB operations are provided by this package.

The DBMS_LOB.LOADFROMFILE() procedure copies all, or part of, a
source-external LOB (BFILE) to a destination internal LOB.

You can specify the offsets for both the source LOB (BFILE) and destination
interMedia column object containing the BLOB and the number of bytes to copy
from the source BFILE. The amount and src_offset, because they refer to the BFILE,
are in terms of bytes, and the destination offset is either in bytes or characters for
BLOBs and CLOBs respectively.

The input BFILE must have been opened prior to using this procedure. No character
set conversions are performed implicitly when binary BFILE data is loaded into a
CLOB. The BFILE data must already be in the same character set as the CLOB in the
database. No error checking is performed to verify this. See Oracle9i Supplied
PL/SQL Packages Reference for more information.
11-24 Oracle interMedia User’s Guide and Reference

Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/SQL Script
Using Java loadDataFrom...() Methods to Load Media Data from a Client
File
From the Java client, you can use the Java loadDataFromByteArray(),
loadDataFromFile(), or loadDataFromInputStream() methods of interMedia Java
Classes to load media data from a given file into a server-side media object
designated by the corresponding media locator parameters. You must specify the
name of the file from which to load the data and the method returns true if loading
is successful, false otherwise. See Oracle interMedia Java Classes User’s Guide and
Reference for more information.

11.4 Loading Multimedia Data Using the interMedia Clipboard
You can use the Oracle interMedia Clipboard (Release 2) to:

■ Upload multimedia objects from files and URLs and store them in the database

See Oracle interMedia Clipboard (Release2) Installation and Configuration Guide for more
information. See Section 1.13.5 for information on how obtain this software and
documentation.

11.5 Loading Multimedia Data Using interMedia Annotator Utility
You can use the Oracle interMedia Annotator utility to upload media data and an
associated annotation into an Oracle8i or higher database where Oracle interMedia
is installed. Annotator does this using an Oracle PL/SQL upload template, which
contains both PL/SQL calls and Annotator-specific keywords.

See Oracle interMedia Annotator User’s Guide for more information.

11.6 Reading Data from an ORDVideo Object Using the interMedia
readFromSource() Method in a PL/SQL Script

Example 11–6 shows the contents of the readvideo1.sql file. This procedure reads
data from an ORDVideo object with the video stored in a BLOB in the database
using the readFromSource method in a PL/SQL script until no more data is found.
The procedure then returns a NO_DATA_FOUND exception when the read
operation is complete and displays an "End of data" message.

Note: This example can be modified to work with the ORDAudio
and ORDImage objects too.
Tuning Tips for the DBA 11-25

Reading Results of an interMedia Benchmark
Example 11–6 Read Data from an ORDVideo Column Object Using interMedia
readFromSource() Method in a PL/SQL Stored Procedure

create or replace procedure readVideo1(i integer) as

 obj ORDSYS.ORDVideo;
 buffer RAW (32767);
 numbytes BINARY_INTEGER := 32767;
 startpos integer := 1;
 read_cnt integer := 1;
 ctx RAW(4000) := NULL;

BEGIN

 Select mediacontent into obj from juke where id = 100001;

 LOOP
 obj.readFromSource(ctx,startpos,numbytes,buffer);
 startpos := startpos + numBytes;
 read_cnt := read_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data ’);
 DBMS_OUTPUT.PUT_LINE(’doing read ’|| read_cnt);
 DBMS_OUTPUT.PUT_LINE(’start position :’|| startpos);

END;

/
show errors

11.7 Reading Results of an interMedia Benchmark
The benchmark environment for the hardware and software for the interMedia
BLOB read tests that were performed are described in this section.

Benchmark Environment
The server side consisted of a quad 200MHz Pentium Pro processor with 3GB of
memory. The I/O disk subsystem consisted of a raid 0 stripe set supported by four
Adaptec controllers. The system was running MS Windows NT V4.0 Service Pack 3.
11-26 Oracle interMedia User’s Guide and Reference

Reading Results of an interMedia Benchmark
The OCI experiments were conducted in a client/server environment where the
client was also a quad 200MHz Pentium Pro processor linked to the server using a
100Mbits Ethernet connection.

The database was partitioned by range using a range ID such that each client reader
or loader process used a dedicated database partition. Tests were conducted with a
database block size set to 8K and 16K, a LOB chunk size set to 32K, and a read size
(1 round-trip) set to 32K for the interMedia import() method in PL/SQL tests, and a
LOB buffer size set to 32K to 64K for the OCI tests.

Test Description and Results
BLOB I/O tests were conducted in an MS Windows NT environment running
Oracle interMedia. BLOB read tests were conducted with the interMedia
readFromSource() method in a PL/SQL script to read BLOBs from the database, as
well as making OCI calls without callbacks to perform BLOB read operations from
C++. Parallel processes were submitted on the client system to read BLOBs residing
on the server side making use of the 100 megabit network bandwidth. Database
connections ranged from 6 to 16 for the BLOB read tests.

A benchmark was performed to measure the performance of an Oracle-based
system in a setting modeling a real-life audio server application. The Oracle server
serves multiple requests by clients to a set of CDs. CDs are stored in Oracle8i or
higher using the Oracle interMedia. The CD access pattern is modeled by an
exponential distribution to simulate that some CDs are more popular than others. A
client has a tolerance on the response time of a request. Each request asks for a
particular amount of audio data. The throughput of the server, defined by the
amount of audio data provided per unit time, is measured, subjected to the
following constraints:

■ Number of users

■ Maximum or average response time of requests

■ Size of each request

■ Access patterns

Throughput levels as high as 29 MB/second using a large cache of 1.7GB, a LOB
chunk size set to 32K, and with OCI using buffered read operations to read BLOBs
locally on the backend, memory-rich server. Using a less memory-rich server
system with a 320MB cache buffer size, throughput decreased by one third to a low
of 20MB/second level.

The performance-limiting factor was the 100 megabit bandwidth, which became
saturated in the client/server tests. All tests with OCI had caching turned on. Using
Tuning Tips for the DBA 11-27

Getting the Best Performance Results
the interMedia readFromSource() method in a PL/SQL procedure, and with no
cache set, the throughput was limited to 18MB/second. The limiting factor for
performance for reading BLOB data was the I/O subsystem in the absence of
caching.

11.8 Getting the Best Performance Results
The following guidelines can be used to help you achieve the best performance
when working with interMedia objects:

■ Because interMedia objects are big, you can attain the best performance by
reading and writing large chunks of an interMedia object value at a time. This
helps in several respects:

– If you are accessing the interMedia object from the client side and the client
is on a different node than the server, large read/write operations reduce
network overhead.

– If you are using the NOCACHE option, each small read/write operation
incurs an I/O impact. Reading and writing large quantities of data reduces
the I/O impact.

– Writing to the interMedia object creates a new version of the interMedia
object chunk. Therefore, writing small amounts at a time will incur the cost
of a new version for each small write operation. If logging is on, the chunk
is also stored in the redo log.

■ If you need to read or write small pieces of interMedia object data on the client,
use LOB buffering (see OCILobEnableBuffering(), OCILobDisableBuffering(),
OCILobFlushBuffer(), OCILobWrite(), OCILobRead() in Oracle Call Interface
Programmer’s Guide for more information.). Turn on LOB buffering before
reading or writing small pieces of interMedia object data.

■ Use interMedia methods (readFromSource() and writeToSource()) for audio
and video data or OCILobWrite() and OCILobRead() with a callback for image
data so media data is streamed to and from the BLOB. Ensure that the length of
the entire write operation is set in the numBytes parameter using interMedia
methods or in the amount parameter using OCI calls on input. Whenever
possible, read and write in multiples of the LOB chunk size.

■ Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

– Updating interMedia object data: SQL UPDATE operations, which replaces
the entire BLOB value.
11-28 Oracle interMedia User’s Guide and Reference

Improving Multimedia LOB Data Retrieval and Update Performance
– Copying the entire LOB data to the client, modifying the LOB data on the
client side, and copying the entire LOB data back to the database. This can
be done using OCILobRead() and OCILobWrite() with streaming.

See Oracle9i Application Developer’s Guide - Large Objects (LOBs) for more
information.

11.9 Improving Multimedia LOB Data Retrieval and Update Performance
Once the LOB data is stored in the database, a modified strategy must be used to
improve the performance of retrieving and updating the LOB data compared to the
insertion strategy described in Section 11.3. The following guidelines should be
considered:

■ Use the CACHE option on LOBs if the same LOB data is to be accessed
frequently by other users.

■ Increase the number of buffers if you are going to use the CACHE option.

■ Have enough buffers to hold the object. Using a small number of buffers for
large objects is not good. Set the DB_CACHE_SIZE parameter to a value that
you know will hold the object.

■ Ensure that your redo log files are much larger than they usually are; otherwise,
you may be waiting for log switches, especially if you are making many
updates to your LOB data.

■ Ensure that you use a larger page size (DB_BLOCK_SIZE), especially if the
majority of the data in the database is LOB data.
Tuning Tips for the DBA 11-29

Improving Multimedia LOB Data Retrieval and Update Performance
11-30 Oracle interMedia User’s Guide and Reference

Audio File and Compression Fo
A

Audio File and Compression Formats

A.1 Supported Audio File and Compression Formats
The following tables describe the audio file and compression formats and other
audio features supported by interMedia.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table A–1 shows that interMedia supports
AIFF format for single channel, stereo, 8-bit and 16-bit samples, linear PCM
encoding, and uncompressed format.

Table A–1 AIFF Data Format

Format Audio Feature

AIFF

Format ID ‘AIFF’
File Format: ‘AIFF’
File Ext: .aff
MIME type: audio/x-aiff

Single channel
Stereo
8-bit samples
16-bit samples
Linear PCM encoding

Format Encoding/CompressionType

Standard AIFF Uncompressed TWOS
rmats A-1

Supported Audio File and Compression Formats
Table A–2 AIFF-C Data Format

Format Audio Feature

AIFF-C

Format ID ‘AIFC’
File Format: ‘AIFC’
File Ext: .afc
MIME type: audio/x-aiff

Single channel
Stereo
8-bit samples
16-bit samples

Format Encoding/CompressionType

Choose one of these
compression formats1

Not compressed
ACE 2-to-1
ACE 8-to-3
MACE 3-to-1
MACE 6-to-1
1 Other than "uncompressed (TWOS)", all other codes are the FourCC

(uppercased) directly from the compressionType field of Common
Chunk of the AIFC file. The table lists only the ones known.

Uncompressed (TWOS)
ACE2
ACE8
MAC3
MAC6

Table A–3 AU Data Format

Format Audio Feature

AU

Format ID ‘AUFF’
File Format: ‘AUFF’
File Ext: .au
MIME type: audio/basic

Single channel
Stereo
8-bit samples
16-bit samples
Mu-law encoding
Linear PCM encoding
A-2 Oracle interMedia User’s Guide and Reference

Supported Audio File and Compression Formats

Format Encoding/CompressionType

Choose one of these compression formats:
Unspecified format
8-bit mu-law samples
8-bit linear samples
16-bit linear samples
24-bit linear samples
32-bit linear samples
Floating-point samples
Double-precision float samples
Fragmented sample data
Nested format

UNSPECIFIED
MULAW
LINEAR
LINEAR
LINEAR
LINEAR
FLOAT
DOUBLE
FRAGMENTED
NESTED

DSP program
8-bit fixed-point samples
16-bit fixed-point samples
24-bit fixed-point samples
32-bit fixed-point samples
Unknown AU’s format
Non-audio display data
Squelch format
16-bit linear with emphasis
16-bit linear with compression

DSP_CORE
DSP_DATA
DSP_DATA
DSP_DATA
DSP_DATA
UNKNOWN
DISPLAY
MULAW_SQUELCH
EMPHASIZED
COMPRESSED

16-bit linear with emphasis and compression
Music Kit DSP commands
DSP commands samples
adpcm G721
adpcm G722
adpcm G723_3
adpcm G723_5
8-bit a-law samples

COMPRESSED_EMPHASIZED
DSP_COMMANDS
DSP_COMMANDS_SAMPLES
ADPCM_G721
ADPCM_G722
ADPCM_G723_3
ADPCM_G723_5
ALAW

Table A–4 WAV Data Format

Format Audio Feature

WAV

Format ID ‘WAVE’
File Format: ‘WAVE’
File Ext: .wav
MIME type: audio/x-wav

Single channel
Stereo
8-bit samples
16-bit samples
Linear PCM encoding

Format Encoding/CompressionType

Table A–3 AU Data Format
Audio File and Compression Formats A-3

Supported Audio File and Compression Formats
Choose one of these compression formats:

Unknown Wave Format
Microsoft PCM Wave Format

UNKNOWN
MS_PCM

Microsoft ADPCM Wave Format
IBM CVSD Wave Format
Microsoft aLaw Wave Format
Microsoft uLaw Wave Format
OKI ADPCM Wave Format
Intel DVI/IMA ADPCM Wave Format
VideoLogic Media Space ADPCM Wave Format
Sierra Semiconductor ADPCM Wave Format
Antex Electronics G723 ADPCM Wave Format
DSP Solutions DIGISTD Wave Format

MS_ADPCM
IBM_CVSD
ALAW
MULAW
OKI_ADPCM
DVI_ADPCM
MEDIASPACE_ADPCM
SIERRA_ADPCM
ANTEX_G723_ADPCM
DIGISTD

DSP Solutions DIGIFIX Wave Format
Dialogic OKI ADPCM Wave Format
Yamaha ADPCM Wave Format
Speech Compression Sonarc Wave Format
DSP Group TrueSpeech Wave Format
Echo Speech Wave Format
Audiofile AF36 Wave Format
Audio Processing Technology Wave Format
Audiofile AF10 Wave Format
Dolby AC-2 Wave Format

DIGIFIX
DIALOGIC_OKI_ADPCM
YAMAHA_ADPCM
SONARC
DSPGROUP_TRUESPEECH
ECHOSC1
AUDIOFILE_AF36
APTX
AUDIOFILE_AF10
DOLBY_AC2

Microsoft GSM 610 Wave Format
Antex Electronics ADPCME Wave Format
Control Resources VQLPC Wave Format
DSP Solutions DIGIREAL Wave Format
DSP Solutions DIGIADPCM Wave Format
Control Resources CR10 Wave Format
Natural Microsystems NMS VBXADPCM Wave Format
Crystal Semiconductor IMA ADPCM Wave Format
Antex Electronics G721 ADPCM Wave Format
MPEG-1 Audio Wave Format

MS_GSM610
ANTEX_ADPCME
CONTROL_RES_VQLPC
DIGIREAL
DIGIADPCM
CONTROL_RES_CR10
NMS_VBXADPCM
CS_IMAADPCM
ANTEX_G721_ADPCM
MPEG

Creative Labs ADPCM Wave Format
Creative Labs FastSpeech8 Wave Format
Creative Labs FastSpeech10 Wave Format
Fujitsu FM Towns Wave Format
Olivetti GSM Wave Format
Olivetti ADPCM Wave Format
Olivetti CELP Wave Format
Olivetti SBC Wave Format
Olivetti OPR Wave Format

CREATIVE_ADPCM
CREATIVE_FASTSPEECH8
CREATIVE_FASTSPEECH10
FM_TOWNS_SND
OLIGSM
OLIADPCM
OLICELP
OLISBC
OLIOPR

Table A–4 WAV Data Format
A-4 Oracle interMedia User’s Guide and Reference

Supported Audio File and Compression Formats

Table A–5 Audio MPEG Data Format

Format Audio Feature

MPEG

Format ID ‘MPEG’
File Format: ‘MPGA’
File Ext: .mpg
MIME type: audio/mpeg

Layer I
Layer II
Layer III

Format Encoding/CompressionType

Choose one of these
compression formats:
MPEG Audio, Layer I
MPEG Audio, Layer II
MPEG Audio, Layer III

LAYER1
LAYER2
LAYER3
Audio File and Compression Formats A-5

Supported Audio File and Compression Formats
A-6 Oracle interMedia User’s Guide and Reference

Image File and Compression Fo
B

Image File and Compression Formats

B.1 Supported Image File and Compression Formats
Descriptions of each of the supported image file formats and image compression
formats are presented in Section B.1.1 and Section B.1.2.

B.1.1 Image File Formats
Image file formats are listed alphabetically.

BMPF
extension: .bmp

mime: image/bmp

BMPF is the Microsoft Windows bitmap format and is based on the internal data
structures used by Windows to store bitmap data in memory. This format is used
extensively by Microsoft Windows, and a variant of this format is used by the IBM
OS/2 operating system. Because this format is supported directly by Windows, its
use is very popular in that environment and has spread to other systems.

BMPF is a very flexible image format in that it can store a wide variety of image
data types, but it does not offer powerful compression. The only compression
available is a run-length encoding variant that is supported only by certain content
formats. It is worth noting that BMPF is unusual in that the ordinary scanline order
for this format is bottom-up, which Oracle interMedia calls INVERSE.

CALS
extension: .cal

mime: image/x-ora-cals
rmats B-1

Supported Image File and Compression Formats
CALS is an image format developed by the Computer Aided Acquisition and
Logistics Support office of the United States government for document interchange.
There are actually two variants of the CALS image format; Oracle interMedia
supports CALS Type I. Because the CALS format is monochrome-only, it is
primarily useful for storing simple documents, scanned or otherwise.

Foreign Images
Foreign Images are images for which Oracle interMedia does not provide native
recognition and support, but that can sometimes be read if the image data complies
with the rules outlined in the Foreign Image Support section of the Raw Pixel
appendix (see Section E.10).

FPIX
extension: .fpx

mime: image/x-fpx

FPIX, or FlashPix, is a format developed by Kodak, Microsoft Corporation,
Hewlett-Packard Company, and Live Picture, Inc., for storing digital photography.
FlashPix images are composed of a series of different resolutions of the same image,
and each resolution is composed of individual tiles. These tiles can be
uncompressed or compressed using JPEG. The multi-resolution capability of
FlashPix images is intended to promote easy use in a wide variety of applications
by allowing low resolution versions of the image to be used where high resolution
versions are not necessary (such as browsing, viewing on screen), while high
resolution versions are available when needed (printing or zooming in on an image
detail).

Oracle interMedia includes a simple FlashPix decoder that always selects the largest
resolution plane in a FlashPix image. Lower resolutions are not accessible. Oracle
interMedia does not write FlashPix images.

GIFF
extension: .gif

mime: image/gif

GIFF is the Oracle interMedia name for the Graphics Interchange Format (GIF),
which was developed by CompuServe to transfer images between users in their
early network system. Because GIF (pronounced "jif") is an early format and was
developed for use on limited hardware it does not support content formats which
store more than 8 bits per pixel. This makes the format less suitable for storing
B-2 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
photographic or photo-realistic images than deeper formats such as PNG or JFIF,
but it is a good choice for other applications. There are two specific variants of the
GIF format, called 87a and 89a; Oracle interMedia reads both variants but writes the
87a variant.

Despite its pixel depth limitations, the GIF format remains a powerful and flexible
image format, and includes support for limited transparency effects and simple
animations by encoding a series of image frames and frame transition effects. Oracle
interMedia can read GIF images that include these options but only the first frame
of an animated GIF is made available, and there is no support for writing animated
GIFs.

All GIF images are compressed using a GIF-specific LZW compression scheme
which Oracle interMedia calls GIFLZW.

JFIF
extension: .jpg

mime: image/jpeg

JFIF is the JPEG File Interchange Format, developed by C-Cube Microsystems for
storing JPEG encoded images. The JFIF format is actually just a JPEG data stream
with an identifying header and a few enforced conventions. As such, it provides
minimal support for anything but the actual image data. By definition, all JFIF files
are JPEG compressed, making them less appropriate for some applications as
explained in the description of the JPEG compression format.

Oracle interMedia identifies several distinct image formats as JFIF, including actual
JFIF files, non-JFIF pure JPEG data streams, and EXIF files. The last is a JFIF variant
produced by digital cameras.

PBMF, PGMF, PPMF and PNMF
extension: .pbm, .pgm, .ppm, .pnm

mime: image/x-portable-bitmap, image/x-portable-graymap,
image/x-portable-pixmap, image/x-portable-anymap

These are a family of file formats derived from Jef Poskanzer’s Portable Bitmap
Utilities suite. These file formats are Portable Bitmap (PBM), Portable Graymap
(PGM), Portable Pixmap (PPM) and Portable Anymap (PNM). Because of their wide
support and the free availability of software to handle these formats, they are
frequently used for uncompressed image interchange.
Image File and Compression Formats B-3

Supported Image File and Compression Formats
PBM files are monochrome only files (the term "bitmap" being used in the sense of a
map of bits, that is, each pixel is either 0 or 1). PGM files are grayscale only, while
PPM files are full color pixel maps.

PNM does not refer to a distinct file format, but instead refers to any of the other
three types (PBM, PGM or PPM). Images written using the file format designation
PNMF will be written as the most appropriate variant depending on the input data
content format.

These formats do not include data compression, but have two encoding formats:
ASCII or RAW.

PCXF
extension: .pcx

mime: image/pcx

PCX, or PCXF in Oracle interMedia notation, is an early and widely used image file
format developed for ZSoft’s PC Paintbrush, and later used in derivatives of that
program. Despite its ancestry, it provides support for many pixel depths, from
monochrome to 24-bit color. It supports a fast compression scheme designated
PCXRLE by Oracle interMedia. Oracle interMedia reads but does not write PCX
images.

PICT
extension: .pct

mime: image/pict

The Macintosh PICT format was developed by Apple Computer, Inc., as part of the
QuickDraw toolkit built into the Macintosh ROM. It provides the ability to "record"
and "playback" QuickDraw sequences, including both vector and raster graphics
painting. Oracle interMedia supports only the raster elements of PICT files. Both
Packbits and JPEG compressed PICT images are supported.

PNGF
extension: .png

mime: image/png

PNGF is the Oracle interMedia designation for the Portable Network Graphics
(PNG) format (pronounced "ping"). PNG was developed by the PNG Development
Group as a legally unencumbered and more capable replacement for some uses of
the GIF and TIFF file formats. PNG includes support for deep images (up to 16 bits
B-4 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
per sample and up to 4 samples per pixel), full alpha support, rich metadata storage
including metadata compression, built-in error and gamma correction, a powerful
and free compression algorithm called DEFLATE, and much more. The main feature
found in GIF that is absent in PNG is the ability to store animations.

PNG support for a broad variety of pixel depths (1 bit to 16 bits per sample) makes
it suitable for a very wide variety of applications, spanning the separate domains
previously filled by GIF and JPEG, and being very similar to the uses of the
powerful TIFF format. Because the DEFLATE compression scheme is lossless, PNG
is a good choice for storing deep images that must be edited often.

All PNG images are compressed using the DEFLATE scheme.

RPIX
extension: .rpx

mime: image/x-ora-rpix

RPIX, or Raw Pixel, is a format developed by Oracle Corporation for storing simple
raw pixel data without compression, and using a simple well-described header
structure. It was designed to be used by applications whose native image format is
not supported by Oracle interMedia but for which an external translation might be
available. It flexibly supports N-banded image data (8 bits per sample) where N <
256 bands, and can handle data that is encoded in a variety of channel orders (such
as RGB, BGR, BRG, and so forth), a variety of pixel orders (left-to-right and
right-to-left), a variety of scanline orders (top-down or bottom-up) and a variety of
band orders (band interleaved by pixel, by scanline, and by plane). The flexibility of
the format includes a data offset capability, which can allow an RPIX header to be
prepended to other image data, thus allowing the RPIX decoder to read an
otherwise compliant image format. See Appendix E for more information.

In addition to its support for 8 bits per sample data, RPIX supports single-band
monochrome images compressed using the FAX3 and FAX4 compression schemes.

When an RPIX image is decoded, only 1 or 3 bands are read. Which bands are
selected can be determined by the image header or by the InputChannels operator.
Similarly, Oracle interMedia writes only 1 or 3 band RPIX images.

RASF
extension: .ras

mime: image/x-ora-rasf
Image File and Compression Formats B-5

Supported Image File and Compression Formats
The Sun Raster image format, called RASF by Oracle interMedia, was developed by
Sun Microsystems for its UNIX operating systems and has a wide distribution in the
UNIX community. It supports a variety of pixel depths and includes support for a
format-specific, run-length encoding compression scheme called SUNRLE by Oracle
interMedia.

TGAF
extension: .tga

mime: image/x-ora-tgaf

The Truevision Graphics Adapter format (TGA, or TGAF to Oracle interMedia) was
developed by Truevision, Inc., for their line of Targa and related graphics adapters.
This format includes support for color images with 8, 16, 24 and 32 bits per pixel
and also includes support for a run-length encoding compression scheme called
TARGARLE by Oracle interMedia.

TIFF
extension: .tif

mime: image/tiff

The Tag Image File Format (TIFF) was originally developed by the Aldus
Corporation. The format has become something of a benchmark for image
interchange and is extremely versatile, including support for a wide variety of
compression and data formats, multiple image pages per file, and a wide variety of
metadata. Because of its many options, TIFF is a good choice for many applications,
including document storage, simple art, photographic and photo-realistic images,
and others.

Oracle interMedia supports the "baseline TIFF" specification and also includes
support for some TIFF "extensions," including tiled images and certain compression
formats not included as part of the baseline TIFF specification. "Planar" TIFF images
are not supported. It is important to note that the JPEG support in TIFF provided by
Oracle interMedia is based on the revised JPEG in TIFF specification and not the
original JPEG in TIFF specification. TIFF images in either big endian or little endian
format can be read, but Oracle interMedia always writes big endian TIFFs.

Although the TIFF decoder in Oracle interMedia includes support for page selection
using the "page" verb in the process() and processCopy() methods, the
setProperties() method always returns the properties of the initial page in the file. It
is important to note that this initial page is accessed by setting "page=0" in the
B-6 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
process command string. Oracle interMedia currently does not support writing
multiple page TIFF files.

WBMP
extension: .wbmp

mime: image/vnd.wap.wbmp

The Wireless Bitmap format (WBMP) was developed for the Wireless Application
Protocol as a means of transmitting bitmap (monochrome) images to
WAP-compliant devices. An extremely minimalist format, it does not even include
identifying markers or support for compression. It is most appropriate for very
small images being transmitted over limited bandwidth networks.

The WBMP format is not related to the BMPF format.

B.1.2 Image Compression Formats
Image compression formats are listed alphabetically.

ASCII
Not an actual compression format by itself, ASCII is an encoding used by PBM,
PGM, and PPM images to represent images in plain ASCII text form. Each pixel
value is represented by an individual integer in an ASCII-encoded PBM (or PGM or
PPM) file.

BMPRLE
BMPRLE is the description that Oracle interMedia gives to images that are
compressed with the BMP run-length encoding compression scheme. This
compression format is available only for 4-bit and 8-bit LUT data, and only for
images that are stored in INVERSE scanline order (the default order for BMP files).
For very complex images, this compression can occasionally actually increase the
file size.

DEFLATE
DEFLATE is the compression scheme employed by the PNG image format, and has
also been adapted to work in the TIFF image format. DEFLATE is based on the ZIP
algorithm and is a very adaptable compression scheme that handles a wide variety
of image data formats well. Besides being used to compress image data in PNG and
TIFF files, DEFLATE is also used within PNG files to compress some metadata.
Image File and Compression Formats B-7

Supported Image File and Compression Formats
DEFLATE-ADAM7
DEFLATE-ADAM7 is the same compression format as DEFLATE, but refers to
images whose scanlines are interlaced for progressive display as the image is
decoded. The intention of this technique is to allow a user to observe the image
being progressively decoded as it is downloaded through a low bandwidth link and
abort the image before completion of the download. While the low bandwidth
requirement is not typically relevant anymore, many existing images employ this
encoding. Unlike JPEG-PROGRESSIVE and GIFLZW-INTERLACED,
DEFLATE-ADAM7 interlaces images both horizontally and vertically.

Oracle interMedia provides read support for this encoding, but does not provide
write support.

FAX3
FAX3 is the Oracle interMedia designation for CCITT Group 3 2D compression,
which was developed by the CCITT (International Telegraph and Telephone
Consultative Committee) as a protocol for transmitting monochrome images over
telephone lines by facsimile and similar machines. The more official designation for
this compression scheme is CCITT T.4.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio
as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

FAX4
FAX4 is the Oracle interMedia designation for CCITT Group 4 2D compression,
which was developed by the CCITT (International Telegraph and Telephone
Consultative Committee) as a protocol for transmitting monochrome images over
telephone lines by facsimile and similar machines. The more official designation for
this compression scheme is CCITT T.6.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio
B-8 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

GIFLZW
GIFLZW is the Oracle interMedia designation for the LZW compression system
used within GIF format images, and is different from LZW compression as used by
other file formats. GIFLZW is an adaptive compression scheme that provides good
compression for a wide variety of image data, although it is least effective on very
complex images, such as photographs.

GIFLZW-INTERLACED
GIFLZW-INTERLACED is the same compression format as GIFLZW, but refers to
images whose scanlines are interlaced for progressive display as the image is
decoded. The intention of this technique is to allow a user to observe the image
being progressively decoded as it is downloaded through a low bandwidth link and
abort the image before completion of the download. While the low bandwidth
requirement is not typically relevant anymore, many existing images employ this
encoding.

Oracle interMedia provides read support for this encoding, but does not provide
write support.

HUFFMAN3
HUFFMAN3 is the Oracle interMedia designation for the Modified Huffman
compression scheme used by the TIFF image format. This compression format is
based on the CCITT Group 3 1D compression format, but is not an official CCITT
standard compression format.

Because this compression format supports only monochrome data, it cannot be used
for color or grayscale images. This compression scheme uses a fixed dictionary that
was developed using handwritten and typewritten documents and simple line
graphics that were meant to be representative of documents being transmitted by
facsimile. For this reason, although the compression can be used on images that
have been dithered to monochrome, it may not produce as high a compression ratio
as more adaptive schemes such as LZW or DEFLATE in those cases. It is most
appropriate for scanned documents.

JPEG
The JPEG compression format was developed by the Joint Photographic Experts
Group for storing photographic and photo-realistic images. The JPEG compression
Image File and Compression Formats B-9

Supported Image File and Compression Formats
format is very complex, but most images belong to a class called "baseline JPEG"
which is a much simpler subset. Oracle interMedia supports only baseline JPEG
compression.

The JPEG compression scheme is a lossy compression format; that is, images
compressed using JPEG can never be reconstructed exactly. JPEG works by
eliminating spatial and chromatic details that the eye will probably not notice.
While JPEG can compress most data quite well, the results may include serious
cosmetic flaws for images that are not photographic, such as monochrome or simple
art. Other compression schemes are more appropriate for those cases (FAX formats
or PNG and GIF). Also, the lossy nature of this compression scheme makes it
inappropriate for images that must be edited, but it is a good choice for finished
images that must be compressed as tightly as possible for storage or transmission.

JPEG-PROGRESSIVE
This compression format is a variation of the JPEG compression format in which
image scanlines are interlaced, or stored in several passes, all of which must be
decoded to compute the complete image. This variant is intended to be used in low
bandwidth environments where users can watch the image take form as
intermediate passes are decoded and abort the image display if desired. While the
low bandwidth requirement is not typically relevant anymore, this variant
sometimes results in a smaller encoded image and is still popular. Oracle interMedia
provides read, but not write, support for this encoding.

LZW
LZW is the Oracle interMedia designation for the LZW compression system used
within TIFF format images, and is different from LZW compression as used by
other file formats. TIFF LZW is an adaptive compression scheme that provides good
compression for a wide variety of image data, although it is least effective on very
complex images. TIFF LZW works best when applied to monochrome or 8-bit gray
or LUT data; the TIFF method of applying LZW compression to other data formats
results in much lower compression efficiency.

LZWHDIFF
LZWHDIFF is the description that Oracle interMedia gives to images employing the
TIFF LZW compression system and also utilizing the TIFF horizontal differencing
predictor. This scheme is a technique that can improve the compression ratios for
24-bit color and 8-bit grayscale images in some situations, without loss of data. It
generally does not improve compression ratios for other image types.
B-10 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
NONE
This is the description that Oracle interMedia gives to image data that is not
compressed.

PACKBITS
The Packbits compression scheme was developed by Apple Computer, Inc., as a
simple byte-oriented, run-length encoding scheme for general use. This scheme is
used by the PICT image format and has been adapted to work in TIFF images as
well. Like other run-length encoding schemes, this compression can actually
increase the data size for very complex images.

PCXRLE
PCXRLE is the description given by Oracle interMedia to images that are
compressed using the PCX run-length encoding scheme. For very complex images,
this compression can occasionally actually increase the file size.

RAW
Not an actual compression format by itself, RAW is encoding used by PBM, PGM,
and PPM images to represent images in binary form (versus the plain text form
employed by the ASCII encoding). The PBM family documentation refers to this
format as RAWBITS.

SUNRLE
SUNRLE is the description used within Oracle interMedia for the run-length
encoding scheme used in Sun Raster images. For very complex images, this
compression can occasionally actually increase the file size.

TARGARLE
TARGARLE is the description given by Oracle interMedia to images compressed
using the run-length encoding scheme supported by the TGAF file format. For very
complex images, this compression can occasionally actually increase the file size.

B.1.3 Summary of Image File Format and Image Compression Format
Table B–1 summarizes read/write support for image file formats relative to content
format characteristics, such as content format, pixel layout, interpretation, and color
space. Table B–2 summarizes read/write support for image file formats relative to
compression format and other format specific characteristics, such as channel order,
pixel order, and scanline order.
Image File and Compression Formats B-11

Supported Image File and Compression Formats
Table B–1 Summary of Read/Write Access 1 for Supported Image File Formats -- Content Format
Specific Characteristics

1 R = Read access; W = Write access

File
Format Content Format

Pixel
Layout

1bitLUT
(RGB&
GRAY)

4bitLUT
(RGB&
GRAY)

8bitLUT
(RGB&
GRAY)

4bit
direct
GRAY

8bit
direct
GRAY

16bit
direct
RGB

24bit
direct
RGB

32bit
direct
RGB

48bit
direct
RGB

64bit
direct
RGB

Mon
ochr
ome BIP

B
I
L

B
S
Q

BMPF RW RW RW R RW R RW RW

CALS RW RW

FPIX2

2 No write support.

R R R

GIFF3

3 Animated GIFFs may not be encoded.

RW RW RW RW RW

JFIF4

4 Supports EXIF images.

RW RW RW

PBMF RW RW

PCXF5

5 No write support.

R R R R R R

PGMF RW RW

PICT6

6 Vector and object graphics are not supported.

R R RW RW R RW RW RW

PNGF RW RW RW RW RW R RW R R R RW RW

PNMF7

7 PNMF format is supported as PBMF, PGMF, or PPMF; output will be PBMF, PGMF, or PPMF as appropriate.

W W W W

PPMF RW RW

RPIX8

8 Can decode 1 or 3 bands from an n-band image; only 1 or 3 bands may be encoded.

RW RW RW RW R
W

R
W

RASF RW RW RW RW RW

TGAF RW RW R RW R RW

TIFF9 RW RW RW RW RW R RW R R R RW RW

WBMP RW RW
B-12 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
9 TIFF image file format also supports the following content formats as read or read/write as specified: Tiled data - Read,
Photometric interpretation - Read/Write, MSB - Read/Write, and LSB - Read; Planar (BSQ) is not supported; both MSB and
LSB ordered files may be decoded; output is MSB.

Table B–2 Summary of Read/Write Access 1 for Supported Image File Formats -- Compression Format
and Other Format Specific Characteristics

File
Format Compression Format

Channel
Order

Pixel
Order

Scan
line

Order
Other
Options

N
O
N
E

J
P
E
G
2

J
P
E
G
-
P
R
O
G
R
E
S
S
I
V
E

B
M
P
R
L
E

P
C
X
R
L
E

S
U
N
R
L
E

T
A
R
G
A
R
L
E

G
I
F
L
Z
W

G
I
F
L
Z
W
-
I
N
T
E
R
L
A
C
E
D

L
Z
W

L
Z
W
H
D
I
F
F
3

F
A
X
3
4

F
A
X
4
5

H
U
F
F
M
A
N
3
6

P
A
C
K
B
I
T
S

D
E
F
L
A
T
E

D
E
F
L
A
T
E
-
A
D
A
M
7

A
S
C
I
I

R
A
W

Quality
Specifi
cation RGB

RBG,
GRB,
GBR,
BRG,
BGR

N
O
R
M
A
L

R
E
V
E
R
S
E

O
S
/
2

N
O
R
M
A
L

I
N-
V
E
R
S
E

I
n
p
u
t

C
h
a
n
n
e
l
s

P
a
g
e

S
e
l
e
c
t
i
o
n

Tiled
Data/
Tiled
Output

BMPF7 R
W

R
W

RW R
W

R RW RW

CALS R
W

R
W

RW

FPIX R R R R

GIFF R
W

R RW R
W

RW

JFIF8 R
W

R W RW R
W

RW

PBMF R
W

R
W

R
W

RW

PCXF R R R R

PGMF R
W

R
W

R
W

RW
Image File and Compression Formats B-13

Supported Image File and Compression Formats
PICT R
W

R
W

RW R
W

RW

PNGF R
W

R RW R
W

RW

PNMF R
W

R
W

W W W

PPMF R
W

R
W

RW R
W

RW

RPIX R
W

R
W

R
W

RW RW R
W

R
W

RW RW R

RASF R
W

R
W

RW R
W

RW

TGAF R
W

R
W

RW R
W

RW

TIFF R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

RW R
W

RW R RW

WBMP R
W

R
W

RW

1 R = Read access; W = Write access
2 Supports 8-bit gray and 24-bit RGB data only.

Table B–2 Summary of Read/Write Access 1 for Supported Image File Formats -- Compression Format
and Other Format Specific Characteristics (Cont.)

File
Format Compression Format

Channel
Order

Pixel
Order

Scan
line

Order
Other
Options

N
O
N
E

J
P
E
G
2

J
P
E
G
-
P
R
O
G
R
E
S
S
I
V
E

B
M
P
R
L
E

P
C
X
R
L
E

S
U
N
R
L
E

T
A
R
G
A
R
L
E

G
I
F
L
Z
W

G
I
F
L
Z
W
-
I
N
T
E
R
L
A
C
E
D

L
Z
W

L
Z
W
H
D
I
F
F
3

F
A
X
3
4

F
A
X
4
5

H
U
F
F
M
A
N
3
6

P
A
C
K
B
I
T
S

D
E
F
L
A
T
E

D
E
F
L
A
T
E
-
A
D
A
M
7

A
S
C
I
I

R
A
W

Quality
Specifi
cation RGB

RBG,
GRB,
GBR,
BRG,
BGR

N
O
R
M
A
L

R
E
V
E
R
S
E

O
S
/
2

N
O
R
M
A
L

I
N-
V
E
R
S
E

I
n
p
u
t

C
h
a
n
n
e
l
s

P
a
g
e

S
e
l
e
c
t
i
o
n

Tiled
Data/
Tiled
Output
B-14 Oracle interMedia User’s Guide and Reference

Supported Image File and Compression Formats
3 Supports 8-bit and 24-bit data only.
4 Supports MONOCHROME data only.
5 Supports MONOCHROME data only.
6 Supports MONOCHROME data only.
7 Compression is supported only for scanlineOrder=INVERSE (inverse DIB), which is the default.
8 Supports EXIF images.
Image File and Compression Formats B-15

Supported Image File and Compression Formats
B-16 Oracle interMedia User’s Guide and Reference

Video File and Compression Fo
C

Video File and Compression Formats

C.1 Supported Video File and Compression Formats
The following tables describe the video file and compression formats supported by
interMedia.

To use these tables, find the data format you are interested in, and then determine
the supported formats. For example, Table C–1 shows that interMedia supports
Apple QuickTime 3.0 MOOV file format and a variety of compression formats from
Cinepak to Sorenson Video.
rmats C-1

Supported Video File and Compression Formats
Table C–1 Apple QuickTime 3.0 Data Format

Format

Apple QuickTime 3.0

File Format: ‘MOOV’
File Ext: .mov
MIME type: video/quicktime

Compression Format

Choose one of these compression
formats1:
Cinepak
JPEG
Uncompressed RGB
Uncompressed YUV422
Graphics
Animation: Run Length Encoded
Apple Video Compression
Kodak Photo CD
QuickDraw GX
MPEG Still Image
Motion-JPEG (Format A)
Motion-JPEG (Format B)
Sorenson Video
1 All codes are the FourCC (uppercased) directly obtained from the

dataFormat field of the video sample description entry of ’stsd’ Atom of
the QuickTime file. The table lists only the ones known.

CVID
JPEG
RGB
YUV2
SMC
RLE
RPZA
KPCD
QDGX
MPEG
MJPA
MJPB
SVQ1
C-2 Oracle interMedia User’s Guide and Reference

Supported Video File and Compression Formats
Table C–2 Microsoft Video for Windows (AVI) Data Format

Format

Microsoft AVI

File Format: ‘AVI’
File Ext: .avi
MIME type: video/x-msvideo

Compression Format

Choose one of these
compression formats1:
Microsoft Video 1
Intel Indeo 3.1
Intel Indeo 3.2
Intel Indeo 4.0
Intel Indeo 4.1
Intel Indeo 5.0
Intel Indeo 5.1
Cinepak
1 All codes are the FourCC (uppercased) directly obtained from the

compression field of ’strf’ Chunk of the AVI file. The table lists only the
ones known.

CRAM
IV31
IV32
IV40
IV41
IV50
IV51
CVID

Table C–3 RealNetworks Real Video Data Format

Format

RealNetworks Real Video

File Format: ‘RMFF’
File Ext: .rm
MIME type: audio/x-pn-realaudio
Video File and Compression Formats C-3

Supported Video File and Compression Formats
C-4 Oracle interMedia User’s Guide and Reference

Image process() and processCopy() Oper
D

Image process() and processCopy()

Operators

This appendix describes the command options, or operators, used in the
process() and processCopy() methods.

The available operators fall into three broad categories, each described in its own
section:

■ Section D.2, "Image Formatting Operators"

■ Section D.3, "Image Processing Operators"

■ Section D.4, "Format-Specific Operators"

Section D.1, "Common Concepts" describes the relative order of these operators.

D.1 Common Concepts
This section describes concepts common to all the image operators and the
process() and processCopy() methods.

D.1.1 Source and Destination Images
The process() and processCopy() methods operate on one image, called the source
image, and produce another image, called the destination image. In the case of the
process() method, the destination image is written into the same storage space as
the source image, replacing it permanently. For the processCopy() method, the
storage for the destination image is distinct from the storage for the source image.
ators D-1

Image Formatting Operators
D.1.2 process() and processCopy()
The process() and processCopy() methods are functionally identical except for the
fact that process() writes its output into the same BLOB from which it takes its
input while processCopy() writes its output into a different BLOB. Their command
string options are identical and no distinction is drawn between them.

For the rest of this appendix, the names process() and processCopy() are used
interchangeably, and the use of the name process() implies both process() and
processCopy() unless explicitly noted otherwise.

D.1.3 Operator and Value
All of the process() operators appear in the command string in the form <operator>
= <value>. No operator takes effect merely by being present in the command string.
The right-hand side of the expression is called the value of the operator, and
determines how the operator will be applied.

D.1.4 Combining Operators
In general, any number of operators can be combined in the command string passed
into the process() method if the combination makes sense. However, certain
operators are supported only if other operators are present or if other conditions are
met. For example, the compressionQuality operator is supported only if the
compression format of the destination image is JPEG. Other operators require that
the source or destination image be a Raw Pixel or foreign image.

The flexibility in combining operators allows a single operation to change the
format of an image, reduce or increase the number of colors, compress the data, and
cut or scale the resulting image. This is highly preferable to making multiple calls to
do each of these operations sequentially.

D.2 Image Formatting Operators
At the most abstract level, the image formatting operators are used to change the
layout of the data within the image storage. They do not change the semantic
content of the image, and unless the source image contains more information than
the destination image can store, they do not change the visual appearance of the
image at all. Examples of a source image with more information than the
destination image can store are:

■ Converting a 24-bit image to an 8-bit image (too many bits per pixel)
D-2 Oracle interMedia User’s Guide and Reference

Image Formatting Operators
■ Converting a color image to a grayscale or monochrome image (too many color
planes)

■ Converting an uncompressed image, or an image stored in a lossless
compression format, to a lossy compression format (too much detail)

D.2.1 FileFormat
The FileFormat operator determines the image file type, or format, of the output
image. The value of this operator is a 4-character code, which is a mnemonic for the
new file format name. The list of allowable values for the file format operator is
shown in Table 8–1. Appendix B contains basic information about each file format,
including its mnemonic (file format), typical file extension, allowable compression
and content formats, and other notable features.

The value given to the file format operator is the single most important detail when
specifying the output for process(). This value determines the range of allowable
content and compression formats, whether or not compression quality will be
useful, and whether or not the format-specific operators will be useful.

If the FileFormat operator is not used in the process() command string, interMedia
will determine the file format of the source image and use that as the default file
format value. If the file format of the source image does not support output, then an
error will occur. If the source image is a foreign image, then the output image will
be written as Raw Pixel.

D.2.2 ContentFormat
The ContentFormat operator determines the format of the image content. The
content means the number of colors supported by the image and the manner in
which they are supported. Depending on which file format is used to store the
output image, some or most of the content formats may not be supported.

The supported values for the ContentFormat operator are described in Table 8–1.

The content formats that specify gray[scale] or grey[scale] support only shades of
gray. The differences between these content formats is how many shades are
allowed. The “4bit” formats support 16 shades while the formats with “8bit”
support 256 shades of gray. There is no distinction between grayscale and greyscale.

The content formats that specify RGB store pixel data as Red, Green, Blue triplets.
The number of bits specified will determine how many colors are supported. If 8 or
fewer bits are specified, most formats will default to a LUT representation.
Otherwise, DRCT (direct) will be used.
Image process() and processCopy() Operators D-3

Image Formatting Operators
The content formats that specify LUT use a color lookup table to support various
colors. The “1bitlut” format allows 2 distinct colors, “4bitlut” supports 16 unique
colors, and “8bitlut” supports 256 colors.

The content formats that specify DRCT store the color values directly in the pixel
data as a Red, Green, Blue triplet or gray value. The total number of bits of data is
specified separately and individual formats allocate these bits to red, green, and
blue in different ways. However, more bits of data allow for finer distinctions
between different shades. Not all bits are used by some image formats. Note that
currently most formats allow only 8-bit gray or 24-bit RGB.

The monochrome content format allows only black and white to be stored, with no
gray shades in between.

If the ContentFormat operator is not passed to the process() method, then
interMedia attempts to duplicate the content format of the source image if it is
supported by the file format of the destination image. Otherwise, a default content
format is chosen depending on the destination file format.

D.2.3 CompressionFormat
The CompressionFormat operator determines the compression algorithm used to
compress the image data. The range of supported compression formats depends
heavily upon the file format of the output image. Some file formats support but a
single compression format, and some compression formats are supported only by
one file format.

The supported values for the CompressionFormat operator are listed in Table 8–1.

All compression formats that include RLE in their mnemonic are run-length
encoding compression schemes, and work well only for images that contain large
areas of identical color. The PACKBITS compression type is a run-length encoding
scheme that originates from the Macintosh system but is supported by other
systems. It has limitations that are similar to other run-length encoding compression
formats. Formats that contain LZW or HUFFMAN are more complex compression
schemes that examine the image for redundant information and are more useful for
a broader class of images. FAX3 and FAX4 are the CCITT Group 3 and Group 4
standards for compressing facsimile data and are useful only for monochrome
images. All the compression formats mentioned in this paragraph are lossless
compression schemes, which means that compressing the image does not discard
data. An image compressed into a lossless format and then decompressed will look
the same as the original image.
D-4 Oracle interMedia User’s Guide and Reference

Image Formatting Operators
The JPEG compression format is a special case. Developed to compress
photographic images, the JPEG format is a lossy format, which means that it
compresses the image typically by discarding unimportant details. Because this
format is optimized for compressing photographic and similarly noisy images, it
often produces poor results for other image types, such as line art images and
images with large areas of similar color. JPEG is the only lossy compression scheme
currently supported by interMedia.

The DEFLATE compression type is ZIP Deflate and is used by PNG image file
formats. The DEFLATE-ADAM7 compression format is interlaced ZIP Deflate and
is used by PNG image file formats. The ASCII compression type is ASCII encoding
and the RAW compression type is binary encoding and both are for PNM image file
formats.

If the CompressionFormat operator is not specified, then interMedia will use the
default compression format; often this default is "None" or "No Compression."

If the CompressionFormat operator is not specified and the file format of the
destination image is different from that of the source image, then a default
compression format will be selected depending on the destination image file format.
This default compression is often "None" or "No Compression."

D.2.4 CompressionQuality
The CompressionQuality operator determines the relative quality of an image
compressed with a lossy compression format. This operator has no meaning for
lossless compression formats, and therefore is not currently supported for any
compression format except JPEG.

The CompressionQuality operator accepts integer values between 1 (lowest quality)
and 99 (highest quality) in addition to five values, ranging from most compressed
image (lowest visual quality) to least compressed image (highest visual quality):
MAXCOMPRATIO, HIGHCOMP, MEDCOMP, LOWCOMP, and MAXINTEGRITY.
Using the MAXCOMPRATIO value allows the image to be stored in the smallest
amount of space but may introduce visible aberrations into the image. Using the
MAXINTEGRITY value keeps the resulting image more faithful to the original but
will require more space to store.

If the CompressionQuality operator is not supplied and the destination
compression format supports compression quality control, the quality will default
to MEDCOMP for medium quality.
Image process() and processCopy() Operators D-5

Image Processing Operators
D.3 Image Processing Operators
The image processing operators supported by interMedia directly change the way
the image looks on the display. The operators supported by interMedia represent
only a fraction of all possible image processing operations, and are not intended for
users performing intricate image analysis.

D.3.1 Cut
The Cut operator is used to create a subset of the original image. The values
supplied to the cut operator are the origin coordinates (x,y) of the cut window in the
source image, and the width and height of the cut window in pixels. This operator
is applied before any scaling that is requested.

If the Cut operator is not supplied, the entire source image is used.

D.3.2 Scale
The Scale operator enlarges or reduces the image by the ratio given as the value for
the operator. If the value is greater than 1.0, then the destination image will be
scaled up (enlarged). If the value is less than 1.0, then the output will be scaled
down (reduced). A scale value of 1.0 has no effect, and is not an error. No scaling is
applied to the source image if the Scale operator is not passed to the process()
method.

There are two scaling techniques used by interMedia. The first technique is “scaling
by sampling” and is used only if the requested compression quality is
MAXCOMPRATIO or HIGHCOMP, or if the image is being scaled up in both
dimensions. This scaling technique works by selecting the source image pixel that is
closest to the pixel being computed by the scaling algorithm and using the color of
that pixel. This technique is faster, but results in a poorer quality image.

The second scaling technique is “scaling by averaging,” and is used in all other
cases. This technique works by selecting several pixels that are close to the pixel
being computed by the scaling algorithm and computing the average color. This
technique is slower, but results in a better quality image.

If the Scale operator is not used, the default scaling value is 1.0. This operator
cannot be combined with other scaling operators.

D.3.3 XScale
The XScale operator is similar to the scale operator but only affects the width
(x-dimension) of the image. The important difference between XScale and Scale is
D-6 Oracle interMedia User’s Guide and Reference

Image Processing Operators
that with XScale, scaling by sampling is used whenever the image quality is
specified to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on
whether the image is being scaled up or down.

This operator may be combined with the YScale operator to scale each axis
differently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).

D.3.4 YScale
The YScale operator is similar to the scale operator but only affects the height
(y-dimension) of the image. The important difference between YScale and Scale is
that with YScale, scaling by sampling is used whenever the image quality is
specified to be MAXCOMPRATIO or HIGHCOMP, and is not dependent on
whether the image is being scaled up or down.

This operator may be combined with the XScale operator to scale each axis
differently. It may not be combined with other scaling operators (Scale, FixedScale,
MaxScale).

D.3.5 FixedScale
The FixedScale operator provides an alternate method for specifying scaling values.
The Scale, XScale, and YScale operators all accept floating-point scaling ratios, while
the FixedScale (and MaxScale) operators specify scaling values in pixels. This
operator is intended to simplify the creation of images with a specific size, such as
thumbnail images.

The two integer values supplied to the FixedScale operator are the desired
dimensions (width and height) of the destination image. The supplied dimensions
may be larger or smaller (or one larger and one smaller) than the dimensions of the
source image.

The scaling method used by this operator will be the same as used by the Scale
operator in all cases. This operator cannot be combined with other scaling
operators.

D.3.6 MaxScale
The MaxScale operator is a variant of the FixedScale operator that preserves the
aspect ratio (relative width and height) of the source image. MaxScale also accepts
two integer dimensions, but these values represent the maximum value of the
Image process() and processCopy() Operators D-7

Format-Specific Operators
appropriate dimension after scaling. The final dimension may actually be less than
the supplied value.

Like the FixedScale operator, this operator is also intended to simplify the creation
of images with a specific size. MaxScale is even better suited to thumbnail image
creation than the FixedScale operator because thumbnail images created using
MaxScale will have the correct aspect ratios.

The MaxScale operator scales the source image to fit within the dimensions
specified while preserving the aspect ratio of the source image. Because the aspect
ratio is preserved, only one dimension of the destination image may actually be
equal to the values supplied to the operator. The other dimension may be smaller
than or equal to the supplied value. Another way to think of this scaling method is
that the source image is scaled by a single scale factor that is as large as possible
with the constraint that the destination image fit entirely within the dimensions
specified by the MaxScale operator.

If the Cut operator is used in conjunction with the MaxScale operator, then the
aspect ratio of the cut window is preserved instead of the aspect ratio of the input
image.

The scaling method used by this operator is the same as used by the Scale operator
in all cases. This operator cannot be combined with other scaling operators.

D.4 Format-Specific Operators
The following operators are supported only when the destination image file format
is Raw Pixel or BMPF (ScanlineOrder operator only), with the exception of the
InputChannels operator, which is supported only when the source image is Raw
Pixel or a foreign image. It does not matter if the destination image format is set to
Raw Pixel or BMPF explicitly using the FileFormat operator, or if the Raw Pixel or
BMPF format is selected by interMedia automatically because the source format is
Raw Pixel, BMPF, or a foreign image.

D.4.1 ChannelOrder
The ChannelOrder operator determines the relative order of the red, green, and
blue channels (bands) within the destination Raw Pixel image. The order of the
characters R, G, and B within the mnemonic value passed to this operator
determine the order of these channels within the output. The header of the Raw
Pixel image will be written such that this order is not lost.
D-8 Oracle interMedia User’s Guide and Reference

Format-Specific Operators
For more information about the Raw Pixel file format and the ordering of channels
in that format, see Appendix E.

D.4.2 Interleaving
The Interleaving operator controls the layout of the red, green, and blue channels
(bands) within the destination Raw Pixel image.The three mnemonic values
supported by this operator: BIP, BIL, and BSQ force the output image to be “band
interleaved by pixel,” “band interleaved by line,” and “band sequential”
respectively.

For more information about the Raw Pixel file format, the interleaving of channels
in that format, or the meaning of these interleaving values, see Appendix E.

D.4.3 PixelOrder
The PixelOrder operator controls the direction of pixels within a scanline in a Raw
Pixel Image. The value Normal indicates that the leftmost pixel of a scanline will
appear first in the image data stream. The value Reverse causes the rightmost pixel
of the scanline to appear first.

For more information about the Raw Pixel file format and pixel ordering, see
Appendix E.

D.4.4 ScanlineOrder
The ScanlineOrder operator controls the order of scanlines within a Raw Pixel or
BMPF image. The value Normal indicates that the top display scanline will appear
first in the image data stream. The value Inverse causes the bottom scanline to
appear first. For BMPF, ScanlineOrder = inverse is the default and ordinary value.

For more information about the Raw Pixel or BMPF file format and scanline
ordering, see Appendix E.

D.4.5 InputChannels
As stated in Section D.4, the InputChannels operator is supported only when the
source image is in Raw Pixel format or if the source is a foreign image.

Note: The interleaving operator is deprecated beginning with
release 9.0.1 and its functionality has been moved into the
contentFormat operator.
Image process() and processCopy() Operators D-9

Format-Specific Operators
The InputChannels operator assigns individual bands from a multiband image to be
the red, green, and blue channels for later image processing. Any band within the
source image can be assigned to any channel. If desired, only a single band may be
specified and the selected band will be used as the gray channel, resulting in a
grayscale output image. The first band in the image is number 1, and the band
numbers passed to the Input Channels operator must be greater than or equal to
one, and less than or equal to the total number of bands in the source image. Only
the bands selected the by InputChannels operator are written to the output. Other
bands are not transferred, even if the output image is in Raw Pixel format.

It should be noted that every Raw Pixel or foreign image has these input channel
assignments written into its header block, but that this operator overrides those
default assignments.

For more information about the Raw Pixel file format and input channels, see
Appendix E.

D.4.6 Dither
The Dither operator controls how dithering is done. Dithering happens whenever
needed to accomodate the user’s request for a change in content format; the Dither
operator can be used to change how the dithering happens.

Dithering is the process of approximating colors that do not actually exist in an
image by mixing pixels of other colors in a ratio that fools the eye into seeing the
approximated color. interMedia will dither images when required to accomodate a
requested ContentFormat that can specify fewer colors than are present in the input
image, or when a change in ContentFormat is required to store an image in the
requested FileFormat. The Dither operator can be used to select by value which of
the available dithering algorithms is used to perform this approximation.

The ORDEREDDITHER algorithm is a fast method for approximating colors based
on a conversion color table. The resulting image often contains areas of alternating
pixel values, which may be objectionable in some cases.

The ERRORDIFFUSION algorithm produces a more accurate destination image by
diffusing the error caused by changing one pixel value into neighboring pixels. The
resulting image is usually of higher quality than the ordereddither algorithm, but
this operator is slower and may produce poor results with certain images."

D.4.7 Page
The Page operator selects a page from a multipage file and can only be used with
TIFF file format images.
D-10 Oracle interMedia User’s Guide and Reference

Format-Specific Operators
D.4.8 Tiled
The Tiled operator forces the output image to be tiled and can only be used with
TIFF file format images.
Image process() and processCopy() Operators D-11

Format-Specific Operators
D-12 Oracle interMedia User’s Guide and Reference

Image Raw Pixel F
E

Image Raw Pixel Format

This appendix describes the Oracle Raw Pixel image format and is intended for
developers and advanced users who wish to use the Raw Pixel format to import
unsupported image formats into interMedia, or as a means to directly access the
pixel data in an image.

Much of this appendix is also applicable to foreign images.

E.1 Raw Pixel Introduction
interMedia supports many popular image formats suitable for storing artwork,
photographs, and other images in an efficient, compressed way, and provides the
ability to convert between these formats. However, most of these formats are
proprietary to at least some degree, and the format of their content is often widely
variable and not suited for easy access to the pixel data of the image.

The Raw Pixel format is useful for applications that need direct access to the pixel
data without the burden of the complex computations required to determine the
location of pixels within a compressed data stream. This simplifies reading the
image for applications that are performing pixel-oriented image processing, such as
filtering and edge detection. This format is even more useful to applications that
need to write data back to the image. Because changing even a single pixel in a
compressed image can have implications for the entire image stream, providing an
uncompressed format enables applications to write pixel data directly, and later
compress the image with a single process() command.

This format is also useful to users who have data in a format not directly supported
by interMedia, but is in a simple, uncompressed format. These users can prepend a
Raw Pixel identifier and header onto their data and import it into interMedia. For
users who only need to read these images (such as for import or conversion), this
ormat E-1

Raw Pixel Image Structure
capability is built into interMedia as “Foreign Image Support”. How this capability
is related to the Raw Pixel format is described in Section E.10.

In addition to supporting image types not already built into interMedia, the Raw
Pixel format also permits the interpretation of N-band imagery, such as satellite
images. Using Raw Pixel, one or three bands of an N-band image may be selected
during conversion to another image format, allowing easy visualization within
programs that do not otherwise support N-band images. Note that images written
with the Raw Pixel format still may only have one or three bands.

The current version of the Raw Pixel format is “1.0”. This appendix is applicable to
Raw Pixel images of this version only, as the particulars of the format may change
with other versions.

E.2 Raw Pixel Image Structure
A Raw Pixel image consists of a 4-byte image identifier, followed by a 30-byte image
header, followed by an arbitrary gap of zero or more bytes, followed by pixel data.

It is worth noting that Raw Pixel images are never color-mapped, and therefore do
not contain color lookup tables.

The Raw Pixel header consists of the “Image Identifier” and the “Image Header”.
The Image Header is actually composed of several fields.

Note that the first byte in the image is actually offset ‘0’. All integer fields are
unsigned and stored in big endian byte order.

Name Byte(s) Description

Image Identifier 0:3 4-byte character array containing ASCII values for
RPIX.

This array identifies the image as a Raw Pixel image.

Image Header Length 4:7 Length of this header in bytes, excluding the
identifier field.

The value of this field may be increased to create a
gap between the header fields and the pixel data in
the image.

Major Version 8 Major version number of the Raw Pixel format used
in the image.

Minor Version 9 Minor version number of the Raw Pixel format used
in the image.

Image Width 10:13 Width of the image in pixels.
E-2 Oracle interMedia User’s Guide and Reference

Raw Pixel Header Field Descriptions
E.3 Raw Pixel Header Field Descriptions
This section describes the fields of the Raw Pixel Header in greater detail.

Image Identifier
Occupying the first 4 bytes of a Raw Pixel image, the identifier string must always
be set to the ASCII values “RPIX” (hex 52 50 49 58). These characters identify the
image as being encoded in RPIX format.

This string is currently independent of the Raw Pixel version.

Image Header Length
The Raw Pixel reader uses the value stored in this field to find the start of the pixel
data section within a Raw Pixel image. To find the offset of the pixel data in the
image, the reader adds the length of the image identifier (always ‘4’) to the value in
the image header length field. Thus, for Raw Pixel 1.0 images with no post-header
gap, the pixel data starts at offset 34.

Image Height 14:17 Height of the image in pixels.

Compression Type 18 Compression type of the image: None, CCITT FAX
Group 3, or CCITT FAX Group 4.

Pixel Order 19 Pixel order of the image: Normal or Reverse.

Scanline Order 20 Scanline order of the image: Normal or Inverse.

Interleave 21 Interleave type of the image: BIP, BIL, or BSQ.

Number of Bands 22 Number of bands in the image. Must be in the range
1 to 255.

Red Channel Number 23 The band number of the channel to use as a default
for red.

This field is the gray channel number if the image is
grayscale.

Green Channel
Number

24 The band number of the channel to use as a default
for green.

This field is zero if the image is grayscale.

Blue Channel Number 25 The band number of the channel to use as a default
for blue.

This field is zero if the image is grayscale.

Reserved Area 26:33 Not currently used. All bytes must be zero.
Image Raw Pixel Format E-3

Raw Pixel Header Field Descriptions
For Raw Pixel version 1.0 images, this field normally contains the integer value ‘30’,
which is the length of the Raw Pixel image header (not including the image
identifier). However, the Raw Pixel format allows this field to contain any value
equal to or greater than 30. Any information in the space between the end of the
header data and the start of the pixel data specified by this header length is ignored
by the Raw Pixel reader. This is useful for users who wish to prepend a Raw Pixel
header onto an existing image whose pixel data area is compatible with Raw Pixel.
In this case, the header length would be set to 30 plus the length of the existing
header. The maximum length of this header is 4,294,967,265 bytes (the maximum
value that can be stored in the 4-byte unsigned field minus the 30-byte header
required by Raw Pixel). This field is stored in big endian byte order.

Major Version
A single-byte integer containing the major version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘1’.

Minor Version
A single-byte integer containing the minor version number of the Raw Pixel format
version used to encode the image. The current Raw Pixel version is “1.0”, therefore
this field is ‘0’.

Image Width
The width (x-dimension) of the image in pixels.

Although this field is capable of storing an image dimension in excess of 4 billion
pixels, limitations within interMedia require that this field be in the range 1<= width
<= 32767. This field is stored in big endian byte order.

Image Height
The height (y-dimension) of the image in pixels.

Although this field is capable of storing an image dimension in excess of 4 billion
pixels, limitations within interMedia require that this field be in the range
1 <= height <= 32767. This field is stored in big endian byte order.

Compression Type
This field contains the compression type of the Raw Pixel image. As of version 1.0,
this field may contain the following values:
E-4 Oracle interMedia User’s Guide and Reference

Raw Pixel Header Field Descriptions
For grayscale, RGB, and N-band images, the image is always uncompressed, and
only a value of 0 is valid. If the compression type is value 1 or 2, then the image is
presumed to be monochrome. In this case the image is presumed to contain only a
single band, and must specify normal pixel order, normal scanline order, and BIP
interleave.

Pixel Order
This field describes the pixel order within the Raw Pixel image. Normally, pixels in
a scanline are ordered from left to right, along the traditional positive x-axis.
However, some applications require that scanlines be ordered from right to left.

This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified pixel order; this would
mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value ‘1’.

Scanline Order
This field describes the scanline order within the Raw Pixel image. Normally,
scanlines in an image are ordered from top to bottom. However, some applications
require that scanlines are ordered from bottom to top.

This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified scanline order; this
would mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value 1.

Value Name Compression

1 NONE No compression

2 FAX3 CCITT Group 3 compression

3 FAX4 CCITT Group 4 compression

Value Name Pixel Order

1 NORMAL Leftmost pixel first

2 REVERSE Rightmost pixel first

Value Name Scanline Order

1 NORMAL Topmost scanline first

2 INVERSE Bottommost scanline first
Image Raw Pixel Format E-5

Raw Pixel Header Field Descriptions
Interleave
This field describes the interleaving of the various bands within a Raw Pixel image.
For more information on the meaning of the various interleave options, see
Section E.5.3.

This field may contain the following values:

This field cannot contain 0, as this indicates an unspecified interleave; this would
mean the image could not be interpreted. For images with CCITT G3 and G4
compression types, this field must contain the value 1.

Number of Bands
This field contains the number of bands or planes in the image, and must be in the
range 1 <= number of bands <= 255. This field may not contain the value 0.

For CCITT images, this field must contain the value 1.

Red Channel Number
This field contains the number of the band that is to be used as the red channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as red in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() methods.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may not contain the value 0; only values in the range (1 <= red <=
number of bands) may be specified.

Green Channel Number
This field contains the number of the band that is to be used as the green channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as green in an

Value Name Interleave

1 BIP Band Interleave by Pixel, or “chunky”

2 BIL Band Interleave by Line

3 BSQ Band SeQuential, or “planar”
E-6 Oracle interMedia User’s Guide and Reference

Raw Pixel Post-Header Gap
N-band image. This default may be overridden using the inputChannels operator in
the process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= green <= number of bands.

Blue Channel Number
This field contains the number of the band that is to be used as the blue channel
during image conversion operations. This may be used to change the interpretation
of a normal RGB image, or to specify a default band to be used as blue in an N-band
image. This default may be overridden using the inputChannels operator in the
process() or processCopy() method.

If the image has only one band, or only one band from an N-band image should be
selected for display, then the band number should be encoded as the red channel. In
this case, the green and blue channels should be set to 0.

This field may contain values in the range 0 <= blue <= number of bands.

Reserved Area
The application of these 8 bytes titled Reserved Area is currently under
development, but they are reserved even within Raw Pixel 1.0 images. These bytes
must all be cleared to zero. Failure to do so will create undefined results.

E.4 Raw Pixel Post-Header Gap
Apart from the image identifier and the image header, Raw Pixel version 1.0 images
contain an optional post-header gap, which precedes the actual pixel data. Unlike
the reserved area of the image header, the bytes in this gap can contain any values
you want. This is useful to store additional metadata about the image, which in
some cases may be the actual image header from another file format.

However, because there is no standard for the information stored in this gap, care
must be taken if metadata is stored in this area as other users may interpret this
data differently. It is also worth noting that when a Raw Pixel image is processed,
information stored in this gap is not copied to the destination image. In the case of
the process() method, which writes its output to the same location as the input, the
source information will be lost unless the transaction in which the processing took
place is rolled back.
Image Raw Pixel Format E-7

Raw Pixel Data Section and Pixel Data Format
E.5 Raw Pixel Data Section and Pixel Data Format
The data section of a Raw Pixel image is where the actual pixel data of an image is
stored; this area is sometimes called the bitmap data. This section describes the
layout of the bitmap data.

For images using CCITT compression, the bitmap data area stores the raw CCITT
stream with no additional header. The rest of this section applies only to
uncompressed images.

Bitmap data in a Raw Pixel image is stored as 8-bit per plane, per pixel, direct color,
packed data. There is no pixel, scanline, or band blocking or padding. Scanlines
may be presented in the image as either topmost first, or bottommost first. Within a
scanline, pixels may be ordered leftmost first, or rightmost first. All these options
are affected by interleaving in a relatively straightforward way; see the sections that
follow for examples.

E.5.1 Scanline Ordering
On the screen, an image may look like the following:

1111111111…
2222222222…
3333333333…
4444444444…

Each digit represents a single pixel; the value of the digit is the scanline that the
pixel is on.

Generally the scanline that forms the upper or topmost row of pixels is stored in the
image data stream before lower scanlines. The preceding image would appear as
follows in the bitmap data stream:

…1111111111…2222222222…3333333333…4444444444…
Note that the first scanline appears earlier than the remaining scanlines. The Raw
Pixel format refers to this scanline ordering as normal.

However, some applications prefer that the bottommost scanline appear in the data
stream first:

…4444444444…3333333333…2222222222…1111111111…
The Raw Pixel format refers to this scanline ordering as inverse.

E.5.2 Pixel Ordering
On the screen, a scanline of an image may look like the following:
E-8 Oracle interMedia User’s Guide and Reference

Raw Pixel Data Section and Pixel Data Format
…123456789…

Each digit represents a single pixel; the value of the digit is the column that the
pixel is on.

Generally the data that forms the leftmost pixels is stored in the image data stream
before pixels toward the right. The preceding scanline would appear as follows in
the bitmap data stream:

…123456789…
Note that the left pixel appears earlier than the remaining pixels. The Raw Pixel
format refers to this pixel ordering as normal.

However, some applications prefer that the rightmost pixel appear in the data
stream first:

…987654321…
The Raw Pixel format refers to this pixel ordering as reverse.

E.5.3 Band Interleaving
Band interleaving describes the relative location of different bands of pixel data
within the image buffer.

Bands are ordered by their appearance in an image data stream, with 1 being the
first band, n being the last band. Band 0 would indicate no band or no data.

Band Interleaved by Pixel (BIP), or Chunky
BIP, or chunky, images place the various bands or channels of pixel data sequentially
by pixel, so that all data for one pixel is in one place. If the bands of the image are
the red, green, and blue channels, then a BIP image might look like this:

scanline 1: RGBRGBRGBRGBRGBRGBRGB…
scanline 2: RGBRGBRGBRGBRGBRGBRGB…
scanline 3: RGBRGBRGBRGBRGBRGBRGB…
…

Band Interleaved by Line (BIL)
BIL images place the various bands of pixel data sequentially by scanline, so that
data for one pixel is spread across multiple notional rows of the image. This reflects
the data organization of a sensor that buffers data by scanline. If the bands of the
image are the red, green, and blue channels, then a BIL image might look like this:

scanline 1: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
Image Raw Pixel Format E-9

Raw Pixel Data Section and Pixel Data Format
 BBBBBBBBBBBBBBBBBBBBB…
scanline 2: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
 BBBBBBBBBBBBBBBBBBBBB…
scanline 3: RRRRRRRRRRRRRRRRRRRRR…
 GGGGGGGGGGGGGGGGGGGGG…
 BBBBBBBBBBBBBBBBBBBBB…
…

Band Sequential (BSQ), or Planar
Planar images place the various bands of pixel data sequentially by bit plane, so
that data for one pixel is spread across multiple planes of the image. This reflects the
data organization of some video buffer systems, which control the different electron
guns of a display from different locations in memory. If the bands of the image are
the red, green, and blue channels, then a planar image might look like this:

plane 1: RRRRRRRRRRRRRRRRRR… (part of scanline 1)
 RRRRRRRRRRRRRRRRRR… (part of scanline 2)
 RRRRRRRRRRRRRRRRRR… (part of scanline 3)
…
plane 2: GGGGGGGGGGGGGGGGGG… (part of scanline 1)
 GGGGGGGGGGGGGGGGGG… (part of scanline 2)
 GGGGGGGGGGGGGGGGGG… (part of scanline 3)
…
plane 3: BBBBBBBBBBBBBBBBBB… (part of scanline 1)
 BBBBBBBBBBBBBBBBBB… (part of scanline 2)
 BBBBBBBBBBBBBBBBBB… (part of scanline 3)
…

E.5.4 N-Band Data
The Raw Pixel format supports up to 255 bands of data in an image. The relative
location of these bands of data in the image is described in Section E.5.3, which
gives examples of interleaving for 3 bands of data.

In the case of a single band of data, there is no interleaving; all three schemes are
equivalent. Examples of interleaving other numbers of bands are given in the
following table. All images have three scanlines and four columns. Each band of
each pixel is represented by a single-digit band number. Normal text numbers in
italic represent the second scanline of the image, and numbers in boldface represent
the third scanline of the image.
E-10 Oracle interMedia User’s Guide and Reference

Raw Pixel Header “C” Structure
E.6 Raw Pixel Header “C” Structure
The following C language structure describes the Raw Pixel header in a
programmatic way. This structure is stored unaligned in the image file (that is,
fields are aligned on 1 byte boundaries) and all integers are stored in big endian
byte order.

struct RawPixelHeader
{
unsigned char identifier[4]; /* Always "RPIX" */

unsigned longhdrlength; /* Length of this header in bytes */
/* Including the hdrlength field */
/* Not including the identifier field */
/* &k.hdrlength + k.hdrlength = pixels */

unsigned char majorversion; /* Major revision # of RPIX format */
unsigned char minorversion; /* Minor revision # of RPIX format */

unsigned long width; /* Image width in pixels */
unsigned long height; /* Image height in pixels */
unsigned char comptype; /* Compression (none, FAXG3, FAXG4, ...) */
unsigned char pixelorder; /* Pixel order */
unsigned char scnlorder; /* Scanline order */
unsigned char interleave; /* Interleaving (BIP/BIL/Planar) */

unsigned char numbands; /* Number of bands in image (1-255) */
unsigned char rchannel; /* Default red channel assignment */
unsigned char gchannel; /* Default green channel assignment */

Bands BIP BIL BSQ

2 12121212
12121212
12121212

11112222
11112222
11112222

111111111111
222222222222

4 1234123412341234
1234123412341234
1234123412341234

1111222233334444
1111222233334444
1111222233334444

111111111111
222222222222
333333333333
444444444444

5 12345123451234512345
12345123451234512345
12345123451234512345

11112222333344445555
11112222333344445555
11112222333344445555

111111111111
222222222222
333333333333
444444444444
555555555555
Image Raw Pixel Format E-11

Raw Pixel Header “C” Constants
unsigned char bchannel; /* Default blue channel assignment */
/* Grayscale images are encoded in R */
/* The first band is ’1’, not ’0’ */
/* A value of ’0’ means "no band" */

unsigned char reserved[8]; /* For later use */
};

E.7 Raw Pixel Header “C” Constants
The following C language constants define the values used in the Raw Pixel header.

#define RPIX_IDENTIFIER "RPIX"

#define RPIX_HEADERLENGTH 30

#define RPIX_MAJOR_VERSION 1
#define RPIX_MINOR_VERSION 0

#define RPIX_COMPRESSION_UNDEFINED 0
#define RPIX_COMPRESSION_NONE 1
#define RPIX_COMPRESSION_CCITT_FAX_G3 2
#define RPIX_COMPRESSION_CCITT_FAX_G4 3
#define RPIX_COMPRESSION_DEFAULT RPIX_COMPRESSION_NONE

#define RPIX_PIXEL_ORDER_UNDEFINED 0
#define RPIX_PIXEL_ORDER_NORMAL 1
#define RPIX_PIXEL_ORDER_REVERSE 2
#define RPIX_PIXEL_ORDER_DEFAULT RPIX_PIXEL_ORDER_NORMAL

#define RPIX_SCANLINE_ORDER_UNDEFINED 0
#define RPIX_SCANLINE_ORDER_NORMAL 1
#define RPIX_SCANLINE_ORDER_INVERSE 2
#define RPIX_SCANLINE_ORDER_DEFAULT RPIX_SCANLINE_ORDER_NORMAL

#define RPIX_INTERLEAVING_UNDEFINED 0
#define RPIX_INTERLEAVING_BIP 1
#define RPIX_INTERLEAVING_BIL 2
#define RPIX_INTERLEAVING_BSQ 3
#define RPIX_INTERLEAVING_DEFAULT RPIX_INTERLEAVING_BIP

#define RPIX_CHANNEL_UNDEFINED 0
E-12 Oracle interMedia User’s Guide and Reference

Raw Pixel Images Using CCITT Compression
Note that the various macros for the UNDEFINED values are meant to be
illustrative and not necessarily used, except for "RPIX_CHANNEL_UNDEFINED"
which is used for the green and blue channels of single band images.

E.8 Raw Pixel PL/SQL Constants
The following PL/SQL constants define the values used in the raw pixel
information. The constants represent the length of the RPIX image identifier plus
the length of the RPIX header.

CREATE OR REPLACE PACKAGE ORDImageConstants AS
 RPIX_HEADER_LENGTH_1_0 CONSTANT INTEGER := 34;
END ORDImageConstants;

E.9 Raw Pixel Images Using CCITT Compression
Although the Raw Pixel format is generally aimed at uncompressed direct color
images, provision is also made to store monochrome images using CCITT Fax
Group 3 or Fax Group 4 compression. This is useful for storing scans of black and
white pages, such as for document management applications. These images are
generally impractical to store as even grayscale, as the unused data bits combined
with the very high resolution used in these images would use excessive disk space.

Raw Pixels images using CCITT compression are treated as normal Raw Pixel
images, with the following restrictions:

■ The “compression type” field must contain the value 1 or 2 as outlined in
Section E.3 (FAX3 or FAX4).

■ The “pixel order” field must contain the value 1 (normal pixel order).

■ The “scanline order” field must contain the value 1 (normal scanline order).

■ The “interleave” field must contain the value 1 (BIP interleave).

■ The “number of bands” field must contain the value 1 (one band).

■ The “red channel number” field must contain the value 1.

■ The “green channel number” and “blue channel number” fields must contain
the value 0 (no band).

In addition to these restrictions, applications which attempt to access pixel data
directly will need to understand how to read and write the CCITT formatted data.
Image Raw Pixel Format E-13

Foreign Image Support and the Raw Pixel Format
E.10 Foreign Image Support and the Raw Pixel Format
interMedia provides support for reading certain foreign images that can be
described in terms of a few simple parameters, and whose data is arranged in a
certain straightforward way within the image file. There is no list of the supported
formats because the list would be so large and continually changing. Instead, there
are some simple guidelines to determine if an image can be read using the foreign
image support in interMedia. These rules are summarized in the following sections.

Header
Foreign images may have any header (or no header), in any format, as long as its
length does not exceed 4,294,967,265 bytes. As has been noted before, all
information in this header will be ignored.

Image Width
Foreign images may be up to 32,767 pixels wide.

Image Height
Foreign images may be up to 32,767 pixels high.

Compression Type
Foreign images must be uncompressed or compressed using CCITT Fax Group 3 or
Fax Group 4. Other compression schemes, such as run-length encoding, are not
currently supported.

Pixel Order
Foreign images may store pixels from left-to-right or right-to-left. Other pixel
ordering schemes, such as boustrophedonic ordering, are not currently supported.

Scanline Order
Foreign images may have top-first or bottom-first scanline orders. Scanlines that are
adjacent in the image display must be adjacent in the image storage. Some image
formats stagger their image scanlines so that, for example, scanlines 1,5,9, and so
forth are adjacent, and then 2,6,10 are also adjacent. This is not currently supported.

Interleaving
Foreign images must use BIP, BIL, or BSQ interleaving. Other arrangements of data
bands are not allowed, nor may bands have any pixel, scanline, or band-level
blocking or padding.
E-14 Oracle interMedia User’s Guide and Reference

Foreign Image Support and the Raw Pixel Format
Number of Bands
Foreign images may have up to 255 bands of data. If there are more bands of data,
the first 255 can be accessed if the interleaving of the image is “band sequential.” In
this case, the additional bands of data lie past the accessible bands and do not affect
the layout of the first 255 bands. Images with other interleaving types may not have
more than 255 bands because the additional bands will change the layout of the
bitmap data.

Trailer
Foreign images may have an image trailer following the bitmap data, and this
trailer may be of arbitrary length. However, such data is completely ignored by
interMedia, and there is no method (or need) to specify the presence or length of
such a trailer.

If an image with such a trailer is modified with the process() or processCopy()
methods, the resulting image will not contain this trailer. In the case of the
processCopy() method, the source image will still be intact.
Image Raw Pixel Format E-15

Foreign Image Support and the Raw Pixel Format
E-16 Oracle interMedia User’s Guide and Reference

Sample Prog
F

Sample Programs

Oracle interMedia includes a number of scripts and sample programs that you can
use.

Sample Oracle interMedia scripts and programs are available in the following
directories after you install this product:

$ORACLE_HOME/ord/aud/demo/
$ORACLE_HOME/ord/doc/demo/
$ORACLE_HOME/ord/img/demo/
$ORACLE_HOME/ord/vid/demo/

F.1 Sample Audio Scripts
The audio scripts consist of the following files:

■ auddemo.sql - audio demonstration (demo) that shows features of the audio
object including:

– Checking interMedia objects

– Creating a sample table with audio in it

– Inserting NULL rows into the audio table

– Checking the rows out

– Checking all the audio attributes directly

– Checking all the audio attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 3.1.12 on
how to extend interMedia audio services to support a new audio data
format
rams F-1

Sample Document Scripts
■ fplugins.sql - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support

■ fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the$ORACLE_HOME/ord/aud/demo directory for
requirements and instructions on running this SQL demo.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the audio client-side Java classes so you can build your own applications.

F.2 Sample Document Scripts
The document scripts consist of the following files:

■ docdemo.sql - document demonstration (demo) that shows features of the
document object and includes the testaud.dat, testdoc.dat, testimg.dat, and
testvid.dat files.

See the README.txt files in the$ORACLE_HOME/ordim/demo/doccheck and ORACLE_
HOME/ordim/demo/doccjpub directories for requirements and instructions on running
this SQL demo.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the document client-side Java classes so you can build your own applications.

F.3 Sample Program for Modifying Images or Testing the Image
Installation

Once you have installed Oracle interMedia, you may choose to run the Oracle
interMedia image services demonstration program. This program can also be used
as a test to confirm successful installation.

This section contains the steps required to build and run the interMedia image
services demo.

The interMedia image services demo files are located in <ORACLE_
HOME>/ord/img/demo, where <ORACLE_HOME> is the ORACLE_HOME
directory.
F-2 Oracle interMedia User’s Guide and Reference

Sample Program for Modifying Images or Testing the Image Installation
F.3.1 Demonstration (Demo) Installation Steps
For interMedia image services, see the README.txt file at <ORACLE_
HOME>/ord/img/demo/README.txt (on UNIX), and <ORACLE_
HOME>\ord\img\demo\README.txt (on Windows NT), where <ORACLE_
HOME> is the ORACLE_HOME directory.

F.3.2 Running the Demo
The file imgdemo is a sample program that shows how Oracle interMedia image
services can be used from within a program. The demo is written in C and uses
OCI, Oracle Call Interface, to access the database and exercise Oracle interMedia
image services.

The program operates on imgdemo.dat, which is a bitmap (BMP) image in the
demo directory. Optionally, you can supply an image file name on the command
line, provided the file resides in the same directory as the demo. In either case, once
the image has been manipulated by Oracle interMedia image services, the resulting
image is written to the file imgdemo.out and can then be viewed with common
rendering tools that you supply.

When the demo is run, it deletes and re-creates a table named IMGDEMOTAB in
the SCOTT/TIGER schema of the default database. This table is used to hold the
demo data. Once the table is created, a reference to the image file is inserted into the
table. The data is then loaded into the table and converted to JFIF using the
processCopy() method of ORDImage.

The image properties are extracted within the database using the setProperties()
method. An UPDATE command is issued after the setProperties() invocation. This
is required because the setProperties() invocation has only updated a local copy of
the type attributes.

Next, the Oracle interMedia image services process() method is used to cut and
scale the image within the database. This is followed by an update that commits the
change. The program cuts a portion of the image 100 pixels wide by 100 pixels high
starting from pixel location (100,100). This subimage is scaled to twice its original
size and the resulting image is written out to the file system in a file named
imgdemo.out.

Upon completion, the demo program leaves the imgdemo.out file in the current
directory. It also leaves the table IMGDEMOTAB in the SCOTT/TIGER schema of
the database.

Execute the demo by typing imgdemo on the command line. Optionally, a different
image can be used in the demo by first copying the file to the directory in which the
Sample Programs F-3

Sample Video Scripts
demo resides and then specifying its file name on the command line as an argument
to imgdemo.

Use the command shown in Example F–1.

Example F–1 Execute the Demo from the Command Line

 $ imgdemo <optional-image-filename>

The demo displays a number of messages describing its progress, along with any
errors encountered in the event that something was not set up correctly. Expect to
see the following messages:

Dropping table IMGDEMOTAB...
Creating and populating table IMGDEMOTAB...
Loading data into cartridge...
Modifying image characteristics...
Writing image to file imgdemo.out...
Disconnecting from database...
Logged off and detached from server.
Demo completed successfully.

If the program encounters any errors, it is likely that either Oracle interMedia image
services software has not been installed correctly or the database has not been
started. If the program completes successfully, the original image and the resultant
image, which has undergone the cutting and scaling described earlier, can be
viewed with common image rendering tools.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the image client-side Java classes so you can build your own applications.

F.4 Sample Video Scripts
The video scripts consist of the following files:

■ viddemo.sql - video demo that shows features of the video object including:

– Checking interMedia objects

– Creating a sample table with video in it

– Inserting NULL rows into the video table

– Checking the rows out

– Checking all the video attributes directly
F-4 Oracle interMedia User’s Guide and Reference

Java Demo
– Checking all the video attributes by calling methods

– Installing your own format plug-in using the two files, fplugins.sql and
fpluginb.sql described in the next two list items and in Section 3.4.12 on
how to extend interMedia video services to support a new video data
format

■ fplugins.sql - demo format plug-in specification that you can use as a guideline
to write any format plug-in you want to support

■ fpluginb.sql - demo format plug-in body that you can use as a guideline to
write any format plug-in you want to support

See the README.txt file in the $ORACLE_HOME/ord/vid/demo directory for
requirements and instructions on how to run this SQL demo.

See Section F.5 for a description of the Java demo that is provided to help you learn
to use the video client-side Java classes so you can build your own applications.

F.5 Java Demo
A Java demo has been provided to help you learn to use both the audio, video,
image, and document client-side Java classes so you can build your own
applications. In these four demos, the audio, video, image, and document object is
instantiated at the client side and a number of accessor methods are invoked. The
audio Java demo files are located in the ORACLE_HOME/ord/aud/demo/java directory,
the video Java demo files are located in the $ORACLE_HOME/ord/vid/demo/java
directory, the image Java demo files are located in the ORACLE_
HOME/ord/img/demo/java directory, and the document Java demo files are located in
the $ORACLE_HOME/ord/doc/demo/java directory. See the README.txt file in each
directory for requirements and instructions on how to run each respective Java
demo.
Sample Programs F-5

Java Demo
F-6 Oracle interMedia User’s Guide and Reference

Frequently Asked Ques
G

Frequently Asked Questions

A text file containing a list of frequently asked questions is available on line after
installing Oracle interMedia.

This text file can be found as follows:

$ORACLE_HOME/ord/im/admin/imfaq.txt
tions G-1

G-2 Oracle interMedia User’s Guide and Reference

Exceptions and Error Mess
H

Exceptions and Error Messages

H.1 Exceptions
The following sections describe the exceptions and error messages of interMedia
objects.

H.1.1 ORDAudioExceptions Exceptions
The following exceptions are associated with the ORDAudio object:

LOCAL_DATA_SOURCE_REQUIRED
Cause: This exception is raised if the data source is external.

Action: Set the source information to a local source.

DESCRIPTION_IS_NOT_SET
Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_DESCRIPTION
Cause: This exception is raised when you call the setDescription() method
with a value that is not valid.

Action: Set the value of the user_description parameter to an acceptable value.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.

Action: Set the MIME parameter value to a known value.

AUDIO_FORMAT_IS_NULL
ages H-1

Exceptions
Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the audio object to a known format.

AUDIO_ENCODING_IS_NULL
Cause: This exception is raised when calling the getEncoding function and the
encoding is NULL.

Action: Set the encoding for the audio object to a known value.

AUDIO_NUM_CHANNELS_IS_NULL
Cause: This exception is raised when calling the getNumberOf Channels
function and the number of channels is NULL.

Action: Set the number of channels for the audio object to a known value.

AUDIO_SAMPLING_RATE_IS_NULL
Cause: This exception is raised when calling the getSamplingRate function and
the sampling rate is NULL.

Action: Set the sampling rate for the audio object to a known value.

AUDIO_SAMPLE_SIZE_IS_NULL
Cause: This exception is raised when calling the getSampleSize function and
the sample size is NULL.

Action: Set the sample size for the audio object to a known value.

AUDIO_DURATION_IS_NULL
Cause: This exception is raised when calling the getAudioDuration function
and the duration is NULL.

Action: Set the duration for the audio object to a known value.

NULL_INPUT_VALUE
Cause: This exception is raised if the knownFormat parameter value of the
setFormat procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

AUDIO_PLUGIN_EXCEPTION
H-2 Oracle interMedia User’s Guide and Reference

Exceptions
Cause: This exception is raised when the audio plug-in raises an exception.

Action: Refer to Section 6.4.1 for more information.

H.1.2 ORDDocExceptions Exceptions
The following exceptions are associated with the ORDDoc object:

DOC_PLUGIN_EXCEPTION
Cause: This exception is raised when the document plug-in raises an exception.

Action: Refer to Section 7.4.1 for more information.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.

Action: Set the MIME parameter value to a known value.

INVALID_FORMAT_TYPE
Cause: This exception is raised if the FORMAT parameter value of the
setFormat procedure is NULL.

Action: Set the FORMAT parameter value to a known value.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

NULL_INPUT_VALUE
Cause: This exception is raised if the knownFormat parameter value of the
setFormat procedure is NULL.

Action: Set these parameters with known values.

H.1.3 ORDImageExceptions Exceptions
The following exceptions are associated with the ORDImage object:

NULL_LOCAL_DATA
Cause: This exception is raised when source.localData is NULL.

Action: Initialize source.localData with an empty_blob().

NULL_PROPERTIES_DESCRIPTION
Exceptions and Error Messages H-3

Exceptions
Cause: This exception is raised when the description parameter to setProperties
is not set.

Action: Set the description attribute if you are using a foreign image. Other-
wise, do not pass the description parameter.

NULL_DESTINATION
Cause: This exception is raised when the destination image is NULL.

Action: Pass an initialized destination image.

DATA_NOT_LOCAL
Cause: This exception is raised when the source information is not set to local.

Action: Reset the source attribute information to a local image source. Call the
import() or importFrom() method to import the data into the local BLOB.

NULL_CONTENT
Cause: This exception is raised when the content attribute of an ORDImgB or
ORDImgF image is NULL.

Action: Initialize the content attribute.

NULL_SOURCE
Cause: This exception is raised when the source image is NULL.

Action: Pass an initialized source image.

H.1.4 ORDVideoExceptions Exceptions
The following exceptions are associated with the ORDVideo object:

LOCAL_DATA_SOURCE_REQUIRED
Cause: This exception is raised if the data source is external.

Action: Set the source information to a local source.

DESCRIPTION_IS_NOT_SET
Cause: This exception is raised when calling the getDescription function and
the description attribute is not set.

Action: Set the description attribute.

INVALID_MIME_TYPE
Cause: This exception is raised if the MIME parameter value of the
setMimeType procedure is NULL.
H-4 Oracle interMedia User’s Guide and Reference

Exceptions
Action: Set the MIME parameter value to a known value.

VIDEO_FORMAT_IS_NULL
Cause: This exception is raised when calling the getFormat function and the
format is NULL.

Action: Set the format for the video object to a known format.

NULL_INPUT_VALUE
Cause: This exception is raised if either the knownWidth or knownHeight
parameter values of the setFrameSize procedure is NULL.

Action: Set these parameters with known values.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

VIDEO_PLUGIN_EXCEPTION
Cause: This exception is raised when the video plug-in raises an exception.

Action: Refer to Section 9.4.1 for more information.

H.1.5 ORDSourceExceptions Exceptions
The following exceptions are associated with the ORDSource object:

INCOMPLETE_SOURCE_INFORMATION
Cause: This exception is raised when the source information is incomplete or
srcType is NULL and data is not stored locally in the BLOB.

Action: Check your source information and set srcType, srcLocation, or src-
Name attributes as needed.

INCOMPLETE_SOURCE_LOCATION
Cause: This exception is raised when the value of srcLocation is NULL.

Action: Check your source location and set the srcLocation attribute.

INCOMPLETE_SOURCE_NAME
Cause: This exception is raised when the value of srcName is NULL.

Action: Check your source name and set the srcName attribute.

EMPTY_SOURCE
Exceptions and Error Messages H-5

ORDAudio Error Messages
Cause: This exception is raised when the source is local but the source is
NULL.

Action: Pass an initialized source.

NULL_SOURCE
Cause: This exception is raised when the local source is NULL.

Action: Pass an initialized source.

INVALID_SOURCE_TYPE
Cause: This exception is raised when the getBFile method detects a source type
other than ’file’.

Action: Ensure that the source type is ’file’.

METHOD_NOT_SUPPORTED
Cause: This exception is raised when the method called is not supported.

Action: Call a supported method.

SOURCE_PLUGIN_EXCEPTION
Cause: This exception is raised when the source plug-in raises an exception.

Action: Refer to Section I.3.1, Section I.3.2, and Section I.3.3 for more informa-
tion.

H.2 ORDAudio Error Messages
AUD-00702 unable to initialize audio processing environment

Cause: The initalization of the audio processing external procedure failed.

Action: See the database administrator to make sure that enough memory has
been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

AUD-00703 unable to read audio data
Cause: An error occurred while accessing the audio source.

Action: Make sure the audio source is valid. For external sources, make sure all
access priviliges are granted.

AUD-00704 invalid input format
H-6 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Cause: The audio data in the source was not in the format specified by the
format field of the audio object. In some unusual case, the audio data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format
plug-in.

AUD-00705 unsupported input format
Cause: The file format of the audio data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

AUD-00706 unsupported or corrupted input format
Cause: The audio data was either corrupted or the file format was not
supported.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats. If the audio data is not corrupted and is in a supported file format, con-
tact Oracle Customer Support Services.

AUD-00713 internal error while parsing audio data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

AUD-00714 internal error
Cause: An internal error occurred.

Action: Contact Oracle Customer Support Services.

H.3 ORDImage Error Messages
IMG-00001, "unable to initialize Oracle interMedia environment"

Cause: The image processing external procedure initialization process failed.

Action: Contact Oracle Customer Support Services.

IMG-0002,"unrecoverable error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.
Exceptions and Error Messages H-7

ORDImage Error Messages
IMG-00502, "invalid scale value"
Cause: An invalid scale value was found while parsing the parameters for the
image process function.

Action: Correct the statement by using a valid scale value. Refer to Oracle inter-
Media User’s Guide and Reference documentation for a description of the correct
usage and syntax for the image processing command string.

 IMG-00505, "missing value in CUT rectangle"
Cause: An incorrect number of values was used to specify a rectangle.

Action: Use exactly four integer values for the lower-left and upper-right verti-
ces.

IMG-00506, "extra value in CUT rectangle"
Cause: An incorrect number of values was used to specify a rectangle.

Action: Use exactly four integer values for the lower-left and upper-right verti-
ces.

IMG-00510, application-specific-message
Cause: A syntax error was found while parsing the parameters for the image
process function.

Action: Correct the statement by using valid parameter values. Refer to Oracle
interMedia User’s Guide and Reference documentation for a description of the cor-
rect usage and syntax for the image processing command string.

IMG-00511, application-specific-message
Cause: An error was found while accessing image data.

Action: Contact Oracle Customer Support Services.

IMG-00512, "multiple incompatible scaling parameters found"
Cause: Multiple incompatible scaling parameters were found in the image
process command string. With the exception of XSCALE and YSCALE, which
can be used together in a process command string, scaling functions are
mutually exclusive and cannot be combined.

Action: Remove scaling functions until only one remains (or two, if they are
XSCALE and YSCALE).

IMG-00513, "missing value in scaling operation"
H-8 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00514, "extra value in scaling operation"
Cause: An incorrect number of values was used to specify image dimensions.
fixedScale and maxScale require exactly two integer values for the X and Y
dimensions of the desired image.

Action: Use two values for fixedScale and maxScale.

IMG-00515, "incorrect number of input channels"
Cause: An incorrect number of values was used to specify input channels.
InputChannels requires either one or three channel numbers for the gray or red,
green, and blue channel assignments.

Action: Use either one or three values to specify the input channels.

IMG-00516, "default channel out of range"
Cause: An incorrect value was used to specify the default channel selection.

Action: Use a channel number that is less than or equal to the number of bands
and greater than zero.

IMG-00517, "height or width not present in parameter string"
Cause: Height and/or width were not specified in the setProperties parameter
string.

Action: Specify both the height and width.

IMG-00518, "invalid value for height or width"
Cause: Height and width were not positive integers.

Action: Specify both the height and width as positive integers.

IMG-00519, "illegal combination of parameters"
Cause: Other than height, width, dataOffset, and userString, no other
parameters may be specified in the setProperties parameter string when
CCITTG3 or CCITTG4 is used as the compressionFormat.

Action: Supply only the height and width when compressionFormat is either
CCITTG3 or CCITTG4. The dataOffset and userString may optionally be sup-
plied as well.
Exceptions and Error Messages H-9

ORDImage Error Messages
IMG-00520, "invalid value for numberOfBands"
Cause: NumberOfBands was not a positive integer.

Action: Specify numberOfBands as a positive integer.

IMG-00521, "invalid value for dataOffset"
Cause: dataOffset was not a positive integer.

Action: Specify dataOffset as a positive integer.

IMG-00522, "invalid format for parameter value"
Cause: A floating-point value was specified where an integer is required, or a
character value was specified where a numeric value is required.

Action: Specify the correct type of values for process parameters.

IMG-00523, "invalid process verb"
Cause: A process verb was specified that is not understood by Oracle
interMedia.

Action: Refer to the Oracle interMedia documentation for a description of valid
process verbs.

IMG-00524, "mismatched quotes"
Cause: Quotation marks used within a process command string were not
matched.

Action: Ensure that quotation marks occur in pairs.

IMG-00525,"locale error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00526,"error parsing foreign image description"
Cause: An internal error occurred while processing a foreign image.

Action: Use setProperties to correct the foreign image description. Contact Ora-
cle Customer Support Services.

IMG-00530, "internal error while parsing command"
Cause: An internal error occurred while parsing the command passed to the
image processing function or the foreign image setProperties function.
H-10 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Action: Check the command passed to the function. Refer to Oracle interMedia
User’s Guide and Reference for a description of the correct usage and syntax for
the image processing command string or the foreign image setProperties func-
tion. If you are certain that your command is correct, then contact Oracle Cus-
tomer Support Services.

IMG-00531, "empty or null image processing command"
Cause: An empty or null image processing command was passed to the image
process function.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax for the image processing command string.

IMG-00540,"contentFormat and interleave conflict"
Cause: Interleave values were specified using both the contentFormat and
interleave verbs.

Action: Specify interleave values using either contentFormat or interleave, but
not both.

IMG-00541,"invalid contentFormat specified"
Cause: The specified contentFormat was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid contentFormat specifications.

IMG-00542,"contentFormat includes invalid extra information"
Cause: The specified contentFormat included invalid characters at the end of
the parameter string.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid contentFormat specifications.

IMG-00543,"invalid compressionFormat specified"
Cause: The specified compressionFormat was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid compressionFormat specifications.

IMG-00544,"invalid compressionQuality specified"
Cause: The specified compressionQuality was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid compressionQuality specifications.
Exceptions and Error Messages H-11

ORDImage Error Messages
IMG-00545,"invalid cut values specified"
Cause: An invalid value was found while parsing the parameters for the cut
operation.

Action: Correct the statement by using valid values for the cut operation that
are not negative. Refer to Oracle interMedia User’s Guide and Reference for a
description of the correct usage and syntax for the image processing command
string.

IMG-00546,"invalid page number specified"
Cause: An invalid page number was specified.

Action: Specify page numbers that are not negative.

IMG-00547,"invalid channelOrder specified"
Cause: The specified channel order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid channelOrder specifications.

IMG-00548,"invalid interleave specified"
Cause: The specified interleave was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid interleave specifications.

IMG-00549,"invalid pixelOrder specified"
Cause: The specified pixel order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid pixelOrder specifications.

IMG-00550,"invalid scanlineOrder specified"
Cause: The specified scanline order was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid scanlineOrder specifications.

IMG-00551,"invalid dither type specified"
Cause: The specified dither type was not valid.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
valid dither specifications.

IMG-00552,"invalid inputChannels specified"
Cause: An invalid value was specified for the inputChannels verb.
H-12 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Action: Specify non-negative values for inputChannels. Refer to Oracle interMe-
dia User’s Guide and Reference for a description of the correct usage and syntax
for the image processing command string.

IMG-00560,"input format does not support page selection"
Cause: The page verb was specified for an input format that does not support
selecting pages.

Action: Remove the page selection verb. Refer to Oracle interMedia User’s Guide
and Reference for a description of which image formats support page selection.

IMG-00561,"input format does not support channel selection"
Cause: The inputChannels verb was specified for an input format that does not
support selecting channels.

Action: Remove the inputChannels verb. Refer to Oracle interMedia User’s Guide
and Reference for a description of which image formats support input channel
selection.

IMG-00580,"specified format does not support output"
Cause: The output format specified by fileFormat does support output.

Action: Change the specified fileFormat to one that supports output. Refer to
Oracle interMedia User’s Guide and Reference for a description of which formats
support output.

IMG-00581,"output format does not support the specified contentFormat"
Cause: The specified contentFormat is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which contentFormat values are supported for each output format.

IMG-00582,"output format does not support the specified interleave"
Cause: The specified interleave is not supported by the explicitly or implicitly
specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which interleave values are supported for each output format.

IMG-00583,"output format does not support the specified compressionFormat"
Cause: The specified compressionFormat is not supported by the explicitly or
implicitly specified output format.
Exceptions and Error Messages H-13

ORDImage Error Messages
Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which compressionFormat values are supported for each output format.

IMG-00584,"output format does not support the specified compressionQuality"
Cause: The specified compressionQuality is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which compressionQuality values are supported for each output format.

IMG-00585,"output format does not support the specified channelOrder"
Cause: The specified channelOrder is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which channelOrder values are supported for each output format.

IMG-00586,"output format does not support the specified pixelOrder"
Cause: The specified pixelOrder is not supported by the explicitly or implicitly
specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which pixelOrder values are supported for each output format.

IMG-00587,"output format does not support the specified scanlineOrder"
Cause: The specified scanlineOrder is not supported by the explicitly or
implicitly specified output format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
which scanlineOrder values are supported for each output format.

IMG-00599, "internal error"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services.

IMG-00601, "out of memory while copying image"
Cause: Operating system process memory has been exhausted while copying
the image.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00602, "unable to access image data"
Cause: An error occurred while reading or writing image data.
H-14 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Action: Contact your system administrator.

IMG-00603, "unable to access source image data"
Cause: The source image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the source image is populated
with image data.

IMG-00604, "unable to access destination image data"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is popu-
lated with image data.

IMG-00606, "unable to access image data"
Cause: An attempt was made to access an invalid image.

Action: Ensure that the SOURCE attribute of the image is populated with
image data.

IMG-00607, "unable to write to destination image"
Cause: The destination image SOURCE attribute is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized correctly and that you have sufficient tablespace.

IMG-00609, "unable to read image stored in a BFILE"
Cause: The image stored in a BFILE cannot be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00701, "unable to set the properties of an empty image"
Cause: There is no data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to put image data into the image object.

IMG-00702, "unable to initialize image processing environment"
Cause: The image processing external procedure initialization process failed.

Action: Contact Oracle Customer Support Services.

IMG-00703, "unable to read image data"
Cause: There is no image data in the image object.
Exceptions and Error Messages H-15

ORDImage Error Messages
Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate image data into the image object.

IMG-00704, "unable to read image data"
Cause: There is no image data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate image data into the image object.

IMG-00705, "unsupported or corrupted input format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00706, "unsupported or corrupted output format"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00707, "unable to access image data"
Cause: An error occurred while reading or writing image data.

Action: Contact your system administrator.

IMG-00710, "unable write to destination image"
Cause: The destination image is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized and that you have sufficient tablespace.

IMG-00711, "unable to set properties of destination image"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00712, "unable to write to destination image"
Cause: The destination image is invalid.

Action: Ensure that the SOURCE attribute of the destination image is initial-
ized and that you have sufficient tablespace. Ensure the row containing the des-
tination image has been locked (this does not apply to temporary BLOBs).

IMG-00713, "unsupported destination image format"
Cause: A request was made to convert an image to a format that is not
supported.
H-16 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

IMG-00714, "internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00715, "Unable to open image stored in a BFILE"
Cause: The image stored in a BFILE could not be opened for reading.

Action: Ensure that the access privileges of the image file and the image file’s
directory allow read access.

IMG-00716, "source image format does not support process options"
Cause: A request was made to apply a processing option not supported by the
source image format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a discussion of
supported processing options.

IMG-00717, "destination image format does not support process options"
Cause: A request was made to apply a processing option not supported by the
destination image format.

Action: Refer to Oracle interMedia User’s Guide and Reference for a discussion of
supported processing options.

IMG-00718, "the same Temporary LOB cannot be used as both source and
destination"
Cause: A call was made to processCopy with the same temporary LOB being
specified as both the source and destination.

Action: Specify a different LOB for parameter "dest".

IMG-00719,"image processing internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00720,"image processing internal error"
Cause: This is an internal error.

Action: Contact Oracle Customer Support Services.

IMG-00730,"unable to process empty image"
Exceptions and Error Messages H-17

ORDImage Error Messages
Cause: There is no data in the input image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to put image data into the image object.

IMG-00731,"specified page could not be found in input image"
Cause: The specified page does not exist in the input image.

Action: Restrict the value of the page parameter to values specifying pages that
exist within the input image object.

IMG-00732,"specified inputChannels could not be found in input image"
Cause: The specified input channel does not exist in the input image.

Action: Restrict the value of the inputChannels parameter to values specifying
channels that exist within the input image object.

IMG-00800, "internal error while parsing attribute string"
Cause: An internal error occurred while parsing the attribute string containing
the weights of the attributes.

Action: Check the command passed to the function. Refer to Oracle interMedia
User’s Guide and Reference for a description of the correct usage and syntax for
the attributes string for image matching. If you are certain that your command
is correct, then contact Oracle Customer Support Services.

IMG-00801, "cannot extract height and width"
Cause: Height and width are not set in the image object.

Action: Set the properties of the image object by calling setProperties and then
generate the signature.

IMG-00802, "empty or null attributes string"
Cause: An empty or null attributes string was passed to the image matching
operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax of the attributes string.

IMG-00803, "invalid attributes value"
Cause: An invalid value was found while parsing the attributes string for the
image matching operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax for the attributes string. The weight values should
be between 0.0 and 1.0.
H-18 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
IMG-00804," Syntax error in attributes string"
Cause: A syntax error was found while parsing the attributes string for the
image matching operators.

Action: Refer to Oracle interMedia User’s Guide and Reference for a description of
the correct usage and syntax of the attributes string.

IMG-00805, "SIGNATURE data has been corrupted or is invalid"
Cause: The data in the signature is not a valid signature.

Action: Re-create the signature using the generateSignature method.

IMG-00806, "invalid input image"
Cause: The image data is either corrupt or is in an unsupported format.

Action: Repopulate the image object, set properties of the image, and generate
the signature.

IMG-00807, "no weights specified in weight string"
Cause: All weights passed were zero. At least one attribute must be weighted.

Action: Specify a non-zero weight for at least one attribute.

IMG-00808, "unable to read an empty image"
Cause: There is no data in the image object.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to populate the image object with image data.

IMG-00809, "usage of IMGSimilar is incorrect"
Cause: Syntax error while using IMGSimilar.

Action: Refer to Oracle interMedia User’s Guide and Reference for information on
how to use the IMGSimilar operator. Check if the value returned by IMGSimi-
lar is compared to the value 1.

IMG-00810, "Boundary queue initialization failed"
Cause: Operating system process memory has been exhausted while
initializing the boundary queue.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00811, "Fail queue initialization failed"
Cause: Operating system process memory has been exhausted while
initializing the fail queue.
Exceptions and Error Messages H-19

ORDImage Error Messages
Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00812, "Merged area queue initialization failed"
Cause: Operating system process memory has been exhausted while
initializing the merged area queue.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00813, "Boundary queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00814, "Fail queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00815, "Merged area queue free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00820, "Area 0 queue clear failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00821, "Area N queue clear failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00822, "Area queue reset failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00823, "Boundary queue pop failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00824, "Fail queue pop failed"
Cause: An internal error has occurred.
H-20 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
Action: Contact Oracle Customer Support Services with the error number.

IMG-00825, "Merged area queue pop failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00830, "Boundary queue is full"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00831, "Boundary queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00832, "Fail queue is full"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00833, "Boundary queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00834, "Merged area queue is full"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00835, "Merged area queue size exceeds expected size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00836, "Area queue merge failed"
Cause: An internal error has occurred.
Exceptions and Error Messages H-21

ORDImage Error Messages
Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00840, "Image structure allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image structure.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00841, "Image data allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image data.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00842, "Image index allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the image index.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00843, "Internal image structure allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the internal image structure.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00844, "Internal image data allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the internal image data.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00845, "Internal image index allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the internal image index.

Action: See the database administrator or operating system administrator to
increase process memory quota.
H-22 Oracle interMedia User’s Guide and Reference

ORDImage Error Messages
IMG-00846, "Adjacency matrix allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the adjacency matrix.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00847, "Area list allocation failed"
Cause: Operating system process memory has been exhausted while
initializing the area list.

Action: See the database administrator or operating system administrator to
increase process memory quota.

IMG-00850, "Image structure free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00851, "Image data free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00852, "Image index free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00853, "Internal image structure free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00854, "Internal image data free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00855, "Internal image index free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00856, "Adjacency matrix free failed"
Cause: An internal error has occurred.
Exceptions and Error Messages H-23

ORDImage Error Messages
Action: Contact Oracle Customer Support Services with the error number.

IMG-00857, "Area list free failed"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number.

IMG-00860, "Assert failure, number of regions exceeds allocated"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00861, "Assert failure, inconsistency in area merge operation"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00862, "Assert failure, inconsistency in merged area labels"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00870, "Unsupported aspect ratio or image size"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00871, "Unexpected number of seeds"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00872, "Unsupported image model"
Cause: An internal error has occurred.

Action: Contact Oracle Customer Support Services with the error number and
the image causing this problem.

IMG-00899, "Signature cannot be generated"
Cause: generateSignature could not generate the signature.

Action: Verify that the input image is a format supported by interMedia.
H-24 Oracle interMedia User’s Guide and Reference

ORDVideo Error Messages
H.4 ORDVideo Error Messages
VID-00702 unable to initialize video processing environment

Cause: The initialization of the video processing procedure failed.

Action: See the database administrator to make sure that enough memory has
been allocated to JServer. If JServer does have enough memory, contact Oracle
Customer Support Services.

VID-00703 unable to read video data
Cause: An error occurred while accessing the video source.

Action: Make sure the video source is valid. For external sources, make sure all
access priviliges are granted.

VID-00704 invalid input format
Cause: The video data in the source was not in the format specified by the
format field of the video object. In some unusual case, the video data is actually
corrupted.

Action: Provide a correct value in the format field. If the correct value is
unknown, put NULL in the format field to invoke the DEFAULT format
plug-in.

VID-00705 unsupported input format
Cause: The file format of the video data was not supported. This error can only
occur in the DEFAULT format plug-in package.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats.

VID-00706 unsupported or corrupted input format
Cause: The video data was either corrupted or the file format was not
supported.

Action: Refer to Oracle interMedia User’s Guide and Reference for supported for-
mats. If the video data is not corrupted and is in a supported file format, con-
tact Oracle Customer Support Services.

VID-00713 internal error while parsing video data
Cause: An internal error occurred during parsing.

Action: Contact Oracle Customer Support Services.

VID-00714 internal error
Exceptions and Error Messages H-25

ORDVideo Error Messages
Cause: An internal error occurred.

Action: Contact Oracle Customer Support Services.
H-26 Oracle interMedia User’s Guide and Reference

ORDSource Reference Inform
I

ORDSource Reference Information

Oracle interMedia contains the following information about the ORDSource type:

■ Object type -- see Section I.1.

■ Methods -- see Section I.2.

■ Packages or PL/SQL plug-ins -- see Section I.3.

This object is used only by other Oracle interMedia objects. The information in this
chapter is included for reference only. Oracle Corporation does not recommend that
you use this type.

Methods invoked at the ORDSource level that are handed off to the source plug-in
for processing have ctx (RAW(4000)) as the first argument. Before calling any of
these methods for the first time, the client must allocate the ctx structure, initialize it
to NULL, and invoke the open() method. At this point, the source plug-in can
initialize context for this client. When processing is complete, the client should
invoke the close() method.

Methods invoked from a source plug-in call have the first argument as obj
(ORDSource) and the second argument as ctx (RAW(4000)).

The ORDSource object does not attempt to maintain consistency, for example, with
local and upDateTime attributes. It is up to you to maintain consistency.
ORDAudio, ORDDoc, ORDImage, and ORDVideo objects all maintain consistency
of their included ORDSource object.

Note: In the current release, not all source plug-ins will use the ctx
argument, but if you code as previously described, your application
should work with any current or future source plug-in.
ation I-1

Object Types
I.1 Object Types
Oracle interMedia provides the ORDSource object type, which supports access to a
variety of sources of multimedia data.
I-2 Oracle interMedia User’s Guide and Reference

ORDSource Object Type
ORDSource Object Type

The ORDSource object type supports access to data sources locally in a BLOB
within an Oracle database, externally from a BFILE on a local file system, externally
from a URL on an HTTP server (within the firewall), or externally from a
user-defined source on another server. This object type is defined as follows:

CREATE OR REPLACE TYPE ORDsource
AS OBJECT
(
 -- ATTRIBUTES
localData BLOB,
srcType VARCHAR2(4000),
srcLocation VARCHAR2(4000),
srcName VARCHAR2(4000),
updateTime DATE,
local NUMBER,
 -- METHODS
-- Methods associated with the local attribute
MEMBER PROCEDURE setLocal,
MEMBER PROCEDURE clearLocal,
MEMBER FUNCTION isLocal RETURN BOOLEAN,
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS),
-- Methods associated with the updateTime attribute
MEMBER FUNCTION getUpdateTime RETURN DATE,
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS, WNPS, RNDS, RNPS),
MEMBER PROCEDURE setUpdateTime(current_time DATE),
-- Methods associated with the source information
MEMBER PROCEDURE setSourceInformation(
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER FUNCTION getSourceInformation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceInformation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceType RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceLocation RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceName RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS, WNPS, RNDS, RNPS),
ORDSource Reference Information I-3

ORDSource Object Type
MEMBER FUNCTION getBFile RETURN BFILE,
PRAGMA RESTRICT_REFERENCES(getBFile, WNDS, WNPS, RNDS, RNPS),

-- Methods associated with source import/export operations
MEMBER PROCEDURE import(
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2),
MEMBER PROCEDURE importFrom(
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
MEMBER PROCEDURE export(
 ctx IN OUT RAW,
 source_type IN VARCHAR2,
 source_location IN VARCHAR2,
 source_name IN VARCHAR2),
-- Methods associated with source content-related operations
MEMBER FUNCTION getContentLength(ctx IN OUT RAW) RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getSourceAddress(ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getLocalContent RETURN BLOB,
PRAGMA RESTRICT_REFERENCES(geLocalContent, WNDS, WNPS, RNDS, RNPS),

MEMBER PROCEDURE getContentInTempLob(
 ctx IN OUT RAW,
 tempLob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 duration IN PLS_INTEGER := 10,
 cache IN BOOLEAN := TRUE),
MEMBER PROCEDURE deleteLocalContent,

-- Methods associated with source access methods
MEMBER FUNCTION open(userArg IN RAW, ctx OUT RAW) RETURN INTEGER,
MEMBER FUNCTION close(ctx IN OUT RAW) RETURN INTEGER,
I-4 Oracle interMedia User’s Guide and Reference

ORDSource Object Type
MEMBER FUNCTION trim(ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER,

-- Methods associated with content read/write operations
MEMBER PROCEDURE read(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW),
MEMBER PROCEDURE write(
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer IN RAW),
-- Methods associated with any commands to be sent to the external source
MEMBER FUNCTION processCommand(
 ctx IN OUT RAW,
 command IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
);

where:

■ localData: contains the locally stored multimedia data stored as a BLOB within
the object. Up to 4 gigabytes of data can be stored as a BLOB within an Oracle
database and is protected by the Oracle security and transaction environment.

■ srcType: identifies the data source type. Supported values for srcType are:

srcType Source Type

"file" A BFILE on a local file system

"HTTP" An HTTP server

"<name>" User-defined
ORDSource Reference Information I-5

Methods
■ srcLocation: identifies the place where data can be found based on the srcType
value. Valid srcLocation values for corresponding srcType values are:

■ srcName: identifies the data object name. Valid srcName values for
corresponding srcType values are:

■ updateTime: the time at which the data was last updated.

■ local: a flag to determine whether or not the data is local:

1 means the data is in the BLOB.

0 means the data is in external sources.

NULL, which may be a default state when you first insert an empty row, is
assumed to mean data is local.

I.2 Methods
This section presents ORDSource reference information on the Oracle interMedia
methods provided for source data manipulation. These methods are described in
the following groupings:

Note: The keyword file for the plug-in is a reserved word for the
BFILE source provided by Oracle Corporation. To implement for
your own file plug-in, select a different name, for example,
MYFILE.

srcType Location Value

"file" <DIR> or name of the directory object

"HTTP" <SourceBase> or URL needed to find the base directory

"<name>" <iden> or identifier string required to access a user-defined source

srcType Name Value

"file" <file> or name of the file

"HTTP" <Source> or name of the object

"<name>" <object name> or name of the object
I-6 Oracle interMedia User’s Guide and Reference

Methods
ORDSource Methods Associated with the local Attribute
■ setLocal: sets the flag value for the local attribute to "1", meaning that the source

of the data is local.

■ clearLocal: resets the flag value for the local attribute to "0", meaning that the
source of the data is external.

■ isLocal: returns TRUE to indicate that the source of the data is local or in the
BLOB, or FALSE, meaning the data is in an external source. The value of the
local attribute is used to determine the return value.

ORDSource Methods Associated with the updateTime Attribute
■ getUpdateTime: returns the value of the updateTime attribute.

■ setUpdateTime: sets the value of the updateTime attribute to the specified time
provided in the argument.

ORDSource Methods Associated with the srcType, srcLocation, and
srcName Attributes
■ setSourceInformation(): sets or alters information about the source of the data.

■ getSourceInformation: returns a formatted string containing complete
information about the data source formatted as a URL.

■ getSourceType: returns the external source type of the data.

■ getSourceLocation: returns the external source location of the data.

■ getSourceName: returns the external source name of the data.

■ getBFile: returns the external content as a BFILE, if srcType is of type file.

ORDSource Methods Associated with import and export Operations
■ import(): transfers data from an external data source (specified by calling

setSourceInformation()) to the local source (localData) within an Oracle
database.

■ importFrom(): transfers data from the specified external data source (source,
location, name) to the local source (localData) within an Oracle database.

■ export(): copies data from a local source (localData) within an Oracle database
to the specified external data source.
ORDSource Reference Information I-7

Methods

ORDSource Methods Associated with the localData Attribute
■ getContentLength(): returns the length of the data source (as number of bytes).

■ getSourceAddress(): returns the address of the data source.

■ getLocalContent: returns the handle to the BLOB used to store contents locally.

■ getContentInTempLob(): returns content into a temporary LOB.

■ deleteLocalContent: deletes the content of the local BLOB.

ORDSource Methods Associated with Source Input/Output Operations
■ open(): opens a data source.

■ close(): closes a data source.

■ trim(): trims a data source.

■ read(): reads a buffer of n bytes from a source beginning at a start position.

■ write(): writes a buffer of n bytes to a source beginning at a start position.

ORDSource Methods Associated with Processing Commands to the
External Source
■ processCommand(): process as any command to the external source. This

method is supported only for user-defined sources.

For more information on object types and methods, see Oracle9i Database Concepts.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
I-8 Oracle interMedia User’s Guide and Reference

clearLocal
clearLocal

Format
clearLocal;

Description
Resets the flag value from local, meaning the source of the data is stored locally in a
BLOB in Oracle, to nonlocal meaning the source of the data is stored externally.

Parameters
None.

Usage Notes
This method sets the local attribute to a 0, meaning the data is stored externally or
outside of Oracle.

Pragmas
None.

Exceptions
None.

Examples
None.
ORDSource Reference Information I-9

close()
close()

Format
close(ctx IN OUT RAW) RETURN INTEGER;

Description
Closes a data source.

Parameters

ctx
The source plug-in context information.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the close() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the close() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION
I-10 Oracle interMedia User’s Guide and Reference

close()
This exception is raised if you call the close() method within a source plug-in when
any other exception is raised.

Examples
None.
ORDSource Reference Information I-11

deleteLocalContent
deleteLocalContent

Format
deleteLocalContent;

Description
Deletes the local data from the current local source (localData).

Parameters
None.

Usage Notes
This method can be called after you export the data from the local source to an
external data source and you no longer need this data in the local source.

Pragmas
None.

Exceptions
None.

Examples
None.
I-12 Oracle interMedia User’s Guide and Reference

export()
export()

Format
export(

 ctx IN OUT RAW,

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Copies data from a local source (localData) within an Oracle database to an external
data source.

Parameters

ctx
The source plug-in context information.

source_type
The source type of the location to where data is to be exported.

source_location
The location where the data is to be exported.

source_name
The name of the object to where the data is to be exported.

Usage Notes
This method exports data out of the localData to another source.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Note: The export() method natively supports only sources of
source type file. User-defined sources may support the export()
method.
ORDSource Reference Information I-13

export()
After exporting data, the srcType, srcLocation, and srcName attributes are updated
with input parameter values. After calling the export() method, call the
clearLocal() method to indicate the data is stored outside the database and call the
deleteLocalContent method if you want to delete the content of the local data.

This method is also available for user-defined sources that can support the export
method.

The only server-side native support for the export method is for the srcType file.

The export() method for a source type of file is similar to a file copy operation in
that the original data stored in the BLOB is not touched other than for reading
purposes.

The export() method is not an exact mirror operation to the import() method in
that the clearLocal() method is not automatically called to indicate the data is
stored outside the database, whereas the import() method automatically calls the
setLocal() method.

Call the deleteLocalContent method after calling the export() method to delete the
content from the database if you no longer intend to manage the multimedia data
within the database.

The export() method writes only to a directory object that the user has privilege to
access. That is, you can access a directory that you have created using the SQL
CREATE DIRECTORY statement, or one to which you have been granted READ
access. To execute the CREATE DIRECTORY statement, you must have the CREATE
ANY DIRECTORY privilege. In addition, you must use the DBMS_JAVA.GRANT_
PERMISSION call to specify to which files can be written.

For example, the following grants the user, MEDIAUSER, the permission to write to
the file named filename.dat:

CALL DBMS_JAVA.GRANT_PERMISSION(
 ’MEDIAUSER’,
 ’java.io.FilePermission’,
 ’/actual/server/directory/path/filename.dat’,
 ’write’);

See the security and performance section in Oracle9i Java Developer’s Guide for more
information.

Invoking this method implicitly calls the setUpdateTime() method.

Pragmas
None.
I-14 Oracle interMedia User’s Guide and Reference

export()
Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the export() method and the value of srcType is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the export() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the export() method within a source plug-in
when any other exception is raised.

Examples
None.
ORDSource Reference Information I-15

getBFile
getBFile

Format
getBFile RETURN BFILE;

Description
Returns a BFILE handle, if the srcType is file.

Parameters
None.

Usage Notes
This method can only be used for a srcType of file or BFILE sources.

Pragmas
PRAGMA RESTRICT_REFERENCES(getBFile, WNDS, WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getBFILE method and the value of srcType is
NULL.

INVALID_SOURCE_TYPE

This exception is raised if you call the getBFile method and the value of srcType is
other than file.

Examples
None.
I-16 Oracle interMedia User’s Guide and Reference

getContentInTempLob()
getContentInTempLob()

Format
getContentInTempLob(

 ctx IN OUT RAW,

 tempLob IN OUT NOCOPY BLOB,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2,

 duration IN PLS_INTEGER := 10,

 cache IN BOOLEAN := TRUE);

Description
Transfers data from the current data source into a temporary LOB, which will be
allocated and initialized as a part of this call.

Parameters

ctx
The source plug-in context information.

tempLob
Uninitialized BLOB locator, which will be allocated in this call.

mimetype
Out parameter to receive the MIME type of the data, for example, ’audio/basic’.

format
Out parameter to receive the format of the data, for example, ’AUFF’.

duration
The life of the temporary LOB to be allocated. The life of the temporary LOB can be
for the duration of the call, the transaction, or for the session. The default is DBMS_
LOB.SESSION. Valid values for each duration state are as follows:

DBMS_LOB.CALL

DBMS_LOB.TRANSACTION
ORDSource Reference Information I-17

getContentInTempLob()
DBMS_LOB.SESSION

cache
Whether or not you want to keep the data cached. The value is either TRUE or
FALSE. The default is TRUE.

Usage Notes
None.

Pragmas
None.

Exceptions
NO_DATA_FOUND

This exception is raised if you call the getContentInLob() method when working
with temporary LOBs for looping read operations that reach the end of the LOB,
and there are no more bytes to be read from the LOB.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getContentInLob() method within a source
plug-in when any other exception is raised.

Examples
None.
I-18 Oracle interMedia User’s Guide and Reference

getContentLength()
getContentLength()

Format
getContentLength(ctx IN OUT RAW) RETURN INTEGER;

Description
Returns the length of the data content stored in the source. For a file source and for
data in a local BLOB data source, the length is returned as a number of bytes. The
unit type of the returned value is defined by the plug-in that implements this
method.

Parameters

ctx
The source plug-in context information.

Usage Notes
This method is not supported for all source types. For example, HTTP type sources
do not support this method. If you want to implement this call for HTTP type
sources, you must define your own modified HTTP source plug-in and implement
this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getContentLength() method and the value of
srcType is NULL and data is not stored locally in the BLOB.

SOURCE_PLUGIN_EXCEPTION
ORDSource Reference Information I-19

getContentLength()
This exception is raised if you call the getContentLength() method within a source
plug-in when any other exception is raised.

Examples
None.
I-20 Oracle interMedia User’s Guide and Reference

getLocalContent
getLocalContent

Format
getLocalContent RETURN BLOB;

Description
Returns the content or BLOB handle of the local data.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getLocalContent, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
None.
ORDSource Reference Information I-21

getSourceAddress()
getSourceAddress()

Format
getSourceAddress(ctx IN OUT RAW,

 userData IN VARCHAR2) RETURN VARCHAR2;

Description
Returns the source address for data located in an external data source. This method
is only implemented for user-defined sources.

Parameters

ctx
The source plug-in context information.

userData
Information input by the user needed by some sources to obtain the desired source
address.

Usage Notes
Use this method to return the address of an external data source when the source
needs to format this information in some unique way. For example, call the
getSourceAddress()method to obtain the address for RealNetworks server sources
or URLs containing data sources located on Oracle Application Server.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the getSourceAddress() method and the value of
srcType is NULL.
I-22 Oracle interMedia User’s Guide and Reference

getSourceAddress()
SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the getSource Address() method within a source
plug-in when any other exception is raised.

Examples
None.
ORDSource Reference Information I-23

getSourceInformation
getSourceInformation

Format
getSourceInformation RETURN VARCHAR2;

Description
Returns a URL formatted string containing complete information about the external
data source.

Parameters
None.

Usage Notes
This method returns a VARCHAR2 string formatted as:
<srcType>://<srcLocation>/<srcName>, where srcType, srcLocation, and srcName
are the ORDSource attribute values.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceInformation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
None.
I-24 Oracle interMedia User’s Guide and Reference

getSourceLocation
getSourceLocation

Format
getSourceLocation RETURN VARCHAR2;

Description
Returns the external data source location.

Parameters
None.

Usage Notes
This method returns the current value of the srcLocation attribute, for example
BFILEDIR.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceLocation, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_LOCATION

This exception is raised if you call the setSourceLocation() method and the value of
srcLocation is NULL.

Examples
None.
ORDSource Reference Information I-25

getSourceName
getSourceName

Format
getSourceName RETURN VARCHAR2;

Description
Returns the external data source name.

Parameters
None.

Usage Notes
This method returns the current value of the srcName attribute, for example
testaud.dat.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceName, WNDS,
WNPS, RNDS, RNPS)

Exceptions
INCOMPLETE_SOURCE_NAME

This exception is raised if you call the setSourceName() method and the value of
srcName is NULL.

Examples
None.
I-26 Oracle interMedia User’s Guide and Reference

getSourceType
getSourceType

Format
getSourceType RETURN VARCHAR2;

Description
Returns the external data source type.

Parameters
None.

Usage Notes
This method returns the current value of the srcType attribute, for example file.

Pragmas
PRAGMA RESTRICT_REFERENCES(getSourceType, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
None.
ORDSource Reference Information I-27

getUpdateTime
getUpdateTime

Format
getUpdateTime RETURN DATE;

Description
Returns the value of the updateTime attribute for the ORDSource object. This is the
timestamp when the object was last changed, or what the user explicitly set by
calling the setUpdateTime() method.

Parameters
None.

Usage Notes
None.

Pragmas
PRAGMA RESTRICT_REFERENCES(getUpdateTime, WNDS,
WNPS, RNDS, RNPS)

Exceptions
None.

Examples
None.
I-28 Oracle interMedia User’s Guide and Reference

import()
import()

Format
import(

 ctx IN OUT RAW,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2);

Description
Transfers data from an external data source (specified by first calling
setSourceInformation()) to a local source within an Oracle database.

Parameters

ctx
The source plug-in context information.This information is passed along
uninterpreted to the source plug-in handling the import() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example,
’audio/basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

Usage Notes
Call setSourceInformation() to set the srcType, srcLocation, and srcName attribute
information to describe where the data source is located prior to calling the
import() method.

You must ensure that the directory exists or is created before you use this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.
ORDSource Reference Information I-29

import()
Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the import() method and the value of srcType is
NULL.

NULL_SOURCE

This exception is raised if you call the import() method and the value of dlob is
NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the import() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the import() method within a source plug-in
when any other exception is raised, raises a exception.

Examples
None.
I-30 Oracle interMedia User’s Guide and Reference

importFrom()
importFrom()

Format
importFrom(

 ctx IN OUT RAW,

 mimetype OUT VARCHAR2,

 format OUT VARCHAR2

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Transfers data from the specified external data source (type, location, name) to a
local source within an Oracle database, and resets the source attributes and the
timestamp.

Parameters

ctx
The source plug-in context information.This information is passed along
uninterpreted to the source plug-in handling the importFrom() call.

mimetype
Out parameter to receive the MIME type of the data, if any, for example,
’audio/basic’.

format
Out parameter to receive the format of the data, if any, for example, ’AUFF’.

source_type
Source type from where the data is to be imported. This also sets the srcType
attribute.

source_location
Source location from where the data is to be imported. This also sets the srcLocation
attribute.
ORDSource Reference Information I-31

importFrom()
source_name
Name of the source to be imported. This also sets the srcName attribute.

Usage Notes
This method describes where the data source is located by specifying values for the
type, location, and name parameters, which set the srcType, srcLocation, and
srcName attribute values, respectively, after the importFrom operation succeeds.

You must ensure that the directory exists or is created before you use this method.

This method is a combination of a setSourceInformation() call followed by an
import() call.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the importFrom() method and the value of dlob
is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the importFrom() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the importFrom() method within a source
plug-in when any other exception is raised.

Examples
None.
I-32 Oracle interMedia User’s Guide and Reference

isLocal
isLocal

Format
isLocal RETURN BOOLEAN;

Description
Returns TRUE if the data is stored locally in a BLOB in Oracle9i or FALSE if the data
is stored externally.

Parameters
None.

Usage Notes
If the local attribute is set to1 or NULL, this method returns TRUE, otherwise this
method returns FALSE.

Pragmas
PRAGMA RESTRICT_REFERENCES(isLocal, WNDS, WNPS, RNDS, RNPS)

Exceptions
None.

Examples
None.
ORDSource Reference Information I-33

open()
open()

Format
open(userArg IN RAW, ctx OUT RAW) RETURN INTEGER;

Description
Opens a data source. It is recommended that this method be called before invoking
any other methods that accept the ctx parameter.

Parameters

userArg
The user argument.

ctx
The source plug-in context information.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the open() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the open() method and this method is not
supported by the source plug-in being used.
I-34 Oracle interMedia User’s Guide and Reference

open()
SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the open() method within a source plug-in when
any other exception is raised.

Examples
None.
ORDSource Reference Information I-35

processCommand()
processCommand()

Format
processCommand(

 ctx IN OUT RAW,

 command IN VARCHAR2,

 arglist IN VARCHAR2,

 result OUT RAW)

RETURN RAW;

Description
Allows you to send commands and related arguments to the source plug-in. This
method is supported only for user-defined sources.

Parameters

ctx
The source plug-in context information.

command
Any command recognized by the source plug-in.

arglist
The arguments for the command.

result
The result of calling this method returned by the plug-in.

Usage Notes
Use this method to send any commands and their respective arguments to the
plug-in. Commands are not interpreted; they are taken and passed through to be
processed.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
I-36 Oracle interMedia User’s Guide and Reference

processCommand()
Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the processCommand() method and the value of
srcType is NULL.

METHOD_NOT_SUPPORTED

This exception is raised if you call the processCommand() method and this method
is not supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the processCommand() method within a source
plug-in when any other exception is raised.

Examples
None.
ORDSource Reference Information I-37

read()
read()

Format
read(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer OUT RAW);

Description
Allows you to read a buffer of numBytes from a source beginning at a start position
(startPos).

Parameters

ctx
The source plug-in context information.

startPos
The start position in the data source.

numBytes
The number of bytes to be read from the data source.

buffer
The buffer to where the data will be read.

Usage Notes
This method is not supported for HTTP sources.

To successfully read HTTP source types, the entire URL source must be requested to
be read. If you want to implement a read method for an HTTP source type, you
must provide your own implementation for this method in the modified source
plug-in for the HTTP source type.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
I-38 Oracle interMedia User’s Guide and Reference

read()
Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the read() method and the data is stored locally
and localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the read() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the read() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the read() method within a source plug-in when
any other exception is raised.

Examples
None.
ORDSource Reference Information I-39

setLocal
setLocal

Format
setLocal;

Description
Sets the local attribute to indicate that the data is stored in a BLOB within Oracle9i.

Parameters
None.

Usage Notes
This method sets the local attribute to 1, meaning the data is stored locally in the
localData attribute.

Pragmas
None.

Exceptions
None.

Examples
None.
I-40 Oracle interMedia User’s Guide and Reference

setSourceInformation()
setSourceInformation()

Format
setSourceInformation(

 source_type IN VARCHAR2,

 source_location IN VARCHAR2,

 source_name IN VARCHAR2);

Description
Sets the provided subcomponent information for the srcType, srcLocation, and
srcName that describes the external data source.

Parameters

source_type
The source type of the external data. See the "ORDSource Object Type" definition in
this chapter for more information.

source_location
The source location of the external data. See the "ORDSource Object Type"
definition in this chapter for more information.

source_name
The source name of the external data. See the "ORDSource Object Type" definition
in this chapter for more information.

Usage Notes
Before you call the import() method, you must call the setSourceInformation()
method to set the srcType, srcLocation, and srcName attribute information to
describe where the data source is located. If you call the importFrom() or the
export() method, then these attributes are set after the importFrom() or export()
call succeeds.

You must ensure that the directory exists or is created before you use this method.
ORDSource Reference Information I-41

setSourceInformation()
Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the setSourceInformation() method and the value
for source_type is NULL.

Examples
None.
I-42 Oracle interMedia User’s Guide and Reference

setUpdateTime()
setUpdateTime()

Format
setUpdateTime(current_time DATE);

Description
Sets the value of the updateTime attribute to the time you specify.

Parameters

current_time
The update time.

Usage Notes
If current_time is NULL, updateTime is set to SYSDATE (the current time).

Pragmas
None.

Exceptions
None.

Examples
None.
ORDSource Reference Information I-43

trim()
trim()

Format
trim(ctx IN OUT RAW,

 newlen IN INTEGER) RETURN INTEGER;

Description
Trims a data source.

Parameters

ctx
The source plug-in context information.

newlen
The trimmed new length.

Usage Notes
Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.

The return INTEGER is 0 (zero) for success and >0 (for example, 1) for failure. The
exact number and the meaning for that number is plug-in defined. For example, for
the file plug-in, 1 might mean "File not found," 2 might mean "No such directory,"
and so forth.

Pragmas
None.

Exceptions
INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the trim() method and the value for srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED
I-44 Oracle interMedia User’s Guide and Reference

trim()
This exception is raised if you call the trim() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the trim() method within a source plug-in when
any other exception is raised.

Examples
None.
ORDSource Reference Information I-45

write()
write()

Format
write(

 ctx IN OUT RAW,

 startPos IN INTEGER,

 numBytes IN OUT INTEGER,

 buffer IN RAW);

Description
Allows you to write a buffer of numBytes to a source beginning at a start position
(startPos).

Parameters

ctx
The source plug-in context information.

startPos
The start position in the source to where the buffer should be copied.

numBytes
The number of bytes to be written to the source.

buffer
The buffer of data to be written.

Usage Notes
This method assumes that the writable source allows you to write numBytes at a
random byte location. For example, the file and HTTP source types are not writable
sources and do not support this method.

Calling this method uses the ORDPLUGINS.ORDX_<srcType>_SOURCE plug-in
package.
I-46 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
Pragmas
None.

Exceptions
NULL_SOURCE

This exception is raised if you call the write() method and local is 1 or NULL and
localData is NULL.

INCOMPLETE_SOURCE_INFORMATION

This exception is raised if you call the write() method and the value of srcType is
NULL and data is not local.

METHOD_NOT_SUPPORTED

This exception is raised if you call the write() method and this method is not
supported by the source plug-in being used.

SOURCE_PLUGIN_EXCEPTION

This exception is raised if you call the write() method within a source plug-in when
any other exception is raised.

Examples
None.

I.3 Packages or PL/SQL Plug-ins
This section presents reference information on the packages or PL/SQL plug-ins
provided.

Any method invoked from a source plug-in call has the first argument as obj
(ORDSource) and the second argument as ctx (RAW).

Plug-ins must be named as ORDX_<name>_<module_name> where the <module_
name> is SOURCE for ORDSource. For example, the file plug-in described in
Section I.3.1, is named ORDX_FILE_SOURCE and <name> is the source type.

Exceptions must be raised from and recorded in a package named as ORD_
<module_name>Exceptions. For example, ORDSource exceptions are raised and
recorded in a package named ORDSourceExceptions (see Appendix H).
ORDSource Reference Information I-47

Packages or PL/SQL Plug-ins
I.3.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package or PL/SQL plug-in is provided.

CREATE OR REPLACE PACKAGE ORDX_FILE_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 slob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW),
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
I-48 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);

 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource,
 userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_FILE_SOURCE;
/

Table I–1 shows the methods supported in the ORDX_FILE_SOURCE package and
the exceptions raised if you call a method that is not supported.

Table I–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Supported

getContentLength Supported

getSourceAddress Supported

open Supported
ORDSource Reference Information I-49

Packages or PL/SQL Plug-ins
I.3.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
The ORDPLUGINS.ORDX_HTTP_SOURCE package or PL/SQL plug-in is
provided.

CREATE OR REPLACE PACKAGE ORDX_HTTP_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Supported

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Table I–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package (Cont.)

Name of Method Level of Support
I-50 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_HTTP_SOURCE;
/

Table I–2 shows the methods supported in the ORDX_HTTP_SOURCE package and
the exceptions raised if you call a method that is not supported.

Table I–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported
ORDSource Reference Information I-51

Packages or PL/SQL Plug-ins
I.3.3 ORDPLUGINS.ORDX_<srcType>_SOURCE Package
Use the ORDPLUGINS.ORDX_<srcType>_SOURCE package or PL/SQL plug-in as
a template to create your own source type. Use the
ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE
packages as a guide in developing your new source type package.

I.3.4 Extending interMedia to Support a New Data Source
Extending interMedia to support a new data source consists of four steps:

1. Design your new data source.

2. Implement your new data source and name it, for example, ORDX_MY_
SOURCE.SQL.

3. Install your new ORDX_MY_SOURCE.SQL plug-in in the ORDPLUGINS
schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
SOURCE.SQL plug-in to PUBLIC.

Section 3.5 briefly describes how to extend interMedia to support a new data source
for audio and video data and describe the interfaces. A package body listing is
provided in Example I–1 to assist you in this operation. Add your variables to the

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Not supported - raises exception: METHOD_NOT_SUPPORTED

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Table I–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package (Cont.)

Name of Method Level of Support
I-52 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
places that say "--Your variables go here" and add your code to the places that say
"--Your code goes here".

Example I–1 Show the Package Body for Extending Support to a New Data Source

CREATE OR REPLACE PACKAGE BODY ORDX_MY_SOURCE
AS
 -- functions/procedures
 FUNCTION processCommand(
 obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END processCommand;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END import;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END import;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
ORDSource Reference Information I-53

Packages or PL/SQL Plug-ins
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END importFrom;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END importFrom;
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END export;

 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END getContentLength;
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END getSourceAddress;
I-54 Oracle interMedia User’s Guide and Reference

Packages or PL/SQL Plug-ins
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW, ctx OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END open;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END close;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER)
 RETURN INTEGER
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END trim;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END read;
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here
 BEGIN
 --Your code goes here
 END write;
END ORDX_MY_SOURCE;
/

ORDSource Reference Information I-55

Packages or PL/SQL Plug-ins
show errors;
I-56 Oracle interMedia User’s Guide and Reference

Deprecated Me
J

Deprecated Methods

J.1 Deprecated Audio and Video Methods
The following ORDAudio and ORDVideo get methods that accept a ctx parameter
were deprecated in release 8.1.6:

ORDAudio
 getFormat(ctx IN OUT RAW) RETURN VARCHAR2
 getEncoding(ctx IN OUT RAW) RETURN VARCHAR2
 getNumberOfChannels(ctx IN OUT RAW) RETURN INTEGER
 getSamplingRate(ctx IN OUT RAW) RETURN INTEGER
 getSampleSize(ctx IN OUT RAW) RETURN INTEGER
 getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2
 getAudioDuration(ctx IN OUT RAW) RETURN INTEGER

ORDVideo
 getFormat(ctx IN OUT RAW) RETURN VARCHAR2
 getFrameSize(SELF IN OUT NOCOPY ORDVideo,
 ctx IN OUT RAW,
 retWidth OUT INTEGER,
 retHeight OUT INTEGER)
 getFrameResolution(ctx IN OUT RAW) RETURN INTEGER
 getFrameRate(ctx IN OUT RAW) RETURN INTEGER
 getVideoDuration(ctx IN OUT RAW) RETURN INTEGER
 getNumberOfFrames(ctx IN OUT RAW) RETURN INTEGER
 getCompressionType(ctx IN OUT RAW) RETURN VARCHAR2
 getNumberOfColors(ctx IN OUT RAW) RETURN INTEGER
 getBitRate(ctx IN OUT RAW) RETURN INTEGER

The following ORDAudio and ORDVideo comments methods were deprecated in
release 9.0.1:
thods J-1

Deprecated Audio and Video Methods
ORDAudio
-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComments(amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER PROCEDURE writeToComments(offset IN INTEGER,
 amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER FUNCTION readFromComments(offset IN INTEGER,
 amount IN BINARY_INTEGER := 32767)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION locateInComments(pattern IN VARCHAR2,
 offset IN INTEGER := 1,
 occurrence IN INTEGER := 1)
 RETURN INTEGER,
MEMBER PROCEDURE trimComments(newlen IN INTEGER),
MEMBER PROCEDURE eraseFromComments(amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1),
MEMBER PROCEDURE deleteComments,
MEMBER PROCEDURE loadCommentsFromFile(fileobj IN BFILE,
 amount IN INTEGER,
 from_loc IN INTEGER := 1,
 to_loc IN INTEGER := 1),
MEMBER PROCEDURE copyCommentsOut(dest IN OUT NOCOPY CLOB,
 amount IN INTEGER,
 from_loc IN INTEGER := 1,
 to_loc IN INTEGER := 1),
MEMBER FUNCTION compareComments(
 compare_with_lob IN CLOB,
 amount IN INTEGER := 4294967295,
 starting_pos_in_comment IN INTEGER := 1,
 starting_pos_in_compare IN INTEGER := 1)
 RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getCommentLength RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS, WNPS, RNDS, RNPS),

ORDVideo
-- Methods associated with the comments attribute
MEMBER PROCEDURE appendToComments(amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
J-2 Oracle interMedia User’s Guide and Reference

Deprecated Audio and Video Methods
MEMBER PROCEDURE writeToComments(offset IN INTEGER,
 amount IN BINARY_INTEGER,
 buffer IN VARCHAR2),
MEMBER FUNCTION readFromComments(offset IN INTEGER,
 amount IN BINARY_INTEGER := 32767)
 RETURN VARCHAR2,
PRAGMA RESTRICT_REFERENCES(readFromComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION locateInComments(pattern IN VARCHAR2,
 offset IN INTEGER := 1,
 occurrence IN INTEGER := 1)
 RETURN INTEGER,
MEMBER PROCEDURE trimComments(newlen IN INTEGER),
MEMBER PROCEDURE eraseFromComments(amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1),
MEMBER PROCEDURE deleteComments,
MEMBER PROCEDURE loadCommentsFromFile(fileobj IN BFILE,
 amount IN INTEGER,
 from_loc IN INTEGER :=1,
 to_loc IN INTEGER :=1),
MEMBER PROCEDURE copyCommentsOut(dest IN OUT NOCOPY CLOB,
 amount IN INTEGER,
 from_loc IN INTEGER :=1,
 to_loc IN INTEGER :=1),
MEMBER FUNCTION compareComments(
 compare_with_lob IN CLOB,
 amount IN INTEGER := 4294967295,
 starting_pos_in_comment IN INTEGER := 1,
 starting_pos_in_compare IN INTEGER := 1)
 RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(compareComments, WNDS, WNPS, RNDS, RNPS),

MEMBER FUNCTION getCommentLength RETURN INTEGER,
PRAGMA RESTRICT_REFERENCES(getCommentLength, WNDS, WNPS, RNDS, RNPS),

The following ORDAudio and ORDVideo accessor methods were deprecated in
release 9.0.1:

ORDAudio
MEMBER PROCEDURE setProperties(ctx IN OUT RAW),

ORDVideo
MEMBER PROCEDURE setProperties(ctx IN OUT RAW),
Deprecated Methods J-3

Deprecated Audio and Video Methods
J-4 Oracle interMedia User’s Guide and Reference

Index

A
adding images, 3-42
advantages of using

LOB buffering, 11-17
AIFF data format, A-1
AIFF-C data format, A-2
Apple QuickTime data format, C-2
AU data format, A-2
AVI data format, C-3

B
BFILE, 3-45, 3-46
BLOBs in table partitions

using interMedia column objects, 11-17
BUFFER_POOL_KEEP parameter, 11-5
BUFFER_POOL_RECYCLE parameter, 11-5
bulk data loading methods, 11-18

C
CACHE option, 11-11
checkProperties() method, 6-17, 8-15, 9-18
CHUNK option, 11-11
clearLocal() method, 5-5, I-9
close() method, I-10
closeSource() method, 5-6
codecs (compression and decompression

schemes), 1-4
color visual attribute, 2-4

location visual attribute, 2-5
specified with location, 2-5

compatibility, 4-1

compatibilityInit() method, 4-3
compression

formats, A-1, B-1, C-1
content-based retrieval

benefits, 2-1
example, 3-50
overview, 2-1

converting
images, 3-54

copy() method, 8-16
copying

images, 3-53

D
data

loading multimedia, 1-15
data format, 1-8
database initialization parameter

BUFFER_POOL_KEEP, 11-5
BUFFER_POOL_RECYCLE, 11-5
DB_BLOCK_SIZE, 11-2, 11-4, 11-29
DB_CACHE_SIZE, 11-3, 11-5, 11-29
LARGE_POOL_SIZE, 11-3
LOG_BUFFER, 11-7
setting, 11-2
SHARED_POOL_RESERVED_SIZE, 11-7
SHARED_POOL_SIZE, 11-3, 11-7

DB_BLOCK_SIZE parameter, 11-2, 11-4, 11-29
DB_CACHE_SIZE parameter, 11-3, 11-5, 11-29
DBA tuning tips, 11-1
DBMS_LOB package

loading data, 11-24
deleteContent() method, 5-8
Index-1

deleteLocalContent method, I-12
distance, 2-8
domain index, 2-12

E
ensuring future compatibility

with evolving interMedia object types, 4-1
evaluateScore() method, 8-46
evolving interMedia object types

ensuring future compatibility, 4-1
examples

retrieving an image (simple read), 3-48
retrieving images similar to an image

(content-based), 3-50
retrieving video data (simple read), 3-76

exceptions and error messages, H-1
export() method, 5-9, 10-5, I-13
extending interMedia

audio default format, 6-56
document default format, 7-29
new audio format, 3-9, 3-27, 6-59
new audio object type, 3-9, 3-28
new data source, 3-86, I-52
new document format, 7-30
new image object type, 3-55
new video format, 3-76, 9-68
new video object type, 3-77
video default format, 9-65

extensible index, 2-12

F
file format, A-1, B-1, C-1
formats

compression, A-1, B-1, C-1
file, A-1, B-1, C-1

frequently asked questions (FAQ), G-1

G
generateSignature() method, 8-48
getAllAttributes() method, 6-19, 9-20
getAttribute() method, 6-21, 9-22
getAudioDuration() method, 6-23

getBFILE() method, 5-13
getBFile() method, I-16
getBitRate method, 9-24
getCompressionFormat() method, 8-18
getCompressionType() method, 6-25, 9-25
getContent() method, 5-15
getContentFormat() method, 8-19
getContentInLob() method, 6-26, 7-14, 9-26
getContentInTempLob() method, I-17
getContentLength() method, 6-24, 7-16, 8-20, 9-28,

I-19
getDescription() method, 6-28, 9-29
getEncoding() method, 6-29
getFileFormat() method, 8-21
getFormat() method, 6-30, 7-17, 9-30
getFrameRate method, 9-32
getFrameResolution method, 9-33
getFrameSize() method, 9-34
getHeight() method, 8-22
getLocalContent method, I-21
getMimeType() method, 5-17
getNumberOfChannels() method, 6-31
getNumberOfColors method, 9-36
getNumberOfFrames method, 9-37
getProperties() method (all attributes) for

BFILEs, 10-24, 10-36, 10-48, 10-68
getProperties() method (all attributes) for

BLOBs, 10-18, 10-31, 10-43, 10-62
getProperties() method for BFILEs, 10-22, 10-34,

10-46, 10-66
getProperties() method for BLOBs, 10-16, 10-29,

10-41, 10-60
getSampleSize() method, 6-32
getSamplingRate() method, 6-33
getSource() method, 5-19
getSourceAddress() method, I-22
getSourceInformation method, I-24
getSourceLocation() method, 5-21, I-25
getSourceName() method, 5-22, I-26
getSourceType() method, 5-23, I-27
getUpdateTime() method, 5-25, I-28
getVideoDuration method, 9-38
getWidth() method, 8-23
Index-2

I
image

attributes, 2-2
import() method, 6-34, 7-18, 8-24, 9-39, I-29
importFrom() method, 6-36, 7-21, 8-26, 9-41, 10-8,

I-31
importFrom() method (all attributes), 10-11
indexing signatures, 2-12
init() for ORDImage method, 8-7
init() for ORDImageSignature method, 8-44
init() method, 6-8, 7-6, 9-9
init(srcType,srcLocation,srcName) for ORDImage

method, 8-9
init(srcType,srcLocation,srcName) method, 6-10,

7-8, 9-11
INITIAL and NEXT parameters, 11-12
initializing interMedia column objects, 11-8
inserting images, 3-43
interchange format, 1-8
interMedia

guidelines for best performance results, 11-28
improving multimedia LOB data retrieval and

update performance, 11-29
initializing column objects, 11-8
media data storage model, 1-3
objects types, 1-3
reading data from an object, 11-25
relational functional interface, 10-1
setting column object to empty, 11-8
setting column objects to NULL, 11-8
strategies with column objects, 11-8

interMedia Clipboard
loading data, 11-25

interMedia column objects
tablespace, 11-9

interMedia object types evolution
ensuring future compatibility, 4-1

isLocal method, I-33
isLocal() method, 5-26
isSimilar() method, 8-49

L
LARGE_POOL_SIZE parameter, 11-3

loading data
bulk methods, 11-18
multimedia, 1-15
using DBMS_LOB package, 11-24
using interMedia Clipboard, 1-15, 11-25
using OCI, 11-24
using PL/SQL, 1-15, 11-18
using SQL*Loader, 1-15

loading FILE data into interMedia objects, 11-18
LOB buffering

advantages of using, 11-17
LOB index

using with interMedia column objects, 11-10
location visual attribute, 2-5

specified with color, 2-5
LOG_BUFFER parameter, 11-7
LOGGING option, 11-11
lossless compression, 1-8
lossy compression, 1-8

M
matching

preparing or selecting images for, 2-13
MAXEXTENTS parameter, 11-14
memory allocation

tuning, 11-5
messages, error, exceptions, H-1
methods, 8-45, I-6

checkProperties(), 6-17, 8-15, 9-18
clearLocal(), 5-5, I-9
close(), I-10
closeSource(), 5-6
common, 5-1
compatibilityInit(), 4-3
copy(), 8-16
deleteContent(), 5-8
deleteLocalContent, I-12
evaluateScore(), 8-46
export(), 5-9, 10-5, I-13
for ORDDoc, 7-10
generateSignature(), 8-48
getAllAttributes(), 6-19, 9-20
getAttribute(), 6-21, 9-22
getAudioDuration(), 6-23
Index-3

getBFILE(), 5-13
getBFile(), I-16
getBitRate, 9-24
getCompressionFormat(), 8-18
getCompressionType(), 6-25, 9-25
getContent(), 5-15
getContentFormat(), 8-19
getContentInLob(), 6-26, 7-14, 9-26
getContentInTempLob(), I-17
getContentLength(), 6-24, 7-16, 8-20, 9-28, I-19
getDescription(), 6-28, 9-29
getEncoding(), 6-29
getFileFormat(), 8-21
getFormat(), 6-30, 7-17, 9-30
getFrameRate, 9-32
getFrameResolution, 9-33
getFrameSize(), 9-34
getHeight(), 8-22
getLocalContent, I-21
getMimeType(), 5-17
getNumberOfChannels(), 6-31
getNumberOfColors, 9-36
getNumberOfFrames, 9-37
getProperties() (all attributes) for

BFILEs, 10-24, 10-36, 10-48, 10-68
getProperties() (all attributes) for BLOBs, 10-18,

10-31, 10-43, 10-62
getProperties() for BFILEs, 10-22, 10-34, 10-46,

10-66
getProperties() for BLOBs, 10-16, 10-29, 10-41,

10-60
getSampleSize(), 6-32
getSamplingRate(), 6-33
getSource(), 5-19
getSourceAddress(), I-22
getSourceInformation, I-24
getSourceLocation(), 5-21, I-25
getSourceName(), 5-22, I-26
getSourceType(), 5-23, I-27
getUpdateTime(), 5-25, I-28
getVideoDuration, 9-38
getWidth(), 8-23
import(), 6-34, 7-18, 8-24, 9-39, I-29
importFrom(), 6-36, 7-21, 8-26, 9-41, 10-8, I-31
importFrom() (all attributes), 10-11

init(), 6-8, 7-6, 9-9
init() for ORDImage, 8-7
init() for ORDImageSignature, 8-44
init(srcType,srcLocation,srcName), 6-10, 7-8,

9-11
init(srcType,srcLocation,srcName) for

ORDImage, 8-9
isLocal, I-33
isLocal(), 5-26
isSimilar(), 8-49
open(), I-34
openSource(), 5-27
ORDAudio, 6-12
ORDDoc, 7-10
ORDimage, 8-10
ORDImageSignature, 8-45
ORDSource, I-6
ORDVideo, 9-13
process(), 8-29, 10-51
processAudioCommand(), 6-39
processCommand(), I-36
processCopy(), 8-34
processCopy() for BFILEs, 10-55
processCopy() for BLOBs, 10-53
processSourceCommand(), 5-29
processVideoCommand(), 9-44
read(), I-38
readFromSource(), 5-32
relational interface, 10-2
setAudioDuration(), 6-42
setBitRate(), 9-47
setCompressionType(), 6-43, 9-48
setDescription(), 6-44, 9-49
setEncoding(), 6-46
setFormat(), 6-47, 7-24, 9-51
setFrameRate(), 9-53
setFrameResolution(), 9-54
setFrameSize(), 9-55
setKnownAttributes(), 6-49, 9-57
setLocal, I-40
setLocal(), 5-34
setMimeType(), 5-35
setNumberOfChannels, 6-51
setNumberOfColors(), 9-60
setNumberOfFrames(), 9-61
Index-4

setProperties, 8-36
setProperties(), 6-52, 9-62
setProperties() (XML), 6-52, 7-26
setProperties() for foreign images, 8-38
setSampleSize(), 6-55
setSamplingRate(), 6-54
setSource(), 5-37
setSourceInformation(), I-41
setUpdateTime(), 5-39, I-43
setVideoDuration(), 9-64
trim(), I-44
trimSource(), 5-40
write(), I-46
writeToSource(), 5-42

multimedia LOB data retrieval and update
performance

improving, 11-29

O
object relational technology, 1-1
object types

ORDAudio, 6-3
ORDDoc, 7-3
ORDImage, 8-3
ORDImageSignature, 8-42
ORDSource, I-3
ORDVideo, 9-3

object views, 3-10, 3-28, 3-57, 3-77
OCI

loading data, 11-24
open() method, I-34
openSource() method, 5-27
ORDAudio object type

reference information, 6-3
ORDDoc object type

reference information, 7-3
ORDImage object type

reference information, 8-3
ORDImageSignature object type

reference information, 8-42
ORDPLUGINS.ORDX_<srcType>_SOURCE

package, I-52
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, 9-65

ORDPLUGINS.ORDX_FILE_SOURCE
package, I-48

ORDPLUGINS.ORDX_HTTP_SOURCE
package, I-50

ORDSource object type
reference information, I-3

ORDVideo object type
reference information, 9-3

ORDX_DEFAULT_AUDIO package, 6-56
ORDX_DEFAULT_DOC package, 7-29

P
packages

ORDPLUGINS.ORDX_<srcType>_
SOURCE, I-52

ORDPLUGINS.ORDX_DEFAULT_VIDEO, 9-65
ORDPLUGINS.ORDX_FILE_SOURCE, I-48
ORDPLUGINS.ORDX_HTTP_SOURCE, I-50
ORDX_DEFAULT_AUDIO, 6-56
ORDX_DEFAULT_DOC, 7-29

packages or PL/SQL plug-ins, 6-56, 7-29, 9-65, I-47
PCTFREE parameter, 11-15
PCTINCREASE parameter, 11-14
PCTVERSION option, 11-10
performance results

guidelines for using interMedia objects, 11-28
PL/SQL

loading data, 1-15
example, 11-18

populating rows, 3-44
preparing

images for matching, 2-13
process() method, 8-29, 10-51
processAudioCommand() method, 6-39
processCommand() method, I-36
processCopy() method, 8-34
processCopy() method for BFILEs, 10-55
processCopy() method for BLOBs, 10-53
processSourceCommand() method, 5-29
processVideoCommand() method, 9-44
protocol, 1-9
Index-5

Q
querying rows, 3-46

R
read() method, I-38
readFromSource() method, 5-32
reading data from an interMedia object, 11-25
reading interMedia data

example, 11-26
reference information

ORDAudio, 6-1
ORDDoc, 7-1
ORDImage, 8-1
ORDImageSignature, 8-40
ORDSource, I-1
ORDVideo, 9-1

related documents, xxvii
relational functional interface reference

information, 10-1
retrieval, content-based

benefits, 2-1
overview, 2-1

retrieving
images from tables, 3-48
images similar to an image

(content-based), 3-50
video data from table, 3-76

RMFF data format, C-3
roll back, 3-55

S
sample program, F-1, J-1
segment and physical attributes

PCTFREE parameter, 11-15
selecting

images for matching, 2-13
setAudioDuration() method, 6-42
setBitRate() method, 9-47
setCompressionType() method, 6-43, 9-48
setDescription() method, 6-44, 9-49
setEncoding() method, 6-46
setFormat() method, 6-47, 7-24, 9-51
setFrameRate() method, 9-53

setFrameResolution() method, 9-54
setFrameSize() method, 9-55
setKnownAttributes() method, 6-49, 9-57
setLocal method, I-40
setLocal() method, 5-34
setMimeType() method, 5-35
setNumberOfChannels method, 6-51
setNumberOfColors() method, 9-60
setNumberOfFrames() method, 9-61
setProperties method, 8-36
setProperties() method, 6-52, 9-62
setProperties() method (XML), 6-52, 7-26
setProperties() method for foreign images, 8-38
setSampleSize() method, 6-55
setSamplingRate() method, 6-54
setSource() method, 5-37
setSourceInformation() method, I-41
setting

column object to empty, 11-8
column objects to NULL, 11-8

setting database initialization parameters, 11-2
setUpdateTime() method, 5-39, I-43
setVideoDuration() method, 9-64
SGA, 11-2

database initialization parameters, 11-2
sizing, 11-2
sizing using DB_BLOCK_SIZE parameter, 11-2
sizing using DB_CACHE_SIZE parameter, 11-3
sizing using LARGE_POOL_SIZE

parameter, 11-3
sizing using SHARED_POOL_SIZE

parameter, 11-3
shape (visual attribute), 2-4
SHARED_POOL_RESERVED_SIZE

parameter, 11-7
SHARED_POOL_SIZE parameter, 11-3, 11-7
signature, 2-2

indexing, 2-12
similarity calculation, 2-9
SQL*Loader

example loading multimedia data, 11-23
loading data, 1-15

static methods
ORDAudio relational functional interface, 10-4,

10-13
Index-6

ORDDoc relational functional interface, 10-26
ORDImage relational functional interface, 10-38
ORDVideo relational functional interface, 10-56

storage characteristics
CACHE option, 11-11
CHUNK option, 11-11
DB_BLOCK_SIZE parameter, 11-4
INITIAL and NEXT parameters, 11-12
LOGGING option, 11-11
MAXEXTENTS parameter, 11-14
PCTINCREASE parameter, 11-14
PCTVERSION option, 11-10
STORAGE IN ROW clause, 11-14

STORAGE IN ROW clause, 11-14
strategies for column objects, 11-8
system global area

See SGA

T
table partitions

using interMedia column objects containing
BLOBs, 11-17

tablespace characteristics
LOB index, 11-10
tablespace, 11-9

temporary conversions, 3-55
texture (visual attribute), 2-4
threshold, 2-11
thumbnail images, 8-33, 10-52
trim() method, I-44
trimSource() method, 5-40
tuning

memory allocation, 11-5

V
visual attributes, 2-2

W
WAV data format, A-3, A-5
weight, 2-8
write methods

write(), I-46

writeToSource() method, 5-42
Index-7

Index-8

	User’s Guide and Reference
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Changes to This Guide
	Documentation Accessibility

	1 Introduction
	1.1� Object Relational Technology
	1.2� Multimedia Content Management
	1.3� Audio Concepts
	1.3.1� Digitized Audio
	1.3.2� Audio Components

	1.4� ORDDoc or Heterogeneous Media Data Concepts
	1.4.1� Digitized Heterogeneous Media Data
	1.4.2� Heterogeneous Media Data Components

	1.5� Image Concepts
	1.5.1� Digitized Images
	1.5.2� Image Components

	1.6� Video Concepts
	1.6.1� Digitized Video
	1.6.2� Video Components

	1.7� Multimedia Object Types and Methods
	1.8� Multimedia Storage
	1.8.1� Storing Multimedia Data
	1.8.2� Querying Multimedia Data
	1.8.3� Accessing Multimedia Data

	1.9� Extending Oracle interMedia
	1.9.1� Supporting Other External Sources and Other Media Data Formats
	1.9.2� Supporting Audio Data Processing
	1.9.3� Supporting Video Data Processing

	1.10� Relational Interface
	1.11� Loading Multimedia Data into Oracle9i Using interMedia
	1.12� Reading Data from a LOB
	1.13� interMedia Architecture
	1.13.1� Oracle interMedia Java Classes
	1.13.2� Oracle interMedia Java Classes for Servlets and JSPs
	1.13.3� Annotation Services for Multimedia Data
	1.13.4� Streaming Content from an Oracle Database
	1.13.5� Support for Web Technologies
	1.13.6� Geocoding Services

	2 Content-Based Retrieval Concepts
	2.1� Overview and Benefits
	2.2� How Content-Based Retrieval Works
	2.2.1� Color
	2.2.2� Texture
	2.2.3� Shape

	2.3� How Matching Works
	2.3.1� Weight
	2.3.2� Score
	2.3.3� Similarity Calculation
	2.3.4� Threshold Value

	2.4� Using an Index to Compare Signatures
	2.5� Preparing or Selecting Images for Useful Matching

	3 interMedia Examples
	3.1� Audio Data Examples
	3.1.1� Defining a Song Object
	3.1.2� Creating an Object Table SongsTable
	3.1.3� Creating a List Object Containing a List of References to Songs
	3.1.4� Defining the Implementation of the songList Object
	3.1.5� Creating a CD Object and a CD Table
	3.1.6� Inserting a Song into the SongsTable Table
	3.1.7� Inserting a CD into the CdTable Table
	3.1.8� Loading a Song into the SongsTable Table
	3.1.9� Inserting a Reference to a Song Object into the Songs List in the CdTable Table
	3.1.10� Adding a CD Reference to a Song
	3.1.11� Retrieving Audio Data from a Song in a CD
	3.1.12� Extending interMedia to Support a New Audio Data Format
	3.1.13� Extending interMedia with a New Type
	3.1.14� Using Audio Types with Object Views
	3.1.15� Scripts for Creating and Populating an Audio Table from a BFILE Data Source

	3.2� Media Data Examples
	3.2.1� Defining a Media Object
	3.2.2� Creating an Object Table DocumentsTable
	3.2.3� Creating a List Object Containing a List of References to Media
	3.2.4� Defining the Implementation of the documentList Object
	3.2.5� Creating a Library Object and a Library Table
	3.2.6� Inserting Media into the DocumentsTable Table
	3.2.7� Inserting a Library into the LibraryTable Table
	3.2.8� Loading Media into the DocumentsTable Table
	3.2.9� Inserting a Reference to a Document Object into the Documents List in the LibraryTable Table
	3.2.10� Adding a Library Reference to a Document
	3.2.11� Extending interMedia to Support a New Media Data Format
	3.2.12� Extending interMedia with a New Type
	3.2.13� Using Document Types with Object Views
	3.2.14� Using the ORDDoc Object Type as a Repository
	3.2.15� Scripts for Creating and Populating a Media Table from a BFILE Data Source

	3.3� Image Data Examples
	3.3.1� Adding Image Types to an Existing Table
	3.3.2� Adding Image Types to a New Table
	3.3.3� Inserting a Row Using BLOB Images
	3.3.4� Populating a Row Using BLOB Images
	3.3.5� Inserting a Row Using BFILE Images
	3.3.6� Populating a Row Using BFILE Images
	3.3.7� Querying a Row
	3.3.8� Importing an Image from an External File into the Database
	3.3.9� Retrieving an Image
	3.3.10� Retrieving Images Similar to a Comparison Image (Content-Based Retrieval)
	3.3.11� Creating a Domain Index
	3.3.12� Retrieving Images Similar to a Comparison Image Using Index Operations (Indexed Content-B...
	3.3.13� Copying an Image
	3.3.14� Converting an Image Format
	3.3.15� Copying and Converting in One Step
	3.3.16� Extending interMedia with a New Type
	3.3.17� Using Image Types with Object Views
	3.3.18� Scripts for Creating and Populating an Image Table from a BFILE Data Source
	3.3.19� Scripts for Populating an Image Table from an HTTP Data Source
	3.3.20� Addressing Globalization Support Issues

	3.4� Video Data Examples
	3.4.1� Defining a Clip Object
	3.4.2� Creating an Object Table ClipsTable
	3.4.3� Creating a List Object Containing a List of Clips
	3.4.4� Defining the Implementation of the clipList Object
	3.4.5� Creating a Video Object and a Video Table
	3.4.6� Inserting a Video Clip into the ClipsTable Table
	3.4.7� Inserting a Row into the VideoTable Table
	3.4.8� Loading a Video into the ClipsTable Table
	3.4.9� Inserting a Reference to a Clip Object into the Clips List in the VideoTable Table
	3.4.10� Inserting a Reference to a Video Object into the Clip
	3.4.11� Retrieving a Video Clip from the VideoTable Table
	3.4.12� Extending interMedia to Support a New Video Data Format
	3.4.13� Extending interMedia with a New Object Type
	3.4.14� Using Video Types with Object Views
	3.4.15� Scripts for Creating and Populating a Video Table from a BFILE Data Source

	3.5� Extending interMedia to Support a New Data Source

	4 Ensuring Future Compatibility with Evolving interMedia Object Types
	4.1� When and How to Call the Compatibility Initialization Function
	compatibilityInit()

	5 Common Methods for interMedia Object Types Reference Information
	5.1� Important Notes
	5.2� Methods
	clearLocal()
	closeSource()
	deleteContent()
	export()
	getBFILE()
	getContent()
	getMimeType()
	getSource()
	getSourceLocation()
	getSourceName()
	getSourceType()
	getUpdateTime()
	isLocal()
	openSource()
	processSourceCommand()
	readFromSource()
	setLocal()
	setMimeType()
	setSource()
	setUpdateTime()
	trimSource()
	writeToSource()

	6 ORDAudio Reference Information
	6.1� Object Types
	ORDAudio Object Type

	6.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	6.3� Methods
	6.3.1� Example Table Definitions
	checkProperties()
	getAllAttributes()
	getAttribute()
	getAudioDuration()
	getContentLength()
	getCompressionType()
	getContentInLob()
	getDescription()
	getEncoding()
	getFormat()
	getNumberOfChannels()
	getSampleSize()
	getSamplingRate()
	import()
	importFrom()
	processAudioCommand()
	setAudioDuration()
	setCompressionType()
	setDescription()
	setEncoding()
	setFormat()
	setKnownAttributes()
	setNumberOfChannels()
	setProperties()
	setSamplingRate()
	setSampleSize()

	6.4� Packages or PL/SQL Plug-ins
	6.4.1� ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	6.4.2� Extending interMedia to Support a New Audio Data Format

	7 ORDDoc Reference Information
	7.1� Object Types
	ORDDoc Object Type

	7.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	7.3� Methods
	7.3.1� Example Table Definitions
	getContentInLob()
	getContentLength()
	getFormat
	import()
	importFrom()
	setFormat()
	setProperties()

	7.4� Packages or PL/SQL Plug-ins
	7.4.1� ORDPLUGINS.ORDX_DEFAULT_DOC Package
	7.4.2� Extending interMedia to Support a New Media Data Format

	8 Image Object Types Reference Information
	8.1� ORDImage Object Types
	ORDImage Object Type
	8.1.1� Constructors
	init() for ORDImage
	init(srcType,srcLocation,srcName) for ORDImage
	8.1.2� Methods
	8.1.3� Example Table Definitions
	checkProperties
	copy()
	getCompressionFormat
	getContentFormat
	getContentLength
	getFileFormat
	getHeight
	getWidth
	import()
	importFrom()
	process()
	processCopy()
	setProperties
	setProperties() for Foreign Images

	8.2� ORDImageSignature Object Type
	ORDImageSignature Object Type
	8.2.1� Constructors
	init() for ORDImageSignature
	8.2.2� Methods
	evaluateScore()
	generateSignature()
	isSimilar()
	8.2.3� ORDImageSignature Operators
	IMGSimilar Operator
	IMGScore Operator

	9 ORDVideo Reference Information
	9.1� Object Types
	ORDVideo Object Type

	9.2� Constructors
	init()
	init(srcType,srcLocation,srcName)

	9.3� Methods
	9.3.1� Example Table Definitions
	checkProperties()
	getAllAttributes()
	getAttribute()
	getBitRate
	getCompressionType
	getContentInLob()
	getContentLength()
	getDescription
	getFormat
	getFrameRate
	getFrameResolution
	getFrameSize()
	getNumberOfColors
	getNumberOfFrames
	getVideoDuration
	import()
	importFrom()
	processVideoCommand()
	setBitRate()
	setCompressionType()
	setDescription()
	setFormat()
	setFrameRate()
	setFrameResolution()
	setFrameSize()
	setKnownAttributes()
	setNumberOfColors()
	setNumberOfFrames()
	setProperties()
	setVideoDuration()

	9.4� Packages or PL/SQL Plug-ins
	9.4.1� ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	9.4.2� Extending interMedia to Support a New Video Data Format

	10 interMedia Relational Interface Reference
	10.1� Static Methods for the Relational Interface
	10.1.1� Static Methods Common to All Object Types
	10.1.2� Static Methods Uniquely Associated with Each Object Type

	10.2� Static Methods Common to All Object Types
	export()
	importFrom()
	importFrom() (all attributes)

	10.3� Static Methods Unique to the ORDAudio Object Type Relational Interface
	10.3.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	10.4� Static Methods Unique to the ORDDoc Object Type Relational Interface
	10.4.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	10.5� Static Methods Unique to the ORDImage Object Type Relational Interface
	10.5.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs
	process()
	processCopy() for BLOBs
	processCopy() for BFILEs

	10.6� Static Methods Unique to the ORDVideo Object Type Relational Interface
	10.6.1� Example Table Definitions
	getProperties() for BLOBs
	getProperties() (all attributes) for BLOBs
	getProperties() for BFILEs
	getProperties() (all attributes) for BFILEs

	11 Tuning Tips for the DBA
	11.1� Setting Database Initialization Parameters
	11.2� Issues to Consider in Creating Tables with interMedia Column Objects Containing BLOBs
	11.2.1� Initializing Internal interMedia Column Objects Containing BLOBs to NULL or EMPTY
	11.2.2� Specifying Tablespace and Storage Characteristics for interMedia Column Objects Containin...
	11.2.3� Segment Attributes and Physical Attributes
	11.2.4� Accommodating Temporary LOBs in the Buffer Cache
	11.2.5� Using interMedia Column Objects Containing BLOBs in Table Partitions
	11.2.6� LOB Buffering for Client Applications

	11.3� Improving Multimedia Data INSERT Performance in interMedia Objects Containing LOBs
	11.4� Loading Multimedia Data Using the interMedia Clipboard
	11.5� Loading Multimedia Data Using interMedia Annotator Utility
	11.6� Reading Data from an ORDVideo Object Using the interMedia readFromSource() Method in a PL/...
	11.7� Reading Results of an interMedia Benchmark
	11.8� Getting the Best Performance Results
	11.9� Improving Multimedia LOB Data Retrieval and Update Performance

	A Audio File and Compression Formats
	A.1� Supported Audio File and Compression Formats

	B Image File and Compression Formats
	B.1� Supported Image File and Compression Formats
	B.1.1� Image File Formats
	B.1.2� Image Compression Formats
	B.1.3� Summary of Image File Format and Image Compression Format

	C Video File and Compression Formats
	C.1� Supported Video File and Compression Formats

	D Image process() and processCopy() Operators
	D.1� Common Concepts
	D.1.1� Source and Destination Images
	D.1.2� process() and processCopy()
	D.1.3� Operator and Value
	D.1.4� Combining Operators

	D.2� Image Formatting Operators
	D.2.1� FileFormat
	D.2.2� ContentFormat
	D.2.3� CompressionFormat
	D.2.4� CompressionQuality

	D.3� Image Processing Operators
	D.3.1� Cut
	D.3.2� Scale
	D.3.3� XScale
	D.3.4� YScale
	D.3.5� FixedScale
	D.3.6� MaxScale

	D.4� Format-Specific Operators
	D.4.1� ChannelOrder
	D.4.2� Interleaving
	D.4.3� PixelOrder
	D.4.4� ScanlineOrder
	D.4.5� InputChannels
	D.4.6� Dither
	D.4.7� Page
	D.4.8� Tiled

	E Image Raw Pixel Format
	E.1� Raw Pixel Introduction
	E.2� Raw Pixel Image Structure
	E.3� Raw Pixel Header Field Descriptions
	E.4� Raw Pixel Post-Header Gap
	E.5� Raw Pixel Data Section and Pixel Data Format
	E.5.1� Scanline Ordering
	E.5.2� Pixel Ordering
	E.5.3� Band Interleaving
	E.5.4� N-Band Data

	E.6� Raw Pixel Header “C” Structure
	E.7� Raw Pixel Header “C” Constants
	E.8� Raw Pixel PL/SQL Constants
	E.9� Raw Pixel Images Using CCITT Compression
	E.10� Foreign Image Support and the Raw Pixel Format

	F Sample Programs
	F.1� Sample Audio Scripts
	F.2� Sample Document Scripts
	F.3� Sample Program for Modifying Images or Testing the Image Installation
	F.3.1� Demonstration (Demo) Installation Steps
	F.3.2� Running the Demo

	F.4� Sample Video Scripts
	F.5� Java Demo

	G Frequently Asked Questions
	H Exceptions and Error Messages
	H.1� Exceptions
	H.1.1� ORDAudioExceptions Exceptions
	H.1.2� ORDDocExceptions Exceptions
	H.1.3� ORDImageExceptions Exceptions
	H.1.4� ORDVideoExceptions Exceptions
	H.1.5� ORDSourceExceptions Exceptions

	H.2� ORDAudio Error Messages
	H.3� ORDImage Error Messages
	H.4� ORDVideo Error Messages

	I ORDSource Reference Information
	I.1� Object Types
	I.2� Methods
	I.3� Packages or PL/SQL Plug-ins
	I.3.1� ORDPLUGINS.ORDX_FILE_SOURCE Package
	I.3.2� ORDPLUGINS.ORDX_HTTP_SOURCE Package
	I.3.3� ORDPLUGINS.ORDX_<srcType>_SOURCE Package
	I.3.4� Extending interMedia to Support a New Data Source

	J Deprecated Methods
	J.1� Deprecated Audio and Video Methods

	Index

