

Oracle® Warehouse Builder
Sources and Targets Guide

11g Release 2 (11.2)

E10582-05

September 2011

Oracle Warehouse Builder Sources and Targets Guide, 11g Release 2 (11.2)

E10582-05

Copyright © 2000, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Richa Agarwala

Contributors: Antonio Romero, Michelle Bird, Joyce Scapicchio, David Allan, Linda Bittarelli, Ron Gonzalez,
Shawn Wu, Veenavani Revanuru, Ramesh Uppala, Alex Wu, Jean-Pierre Dijcks, Brian Maher, Gary Tripp,
Xuelin Lu, Bojana Simova, Lyudmila Mogilevich, Ting Liao, Frank Yang, Justin Ho, Robert Paul, Adrian
Scott, Robert Velisar, Alex Zhang, Winnie Wan, John Leigh, Thomas Lau, Geoff Watters, Padmaja Potineni,
Cathy Shea, Roza Leyderman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Conventions .. vii
Getting Help... viii
Related Publications.. viii

1 Connecting to Sources and Targets in Oracle Warehouse Builder

1.1 Supported Sources and Targets .. 1-1
1.2 Connecting to an Oracle Database ... 1-3
1.3 Oracle Database Heterogeneous Services ... 1-3
1.4 Connecting To Enterprise Applications .. 1-4
1.5 JDBC and Code Template-based Connectivity... 1-5
1.6 Choosing a Connection Technology .. 1-5

2 Connecting to Data Sources and Importing Metadata

2.1 About Source Data and Metadata .. 2-1
2.2 General Steps for Importing Metadata from Sources.. 2-1
2.3 Using the Import Metadata Wizard ... 2-8
2.4 Importing Metadata Definitions from Oracle Database.. 2-9
2.5 Reimporting Definitions ... 2-14

3 Using Flat Files as Sources or Targets

3.1 About Flat Files ... 3-1
3.2 Using the Create Flat File Wizard .. 3-6
3.3 Importing Definitions from Flat Files Using Sampling.. 3-12
3.4 Importing Metadata Definitions from COBOL Copybooks .. 3-20
3.5 Viewing and Editing a File Definition .. 3-34
3.6 Using External Tables.. 3-35

4 Connecting to Non-Oracle Data Sources Through Gateways

4.1 Connecting to a DB2 Database.. 4-2
4.2 Connecting to a SQL Server Database ... 4-3
4.3 Connecting to an ODBC Data Source .. 4-4

iv

4.4 Importing Database Objects .. 4-7

5 Connecting to Microsoft Data Sources Through ODBC Connection

5.1 Connecting to Excel Spreadsheets Through ODBC... 5-1
5.2 Connecting to SQL Server Database Through ODBC ... 5-5

6 Connecting to Data Sources Through JDBC

6.1 Generic Connection Using JDBC .. 6-1
6.2 Connecting to DB2 Database... 6-1
6.3 Connecting to SQL Server Database .. 6-3
6.4 Importing Metadata from Other Databases Using JDBC.. 6-4

7 Extracting Data from SAP Applications

7.1 Why SAP Connector... 7-1
7.2 Supported SAP Versions.. 7-2
7.3 Overview of SAP Objects... 7-2
7.4 Overview of the Interaction Between Oracle Warehouse Builder and SAP 7-2
7.5 Implementing the SAP Data Retrieval Mechanism ... 7-4
7.6 Connecting to the SAP System.. 7-5
7.7 Importing Metadata from SAP Tables .. 7-10
7.8 Creating SAP Extraction Mappings .. 7-13
7.9 Deploying and Executing SAP ABAP Mappings.. 7-17

8 Integrating with Oracle ERP Applications

8.1 Importing Metadata from Oracle E-Business Suite Applications.. 8-1
8.2 Importing Metadata from PeopleSoft Applications .. 8-6
8.3 Importing Metadata from Siebel Applications.. 8-10
8.4 Importing Metadata from Applications Implemented on non-Oracle Databases 8-12

9 Importing Oracle Warehouse Builder Data into Business Intelligence
Applications

9.1 Creating Business Definitions for Oracle BI Discoverer ... 9-1
9.2 Configuring Discoverer Objects... 9-22
9.3 Deploying Business Definitions to Oracle BI Discoverer... 9-23
9.4 Accessing BI Objects Using Oracle BI Discoverer ... 9-25
9.5 Creating Business Definitions for OBIEE ... 9-26
9.6 Configuring Oracle Business Intelligence Objects .. 9-39
9.7 Accessing BI Objects Using OBIEE.. 9-39
9.8 Deriving BI Objects .. 9-41

10 Importing Design Definitions from Oracle Designer

10.1 Using Oracle Designer Sources.. 10-1

v

11 Creating New Platforms

11.1 Creating a New Platform .. 11-1
11.2 Defining the Properties of a New Platform.. 11-2
11.3 Creating a Microsoft Excel Platform ... 11-13
11.4 Using Custom Metadata Import in Platforms ... 11-16
11.5 Defining Other Platforms ... 11-19

12 Using Code Templates to Load and Transfer Data

12.1 About Code Templates ... 12-1
12.2 Working with Code Templates.. 12-3

13 Importing and Publishing Web Services

13.1 Defining Web Services .. 13-1
13.2 Publishing Functions as Web Services.. 13-2
13.3 Importing External Web Services ... 13-6

Index

vi

vii

Preface

This preface includes the following topics:

■ Audience

■ Documentation Accessibility

■ Conventions

■ Getting Help

■ Related Publications

Audience
This guide is written for Oracle Database administrators and others who create
warehouses using Oracle Warehouse Builder.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
In this guide, Windows refers to the Windows NT, Windows 2000, and Windows XP
operating systems. The SQL*Plus interface to Oracle Database may be referred to as
SQL.

In the examples, an implied carriage return occurs after each line, unless otherwise
noted. You must press the Return key after a line of input.

The following table lists the conventions used in this guide:

viii

Getting Help
Help is readily available throughout Oracle Warehouse Builder:

■ Menus: Menu bars throughout Oracle Warehouse Builder contain a Help menu.
For context-sensitive information, choose Topic from the Help menu.

■ Wizards and dialog boxes: Detailed instructions are provided on the pages of the
wizards, which take you step-by-step through the process of creating an object.
Click the Help button for additional information about completing a specific
dialog box or a page of a wizard.

■ Tools: You can identify the tools on a toolbar by the tooltips that appear when you
rest the mouse over the icon.

Some toolbars include a Help icon, which displays the Contents page of the Help
system.

■ Lists: For items presented in lists, a description of the selected item displays
beneath the list.

■ Shortcut menus: Click the arrow icon on the right side of the title bar for a
window. Then, choose Help from the shortcut menu for context-sensitive
information.

Related Publications
In addition to the Sources and Targets Guide, the Oracle Warehouse Builder
documentation set includes the following:

■ Oracle Warehouse Builder Installation and Administration Guide

■ Oracle Warehouse Builder Concepts

■ Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Oracle Warehouse Builder API and Scripting Reference

■ Oracle Warehouse Builder OMB*Plus Command Reference

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

... Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text refers to interface buttons and links. Boldface
type also serves as emphasis to set apart main ideas.

italicized text Italicized text applies to new terms introduced for the first time.
Italicized text also serves as an emphasis on key concepts.

unicode text Unicode text denotes exact code, file directories and names, and
literal commands.

italicized unicode text Italicized unicode text refers to parameters whose value is
specified by the user.

[] Brackets enclose optional clauses from which you can choose one
or none.

ix

In addition to the Oracle Warehouse Builder documentation set, you can also reference
Oracle Database Data Warehousing Guide.

x

1

Connecting to Sources and Targets in Oracle Warehouse Builder 1-1

1 Connecting to Sources and Targets in
Oracle Warehouse Builder

For different types of data sources and targets, Oracle Warehouse Builder provides
different connection methods.

This chapter introduces the data sources and targets and specific connectivity
technologies supported by Oracle Warehouse Builder. It includes the following topics:

■ "Supported Sources and Targets"

■ "Connecting to an Oracle Database"

■ "Oracle Database Heterogeneous Services"

■ "Connecting To Enterprise Applications"

■ "JDBC and Code Template-based Connectivity"

■ "Choosing a Connection Technology"

1.1 Supported Sources and Targets
Table 1–1 lists the data storage systems and applications that Oracle Warehouse
Builder 11g Release 2 (11.2) can access. The table lists the supported sources and
targets for each type of application.

Supported Sources and Targets

1-2 Oracle Warehouse Builder Sources and Targets Guide

Table 1–1 Sources and Targets Supported in Oracle Warehouse Builder 11g Release 2 (11.2)

Application Type Supported Sources Supported Targets

Oracle Database Oracle Database releases 9.2, 10.1, 10.2,
11.1,11.2

Oracle Database releases 9.2, 10.1, 10.2,
11.1, 11.2

Note: Connectivity among database
versions over database links may
depend upon the version of the
database where an ETL mapping is
deployed and executing. Refer to the
documentation for your database
version for details about any limitations
on database links between database
versions.

Non-Oracle Databases ■ Any database accessible through
"Oracle Database Heterogeneous
Services", including but not limited to
DB2, Informix, SQL Server, Sybase,
and Teradata.

■ Any data store accessible through
ODBC, including but not limited to
Excel and MS Access.

■ Any data store accessible through
code templates.

See Chapter 12, "Using Code
Templates to Load and Transfer Data".

■ Any database accessible through
"Oracle Database Heterogeneous
Services", including but not limited
to DB2, Informix, SQL Server,
Sybase, and Teradata.

■ Any data source accessible through
ODBC, including but not limited to
Excel and MS Access.

■ Any data store accessible through
code templates.

See Chapter 12, "Using Code
Templates to Load and Transfer
Data".

Files Delimited and fixed-format flat files.

See "Importing Definitions from Flat Files
Using Sampling" on page 3-12.

Delimited, fixed-format, and XML
format flat files.

Business Applications ■ SAP R/3: For details on versions
supported, see the Certifications tab
on My Oracle Support.

See Chapter 7, "Extracting Data from
SAP Applications".

■ Oracle E-Business Suite, see
"Importing Metadata from Oracle
E-Business Suite Applications" on
page 8-1

■ PeopleSoft release 8, 9, see "Importing
Metadata from PeopleSoft
Applications" on page 8-6

■ Siebel, see "Importing Metadata from
Siebel Applications" on page 8-10

None

Process Flows and
Schedules/Oracle
Workflow

None Oracle Workflow releases 2.6.2, 2.6.3,
2.6.4, 11i

Oracle Database Heterogeneous Services

Connecting to Sources and Targets in Oracle Warehouse Builder 1-3

1.2 Connecting to an Oracle Database
You can directly connect to an Oracle database and import metadata from the
available database objects or deploy target objects to the database. To connect to a
database on a remote host, you must provide the network credentials to connect to the
host. See "Importing Metadata Definitions from Oracle Database" on page 2-9 for more
information about connecting to an Oracle database.

1.3 Oracle Database Heterogeneous Services
Oracle Warehouse Builder communicates with non-Oracle systems using Oracle
Database Heterogeneous Services and a complementary agent. Heterogeneous
Services make a non-Oracle system appear as if it were a remote Oracle Database
server. The agent can be an Oracle Database Gateway or the generic Open Database
Connectivity (ODBC) agent included with Oracle Database.

Figure 1–1 describes how Oracle Database uses Heterogeneous services to access a
remote non-Oracle source.

Figure 1–1 Heterogeneous Services Architecture

The Heterogeneous Services component in the database communicates with the
Heterogeneous Services agent process. The agent process, in turn, communicates with
the remote database.

The agent process consists of agent-generic code and a system-specific driver. All
agents contain the same agent-generic code. But each agent has a different driver
depending on the type of data being sourced.

1.3.1 Connecting Through Oracle Database Gateways
Oracle Database gateways provide transparent connections to non-Oracle databases.
When using a gateway, you can access these non-Oracle databases just as you would

Process Flows and
Schedules/Concurrent
Manager

None Any Oracle Database location, release
10g or later.

To deploy a schedule in Concurrent
Manager, Release 11i or 12i is required.
However, for both releases, you must
select 11i as the version when you create
a location in Oracle Warehouse Builder.

Business
Intelligence/Discoverer

None Oracle BI Discoverer Release 10.1,
Oracle Business Intelligence Suite
Enterprise Edition

Oracle Designer Oracle Designer 6i, 9i, 10g None

Table 1–1 (Cont.) Sources and Targets Supported in Oracle Warehouse Builder 11g Release 2 (11.2)

Application Type Supported Sources Supported Targets

Connecting To Enterprise Applications

1-4 Oracle Warehouse Builder Sources and Targets Guide

an Oracle database, including importing object metadata and accessing data as source
and target. See Chapter 4, "Connecting to Non-Oracle Data Sources Through
Gateways" for details of connecting to different databases through gateways.

1.3.2 Connecting Through JDBC
To connect to data sources that support Java Database Connectivity (JDBC), you must
use the appropriate JDBC driver for that data source. The JDBC driver for a
non-Oracle database or other data source may be installed with the product, or may
require a separate download or purchase. For detailed information about connecting
to various data sources using JDBC, see Chapter 6, "Connecting to Data Sources
Through JDBC".

1.3.3 Choosing JDBC or Gateways Connectivity
To connect through JDBC, you must install the appropriate JDBC drivers for the
database. Most of these drivers are shipped with the database. They are also
developed by third-party vendors and are usually available as free downloads. The
database objects, such as tables, that you import through a JDBC connection can be
used only in Code Template mappings. These database objects cannot be used with
other mappings, such as PL/SQL mappings, that you create in Oracle Warehouse
Builder.

To connect through a gateway, you must install Oracle Gateway for the specific
database. A gateway enables you to access data from non-Oracle databases in the same
way that you access data from Oracle Database. The database objects that you import
through a gateway connection can therefore be used in any of the mappings that you
create in Oracle Warehouse Builder.

1.3.4 Connecting Through ODBC
Oracle Warehouse Builder can leverage support for ODBC provided by the Oracle
Database to integrate with any data source that supports ODBC connectivity. ODBC
provides a generic connectivity that is intended for low-end data integration solutions
and the transfer of data is subject to the rules of specific ODBC or object linking and
embedding (OLE) database drivers installed on the client computer. You need not
install database-specific agents to connect to different data sources. Instead, you can
use the generic connectivity agent included with Oracle Database. You must still
create and customize an initialization file for your generic connectivity agent. For
detailed information about connecting to data sources using ODBC connectivity, see
"Connecting to an ODBC Data Source" on page 4-4.

1.4 Connecting To Enterprise Applications
Using Oracle Warehouse Builder, you can also connect to ERP and CRM applications,
such as SAP, Oracle E-Business Suite, Peoplesoft, and Siebel.

You can also connect to Oracle's Customer Data Hub (CDH), Universal Customer
Master (UCM), and Product Information Management (PIM).

The application adapters for Oracle applications provide additional metadata to
simplify ETL design from such sources, but connecting to these sources depends upon
underlying database connectivity. For example, metadata extraction from E-Business
Suite, which is hosted on Oracle database, is done using database links, while
metadata extraction from a Peoplesoft application hosted on a DB2 database depends

Choosing a Connection Technology

Connecting to Sources and Targets in Oracle Warehouse Builder 1-5

on having the DB2 gateway installed on your target database. You can also connect to
Peoplesoft using an alternative ODBC driver.

Connecting to an SAP system and extracting data is accomplished using native SAP
R/3 ABAP code and data extraction techniques fully supported by SAP.

When using the application connectors, the details of the underlying connection
technologies for different sources are generally hidden from the user, which simplifies
managing the connectivity.

For more information about connecting to Oracle E-Business Suite, Peoplesoft, and
Siebel, see Chapter 8, "Integrating with Oracle ERP Applications".

For information about extracting data from SAP systems, see Chapter 7, "Extracting
Data from SAP Applications".

1.5 JDBC and Code Template-based Connectivity
In some cases, the data movement provided by Oracle-to-Oracle database links,
gateways, and ODBC may not be sufficient. Oracle Warehouse Builder 11g Release 2
(11.2) also supports a framework that adds more flexible data movement options
based on code templates.

When designing an ETL mapping, you can now choose between Oracle-based
mappings and code template-based mappings for more flexible connectivity and data
movement. Both mappings offer a rich set of data transformation operators.

When using code template-based mappings, you can select code templates to assign
alternative data movement methods for individual mappings or specific parts of
mappings. Oracle Warehouse Builder generates executable code based on the
templates you select, and then deploys that code to a Control Center Agent, where it
executes.

The JDBC connectivity for data movement depends on using code template-based
mappings, and the data movement code actually executes in the control center agent.
You can choose alternative templates for other data movement techniques such as
bulk data extraction and loading that fit your use case better. You can also construct
new templates that implement data movement methods not supported by Oracle
Warehouse Builder out of the box.

For more information about using code templates, see Chapter 12, "Using Code
Templates to Load and Transfer Data". Also see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide for more details on code templates-based ETL
mappings.

1.6 Choosing a Connection Technology
Choosing among the different connection technologies available depends upon your
specific data source type and other specifics of your use case:

■ Choose Oracle gateways for fully supported end-to-end connectivity with
non-Oracle databases, and the most transparent access to those databases from
within Oracle Warehouse Builder.

■ Choose JDBC connectivity in instances where you need simplified setup of flexible
connectivity with good performance across a wide range of non-Oracle data
sources.

■ Choose ODBC connectivity for sources where data volumes are relatively small
and maximum performance is not a concern.

Choosing a Connection Technology

1-6 Oracle Warehouse Builder Sources and Targets Guide

■ Use application connectors when working with any supported ERP, CRM, or
MDM application source or target.

2

Connecting to Data Sources and Importing Metadata 2-1

2 Connecting to Data Sources and Importing
Metadata

In Oracle Warehouse Builder, you can access data from a variety of sources. You can
interpret and extract metadata from custom, and also packaged applications and
databases. As a precursor to extracting any data set, you first import its metadata.

This chapter contains the following topics:

■ "About Source Data and Metadata"

■ "General Steps for Importing Metadata from Sources"

■ "Using the Import Metadata Wizard"

■ "Importing Metadata Definitions from Oracle Database"

■ "Reimporting Definitions"

2.1 About Source Data and Metadata
Metadata is data that describes the contents of objects in a data set. For example, the
metadata for a table includes such information as the name of the table and the names
and data types of columns, relationships between this table and other objects, and so
on. When working with objects in data sources not created within Oracle Warehouse
Builder, you must first import metadata from those sources.

Oracle Warehouse Builder groups metadata for objects in different data sources in
modules, which are visible in the Projects Navigator. The type of module you create
depends on the source from which you are importing metadata. For example, to
import metadata definitions from an Oracle database, create an Oracle module. To
import metadata definitions from flat files, create a flat file module.

2.2 General Steps for Importing Metadata from Sources
Whether you want to import metadata from a table, file, or application, the general
process is the same.

To import metadata from a source:

1. Review the list of supported sources and targets in Table 1–1, " Sources and
Targets Supported in Oracle Warehouse Builder 11g Release 2 (11.2)" to determine
if the source from which you want to extract data is supported in Oracle
Warehouse Builder.

2. Select an existing location or create a location as described in "Creating Locations"
on page 2-3.

General Steps for Importing Metadata from Sources

2-2 Oracle Warehouse Builder Sources and Targets Guide

3. Create a module for the source metadata as described in "Creating Modules" on
page 2-7.

4. Right-click the module and select Import.

You can import metadata from database objects, flat files, COBOL copybook files,
and Oracle Warehouse Builder metadata.

5. Follow the prompts in the Import Metadata Wizard.

The wizard prompts you for information based on the type of source you selected.
For more information, see "Using the Import Metadata Wizard" on page 2-8.

Subsequent Steps
For most data sources, after importing the metadata of the data objects, you can view
the data stored in these objects.

To move the data using Oracle Warehouse Builder, you can design ETL logic that
extracts the data from the source, transforms the data, and loads it into a target
schema.

Over a period, the source metadata may change. If this occurs, you can use Oracle
Warehouse Builder to identify the ETL logic that would be impacted and potentially
made invalid due to a change in metadata.

To introduce the changed metadata into Oracle Warehouse Builder, right-click the
desired module and select Import. As described in "Reimporting Definitions" on
page 2-14, Oracle Warehouse Builder recognizes when you are reimporting metadata.

2.2.1 About Locations
Locations enable you to store the connection information to the various files,
databases, and applications that Oracle Warehouse Builder accesses for extracting and
loading data. Similarly, locations also store connection information to ETL
management tools and Business Intelligence tools. For a detailed listing, see Table 1–1
on page 1-1.

Oracle Database locations and file locations can be sources, targets, or both. For
example, you can use a location as a target for storing data temporarily or as a staging
table. Later, you can reuse that location as a source to populate the final target.

In some cases, such as with flat file data, the data and metadata for a given source are
stored separately. In that case, create one location for the connection information for
the data and another for the connection information for the metadata.

Automatically Created Locations
During installation, Oracle Warehouse Builder creates an Oracle location named OWB_
REPOSITORY_LOCATION. This location provides the connection details to the Oracle
Warehouse Builder workspace.

Types of Locations
You can deploy to several different types of locations. These locations are available on
the Locations Navigator of the UI. Each location type has a different use:

See Also:

■ "Managing Metadata Dependencies" in the Oracle Warehouse
Builder Online Help.

General Steps for Importing Metadata from Sources

Connecting to Data Sources and Importing Metadata 2-3

■ Databases: Targets for either relational or dimensional systems, including objects
such as tables and views, or dimensions and cubes. See, Oracle Warehouse Builder
Data Modeling, ETL, and Data Quality Guide for more details about these objects.

■ Files: Targets for storing data in delimited, fixed, or XML format.

■ Applications: Targets for Oracle E-Business Suite, PeopleSoft, Siebel, and SAP
systems.

■ Process Flows and Schedules: Indicates an Oracle Workflow location.

■ Business Intelligence: Targets for deploying metadata derived from databases or
Oracle modules. This is then used by business intelligence tools.

■ URI Locations: URI locations are used internally as part of the definition of other
locations. You must not create any instances of it.

■ Agents: Specifies the location of a control center agent or an application server.

■ Transportable Modules: For defining transportable module sources and targets.

2.2.1.1 Creating Locations
You can create your own locations to use as sources or targets.

To create a location:

1. In the Locations Navigator, expand the Locations node and then expand the node
that represents the type of location you want to create.

For example, to create an Oracle database location, expand the Locations node, the
Databases node, and then the Oracle node.

2. Right-click the type of location and select New <Object> Location.

The Create <Object> Location dialog box is displayed.

Or, right-click Locations and select New. This opens the New Gallery dialog box.
Select a location type from the list of items and click OK.

The Create <Object> Location dialog box is displayed.

3. Complete the dialog box. Click the Help button for additional details.

Provide the required connection details in the Details tab.

Using SQL*Net to Create Locations
When you create Oracle locations of type SQL*Net, you must set up a transparent
network substrate (TNS) name entry for these locations. The TNS name must be
accessible from the Oracle Warehouse Builder client home. Run the Net Configuration
Assistant from the Oracle Warehouse Builder client home. See Oracle Database
Enterprise User Security Administrator's Guide for information about using the Net
Configuration Assistant.

After setting up the TNS name entry, restart the control center service so that it can
pick up the changes. Furthermore, if the Warehouse Builder control center home is
distinct from the Oracle Database home, then the same TNS name entry must be
defined in the Oracle Database home as well. Run the Net Configuration Assistant
from the Oracle Database home and specify the same TNS name there as well.

Note: If the TNS names in the Control Center home and the Oracle
Database home are different, then connection errors may occur during
deployment and execution.

General Steps for Importing Metadata from Sources

2-4 Oracle Warehouse Builder Sources and Targets Guide

About Locations, Passwords, and Security
Because all Oracle Warehouse Builder users can view connection information in a
location, passwords are always encrypted. Furthermore, Oracle Warehouse Builder
administrators can determine whether to allow locations to be shared and persistent
across design sessions. By default, locations are not shared or persisted.

2.2.1.2 Granting Privileges to a Target Location
Some deployments require the owner of the target location to have more powerful
privileges than are granted when creating a new user:

■ Upgrade action

■ End User Layer (EUL) deployment

A privileged database user can grant the additional privileges.

For ETL, the owner of the target location must have sufficient privileges to read data
from the source location. If the source location is a database table, for example, the
owner of the target must have SELECT privileges on the table. Similarly, for locations
pertaining to Transportable Modules sources and targets, users require additional
privileges as described in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide.

Upgrade Action

The GRANT_UPGRADE_PRIVILEGES PL/SQL script grants the target user the necessary
roles and privileges for the upgrade action. Use this syntax:

@%OWB_HOME%/owb/rtp/sql/grant_upgrade_privileges username

OWB_HOME is the home directory for Oracle Warehouse Builder on the target system.

username is the owner of the target location.

For example, the following command grants privileges on a Windows system to the
SALES_TARGET user.

@%OWB_HOME%\owb\rtp\sql\grant_upgrade_privileges sales_target

EUL Deployment

Oracle BI Discoverer locations require the EUL user to have the CREATE DATABASE
LINK privilege.

2.2.1.3 Registering and Unregistering Locations
Locations must be created during the design process. All modules, including their
source and target objects, must have locations associated with them before they can be
deployed. You cannot view source data or deploy target objects unless there is a
location defined for the associated module.

Registering a location in a control center establishes a link between the workspace and
the locations of source data and deployed objects. You can register a location in
multiple control centers. See Oracle Warehouse Builder Concepts for more information
about control centers.

You can change the definition of a location before it is registered. However, after the
location is registered, you can change only the password. To edit other details of a

See Also: Oracle Warehouse Builder Installation and Administration
Guide for more information about "Managing Passwords".

General Steps for Importing Metadata from Sources

Connecting to Data Sources and Importing Metadata 2-5

location or one of its connectors, you must first unregister the location from all the
control centers where it is registered. Unregistering a location deletes the deployment
history of the location.

Locations are registered automatically by deployment. Alternatively, you can
explicitly register a location in the Control Center.

To register a location:

1. Select the required project.

2. Select Tools, Control Center Manager to open the Control Center Manager.

3. Right-click the location and click Register.

The Location dialog box is displayed.

4. Check the location details carefully.

Click Help for additional information.

5. Click Test Connection to verify the connection details.

6. Click OK.

To unregister a location:

1. Select Tools, Control Center Manager to open the Control Center Manager.

2. Right-click the location and click Unregister.

3. Click OK to confirm the action.

2.2.1.4 Deleting Locations
To delete a location:

1. Right-click the location in Locations Navigator and select Delete.

If the Delete option is not available here, this indicates that the location has been
registered in a control center and is likely being used. See "Locations Registered in
Multiple Control Centers" on page 2-5 for more information.

2. Verify that the location is not in use, unregister the location in the Control Center
Manager, and then delete the location from Locations Navigator.

2.2.1.5 Locations Registered in Multiple Control Centers
After you register a location in a control center, the connection details of the location
are locked. You can edit the connection details or delete the location only after
unregistering it from the control center.

It is also likely that as part of your project requirements, a location is registered in
multiple control centers. In such a scenario, you cannot edit the connection details of
the location or delete the location unless you unregister the location from all the
control centers where it is registered.

To see the details of all the control centers where a location is registered:

1. On the Locations Navigator, right-click the location and click Open.

The Edit Location dialog box is displayed.

2. Click Registration to view the list of control centers where the location is
registered.

General Steps for Importing Metadata from Sources

2-6 Oracle Warehouse Builder Sources and Targets Guide

2.2.2 About DB Connectors and Directories
A DB connector or Directory is a logical link between a source location and a target
location. The connector between schemas in two different Oracle Databases is
implemented as a database link, and the connector between a schema and an
operating system directory is implemented as a database directory.

To create a database directory, a user requires the CREATE DIRECTORY and DROP
DIRECTORY privileges. When you create an Oracle Warehouse Builder user, these
privileges are not automatically granted to the user. Therefore, the database
administrator must explicitly grant these privileges to the Oracle Warehouse Builder
user. For example:

GRANT CREATE ANY DIRECTORY TO OWB_USER;
GRANT DROP ANY DIRECTORY TO OWB_USER;

where OWB_USER is an Oracle Warehouse Builder user performing the deployment.

Or else, a user with these privileges must create the link connectors and grant you
access to use them. You can then create the connectors manually and select the
database link or directory from a list.

To manually create a database connector:

1. In the Locations Navigator, expand the Locations folder and then expand the
subfolder for the target location.

2. Right-click DB Connectors and select New DB Connector.

Follow the steps in the Create Connector Wizard.

To manually create a directory connector:

1. In the Locations Navigator, expand the Locations folder and then expand the
subfolder for the target location.

2. Right-click Directories and select New Directory.

The Create Connector Wizard opens.

3. Follow the steps and create a directory connector.

2.2.3 About Modules
Modules are grouping mechanisms in the Projects Navigator that correspond to
locations in the Locations Navigator. A single location can correspond to one or more
modules. However, a given module can correspond to only one metadata location and
data location at a time.

Note: To create a Database Link, a user requires the CREATE
DATABASE LINK privilege. This privilege is granted automatically when
an Oracle Warehouse Builder user is created.

See Also:

■ Oracle Database SQL Language Reference for more information
about the CREATE DATABASE LINK command

■ Oracle Database SQL Language Reference for more information
about the CREATE DIRECTORY command

General Steps for Importing Metadata from Sources

Connecting to Data Sources and Importing Metadata 2-7

The association of a module to a location enables you to perform certain actions more
easily in Oracle Warehouse Builder. For example, group actions such as creating
snapshots, copying, validating, generating, deploying, and so on, can be performed on
all the objects in a module by choosing an action on the context menu when the
module is selected.

2.2.3.1 Creating Modules
You can create a module from the Projects Navigator.

To create a module:

1. Expand the Projects Navigator until you find the node for the appropriate
metadata type.

For example, if the source data is stored in Oracle Database, then expand the
Databases node to view the Oracle node. If the source data is in an SAP R/3
system, expand the Applications node to view the SAP node.

2. Right-click the desired node and select New<Module Type>.

The Create Module Wizard opens.

You can also right-click the desired node and select New. This opens the New
Gallery dialog box. You can now select the item you want to create (module) and
click OK.

The Create Module Wizard opens.

3. On the Name and Description page, provide a name and an optional description
for the module. For non-Oracle sources and applications, you must not select the
access method. Select from Native Database Connection and Oracle Gateway.

4. Click Next.

The Connection Information page is displayed.

5. Provide details about the location that is associated with this module.

The contents of the Connection Information page depend on the type of module
you create. For more information about providing information about this page,
click Help.

6. Click Next to display the Summary page.

Review the information you provided and click Back to modify entered values.

7. Click Finish.

While using Oracle Warehouse Builder, you must not associate a module with a new
location. For example, assuming your production environment uses different locations
than those used by your development environment, then you must change the module
associations when moving code from the production to the development environment.

To change the location associated with a module, you must edit the configuration
properties of the module. Configuration properties define the physical information
pertaining to the metadata.

To change the location associated with a module:

1. In the Projects Navigator, right-click the module and select Configure.

The Configuration Properties editor is displayed.

2. In the Identification node, select a new value for the Locations property. If the
desired location is not in the list, then edit the module and add the location.

Using the Import Metadata Wizard

2-8 Oracle Warehouse Builder Sources and Targets Guide

See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for more
information about "Configuring Data Objects".

2.2.3.2 Creating User Folders
After you create a module for a particular object such as an Oracle database, you can
view all the associated objects under the database such as Mappings, Transformation,
Tables, and so on.

You can also create your own folder, called User Folder, under a module. You can then
define the required objects within the folder. For example, related tables and views
that must be generated or deployed can be placed under a common folder. User
Folders provide more flexibility in organizing objects within a module.

To create a User Folder:

1. Right-click a module, and click New.

The New Gallery dialog box is displayed.

2. Select User Folder from the list of items and click OK.

The Create User Folder dialog box is displayed.

3. Provide a name and description (optional), and click OK.

The newly created user folder is now available under the module. The folder is empty
with no nodes under it. All the objects that can be added under a module can also be
added under the newly created user folder. For example,

To add a table:

1. Right-click the folder, and click New.

The New Gallery dialog box is displayed.

2. Select Table from the list of items and click OK.

The Create Table dialog box is displayed.

3. Provide a name and description (optional) and click OK.

The newly created table is now available under the Tables node within the folder.

Within a user folder, you can also:

■ Create other user folders.

■ Copy valid objects from other user folders.

■ Copy valid objects from other compatible module types.

2.3 Using the Import Metadata Wizard
Use the Import Metadata Wizard to import metadata definitions into modules.

The Import Metadata Wizard supports importing of tables, views, materialized views,
dimensions, cubes, external tables, sequences, user-defined types, and PL/SQL
transformations directly or through object lookups using synonyms.

Importing a table includes importing its columns, primary keys, unique keys, and
foreign keys, which enable the import of secondary tables. When you import an
external table, Oracle Warehouse Builder also imports the associated location and
directory information for the associated flat file.

Importing Metadata Definitions from Oracle Database

Connecting to Data Sources and Importing Metadata 2-9

You can import metadata definitions either from the Oracle Database catalog or
Designer/2000 (Oracle Designer).

2.4 Importing Metadata Definitions from Oracle Database
Create an Oracle module to store the imported metadata.

To create an Oracle module:

1. From the Projects Navigator, right-click Oracle under the Databases node and
select New Oracle Module.

The Create Module Wizard is displayed.

2. On the Name and Description page, provide a name and an optional description
for the module. Click Next to open the Connection Information page.

3. Use the Connection Information page to select a database location for the module.
To define a new location, click Edit. The Edit Oracle Database Location dialog box
is displayed. See "Edit Oracle Database Location Dialog Box" on page 2-9 for the
connection parameters to be entered in this dialog box.

Click OK to open the Summary page.

4. Verify the specified details on the Summary page and click Finish.

The newly created Oracle module is now available under the Oracle node in the
Projects Navigator.

2.4.1 Edit Oracle Database Location Dialog Box
Use this dialog box to specify the location details of an Oracle location.

Name
A name for the location.

Description
An optional description.

Connection Type
Lists the connections available for access to a database location. You cannot change the
type after creating the location. There are four connection types available:
HOST:PORT:SERVICE, Database Link, SQL*NET Connection, and OCI.

Note: When the source and target locations are on the same host, be
sure to identify them in the same way. Otherwise, the product treats
them as separate locations and creates a database link between them.
The database link may slow down the loading of data.

Common mistakes of this type include the following:

■ Specifying localhost for one location and the actual computer
name (such as mycomputer-pc) for another location.

■ Specifying the domain inconsistently, for example, mycomputer-pc
for one location and mycomputer-pc.us.oracle.com for another.

Importing Metadata Definitions from Oracle Database

2-10 Oracle Warehouse Builder Sources and Targets Guide

■ HOST:PORT:SERVICE: Makes a connection using the Easy Connect Naming
method, which requires no prior setup:

– User Name: The database user credential that has permission to access the
schema location.

When connecting to a database that does not have user names, enter any text
as a mock user name.

– Password: The password associated with user name.

When connecting to a database that does not have passwords, enter any text
as a mock password.

– Host: The name of the system where the database is installed.

If Oracle Warehouse Builder is installed on the same system as the Oracle
database, you can enter localhost instead of the computer name. If the
database resides on a remote system, then provide the internet protocol (IP)
address of the remote system.

– Port: The SQL port number for the database.

– Service Name: The service name of the database.

– Use Global Name: The unique name of the database, which is composed of
the database name and the domain in the form database_name.database_domain.
For example, orcl.us.example.com identifies the orcl database in the
us.example.com domain. Select this option when connecting to a database on
a different network.

■ Database Link: Makes a connection to another database using an existing
database link. Select this method only when you do not have privileges that enable
you to make a direct connection. You cannot deploy to a location that uses a
database link. Not available for Oracle Business Intelligence or Discoverer
locations.

A database link is a schema object that contains information for connecting to a
remote database. Database links are used in distributed database environments
and enable a client to access two physical databases as one logical database.

– From Location: An existing location where the database link is defined.

– Database Link: The object name of the database link.

■ SQL*NET Connection: Makes a connection using a net service name previously
defined using a tool such as Oracle Net Configuration Assistant. The net service
name provides a convenient alias for the connection information. This method of
connecting is the best for Oracle RAC installations.

– User Name: The database user credential that has permission to access the
schema location.

When connecting to a database that does not have user names, enter any text
as a mock user name.

– Password: The password associated with user name.

When connecting to a database that does not have passwords, enter any text
as a mock password.

– Net Service Name: The name of the predefined connection.

– Use Global Name: The unique name of the database, which is composed of
the database name and the domain in the form database_name.database_domain.

Importing Metadata Definitions from Oracle Database

Connecting to Data Sources and Importing Metadata 2-11

For example, orcl.us.example.com identifies the orcl database in the
us.example.com domain. Select this option when connecting to a database in a
different network.

■ OCI: Makes a connection using Oracle Call Interface (OCI) to interact with an
Oracle database. This connection type uses the JDBC OCI driver that is specific to
your version of Oracle database and your platform. Use this method when you
need a high degree of compatibility with an earlier release of Oracle. The JDBC
OCI drivers enable you to call the OCI directly from Java.

– User Name: The database user credential that has permission to access the
schema location.

When connecting to a database that does not have user names, enter any text
as a mock user name.

– Password: The password associated with user name.

When connecting to a database that does not have passwords, enter any text
as a mock password.

– Net Service Name: The name of the predefined OCI connection.

– Use Global Name: The unique name of the database, which is composed of
the database name and the domain in the form database_name.database_domain.
For example, orcl.us.example.com identifies the orcl database in the
us.example.com domain. Select this option when connecting to a database in a
different network.

Schema
The schema where the source data is stored or the target objects are deployed. The
schema must be registered. By default, it is the user name schema.

When connecting to a type of database that does not have schemas, do not enter any
value in this field.

Version
The version number of Oracle Database. Not available for non-Oracle database
locations.

Test Connection
Attempts to make a connection using the values provided on this page.

Test Results
A message that reports whether a test connection succeeded or failed.

Importing Metadata Definitions from Oracle Database

2-12 Oracle Warehouse Builder Sources and Targets Guide

Figure 2–1 Edit Oracle Location Dialog Box

2.4.2 Importing Metadata Definitions
Use the Import Metadata Wizard to import metadata from an Oracle database into the
module.

To import metadata definitions from an Oracle database:

1. Right-click the newly created Oracle module and select Import, then Database
Objects.

The Welcome page of the Import Metadata Wizard is displayed. This page lists the
steps to import object metadata. Click Next to proceed with the import.

2. Complete the following:

■ "Filter Information Page"

■ "Object Selection Page"

■ "Summary and Import Page"

■ "Import Results Page"

2.4.3 Filter Information Page
Use the Filter Information page to limit the search using one of the following methods:

Selecting the Object Types The Object Type section displays the types of database
objects that you can import. These objects include tables, dimensions, external tables,
sequences, materialized views, cubes, views, PL/SQL transformations, and
user-defined types. Select the types of objects you want to import. For example, to
import tables and views, select Tables and Views.

Importing Metadata Definitions from Oracle Database

Connecting to Data Sources and Importing Metadata 2-13

Search Based on the Object Name Use the Only select objects that match the
pattern option to specify a search pattern. Oracle Warehouse Builder searches for
objects whose names match the pattern specified. Use the percent sign (%) as a
wildcard match for multiple characters and an underscore (_) as a wildcard match for
a single character. For example, you can enter a warehouse project name followed by a
percent sign (%) to import objects that begin with that project name.

Click Next to retrieve names that meet the filter conditions from the data dictionary.
Oracle Warehouse Builder then displays the Object Selection page.

2.4.4 Object Selection Page
Select items to import from the Available list and click the right arrow to move them to
the Selected list. If you are reimporting definitions, previously imported objects appear
in bold.

To search for specific items by name, click the Find Objects icon that looks like a
flashlight.

To move all items to the Selected Objects list, click Move All.

Importing Dependent Objects The Import Metadata Wizard enables you to import
the dependent objects of the object being imported.

Select one of the following options to specify if dependent objects should be included
in the import:

■ None: Moves only the selected object to the Selected list. No dependencies are
imported when you select this option.

■ One Level: Moves the selected object and the objects it references to the Selected
list. This is the default selection.

■ All Levels: Moves the selected object and all its references, direct or indirect, to the
Selected list.

Click Next to display the Summary and Import page.

Importing Dimensions When you import a dimension that uses a relational
implementation, the implementation table that stores the dimension data is not
imported. You must explicitly import this table by moving the table from the
Available list to the Selected list on the Object Selection page. Also, after importing the
table, you must bind the dimension to its implementation table. For more information
about how to perform binding, refer to Oracle Warehouse Builder Data Modeling, ETL,
and Data Quality Guide.

2.4.5 Summary and Import Page
This page summarizes your selections in a spreadsheet that lists the name, type of
object, and whether the object are reimported or created. Verify the contents of this
page and add descriptions, if required, for each of the objects.

You can specify additional properties for objects that have been imported into the
module. Click Advanced Import Options to specify these properties. The Advanced
Import Options dialog box is displayed. For more information about the contents of
this dialog box, see "Advanced Import Options" on page 2-15. For more information
about reimporting definitions, see "Reimporting Definitions" on page 2-14.

Reimporting Definitions

2-14 Oracle Warehouse Builder Sources and Targets Guide

Click Finish to import the selected objects. The Importing Progress dialog box shows
the progress of the import activity. After the import completes, the Import Results
page is displayed.

2.4.6 Import Results Page
This page summarizes the import result, and lists the objects and details about
whether the object was created or synchronized.

Click OK to accept the results. To save a metadata loader (MDL) file associated with
this import, click Save. Oracle Warehouse Builder stores the definitions in the
database module from which you performed the import.

2.5 Reimporting Definitions
Reimporting your source database definitions enables you to import changes made to
your source metadata after your previous import. You do not have to remove the
original definitions from the workspace. Oracle Warehouse Builder provides you with
options that also enable you to preserve any changes you may have made to the
definitions since the previous import activity. This includes any new objects, foreign
keys, relationships, and descriptions you may have created in Oracle Warehouse
Builder.

To reimport definitions:

1. Right-click a data source module name and select Import.

The Welcome page for the Import Metadata Wizard is displayed.

2. Click Next.

The Filter Information page is displayed.

3. Complete the "Filter Information Page" and "Object Selection Page", selecting the
same settings used in the original import to ensure that the same objects are
reimported.

4. The Summary and Import page is displayed.

If the source contains new objects related to the object you are reimporting, the
wizard requires that you import the new objects at the same time.

5. Click Advanced Import Options and make selections. (Optional)

6. Click Finish.

Oracle Warehouse Builder reconciles and creates objects. When this is complete,
the Import Results dialog box displays.

The report lists the actions performed by Oracle Warehouse Builder for each
object. For objects that have been reimported, the Actions column displays
Synchronized. You can also expand an object to see which elements have changed.
For example, you can see which columns of a table have changed since the last
import.

Click Save to save the report. You should use a naming convention that is specific
to the reimport.

7. Click OK to proceed or click Undo to undo all changes to your workspace.

Reimporting Definitions

Connecting to Data Sources and Importing Metadata 2-15

2.5.1 Advanced Import Options
The Advanced Import Options dialog box displays the options that you can configure
while importing objects. This dialog box enables you to preserve any edits and
additions made to the object definitions in the Oracle Warehouse Builder workspace.

By default, all options on this dialog box are selected. Deselect these options to have
these objects replaced and not preserved.

For example, after importing tables or views for the first time, you manually add
descriptions to the table or view definitions. To ensure that these descriptions are not
overwritten while reimporting the table or view definitions, you must select the
Preserve Existing Definitions option.

The contents of this dialog box depend on the type of objects being imported. For more
information about the advanced import options for each type of objects, see the
following sections:

■ "Advanced Import Options for Views and External Tables"

■ "Advanced Import Options for Tables"

■ "Advanced Import Options for Object Types"

2.5.1.1 Advanced Import Options for Views and External Tables
Select these options to reconcile views or external tables:

■ Import descriptions: The descriptions of the view or external table are imported.
Existing descriptions are not preserved.

■ Preserve workspace added columns: The columns you added to the object in the
workspace are preserved.

2.5.1.2 Advanced Import Options for Tables
Select these options to reconcile tables:

■ Preserve workspace added columns: To retain any columns added to the table in
the workspace.

■ Preserve workspace added constraints: To preserve the constraints you added to
the table in Oracle Warehouse Builder.

■ Import indexes: To specify additional details about how indexes should be
imported. Importing indexes consists of the following options:

– Preserve workspace added indexes: To retain any indexes added to the
workspace table.

– Import physical properties of indexes: To indicate how indexes should be
imported. Select the Preserve workspace added physical properties of
indexes option below this option to specify that any physical properties added
to the indexes should be preserved.

– Import index partitioning: To indicate how index partitions should be
imported. Select the Preserve repository added index partitioning option to
specify that any index partitions added to the workspace table must be
preserved.

See Also: Oracle Warehouse Builder Concepts for more information
about "Workspaces".

Reimporting Definitions

2-16 Oracle Warehouse Builder Sources and Targets Guide

■ Import partitioning: To specify additional details about how partitions should be
imported. Importing partitions contains the following options:

– Preserve workspace added partitioning: To retain all partitions added to the
workspace table.

– Import physical properties of partitioning: Use this option to indicate how
the physical properties of partitions should be imported. Select Preserve
workspace added physical properties of partitioning to indicate that all
physical properties of the partitions in the workspace table should be retained.

■ Import physical properties: To indicate how the physical properties of the table
should be imported. Select the Preserve workspace added physical properties
option to specify that all physical properties added to the workspace table must be
preserved.

■ Import descriptions: To import the descriptions of the table.

2.5.1.3 Advanced Import Options for Object Types
Select these options to reconcile object types:

■ Import descriptions: To import the descriptions of the object type.

■ Preserve workspace added attributes: To retain the attributes added to the object
type in the workspace.

2.5.2 Updating Source Module Definitions
The Edit Module dialog box enables you to edit the name, metadata location, and the
data locations for a source module.

To update the database definitions of an Oracle module:

1. Right-click the module, and select Open.

The Edit Module dialog box displays.

2. To edit the metadata location, click the Metadata Location tab and specify the
following:

■ Source Type: Identifies the location of the metadata. It can be either Oracle
Data Dictionary or Oracle Designer Repository. Select Oracle Data Dictionary
if the metadata is stored in the default workspace of the Oracle Database.
Select Oracle Designer Repository if the metadata is stored in an Oracle
Designer repository.

■ Location: Identifies the metadata location for the module. You can select a
location from the list.

3. To edit the data location, click the Data Locations tab. By default, the location
name specified while creating the module is selected. To change the location, you
can either select from other existing locations or create a new location. To create a
new location, click New. The Edit Oracle Database Location dialog box displays.
Specify the details of the data location in the dialog box.

This chapter provides a generic description of importing metadata, which is identical
for Oracle databases and other data source types. Follow these procedures when
working with Oracle databases.

For information about importing metadata definitions from non-Oracle databases and
other applications, see:

Reimporting Definitions

Connecting to Data Sources and Importing Metadata 2-17

■ Chapter 3, "Using Flat Files as Sources or Targets" for importing metadata
definitions from flat files and COBOL copybooks.

■ Chapter 4, "Connecting to Non-Oracle Data Sources Through Gateways" for
connecting to and importing metadata from non-Oracle databases such as DB2
and SQL Server using Oracle Gateways.

■ Chapter 6, "Connecting to Data Sources Through JDBC" for connecting to
non-Oracle databases such as DB2 and SQL Server using JDBC connectivity.

■ Chapter 8, "Integrating with Oracle ERP Applications" for details of importing
metadata from Oracle applications including Oracle E-Business Suite, PeopleSoft,
and Siebel applications.

■ Chapter 7, "Extracting Data from SAP Applications" for details of connecting to a
SAP application and extracting data.

■ Chapter 9, "Importing Oracle Warehouse Builder Data into Business Intelligence
Applications" for information about deriving business intelligence objects and
deploying these objects into Oracle Business Intelligence Suite Enterprise Edition
and Oracle BI Discoverer.

■ Chapter 10, "Importing Design Definitions from Oracle Designer" for information
about importing design definitions from Oracle Designer applications.

Reimporting Definitions

2-18 Oracle Warehouse Builder Sources and Targets Guide

3

Using Flat Files as Sources or Targets 3-1

3 Using Flat Files as Sources or Targets

You can use flat files as either source files or target files within mappings in Oracle
Warehouse Builder.

This chapter describes the use of flat files as sources and targets in Oracle Warehouse
Builder. It contains the following topics:

■ "About Flat Files"

■ "Using the Create Flat File Wizard"

■ "Importing Definitions from Flat Files Using Sampling"

■ "Importing Metadata Definitions from COBOL Copybooks"

■ "Viewing and Editing a File Definition"

■ "Using External Tables"

3.1 About Flat Files
When using flat files as sources:

■ You can read from character data set files or binary flat files.

■ You can read from delimited files, fixed length files, or XML files.

■ You can use flat file operators in SQL*Loader mappings to read from flat files
directly, or you can add an external table and access the flat file data in a mapping
using SQL and PL/SQL.

■ You can also add flat file operators in code template based mappings and leverage
code templates that are specifically constructed for files or the generic SQL code
templates which leverages a built-in JDBC driver for files.

When using flat files as targets:

■ You can use only character data set files. Binary flat files are not supported as
targets.

■ You can write to delimited files and fixed length files.

■ You can use flat file operators to write data to flat files.

Note: The same flat file can act as a source and a target file.

About Flat Files

3-2 Oracle Warehouse Builder Sources and Targets Guide

3.1.1 About Metadata for Flat Files
File metadata describes the structure of data records in the file, including column
names and data types. Before you use a flat file as source, it is desirable to define the
metadata of that flat file.

You can import flat file metadata from several sources:

■ For character files with displayable data, you can use the Flat File Sample Wizard
to view and analyze the flat file contents and deduce metadata from them.

■ For COBOL copybooks, you can import metadata definitions directly from the
copybook file.

■ For binary files, files that are too complex for the Flat File Sample Wizard, and for
target files for which no sample is available yet, you can explicitly define metadata
for your flat file using the Create Flat File Wizard.

3.1.2 About Flat File Modules and Locations
You can create flat file modules in your project that store metadata for source and
target files. Each flat file module must be associated with a metadata and data location.
When you specify a location for a module, both metadata location and data location
point to the same location. You can specify different locations for the metadata and the
data by editing the module.

3.1.3 Working with Flat Files as Sources or Targets
The usual cycle, when working with a flat file as a source or target, is to:

1. Ensure that the location where the flat file stored is accessible from the host on
which the mappings accessing the flat file is deployed.

2. Create a flat file module and associate it with the flat file module location. See
"Creating Flat File Modules" on page 3-4.

3. Define the flat file and specify its structure, based on whether its a character file,
binary file, or a COBOL copybook. See "Using the Flat File Sample Wizard" on
page 3-13 for details of Flat File wizard. See "Using the Create Flat File Wizard" on
page 3-6 for details of creating a flat file for a binary file. See "Importing Metadata
Definitions from COBOL Copybooks" on page 3-20 for details of importing
metadata from COBOL copybooks.

4. Select the type of mapping to use to extract data from the file. Consider whether
you want to use flat file operators or external tables. See "Choosing Between
External Table and Flat File Operators" on page 3-3. If using a PL/SQL mapping,
create external tables to represent the file contents as database tables.

5. Design your PL/SQL or SQL*Loader ETL mapping using the flat files as a source
or target. See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide
for details of creating mappings.

3.1.4 Flat Files as Sources
To use a flat file as a source, first define the metadata structure of the flat file and then
import metadata into it.

3.1.4.1 Defining Character Data Files
You can import metadata from various types of files including character data set files
and COBOL copybooks.

About Flat Files

Using Flat Files as Sources or Targets 3-3

To define flat file metadata, complete the following steps:

1. Create a flat file module.

Create a module for each unique directory or path in your file system from which
you want to import file metadata. See "Creating Flat File Modules" on page 3-4.

2. Define the structure of the file.

The Flat File Sample Wizard enables you to view a sample of the flat file and to
define record organization and file properties. The wizard enables you to sample
and define common flat file formats such as string and ASCII. See "Using the Flat
File Sample Wizard" on page 3-13.

For files with complex record structures, the Flat File Sample Wizard may not be
suitable for sampling the data. In such cases, you must create a flat file and define
its structure accordingly. See "Using the Create Flat File Wizard" on page 3-6 for
creating and defining the structure of a flat file.

For COBOL copybooks, use the COBOL import dialog box to import metadata
from copybooks. You can also set the import options depending on the copybook.
See "Importing Metadata Definitions from COBOL Copybooks" on page 3-20 for
more details.

3.1.4.2 About External Tables
An external table is a read-only table that is associated with a single record type in a
flat file. External tables represent data from a non-relational source in a relational table
format. When you use an external table in a mapping, column properties are based on
the SQL properties defined when importing the flat file. For more information about
SQL properties for flat files, see "SQL Properties" on page 3-11.

When you use an external table as a source table in a mapping, you can use it as a
regular source table. Oracle Warehouse Builder generates PL/SQL code to select rows
from the external table. You can also get parallel access to the file through the table.
You also have access to additional relational function operators.

You can either import an existing external table from another database as described
in"Importing an External Table" on page 3-36 or define a new external table as
described in "Creating a New External Table Definition" on page 3-35.

3.1.4.3 Choosing Between External Table and Flat File Operators
You can introduce source data from a flat file into a mapping either through an
external table or a flat file operator. In general, external tables are the preferred
method of loading large volumes of data from flat files.

Note the following details when comparing external tables and flat files:

■ External table operators and PL/SQL mappings provide for maximum
performance, including exploitation of database parallelism during load. The full
range of transformation operators is available, because the mappings are PL/SQL
mappings. Over time, ETL mappings built with external tables takes advantage of
further performance improvements at the database level.

■ Flat file operators and SQL*Loader mappings are a fully supported method of
loading flat files. Oracle Warehouse Builder generates native SQL*Loader code for
a SQL*Loader mapping. A more limited range of operators is supported in

Note: You can use external tables only for source tables.

About Flat Files

3-4 Oracle Warehouse Builder Sources and Targets Guide

SQL*Loader mappings. You must stage data in an intermediate table and then use
a PL/SQL mapping to transform it further before loading into a final target.

For more information about differences between external tables and SQL*Loader (flat
file operators), see Oracle Database Utilities.

For more information about different types of mappings, see Oracle Warehouse Builder
Data Modeling, ETL, and Data Quality Guide.

3.1.5 Flat Files as Targets
When you use a flat file as a target, it is desirable to define the metadata but is not
necessary. For example, while using unbound flat file operators in mappings, the
metadata for the flat file might not be defined before using it in the mapping.
However, in practice, it might be more convenient to define the metadata definitions
of a target file rather than to use an existing file as a target.

Creating a New Flat File as a Target
Create a flat file and define its structure before loading data into it.

To design a new flat file, complete the following steps:

1. Create a module for the flat file. See "Creating Flat File Modules" on page 3-4.

2. Use the Create Flat File Wizard to design the metadata structure of the flat file. See
"Using the Create Flat File Wizard" on page 3-6.

3. Use the newly created flat file as a target.

3.1.6 Creating Flat File Modules
Flat files are stored within modules that enable you to group multiple flat files.

To create a flat file module:

1. Right-click the Files node in the Projects Navigator and select New Flat File
Module.

Oracle Warehouse Builder displays the Welcome page for the Create Module
Wizard.

2. Define the module in the following steps:

1. "Describing the Flat File Module"

2. "Defining Locations for Flat File Modules"

3. The Finish page summarizes the information you provided on each of the wizard
pages. When you click Finish, the wizard creates the flat file module and inserts it
under Files in the Projects Navigator.

After creating a flat file module, you can either define a new flat file, as described
in "Using the Create Flat File Wizard" on page 3-6, import existing flat files into
this module as described in "Using the Flat File Sample Wizard" on page 3-13, or
import a COBOL file as described in "Importing a Copybook" on page 3-28.

Note: You can also create a target flat file in a mapping. Add an
unbound flat file operator to a mapping, then map from the source
table or operator to the flat file. Finally, do a Create and Bind for the
flat file operator. For more information about mappings, see Oracle
Warehouse Builder Data Modeling, ETL, and Data Quality Guide.

About Flat Files

Using Flat Files as Sources or Targets 3-5

3.1.6.1 Describing the Flat File Module
Enter a name and an optional description for the flat file module on the Name and
Description page.

3.1.6.2 Defining Locations for Flat File Modules
Locations for flat file modules identify the paths in the file system from which you
sample existing files or to which you create new files. You can define a new location or
select an existing location on the Connection Information page.

Flat file modules have metadata and data locations. When you specify a location for a
module, both metadata location and data location point to the same location. You can
specify different locations for the metadata and the data by editing the module.

To import metadata from flat files located in different directories or paths in the
system then for ease of use, create separate Oracle Warehouse Builder modules for
each path. For example, suppose the files are located at the following paths,
c:\folder1 and c:\folder1\subfolder. You can create two file modules C_FOLDER1
and C_FOLDER1_SUBFOLDER and associate them with the corresponding paths.
However, associating a module with a path does not restrict you from importing
metadata definitions of files residing in a different path. You can define a path as the
default, and later import files from a different path.

A data location identifies only a folder in the file system and does not include
subfolders.

3.1.6.3 Connection Information Page
The Connection page is displayed with a default location name that is based on the
module name that you entered in the Name and Description page. If you do not want
to create a location, then select from the list of existing locations.

On the Connection Information page, click Edit to open the "Edit File System Location
Dialog Box" and specify the location details. This location becomes the metadata and
data location.

3.1.6.4 Edit File System Location Dialog Box
On the Edit File System Location dialog box, enter the fully qualified directory,
including the drive letter.

Figure 3–1 shows the Edit Location dialog box.

Using the Create Flat File Wizard

3-6 Oracle Warehouse Builder Sources and Targets Guide

Figure 3–1 Edit File System Location Dialog Box

3.2 Using the Create Flat File Wizard
Use the Create Flat File Wizard to design the structure of a new flat file in Oracle
Warehouse Builder. This could be the case when you must define binary files and
using the Flat File Sample wizard is not a viable solution. You can also use this wizard
to create a flat file for use as a target in a mapping.

To use the Create Flat File wizard, right-click the flat file module and select New Flat
File.

The Create Flat File Wizard guides you in completing the following steps:

■ "Describing a Flat File"

■ "Defining File Properties for a Flat File"

■ "Defining the Record Type for a Flat File"

■ "Defining Field Properties for a Flat File"

3.2.1 Describing a Flat File
Use the Name and Description page to provide a name for the flat file and to specify
general properties associated with it.

■ Name: This name uniquely identifies the file within the module. Enter a name that
does not include a space or any punctuation. You can include an underscore. You
can use uppercase and lowercase letters. Do not start the name with a digit. Do not
start a name with the reserved prefix OWB$.

■ Default Physical File Name: A physical file name may be specified. This name
can be altered at any time using configuration properties. If you are creating a new
file, you can leave this name blank. If you are defining an existing binary file, enter
the name of the file. Do not include the file path.

■ Character set: Select a character set or accept the default character set defined for
the system on which Oracle Warehouse Builder resides. For complete information
about NLS character sets, see Oracle Database Globalization Support Guide.

Using the Create Flat File Wizard

Using Flat Files as Sources or Targets 3-7

■ Description: You can enter an optional description for the file.

3.2.2 Defining File Properties for a Flat File
Use the File Properties page to specify Record Organization, Logical Record
Definition, Number of Rows to Skip, and the Field Format for the flat file as shown in
Figure 3–2.

Use the file properties page to specify Record Organization, Logical Record Definition,
Number of Rows to Skip, and the Field Format for the flat file.

3.2.2.1 Record Organization
Indicate how to organize the records in the file. Select between the two options to
indicate how the length of each record in the file is determined:

■ Records delimited by: Select this option to designate the end of each record by a
delimiter. Then specify that record delimiter. You can accept the default record
delimiter, new line (\n), or you can enter a new value. You can provide multiple
characters and hexadecimal characters as a record delimiter. The hexadecimal
character format is x'<hexadecimal string>' or X'<hexadecimal string>'.
Using hexadecimal characters is useful if the delimiter character is not a new line
character (\n) or carriage return<CR>. For example, to specify the pipe symbol (|)
as the delimiter, use its hexadecimal value x'7C'.

■ Record length (in characters): Select this option to create a file with all records
having the same length. Then specify the number of characters in each record. For
files with multibyte characters, count a multibyte character as one character.

3.2.2.2 Logical Record Definition
By default, the wizard creates a file in which each physical record corresponds to one
logical record. You can override the default to create a file composed of logical records
that correspond to multiple physical records.

■ Number of physical records for each logical record: The data file contains a fixed
number of physical records for each logical record.

PHYSICAL_RECORD1
PHYSICAL_RECORD2
PHYSICAL_RECORD3
PHYSICAL_RECORD4

In the preceding example, if the number of physical records for each logical record
is 2, then PHYSICAL_RECORD1 and PHYSICAL_RECORD2 form one logical record and
PHYSICAL_RECORD3 and PHYSICAL_RECORD4 form the second logical record.

■ End character of the current physical record: The data file contains a variable
number of physical records with a continuation character at the end that signifies
that the record is continued in the next physical record.

In the following example, the continuation character is a percentage sign (%) after
the record.

PHYSICAL_RECORD1%
PHYSICAL_RECORD2 end log rec 1
PHYSICAL_RECORD3%
PHYSICAL_RECORD4 end log rec 2

■ Start character of the next physical record: The data file contains a variable
number of physical records with a continuation character at the beginning of each

Using the Create Flat File Wizard

3-8 Oracle Warehouse Builder Sources and Targets Guide

physical record that signifies that the record continues from the previous physical
record.

The following example shows two logical records with a continuation character at
beginning of the record.

PHYSICAL_RECORD1
%PHYSICAL_RECORD2 end log rec 1
PHYSICAL_RECORD3
%PHYSICAL_RECORD4 end log rec 2

More than two records can be joined with this technique. The following example
shows four physical records for each logical record using continuation at
beginning.

PHYSICAL_RECORD1
%PHYSICAL_RECORD2
%PHYSICAL_RECORD25
%PHYSICAL_RECORD26 end log record 1
PHYSICAL_RECORD3
%PHYSICAL_RECORD4
%PHYSICAL_RECORD45
%PHYSICAL_RECORD46 end log record 2

3.2.2.3 Number of Rows to Skip
When defining an existing file, indicate the number of records to skip at execution
time in Skip rows. This is useful for skipping over header and field name records.

When creating a new target file, you can leave this value blank.

3.2.2.4 Field Format
Select between Fixed Length and Delimited formats for the file.

To create a delimited file, specify the following properties:

■ Field delimiter: Field delimiters designate where one field ends and another
begins. You can enter a field delimiter or select one from the list. The list displays
common field delimiters. However, you may enter any character as a delimiter
except the ones used for enclosures. The default is the comma (,). You can provide
multiple characters and hexadecimal characters as a delimiter. The hexadecimal
character format is x'<hexadecimal string>' or X'<hexadecimal string>'. For
example, to specify the pipe symbol (|) as the delimiter, use its hexadecimal value
x'7C'.

■ Enclosures (Left and Right): Some delimited files contain enclosures that denote
text strings within a field. If the file contains enclosures, enter an enclosure
character in the text box or select one from the list. The list displays common
enclosures. However, you may enter any character. The default for both the left
and right enclosure is the double quotation mark ("). You can specify multiple
characters and hexadecimal characters as field enclosures.

Using the Create Flat File Wizard

Using Flat Files as Sources or Targets 3-9

Figure 3–2 File Properties Page

3.2.3 Defining the Record Type for a Flat File
Indicate whether the file you create is to contain a single record type or multiple
record types. The default is set to Single Record.

If the file contains multiple record types, select Multi Record. For each record type
you want to create, specify values under Record Type Location and then its type
value and record name.

Valid entries for Record Type Location depend on the field format you selected on the
File Properties page, fixed length or delimited fields.

For example, if you specify the fields as delimited, then indicate the field position as
shown in Figure 3–3.

For fixed-length files, the page displays two fields, Start Position and Length, under
Record Type Location. Indicate the start position and the length of the field.

Using the Create Flat File Wizard

3-10 Oracle Warehouse Builder Sources and Targets Guide

Figure 3–3 Record Type Properties Page

3.2.4 Defining Field Properties for a Flat File
Use the Field Properties page to define properties for each field.

Since you can use a flat file in a mapping either directly as a source or a target, or
indirectly through an external table, the Field Properties page shows both
"SQL*Loader Properties" and "SQL Properties". Use the scroll bar to scroll to the right
and view all the properties.

3.2.4.1 SQL*Loader Properties
The first set of properties the wizard displays are for the SQL*Loader utility. When
you use the flat file directly as a source in a mapping, SQL*Loader and the properties
you set here are used. SQL*Loader properties include details of how the following are
mapped to a relational table: "Type", "Length", "Precision", "Scale", "Mask", "NULLIF",
and "DEFAULTIF". See Oracle Database Concepts for more details.

Type
Describes the data type of the field for SQL*Loader. You can use the wizard to import
many data types such as CHAR, DATE, DECIMAL EXTERNAL, FLOAT EXTERNAL, INTEGER
EXTERNAL, ZONED, and ZONED EXTERNAL. For complete information about SQL*Loader
field and data types, see Oracle Database Utilities.

Length
For delimited files, specifies the maximum field length to be used by SQL* Loader.

Precision
Specifies the number of digits for certain data types such as Zoned and Float. See
Oracle Database Utilities for more details.

Using the Create Flat File Wizard

Using Flat Files as Sources or Targets 3-11

Scale
Specifies the number of decimal digits for certain data types such as Zoned and Float.
See Oracle Database Utilities for more details.

Mask
SQL*Loader uses DD-Mon-YY as its default date mask. You can override this default
by entering a valid date mask when you describe the file. For example, if the input
data has the format DD-Mon-YYYY rather than SQL*Loader default, you can enter the
true format as a mask.

NULLIF
You can override the default action of SQL*Loader by placing a NULLIF condition on
a field. For example, when a character field contains all blanks, you can direct
SQL*Loader to mark the field as null rather than storing the blanks. Valid syntax for
this field includes =BLANKS, ='quoted string', =X'ff' to indicate hexadecimal values,
and != for 'not equal to' logic.

DEFAULTIF
You can override the default action of SQL*Loader by placing a DEFAULTIF condition
on a field. For example, when a numeric or DATE field contains all blanks,
SQL*Loader rejects the entire record. To override this action, type =BLANKS in the
DEFAULTIF property. When SQL*Loader evaluates this condition, it sets the numeric
field to zeros and loads the record. Valid syntax for this field includes =BLANKS,
='quoted string', =X'ff' to indicate hexadecimal values, and != for 'not equal to' logic.

3.2.4.2 SQL Properties
These properties specify how the fields in a flat file translate to the columns in a
relational table. They are used to define the characteristics of an external table. They
are also used to automatically generate fields for mapping to relational operators.
Similarly, if the flat file is used as a target, then these properties are used to generate
the PL/SQL code.

The SQL properties you set here have the following implications for mapping design,
validation, and generation:

■ External table: If you create an external table based on a single flat file record type,
the columns properties are based on the SQL properties you defined for the flat
file. For more information about external tables, see "Using External Tables" on
page 3-35.

■ Populating an Empty Mapping Object: In a mapping, if you populate an empty
relational object with the metadata, then the object inherits the SQL properties you
defined for the flat file source.

■ Flat file target: If you use the flat file as a target in a mapping, the target does not
inherit the SQL properties. Instead, all fields inherit the default SQL*Loader data
type.

SQL Type
Oracle Warehouse Builder supports many SQL data types such as CHAR, DATE, FLOAT,
and BLOB.

The wizard assigns a default value for the SQL type based on SQL*Loader properties
you set. If you accept the default SQL type, the type is updated if you later change
SQL*Loader properties. However, if you override the SQL type by selecting a new

Importing Definitions from Flat Files Using Sampling

3-12 Oracle Warehouse Builder Sources and Targets Guide

SQL type from the list, it then becomes independent of the flat file SQL*Loader data
type.

SQL Length
This property defines the length for the SQL column, if appropriate.

SQL Precision
This property defines the precision for the SQL column, if appropriate. For example,
when defining NUMBER and FLOAT fields, the precision may be set.

SQL Scale
This property defines the scale for the SQL column, if appropriate. For example, when
defining NUMBER and FLOAT fields, the scale may be set.

Select Automatically update start and end positions for all fields if you want all the
field positions to be automatically recalculated based on changes made to any field.

Once you define the metadata of the new flat file, you can use it as a source or target
file, or create an external table using a record from the file.

3.3 Importing Definitions from Flat Files Using Sampling
If you have existing flat files to use as sources, then you can import and sample the
metadata from these flat files. Use the File Import dialog box to import metadata from
flat files. This metadata must be imported into an existing file module.

To use the Flat File Sampling Wizard:

1. Establish connectivity to the files you want to import.

Because the Flat File Sample Wizard runs on the host running the Design Center
client, ensure that the files to be sampled are accessible from that host. You can
either mount a remote file system across your network using a method such as
network file system (NFS) or Windows file sharing, or copy the files, or a
representative section of the files, to a file system on or accessible from the Design
Center client host.

2. Create a flat file module that contains the imported flat file definitions. See
"Creating Flat File Modules" on page 3-4 for details.

Either create a module for each folder in the file system from which you want to
import files or use the same module to import file definitions from multiple
folders.

When you create a flat file module, the location corresponding to this module is a
path in the file system which acts as the metadata and data location. Use the
Connection Information Page of the Create Module Wizard to specify this path.

A flat file location does not include subfolders of the specified folder.

3. Right-click the flat file module and select Import, Flat File. Alternatively, select the
flat file module, and then from the main menu, select File, Import, Flat File.

The File Import dialog box is displayed.

4. Click Add Sample File, and select the files to import.

You can add single or multiple files into a module. All the files you add are listed
under Sample File. If you specify a file in the Same As field, then the definition of
the sampled file is based on the definition of the file specified in the Same As field.

Importing Definitions from Flat Files Using Sampling

Using Flat Files as Sources or Targets 3-13

5. Click Import. The Flat File Sample wizard is started. The files are sampled in the
order they were listed under Sample File.

6. The Flat File Sample wizard enables you to view a sample of the flat file while you
are defining it. Each step of the wizard enables you to design the definition and
verify that the definition is correct. See "Using the Flat File Sample Wizard" on
page 3-13 for more information.

For binary files, you may prefer using the Create Flat File wizard. See "Using the
Create Flat File Wizard" on page 3-6.

The wizard creates definitions for the files, stores the definitions in the flat file
module, and inserts the file names under the flat file module in the Projects
Navigator.

3.3.1 Using the Flat File Sample Wizard
Use the Flat File Sample Wizard as an aid in defining metadata for flat files.

This wizard samples delimited and fixed format files. It does not sample multibyte
character file with a fixed record format. For these and other files containing
non-displayable data, such as binary files, see "Using the Create Flat File Wizard" on
page 3-6.

After you complete the Flat File Sample Wizard, the metadata is defined in the
workspace and you can use the flat files as source or target operators in a mapping.
For more information about mappings, see the Oracle Warehouse Builder Data Modeling,
ETL, and Data Quality Guide.

3.3.1.1 Flat File Wizard for Simple Flat Files
For simple flat files that are delimited and contain a single record type, the Flat File
wizard guides you through the following tasks:

■ "Describing the Flat File"

■ "Specifying the Record Organization"

■ "Specifying Field Properties"

3.3.1.2 Describing the Flat File
Use the Name page to describe the flat file you are sampling.

■ Name: This name uniquely identifies the file in the module. By default, the wizard
creates a name based on the name of the source file by replacing invalid characters
with an underscore. For example, if the file name is myfile.dat, the wizard assign
the workspace name myfile_dat.

If you rename the file, do not include a space or any punctuation in the name. You
can include an underscore. You can use uppercase and lowercase letters. Do not
start the name with a digit. Do not start a name with the reserved prefix OWB$.

■ Description: You can enter an optional description for the file.

■ Character set: Character sets determine what languages can be represented in
database objects and files. The default Globalization Support character set matches
the character set defined for the computer hosting Oracle Warehouse Builder. If
the character set differs from that of the source file, the data sample might appear
unintelligible. You can display the data sample in the character set native to the
source by selecting it from the list. For complete information about NLS character
sets, see Oracle Database Globalization Support Guide.

Importing Definitions from Flat Files Using Sampling

3-14 Oracle Warehouse Builder Sources and Targets Guide

■ Number of characters to sample: This value specifies the number of characters
that is read and displayed. The number of characters that is read cannot be
canceled, so ensure that you pick a reasonable number of characters. If you are
sampling a multi-record file, then ensure that the sample is large enough to
include at least one of each type. By default, the wizard samples the first 10000
characters. To determine an optimum value for this field, see "Example: Flat File
with Multiple Record Types" on page 3-18.

■ Advanced: Do not click the Advanced button for simple flat files. The advanced
option is required only for complex flat files as described in "Flat File Wizard For
Complex Flat Files".

Click Next to continue with "Specifying the Record Organization". At all steps, the
wizard updates the sample displayed at the bottom of the wizard page. You can use
the scroll bars to see the sample data.

3.3.1.3 Specifying the Record Organization
Specify the following properties:

■ Records delimited by: Select this option if the end of each record is designated by
a delimiter. Then specify that record delimiter. You can accept the default record
delimiter, carriage return (<CR>), or you can enter a new value. For symbols other
than \n and <CR>, specify the hexadecimal value of the character used as the
delimiter.

■ Record length (in characters): Select this option if each record in the file is the
same length. Then specify the number of characters in each record. For files with
multibyte characters, count a multibyte character as one character.

■ Field delimiter: Field delimiters designate where one field ends and another
begins. You can enter a field delimiter or select one from the list. The list displays
common field delimiters. However, you may enter any character as a delimiter
except the ones used for enclosures. The default is the comma (,). You can also
specify multiple characters and hexadecimal characters as a field delimiter.

■ Enclosures (Left and Right): Some delimited files contain enclosures that denote
text strings within a field. If the file contains enclosures, enter an enclosure
character in the text box or select one from the list. The list displays common
enclosures. However, you may enter any character. The default for both the left
and right enclosure is the double quotation mark ("). Multiple characters and
hexadecimal characters can be specified as field enclosures.

3.3.1.4 Specifying Field Properties
Use the Field Properties page in the Flat File Sample Wizard to define properties for
each field. The wizard assigns a name to each field. It assigns 'C1'to the first field, 'C2'
to the second, and so on. To rename fields, click a field and enter a new name.

For single record file types, you can instruct the wizard to use the first record to name
the fields. Indicate this by selecting the Use the first record as the field names box.

The Field Properties page shows both "SQL*Loader Properties" and "SQL Properties".
Use the scroll bar to scroll to the right and view all the properties.

The wizard deactivates properties that do not apply to a given data type. For example,
you can edit the length for a CHAR, but precision and scale are not available.
Deactivated properties are grayed out.

3.3.1.4.1 SQL*Loader Properties The first set of properties the wizard displays are for
the SQL*Loader utility. When you use the flat file directly as a source in a mapping,

Importing Definitions from Flat Files Using Sampling

Using Flat Files as Sources or Targets 3-15

SQL*Loader and the properties you set here are used. SQL*Loader properties include
details of how the following are mapped to a relational table: "Type", "Length",
"Precision", "Scale", "Mask", "NULLIF", and "DEFAULTIF". See Oracle Database
Concepts for more details.

3.3.1.4.2 SQL Properties The second set of properties are the SQL properties that
include mapping details for "SQL Type", "SQL Length", "SQL Precision", and "SQL
Scale". These properties specify how the fields in a flat file translate to the columns in a
relational table. See "SQL Properties" on page 3-11 for more details.

3.3.1.5 Flat File Wizard For Complex Flat Files
For complex files, the Flat File wizard guides you through the following tasks. The
advanced mode enables you to define files with fixed length fields (in addition to
delimited), files that contain multiple record types, or files that use logical records
(multiple physical records per logical record).

■ "Describing the Flat File"

■ "Selecting the Record Organization"

■ "Selecting the File Format"

■ "Selecting the File Layout"

■ "Selecting Record Types (Multiple Record Type Files Only)"

■ "Specifying Field Lengths (Fixed-Length Files Only)"

■ "Specifying Field Properties"

3.3.1.6 Describing the Flat File
Use the Name page to describe the flat file you are sampling.

■ Name: This name uniquely identifies the file in the workspace. By default, the
wizard creates a name based on the name of the source file by replacing invalid
characters with an underscore. For example, if the file name is myfile.dat, the
wizard assign the workspace name myfile_dat.

If you rename the file, do not include a space or any punctuation in the name. You
can include an underscore. You can use uppercase and lowercase letters. Do not
start the name with a digit. Do not start a name with the reserved prefix OWB$.

■ Description: You can enter an optional description for the file.

■ Character set: Character sets determine what languages can be represented in
database objects and files. The default Globalization Support character set matches
the character set defined for the computer hosting Oracle Warehouse Builder. If
the character set differs from that of the source file, the data sample might appear
unintelligible. You can display the data sample in the character set native to the
source by selecting it from the list. For complete information about NLS character
sets, see Oracle Database Globalization Support Guide.

■ Number of characters to sample: You can indicate the number of characters for
the wizard to sample from the data file. By default, the wizard samples the first
10000 characters. To determine an optimum value for this field, see "Example: Flat
File with Multiple Record Types" on page 3-18.

Click Advanced to continue with "Selecting the Record Organization". At all steps, the
wizard updates the sample displayed at the bottom of the wizard page. You can use
the scroll bars to see the sample data.

Importing Definitions from Flat Files Using Sampling

3-16 Oracle Warehouse Builder Sources and Targets Guide

3.3.1.7 Selecting the Record Organization
Use the Record Organization page to indicate how records are organized in the file
you are sampling. Select between the two options to indicate how the length of each
record in the file is determined:

■ Records delimited by: If the end of each record is designated by a delimiter, then
specify that record delimiter. You can accept the default record delimiter, carriage
return (<CR>), or enter a new value. You can specify multiple characters and
hexadecimal characters as a record delimiter. If the delimiter is a symbol other
than \n or <CR>, then specify the hexadecimal character of the symbol. The
hexadecimal character format is x'<hexadecimal string>' or X'<hexadecimal
string>'.

■ Record length (in characters): Select this option if each record in the file is the
same length. Then specify the number of characters in each record. For files with
multibyte characters, count a multibyte character as one character.

3.3.1.7.1 Specifying Logical Records The Flat File Sample Wizard enables you to sample
files composed of logical records that correspond to multiple physical records. If the
file contains logical records, select File contains logical records. Then select one of the
options to describe the file.

The wizard updates the display of the logical record in the lower panel to reflect your
selection. The default selection is one physical record for each logical record.

■ Number of physical records for each logical record: The data file contains a fixed
number of physical records for each logical record.

PHYSICAL_RECORD1
PHYSICAL_RECORD2
PHYSICAL_RECORD3
PHYSICAL_RECORD4

In the preceding example, if the number of physical records for each logical record
is 2, then PHYSICAL_RECORD1 and PHYSICAL_RECORD2 form one logical record and
PHYSICAL_RECORD3 and PHYSICAL_RECORD4 form a second logical record.

■ End character of the current physical record: The data file contains a variable
number of physical records with a continuation character at the end that signifies
that the record is continued in the next physical record.

In the following example, the continuation character is a percentage sign (%) after
the record.

PHYSICAL_RECORD1%
PHYSICAL_RECORD2 end log rec 1
PHYSICAL_RECORD3%
PHYSICAL_RECORD4 end log rec 2

■ Start character of the next physical record: The data file contains a variable
number of physical records with a continuation character at the beginning of each
physical record that signifies that the record is a continuation of the previous
physical record.

The following example shows two logical records with a continuation character at
beginning of the record.

PHYSICAL_RECORD1
%PHYSICAL_RECORD2 end log rec1
PHYSICAL_RECORD3
%PHYSICAL_RECORD4 end log rec 2

Importing Definitions from Flat Files Using Sampling

Using Flat Files as Sources or Targets 3-17

More than two records can be joined with this technique. The following example
shows four physical records for each logical record using continuation at
beginning.

PHYSICAL_RECORD1
%PHYSICAL_RECORD2
%PHYSICAL_RECORD25
%PHYSICAL_RECORD26 (end log record 1)
PHYSICAL_RECORD3
%PHYSICAL_RECORD4
%PHYSICAL_RECORD45
%PHYSICAL_RECORD46 (end log record 2)

After you complete the logical record information, click Next to continue with the
wizard.

3.3.1.8 Selecting the File Format
Use the File Format page to select between Fixed Length and Delimited formats for
the fields in the file. The Flat File Sample Wizard does not sample multibyte character
files with a fixed record format. For such files, use the Create Flat File wizard. For
more details, see "Using the Create Flat File Wizard" on page 3-6.

When you select a file format, the wizard updates the sample displayed at the bottom
of the wizard page. You can use the scroll bars to navigate the sample data.

Fields in a file can either be of fixed length or delimited.

For fixed length fields, select Fixed Length. If you select this option then you must
define the field lengths in the Field Lengths page. See "Specifying Field Lengths
(Fixed-Length Files Only)" on page 3-19.

When the fields are delimited, specify the following properties:

■ Field delimiter: Field delimiters designate where one field ends and another
begins. You can enter a field delimiter or select one from the list. The list displays
common field delimiters. However, you may enter any character as a delimiter
except the ones used for enclosures. The default is the comma (,). You can also
specify multiple characters and hexadecimal characters as a field delimiter. The
hexadecimal character format is x'<hexadecimal string>' or X'<hexadecimal
string>'.

■ Enclosures (Left and Right): Some delimited files contain enclosures that denote
text strings within a field. If the file contains enclosures, enter an enclosure
character in the text box or select one from the list. The list displays common
enclosures. However, you may enter any character. The default for both the left
and right enclosure is the double quotation mark ("). Multiple characters and
hexadecimal characters can be specified as field enclosures.

Click Next to continue with the wizard.

3.3.1.9 Selecting the File Layout
Use the File Layout page to specify the number of rows to skip and to select between a
single record type versus multiple record types.

Indicate the number of records to skip in Skip rows. This is useful for skipping over
unwanted header information. If one of the records includes field names, skip the
preceding header records so that the record containing field names is displayed as the
first record in the file. Later in the wizard, on the Field Properties page, you can

Importing Definitions from Flat Files Using Sampling

3-18 Oracle Warehouse Builder Sources and Targets Guide

instruct the wizard to use that record for field names if you are defining a single
record file type.

Indicate whether the file contains a single record type or multiple record types. Later
in the wizard you can instruct the wizard to scan the file for the record types. For more
information about multiple record types, see "Selecting Record Types (Multiple Record
Type Files Only)" on page 3-18.

3.3.1.10 Selecting Record Types (Multiple Record Type Files Only)
Use the Record Types wizard page to scan the flat file for record types, add or delete
record types, and assign type values to the record types.

3.3.1.10.1 Example: Flat File with Multiple Record Types In files with multiple record types,
one of the fields distinguishes one record type from the next. When you use the Flat
File Sample Wizard, you instruct the wizard to scan a specified field of every record
for the record type values.

Figure 3–4 shows an example of a comma delimited file with two record types, "m" and
"f". In this case, instruct the wizard to scan the third field. The wizard returns "m" and
"f" as the type values.

Figure 3–4 Example of a File with Multiple Record Types

When you use the wizard to sample flat files with multiple record types, ensure that
the sample size you specified on the Name page is large enough to include each record
type at least once. The default is 10000 characters.

If you do not see all of the required record types in the display area, you must specify
a larger sample size on the Name page. Ensure that the sample size is large enough to
include all record types. If all record types do not appear within a reasonable number
of characters, you can mock up a sample file with rows selected from different parts of
the master file to provide a representative set of data. If you know the record layout
well, you can scan a representative sample and then manually add new record types.

3.3.1.10.2 Defining Multiple Record Organization in a Delimited File When a delimited flat
file contains several different types of records, you can use the scanning feature within
the Flat File Sample Wizard to search and label record types.

Note: This step in not used for files with a single record type. If
the data file has a single record type and fixed length file format,
proceed to "Specifying Field Lengths (Fixed-Length Files Only)" on
page 3-19. If the data file has a single record type and delimited file
format, proceed to "Specifying Field Properties" on page 3-20.

Importing Definitions from Flat Files Using Sampling

Using Flat Files as Sources or Targets 3-19

To complete the Records Type page for a delimited file:

1. Select the one field that identifies the record types in the file.

The wizard displays all the fields in a sample in the lower panel of the page. In the
Field position, you can enter the position as it appears in the sample. Unless you
specify otherwise, the wizard defaults to the first field in the file.

If you click Scan, then the wizard scans the file for the field and displays the type
values. The wizard assigns default record names (RECORD1, RECORD2...) to each
type value.

2. You can edit the record names and the type value.

Click a record name to rename it or select a different record name from the list.
You cannot associate a record name with multiple record type values.

3. Click Next to continue with the wizard.

3.3.1.10.3 Defining Multiple Record Organization in a Fixed-Length File When a fixed-length
flat file contains several different types of records, you can use the scanning feature
within the Flat File Sample Wizard to search for record types and assign a type value
to each record type.

To complete the Records Type page for a fixed-length file:

1. Specify the one field that identifies the record types in the file. Use the ruler or
enter values for the Start position and End position. To scan for records based on
the first field, enter 0 for Start Position.

The wizard indicates the selected field with a red check mark in the ruler in the file
sample in the lower panel of the page.

2. Click Scan.

The wizard scans the file field and displays the type values. The wizard assigns
default record names (RECORD1, RECORD2...) to each type value.

3. You can edit the record names and type value.

Click a record name to rename it or select a different record name from the list.
You cannot associate a record name with multiple record type values.

4. Click Next to continue with the wizard.

3.3.1.11 Specifying Field Lengths (Fixed-Length Files Only)
When you use the Flat File Sample Wizard to define a fixed-length flat file, you must
define the length of each field in the file.

You can define field lengths by entering in the field lengths or by using the ruler.

If you know the length of each field, enter the field length in Field Lengths. Separate
each length by commas. The wizard displays the changes to the sample at the bottom
of the wizard page.

To use the ruler, click any number or hash mark on the ruler. The wizard displays a
red check mark on top of the ruler and marks the boundary with a red line. If you

Note: This step is not necessary for delimited files. Proceed to
"Specifying Field Properties" on page 3-20.

Importing Metadata Definitions from COBOL Copybooks

3-20 Oracle Warehouse Builder Sources and Targets Guide

make a mistake, double-click the marker to delete it or move the marker to another
position. Use the ruler to create markers for each field in the file.

3.3.1.11.1 Specifying Field Lengths for Multiple Record Files You can select the record type
by name from Record Name. Or, you can select Next Record Type from the lower
right corner of the wizard page. The number of records with unspecified field lengths
is indicated on the lower left corner of the wizard page.

If the flat file contains multiple record types, the wizard prompts you to specify field
lengths for each record type before continuing.

3.3.1.12 Specifying Field Properties
Use the Field Properties page in the Flat File Sample Wizard to define properties for
each field. The wizard assigns a name to each field. It assigns 'C1'to the first field, 'C2'
to the second, and so on. To rename fields, click a field and enter a new name.

For single record file types, you can instruct the wizard to use the first record in the
file to name the fields. Indicate this by selecting the Use the first record as the field
names box.

The Field Properties page shows both "SQL*Loader Properties" and "SQL Properties".
Use the scroll bar to scroll to the right and view all the properties.

The wizard deactivates properties that do not apply to a given data type. For example,
you can edit the length for a CHAR, but precision and scale are not available.
Deactivated properties are grayed out.

3.3.1.12.1 SQL*Loader Properties The first set of properties the wizard displays are for
the SQL*Loader utility. When you use the flat file directly as a source in a mapping,
SQL*Loader and the properties you set here are used. SQL*Loader properties include
"Type", "Length", "Precision", "Scale", "Mask", "NULLIF", and "DEFAULTIF". See
"SQL*Loader Properties" on page 3-14 for more details.

3.3.1.12.2 SQL Properties The second set of properties are the SQL properties that
include "SQL Type", "SQL Length", "SQL Precision", and "SQL Scale". These properties
specify how the fields in a flat file translate to the columns in a relational table. See
"SQL Properties" on page 3-15 for more details.

3.4 Importing Metadata Definitions from COBOL Copybooks
COBOL programmers create files by defining the physical files and the logical records
that is used to build those files. The records may be defined within the COBOL
program itself, but are usually defined in separate files, called copybooks. These
copybooks specify the layout and format of the user data, but do not specify the
physical characteristics of the file itself. The physical characteristics of the file identify
how the file is organized and accessed. For example, whether records are terminated
with CR or CR/LF, is not part of the user data definition and is therefore not included
in the record definition.

With Oracle Warehouse Builder, you can import metadata from COBOL copybooks.
Oracle Warehouse Builder automatically manages the following operations:

■ Defining the fields for data storage

■ Calculating the data positions

■ Transforming COBOL data characteristics to the appropriate data type definitions
in SQL*Loader

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-21

3.4.1 Understanding Data Hierarchy in COBOL Applications
COBOL records are defined as a set of data elements and groups. A data element is an
atomic data item. A group is a container for data elements. Each item defined in a
COBOL record is called a field whether it is a group or an elementary item. Each field
definition contains a level number which reflects the hierarchy of the data within the
record. Groups can contain other groups or elementary items. Items contained in a
group are called subordinate elements. Field definitions for elementary items contain
complete metadata for the item primarily specified in picture and usage clauses. A
group inherits characteristics from its subordinate elements and does not generally
contain metadata specification details. An example of a simple copybook is given in
Example 3–1.

Example 3–1 COBOL Copybook

01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-DATE-MM PIC 99.
 10 EMP-HIRE-DATE-DD PIC 99.
 10 EMP-HIRE-DATE-YYYY PIC 9999.
 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).

The above example shows the definition of EMPLOYEE-RECORD. It contains 6 fields
defined at the 05 Level. All of the fields except EMP-HIRE-DATE are elementary
items. The elementary items contain picture clauses that define their
data-characteristics. EMP-HIRE-DATE is a group field with subordinate elements at
the 10 level. Each 10 level field is an elementary item that contains a picture clause
defining its data characteristics. The date can be referenced as a whole by using the
EMP-HIRE-DATE group field. This field includes the month, day, and year elements.
Each subordinate field can also be referenced individually, allowing access to just the
year for example.

3.4.1.1 COBOL Data Types
The USAGE and PICTURE clauses are used to define the format and characteristics of
data elements. If a USAGE clause is not specified, the data is in DISPLAY format,
either external numeric or external character. When considered, the picture and usage
identify the data type. Detailed information concerning COBOL data types and how
they are mapped to relational data types is described inTable 3–1.

3.4.1.2 Arrays Defined on Fields
COBOL provides support for both arrays and varying arrays. These complex
structures are identified by the use of an OCCURS clause. Varying arrays are defined
with the additional specification of a DEPENDING ON clause. For arrays, the
OCCURS clause indicates the number of elements in the array. For varying arrays, the
occurs specification includes a range of elements from x TO y and the DEPENDING
ON clause identifies a field that contains the actual number of elements in the array.
An array or a varying array can be defined on an elementary field or a group.
Example 3–2 provides an example of an array defined on elementary fields.

Example 3–2 Arrays Defined on Elementary Fields

01 EMPLOYEE-RECORD.

Importing Metadata Definitions from COBOL Copybooks

3-22 Oracle Warehouse Builder Sources and Targets Guide

 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-DATE-MM PIC 99.
 10 EMP-HIRE-DATE-DD PIC 99.
 10 EMP-HIRE-DATE-YYYY PIC 9999.
 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).
 05 EMP-SKILL-LEVEL PIC 99 OCCURS 4 TIMES.
 05 EMP-SKILL-ID PIC 9(4) OCCURS 4 TIMES.

Two independent arrays are defined, one on EMP-SKILL_LEVEL and one on
EMP-SKILL_ID. In this example, the record contains four occurrences of
EMP-SKILL-LEVEL, followed by four occurrences of EMP-SKILL-ID. In the file, each
record is constructed as: EMP_SKILL_LEVEL, EMP_SKILL_LEVEL, EMP_SKILL_
LEVEL, EMP_SKILL_LEVEL, EMP_SKILL_ID, EMP_SKILL_ID, EMP_SKILL_ID,
EMP_SKILL_ID.

Example 3–3 provides an example of a varying array defined on elementary fields.

Example 3–3 Varying Array Defined on Elementary Fields

01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-DATE-MM PIC 99.
 10 EMP-HIRE-DATE-DD PIC 99.
 10 EMP-HIRE-DATE-YYYY PIC 9999.
 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).
 05 EMP-SKILL-COUNT PIC 99.
 05 EMP-SKILL-LEVEL PIC 99 OCCURS 1 TO 4 TIMES.
 DEPENDING ON EMP-SKILL-COUNT.
 05 EMP-SKILL-ID PIC 9(4) OCCURS 1 TO 4 TIMES.
 DEPENDING ON EMP-SKILL-COUNT.

Two independent arrays are defined, one on EMP-SKILL_LEVEL and one on
EMP-SKILL_ID. In this example, the value in EMP-SKILL-COUNT determines the
number of occurrences in both arrays. In the file, a record with EMP_SKILL_COUNT
equal to one is constructed as: EMP_SKILL_LEVEL, EMP_SKILL_ID. If the value of
EMP-SKILL-COUNT is two, then two occurrences of EMP-SKILL-LEVEL are followed
by two occurrences of EMP-SKILL-ID. In the file, a record with EMP_SKILL_COUNT
equal to two is constructed as: EMP_SKILL_LEVEL, EMP_SKILL_LEVEL, EMP_
SKILL_ID, EMP_SKILL_ID.

Example 3–4 provides an example of an array defined on a group field.

Example 3–4 Array Defined on a Group Field

01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-DATE-MM PIC 99.
 10 EMP-HIRE-DATE-DD PIC 99.
 10 EMP-HIRE-DATE-YYYY PIC 9999.

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-23

 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).
 05 EMP-SKILLS OCCURS 4 TIMES.
 10 EMP-SKILL-LEVEL PIC 99.
 10 EMP-SKILL-ID PIC 9(4).

In this example an array is defined with four elements. Each element contains one
occurrence of each field: EMP_SKILL_LEVEL and EMP_SKILL_ID. In the file, each
record is constructed as: EMP_SKILL_LEVEL, EMP_SKILL_ID, EMP_SKILL_LEVEL,
EMP_SKILL_ID, EMP_SKILL_LEVEL, EMP_SKILL_ID, EMP_SKILL_LEVEL, EMP_
SKILL_ID.

Example 3–5 provides an example of a varying array defined on a group field.

Example 3–5 Varying Array Defined on a Group Field

01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-DATE-MM PIC 99.
 10 EMP-HIRE-DATE-DD PIC 99.
 10 EMP-HIRE-DATE-YYYY PIC 9999.
 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).
 05 EMP-SKILL-COUNT PIC 99.
 05 EMP-SKILLS OCCURS 4 TIMES DEPENDING ON EMP-SKILL-COUNT.
 10 EMP-SKILL-LEVEL PIC 99.
 10 EMP-SKILL-ID PIC 9(4).

In this example, one array is defined with up to four elements. The value in
EMP-SKILL-COUNT defines the number of occurrences of the array. Therefore, if the
value of EMP-SKILL-COUNT is set as one, then there is one occurrence of EMP_
SKILLS. In the file, a record with EMP_SKILL_COUNT equal to one is constructed as:
EMP_SKILL_LEVEL, EMP_SKILL_ID.

If the value of EMP-SKILL-COUNT is two, then there are two occurrences of
EMP-SKILLS. In the file, a record with EMP_SKILL_COUNT equal to two is
constructed as: EMP_SKILL_LEVEL, EMP_SKILL_ID, EMP_SKILL_LEVEL, EMP_
SKILL_ID.

3.4.2 Multiple Definitions
In COBOL, data in a record may have multiple definitions. You can use any one of
these definitions to access the data. There are three methods for getting multiple
definitions:

■ "Defining Multiple Records"

■ "Defining Group Fields"

■ "Redefining Fields and Groups"

3.4.2.1 Defining Multiple Records
COBOL generated files can contain multiple record types. Whenever there is multiple
level 01 item in a file definition, each level 01 provides a separate definition of the data
record area. Only one record is kept in the data record area at a time, so only one level
01 definition is used at a time. For example, a file may contain two types of records,

Importing Metadata Definitions from COBOL Copybooks

3-24 Oracle Warehouse Builder Sources and Targets Guide

department records and employee records. Level 01 items are defined for both
department and employee records. The hierarchy for each record immediately follows
the level 01 item for that record and provides the definitions for the entire record. Each
record contains a field that identifies the record type. This record type is at the same
position for all record definitions.

In the following example, the record type is in the first position:

Example 3–6 Copybook With Multiple Records

01 DEPARTMENT-RECORD.
 05 DEPT-RECORD-TYPE PIC X.
 05 DEPT-ID PIC 999.
 05 DEPT-NAME PIC X(30).
 05 DEPT-DESCRIPTION PIC X(160).
01 EMPLOYEE-RECORD.
 05 EMP-RECORD-TYPE PIC X.
 05 EMP-ID PIC 9(6).
 05 EMP-NAME PIC X(30).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.

3.4.2.2 Defining Group Fields
As seen in the section on Data Hierarchy, fields can be organized in groups. These
groups actually provide an additional definition of the fields and are used to access
the data.

3.4.2.3 Redefining Fields and Groups
COBOL provides the ability to redefine a field or a group. Redefinition does not define
data at a new location, but instead provides an additional definition of data characters
that have been previously defined.

Example 3–7 Redefining a Field

01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-ID-R REDEFINES EMP-ID.
 10 EMP-ID-GROUP PIC 99.
 10 EMP-ID-NUM PIC 9999.
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.

In the above example, the EMP-ID field is defined as a 6 digit numeric field. A
redefinition is provided dividing the field into two fields: EMP-ID-GROUP is defined
as the first two digits of the EMP-ID field. EMP-ID-NUM is defined as the last four
digits of the EMP-ID field. EMP-ID-NUM and EMP-ID-GROUP both begin at position
1 in the record.

Example 3–8 Redefining a Group

01 EMPLOYEE-RECORD.
05 EMP-ID PIC 9(6).
05 EMP-ID-R REDEFINES EMP-ID.
10 EMP-ID-GROUP PIC 99.
10 EMP-ID-NUM PIC 9999.
05 EMP-REGION PIC 9.
05 EMP-DEPT PIC 999.

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-25

05 EMP-HIRE-DATE.
10 EMP-HIRE-DATE-MM PIC 99.
10 EMP-HIRE-DATE-DD PIC 99.
10 EMP-HIRE-DATE-YYYY PIC 9999.
05 EMP-SALARY PIC 9(9).
05 EMP-NAME PIC X(15).
05 EMP-SKILLS OCCURS 4 TIMES.
10 EMP-SKILL-LEVEL PIC 99.
10 EMP-SKILL-ID PIC 9(4).
05 EMP-SKILLS-R REDEFINES EMP-SKILLS.
10 EMP-SKILL-LEVEL1 PIC 99.
10 EMP-SKILL-ID1 PIC 9(4).
10 EMP-SKILL-LEVEL2 PIC 99.
10 EMP-SKILL-ID2 PIC 9(4).
10 EMP-SKILL-LEVEL3 PIC 99.
10 EMP-SKILL-ID3 PIC 9(4).

In the above example, the EMP-SKILL array has been redefined so that each element is
expanded providing a field for each element. As in the previous example, the
definitions for EMP-SKILLS-R is defining the same data area as EMP-SKILLS. The first
occurrence of EMP-SKILL-LEVEL is at the same position in the record as
EMP-SKILL-LEVEL1.

3.4.2.4 COBOL File Formats
COBOL programs can create files of different organization. These include the
following:

■ Line Sequential: Line sequential files are generally known as text files because the
primary use of this file type is for display data. The records in these files can only
be accessed in the order they were written. Line sequential files contain variable
length records. A record delimiter separates each record in the file. The record
delimiter that is used is operating system dependent and is inserted after the last
character in each record.

■ Record Sequential: Record sequential files are also accessed in the order they
were written. This file organization is more flexible than line sequential. Records
can be of fixed or variable length. The record sequential organization is used for
sequential files that contain binary or packed data, or any data that may have
other non-printable characters. In fixed length files, every record that is written to
the file is the same length. If necessary, the record is padded with blanks to ensure
uniform length. With variable length records, each record is written based on the
actual size of the record. A Record Descriptor Word (RDW) is inserted at the
beginning of each record. The RDW contains the actual length of the record. It is
not considered part of the record and is not included in the data definition. In
general, variable length records are used when there are many small records and
few large records. Variable length records must be converted before they can be
imported.

■ Relative Files: Relative files can be accessed randomly in the order they are
written. Records can be declared as variable, but they are written as fixed. The
random access is not by key, but is instead by relative record number. Relative
files must be converted to sequential before they can be imported.

■ Indexed Files: Indexed files can be accessed by key field(s) in the order they are
written. Records in indexed files can be fixed or variable. Indexed files consist of
two physical files, one containing the data and the other containing the index.
Indexed files are converted to sequential before they are imported.

Importing Metadata Definitions from COBOL Copybooks

3-26 Oracle Warehouse Builder Sources and Targets Guide

The file format used for data storage is determined by the COBOL application. This
information is not defined in the copybook.

3.4.3 Reinterpreting COBOL Data Structures Into Relational Data Structures
As you consider importing COBOL files into a relational database, you must plan how
the data should be mapped into the relational database.

Records
At the highest level, each record type, level 01 structure, is considered mapping to a
table. Records in files are often designed to be independent sources of information.
This is a large difference between files and tables. Tables are generally designed to
hold information that is closely related. When you consider the records in your file,
you should consider if it would be better to define multiple tables for the information.
Groups that are used to organize related information are often good candidates for
independent tables. For example, you may have a group that is defined for address
information, which might naturally fit into a name and address table. Similarly, arrays,
whether varying or not, are also often good candidates for independent tables.

Arrays
In order to define arrays, Oracle Warehouse Builder normalizes the array by
specifying each element in the array independently. This technique is also used for
defining varying arrays. Not all varying arrays can be loaded using SQL*Loader.
When the varying array is after the record, SQL*Loader may be able to load it. Records
with embedded varying arrays are not necessarily physically stored as variable,
therefore you may be able to use this technique for loading these records also. See
"Example: Extracting Data from a Single Record Type Varying Array COBOL File" on
page 3-29.

Mapping COBOL Data Types to SQL Data Types
The USAGE and PICTURE clauses are used to define the format and characteristics of
data elements. Together the picture and usage identify the scalar data type, length,
precision and scale. Table 3–1 shows data element definitions that apply to COBOL
files. It describes the representation of each data type and identifies how that data type
is mapped to SQL*Loader data type definitions. The PICTURE represents a mask that
describes the data. The values identified within the parentheses are multiplication
factors for the preceding picture element. So when n = 5, X(n) indicates that there are 5
characters of type X (alphanumeric data).

Table 3–1 COBOL Data Types and the Equivalent SQL *Loader Data Types

COBOL Data
Type SQL Loader Data Type Description

X(n) ■ CHAR(n)

■ DATE(n) 'mask' when
data contains valid
date

■ TIME

■ TIMESTAMP

■ INTERVAL

Alphanumeric data. Each X identifies one
allowable character from the specified
character set.

A(n) CHAR(n) Alphabetic data. Each A identifies any letter
of the alphabet or space.

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-27

9(n) ■ INTEGER
EXTERNAL(n)

■ DECIMAL
EXTERNAL(n)

■ ZONED
EXTERNAL(n)

■ DATE(n) 'mask' when
data contains valid
date

Numeric data. Each 9 identifies one digit.

+- mantissa +-
exponent

FLOAT EXTERNAL
(length)

External floating point data.

S9(n)v9(m) SIGN
TRAILING

ZONED(precision, scale)
where precision = n+m and
scale = m

Numeric data. Each 9 identifies one digit. The
v indicates the implied decimal position.
The sign is carried in the last byte.

9(n)v9(m) ZONED(precision, scale)
where precision = n+m and
scale = m

Numeric data. Each 9 identifies one digit. The
v indicates the implied decimal position.

9(n)v9(m)

S9(n)v9(m)

SMALLINT

INTEGER(length 2,4,or 8)

May use SIGNED|

UNSIGNED

May require BYTEORDER
clause

Scale handled with an
expression

Internal format data with a radix of 2.

The size of the field varies with the value m.

n+m = 1-4, length = 2

n+m = 5-9, length = 4

n+m = 10-18, length =8

Not allowed FLOAT

May require BYTEORDER
clause.

Single-precision floating point number, 4
bytes long

Not allowed DOUBLE

May require BYTEORDER
clause.

Double-precision floating point number, 8
bytes long

9(n)v9(m)

S9(n)v9(m)

DECIMAL (precision,
scale) where precision =
n+m and scale = m

Internal format numeric data with a radix of
10. The clause indicates that each digit must
use the minimum storage possible. Generally,
each byte contains two digits with the last
half-byte containing the sign.

X(n)

9(n)v9(m)

S9(n)v9(m)

Not commonly used The internal format of the data is not defined.
It is often stored the same as BINARY,
however the radix may be reversed.

G(n) GRAPHIC(n) Graphic data that does not contain Shift In
and Shift Out characters

05 V

49 V-LN PIC
S9(4)

COMP

05 V-DATA PIC
X(n)

VARCHAR(max length),
can only be loaded
correctly between systems
where SMALLINT is the
same size

Variable length character field

Table 3–1 (Cont.) COBOL Data Types and the Equivalent SQL *Loader Data Types

COBOL Data
Type SQL Loader Data Type Description

Importing Metadata Definitions from COBOL Copybooks

3-28 Oracle Warehouse Builder Sources and Targets Guide

3.4.4 Importing Metadata
To import metadata from COBOL, you must create a flat file module and then import
the metadata definitions from a Cobol copybook.

Importing a Copybook
To import metadata from a COBOL copybook:

1. Create a flat file module as described in "Creating Flat File Modules" on page 3-4.
Provide the location details of the COBOL copybook.

2. Right-click the newly created module and select Import, Cobol.

The Cobol Import dialog box is displayed.

An alternative way to open the Cobol Import dialog box is to select the newly
created module and then select File, Import, Cobol.

3. Click Add Copybook to browse for the copybook you must import.

You can add multiple copybooks simultaneously. When you add a copybook, the
Copybook field of the Import Copybooks spread table displays the directory path
of the copybook. Use the File field to edit the name of the imported copybook. Use
the Description field to add an optional description for the imported copybook.

4. Click View Copybook to view the metadata structure of the copybook being
imported.

5. Click Session Options to open the Import Cobol Session Options dialog box. For
details of values to be specified in this dialog box, see "Import Cobol Session
Options" on page 3-28.

6. Click OK and on the Cobol Import window, click Import.

3.4.4.1 Import Cobol Session Options
You can use this dialog box to specify a template file and other properties. Based on
the copybook you are importing, determine if the default physical file properties are
acceptable. Or else, select a template file from which the physical characteristics are
imported. You can edit some physical properties of the file after the import as well.

To specify a template file, select a file from the Copy Flat File Properties From list.

If you retain the Default Properties option from the Copy Flat File Properties From
list, the file is defined as fixed format (not delimited) with the following properties:

■ Skip 0 records

■ Use first row as column name set to false

■ Record delimiter set to \n

05 V

49 V-LN PIC
S9(4)

COMP

05 V-DATA PIC
G(n)

VARGRAPHIC(max
length), can only be loaded
correctly between systems
where SMALLINT is the
same size.

Variable length Graphic data that does not
contain Shift In and Shift Out characters

Table 3–1 (Cont.) COBOL Data Types and the Equivalent SQL *Loader Data Types

COBOL Data
Type SQL Loader Data Type Description

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-29

■ One physical record for each logical record

If you import a multi-record copybook, then it is set to multi record.

If you select a file from the Copy Flat File Properties From list, then the physical
characteristics of this file are used for the newly imported copybook.

Do Not Import Groups: To suppress the definition of group items. This ensures that
only the subordinate items get imported. For example, if you have the following fields:

05 EMP-HIRE-DATE.
 10 EMP-HIRE-MONTH PIC 99.
 10 EMP-HIRE-DAY PIC 99.
 10 EMP-HIRE-YEAR PIC 9999.

When you select the Do Not Import Groups option, only three fields are created,
EMP-HIRE-MONTH, EMP-HIRE-DAY, and EMP-HIRE-YEAR. When the option is not
selected, then four fields, EMP-HIRE-DATE, EMP-HIRE-MONTH, EMP-HIRE-DAY,
EMP-HIRE-YEAR are created at the time of import.

Do Not Import Redefines: To avoid import of redundant redefined fields. For
example, if you have the following copybook definition:

05 HIRE_DATE.
10 HIRE_MONTH PIC 99.
10 HIRE_DAY PIC 99.
10 HIRE_YEAR PIC 9999.
05 HIRE_DATE_ALPHA REDEFINES HIRE_DATE.
10 HIRE_MONTH PIC XX.
10 HIRE_DAY PIC XX.
10 HIRE_YEAR PIC XXXX.

To import all the fields, clear the Do Not Import Redefinitions option. When the
option is selected, only the first four fields, HIRE_DATE, HIRE_MONTH, HIRE_DAY,
HIRE_YEAR are imported.

At the time of importing the metadata, it is recommended that you inspect the
copybook for unnecessary metadata including grouped fields and redefined fields.
You can also edit the file later to remove unnecessary definitions.

3.4.5 Example: Extracting Data from a Single Record Type Varying Array COBOL File
To extract data from a COBOL data file, you must first import the corresponding
copybook. Consider the following copybook for import:

01 EMPLOYEE-RECORD.
 05 EMP-RECORD-LENGTH PIC 9(4).
 05 EMP-ID PIC 9(6).
 05 EMP-REGION PIC 9.
 05 EMP-DEPT PIC 999.
 05 EMP-HIRE-DATE.
 10 EMP-HIRE-MM PIC 99.
 10 EMP-HIRE-DD PIC 99.
 10 EMP-HIRE-YEAR PIC 9999.
 05 EMP-SALARY PIC 9(9).
 05 EMP-NAME PIC X(15).
 05 EMP-SKILLS OCCURS 4 TIMES.
 10 EMP-SKILL-LEVEL PIC 99.
 10 EMP-SKILL-ID PIC 9999.

Importing Metadata Definitions from COBOL Copybooks

3-30 Oracle Warehouse Builder Sources and Targets Guide

3.4.5.1 Importing The COBOL Copybook
Import the copybook as described in "Importing a Copybook" on page 3-28.

To set the file properties of the imported copybook, right-click the file on the Projects
Navigator and click Open. On the Edit Flat File dialog box, define the file properties as
given in "Defining the File Properties" on page 3-30.

3.4.5.2 Defining the File Properties
Use the Name, General, and Structure tabs to specify the file properties.

3.4.5.2.1 Name Tab Use the Name tab to specify the character set. This is an EBCDIC
file, so the character must be set to WE8EBCDIC500.

3.4.5.2.2 General Tab Use the General tab to set the following file properties.

■ Record Delimiter: The record delimiter for this file must be set to the binary value
X'0D0A'.

■ Logical Record Definition: In this example, there is one logical record per
physical record.

■ Field Format: Each field in this record is at a constant position. Therefore, the
Fixed Length Fields option is selected by default.

■ Record Type: This copybook contains a single type of record. Therefore, the Single
Record option is selected by default.

The field properties are as shown in Figure 3–5.

Figure 3–5 The Field Properties of the Imported Cobol File

3.4.5.2.3 Structure Tab Use the Structure tab to review the field properties and make
changes if required.

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-31

The structure of the imported file is as shown in Figure 3–6.

Figure 3–6 Structure of the Imported Cobol File

3.4.5.3 Creating a Mapping to Load Data
Create a mapping with the imported COBOL file as the source. Insert an unbound
table operator in the mapping and map the desired fields from the COBOL file to the
table operator.

Figure 3–7 Mapping a Flat File to a Table

Importing Metadata Definitions from COBOL Copybooks

3-32 Oracle Warehouse Builder Sources and Targets Guide

3.4.5.4 Configuring The Mapping
Right-click the mapping and click Configure to open the Configuration Properties
dialog box. Select SQL*LOADER as the language for code generation. Tune any of the
other SQL*Loader settings.

Figure 3–8 Configuration Properties Dialog Box

3.4.5.5 Specifying the Data File
Click Sql Loader Data Files and then click the ellipsis as shown in Figure 3–9 to open
the SQL Loader Data Files dialog box.

Figure 3–9 Configuration Properties for the Mapping

On the SQL Loader Data Files dialog box, right-click SQL Loader Data Files and select
Create. A new data file node is added under Sql Loader Data Files.

Provide the data file name and select the data file location from where data is to be
loaded. Specify a bad file to store those records that are not loaded into the target table
due to error in the data. Specify a discard file to store those records that are not loaded
due to SQL*Loader loading checks.

Importing Metadata Definitions from COBOL Copybooks

Using Flat Files as Sources or Targets 3-33

Figure 3–10 SQL Loader Data Files Dialog Box

3.4.5.6 Executing the Mapping
After you have defined the configuration properties for the mapping, you can deploy
the table and the mapping and then start the mapping to load the COBOL data into
the target table.

To deploy the mapping, right-click the mapping and select Deploy. After deploying
the mapping, start the mapping. Right-click the mapping and select Start. When you
run the mapping, the data is read from the data file you provided while configuring
the mapping, and loaded into the target table.

To view the data in the target table, right-click the table, and select Data. Figure 3–11
shows the data in the table.

Figure 3–11 Data in the Target Table

Viewing and Editing a File Definition

3-34 Oracle Warehouse Builder Sources and Targets Guide

3.5 Viewing and Editing a File Definition
You can view and edit the definition of a file by using the Edit Flat File dialog box.

To update a file definition:

1. Select the file definition in the Projects Navigator.

2. Right-click the file and select Open.

Oracle Warehouse Builder displays the Edit Flat File dialog box with the following
tabs:

Name Tab: Use this tab to edit the name and descriptive for the file.

General Tab: Use this tab to change the general file properties, such as the
physical record size, the number of physical records for each logical record, and
the delimiter and enclosure characters.

Record Tab: This tab is available only for flat files with multiple record types. Use
this tab to change the record type position or add, delete, or edit record types.

Structure Tab: Use this tab to edit field level attributes, SQL Loader and SQL
Properties.

3.5.1 Name Tab
Use this tab to edit the name, default physical file name, description, and character set
for the file. See "Describing a Flat File" on page 3-6 for more details.

3.5.2 General Tab
Use this tab to change the general properties, such as the physical record size, the
number of physical records for each logical record, the delimiter and enclosure
characters, the number of rows to skip, and the field format. See "Defining File
Properties for a Flat File" on page 3-7 for more details about the general properties.

3.5.3 Record Tab
If the file contains multiple record types, then specify the field position that
determines the record type in Record Type Location.

Field Position: This field displays the column that contains the record type indicator.
You can change this value. For example, if you have a flat file with two record types
that are distinguished from each other by the content of the third column as shown in
the following list, then the value in this field is 3.

■ Record Type 1: 2002 0115 E 4564564

■ Record Type 2: 2003 1231 D 659871 Q HKLIH

Record type values: This table displays each record type, the value that distinguishes
it from the other record types, and the name you have given to the record type.
Table 3–2 shows an example of what the record type values for the two sample records
earlier might be:

Table 3–2 Example of Record Type Values

Type Value Record Name

E Employee

D Department

Using External Tables

Using Flat Files as Sources or Targets 3-35

■ To add new record types, click New and enter a Type Value and a Record Name
describing the record type.

■ To delete record types, select the field to the left of each record type you want to
remove and click Delete.

For fixed length files containing multiple record types, Record Type Location consists
of two fields to determine the record type indicator:

Start Position: The starting position of the field that specifies the record type.

Length: The length of the field.

3.5.4 Structure Tab
Use the Structure tab to edit a field name, data type, mask, "SQL*Loader Properties"
and "SQL Properties". You can add or delete a field. You can also add a field mask,
NULLIF condition, or DEFAULTIF condition.

If the file contains multiple record types, you can select each record type from the
Record Name field. Oracle Warehouse Builder displays the field properties for the
selected record. See "Defining Field Properties for a Flat File" on page 3-10 for more
details.

3.6 Using External Tables
External tables are database objects available in Oracle Database9i, and higher.

External tables are tables that represent data from flat files in a relational format. They
are read-only tables that act like regular source tables. When you create and define an
external table, the metadata for the external table is saved in the workspace. You can
load data from flat files to external tables, transform the data using mappings, and
load the transformed data to target tables.

The following sections provide information about external tables:

■ "Creating a New External Table Definition"

■ "Importing an External Table"

■ "Synchronizing an External Table Definition with a Record in a File"

■ "Editing External Table Definitions"

■ "Configuring External Tables"

3.6.1 Creating a New External Table Definition

Before you begin
Each external table you create corresponds to a single record type in an existing flat
file. Before you begin, first define the file within the workspace as described in
"Defining Character Data Files" on page 3-2.

To create a new external table definition:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the module where you want to create the external table.

3. Right-click External Tables and select New External Table.

Using External Tables

3-36 Oracle Warehouse Builder Sources and Targets Guide

Oracle Warehouse Builder displays the Welcome page of the Create External Table
Wizard. Use the wizard to complete the following pages:

■ "Name Page"

■ "File Selection Page"

■ "Locations Page"

3.6.1.1 Name Page
Use the Name page to define a name and an optional description for the external table.
Enter the name in the Name field. In the physical naming mode, you must enter a
name between 1 and 200 valid characters. Spaces are not allowed in physical mode. In
the logical mode, you can enter a unique name up to 4000 characters in length. The
external table name must be unique within the module. Spaces are allowed in the
logical naming mode.

Use the Description field to enter an optional description for the external table.

3.6.1.2 File Selection Page
The wizard displays the File Selection page. The wizard lists all the flat files available
in the workspace. Select a file on which to base the external table. To search through
long lists of files, type the first few letters of the file name and click Go.

If you select a file that contains multiple record types, you must also select the record
type name at the bottom of the File Selection page. An external table can represent
only one record type.

You have the option of not specifying the file at this stage. If you do not specify a file
in the wizard, you can later specify information such as record type, access
parameters, and data files on the external table properties sheet.

3.6.1.3 Locations Page
You can select a location from the list of flat file locations. Alternatively, you can leave
the location unspecified. If you do not specify a location in the wizard, you can later
specify a location on the external table properties sheet.

3.6.2 Importing an External Table
You can create an external table from a flat file, or import an existing external table
into Oracle Warehouse Builder.

To import an external table:

1. On the Projects Navigator, right-click External Tables, and select Import.

2. Specify to import a database object or an Oracle Warehouse Builder metadata file.

3.6.3 Editing External Table Definitions
Use the External Table editor to edit an external table definition. To open the editor,
right-click the name of the external table from the Projects Navigator and select Open
Editor. The Edit External Table dialog box is displayed. The tabs and properties that
you can edit depend on how you defined the external table in the workspace.

Note: The location associated with an external table must be
deployed before the external table itself can be deployed.

Using External Tables

Using Flat Files as Sources or Targets 3-37

The External Table Properties window displays with the following tabs:

■ "Name Tab"

■ "Columns Tab"

■ "File Tab"

■ "Locations Tab"

■ "Data Rules Tab"

■ "Access Parameters Tab"

3.6.3.1 Name Tab
Use the Name tab to rename the external table. The same rules for renaming tables
apply to external tables. For more information, see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

3.6.3.2 Columns Tab
Use the Columns tab to add or edit columns. The same rules for adding columns to
tables apply to external tables. For more information, see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

3.6.3.3 File Tab
Use the File tab to view the name of the flat file that provides the metadata for the
external table. If the source flat file has multiple record types, the File tab also displays
the record name associated with the external table. You can update this relationship or
change it to a different file and record by reconciling the external table. For more
information, see "Synchronizing an External Table Definition with a Record in a File"
on page 3-38.

The File tab displays under the following conditions:

■ You used the New External Table Wizard to create the external table and you
specified a file name.

■ You did not specify a file name in the New External Table Wizard, but you
reconciled the external table definition with a file and record.

3.6.3.4 Locations Tab
Use the Location tab to view or change the flat file location. The Location list displays
the available locations. Select a location from this list.

3.6.3.5 Data Rules Tab
Use the Data Rules tab to define data rules for the external table. For more information
about using data rules, see Oracle Warehouse Builder Data Modeling, ETL, and Data
Quality Guide.

3.6.3.6 Access Parameters Tab
Access parameters define how to read from the flat file when a file has not been
specified for the external table. In some cases, the External Table editor displays the
Access Parameters tab instead of the File tab.

The tab for the access parameters displays under the following conditions:

Using External Tables

3-38 Oracle Warehouse Builder Sources and Targets Guide

■ You imported an external table from another workspace. In this case, you can
view and edit the access parameters.

■ You created an external table in an Oracle Database and imported its definition. In
this case, you can view and edit the access parameters.

■ You use the Create External Table Wizard to create an external table and do not
specify a reference file. The access parameters are empty. Before generating the
external table, you must reconcile the external table definition with a flat file
record or manually enter your own access specifications.

The access parameters describe how fields in the source data file are represented in the
external table as columns. For example, if the data file contained a field emp_id with a
data type of INTEGER(2), the access parameters could indicate that the field be
converted to a character string column in the external table.

Although you can make changes to the access parameters that affect how the external
table is generated and deployed, it is not recommended. Oracle Warehouse Builder
does not validate the changes. For more information about external tables and the
access parameters, see Oracle Database Utilities.

3.6.4 Synchronizing an External Table Definition with a Record in a File
Oracle Warehouse Builder enables you to update the external table definition with the
metadata changes made to the file associated with the external table. You do this by
synchronizing the external table with the source file.

To synchronize an external table definition with a record in a file:

1. In the Projects Navigator, right-click the external table to synchronize and select
Synchronize.

Oracle Warehouse Builder displays the Synchronize dialog box.

2. Use the Select the Object to synchronize list to specify the flat file with which the
external table is to be synchronized.

By default, the flat file that was used to create the external table is displayed in this
list. Expand the list to see a list of flat file modules and the flat files they contain.

3. Use the Matching Strategy list to specify how the search is performed for matches
and the external table with the information from the flat file is updated. The
options for match strategy are:

Match By Object ID: This strategy compares the field IDs of that the external table
columns references with the field IDs in the flat file.

Match By Object Name: This strategy compares the physical names in the
external table with the physical names in the flat file.

Match By Object Position: This strategy matches by position, regardless of
physical names and IDs. The first external table attribute is reconciled with the
first record in the file, the second with the second, and so on. Use this strategy
when you want to reconcile the external table with a new record.

4. Use the Synchronize Strategy list to indicate how differences in metadata between
the existing external table definition and the record you specified are handled:

Note: When an external table is imported into Oracle Warehouse
Builder, the access parameter definition of the table is truncated to
4000 characters. This can potentially cause DDL generation errors.

Using External Tables

Using Flat Files as Sources or Targets 3-39

Merge: The metadata from the existing external table definition and the record
you specified is combined.

Replace: Existing record metadata is deleted from the external table definition and
the new file record metadata is added to the external table.

5. Click View Synchronization Plan to open the Synchronization Plan dialog box.

You can view the actions performed during synchronization.

6. Select a new strategy and then click Refresh Plan.

On the spread table, expand the Source node to view the action performed on each
column.

7. Click OK to complete synchronizing the external table definition.

3.6.5 Configuring External Tables
Configure the following properties for an external table:

■ "Access Specification"

■ "Reject"

■ "Data Characteristics"

■ "Parallel"

■ "Field Editing"

■ "Identification"

■ "Data Files"

To configure the physical properties for an external table:

1. Select an external table from the Projects Navigator.

2. From the Edit menu, select Configure. You can also click the Configure icon from
the toolbar.

The Configuration Property window is displayed.

3. To configure a property, click the white space and make a selection from the list.

3.6.5.1 Access Specification
Under Access Specification, you can indicate the following file names and locations
that Oracle Warehouse Builder uses to load the external table through SQL*Loader.

■ Bad File: If you specify a name and location for a bad file, Oracle Database is
directed to write to that file all records that were not loaded due to errors. For
example, records written to the bad file include those not loaded due to a data
type error in converting a field into a column in the external table. If you specify a
bad file that exists, the existing file is overwritten.

Note: When you import an external table into the workspace and
when you manually define access parameters for an external table,
some external table configuration properties are overruled by
settings on the Access Parameters tab in the External Table
Properties window.

Using External Tables

3-40 Oracle Warehouse Builder Sources and Targets Guide

■ Discard File: If you specify a name and location for a discard file, Oracle Database
is directed to write to that file all records that were not loaded based on a
SQL*Loader load condition placed on the file. If you specify a discard file that
exists, the existing file is overwritten.

■ Log File: If you specify a name and location for a log file, then Oracle Database is
directed to log messages related to the external table to that file. If you specify a
log file that exists, new messages are appended.

For each of these files, you can either specify a file name and location, select Do not
use, or select Use default location.

3.6.5.2 Reject
Under Reject, you can indicate how many rejected rows to allow. By default, the
number of rejected rows allowed is unlimited. If you set Rejects are unlimited to false,
enter a number in Number of rejects allowed.

3.6.5.3 Parallel
Parallel: Enables parallel processing. If you are using a single system, set the value to
NONPARALLEL to improve performance. If you are using multiple systems, accept the
default PARALLEL.The access driver attempts to divide data files into chunks that can
be processed separately. The following file, record, and data characteristics make it
impossible for a file to be processed in parallel:

■ Sequential data sources (such as a tape drive or pipe).

■ Data in any multibyte character set whose character boundaries cannot be
determined starting at an arbitrary byte in the middle of a string. This restriction
does not apply to any data file with a fixed number of bytes for each record.

■ Records with the VAR format

3.6.5.4 Data Characteristics
If you imported the external table into the workspace or created the external table
without specifying a source file, do not configure these properties. Data characteristics
properties are overruled by settings on the Access Parameters tab in the External Table
Properties window.

Under Data Characteristics you can set the following properties:

■ Endian: The default for the Endian property is Platform. This indicates that it is
assumed that the endian of the flat file matches the endian of the platform on
which it resides. If the file resides on a Windows platform, the data is handled as
little-endian data. If the file resides on Sun Solaris or IBM MVS, the data is
handled as big-endian. If you know the endian value for the flat file, you can select
big or little-endian. If the file is UTF16 and contains a mark at the beginning of the
file indicating the endian, then that endian is used.

■ String Sizes in: This property indicates how data with multibyte character sets,
such as UTF16, is handled. By default, the lengths for character strings in the data
file are assumed to be in bytes. You can change the selection to indicate that
strings sizes are specified in characters.

3.6.5.5 Field Editing
If you imported the external table into the workspace or created the external table
without specifying a source file, do not configure these properties. Field editing

Using External Tables

Using Flat Files as Sources or Targets 3-41

properties are overruled by settings on the Access Parameters tab in the External Table
Properties window.

Under Field Editing, you can indicate the type of whitespace trimming to be
performed on character fields in the data file. The default setting is to perform no trim.
All other trim options can reduce performance. You can also set the trim option to trim
blanks to the left, right, or both sides of a character field.

Another option is to set the trim to perform according to SQL*Loader trim function. If
you select SQL*Loader trim, fixed-length files are right trimmed and delimited files
specified to have enclosures are left trimmed only when a field is missing an
enclosure.

You can indicate how to handle missing fields in a record. If you set the option Trim
Missing Values Null to true, fields with missing values are set to NULL. If you set the
property to false, fields with missing values are rejected and written into the specified
bad file.

3.6.5.6 Identification
See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for details.

3.6.5.7 Data Files
If a file is associated with an external table, and it has a file name specified, that name
is used. The user can configure if a different file must be specified or if multiple files
must be specified.

To add a data file:

1. Right-click the Data Files node and select Create.

Enter a name for the data file such as DATAFILE1. Your entry displays as a new
node in the right panel of the Configuration Properties dialog box.

2. Enter the following values for each data file you define:

Data File Location: Location for the flat file.

Data File Name: The name of the flat file including its extension. For example,
enter myflatfile.dat.

Using External Tables

3-42 Oracle Warehouse Builder Sources and Targets Guide

4

Connecting to Non-Oracle Data Sources Through Gateways 4-1

4 Connecting to Non-Oracle Data Sources
Through Gateways

Gateways provide a transparent connection between Oracle and non-Oracle databases.
Once a database is connected through a gateway, you can access it just as you access
an Oracle database. As a result, you can use any of the transformation operators
available in Oracle Warehouse Builder to transform the data before loading it into a
target database.

Using Oracle Database Gateways, you can connect to different non-Oracle databases
such as SQL Server, Sybase, Informix, Teradata, and DRDA. DRDA connectivity
enables connection to DB2 database. Gateways provide a specific connection agent for
each of these databases. For example, for a Sybase data source, the agent is a
Sybase-specific gateway. You must install and configure this agent to support
communication between the two systems. After creating a gateway connection to the
database, you can import metadata into Oracle Warehouse Builder.

This chapter describes the use of Oracle Database Gateways for connectivity among
databases, from the perspective of Oracle Warehouse Builder. It provides background
information on gateway-based connectivity, and then a few examples to illustrate the
most common sources and targets. This chapter contains the following topics:

■ "Connecting to a DB2 Database"

■ "Connecting to a SQL Server Database"

■ "Connecting to an ODBC Data Source"

Note: Before attempting to import metadata from a non-Oracle
database through a gateway, ensure that the specific gateway for that
database is installed on the system. See Oracle Database Heterogeneous
Connectivity Administrator's Guide for more information about Oracle
Database Gateways.

See Also: For installation instructions and information about
specific gateway agents for different databases, go to

http://www.oracle.com/pls/db112/gateways

Connecting to a DB2 Database

4-2 Oracle Warehouse Builder Sources and Targets Guide

4.1 Connecting to a DB2 Database
To create a gateway connection to a DB2 database, ensure that Oracle Database
Gateway for DRDA is installed. Once the gateway connection is established, you can
access the DB2 database just as you access an Oracle database.

4.1.1 Creating a DB2 Module
To import metadata from a DB2 database, create a module in the DRDA node. The
DRDA node is available under the Databases node in the Projects Navigator. To create
a DRDA module:

1. Right-click DRDA and select New DRDA Module.

The Create Module Wizard is displayed.

2. In the Name and Description page, provide a name, description (optional), and
select a module status.

3. In the Connection Information page, either select an existing location or click Edit
to open the "Edit Non-Oracle Location Dialog Box" and create a new location.

4. In the Summary page, verify the details and click Finish.

The newly created DB2 module is now available under the DRDA node.

4.1.1.1 Edit Non-Oracle Location Dialog Box
Select the Connection Type to be one of Host:Port:Service, Database Link, or
SQL*Net.

Host:Port:Service

If you selected Host:Port:Service, then provide the following connection details:

■ User Name/Password: User name and password to access the database.

■ Host: Computer on which the database is hosted.

■ Port: SQL port number of the database. The default port number to access DB2 is
set to 1111.

■ Service Name: The service name of the database.

■ Schema: Browse to select a schema to import.

Database Link

If you selected Database Link, then provide the following connection details:

■ From Location: An existing location where the database link is defined

■ Database Link Name: The object name of the database link

■ Schema: The schema where the source data is stored or the target objects is
deployed.

SQL*Net

For SQL*Net, provide the following connection details:

■ User Name: The database user credential that has permission to access the schema
location.

When connecting to a database that does not have user names, enter any text as a
mock user name.

Connecting to a SQL Server Database

Connecting to Non-Oracle Data Sources Through Gateways 4-3

■ Password: The password associated with user name.

When connecting to a database that does not require a password, enter any text as
a mock password.

■ Net Service Name: The name of the predefined connection.

■ Use Global Name: The unique name of the database, which is composed of the
database name and the domain in the form database_name.database_domain. For
example, db2.us.example.com identifies the db2 database in the us.example.com
domain. Select this option when connecting to a database in a different network.

Click Test Connection to verify that you have provided the correct details and click
OK to set the connection details.

4.2 Connecting to a SQL Server Database
To create a gateway connection to a SQL Server database, ensure that Oracle Database
Gateway for SQL Server is installed.

4.2.1 Creating a SQL Server Module
The SQL Server node is available under the Databases node in the Projects Navigator.
To create a SQL Server module:

1. Right-click SQL Server and select New SQL Server Module.

The Create Module Wizard is displayed.

2. In the Name and Description page, provide a name, description (optional), and
select a module status. Select SQL Server Gateway as the access method.

3. In the Connection Information page, either select an existing location or click Edit
to open the "Edit Non-Oracle Location Dialog Box" and create a new location.

4. In the Summary page, verify the details and click Finish.

The newly created SQL Server module is now available under the SQL Server node.

4.2.1.1 Edit Non-Oracle Location Dialog Box
Select the Connection Type to be one of Host:Port:Service, Database Link, or
SQL*Net.

Host:Port:Service

If you selected Host:Port:Service, then provide the following connection details:

■ User Name/Password: User name and password to access the database.

■ Host: Computer on which the database is hosted.

■ Port: SQL port number of the database. The default port number to access SQL
Server is set to 1526.

■ Service Name: The service name of the database.

■ Schema: Browse to select a schema to import.

Database Link

If you selected Database Link, then provide the following connection details:

■ From Location: An existing location where the database link is defined

■ Database Link Name: The object name of the database link

Connecting to an ODBC Data Source

4-4 Oracle Warehouse Builder Sources and Targets Guide

■ Schema: The schema where the source data is stored or the target objects is
deployed.

SQL*Net

For SQL*Net, provide the following connection details:

■ User Name: The database user credential that has permission to access the schema
location.

When connecting to a database that does not have user names, enter any text as a
mock user name.

■ Password: The password associated with user name.

When connecting to a database that does not require password, enter any text as a
mock password.

■ Net Service Name: The name of the predefined connection.

■ Use Global Name: The unique name of the database, which is composed of the
database name and the domain in the form database_name.database_domain. For
example, sqlserver.us.example.com identifies the SQL Server database in the
us.example.com domain. Select this option when connecting to a database in a
different network.

Click Test Connection to verify that you have provided the correct details and click
OK to set the connection details.

4.3 Connecting to an ODBC Data Source
Oracle Warehouse Builder can access any data source that supports open database
connectivity (ODBC). This is possible using the ODBC support provided by Oracle
Database. You can use ODBC access for any data source not supported by a specific
gateway agent.

4.3.1 Setting up ODBC Connectivity
While ODBC connectivity is widely available, it is most commonly used to connect to
data sources on Windows platforms. The Oracle Database configuration process
should be substantially similar for connecting to any ODBC source. ODBC setup on
the source system can vary greatly in different environments. The following
discussion describes the common case of setting up ODBC connectivity to a source on
a Windows platform using a System DSN. If you are on a non-Windows platform,
consult the documentation from your vendor on ODBC setup.

4.3.1.1 Installing ODBC Driver
To enable ODBC connectivity to a data source, you must first install the ODBC driver
for that particular data source.

4.3.1.2 Creating a System DSN
After installing the driver, create a system DSN using the Microsoft ODBC
Administrator.

1. Select Start, Settings, Control Panel, Administrative Tools, Data Sources
(ODBC).

This opens the ODBC Data Source Administrator dialog box.

Connecting to an ODBC Data Source

Connecting to Non-Oracle Data Sources Through Gateways 4-5

2. Navigate to the System DSN tab and click Add to open the Create New Data
Source dialog box.

3. Select the driver for which you want to set up the data source.

Click Finish to open the ODBC Setup dialog box.

4. Specify a name for the data source, and other relevant connection details for the
data source. The connection details that you provide here differs for each type of
data source.

4.3.1.3 Configuring the Database
Next, you must configure Oracle Database to connect to the data source. Oracle
Warehouse Builder can then use this configuration to extract metadata from the data
source. This involves:

■ "Creating a Heterogeneous Services Initialization File"

■ "Configuring the listener.ora File"

4.3.1.3.1 Creating a Heterogeneous Services Initialization File To configure an ODBC
connection agent, you must create a heterogeneous services initialization file for the
agent. Create this file in the OWB_HOME\hs\admin directory of the database.

The file name should start with init and have the extension .ora. It should be of the
format initSID.ora, where SID is the system identifier for the ODBC agent. The value
to be entered in this file is:

HS_FDS_CONNECT_INFO = DSN_NAME

DSN_NAME is the data source name that you provide while creating the system DSN.
Other relevant data that must be provided in this file depends on the data source you
are connecting to.

4.3.1.3.2 Configuring the listener.ora File Add a new SID description in the listener.ora
file. This file is available in the OWB_HOME\network\admin directory.

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = SID)
 (OWB_HOME = owbhome)
 (PROGRAM = program)
)
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (OWB_HOME = owbhome)
 (PROGRAM = program)
)
)

The SID_NAME parameter must contain the name of the configuration file you created in
the previous step. However, it must not contain the init prefix. For example, if the
configuration file you created in the previous step was initdb2.ora, then the value of
the SID_NAME parameter should be db2.

OWB_HOME must point to the Oracle home location of your database installation.

The value associated with the PROGRAM keyword defines the name of the executable
agent, and differs for each type of data source.

Connecting to an ODBC Data Source

4-6 Oracle Warehouse Builder Sources and Targets Guide

Restart the listener service after making these modifications.

The steps involved in setting up the ODBC connectivity are similar for all data
sources. However, the data to be provided while "Creating a System DSN", "Creating a
Heterogeneous Services Initialization File", and "Configuring the listener.ora File"
differs for each data source.

See Chapter 5, "Connecting to Microsoft Data Sources Through ODBC Connection" for
specific examples of connecting to an Excel worksheet and SQL Server database.

4.3.2 Creating an ODBC Module
After you set up the ODBC connectivity to a data source, you must create an ODBC
module to import the metadata from this data source. The ODBC node is available
under the Databases node in the Projects Navigator. To create an ODBC module:

1. Right-click ODBC and select New ODBC Module.

The Create Module Wizard is displayed.

2. In the Name and Description page, provide a name, description (optional), and
select a module status.

3. In the Connection Information page, either select an existing location or click Edit
to open the "Edit Non-Oracle Location Dialog Box" and provide the connection
details.

4. In the Summary page, verify the details and click Finish.

The newly created ODBC module is now available under the ODBC node.

4.3.2.1 Edit Non-Oracle Location Dialog Box
Select the Connection Type to be one of Host:Port:Service, Database Link, or
SQL*Net.

Host:Port:Service

If you selected Host:Port:Service, then provide the following connection details:

■ User Name/Password: You can provide a dummy user name and password as
you are not connecting to an Oracle database.

■ Host: Computer on which the database is hosted.

■ Port: SQL port number of the database.

■ Service Name: The SID_NAME that you specify in the listener.ora file.

■ Schema: You can leave this field empty if you are not importing from a schema.

Database Link

If you selected Database Link, then provide the following connection details:

■ From Location: An existing location where the database link is defined

■ Database Link Name: The object name of the database link

■ Schema: The schema where the source data is stored or the target objects is
deployed.

SQL*Net

See Also: For more information about heterogeneous connectivity
using Oracle Gateways, see Oracle Database Heterogeneous Connectivity
Administrator's Guide.

Importing Database Objects

Connecting to Non-Oracle Data Sources Through Gateways 4-7

For SQL*Net, provide the following connection details:

■ User Name: The database user credential that has permission to access the schema
location.

When connecting to a database that does not have user names, enter any text as a
mock user name.

■ Password: The password associated with user name.

When connecting to a database that does not require password, enter any text as a
mock password.

■ Net Service Name: The name of the predefined connection.

■ Use Global Name: The unique name of the database, which is composed of the
database name and the domain in the form database_name.database_domain. Select
this option when connecting to a database in a different network.

Click Test Connection to verify that you have provided the correct details and click
OK to set the connection details.

4.4 Importing Database Objects
After establishing connection to a DB2, SQL Server, or any other generic ODBC
database, you can import metadata from the data objects in the database. The database
objects that you can import are tables, views, and sequences. To import database
objects:

1. Right-click the newly created module, and select Import, Database Object.

The Import Metadata Wizard is displayed.

2. In the Filter Information page, select the object types to be imported. You can also
narrow down the selection of objects by specifying a string pattern.

3. In the Object Selected page, move the required objects from the Available list to
the Selected list. Use the Find Objects button to search for objects in the Available
list. Also specify whether dependent objects must be imported.

4. In the Summary and Import page, verify the objects to be imported. Click
Advanced Import Options to open the Advanced Import Options dialog box. By
default, the following options are selected:

■ Preserve workspace added column

■ Preserve workspace added constraints

■ Import descriptions

Retain or deselect any of the options.

You can now use any of the imported objects in a mapping to load data.

Importing Database Objects

4-8 Oracle Warehouse Builder Sources and Targets Guide

5

Connecting to Microsoft Data Sources Through ODBC Connection 5-1

5 Connecting to Microsoft Data Sources
Through ODBC Connection

This chapter provides examples of using ODBC connectivity to connect to Microsoft
Excel and Microsoft SQL Server as sources. It contains the following topics:

■ "Connecting to Excel Spreadsheets Through ODBC"

■ "Connecting to SQL Server Database Through ODBC"

5.1 Connecting to Excel Spreadsheets Through ODBC

Scenario
A company stores its employee data in an Excel file called employees.xls. This file
contains two worksheets: employee_details and job_history. You must load the data
from the employee_details worksheet into a target table in Oracle Warehouse
Builder.

Solution
To load data stored in an Excel file into a target table, you must first use the Excel file
as a source. Oracle Warehouse Builder enables you to connect to data stored in a
non-Oracle source, such as Microsoft Excel, using "Oracle Database Heterogeneous
Services".

5.1.1 Case Study
This case study shows you how to use an Excel file called employees.xls as a source
in Oracle Warehouse Builder.

Step 1: Install ODBC Driver for Excel
To read data from Microsoft Excel, you need the ODBC driver for Excel. By default,
the ODBC driver for Excel is installed on a Windows system.

Step 2: Delimit the Data in the Excel File (Optional)
If you want to delimit the data to be imported from the Excel file, then define a name
for the range of data being sourced:

1. In the employee_details worksheet, highlight the range to query from Oracle.

The range should include the column names and the data. Ensure that the column
names confirm to the rules for naming columns in the Oracle Database.

Connecting to Excel Spreadsheets Through ODBC

5-2 Oracle Warehouse Builder Sources and Targets Guide

2. From the Insert menu, select Name and then Define. The Define Name dialog box
is displayed. Specify a name for the range.

Step 3: Create a System DSN
Set up a System Data Source Name (DSN) using the Microsoft ODBC Administrator.

1. Select Start, Settings, Control Panel, Administrative Tools, Data Sources
(ODBC).

This opens the ODBC Data Source Administrator dialog box.

2. Navigate to the System DSN tab and click Add to open the Create New Data
Source dialog box.

3. Select Microsoft Excel Driver as the driver for which you want to set up the data
source.

Click Finish to open the ODBC Microsoft Excel Setup dialog box.

The ODBC Microsoft Setup dialog box is shown in Figure 5–1.

Figure 5–1 ODBC Microsoft Excel Setup Dialog Box

4. Specify a name for the data source. For example, odbc_excel.

5. Click Select Workbook to select the Excel file from which you want to extract
data.

6. Verify that the Version field lists the correct version of the source Excel file.

Step 4: Create the Heterogeneous Services Initialization File
To configure the agent, you must set the initialization parameters in the heterogeneous
services initialization file. Each agent has its own heterogeneous services initialization
file. The name of the Heterogeneous Services initialization file is initSID.ora, where
SID is the Oracle system identifier used for the agent. This file is located in the OWB_
HOME\hs\admin directory.

Create the initexcelsid.ora file in the OWB_HOME\hs\admin directory as follows:

HS_FDS_CONNECT_INFO = odbc_excel
HS_AUTOREGISTER = TRUE
HS_DB_NAME = dg4odbc

Here, odbc_excel is the name of the system DSN you created in Step 3. excelsid is the
name of the Oracle system identifier used for the agent.

Connecting to Excel Spreadsheets Through ODBC

Connecting to Microsoft Data Sources Through ODBC Connection 5-3

Step 5: Modify the listener.ora file
Set up the listener on the agent to listen for incoming requests from the Oracle
Database. When a request is received, the agent spawns a Heterogeneous Services
agent. To set up the listener, modify the entries in the listener.ora file located in the
OWB_HOME\network\admin directory as follows:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = excelsid)
 (OWB_HOME = C:\oracle11g\product\11.2.0\db_1)
 (PROGRAM = dg4odbc)
)
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (OWB_HOME = C:\oracle11g\product\11.2.0\db_1)
 (PROGRAM = extproc)
)
)

1. For the SID_NAME parameter, use the SID that you specified when creating the
initialization parameter file for the Heterogeneous Services, which, in this case, is
excelsid..

2. Ensure that the OWB_HOME parameter value is the path to your Oracle Database
home directory.

3. The value associated with the PROGRAM keyword defines the name of the agent
executable.

Remember to restart the listener after making these modifications.

Step 6: Create an ODBC Source Module
Use the following steps to create an ODBC source module:

1. From the Projects Navigator, create an ODBC source module.

ODBC is listed under the Databases node. See "Creating an ODBC Module" on
page 4-6.

2. To provide connection information, on the Connection Information page, click
Edit to open the Edit Non-Oracle Location dialog box and provide the following
details:

Ensure that the service name you provide equals the SID_NAME you specified in the
listener.ora file.

Enter the host name and the port number in the Host and Port fields respectively.

Because you are not connecting to an Oracle database, you can provide dummy
values for user name and password. The fields cannot be empty.

The Schema field can be left empty because you are not importing metadata from
a schema.

Click Test Connection to verify the connection details.

Note: Ensure that the initialization parameter GLOBAL_NAMES is set to
FALSE in the database's initialization parameter file. FALSE is the
default setting for this parameter.

Connecting to Excel Spreadsheets Through ODBC

5-4 Oracle Warehouse Builder Sources and Targets Guide

Step 7: Import Metadata from Excel Using the Metadata Import Wizard
Use the Metadata Import Wizard to import metadata from the Excel file into Oracle
Warehouse Builder. Select Tables as the Filter condition. The wizard displays all the
worksheets in the source Excel file under the Tables node in the list of available
objects.

1. Select employee_details and use the right arrow to move it to the list of selected
objects.

2. Click Finish to import the metadata.

The data from the employee_details worksheet is now stored in a table called
employee_details in the ODBC source module.

Step 8: Create a Mapping to Load Data Into the Target Table
Create a mapping in the module that contains the target table. Use the employee_
details table imported in the previous step as the source and map it to the target
table.

Figure 5–2 displays the mapping used to load data into the target table.

Figure 5–2 Mapping to Load Data Into the Target Table

Step 9: Deploy the Mapping
Use the Control Center Manager or Design Center to deploy the mapping you created
in step 8. Ensure that you first deploy the source module before you deploy the
mapping. See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for
more information about mappings.

5.1.2 Troubleshooting
This section lists some errors that you may encounter while providing the connection
information.

Error
ORA-28546: connection initialization failed, porbable Net8 admin error

ORA-28511: lost RPC connection to heterogeneous remote agent using
SID=(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(Host=localhost)(PORT=1521)))(CONNECT_
DATA=(SID=oracledb)))

ORA-02063: preceeding 2 lines from OWB###

Probable Cause
Providing the same SID name as that of your database.

Action
Provide an SID name different from the SID name of your database.

Connecting to SQL Server Database Through ODBC

Connecting to Microsoft Data Sources Through ODBC Connection 5-5

Error
ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Generic Connectivity Using ODBC][H006] The init parameter <HS_FDS_CONNECT_INFO>
is not set. Please set it in init<orasid>.ora file.

Probable Cause
Name mismatch between SID name provided in the listener.ora file and the name
of the initSID.ora file in OWB_HOME\hs\admin.

Action
Ensure that the name of the initSID.ora file and the value provided for the SID_NAME
parameter in listener.ora file is the same.

5.2 Connecting to SQL Server Database Through ODBC

Scenario
Your company has data that is stored in SQL Server and you would like to import this
into Oracle Warehouse Builder. Once you import the data, you can perform data
profiling to correct anomalies, and then transform the data according to your
requirements by using mappings.

Solution
One of the ways to connect to an SQL Server database from Oracle Warehouse Builder
is to use an ODBC gateway. Once connected, you can import metadata and load data.

Case Study
To connect to SQL Server and import metadata, refer to the following sections:

1. "Creating an ODBC Data Source" on page 5-5

2. "Configuring the Oracle Database Server" on page 5-6

3. "Adding the SQL Server as a Source in Oracle Warehouse Builder" on page 5-7

If you encounter problems implementing this solution, see "Troubleshooting" on
page 5-7.

5.2.1 Creating an ODBC Data Source
You must create an ODBC data source to connect to the SQL Server database using
ODBC. You must set up a System Data Source Name (DSN):

1. Select Start, Control Panel, Administrative Tools, Data Sources (ODBC).

This opens the ODBC Data Source Administrator dialog box.

2. Navigate to the System DSN tab and click Add to open the Create New Data
Source dialog box.

3. Select SQL Server as the driver for which you want to set up the data source.

4. Click Finish to open the Create A New Data Source to SQL Server Wizard.

5. In the Name field, specify a name for the data source. For example, sqlsource.

Tip: Ensure that you restart the listener service whenever you make
changes to the listener.ora file.

Connecting to SQL Server Database Through ODBC

5-6 Oracle Warehouse Builder Sources and Targets Guide

6. In the Server field, select the server to which you want to connect and click Next.

7. Specify whether the authentication should be done at the Operating System level
or at the server level. Click Next.

8. Select the database file and click Next.

9. Accept the default values in the next screen and click Finish.

10. Test the data source to verify the connection.

5.2.2 Configuring the Oracle Database Server
Next, you must configure the Oracle database to connect to the SQL Server database.
Oracle Warehouse Builder can then use this configuration to extract metadata from the
SQL Server database. This involves the following steps:

■ "Creating a Heterogeneous Service Configuration File"

■ "Editing the listener.ora file"

5.2.2.1 Creating a Heterogeneous Service Configuration File
You must create the heterogeneous file in the OWB_HOME\hs\admin directory. The
naming convention for this file should be as follows:

■ Must begin with init

■ Must end with the extension .ora

■ Must not contain space or special characters

For example, you can name the file initsqlserver.ora.

Enter the following in the file:

HS_FDS_CONNECT_INFO = sqlsource
HS_FDS_TRACE_LEVEL = 0

Here, sqlsource is the name of the data source that you specified while creating the
ODBC data source.

5.2.2.2 Editing the listener.ora file
You must add a new SID description in the listener.ora file. This file is stored in the
OWB_HOME\network\admin directory.

Modify the file as shown:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = sqlserver)
 (OWB_HOME = c:\oracle10g\owb_home)
 (PROGRAM = dg4odbc)
)
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (OWB_HOME = c:\oracle10g\owb_home)
 (PROGRAM = extproc)
)
)
The SID_NAME parameter must contain the name of the configuration file you created in
the previous step. However, it must not contain the init prefix. For example, if the

Connecting to SQL Server Database Through ODBC

Connecting to Microsoft Data Sources Through ODBC Connection 5-7

configuration file you created in the previous step was initsqlserver.ora, then the
value of the SID_NAME parameter should be sqlserver.

OWB_HOME must point to the Oracle home location of your database installation.

The value associated with the PROGRAM keyword defines the name of the executable
agent, which, in this case, is dg4odbc.

Restart the listener service after making these modifications.

5.2.3 Adding the SQL Server as a Source in Oracle Warehouse Builder
The final step involves adding an ODBC module in Oracle Warehouse Builder, and
importing the data from the SQL server into this module.

To add an ODBC source module in Oracle Warehouse Builder:

1. Within a project in the Projects Navigator, navigate to the Databases node.

2. Right-click ODBC and select New ODBC Module.

3. Create a new ODBC module using the Create Module Wizard.

4. Use the Connection Information page to provide the location details. To create a
new location, click Edit to open the Edit Non-Oracle Location dialog box.

5. In the Edit Location dialog box, ensure that you enter user name and password
within double quotation marks ("). For example, if the user name is matt, then
enter "matt".

6. For Service Name, enter the SID name you provided in the listener.ora file. Also
select the schema from which you want to import the metadata.

7. Click Test Connection to verify the connection details.

To import metadata into the ODBC module:

1. Right-click the module and select Import.

2. Import the metadata using the Import Metadata Wizard.

The tables and views available for import depend on the schema you selected
when providing the connection information.

5.2.4 Troubleshooting
Some of the errors that you may encounter while providing the connection
information are listed here:

Error
ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Generic Connectivity Using ODBC][Microsoft][ODBC Driver Manager] Data source name
not found and no default driver specified (SQL State: IM002; SQL Code: 0)

ORA-02063: preceding 2 lines from OWB_###

Probable Cause
Creating the DSN from the User DSN tab.

Action
Create the DSN from the System DSN tab.

Connecting to SQL Server Database Through ODBC

5-8 Oracle Warehouse Builder Sources and Targets Guide

Error
ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Generic Connectivity Using ODBC][Microsoft][ODBC SQL Server Driver][SQL
Server]Login failed for user 'SA'. (SQL State: 28000; SQL Code: 18456)

ORA-02063: preceding 2 lines from OWB_###

Probable Cause
The user name and password in the Edit Location dialog box are not enclosed within
double quotation marks.

Action
Enter the user name and password within double quotation marks.

Tip: Ensure that you restart the listener service whenever you make
changes to the listener.ora file.

6

Connecting to Data Sources Through JDBC 6-1

6 Connecting to Data Sources Through JDBC

You can connect to a wide variety of non-Oracle databases and import metadata and
data from these sources using JDBC connectivity.

This chapter provides connection details for a non-Oracle data sources that can be
accessed through JDBC, and generic connection information. It contains the following
topics:

■ "Connecting to DB2 Database"

■ "Connecting to SQL Server Database"

JDBC connectivity is used with code templates-based mappings. See Oracle Warehouse
Builder Data Modeling, ETL, and Data Quality Guide for more details about these
mappings.

6.1 Generic Connection Using JDBC
You can connect to any data source that supports JDBC connectivity. To connect to the
data source, you require the JDBC driver for that data source and the URL format to
set up the connection. For any database, download the required JDBC driver into OWB_
HOME/owb/lib/ext.

6.2 Connecting to DB2 Database
You can connect to a DB2 database using a JDBC connection. Ensure that the following
prerequisites are met before connecting to a DB2 database.

JDBC Connection Drivers for DB2
You must download the following jar files into OWB_HOME/owb/lib/ext on your client
system:

■ db2jcc.jar

■ db2jcc_license_cu.jar

6.2.1 Creating a DB2 Module
Before you can import metadata from a DB2 database, you must create a DB2 module
to store the metadata.

See Also: Oracle Warehouse Builder Data Modeling, ETL, and Data
Quality Guide for more information about using code template
mappings.

Connecting to DB2 Database

6-2 Oracle Warehouse Builder Sources and Targets Guide

 To create a DB2 module:

1. Right-click DB2 under the Databases node in the Projects Navigator and select
New DB2 Module.

The Create Module Wizard is displayed.

2. Click Next to open the Name and Description page.

Provide a name, description (optional), and the access method. Select the access
method Native Database Connection, which implies using a JDBC driver to make
the connection.

3. Click Next to open the Connection Information page.

You can select from an existing location or provide new location details.

4. To provide a new location, click Edit on the Connection Information page to open
the Edit DB2 Location dialog box.

Provide the following details in the Edit DB2 Location dialog box:

■ User Name: The user name to connect to the host system.

■ Password: The password for the user name.

■ Host: The host system where the database resides.

■ Port: The port number is usually 50000 for the DB2 connection.

■ Database: The database name.

■ Schema: The schema from which objects are to be imported.

■ Version: The database version.

5. Click Test Connection to ensure that the connection is valid.

6. Click OK to return to the Connection Information page.

7. Click Next, and then click Finish in the Summary page after verifying the
specified details.

The newly created module is available under the DB2 node in the Projects Navigator.
A DB2 module supports the following data objects:

■ Transformations

■ Tables

■ Views

■ Sequences

6.2.2 Importing Metadata into a DB2 Module
To import metadata into a module:

1. Right-click the DB2 module and select Import, then Database Object.

The Import Metadata Wizard is displayed.

2. In the Filter Information page, select the object types to be imported.

Note: Temporary tables can be created in the work schema when
code template mappings run. To change the work schema, edit the
location and use the Advanced tab.

Connecting to SQL Server Database

Connecting to Data Sources Through JDBC 6-3

3. In the Object Selection page, select the objects to be imported. Also, specify
whether dependent objects should be selected.

4. In the Summary page, verify the objects you selected.

5. Click Finish to begin the import.

6. In the Import Results dialog box, click OK to confirm the import action. Click
Undo to cancel the import.

6.3 Connecting to SQL Server Database
You can connect to a SQL Server database using a JDBC connection.

JDBC Connection Driver for SQL Server
To connect using JDBC, you must place the jar file sqljdbc.jar into OWB_
HOME/owb/lib/ext on your client system.

This jar file is available for download at the Microsoft download center.

6.3.1 Creating a SQL Server Module
Before you can import metadata from a SQL Server database, you must create a SQL
Server module to store the metadata.

 To create a SQL Server Module:

1. Right-click SQL Server under the Databases node in the Projects Navigator and
select New SQL Server Module.

The Create Module Wizard is displayed.

2. Click Next to open the Name and Description page.

Provide a name, description (optional), and the access method. Select the access
method Native Database Connection, which implies using a JDBC driver to make
the connection.

3. Click Next to open the Connection Information page.

You can select from an existing location or provide new location details.

4. To provide a new location, click Edit on the Connection Information page to open
the Edit SQL Server Location dialog box.

Provide the following details in the Edit SQL Server Location dialog box:

■ User Name: The user name to connect to the host system.

■ Password: The password for the user name.

■ Host: The host system where the database resides.

■ Port: The port number is usually 1433 for the SQL Server connection.

■ Database: The database name.

■ Schema: The schema from which objects are to be imported.

■ Version: The database version.

5. Click Test Connection to ensure that the connection is set.

6. Click OK to return to the Connection Information page.

Importing Metadata from Other Databases Using JDBC

6-4 Oracle Warehouse Builder Sources and Targets Guide

7. Click Next, and then click Finish in the Summary page after verifying the
specified details.

The newly created module is available under the SQL Server node in the Projects
Navigator. A SQL Server module supports the following data objects:

■ Transformations

■ Tables

■ Views

■ Sequences

6.3.2 Importing Metadata into a SQL Server Module
To import metadata into a module:

1. Right-click the SQL Server module and select Import, then Database Object.

The Import Metadata Wizard is displayed.

2. In the Filter Information page, select the object types to be imported.

3. In the Object Selection page, select the objects to be imported. Also specify
whether dependent objects should be selected.

4. In the Summary page, verify the objects you selected.

5. Click Finish to begin the import.

6. In the Import Results dialog box, click OK to confirm the import action. Click
Undo to cancel the import.

After you create a JDBC connection and import metadata from data objects, you can
extract data from these objects and load it to target data sources by performing
extraction, transformation, and loading (ETL) operations. However, to perform ETL
operations on JDBC connected-data objects, you can use only code template mappings.
A limited set of operators are supported for code template mappings. All operators are
supported for Oracle target in code template mappings. For more information about
code templates, see Chapter 12, "Using Code Templates to Load and Transfer Data".
For more information about ETL operations and different types of mappings including
PL/SQL mappings and code template mappings, see the Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

6.4 Importing Metadata from Other Databases Using JDBC
To import metadata definitions from other databases using JDBC drivers, you must
create a new platform in Oracle Warehouse Builder. A platform refers to a data source.
See Chapter 11, "Creating New Platforms" for more information about platforms.

7

Extracting Data from SAP Applications 7-1

7 Extracting Data from SAP Applications

Many companies implement the SAP Enterprise Resource Planning (ERP) system and
Oracle Warehouse Builder enables easy access to the data in these SAP systems.

This chapter describes how you can extract data from SAP systems. It describes why
you require an SAP connector, how to import metadata from SAP tables, use them in a
mapping, generate ABAP code for the mappings, and deploy them to an SAP system.
The chapter also describes the various methods by which you can extract data from
the SAP system and load this data into a target table on Oracle Warehouse Builder
system.

This chapter contains the following topics:

■ "Why SAP Connector"

■ "Supported SAP Versions"

■ "Overview of SAP Objects"

■ "Overview of the Interaction Between Oracle Warehouse Builder and SAP"

■ "Implementing the SAP Data Retrieval Mechanism"

■ "Connecting to the SAP System"

■ "Importing Metadata from SAP Tables"

■ "Creating SAP Extraction Mappings"

■ "Deploying and Executing SAP ABAP Mappings"

7.1 Why SAP Connector
The SAP R/3 system operates differently compared to SQL-based systems like Oracle
E-Business Suite and Oracle’s PeopleSoft systems.

The major differences include:

■ The native data manipulation language is ABAP, which is a proprietary SAP
language.

■ Table names are cryptic compared to those in SQL-based ERP systems.

■ In addition to database tables, SAP contains logical tables called pool tables and
cluster tables. These tables contain multiple physical tables and must be managed
differently from SQL-based tables.

The SAP connector assists you in managing all these issues. Furthermore, the SAP
connector enables you to follow the administrative and security processes of the SAP
environment.

Supported SAP Versions

7-2 Oracle Warehouse Builder Sources and Targets Guide

7.2 Supported SAP Versions
For information about the SAP R/3 versions supported by Oracle Warehouse Builder
11g, log in to https://support.oracle.com/, and go to the Certify link.

7.3 Overview of SAP Objects
This section provides a brief overview of the different types of tables in SAP, and how
data is organized within an SAP system. The section consists of the following topics:

■ "SAP Object Types" on page 7-2

■ "SAP Business Domains" on page 7-2

7.3.1 SAP Object Types
With the SAP connector, you can import metadata definitions for the following SAP
table types:

■ Transparent: A transparent table is a database table that stores data. You can
access the table from non-SAP systems as well, for example, using SQL statements.
However, Oracle Warehouse Builder uses ABAP code to access transparent tables.

■ Cluster: A cluster table is usually used to store control data. It can also be used to
store temporary data or documentation. Because cluster tables are data dictionary
tables and not database tables, you can access these tables only by using ABAP.

■ Pooled: This is a logical table that must be assigned to a table pool in the database.
A table pool consists of multiple pooled tables. A pooled table is used to store
control data such as program parameters. You require ABAP code to access
pooled tables.

7.3.2 SAP Business Domains
SAP application systems logically group tables under different business domains. In
SAP, a business domain is an organizational unit in an enterprise that groups product
and market areas. For example, the Financial Accounting business domain represents
data describing financial accounting transactions. These transactions might include
General Ledger Accounting, Accounts Payable, Accounts Receivable, and Closing and
Reporting.

When you import SAP definitions, you can use a graphical navigation tree in the
Business Domain Hierarchy dialog box to search the business domain structure in the
SAP source application. This navigation tree enables you to select SAP tables from the
SAP application server.

7.4 Overview of the Interaction Between Oracle Warehouse Builder and
SAP

Moving data from the SAP system to an Oracle database using Oracle Warehouse
Builder consists of the following tasks:

1. Connecting to the SAP system.

2. Importing metadata from SAP data objects.

3. Creating an extraction mapping in Oracle Warehouse Builder that defines:

■ The SAP source tables from which data is to be imported.

Overview of the Interaction Between Oracle Warehouse Builder and SAP

Extracting Data from SAP Applications 7-3

■ The transformation operators that operate on the source tables to extract data
based on certain criteria.

■ The target table in Oracle Warehouse Builder to store the data imported from
the SAP source tables.

4. Deploying the mapping.

This creates the ABAP report for the mapping.

5. Starting the mapping.

This results in the following sequence of tasks, all of which are performed
automatically by Oracle Warehouse Builder:

■ Transfer of the ABAP report to the SAP server.

■ Compiling of the ABAP report.

■ Execution of the ABAP report, which results in the generation of a data file
(this file has a .dat extension).

■ Transfer of the data file to the Oracle Warehouse Builder server using FTP.

■ Loading data from the data file into the target table in Oracle Warehouse
Builder. The loading takes place using SQL*Loader.

7.4.1 SAP Function Modules
To access SAP data from non-SAP systems, you typically use a function module to
execute an ABAP program that extracts the data. A function module in SAP is a
procedure that is defined in a special ABAP program known as a function group.
After the function group is defined, the function module can then be called from any
ABAP program.

SAP contains a predefined function module called RFC_ABAP_INSTALL_AND_RUN to
execute ABAP report. To upload the Oracle Warehouse Builder-generated ABAP
report and execute it in SAP, you need access rights to this function module.

Alternatively, you can ask the SAP administrator to create a customized function
module that executes a specific ABAP program. You can then use this function module
to execute the ABAP report generated by Oracle Warehouse Builder.

7.4.2 Data Retrieval Mechanisms
Data retrieval from the SAP system can be "Completely Managed by Oracle
Warehouse Builder", "Managed by Oracle Warehouse Builder with SAP Verification",
or "Manual". This depends on whether the SAP administrator provides the Oracle
Warehouse Builder user with access rights to the predefined function module RFC_
ABAP_INSTALL_AND_RUN or creates a customized function module to execute the ABAP
report.

Completely Managed by Oracle Warehouse Builder
In this mechanism, Oracle Warehouse Builder has access to upload and execute the
generated ABAP using the default function module RFC_ABAP_INSTALL_AND_RUN, and
to use FTP to import the generated data file from the SAP system.

Thus the entire process of retrieving data from the SAP system and creating a target
table is managed by the Oracle Warehouse Builder and can be completely automated.
It is therefore the simplest method of data retrieval. See "Automated System" on
page 7-17 for more details on implementing this data retrieval mechanism.

Implementing the SAP Data Retrieval Mechanism

7-4 Oracle Warehouse Builder Sources and Targets Guide

Managed by Oracle Warehouse Builder with SAP Verification
In this mechanism, as an Oracle Warehouse Builder user, you do not have access
rights to the default function module RFC_ABAP_INSTALL_AND_RUN that executes the
ABAP report in the SAP system. Instead, the SAP administrator first verifies the ABAP
report that you generate using Oracle Warehouse Builder, and then creates a
customized function module to execute this ABAP report. You can then run the ABAP
code on the SAP system using this customized function module.

See "Semi-Automated System" on page 7-19 for more details about implementing this
data retrieval mechanism.

Manual
In this mechanism, as a Oracle Warehouse Builder user, you cannot directly run the
ABAP code on the SAP system. Instead, you generate the ABAP report for the
mapping, and send it to the SAP administrator, who runs the code on the SAP system.
You then import the generated data file using FTP and load the target table.

The tasks involved in retrieving data using FTP and creating the Oracle table are
implemented using a Process Flow. See "Manual System" on page 7-20 for more details
about implementing this system.

7.5 Implementing the SAP Data Retrieval Mechanism
As a Oracle Warehouse Builder user, you must be aware of certain restrictions while
trying to extract data from an SAP system.

Because the SAP and Oracle Warehouse Builder systems are totally independent
systems, as an Oracle Warehouse Builder user, you may only have restricted access
rights to the SAP data (especially in the production environment). You therefore have
to interact with the SAP administrator to extract data from the system.

Access privilege to the SAP system is most often determined by whether it is the
development, test, or the production environment. Each of the data retrieval
mechanisms can be implemented in the development, test, or production environment
depending on the privileges granted by the SAP system administrator.

Development Environment
Typically, in the development environment, the SAP administrator gives you access
rights to use the predefined function module RFC_ABAP_INSTALL_AND_RUN. Therefore,
in this environment, you can implement a completely "Automated System" for data
retrieval.

Test and Production Environment
Typically, in the test and production environments, the SAP administrator may not
give you access rights to use the predefined function module RFC_ABAP_INSTALL_AND_
RUN. Instead, the SAP administrator verifies the ABAP report, and either creates a
customized function module that you can use, or runs the ABAP report on the SAP
system, and enables you to extract the resultant data. You can therefore implement
either a "Semi-Automated System" or a "Manual System" for data retrieval.

A typical data retrieval system may therefore consist of any of the three mechanisms
implemented in the different environments.

Scenario 1
You run the automated system in the SAP development environment. After you verify
the ABAP report in this environment, you then move the ABAP report to the SAP test

Connecting to the SAP System

Extracting Data from SAP Applications 7-5

environment and test the code using a customized function module. You then finally
move this to the SAP production environment.

This implementation is recommended by Oracle, as it automates and simplifies the
data retrieval task.

Scenario 2
Depending on the access rights to the development, test, and production
environments, you implement any one of the data retrieval mechanisms in each of the
environments.

The following sections provide details of the tasks involved in retrieving data from an
SAP system:

1. "Connecting to the SAP System" on page 7-5

2. "Importing Metadata from SAP Tables" on page 7-10

3. "Creating SAP Extraction Mappings" on page 7-13

4. "Deploying and Executing SAP ABAP Mappings" on page 7-17.

7.6 Connecting to the SAP System
To connect to the SAP system from Oracle Warehouse Builder, you must use certain
SAP-specific DLL files. After you establish connection, you can then import metadata
from SAP tables into SAP modules in Oracle Warehouse Builder.

This section contains the following topics:

■ "Required Files for SAP Connector"

■ "Creating SAP Module Definitions"

■ "Troubleshooting Connection Errors"

■ "Creating SAP Module Definitions"

7.6.1 Required Files for SAP Connector
Different sets of files are required depending on whether you are working on a
Windows or a UNIX system.

Files Required in Windows
The SAP connector requires a DLL file named librfc32.dll to use remote function
calls on the client computer. You must copy librfc32.dll to the location specified in
java.library.path on your client system.

To find this location, click MyComputer, Properties, and then click Advanced. Next
click Environment Variables, and under System variables, check the locations
specified for the variable Path.

You can copy the librfc32.dll file to any one of the multiple locations specified in
Path. One of the locations correspond to OWB_HOME, and is therefore the preferred
location. This location is usually OWB_HOME\owb\bin.

See Table 7–1 for the list of files required in Windows.

Connecting to the SAP System

7-6 Oracle Warehouse Builder Sources and Targets Guide

Restart the client after copying these files.

Files Required in UNIX
The SAP connector requires a DLL file named librfccm.so to use remote function
calls on the client computer. You must copy this file to the location specified by the
UNIX environment variable path LD_LIBRARY_PATH on your client system.

By default, OWB_HOME/owb/bin/admin is the location specified in LD_LIBRARY_PATH.
If it is not, then ensure that you add OWB_HOME\owb\bin\admin to LD_LIBRARY_
PATH.

See Table 7–2 for the list of files required in UNIX.

Restart the client after copying these files.

7.6.2 Troubleshooting Connection Errors
The most common errors while connecting to the SAP system are listed in Table 7–3:

Table 7–1 Required Files for Windows

Required Files Path Description

librfc32.dll OWB_HOME\owb\bin This file is available on the SAP
Application Installation CD.

sapjcorfc.dll OWB_HOME\owb\bin Copy this file to the same location
where you placed librfc32.dll.

sapjco.jar OWB_HOME\owb\lib\int

Table 7–2 Required Files for UNIX

Required Files Path Description

librfcccm.so OWB_HOME\owb\bin\admin This file is available on the
SAP Application Installation
CD.

libsapjcorfc.so OWB_HOME\owb\bin\admin Copy this file to the same
location where you placed
librfcccm.so.

sapjco.jar OWB_HOME\owb\lib\int

Note: Different versions of SAP R/3 might require different versions
of the DLL, SO, and JAR files. The correct versions are available in the
SAP installation CD. The files can also be downloaded from:

http://service.sap.com/patches

Table 7–3 SAP Connection Errors

Error Message Possible Reason

Connection failed.

You are not authorized to logon to the
target system (error code 1).

Incorrect user name or password to connect to
the SAP server.

Connection failed.

Connect to SAP gateway failed.

Incorrect application server, system number, or
client details.

Connecting to the SAP System

Extracting Data from SAP Applications 7-7

7.6.3 Creating SAP Module Definitions
Use the Create Module Wizard to create the SAP source module that stores data from
the SAP source.

To create a SAP Module:

1. Right-click SAP and select New SAP.

The Create Module Wizard is displayed.

2. On the Name and Description page, provide a name for the SAP module. Select
the module status and optionally also provide a description. Click Next.

3. On the Connection Information page, either select from an existing location or
click Edit to open the Edit SAP Location dialog box. Specify the details as
described in "Connecting to the SAP System" on page 7-8. Click Next.

4. On the Summary page, click Finish.

A new sap module is now available on the Projects Navigator.

When you set the connection information, you can choose the connection types
described in the subsequent sections.

Remote Function Call (RFC)
A remote function call enables you to call a function module on a remote system. This
method requires specific IP Address information for the SAP application server.

SAP Remote Function Call (SAPRFC.INI)
You can also specify the connection information in a file called SAPRFC.INI, and copy
this file to the following location: OWB_HOME\owb\bin\admin.

Some Location Details are missing.

Please verify the location information is
completely specified.

Missing DLL files, or DLL files placed in the
wrong location.

Missing saprfc32.dll Missing saprfc32.dll file, or file placed in the
wrong location.

Note: If you create the SAP source module and import SAP tables
but cannot see the columns in the tables, then you have an
incompatible librfc32.dll file. Download the correct version of the
DLL file from the SAP Web site.

Note: Before you create a SAP location, ensure that you have all
the necessary information. You can provide the location
information either while creating the module or before importing
metadata into the module. You require the following information to
create the location: server name, user name, password, system
number, and client number. Obtain these details from the system
administrator.

Table 7–3 (Cont.) SAP Connection Errors

Error Message Possible Reason

Connecting to the SAP System

7-8 Oracle Warehouse Builder Sources and Targets Guide

Using the SAPRFC.INI file requires prior knowledge of ABAP parameters, because you
must specify the values for certain parameters to make the SAP connection, and is not
the recommended connection method if you are not familiar with ABAP.

The Create Module Wizard creates the module for you based on the metadata
contained in the SAP application server.

7.6.3.1 Connecting to the SAP System
1. Select one of the following connection types:

■ Remote Function Call (RFC)

This is the recommended connection type, and is selected by default in Oracle
Warehouse Builder.

■ SAP Remote Function Call (SAPRFC.INI)

For more information about these connection types, see "Creating SAP Module
Definitions" on page 7-7.

2. Enter the connection information in the appropriate fields. The fields displayed on
this page depend on the connection type you choose.

You must obtain the connection information for your SAP application server from
the system administrator before you can complete this step.

RFC Connection type requires the following connection information:

Application Server: The alias name or the IP address of the SAP application
server.

System Number: The SAP system number. This must be provided by the SAP
system administrator.

Client: The SAP client number. This must be provided by the SAP system
administrator.

User Name: The user name with access rights to the SAP system. This name is
supplied by the SAP system administrator.

Language: EN for English or DE for German. If you select DE, the description text
is displayed in German and all other text is displayed in English.

The SAPRFC connection type requires the following connection information:

RFC Destination: Enter the alias for the SAP connection information.

In addition, both the connection types require the following connection
information if the ABAP report is to be executed in SAP using a function module
and the data file is to be transferred by FTP to Oracle Warehouse Builder:

Host Login User Name: A valid user name on the system that hosts the SAP
application server. This user must have access rights to copy the data file using
FTP.

Note: The SAPRFC.INI file comes with the SAP installation CD.

Note: Ensure that you have copied the DLL files to the right location.
For more information, see "Required Files for SAP Connector" on
page 7-5.

Connecting to the SAP System

Extracting Data from SAP Applications 7-9

FTP Directory: The directory in the SAP server that stores the data file generated
when the ABAP report is executed. For systems where the FTP directory structure
is identical to the operating system directory structure, this field can be left blank.
For systems where the file system directory structure is mapped to the FTP
directory structure, enter the FTP directory path that is mapped to the staging file
directory in the file system directory structure. For example, on a computer that
runs Windows, if the staging file directory "C:\temp" is mapped to "/" in the FTP
directory structure, then enter "/" in this field.

Execution Function Module: In the SAP instance, if a remote function module
other than the SAP delivered function module RFC_ABAP_INSTALL_AND_RUN is used
to remotely execute ABAP reports through RFC connections, then enter the remote
function module name here.

3. Click Test Connection to verify that the connection information you provided is
correct.

4. Click OK to go back to the Connection Information page of the Create Module
Wizard.

Figure 7–1 Edit SAP Location Dialog Box

Importing Metadata from SAP Tables

7-10 Oracle Warehouse Builder Sources and Targets Guide

7.7 Importing Metadata from SAP Tables
After you establish a connection with the SAP server, you can import metadata from
SAP tables.

This section contains the following topics:

■ "Importing SAP Metadata Definitions"

■ "Analyzing Metadata Details"

7.7.1 Importing SAP Metadata Definitions
After creating the SAP source module, you can import metadata definitions from SAP
tables using the Import Metadata Wizard. This wizard enables you to filter the SAP
tables to import, verify those tables, and reimport them. You can import metadata for
transparent tables, cluster tables, or pool tables.

To import SAP metadata:

1. From the Projects Navigator, expand the Applications node.

2. Right-click the SAP source module into which you want to import metadata and
select Import.

Oracle Warehouse Builder displays the Welcome page for the Import Metadata
Wizard.

3. Click Next.

4. Complete the following tasks:

■ "Filtering SAP Metadata"

■ "Selecting Objects for Metadata Import"

■ "Reviewing Import Summary"

7.7.1.1 Filtering SAP Metadata
You can filter objects to import by business domain or by text strings. Select a filtering
method and click Next.

7.7.1.1.1 Filtering SAP Metadata by Business Domain

1. Select Business Domain and click Browse to display the SAP R/3 Business
Domain Hierarchy dialog box.

The Import Metadata wizard displays the Loading Progress dialog box while it is
retrieving the business domains.

2. The Business Domain Hierarchy dialog box lists the available SAP business
domains.

Use the Business Domain Hierarchy dialog box to select the SAP business domains
that contain the metadata tables you want to import.

Note: It may take a few minutes to list the SAP business domains
depending on factors such as the network location of the SAP
application server, the type of LAN used, and the size of the SAP
application database.

Importing Metadata from SAP Tables

Extracting Data from SAP Applications 7-11

3. Select a folder and click Show Tables to view the tables available in a business
domain.

The Import Metadata Wizard displays a list of tables in the selected business
domain in the Folder dialog box.

4. Review this dialog box to ensure that you are selecting the required tables.

Some business domains can contain more than 1000 tables. Importing such a large
amount of metadata can take time, depending on the network connection speed
and the processing power of the source and target systems.

5. Click OK.

The wizard displays the Filter Information page with the SAP business domain
displayed in the Business Domain field.

7.7.1.1.2 Filtering SAP Metadata by Text String

1. Select Text String, where object and use the Name matches or Description
matches entry field to enter a string and obtain matching tables from the SAP data
source.

The Description matches field is case sensitive, the Name matches field is not.

Create a filter for object selection by using the wildcard characters % for zero or
more matching characters, and _ for a single matching character.

For example, to search the business domain for tables whose descriptions contain
the word CURRENCY, select Description matches and enter %CURRENCY%. You
can also search for tables by their names.

2. Specify the number of tables you want to import in the Maximum number of
objects displayed field.

7.7.1.2 Selecting Objects for Metadata Import
The Object Selection page contains a description of the tables and enables you to select
the tables you want to import into the SAP module.

To select the tables:

1. Move the tables from the available list to the selected list.

The Import Metadata Wizard also enables you to choose whether you want to
import tables with foreign key relationships for each table that you choose to
import. You can select one of the following:

None: Import only the tables in the Selected list.

One Level: Import the tables in the Selected list and any tables linked to them
directly through a foreign key relationship.

All Levels: Import the tables in the Selected list and all tables linked to them
through foreign key relationships.

2. Click Next.

If you select One Level or All Levels, the Confirm Import Selection dialog box is
displayed.

Review this dialog box to ensure that you are selecting the required tables.

3. Click OK.

The selected tables appear in the Selected list of the Table Selection page.

Importing Metadata from SAP Tables

7-12 Oracle Warehouse Builder Sources and Targets Guide

4. Click Next.

The wizard displays the Summary and Import page.

7.7.1.3 Reviewing Import Summary
The wizard imports the definitions for the selected tables from the SAP application
server, stores them in the SAP source module, and then displays the Summary and
Import page.

You can edit the descriptions for each table by selecting the Description field and
entering a new description.

Review the information about the Summary and Import page and click Finish.

The SAP Connector reads the table definitions from the SAP application server and
creates the metadata objects in the workspace.

The time it takes to import the SAP metadata into the workspace depends on the size
and number of tables and the connection between the SAP application server and the
workspace. It is a best practice to import small batches of tables to allow better
performance.

When the import completes, the Import Results dialog box displays. Click OK to finish
importing metadata.

7.7.1.4 Reimporting SAP Tables
To reimport SAP tables, follow the importing procedure using the Import Metadata
Wizard. Before starting the import, the wizard checks the source for tables with the
same name as those you are importing. The tables that have been imported appear in
bold in the Object Selection page. On the Summary and Import page, the Action
column indicates that these tables are reimported. The wizard then activates the
Advanced Synchronize Options button so that you can control the reimport options.

7.7.2 Analyzing Metadata Details
With SAP tables, you cannot view the data after you import the metadata from these
tables. However, you can get good insight about the data that is stored in the tables by
viewing the "Column Descriptions" and the "Constraints Details".

Column Descriptions
You can view the column description of each of the columns in a table. This is valuable
because the column names in SAP can be nondescriptive, and difficult to interpret if
you have not previously seen the data in the table.

To view the descriptions, double-click the table to open the data object editor for the
table, and then click the Columns editor.

The description for the columns of the table are visible as shown in Figure 7–2.

Note: To undo the reimport, click Undo. This ensures that no
changes are made to the existing metadata.

Creating SAP Extraction Mappings

Extracting Data from SAP Applications 7-13

Figure 7–2 The Columns Editor with the Description for the Columns of SAP Table

Constraints Details
The other benefit of the data object editor is that you can get information about the
primary and foreign keys within the table. To view the key constraints, click the
Constraints editor.

7.8 Creating SAP Extraction Mappings
After importing metadata from SAP tables, you must define the extraction mapping to
extract data from the SAP system.

Note: It is also a useful practice to display the business names of the
SAP tables in the Projects Navigator. Business names provide a
description of the tables and are therefore more intuitive than the
physical names. To view the business names for tables in Oracle
Warehouse Builder, from the main menu, click Tools, Preferences,
OWB, Naming, and then select Business Names in the Naming Mode
field.

Note: For details of mappings in Oracle Warehouse Builder, see
Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.

Creating SAP Extraction Mappings

7-14 Oracle Warehouse Builder Sources and Targets Guide

7.8.1 Defining the SAP Extraction Mapping
You can use the Mapping Editor to create a mapping containing SAP tables. Creating a
mapping with SAP tables is similar to creating mappings with other database objects.
However, there are restrictions on the operators that can be used in the mapping. You
can only use table, filter, joiner, and mapping input parameter mapping operators in a
mapping containing SAP tables.

A typical SAP extraction mapping consists of one or more SAP source tables
(transparent, cluster, or pooled), one or more filter or joiner operators, and a non-SAP
target table (typically an Oracle table) to store the imported data.

This is as shown in Figure 7–3.

Figure 7–3 SAP Extraction Mapping

In this mapping, the input parameter holds a date value, and the data from table BKPF
is filtered based on this date. Because this is defined as an input parameter, you can
enter a value for the date when the mapping is run. The joiner operator enables you to
join data from multiple tables, and the combined data set is stored in a staging table.

This section contains the following topics:

■ "Adding SAP Tables to the Mapping"

■ "Setting the Loading Type"

■ "Setting Configuration Properties for the Mapping"

7.8.1.1 Adding SAP Tables to the Mapping
To add an SAP table to a mapping:

Note: The source table is always an SAP table. You cannot have both
SAP and non-SAP (Oracle) source tables in a mapping, but the staging
table is an Oracle table.

Creating SAP Extraction Mappings

Extracting Data from SAP Applications 7-15

On the mapping editor, drag and drop the required SAP table onto the Mapping
Editor canvas.

The editor places a table operator on the mapping canvas to represent the SAP table.

7.8.1.2 Setting the Loading Type
Use the operator properties panel of the Mapping Editor to set the SQL*Loader
properties for the tables in the mapping.

To set the loading type for the SAP Source Table:

1. On the Mapping Editor, select the SAP source table. The Table Operator Properties
panel displays the properties of the SAP table operator.

2. Select a loading type from the Loading Type list. With ABAP code as the language
for the mapping, the SQL*Loader code is generated as indicated in Table 7–4.

7.8.1.3 Setting Configuration Properties for the Mapping
■ Use the Configuration Properties dialog box to define the code generation

language as described in "Setting the Language Parameter".

■ Set ABAP specific parameters, and the directory and initialization file settings in
the Configuration Properties dialog box as described in "Setting Run-time
Parameters".

Setting the Language Parameter
The language parameter enables you to choose the type of code you want to generate
for a mapping. For mappings containing SAP source tables, Oracle Warehouse Builder
enables you to select either PL/SQL or ABAP.

If the SAP system uses a non-Oracle database to store data, then you must select ABAP
to generate code. If the SAP data is stored on an Oracle database, then you can specify
PL/SQL. However, with PL/SQL, you cannot extract pool or cluster tables. Therefore,
in all instances it is desirable to set the language to ABAP.

Setting Run-time Parameters
With the language set to ABAP, you can expand the Runtime Parameters node in the
Configuration Properties dialog box to display settings specific to ABAP code
generation.

Some of these settings come with preset properties that optimize code generation. It is
recommended that these settings be retained, because altering them may slow down
the code generation process.

The following run-time parameters are available for SAP mappings:

Table 7–4 SQL*Loader Code Generated in ABAP

Loading Type Resulting Load Type in SQL*Loader

INSERT APPEND

CHECK/INSERT INSERT

TRUNCATE/INSERT TRUNCATE

DELETE/INSERT REPLACE

All other types APPEND

Creating SAP Extraction Mappings

7-16 Oracle Warehouse Builder Sources and Targets Guide

■ ABAP Report Name: Specifies the name of the ABAP report generated by the
mapping. This is required only when you run a custom function module to
execute the ABAP report.

■ Background Job: Select this option to run the ABAP report as a background job in
the SAP system. Enable this option for the longer running jobs. Foreground batch
jobs that run for a long duration are considered to be hanging in SAP after a
certain time. Therefore it is ideal to have a background job running for such
extracts.

■ Control File Name: By default, the control file name equals the data file name
specified in the Data File Name field. This implies that the ABAP code generates a
single control file that contains both, the SQL*Loader control information and the
data (since the log files are the same). You can assign different file names for the
control file and the data file, in which case different files are generated for the
control information and data, and both the files are transferred by FTP.

■ Data File Name: Specifies the name of the data file that is generated when the
ABAP report is executed in the SAP system.

■ File Delimiter for Staging File: Specifies the column separator in a SQL data file.

■ Include FTP: If this is set to true, then the data file is moved to the Oracle
Warehouse Builder system using FTP. If this is set to false, then the file is not
transferred.

■ INSTALL ONLY: When you set this to true and run the mapping, the ABAP
report gets installed on the SAP system, but does not get executed. To execute the
ABAP report, you must run the mapping again and use the execution function
module. Setting this option to true enables you to generate the mapping, install
the ABAP report on the SAP system, and subsequently make modifications to the
ABAP report and then execute it. You can use this option when you want the
ABAP report to be stored on the SAP system. If this option is set to false, then the
ABAP report is loaded and executed on the SAP system. However, the ABAP
report is not stored on the SAP system after it is executed.

■ SAP Location: Specifies the location of the SAP instance from where the data can
be extracted.

■ SAP System Version: Specifies the SAP system version number to which you
want to deploy the ABAP report. The characteristics of the generated ABAP report
depends on the version number. For MySAP ERP and all other versions, select
SAP R/3 4.7. Different ABAP report is generated for versions before 4.7.

■ SQL Join Collapsing: If this is set to true, then it specifies the following hint, if
possible, to generate ABAP report.

SELECT < > INTO < > FROM (T1 as T1 inner join T2 as T2) ON <condition >

■ Staging File Directory: Specifies the location of the directory in the SAP system
where the data file generated by ABAP report resides.

■ Timeout: This specifies the duration, in seconds, for which Oracle Warehouse
Builder waits for the SAP system to execute the ABAP report and return a data
file. If the SAP system completes the execution within this duration, then Oracle
Warehouse Builder automatically retrieves the resultant data file from the SAP
system. If the execution takes longer than the specified duration, then you must
manually retrieve the data file.

Deploying and Executing SAP ABAP Mappings

Extracting Data from SAP Applications 7-17

7.8.1.4 Setting the Join Rank
You must set this parameter only if the mapping contains the joiner operator, and you
want to explicitly specify the driving table. Unlike SQL, ABAP code generation is
rule-based. Therefore, you must design the mapping in such a way that the tables are
loaded in the right order. Or, you can explicitly specify the order in which the tables
are to be joined. From the Configuration Properties dialog box, expand Table
Operators, and then for each table, specify the Join Rank. The driving table must have
the Join Rank value set to 1, with increasing values for the subsequent tables.

You can also let Oracle Warehouse Builder decide the driving table, and the order of
joining the other tables. In such cases, do not enter values for Join Rank.

7.9 Deploying and Executing SAP ABAP Mappings
After designing the extraction mapping, you must validate, generate, and deploy the
mapping, as you do with all mappings in Oracle Warehouse Builder.

To generate the script for the SAP mapping:

1. Right-click the SAP mapping and select Generate.

The Generation Results window is displayed.

2. On the Script tab, select the script name and select View Code.

The generated code is displayed in the code viewer.

You can edit, print, or save the file using the code editor. Close the code viewer to
return to the Generation Results window.

3. To save the file, click Save as File and save the ABAP program to the hard drive.

After you generate the SAP mapping, you must deploy the mapping to create the
logical objects in the target location.

To deploy an SAP mapping, right-click the mapping and select Deploy. You can also
deploy the mapping from Control Center Manager.

For detailed information about deployment, see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

When an SAP mapping is deployed, an ABAP mapping is created and stored in the
Oracle Warehouse Builder run time schema. Oracle Warehouse Builder also saves the
ABAP file under OWB_HOME\owb\deployed_files, where OWB_HOME is the location of the
Oracle home directory of your Oracle Warehouse Builder installation.

If you are using the Oracle Warehouse Builder installation that comes with Oracle
Database, then this equals the database home.

Depending on whether data retrieval from the SAP system is fully automated,
semi-automated, or manual, you must perform the subsequent tasks described in the
following sections:

■ "Automated System" on page 7-17

■ "Semi-Automated System" on page 7-19

■ "Manual System" on page 7-20

7.9.1 Automated System
In a completely automated system, as an Oracle Warehouse Builder user you have
access to the predefined function module in the SAP system. It enables you to execute

Deploying and Executing SAP ABAP Mappings

7-18 Oracle Warehouse Builder Sources and Targets Guide

any ABAP report and extract data directly from the SAP system without being
dependent on the SAP administrator, as shown in Figure 7–4.

Figure 7–4 Automated Data Retrieval

You can automate the process of transferring the ABAP report to the SAP system and
generating the data file on the SAP system. After the data file is generated, Oracle
Warehouse Builder uses FTP to transfer the data file to the Oracle Warehouse Builder
system. The data file is then loaded into the target file by using SQL*Loader.

An automated system works as follows:

1. You design the extraction mapping and generate the ABAP report for this
mapping.

2. Before deploying the mapping, you must ensure that the following configuration
properties are set for the mapping:

■ ABAP Report Name: The file that stores the ABAP code generated for the
mapping.

■ SAP Location: The location on the SAP system from where data is extracted.

■ Data File Name: The name of the data file to store the data generated by the
execution of ABAP report.

Also ensure that you have provided the following additional connection details
for the SAP location:

■ Execution Function Module: Provide the name of the predefined SAP
function module. When executed, this function module takes the ABAP report
name as the parameter, and executes the ABAP code.

■ FTP Directory: A directory on the SAP system. The data file generated upon
the execution of the function module is saved to this directory. Oracle
Warehouse Builder uses FTP to transfer the file from this directory to the
Oracle Warehouse Builder system. This requires an FTP server to be located in
the SAP system.

■ Also provide a user name with Write permissions on the FTP directory.

Deploying and Executing SAP ABAP Mappings

Extracting Data from SAP Applications 7-19

3. You then start the mapping, after which the following tasks are automatically
performed:

■ Oracle Warehouse Builder deploys the ABAP report and the function module
RFC_ABAP_INSTALL_AND_RUN is used to load and execute the ABAP
report in the SAP system.

The ABAP report is sent to the SAP system using a "Remote Function Call
(RFC)".

4. In the SAP system, the ABAP report extracts data from the source tables and
creates a data file.

This data file is stored in the location specified by the Staging File Directory. See
"Setting Run-time Parameters" on page 7-15 for details of the staging file directory.

5. Oracle Warehouse Builder uses FTP to transfer this data file back to the Oracle
Warehouse Builder system.

The file is stored in the location specified in the FTP Directory field.

6. Using SQL*Loader, Oracle Warehouse Builder loads the target table specified in
the mapping with the data from the data file.

The advantage of this system is that you can create a fully automated end-to-end
solution to extract SAP data. As a user, you create the extraction mapping, and run it
from Oracle Warehouse Builder, which then creates the ABAP report, sends it to the
SAP system, extracts the resultant data file, and loads the target table with the
extracted data.

7.9.2 Semi-Automated System
In a semi-automated system, as a Oracle Warehouse Builder user, you do not have
access to the predefined function module RFC_ABAP_INSTALL_AND_RUN, and therefore
cannot use this function module to execute ABAP report. Instead, you must create an
extraction mapping, deploy it, and then send the ABAP report to the SAP
administrator who verifies the code before allowing you to run it in the SAP system, as
shown in Figure 7–5.

Figure 7–5 Semi-Automated Implementation

A semi-automated system works as follows:

Deploying and Executing SAP ABAP Mappings

7-20 Oracle Warehouse Builder Sources and Targets Guide

1. You design the extraction mapping and generate the ABAP report for this
mapping.

You can then test this report in the development environment.

2. You then send the ABAP report to the SAP administrator, who tests the report,
and loads it to the SAP repository in the production environment.

3. The SAP administrator can create a new report or use the same report that you
send.

4. If the SAP administrator creates a new report, then obtain the name of the new
report and use it in your mapping to extract data from the production
environment.

5. Before you run the mapping in the production environment, ensure that you have
set the following configuration properties for the mapping:

■ ABAP Report Name: The SAP administrator provides the name of the ABAP
report after verifying the code. You must then use this report name to extract
data.

■ SAP Location: The location on the SAP system from where data is extracted.

■ Data File Name: Name of the data file to store the data generated during
execution of ABAP report.

Also ensure that you have provided the following additional connection details
for the SAP location:

■ Execution Function Module: Provide the name of the custom function
module created by the SAP administrator. On execution, this function module
takes the ABAP report name as the parameter, and executes the ABAP code.
You must obtain the function module name from the SAP administrator.

■ FTP Directory: A directory on the SAP system. The data file generated by the
execution of the ABAP report is saved to this directory. Oracle Warehouse
Builder imports the data file using FTP. The FTP server resides on the SAP
system.

■ Also provide a user name with Read permissions on the FTP directory.

6. In the production environment, when you run the mapping, Oracle Warehouse
Builder sends the ABAP report name and the custom function module to the SAP
system using a "Remote Function Call (RFC)".

7. In the SAP system, the ABAP report gets executed and a data file is generated. The
ABAP report gets executed only if the ABAP report name and the function
module are available.

This data file is stored in the location specified by the Staging File Directory.

8. Oracle Warehouse Builder imports the data file using FTP. An FTP server must be
available on the SAP server.

9. Oracle Warehouse Builder uses SQL*Loader to load the target table with data
from the data file.

7.9.3 Manual System
In a manual system, your role as an Oracle Warehouse Builder user is restricted to
generating the ABAP report for the mapping, and sending the ABAP report to the SAP
administrator. The tasks involved in this system are:

Deploying and Executing SAP ABAP Mappings

Extracting Data from SAP Applications 7-21

1. You create an extraction mapping, and generate the ABAP report for the mapping.

2. While designing the mapping, ensure that you specify the Data File Name to store
the data file.

3. You send the ABAP report to the SAP administrator.

4. The SAP administrator executes the ABAP report in the SAP system.

5. On execution of the code, a data file is generated.

You can then create a process flow to import the data file. The process flow may
typically consist of the activities shown in Figure 7–6. For more details on
implementing process flows, see Oracle Warehouse Builder Data Modeling, ETL, and Data
Quality Guide.

Figure 7–6 Process Flow to Import SAP Data

1. A File Exists activity checks for the availability of the data file.

2. If the file exists, then an FTP activity transfers the file to the Oracle Warehouse
Builder system.

3. If the file does not exist, then it must wait till the file is made available, and then
perform an FTP.

4. Using SQL*Loader, the target table is loaded with data from the data file.

In most production environments, the SAP administrator may not allow any other
user to access the SAP system. In such cases, implementing the manual system may be
the only viable option.

Using SQL*Loader in the Process Flow
To use SQL*Loader in the process flow, insert a SQL*Plus activity as shown in
Figure 7–6. To use the SQL*Loader, use the HOST command. Once you insert the
SQL*Plus activity, insert the following value for SCRIPT:

HOST sqlldr ${Target.User}/${Target.Password} CONTROL=${Working.RootPath}\C.CTL
quit

Insert the relevant value for the control (.ctl) file name.

Then configure the path settings for the SQL*Plus activity. Right-click the process flow
and select Configure.

Under SQL*Plus Activities, expand the SQLPLUS node and provide the required
values under Path Settings as shown in Figure 7–7.

Deployed Location refers to the location of the target table. Working location refers to
the location of the control file.

Deploying and Executing SAP ABAP Mappings

7-22 Oracle Warehouse Builder Sources and Targets Guide

Figure 7–7 Path Setting for the Process Flow

8

Integrating with Oracle ERP Applications 8-1

8 Integrating with Oracle ERP Applications

Oracle Warehouse Builder can integrate with Oracle's enterprise applications
including E-Business Suite, PeopleSoft, and Siebel. Metadata for objects in the
applications' underlying database schemas, such as tables, views and sequences, can
be imported into a project, and then used like any other database objects in ETL
mappings as sources and targets.

This chapter contains the following topics:

■ "Importing Metadata from Oracle E-Business Suite Applications"

■ "Importing Metadata from PeopleSoft Applications"

■ "Importing Metadata from Siebel Applications"

■ "Importing Metadata from Applications Implemented on non-Oracle Databases"

8.1 Importing Metadata from Oracle E-Business Suite Applications
Oracle E-Business Suite of applications provide comprehensive business solutions that
can be implemented across a wide variety of industry functions including customer
relationship management (CRM), project management, supply chain management
(SCM), product life cycle management, financial management, and so on.

Before You Begin
Contact the database administrator for the E-Business Suite application and request a
user name and password for accessing the APPS schema. The DBA may have
previously created a user by running the script owbebs.sql as described in Oracle
Warehouse Builder Installation and Administration Guide. If not, you must provide the
DBA with a list of the tables, views, sequences, and keys from which you want to
extract data. This is so that the DBA can grant object access privileges for these tables,
views, sequences, and keys to the specific user. The user must be granted object
privilege because the objects are accessed using PL/SQL in the extraction mappings.

Depending on the preference of the DBA, there may be a single user who extracts the
metadata and the data. Or, there may be two separate users to access the metadata and
data respectively.

8.1.1 Importing E-Business Suite Metadata Definitions
After creating the E-Business Suite source module, you can import metadata
definitions from E-Business Suite objects using the Import Metadata Wizard. This
wizard enables you to filter the E-Business Suite objects you want to import and verify
those objects. The E-Business Suite module contains nodes for tables, views, and
sequences. You can also create a User Folder within the module to organize the objects

Importing Metadata from Oracle E-Business Suite Applications

8-2 Oracle Warehouse Builder Sources and Targets Guide

that you import. See "Creating User Folders" on page 2-8 for more information about
User Folders.

To import E-Business Suite metadata:

1. Create an E-Business Suite module as described in "Creating an E-Business Suite
Module".

2. Import metadata from the E-Business Suite application as described in "Importing
E-Business Suite Metadata".

8.1.1.1 Creating an E-Business Suite Module
To create an E-Business Suite module

1. Right-click Oracle E-Business Suite under the Applications node and select New
Oracle EBS Module.

The Create Module Wizard is displayed.

2. Click Next to display the Name and Description page.

3. Specify a name and an optional description for the source module. Also select the
access method. You can either make a native heterogeneous connectivity or a
Gateways connection. Click Next.

The Connection Information page is displayed.

4. Specify the connection information for the E-Business Suite source module and
click Next.

Ensure that the location associated with the module contains information needed
to connect to the E-Business Suite source. If you created a location earlier, associate
that location with the module being created by selecting the location on the
Connection Information page.

To create a new location, click Edit on the Connection Information page of the
Create Module Wizard. The Edit Non-Oracle Location dialog box is displayed.

See "Edit Non-Oracle Location Dialog Box" for details of the values to be entered
in this dialog box.

5. On the Summary page, review the options entered on the previous wizard pages.
Click Back to modify any selections. Click Finish to create the E-Business Suite
source module.

8.1.1.2 Edit Non-Oracle Location Dialog Box
Use the Edit Non-Oracle Location dialog box to create a location for the source
module.

Name
Provide a name for the location.

Description
Provide an optional description.

Connection Type
Lists the connections available to access a location. You cannot change the connection
type after creating a location.

Importing Metadata from Oracle E-Business Suite Applications

Integrating with Oracle ERP Applications 8-3

■ HOST:PORT:SERVICE: Makes a connection using the Easy Connect Naming
method, which requires no prior setup:

– User Name: The database user credential that has permission to access the
schema location.

When connecting to an application that does not have user names, enter any
text as a mock user name.

– Password: The password associated with user name.

When connecting to an application that does not require a password, enter
any text as a mock password.

– Host: The name of the system where the application is installed.

If the application is installed on the same system as the Oracle Warehouse
Builder, you can enter localhost instead of the computer name.

– Port: The SQL port number to access the application.

– Service Name: The service name of the application.

– Use Global Name: The unique name of the application, which is composed of
the application name and the domain in the form application_name.application_
domain. Select this option when connecting to an application on a different
network.

■ Database Link: Makes a connection to another database using an existing
database link. Select this method only when you do not have privileges that enable
you to make a direct connection. You cannot deploy to a location that uses a
database link.

A database link is a schema object that contains information for connecting to a
remote database. Database links are used in distributed database environments
and enable a client to access two physical databases as one logical database.

– From Location: An existing location where the database link is defined.

– Database Link: The object name of the database link.

■ SQL*NET Connection: Makes a connection using a net service name previously
defined using a tool such as Oracle Net Configuration Assistant. The net service
name provides a convenient alias for the connection information.

– User Name: The user credential that has permission to access the schema
location.

When connecting to an application that does not have user names, enter any
text as a mock user name.

– Password: The password associated with user name.

When connecting to an application that does not require a password, enter
any text as a mock password.

– Net Service Name: The name of the predefined connection.

– Use Global Name: The unique name of the database, which is composed of
the database name and the domain in the form application_name.application_
domain. Select this option when connecting to an application on a different
network.

Importing Metadata from Oracle E-Business Suite Applications

8-4 Oracle Warehouse Builder Sources and Targets Guide

Schema
The schema where the source data is stored or the target objects are deployed. The
schema must be registered. By default, it is the User Name schema.

When connecting to a type of application that does not have schemas, leave this field
empty.

8.1.1.3 Importing E-Business Suite Metadata
To import metadata into the module:

1. Right-click the E-Business Suite source module and select Import, and then
Database Objects.

The Import Metadata Wizard is displayed.

2. Complete the following tasks using the wizard.

■ "Filtering E-Business Suite Metadata"

■ "Selecting the Objects"

■ "Reviewing Import Summary"

8.1.1.4 Filtering E-Business Suite Metadata
The Import Metadata Wizard includes a Filter Information page that enables you to
select the metadata. Oracle Warehouse Builder provides two filtering methods:

■ Business Domain

This filter enables you to browse E-Business Suite business domains to locate the
metadata you want to import. You can view a list of objects contained in the
business domain and the names of the objects in the E-Business Suite application.
For more information, see "Filtering E-Business Suite Metadata by Business
Domain" on page 8-4.

■ Object Type

This filter enables you to search by the object type such as tables, views, and
sequences or to search by entering text string information in the field provided in
the Filter Information page. This is a more specific search method if you are
familiar with the contents of your E-Business Suite application database. For more
information, see "Filtering E-Business Suite Metadata by Object Type" on page 8-5.

Select a filtering method and click Next to proceed with the importing of metadata.

8.1.1.4.1 Filtering E-Business Suite Metadata by Business Domain To filter metadata by the
business domain:

1. Select Business Domain and click Browse to open the Business Domain Hierarchy
dialog box.

2. The Business Domain Hierarchy dialog box lists the available E-Business Suite
business domains.

Use the Business Domain Hierarchy dialog box to select the E-Business Suite
business domains that contain the metadata objects you want to import.

Note: The time it takes to list the business domains depends on the
network location of the E-Business Suite application server, the type of
LAN used, and the size of the E-Business Suite application database.

Importing Metadata from Oracle E-Business Suite Applications

Integrating with Oracle ERP Applications 8-5

3. Select a business domain and click Show Entities.

The Folder dialog box displays a list of objects available in the selected business
domain.

4. Review this dialog box to ensure that you are selecting the required objects and
click OK to go back to the Business Domain Hierarchy dialog box.

Some business domains can contain more than 1000 objects. The time required to
import such a large amount of metadata can vary depending on the network
connection speed and the processing power of the source and target systems. It is
recommended that you review the list of objects and import only the ones that are
required.

5. Click OK.

The wizard displays the Filter Information page with the E-Business Suite
business domain displayed in the Business Domain field.

8.1.1.4.2 Filtering E-Business Suite Metadata by Object Type

1. Select Object Type.

2. Select the type of objects you want to import. You can select Tables, Views, and
Sequences.

To select specific objects, enter the object name in the text field. Create a filter for
object selection by using the wildcard characters (%) for zero or more matching
characters, and (_) for a single matching character.

For example, to search the business domain for tables whose names contain the
word CURRENCY, then type %CURRENCY%. To refine the search to include only
tables named CURRENCY and followed by a single digit, then type %CURRENCY_.

8.1.1.5 Selecting the Objects
The Object Selection page contains a description of the objects and enables you to
select the objects you want to import into the E-Business Suite module.

To select the objects:

1. Move the objects from the available list to the selected list.

The Import Wizard also enables you to choose to import tables with foreign key
relationships for each object that you choose to import. You can select one of the
following:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

Importing Metadata from PeopleSoft Applications

8-6 Oracle Warehouse Builder Sources and Targets Guide

2. Click Next.

If you select One Level or All Levels, then the Confirm Import Selection dialog
box is displayed if other related tables are to be imported due to foreign keys or
other dependencies.

Review this dialog box to ensure that you are selecting the required tables.

3. Click OK.

The selected objects appear in the right pane of the Object Selection page.

4. Click Next.

The Import Wizard displays the Summary and Import page.

8.1.1.6 Reviewing Import Summary
The Import Metadata Wizard imports definitions for the selected objects from the
E-Business Suite application server, stores them in the E-Business Suite source module,
and then displays the Summary and Import page.

You can edit the descriptions for each object by selecting the description field and
entering a new description.

Review the information about the Summary and Import page and click Finish to
import the selected objects.

The E-Business Suite integrator reads the table definitions from the E-Business Suite
application server and creates the metadata objects in the module.

The time it takes to import the E-Business Suite metadata to the workspace depends
on the size and number of tables and the connection between the E-Business Suite
application server and the workspace, especially if you are connecting servers located
in different local area networks (LANs).

When the import completes, the Import Results dialog box is displayed. Click OK to
finish importing or click Undo to cancel the import.

8.2 Importing Metadata from PeopleSoft Applications
Oracle’s PeopleSoft Enterprise applications provide comprehensive business solutions
in a wide variety of industry functions including Human Resource Management
System (HRMS), Financials, Customer Relationship Management (CRM), and Material
Management. A PeopleSoft application consists of numerous modules, each pertaining
to a specific area in an enterprise.

8.2.1 Importing PeopleSoft Metadata Definitions
To import metadata from PeopleSoft applications, create a PeopleSoft module from the
Projects Navigator. After creating the module, you can import metadata definitions
from the PeopleSoft application using the Import Metadata Wizard. This wizard
enables you to filter the objects you want to import and verify those objects. The
PeopleSoft module contains nodes for tables, views, and sequences. You can also
create a User Folder within the module to organize the objects that you import. You
can import metadata for tables, views, and sequences.

To import PeopleSoft metadata:

1. Create a PeopleSoft module as described in "Creating a PeopleSoft Module".

Importing Metadata from PeopleSoft Applications

Integrating with Oracle ERP Applications 8-7

2. Import metadata from the PeopleSoft application as described in "Importing
PeopleSoft Metadata".

8.2.1.1 Creating a PeopleSoft Module
To create a PeopleSoft module

1. Right-click PeopleSoft under the Applications node and select New Peoplesoft
Module.

The Create Module Wizard is displayed.

Oracle Warehouse Builder displays the Welcome page for the Import Metadata
Wizard.

2. Click Next to display the Name and Description page.

3. Specify a name and an optional description for the source module. Also specify
whether you want to connect through native database connectivity (using JDBC
drivers) or through Oracle Gateways.

If you select Oracle Gateways, then select the database from which the metadata is
to be imported. Click Next.

The Connection Information page is displayed.

4. Specify the connection information for the PeopleSoft source module and click
Next.

Ensure that the location associated with the module contains information needed
to connect to the PeopleSoft source. If you created a location earlier, associate that
location with the module being created by selecting the location on the Connection
Information page.

To create a new location, click Edit on the Connection Information page of the
Create Module Wizard. This opens the Edit Non-Oracle Location dialog box. See
"Edit Non-Oracle Location Dialog Box" on page 8-2 for more information about the
values to be entered in the dialog box.

5. On the Summary page, review the options entered on the previous wizard pages.
Click Back to modify any selections. Click Finish to create the PeopleSoft source
module.

8.2.1.2 Importing PeopleSoft Metadata
To import metadata into the module:

1. Right-click the PeopleSoft module and select Import, Database Objects.

The Import Metadata Wizard is displayed.

2. Complete the following tasks:

■ "Filtering PeopleSoft Metadata"

■ "Selecting the Objects"

■ "Reviewing Import Summary"

See Also: Chapter 6, "Connecting to Data Sources Through JDBC"
for more information about native database connectivity.

Chapter 4, "Connecting to Non-Oracle Data Sources Through
Gateways" for more information about Gateways connectivity.

Importing Metadata from PeopleSoft Applications

8-8 Oracle Warehouse Builder Sources and Targets Guide

8.2.1.3 Filtering PeopleSoft Metadata
The Import Metadata Wizard includes a Filter Information page that enables you to
select the metadata. Oracle Warehouse Builder provides two filtering methods:

■ Business Domain

This filter enables you to browse PeopleSoft business domains to locate the
metadata you want to import. You can view a list of objects contained in the
business domain. For more information, see "Filtering PeopleSoft Metadata by
Business Domain" on page 8-8.

■ Object Type Matching

This filter enables you to search by the object type such as tables, views, and
sequences or to search by entering text string information in the field provided on
the Filter Information page. This is a more specific search method if you are
familiar with the contents of your PeopleSoft application database. For more
information, see "Filtering PeopleSoft Metadata by Object Type" on page 8-8.

Select a filtering method and click Next to proceed with the importing of metadata.

8.2.1.3.1 Filtering PeopleSoft Metadata by Business Domain To filter by the business
domain:

1. Select Business Domain and click Browse to open the Business Domain Hierarchy
dialog box.

The Import Metadata Wizard displays Loading Progress dialog box while it is
retrieving the business domains.

2. The Business Domain Hierarchy dialog box lists the available PeopleSoft business
domains.

Use the Business Domain Hierarchy dialog box to select the PeopleSoft business
domains that contain the metadata objects you want to import.

3. Select a folder and click Show Entities.

The Import Wizard displays a list of objects in the selected business domain in the
Folder dialog box.

4. Review this dialog box to ensure that you are selecting the required objects.

Some business domains can contain more than 1000 objects. The time it takes to
import such a large amount of metadata can vary depending on the network
connection speed and the processing power of the source and target systems. It is
recommended that you review the list of objects and import only the ones that are
required.

5. Click OK.

The wizard displays the Filter Information page with the PeopleSoft business
domain displayed in the Business Domain field.

8.2.1.3.2 Filtering PeopleSoft Metadata by Object Type

1. Select Object Type.

Note: The time it takes to list the business domains depends on the
network location of the PeopleSoft application server, the type of
network used, or the size of the PeopleSoft application database.

Importing Metadata from PeopleSoft Applications

Integrating with Oracle ERP Applications 8-9

2. In the Object Type section, select the types of objects you want to import. You can
select Tables, Views, and Sequences.

To select specific objects, type the object name in the text field. Create a filter for
object selection by using the wildcard characters (%) for zero or more matching
characters, and (_) for a single matching character.

For example, to search the business domain for tables whose names contain the
word CURRENCY, then type %CURRENCY%. To refine the search to include only
tables named CURRENCY and followed by a single digit, then type %CURRENCY_.

8.2.1.4 Selecting the Objects
The Object Selection page contains a description of the objects and enables you to
select the objects you want to import into the PeopleSoft module.

To select the objects:

1. Move the objects from the Available list to the Selected list.

The Import Wizard also enables you to choose to import tables with foreign key
relationships for each object that you choose to import. You can select one of the
following:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

2. Click Next.

If you select One Level or All Levels, the Confirm Import Selection dialog box is
displayed.

Review this dialog box to ensure that you are selecting an appropriate number of
tables.

3. Click OK.

The selected objects appear in the Selected pane of the Object Selection page.

4. Click Next.

The wizard displays the Summary and Import page.

8.2.1.5 Reviewing Import Summary
The Import Metadata Wizard imports definitions for the selected tables from the
PeopleSoft application server, stores them in the PeopleSoft source module, and then
displays the Summary and Import page.

You can edit the descriptions for each object by selecting the description field and
entering a new description.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

Importing Metadata from Siebel Applications

8-10 Oracle Warehouse Builder Sources and Targets Guide

Review the information about the Summary and Import page and click Finish.

The PeopleSoft Connector reads the table definitions from the PeopleSoft application
server and creates the metadata objects in the workspace.

The time taken to import PeopleSoft metadata to the workspace depends on the
available objects including tables, views, and sequences and the connection between
the PeopleSoft application server and the workspace. Importing a large number of
objects can result in delays so it is recommended that you import in smaller batches.

When the import completes, the Import Results dialog box is displayed. Click OK to
finish importing metadata.

8.3 Importing Metadata from Siebel Applications
Oracle’s Siebel applications provide Customer Relationship Management (CRM)
solutions. Oracle Warehouse Builder provides a connector for Siebel systems that
enables you to extract both metadata and data from Siebel applications.

The Siebel connector enables you to connect to any Siebel application, read its
metadata, import the metadata into Oracle Warehouse Builder, and extract data from
the system.

8.3.1 Importing Siebel Metadata Definitions
Before you import metadata definitions from Siebel, you must create a Siebel source
module. You can then import metadata definitions from Siebel using the Import
Metadata Wizard. This wizard enables you to filter the Siebel objects you want to
import and verify those objects. The Siebel module contains nodes for tables, views,
and sequences. You can also create a User Folder within the Siebel module to organize
the objects that you import. You can import metadata for tables, views, and sequences.

To import metadata definitions from Siebel:

1. Create a Siebel source module, as described in "Creating a Siebel Source Module"
on page 8-10.

2. Import metadata from Siebel, as described in "Importing Siebel Metadata" on
page 8-11.

8.3.1.1 Creating a Siebel Source Module
1. From the Projects Navigator, click the Applications node to expand it.

2. Right-click Siebel and select New Siebel Module.

The Create Module Wizard is displayed.

3. Specify a name and an optional description for the source module. Also specify
whether you want to connect through native database connectivity (using JDBC
drivers) or through Oracle Gateways.

If you select Oracle Gateways, then select the database from which the metadata is
to be imported. Click Next.

The Connection Information page is displayed.

4. Specify a name and an optional description for the Siebel source module and click
Next.

The Connection Information page is displayed.

5. Specify the connection information for the Siebel source module and click Next.

Importing Metadata from Siebel Applications

Integrating with Oracle ERP Applications 8-11

Ensure that the location associated with the Siebel module contains information
needed to connect to the Siebel source. If you created a location earlier, associate
that location with the module being created by selecting the location on the
Connection Information page.

Or create a new location by clicking Edit on the Connection Information page to
open the Edit non-Oracle dialog box. See "Edit Non-Oracle Location Dialog Box"
on page 8-2 for more details.

6. On the Summary page, review the options entered on the previous pages. Click
Back to modify any selections. Click Finish to create the Siebel source module.

8.3.1.2 Importing Siebel Metadata
1. Right-click the Siebel source module into which you want to import metadata and

select Import, Database Objects.

Oracle Warehouse Builder displays the Welcome page for the Import Metadata
Wizard.

2. Click Next.

The Filter Information page is displayed.

3. Select the objects to be imported and click Next.

You can search for specific object types such as tables, sequences, and views.
Oracle Warehouse Builder also enables you to specify the name of the object to be
imported. You can search for specific object names by entering text string
information in the field provided in the Filter Information page. This is a more
specific search method if you are familiar with the contents of your Siebel
application database.

4. On the Objects Selection page, select the objects to be imported into the Siebel
module and click Next.

You can choose to import tables with foreign key relationships for each object that
you choose to import using the following options on this page:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

5. Review the summary information and click Finish to complete the import. To
modify any selections, click Back.

See Also: Chapter 6, "Connecting to Data Sources Through JDBC"
for more information about native database connectivity.

Chapter 4, "Connecting to Non-Oracle Data Sources Through
Gateways" for more information about Gateways connectivity.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

Importing Metadata from Applications Implemented on non-Oracle Databases

8-12 Oracle Warehouse Builder Sources and Targets Guide

After you import metadata for tables, views, or sequences from Siebel applications,
you can use these objects in mappings.

8.4 Importing Metadata from Applications Implemented on non-Oracle
Databases

You can import metadata from PeopleSoft and Siebel applications that are
implemented on non-Oracle databases such as DB2, SQL Server, Sybase, Informix, and
so on.

With earlier releases of Oracle Warehouse Builder, you required an Oracle Gateways
connection to import metadata from an application such as PeopleSoft implemented
on a non-Oracle database, such as SQL Server. With Oracle Warehouse Builder 11g
Release 2 (11.2), you can define a CMI definition and use a native heterogeneous
connectivity using JDBC drivers to import from these applications.

See "Connecting to a PeopleSoft Application Implemented on SQL Server" on
page 8-13 for more information about using a CMI definition to import metadata from
a PeopleSoft application implemented on SQL Server.

On the Locations Navigator, click an application to see the databases from which you
can import metadata for that application as shown in Figure 8–1. Create a location
based on the database on which the application is implemented. For example,

To define a location corresponding to a PeopleSoft application on SQL Server:

1. On the Locations Navigator, navigate to Applications, PeopleSoft.

2. Right-click SQL Server and select New SQL Server PeopleSoft Location.

The Create SQL Server PeopleSoft Location dialog box is displayed.

3. Provide the connection details corresponding to the SQL Server database. See
"Connecting to SQL Server Database" on page 6-3 for more information about the
details to be specified to connect to an SQL Server database.

Figure 8–1 The Locations Navigator for the Oracle Applications

Importing Metadata from Applications Implemented on non-Oracle Databases

Integrating with Oracle ERP Applications 8-13

8.4.1 Connecting to a PeopleSoft Application Implemented on SQL Server
To import metadata from a PeopleSoft application that is implemented on a SQL
Server database, first define a CMI definition for PeopleSoft on SQL Server.

To leverage on a CMI mechanism, you must create a CMI_DEFINITION for the
PeopleSoft application.

CMI definitions must be created from the root context. You can switch to the root
context only from the OMB Plus console. You cannot switch to the root context using
the OMB*Plus view from within the Oracle Warehouse Builder UI. Therefore it is
recommended that you use the OMB Plus console for the implementation.

For more information about OMB*Plus scripting, see Oracle Warehouse Builder API and
Scripting Reference.

To use the OMB Plus console on a Windows system, select Start, then All Programs,
<OWB>, Warehouse Builder, and then OMB Plus.

To switch to the root context, use the following command:

OMBCONNECT <repository user>/<password>@<host>:<port number>:<service name>

For example,

OMBCONNECT rep_user/password@localhost:1521:orcl

Where rep_user/password is the user name/password to connect to the repository,
localhost indicates a local installation, 1521 is the port number, and orcl is the
service name of the database.

Example 8–1 lists the .tcl script to create a CMI. Run the script from the OMB Plus
console.

Example 8–1 Script to Create a CMI Definition

set platformname SQLSERVER
set application PEOPLESOFT

set cmi $platformname_$application
puts "Creating Custom Application Metadata Import"
OMBCREATE CMI_DEFINITION '$cmi' USING DEFINITION_FILE 'c:\\cmi\\platformdef4_
miv.xml'
OMBALTER CMI_DEFINITION '$cmi' SET PROPERTIES (MIV_TYPE) VALUES ('Applications')
puts "Created Custom Application Metadata Import"
puts " - $application on $platformname"
puts ""

Save the changes using the command OMBCOMMIT.

The file platformdef4_miv.xml contains the CMI_DEFINITION for PeopleSoft on SQL
Server as listed in Example 8–2. Ensure that you provide the correct file location for
the .xml file in the .tcl script listed in Example 8–1.

Example 8–2 CMI Definition File for PeopleSoft on SQL Server

<?xml version="1.0"?>
<miv>
 <miv_tables type="SQLStatement" default="true" >

See Also: Oracle Warehouse Builder OMB*Plus Command Reference for
a list of all OMB*Plus commands.

Importing Metadata from Applications Implemented on non-Oracle Databases

8-14 Oracle Warehouse Builder Sources and Targets Guide

select
REC.RECNAME as TABLE_NAME,
TAB.TABLE_NAMEas RES_NAME,
rtrim(REC.RECDESCR)as TABLE_DESC
 from
PSRECDEFN REC left outer join
 PS_EO_BCOWNRID_VW M on (REC.OBJECTOWNERID=M.OBJECTOWNERID),
INFORMATION_SCHEMA.TABLES TAB
where (REC.RECNAME =TAB.TABLE_NAME or 'PS_'+REC.RECNAME =TAB.TABLE_NAME)
and REC.RECTYPE =0 </miv_tables>

<miv_columns type="SQLStatement" default="true" />

 <miv_capabilities type="ResultSet">
 <table_supported>true</table_supported>
 <view_supported>false</view_supported>
 <sequence_supported>false</sequence_supported>
 <table_name_filter_supported>false</table_name_filter_supported>
 <view_name_filter_supported>false</view_name_filter_supported>
 <sequence_name_filter_supported>false</sequence_name_filter_supported>
 <business_area_supported>false</business_area_supported>
 <business_area_table_supported>false</business_area_table_supported>
 <business_area_view_supported>false</business_area_view_supported>
 <business_area_sequence_supported>false</business_area_sequence_supported>
 <application_owner_supported>true</application_owner_supported>
 <table_fklevel_supported>false</table_fklevel_supported>
 <reimport_supported>true</reimport_supported>
 <data_object_at_leaf_levels>true</data_object_at_leaf_levels>
 <multiple_tree_supported>false</multiple_tree_supported>
 <function_supported>false</function_supported>
 <function_name_filter_supported>false</function_name_filter_supported>
 </miv_capabilities>

</miv>

This MIV file is created using elements defined in an XML schema definition (XSD)
file.

After you have created a CMI definition, create a PeopleSoft module from the Projects
Navigator to connect to the PeopleSoft application implemented on the SQL Server
database.

CMI_DEFINITION must have it's name defined as platform_application to work.
The illustration creates an example called SQLSERVER_PEOPLESOFT. You get the list
of platform names using the command OMBLIST PLATFORMS.

To create the PeopleSoft module:

1. Under the Application node, right-click PeopleSoft and select New PeopleSoft
Module.

The Create Module Wizard is displayed.

2. On the Name and Description page, provide a name and an optional description.
Select the access method to be Native Database Connection. Also select SQL
Server as the platform. This option is now available because you have created a
CMI definition for PeopleSoft on SQL Server. Click Next.

The Connection Information page is displayed.

Importing Metadata from Applications Implemented on non-Oracle Databases

Integrating with Oracle ERP Applications 8-15

3. Click Edit to define the location details of the PeopleSoft application on SQL
Server. See "Creating a SQL Server Module" on page 6-3 for more information
about the connection details to an SQL Server database.

You require the JDBC drivers to connect to the SQL Server. For more information
about the JDBC driver requirements, see "Connecting to SQL Server Database" on
page 6-3.

After creating the module, you can import metadata from the PeopleSoft application.

Importing Metadata from Applications Implemented on non-Oracle Databases

8-16 Oracle Warehouse Builder Sources and Targets Guide

9

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-1

9 Importing Oracle Warehouse Builder Data
into Business Intelligence Applications

Oracle Warehouse Builder provides an end-to-end business intelligence (BI) solution
by enabling you to import, design, and deploy metadata from different sources into a
data warehouse, and by making that data available to business analytical tools for
decision making and business reporting. It fully integrates relational, dimensional, and
business metadata and provides access to business analytical tools for decision making
and business reporting.

Oracle Warehouse Builder contains BI objects that enable you to integrate seamlessly
with BI applications to perform data analysis. You can define BI objects that enable
you to store definitions of business metadata. You can then deploy these definitions to
Oracle’s BI tools, such as Oracle Business Intelligence Suite Enterprise Edition (Oracle
BI Suite EE) and Oracle BI Discoverer, thereby extending the functionality of your data
warehouse.

This section contains the following topics:

■ "Creating Business Definitions for Oracle BI Discoverer"

■ "Configuring Discoverer Objects"

■ "Deploying Business Definitions to Oracle BI Discoverer"

■ "Accessing BI Objects Using Oracle BI Discoverer"

■ "Creating Business Definitions for OBIEE"

■ "Configuring Oracle Business Intelligence Objects"

■ "Accessing BI Objects Using OBIEE"

■ "Deriving BI Objects"

9.1 Creating Business Definitions for Oracle BI Discoverer
Business definitions are the equivalent of Discoverer End User Layer (EUL) objects.
They are BI objects that enable you to integrate Oracle Warehouse Builder data with
Oracle BI Discoverer. Business definitions facilitate data analysis of the data stored in a
data warehouse. You can define and then deploy business definitions to Oracle BI
Discoverer. You can either create new business definitions or derive them from
existing schemas. For information about creating business definitions, see "Creating
Oracle Discoverer Module" on page 9-2. For information about deriving business
definitions, see "Deriving BI Objects" on page 9-41.

This section contains the following topics:

Creating Business Definitions for Oracle BI Discoverer

9-2 Oracle Warehouse Builder Sources and Targets Guide

■ "Creating Oracle Discoverer Module"

■ "About Item Folders"

■ "Editing an Item Folder"

■ "Creating an Item Folder"

■ "Creating a Business Area"

■ "Editing a Business Area"

■ "Creating a Drill Path"

■ "Editing a Drill Path"

■ "Creating Lists of Values"

■ "Editing Lists of Values"

■ "Creating Alternative Sort Orders"

■ "Editing Alternative Sort Orders"

■ "Creating Drills to Detail"

■ "Editing Drills to Detail"

■ "Creating Registered Functions"

■ "Editing Registered Functions"

■ "Deriving BI Objects"

9.1.1 Creating Oracle Discoverer Module
Before you derive business definitions to deploy to Discoverer, you must create an
Oracle Discoverer module to store your business definitions.

To create an Oracle Discoverer module:

1. From the Projects Navigator, click to expand the Project node.

2. Expand the Business Intelligence node.

3. Right-click Oracle Discoverer and select New Oracle Discoverer.

Oracle Warehouse Builder opens the Create Module Wizard.

4. Follow the wizard steps by clicking Next.

9.1.1.1 Naming the Oracle Discoverer Module
In the Name and Description page, enter a name and an optional description for the
Oracle Discoverer module. Also, indicate the type of module you are creating.

For more information about naming conventions, see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

9.1.1.2 Setting the Connection Information
On the Connection Information page, define the location to deploy the Oracle
Discoverer module. For example, this may be the system where you are currently
running Oracle BI Discoverer.

To use a deployment location you previously created, you can select it from the
Location list. The connection information for this location displays on the wizard
page.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-3

You can also choose to create this location later and skip to the next page. You cannot
deploy the Oracle Discoverer module unless you provide the connection information
for the target location.

The wizard initially creates a default target location for the module you are creating.
For example, if your module is named DISCOVERER_OBJECTS, then the location is called
DISCOVERER_OBJECTS_LOCATION1. You can choose to provide the connection
information for this location by clicking Edit. The Edit Oracle Discoverer Location
dialog box is displayed. Provide the required information to connect with your target
system and click OK. For more information about the Edit Oracle Discoverer Location
dialog box, see "Defining Discoverer Locations" on page 9-3.

9.1.1.2.1 Defining Discoverer Locations A Discoverer location provides connection
details of the system where you deploy the Oracle Discoverer modules. Oracle BI
Discoverer EUL Release 10.1.2 or later should be installed on this system.

To define a Discoverer location, enter the following details on the Edit Oracle
Discoverer Location dialog box:

■ Name: The name of the Discoverer location. Oracle Warehouse Builder assigns a
default name for the location. You can edit this name.

■ Description: An optional description for the Discoverer location.

■ User Name: The name of the EUL owner to which you want to deploy your
business definitions. You can also specify a user who has administrator privileges.

■ Password: The password for the user.

User password is required only for direct integration.

■ Connection Type: The type of connection used to connect to the Discoverer EUL.
The options you can select are Host:Port:Service or SQL*Net Connection.

When you select SQL*Net Connection, specify the net service name in the Net
Service Name field. When you select Host:Port:Service, specify the following
additional details.

Host: The host name of the system on which the EUL exists.

Port: The default port number is 1521.

Service Name: The service name of the Oracle Database installation.

■ Integration Type: Direct or Indirect depending on the connection. Direct indicates
that the deployment is made directly to the schema. Indirect provides file transfer
options through file, FTP, HTTP, or HTTPS.

Depending on the mode of file transfer, you must provide the following details:

FILE

■ Root Path: Directory of the .eex file.

■ File Name: The name of the .eex file.

FTP

■ Host Name: The system credentials where the Oracle Discoverer server
resides.

■ Host Login Port: Login port number, which is initially set to 0. You must
change this according to your local configuration.

■ Transfer Format: Select from ASCII and IMAGE.

Creating Business Definitions for Oracle BI Discoverer

9-4 Oracle Warehouse Builder Sources and Targets Guide

■ Host Login User: User name to run FTP.

■ Host Login Password: User password to run the FTP command.

■ File Name: The name of the .eex file along with the complete path.

HTTP and HTTPS

■ Host Name: The system credentials where the Oracle Discoverer server
resides.

■ Host Login Port: Login port number, which is initially set to 0. You must
change this according to your local configuration.

■ Host Login User: User name for the HTTP/HTTPS command.

■ Host Login Password: User password for the HTTP/HTTPS command.

■ File Name: The name of the .eex file along with the complete path.

■ Version: Represents the version of Discoverer to which the business definitions
should be deployed. The list contains only one value, 10.1. Use this option to
deploy to Oracle BI Discoverer 10g Release 2. This includes all Oracle BI
Discoverer 10.1.x versions.

After you specify these details, click Test Connection to verify the connection.

9.1.1.3 Reviewing the Summary Information
In the Summary page, review the name and location information for the Oracle
Discoverer module. Click Back to make any changes or click Finish to finish creating
the Oracle Discoverer module.

After the Oracle Discoverer module is created, you can locate it under the Oracle
Discoverer node on the Projects Navigator. Expand the module to see that Oracle
Warehouse Builder provides a representation for the different objects types that
comprise the Discoverer EUL. You can define the following types of Discoverer EUL
objects:

■ Item Folders

■ Business Areas

■ Drill Paths

■ Lists of Values

■ Alternative Sort Orders

■ Drills to Detail

■ Registered Functions

9.1.2 About Item Folders
Item Folders are equivalent to Folder objects in Oracle BI Discoverer that map to
database tables, external tables, or views. They represent a result set of data, similar to
a database view. Item Folders store information just like tables. For example, they are
used to store details of employees or customers of an organization. An Item Folder
contains entities called Items that correspond to columns in a table. Each item has a
name and contains a specific type of information. For example, the Item Folder that
contains details about employees may include items such as employee name, start
date, and department.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-5

There are two types of Item Folders: Simple and Complex. Simple Item Folders
contain items that reference a single table in an Oracle module. Complex Item Folders,
like database views, provide a method to group items from multiple Item Folders
within the same Oracle Discoverer module. Item Folders also contain joins, calculated
items, and conditions.

Oracle Warehouse Builder creates Item Folders when you derive business definitions
from warehouse design objects in your Oracle module, as described in "Deriving BI
Objects" on page 9-41. You can also manually create a customized Item Folder using
the Create Item Folder Wizard or the Graphical Navigator. The Graphical Navigator
can also be used to edit Item Folders.

The following sections contain more information related to Item Folders:

■ "Editing an Item Folder"

■ "Creating an Item Folder"

9.1.3 Editing an Item Folder
After you derive your design object definitions, an Item Folder is created as part of the
derived business definitions.

Oracle Warehouse Builder provides the document editors that enable you to edit the
name and description of an Item Folder, view its source design objects, edit the items it
contains, and specify or edit any joins or conditions.

To edit an Item Folder:

1. From the Projects Navigator, expand the Oracle Discoverer module node, then
expand the Item Folders node.

2. Right-click the Item Folder name and select Open. Or double-click the Item Folder
name. This displays the Item Folder editors.

3. Click each of the editors to edit the Item Folder using the guidelines described in
the subsequent sections.

9.1.3.1 Name Editor
The Name editor enables you to edit the name and description for the Item Folder.

9.1.3.2 Source Items Editor
The Source Items editor displays the available source items for your Item Folder.

When you are editing an existing item folder, the Selected column displays the source
items that were selected at the time of creating the Item Folder. To select different
items as the source, use the left arrow to return the items from the Selected column to
the Available column. Then use the right arrow to move the new source item from the
Available column to the Selected column.

Your selected objects can contain related items from multiple Item Folders.

To change the selected items, then use the left arrow to return the previously selected
items. Now select an initial folder item from any of the available Item Folders within
the same Oracle Discoverer module. You can then select additional folder items that

Note: Oracle Warehouse Builder does not support the Discoverer
custom folders.

Creating Business Definitions for Oracle BI Discoverer

9-6 Oracle Warehouse Builder Sources and Targets Guide

have a relationship with the previously selected item. You cannot select items from
unrelated Item Folders. The relationship between Item Folders are defined by the joins
between them. To create a join between Item Folders, use the Joins editor to specify the
relationships between the two Items Folders.

9.1.3.2.1 Deleting Items You can also delete items using the Source Items editor. To
delete an item using the Source Items editor, select and move the item from the
Selected section to the Available section.

9.1.3.3 Items Editor
The Items editor displays the details and properties of all items in an Item Folder. You
can view, create, and edit the following for an item:

9.1.3.3.1 Item Details

■ Name: Represents the name of an item. To change the current item, double-click
the name and retype the new name.

■ Description: Optionally enter a description for this item.

If you select an item name, the property inspector displays the following properties for
that item:

■ Alignment: The default alignment used for this item in a Discoverer report.

■ Business Name: Business name of item.

■ Case Storage: Select the case storage method.

■ Content Type: Describes the content of multimedia data in this item when used in
drilling. If the column contains file names, set this property to FILE. Else set it to
the file extension (avi,wav,jpg) to define the application that should process the
data.

■ Created By: Created by.

■ Creation Time: Time of creation.

■ Database Column: Specifies the schema, table, and column based on which the
item was created or derived.

■ Datatype: Select the data type for the item. All the data types are supported by
Discoverer.

■ Default Aggregate: Indicate if the item defaults to an aggregate in the Discoverer
report.

■ Default Position: Select the position of this Item on a Discoverer report.

■ Default Width: The default width of the item when it is displayed in a Discoverer
report. The width is in characters.

■ Display Case: Select in what case the item information is displayed in a
Discoverer report.

■ Format Mask: The format mask for this item when it is used in a work sheet.

■ Formula: You can provide a formula for any calculated items you want to specify.
Click the Ellipsis button in this field to open the Formula dialog box. This dialog
box contains a subset of the options in the Expression Builder. Use the Formula
dialog box to create your calculation. This field is populated after you close the
Formula dialog box. For more information about the Expression Builder, see
Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-7

■ Heading: The title for the item in a Discoverer report.

■ Item Class: Assign an Item Class that enables you to define properties for the
item. The Item Class list contains Lists of Values, Alternative Sort Orders, and
Drills to Detail. You can also remove a reference to an Item Class.

■ Last Update Time: Last updated time.

■ Max Char Fetched: The maximum amount of data that is fetched from LONG, LONG
RAW, and BLOB data types.

■ Replace NULL With: The value to use instead of the Item value if the value is
NULL.

■ Updated By: Updated by.

■ Visible: Specifies whether the item is visible to a Discoverer user.

■ Word wrap: The default word wrap setting used for this item in a Discoverer
report.

9.1.3.3.2 Adding Items by Using the Items Editor To add an item by using the Items editor:

1. Double-click the Item Folder in the Projects Navigator. The item folder editor is
displayed. Click Items to open the Item Details section.

2. In the Item Details, add items by entering the names of the items.

3. Click Composition to open the composition editor.

The editor displays the item folder and the source object for the item folder. The
editor associates an item with a column or another item.

4. For all the items that you added, map the appropriate element from the source
object to the item on the item folder.

9.1.3.4 Joins Editor
Joins enable you to associate data between two Item Folders. During data analysis,
you may require information that resides in multiple folders. Joins enable users to
perform business analysis and run reports across multiple Item Folders. After you
create joins between Item Folders and deploy them to your Discoverer EUL, they are
available for analysis in Discoverer Plus and Discoverer Viewer.

The Joins editor displays the relationships or joins between two Item Folders. You can
define new joins by clicking on a new row and providing the required information.
You can delete a join by right-clicking the box at the left of each join row that specifies
the join’s number and selecting Delete.

Figure 9–1 shows the contents of the Joins editor.

Creating Business Definitions for Oracle BI Discoverer

9-8 Oracle Warehouse Builder Sources and Targets Guide

Figure 9–1 Creating and Editing Joins

On the Joins page, click a row in the Join Name field. Provide the following
information:

■ Join Name: Enter a name for the join you are creating.

■ Master Item Folder: Select the Item Folder that is the Master. In the above
example, DEPARTMENTS is the local item folder and COUNTRIES is the master
item folder. A join is created between these two item folders.

■ Detail always has Master: Select this to indicate if your detail Item Folder always
have this master.

■ One to one: Select this to indicate a one-to-one relationship between the two Item
Folders.

■ Outer join: Indicate from the list if there is an outer join in this relationship and its
type.

■ Description: Optionally describe the join.

For each join, you can specify the Join Components by clicking in the field below and
providing the following information:

■ Local Item: This list is populated with the items contained in the current Item
Folder. Select an item from this list.

■ Operator: Select the relationship between the Local Item you selected and the
Remote Item you select from the Master Item Folder.

■ Remote Item: Select an Item from your Master Item folder to join with the Local
Item from your current Item Folder.

If you select a Join name, the property inspector displays the following values for the
join:

■ Business Name: Business name of the Join.

■ Description: Description of the Join.

■ External Foreign Key: Specifies the external foreign key for the join.

■ Physical Name: Provide a physical name that is different from the default.

Also see "Adding Joins Using the Graphical Navigator" on page 9-12 for an alternate
way to add joins.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-9

9.1.3.5 Conditions Editor
The Conditions editor enables you to define or edit a condition that restricts selection
on the chosen Item Folder. Use this editor to provide or edit a condition. This editor
contains the following:

■ Condition Name: The name of the condition.

■ Condition: Click the Ellipsis button in this field to display the Expression Builder.
Use this to create or edit a condition. For more information about the Expression
Builder, see Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.

■ Description: Optionally describe the condition.

■ Mandatory: Select this to specify if the condition is mandatory. A mandatory
condition is always applied to filter data that is being retrieved for this item folder.
Non-mandatory conditions can be switched on and off by the user.

■ Case Sensitive: Specifies whether the case should match for character data types.

9.1.3.6 Composition Editor
The Composition editor enables you to view the components of an Item Folder. It
displays the objects that contribute to the composition of this item folder. These are
database objects for Simple Item Folders and contributing Item Folders for Complex
Item Folders.

9.1.3.6.1 Adding Items Through the Composition Editor To add an item through the
Composition editor:

1. Double-click the Item Folder in the Projects Navigator. The item folder editor is
displayed. Click Composition.

The editor canvas displays the item folder and the source object from which the
item folder was created. If no source object was selected while creating the item
folder, then the canvas displays only the item folder.

2. Right-click anywhere on the canvas, and select Add, and then select the type of
object (for example, Table, View, or External Table).

3. The Add a New or Existing Object dialog box is displayed. Select the object you
want to reference and click OK.

The selected object is now visible on the canvas.

4. Drag the referenced element to an item in the item folder to create the composition
for that item. For each column, an item is added in the item folder.

9.1.3.6.2 Deleting Items To delete an item using the Composition editor, right-click the
item and select Delete.

9.1.3.7 General Properties of an Item Folder
Whenever an Item Folder is selected, the property inspector displays a list of
properties for that Item Folder. These properties include Business Name, Description,
External Object (Read Only), Folder Type (Read Only), and Visible.

9.1.4 Creating an Item Folder
When you derive intelligence objects, Item Folders are created as part of the derived
business definitions. However, to define a customized Item Folder, you can create an
Item Folder using the Create Item Folder Wizard.

Creating Business Definitions for Oracle BI Discoverer

9-10 Oracle Warehouse Builder Sources and Targets Guide

Item Folders are Discoverer objects and may be Simple or Complex. Each Item Folder
contains items that you can delete or edit, as described in "Editing an Item Folder" on
page 9-5.

9.1.4.1 Using the Create Item Folder Wizard
To create an Item Folder using the Create Item Folder Wizard:

1. Expand the Oracle Discoverer module in which you want to create an Item Folder.

2. Right-click Item Folders and select New Item Folder.

Oracle Warehouse Builder opens the Create Item Folder Wizard.

3. Follow the wizard steps by clicking Next.

9.1.4.2 Naming and Describing the Item Folder
In the Name and Description page, enter a name and optional description for the Item
Folder.

Oracle Warehouse Builder distinguishes Simple Item Folders from Complex Item
Folders in the same way as Discoverer. A Simple Item Folder is directly based on
columns from a single table in an Oracle module and calculated items based on
constants or items from that Item Folder. A Complex Item Folder can contain items
from multiple Item Folders within the same Oracle Discoverer module, and calculated
items.

9.1.4.3 Selecting Source Items
Select items for your Item Folder.

For a Simple Item Folder, you can select exactly one table, view, or external table from
any module or user folder in the Oracle module, to be referenced by the Item Folder.
Expand the selected object and proceed to select columns within the selected object, to
your selected items. You can multi-select these referenced items by pressing the Ctrl
key and using the right arrow to move them to the list of selected Items.

A Complex Item Folder can contain items from multiple Item Folders within the same
Oracle Discoverer module. You can select the initial folder items from Item Folder A
within an Oracle Discoverer module. You can then select additional folder items from
another Item Folder B within the same module. However, the two Item Folders A and
B must be related. You cannot select items from unrelated Item Folders. Thus, complex
Item Folders combine multiple Item Folders that must be joined. You can define the
joins using the Graphical Editor for an Item Folder. For more information about
creating joins, see "Joins Editor" on page 9-7.

9.1.4.4 Selecting the Join
For a Complex Item Folder, if there are multiple join paths between the item folders
selected as the item sources, then the Join Selection page is displayed. The list on this
page displays all the joins between the item folders. Select the join to be used for the
Complex Item Folder being created.

9.1.4.5 Reviewing the Summary
In the Summary page, review the name and type of your Item Folder and items to be
included in your Item Folder. Click Back to make any changes or click Finish to create
the Item Folder.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-11

You can locate the Item Folder on the Projects Navigator under the Item Folders node
in the Oracle Discoverer module. This Item Folder contains all the selected items. You
can edit the Item Folder properties, create joins and conditions, and edit item
properties using the Graphical Editor, as described in "Editing an Item Folder" on
page 9-5.

After creating the Item Folder, you can use the following editors from the graphical
editor:

■ "Name Editor"

■ "Source Items Editor"

■ "Items Editor"

■ "Joins Editor"

■ "Conditions Editor"

■ "Composition Editor"

For more information about how you specify the details on each editor, refer to the
description of these editors in the "Editing an Item Folder" section on page 9-5.

9.1.4.6 Using the Graphical Navigator to Create Item Folders
An alternate way of creating item folders is to use the Graphical Navigator. You can
use the editor menu or the editor canvas of the Graphical Navigator to create an item
folder.

9.1.4.6.1 Using the Menu To create an item folder using the menu, click anywhere on
the Graphical Navigator. The main menu on the toolbar changes dynamically. From
the main menu, select Graph, Add, Oracle Discoverer, Item Folder. The Add a New
or Existing Item Folder dialog box is displayed. Follow the steps listed in "Steps to
Create an Item Folder" on page 9-11.

9.1.4.6.2 Using the Canvas To create an Item Folder using the canvas, drag and drop an
Item Folder icon from the Component Palette onto the canvas. Or right-click a blank
area on the canvas and from the shortcut menu, select Add, Oracle Discoverer, Item
Folder. The Add a New or Existing Item Folder dialog box is displayed. Follow the
steps listed in "Steps to Create an Item Folder" on page 9-11.

9.1.4.6.3 Steps to Create an Item Folder Use the following steps to create an Item Folder:

1. Select the Create a New Item Folder option.

2. In the New Item Folder Name field, specify a name for the Item Folder.

3. In the Oracle Module list, select the name of the Oracle Discoverer module to
which the Item Folder should belong.

4. Click OK.

The Item Folder is added to the editor canvas. Double-click the item folder to open the
editors for the item folder. For more information about the contents of these editors,
see "Editing an Item Folder" on page 9-5.

9.1.4.6.4 Adding Items to an Item Folder After you add an Item Folder to the Graphical
Navigator, you can add individual items to the Item Folder. On the Graphical
Navigator, right-click Items and select Add a Folder Item. On the Add Folder Item
dialog box provide a name for the new item.

Creating Business Definitions for Oracle BI Discoverer

9-12 Oracle Warehouse Builder Sources and Targets Guide

9.1.4.7 Adding Joins Using the Graphical Navigator
An alternate way to create a Join is to use the Graphical Navigator.

To add a Join:

1. Ensure that the item folder is available on the Graphical Navigator.

2. Right-click Joins, and select Add a Join.

The Add Join dialog box is displayed.

3. Specify a name for the join, and click OK.

4. The Joins editor completes the definition of the Join or use the graphical navigator
for this.

Similarly, you can also drag an Item from the Items node to the Joins node to create a
local item. You can also drag an Item to the Joins node of another Item folder to create
a remote item.

9.1.4.8 Synchronizing Item Folders
Simple Item Folders are defined based on existing tables, views, or external tables.
When the definition of the underlying object changes, you can update the Item Folder
definition by synchronizing it with the object on which it is based.

To synchronize an Item Folder:

1. Expand the Item Folders node in the Projects Navigator.

2. Right-click the Item Folder and select Open.

The editors for the Item Folder are displayed.

3. Click the Composition editor to view the Item Folder.

4. On the canvas, right-click the Item Folder and select Synchronize.

The Synchronize Item Folder dialog box is displayed.

5. Review the details displayed on this dialog box and click OK.

Oracle Warehouse Builder synchronizes the item folder with the data object on
which the item is based.

9.1.4.9 Synchronize Item Folder Dialog Box
The Synchronize Item Folder dialog box enables you to update the Item Folder with
any changes made to the data types used in the database object on which the Item
Folder is based. This dialog box displays the details of the changes to be made to the
Item Folder.

The Synchronize Item Folder dialog box contains three columns: Object, Reason, and
Action. The Object column lists the component in the underlying database object that
has changed. The Reason column displays a brief description of the reason for the
synchronization. The Action column displays the action that is taken to synchronize
the Item Folder. The available actions are Update and None. If you select None for a
component, no synchronization is performed for that object. Only definitions that have
an Action set to Update are synchronized.

For example, the Item Folder DEPT_ITMF is derived from the DEPT table. After the Item
Folder is created, you modify the DEPT table and change the data type of the column
LOCATION from VARCHAR2 to NUMBER. When you synchronize the Item Folder DEPT_ITMF,
the Synchronize Item Folder dialog box displays LOCATION in the Object column. The
Reason column displays "Datatype mismatch". The Action column displays Update.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-13

Click OK to perform the actions listed on the Synchronize Item Folder dialog box and
update the Item Folder definition. If you do not want to perform the actions listed on
this dialog box, click Cancel.

9.1.5 Creating a Business Area
Oracle Warehouse Builder enables you to create a Business Area to deploy to a
Discoverer EUL. Business Areas contain references to Item Folders stored in your
Oracle Discoverer module and are used to group information about a common subject,
for example, Sales Analysis, Human Resources, or Stock Control. The Discoverer users
use these Business Areas as their starting point for building a query.

Business Areas only contain references to Item Folders and not the actual Item Folder
definitions. Thus, a Business Area can contain a collection of unrelated Item Folders
and the same Item Folder can appear in multiple Business Areas. It enables you to set
up multiple Business Areas with different levels of detail, for example, Sales Analysis
area containing one Item Folder, Sales Details area containing six Item Folders, and a
Sales Transaction area with 30 Item Folders. When you delete an Item Folder, the
reference to it from the Business Area is also deleted.

When you deploy a Business Area using the Control Center, the dependencies of the
Business Area are not automatically deployed. For example, if a Business Area BUSN_
AREA contains two Item Folders, IF1 and IF2, then when you deploy BUSN_AREA
using the Control Center, IF1 and IF2 are not deployed.

You can create a Business Area using the Create Business Area Wizard or from the
Graphical Navigator. You also use the editor to edit a business area.

9.1.5.1 Using the Create Business Area Wizard
To create a Business Area using the Create Business Area Wizard:

1. Expand an Oracle Discoverer module.

2. Right-click Business Areas and select New Business Area.

Oracle Warehouse Builder opens the Create Business Area Wizard.

3. Follow the wizard steps by clicking Next.

9.1.5.1.1 Naming the Business Area In the Name and Description page, enter a name and
optional description for the Business Area.

9.1.5.1.2 Selecting the Item Folders In the Source page, all the Item Folders available
within the Oracle Discoverer module are displayed. You can multi-select the Item
Folders by pressing the Ctrl key and using the right arrow to move them to the list of
Selected Item Folders.

9.1.5.1.3 Reviewing the Summary In the summary page, review the Item Folders you
selected. Click Back to make any changes or click Finish to finish creating the Business
Area.

After the Business Area is created, you can locate it on the Projects Navigator under
the Business Areas node with references to the selected Item Folders stored in it.

To make changes to your Business Area definitions after you create them, use the Edit
Business Area dialog box. For details, see "Editing a Business Area" on page 9-14.

Creating Business Definitions for Oracle BI Discoverer

9-14 Oracle Warehouse Builder Sources and Targets Guide

9.1.5.2 Using the Graphical Navigator
Alternatively, from the Graphical Navigator you can use the main menu or the canvas
to create a business area.

9.1.5.2.1 Using the Menu To create a business area using the menu, click anywhere on
the Graphical Navigator. The main menu on the toolbar changes dynamically. From
the main menu, select Graph, Add, Oracle Discoverer, Business Area. The Add a
New or Existing Business Area dialog box is displayed. Select Create a new Business
Area and specify the name of the business area and the module to which it belongs.
Click OK. The newly created business area is available on the Project Navigator.
Double-click the business area to open the editors for the business area. See "Editing a
Business Area" on page 9-14 for details of the editors.

9.1.5.2.2 Using the Canvas To create a business area from the Graphical Navigator,
right-click a blank area on the editor canvas and select Add, Oracle Discoverer,
Business Area. The Add a New or Existing Business Area dialog box is displayed.
Select Create a new Business Area and specify the name of the business area and the
module to which it belongs. Click OK. The newly created business area is now
available on the Project Navigator. Double-click the business area to open the editors
for the business area. Using the Source editor, move item folders from the Available
list to the Selected list. On the Contents editor, you can view existing item folders and
add new ones to the business area. See "Editing a Business Area" on page 9-14 for
details of the editors.

9.1.6 Editing a Business Area
Oracle Warehouse Builder enables you to edit the definitions for a Business Area using
the Edit Business Area dialog box.

To edit a Business Area:

1. From the Projects Navigator, expand the Business Area node.

2. Right-click a Business Area name and select Open.

Oracle Warehouse Builder opens the Edit Business Area dialog box containing the
following editors: Name, Source, and Contents:

9.1.6.1 Name Editor
The Name editor enables you to edit the name and description of a Business Area.

9.1.6.2 Source Editor
The source editor displays the source of those Item Folders that have been included in
the Business Area. You can add new item folders to the Business Area or remove
existing ones using this editor.

9.1.6.3 Contents Editor
The contents editor enables you to add item folders to a Business Area. Right-click
anywhere on the editor and select Add, Item Folder. The Add a New or Existing Item
Folder dialog box is displayed. Follow the steps listed in "Steps to Create an Item
Folder" on page 9-11. You can also add an item folder by dragging and dropping the
item folder from the Projects Navigator into the Contents editor. This creates a
shortcut to the item folder. You can double-click the item folder to access it directly
from the Contents editor.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-15

9.1.7 Creating a Drill Path
Oracle Warehouse Builder enables you to create a Drill Path to deploy to a Discoverer
EUL. Drill Paths define a hierarchy relationship between the items in your Oracle
Discoverer module. For example, Region, Sub-region, Country, and State. Oracle
Warehouse Builder creates these drill paths for derived dimensions. You can also
create your own customized drill path definitions if you are familiar with your data.

To create a Drill Path:

1. Expand the Oracle Discoverer module.

2. Right-click Drill Paths and select New Drill Path.

Oracle Warehouse Builder opens the Create Drill Path Wizard.

3. Follow the wizard steps by clicking Next.

9.1.7.1 Naming the Drill Path
In the Name and Description page, enter a name and optional description for the Drill
Path.

9.1.7.2 Specifying Drill Levels
Use the Drill Levels page to define a drill level and specify the Item Folder it
references. Optionally, you can provide a description for the Drill Levels. To define
drill levels, click a row and provide the following information:

■ Drill Level: Enter a name for the drill level.

■ Item Folder: From the field, select the Item Folder it references.

■ Description: Provide an optional description for the drill level.

When you select a referencing Item Folder for the Drill Level, the wizard lists the
available Items within that Item Folder under the Drill Level Items field at the bottom.

In this field, you can specify one or more items to act as drill items. Select the Use as
Drill Item option for each Item you want to include as a drill item in the level.

Figure 9–2 displays the Drill Levels page of the Create Drill Path Wizard.

Creating Business Definitions for Oracle BI Discoverer

9-16 Oracle Warehouse Builder Sources and Targets Guide

Figure 9–2 Creating Drill Levels

9.1.7.3 Specifying the Join
If there are multiple join paths between the Item Folders referenced by the drill levels,
then the Join Selection page is displayed. The list displays the existing joins between
the selected Item Folder. Select the join to use for the drill path.

9.1.7.4 Reviewing the Summary
In the summary page, review the drill levels you are creating. Click Back to make any
changes or click Finish to create the drill path.

You can locate the drill path on the Projects Navigator under your Oracle Discoverer
module. Oracle Warehouse Builder enables you to edit a drill path using the Edit Drill
Path dialog box.

9.1.8 Editing a Drill Path
Oracle Warehouse Builder enables you to edit drill paths using the Edit Drill Path
dialog box.

To edit a drill path:

1. From the Projects Navigator, expand the Drill Paths node.

2. Right-click the Drill Path and select Open.

Oracle Warehouse Builder displays the Name and Levels editors.

9.1.8.1 Editing the Drill Path Name
The Name editor enables you to edit the name and the description of the drill path.

9.1.8.2 Reviewing the Drill Levels in the Drill Path
Use the Levels editor to edit the drill levels that you defined. The Drill Levels section
lists the drill levels along with the item folders that they reference. The Item Folder

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-17

column displays the item folder that a drill path references. You can modify this by
selecting the new item folder from the list.

The Drill Level Items section displays the items that act as drill items. You can modify
this list by selecting more items that act as drill items.

You use the Structure panel to manipulate hierarchies. For example drill levels can be
moved up in the same subtree, moved out of the current tree, or moved to the root
level. However, multiple roots for Discoverer modules are not enabled and
subsequently fail validation. You can also remove a level. In this case, sub levels of
deleted levels move up to the root level.

9.1.9 Creating Lists of Values
In Discoverer, Lists of Values (LOVs) represents a set of valid values for an item. These
are the values in the database column on which the item is based. LOVs enable end
users to easily set conditions and parameter values for reports. An example of an LOV
can be names of different countries that a user can pick from a list to view a report on
the quantities of a product sold in four specific countries.

You can create lists of values for Item Folders using the Create List of Values Wizard
as described below.

To create a List of Values:

1. Expand the Oracle Discoverer module.

2. Right-click Lists of Values and select New List of Values.

Oracle Warehouse Builder opens the Create List of Values Wizard.

3. Follow the wizard steps by clicking Next.

9.1.9.1 Naming the List of Values
In the Name and Description page, enter a name and optional description for this list
of values. Select the Set as Drill to Detail box if you also want to set this as a Drill to
Detail. When you deploy these definitions to Discoverer, an Item Class that you can
use both as a List of Values and as a Drill to Detail is created.

9.1.9.2 Defining Items in a List of Values
The Defining Items page enables you to select the item that generates your LOV in
Discoverer. This page displays all the Items available in your Discoverer module.
Expand the nodes to select an item and click Next.

9.1.9.3 Referencing Items in a List of Values
The Referencing Item page enables you to associate your LOV with different items.
The Available Items column displays all the Items available in your Discoverer
module. Expand the nodes to select the items that references your list of values. Use
the right arrow to move your selections to the Selected Items column and click Next.

9.1.9.4 Reviewing the Summary
In the summary page, review the defining and referencing items selected for the LOV.
Click Back to make any changes or click Finish to finish creating the LOV.

You can locate the LOV on the Projects Navigator in the Oracle Discoverer module
under the Lists of Values node. Oracle Warehouse Builder enables you to edit the
name, description, and defining and referencing items associated with an LOV using
the Edit List of Values dialog box.

Creating Business Definitions for Oracle BI Discoverer

9-18 Oracle Warehouse Builder Sources and Targets Guide

9.1.10 Editing Lists of Values
Oracle Warehouse Builder enables you to edit a list of values using the Edit List of
Values dialog box.

To edit a list of values:

1. From the Projects Navigator, expand the List of Values node.

2. Right-click the List of Values and select Open.

Oracle Warehouse Builder displays the Edit List of Values dialog box, where you
can edit the following: Name, Defining Item, Referencing Items, and Options.

9.1.10.1 Editing the Name
Use the Name editor to edit the name and description of the list of values.

9.1.10.2 Editing the Defining Items
Use the Defining Item editor to edit the item that generates the list of values in
Discoverer. The item that is the defining item is highlighted. To edit this and specify
that another item is necessary to generate the LOV, select the new item.

9.1.10.3 Editing the Referencing Items
Use the Referencing Items editor to edit the items that reference the list of values. The
Selected column lists the items that the list of values references. To add more items to
which the list of values references, select the item in the Available column and use the
right arrow to move it to the Selected column. To remove items that the list of values
currently references, select the item from the Selected column and use the left arrow to
move it to the Available column.

9.1.10.4 Editing the Options
Use the Advanced editor to specify advanced options for the list of values. The
advanced options are as follows:

■ Retrieve Values in groups of: Use this option to specify the number of values that
are retrieved in group. The default value is 100 which means that the values are
retrieved in groups of 100.

■ Sort the values and remove duplicates: Select this option to remove duplicate
values from the list of values and to order the values. This ensures that the LOV
always shows unique, ordered values.

■ Show values in "Select Items" page of Worksheet Wizard: Select this option to
enable users to expand the List of Values when selecting items to include in a
query.

■ Require user to always search for values: Select this option to display the Search
dialog box every time the List of Values is expanded.

■ Cache List of Values during each connection: Select this option to store the list of
values when the List of Values is expanded for the first time. This improves
performance because otherwise, every time the List of Values is expanded, the
values are fetched from the database.

9.1.11 Creating Alternative Sort Orders
In Discoverer, alternate sorts enable end users to display values in a nonstandard
sequence.

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-19

For example, by default the values of the Description item are sorted alphabetically. To
sort the description according to the values of the Product Key item, you must define
an alternate sort item and link the two items. One item defines the sort order and the
other defines the item to be sorted.

Define how you want to order the information in your Discoverer EUL using the
Create Alternative Sort Order Wizard.

To create an Alternative Sort:

1. Expand the Oracle Discoverer module.

2. Right-click Alternative Sort Orders and select New Alternative Sort Order.

Oracle Warehouse Builder opens the Create Alternative Sort Order Wizard.

3. Follow the wizard steps by clicking Next.

9.1.11.1 Naming the Alternative Sort Order
In the Name and Description page, enter a name and optional description for the
alternative sort order.

Select the Set as Drill to Detail box if you also want to set this as a Drill to Detail.
When you deploy these definitions to Discoverer, an Item Class that can be used both
as an Alternative Sort Order and as a Drill to Detail is created.

9.1.11.2 Defining Item for the Alternative Sort Order
The Defining Item page enables you to select the Item that contains the values to be
sorted. Expand the nodes to select an item and click Next.

9.1.11.3 Defining Order Item for the Alternative Sort Order
Use the Defining Order Item page to select an Item, in the same Item Folder, that
defines the order in which the values of the Item you selected on the Defining Item
page are displayed. Expand the nodes to select the item and click Next.

9.1.11.4 Referencing Items for the Alternative Sort Order
The Referencing Items page enables you to associate your Alternative Sort Order with
different items. The Available column lists all the Items in the Discoverer module.
Expand the nodes to select the items that references your Alternative Sort Order. Use
the right arrow to move your selections to the Selected column and click Next.

9.1.11.5 Referencing Selection Panel for the Alternative Sort Order
This panel enables you to shuttle across an item that references an item class. You can
either change the reference or decide not to shuttle the item across.

9.1.11.6 Reviewing the Summary
In the summary page, review the alternative sort order definition. Click Back if to
make any changes or click Finish to finish creating the alternative sort order.

You can locate the alternative sort order on the Projects Navigator in the Oracle
Discoverer module under the Alternative Sort Order node. Oracle Warehouse Builder
enables you to edit the name, description, and the defining and referencing items
associated with an alternative sort order using the Edit dialog box.

Creating Business Definitions for Oracle BI Discoverer

9-20 Oracle Warehouse Builder Sources and Targets Guide

9.1.12 Editing Alternative Sort Orders
The Edit Alternative Sort Order dialog box enables you to edit an alternative sort
order.

To edit an alternative sort order:

1. Expand the Alternative Sort Order node in the Projects Navigator.

2. Right-click the Alternative Sort Order and select Open.

The Edit Alternative Sort Order dialog box containing the following tabs is
displayed: Name, Defining Item, Defining Order Item, Referencing Items, and
Options.

9.1.12.1 Editing the Alternative Sort Order Name
Use the Name tab to edit the name and description of the alternative sort order.

9.1.12.2 Editing the Defining Item
Use the Defining Item tab to edit the item that contains the values to be sorted. This
editor displays the Item that currently defines the alternative sort order highlighted.
To change this selection, click the item that you now want to use to define the
alterative sort order.

9.1.12.3 Editing the Defining Order Item
The Defining Order Item tab displays the Item Folder with the item that currently
defines the order in which the values of the Item selected on the Defining Item editor
are displayed. You can change this selection by clicking a new item from the tree.

9.1.12.4 Editing the Referencing Items
The Referencing Items tab lists the items that references your Alternative Sort Order in
the Selected column. To add more items to this list, select the item in the Available
column and use the right arrow to move the item to the Selected column. To remove
an item that is selected, move the item from the Selected column to the Available
column using the left arrow.

9.1.12.5 Editing the Options
Use the Options tab to specify advanced options for the alternative sort order. The
options you can set are as follows:

■ Retrieve values in groups of: Use this option to specify the number of values that
are retrieved in group. The default value is 100 which means that the values are
retrieved in groups of 100.

■ Sort the values and remove duplicates: Select this option to remove duplicate
values from the alternative sort order and to order the values. This ensures that
the alternative sort order always shows unique, ordered values.

■ Show values in "Select Items" page of the Worksheet Wizard: Select this option
to enable users to expand the alternative sort order when selecting items to
include in a query.

■ Require user to always search for values: Select this option to display the Search
dialog box every time the Alternative Sort Order is expanded.

■ Cache list of values during each connection: Select this option to store the
Alternative Sort Order when it is expanded for the first time. This improves

Creating Business Definitions for Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-21

performance because otherwise, every time the Alternative Sort Order is
expanded, the values are fetched from the database.

9.1.13 Creating Drills to Detail
In Discoverer, drills to detail enable you to analyze your data thoroughly by
navigating through your data and performing drill down operations to obtain detailed
information. When you define drills to detail, you define relationships between items.
These drills enable you to interactively drill up or down through your data to see a
different level of detail. For example, you can move from actuals to budgets for the
same department, then look at the department employee details, then drill down to
their salary and training histories, then drill to their job grades structure, and so on.

You can define a drill to detail using the Create Drill to Detail dialog box.

To create a Drill to Detail:

1. Expand the Oracle Discoverer module.

2. Right-click Drills to Detail and select New Drill to Detail.

Oracle Warehouse Builder opens the Create Drill to Detail dialog box.

9.1.13.1 Create Drill to Detail Dialog Box
Name: Enter a name for the drill to detail definition.

Description: Provide an optional description for the drill to detail.

The Available column at the bottom of the dialog box lists the Item Folders in the
Oracle Discoverer module. Select a referencing item from this set and use the right
arrow to move it to the Selected column.

9.1.14 Editing Drills to Detail
Use the Edit Drill to Detail dialog box to edit a Drills to Detail.

To edit a Drills to Detail:

1. Expand the Drills to Detail node in the Projects Navigator.

2. Right-click the name of the Drill to Detail and select Open.

The Edit Drill to Detail dialog box is displayed. The contents of this dialog box are
the same as the Create Drill to Detail dialog box. In addition to modifying the
name and description of the drill to detail, you can edit the referencing items. for
more details on the contents of the Drill to Detail dialog box, see "Create Drill to
Detail Dialog Box" on page 9-21.

9.1.15 Creating Registered Functions
In Discoverer, you can use custom PL/SQL functions to perform operations or
calculations on values in an Item. To access these functions in Discoverer, the
user-defined functions are registered in the EUL. To use any of those registered
user-defined functions in Discoverer, you must include that information in your object
definitions.

You can define a registered function using the Create Registered Function Wizard as
described below.

To create a Registered Function:

1. Expand the Oracle Discoverer module.

Configuring Discoverer Objects

9-22 Oracle Warehouse Builder Sources and Targets Guide

2. Right-click Registered Function and select New Registered Function.

Oracle Warehouse Builder opens the Create Registered Function Wizard.

3. Follow the wizard steps using the guidelines below.

9.1.15.1 Naming the Registered Function
In the Name and Description page, enter a name and optional description for the
registered function.

From the Select the return type of the function list, select a return type for the
function. Select Available to User to indicate if a Discoverer end-user can use this
registered function in calculations.

9.1.15.2 Specifying the Function Parameters
Specify the function parameters by clicking on a row and entering a name for the
parameter. From the Data Type list, select the data type for the parameter. Use the
Description field to enter an optional description.

9.1.15.3 Reviewing the Summary
In the Summary page, review the registered function definition. Click Back to make
any changes or click Finish to finish creating the registered function.

You can locate the registered function on the Projects Navigator in the Oracle
Discoverer module under the Registered Functions node. Oracle Warehouse Builder
enables you to edit the name, description, and parameters of the registered function
using the Edit dialog box.

9.1.16 Editing Registered Functions
Use the Edit Registered Function dialog box to edit a registered function.

To edit a registered function:

1. Expand the Registered Functions node in the Projects Navigator.

2. Right-click the registered function and select Open.

The Edit Registered Function dialog box containing the following tabs is
displayed: Name and Parameters.

9.1.16.1 Renaming a Registered Function
Use the Name tab to edit the name and the description of the registered function.

9.1.16.2 Modifying the Parameters of a Registered Function
Use the Parameters tab to edit the parameters of the registered function. You can edit
the name, type, and description of a parameter. Add new parameters by clicking on an
empty row and specifying the name of the parameter and its data type. You can move
the parameters using the arrow keys.To delete a parameter, right-click the gray cell
(which displays the number) to the left of the parameter name and select Delete.

9.2 Configuring Discoverer Objects
During the design phase, you create definitions for the BI objects. After you design
objects, you can assign physical properties to these design objects by setting
configuration parameters.

Deploying Business Definitions to Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-23

To configure a BI object, right-click the object in the Projects Navigator and select
Configure. The Configuration Properties dialog box is displayed. Click the object
name on the left side of this dialog box to display the configuration parameters on the
right.

All BI objects have a configuration parameter called Deployable. Select Deployable to
generate scripts and deploy the business object. Oracle Warehouse Builder only
generates scripts for objects marked deployable.

The following sections describe additional configuration parameters for different types
of BI objects.

9.2.1 Configuration Parameters for Oracle Discoverer modules
You can set the following configuration parameters for an Oracle Discoverer module.

Object Matching: Indicates how object matching during deployment to Discoverer
should be performed. When you deploy business definitions, an .eex file is first
created and then this file is imported into the Discoverer EUL.

The options you can select for Object Matching are By Identifier or By Name. Oracle
Warehouse Builder uses this setting to check if an object similar to one that is being
deployed exists in the EUL. If a similar object is found, in Create mode the objects are
not deployed and in Upgrade mode the objects are refreshed.

MLS Deployment Language: Represents the language used for deployment to
Discoverer.

Location: Represents the Discoverer location to which the Oracle Discoverer module is
deployed.

9.2.2 Configuration Parameters for Item Folders
You can set the following configuration parameters for item folders.

Optimizer Hint: Represents the optimizer hint to be added when the item folder is
used in a query. Click the Ellipsis button on this field to specify the optimizer hint.

Location: Represents the location of the database object that the item folder references.

9.2.3 Configuration Parameters for Registered Functions
For registered functions, you can set the following configuration parameters.

Package: Represents the name of the package that contains the registered function.

Location: Represents the location of the database object that the registered function
references.

9.3 Deploying Business Definitions to Oracle BI Discoverer
After you create your business definitions, you can deploy them to Oracle BI
Discoverer. The method used to deploy business definitions depends on the version of
Oracle BI Discoverer to which the business definitions are being deployed and the
licensing option used.

Note: The method of deploying business definitions depends on the
Oracle Warehouse Builder licensing option and the version of Oracle
BI Discoverer to which you want to deploy business definitions.

Deploying Business Definitions to Oracle BI Discoverer

9-24 Oracle Warehouse Builder Sources and Targets Guide

You can create a direct or indirect connection to the Oracle BI Discoverer EUL. With a
direct connection, you must specify the location of the Oracle BI Discoverer and the
business definitions are directly deployed to that location. With an indirect connection,
you must specify an .eex file to store the business definition. You must also specify
the mode of transferring the .eex to the Discoverer EUL. See "Defining Discoverer
Locations" on page 9-3 for information about providing these connection details.

Table 9–1 summarizes the combinations possible when you deploy business
definitions to Oracle BI Discoverer using the different licensing options.

9.3.1 Directly Deploying Business Definitions to Oracle BI Discoverer
You can directly deploy business definitions to Oracle BI Discoverer, just like you
deploy other data objects, using the Control Center or Projects Navigator. See
Table 9–1 for information about the scenarios when you can directly deploy to Oracle
BI Discoverer.

The business definitions are deployed to the Discoverer location associated with the
Business Definition module that contains these business definitions. Before you deploy
business definitions, ensure that a valid Discoverer location is associated with the
Business Definition module. For information about how to associate a Discoverer
location with a Business Definition module, see "Setting the Connection Information"
on page 9-2.

When you deploy business definitions directly to Oracle BI Discoverer 10g Release 2
and later, the following steps are performed:

1. An .eex file that contains the definitions of the business definitions is created.

2. A connection is established to the EUL specified in the Discoverer location.

Table 9–1 Different Methods of Deploying Business Definitions

Discoverer Version
Oracle Warehouse Builder Core
Functionality

Oracle Warehouse Builder Enterprise ETL
Option

Versions Lower than
Oracle BI Discoverer
10g Release 2

Use Indirect mode of connection.
Deploy an .eex file, and import the file
into Oracle Discoverer.

See "Indirectly Deploying Business
Definitions to Oracle BI Discoverer" on
page 9-25.

Use Indirect mode of connection. Deploy an
.eex file and import the file into Oracle BI
Discoverer.

See "Deploying Business Definitions to Earlier
Versions of Oracle BI Discoverer" on
page 9-25.

Oracle BI Discoverer
10g Release 2 and later

Use Indirect mode of connection.
Deploy the .eex file and import it into
Oracle BI Discoverer.

See "Indirectly Deploying Business
Definitions to Oracle BI Discoverer" on
page 9-25.

Use the Direct mode of connection. Use the
Control Center to directly deploy to Oracle BI
Discoverer.

Note however that you can make a direct
deployment to Oracle BI Discoverer only if
you installed a standalone version of Oracle
Warehouse Builder 11g Release 2 (11.2).

If you are using Oracle Warehouse Builder
directly from Oracle Database 11g, then you
can use only the indirect mode of connection.

See Oracle Warehouse Builder Installation and
Administration Guide for more information
about the different installation options.

See "Directly Deploying Business Definitions
to Oracle BI Discoverer" on page 9-24.

Accessing BI Objects Using Oracle BI Discoverer

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-25

3. The .eex file is imported into Oracle BI Discoverer.

During the import, new business definitions are appended on top of the existing
definitions. You must validate the EUL and remove redundant definitions. For
example, if you deployed an item folder with four items. Subsequently, you
deleted one item from the item folder. When you redeploy the item folder, it still
contains four items. This is because while new definitions are appended, old
definitions are not removed.

9.3.2 Deploying Business Definitions to Earlier Versions of Oracle BI Discoverer
You cannot directly deploy business definitions to versions of Oracle BI Discoverer
earlier than 10g Release 2. However, you can use the indirect mode of connection to
deploy business definitions. See Table 9–1 for more information about the different
scenarios when you can make an indirect deployment to Oracle BI Discoverer.

While creating the location of the business definition module, use the Indirect mode,
and specify an .eex file to store the details of the business definition. When you
deploy the business definition, the relevant details are captured in the .eex file. You
can connect to the EUL using Oracle BI Discoverer and import this .eex file.

9.3.3 Indirectly Deploying Business Definitions to Oracle BI Discoverer
When you use the core functionality of Oracle Warehouse Builder, you cannot directly
deploy business definitions to Oracle BI Discoverer. Instead you must use the indirect
method of deployment to deploy the .eex file and then manually import it from
Oracle BI Discoverer. You can specify the indirect method of deployment by selecting
this option in the connection information page while creating a Discoverer location.

9.4 Accessing BI Objects Using Oracle BI Discoverer
Once you successfully deploy the BI objects that you create, these objects are available
in Oracle BI Discoverer. You can use these objects to perform analysis on your
warehouse data.

9.4.1 Using Business Definitions in Oracle BI Discoverer
After you deploy the business definitions that you create, these objects are available in
the EUL to which they were deployed. Log in to Oracle BI Discoverer Administrator
using the user name that you used to deploy the business definitions.

Figure 9–3 displays the Discoverer Administrator interface with the business
definitions that you deployed.

Note: If the EUL is in a different database from your object
definitions, then a database link is created.

Note: Indirect deployment takes place through the run time service
running under a user in the database. This database user must have
privileges to write to the destination.

Creating Business Definitions for OBIEE

9-26 Oracle Warehouse Builder Sources and Targets Guide

Figure 9–3 Discoverer Administrator Showing BI Objects

You can now use Oracle BI Discoverer to create reports based on the BI objects that
you deployed.

9.5 Creating Business Definitions for OBIEE
You can create business definitions from various database objects and integrate these
business definitions with OBIEE. The various database objects that can be derived
include tables, dimensions, cubes, views, and MVs. These objects can be derived from
Oracle and other non-Oracle databases. The data exported as business definitions into
OBIEE facilitates data analysis and report generation, which is then used in decision
making by businesses.

9.5.1 Creating an Oracle Business Intelligence Module
You must create an Oracle Business Intelligence (OBI) module to store business
definitions before you can deploy them to OBIEE.

To create an Oracle Business Intelligence module:

1. In the Projects Navigator, under Business Intelligence, right-click Oracle Business
Intelligence and select New Oracle Business Intelligence.

The Create Module wizard is displayed.

2. In the Name and Description page, provide a name and description (optional) for
the module. Also specify the type of module.

3. In the Connection Information page, select a location from the Location list. To
edit the connection information for the location, click Edit. The Edit Oracle BI
location dialog box is displayed. See "Defining Oracle Business Intelligence
Location" on page 9-27 for details of connection information to be provided.

Once you complete the steps in the wizard, the new Oracle Business Intelligence
module is available under the Business Intelligence node. The module consists of the
following objects:

■ Logical Tables

■ Catalog Folders

■ Dimension Drill Paths

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-27

9.5.1.1 Defining Oracle Business Intelligence Location
The OBI module location refers to a UDML file on the OBIEE server. At the time of
specifying the location, specify a UDML file in the OBIEE server as the location. You
must also specify the mode of file transfer from the local system to the OBIEE server.
Provide the following details in the Edit Oracle BI Location dialog box:

■ Name: Provide a location name.

■ Description: Provide an optional description.

■ Transport Type: Select from FILE, FTP, HTTP, and HTTPS.

■ Version: Select the OBIEE version.

Depending on the mode of file transfer, you must provide the following details:

FILE

■ Root Path: Directory of the UDML file.

■ File Name: The name of the UDML file.

FTP

■ Host Name: The system credentials where the OBIEE server resides.

■ Host Login Port: Login port number, which is initially set to 0. You must change
this according to your local configuration.

■ Transfer Format: Select from ASCII and IMAGE.

■ Host Login User: User name to run FTP.

■ Host Login Password: User password to run the FTP command.

■ File Name: The name of the UDML file along with the complete path.

HTTP and HTTPS

■ Host Name: The system credentials where the OBIEE server resides.

■ Host Login Port: Login port number, which is initially set to 0. You must change
this according to your local configuration.

■ Host Login User: User name for the HTTP/HTTPS command.

■ Host Login Password: User password for the HTTP/HTTPS command.

■ File Name: The name of the UDML file along with the complete path.

9.5.2 About Logical Tables
Logical Tables are equivalent to objects in OBIEE that map to database tables, external
tables, or views. They represent a result set of data, similar to a database view. Logical
Tables also store information just like tables. A logical table contains items that map to
columns in a table. Each item has a name and contains specific type of information. For
example, the logical table containing details about employees may include items such
as employee name, start date, and department.

Oracle Warehouse Builder creates Logical Tables when you derive business definitions
from warehouse design objects in the database modules, as described in "Deriving BI
Objects" on page 9-41. You can also manually create a customized Logical Table using
the Create Logical Table Wizard or the Graphical Navigator. The Graphical Editor is
used to edit Logical Tables.

The following sections contain more information related to Logical Tables:

Creating Business Definitions for OBIEE

9-28 Oracle Warehouse Builder Sources and Targets Guide

■ "Editing a Logical Table"

■ "Creating a Logical Table"

9.5.3 Editing a Logical Table
After you derive your design object definitions, a Logical Table is created as part of the
derived business definitions.

Oracle Warehouse Builder provides the document editors that enable you to edit the
name and description of a Logical Table, view its source design objects, edit the Items
it contains, and specify or edit any joins or conditions.

To edit a Logical Table:

1. From the Projects Navigator, expand the OBI module node, then expand the
Logical Tables node.

2. Right-click the Logical Table and select Open. Or double-click the Logical Table.
This displays the Logical Table editors.

3. Click each of the editors to edit the Logical Table using the guidelines below.

9.5.3.1 Name Editor
The Name editor enables you to edit the name and description for the Logical Table.

9.5.3.2 Source Items Editor
The Source Items editor displays the available source items for the Logical Table.

The Available column displays database tables in the current project and logical tables
in the OBI module.

When you are editing an existing logical table, the Selected column displays the source
items that were selected at the time of creating the logical table. To select different
items as the source, use the left arrow to return the items from the Selected column to
the Available column. Then use the right arrow to move the new source item from the
Available column to the Selected column.

Your selected objects can contain items from multiple Logical Tables.

To change the selected items, then use the left arrow to return the previously selected
items. Now select an initial folder item from any of the available Logical Tables within
the same OBI module. You can then select additional folder items with the previously
selected item.

9.5.3.2.1 Adding Items Through the Source Item To add an item through the Source Items
editor:

1. Double-click the Logical Table in the Projects Navigator. The logical table editor is
displayed. Click Source Items.

The Selected section displays the items that are currently included in the logical
table. If you drill down the Available section, it displays the items that can be
added.

2. Select and move the required items from the Available to the Selected section.

9.5.3.2.2 Deleting Items To delete an item using the Source Items editor, select and
move the item from the Selected section to the Available section.

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-29

9.5.3.3 Items Editor
Items Editor displays the details and properties of all Items in a Logical Table. You can
view, create, and edit the following for an Item:

9.5.3.3.1 Item Details

■ Name: Represents the name of an Item. To change the current Item, double-click
the name and retype the new name.

■ Description: Optionally enter a description for this Item.

If you select an item name, the property inspector displays the following properties for
that item:

■ Business Name: The business name of the item.

■ Created By: Created by.

■ Creation Time: Time of creation.

■ Database Column: The database column that the item maps to.

■ Datatype: The data type of the item.

■ Default Aggregate: The aggregation function for the items.

■ Description: Description of the item.

■ Formula: This is the expression for a calculated item.

■ Last Update Time: Last updated time.

■ Physical Name: Physical name of the item.

■ Updated By: Updated by.

■ Visible: Select this option if the item is to be made visible to OBIEE Report
Builder.

9.5.3.3.2 Adding Items Through Items Editor To add an item through Items Editor:

1. Double-click the Logical Table in the Projects Navigator. The logical table editor is
displayed. Click Items to open the Item Details section.

2. In the Item Details, add items by entering the names of the items.

3. Click Composition to open the composition editor.

Use the composition editor to define the referencing items or use the formula
property to enter the expression for this item.

9.5.3.4 Joins Editor
Joins enable you to associate data between two logical tables. During data analysis,
you must retrieve information that resides in multiple logical tables. Joins enable end
users to perform business analysis and run reports across multiple logical tables. After
you create joins between logical tables and deploy them to your OBIEE Repository,
they are available for analysis in OBIEE Answers or Dashboards.

The Joins editor displays the relationships or joins between two logical tables. You can
define new joins by clicking on a new row and providing the required information.
You can delete a join by right-clicking the box on the left of each join row and selecting
Delete.

Figure 9–4 shows the contents of the Joins editor for the logical table EMP.

Creating Business Definitions for OBIEE

9-30 Oracle Warehouse Builder Sources and Targets Guide

Figure 9–4 Creating and Editing Joins

On the Joins page, click a row in the Joins field. Provide the following information:

■ Join Name: Enter a name for the join you are creating.

■ Master Logical Table: Select the Logical Table that is the Master. In the above
example, you select the logical table DEPARTMENTS as your master. This implies
that you select an item from the DEPARTMENT Logical Table to join with the two
items you selected from the Logical Table EMP.

■ Detail always has Master: Select this box to indicate if your detail Logical Table
always have this master.

■ One to one: Select this box to indicate a one-to-one relationship between the two
Logical Tables.

■ Outer join: Indicate from the list whether there is an outer join in this relationship
and its type.

■ Description: Optionally describe the join.

For each join, you can specify the Join Components by clicking in the field below and
providing the following information:

■ Local Item: This list is populated with the Items contained in the current Item
Folder. Select an Item from this list.

■ Operator: Select the relationship between the Local Item you selected and the
Remote Item you select from the Master Logical Table.

■ Remote Item: Select an Item from your Master Logical Table to join with the Local
Item from your local Logical Table.

Also see "Adding Joins Using the Graphical Navigator" on page 9-33 for an alternate
method to add joins.

9.5.3.4.1 Properties of a Join Double-click a Join name to view the following properties
of the join:

■ Business Name: The business name of the item.

■ Created By: Created by.

■ Creation Time: Time of creation.

■ Description: Description provided at the time of creation.

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-31

■ External Foreign Key: If the join was derived from a foreign key, then that foreign
key is listed here.

■ Last Update Time: Last updated time.

■ Physical Name: Physical name of the join.

■ Updated By: Updated by.

9.5.3.5 Composition Editor
The Composition editor enables you to view the components of a Logical Table. It
displays the Logical Table and the objects from which it is referencing.

9.5.3.5.1 Adding Items Through the Composition Editor To add an item through the
Composition editor:

1. Double-click the Logical Table in the Projects Navigator. The logical table editor is
displayed. Click Composition.

The editor canvas displays the logical table and the source objects from which the
logical table was created. If no source object was selected while creating the logical
table, then the canvas displays only the logical table.

2. Right-click anywhere on the canvas, and select Add, and then select the type of
object (Table, View, Materialized View, Logical Table).

3. The Add a New or Existing Object dialog box is displayed. Select the object from
which you want to add the items and click OK.

The selected object is now visible on the canvas.

4. Map the required columns or items from the object to the logical table.

9.5.3.5.2 Deleting Items To delete an item using the Composition editor, right-click the
item and select Delete.

9.5.4 Creating a Logical Table
When you derive intelligence objects, Logical Tables are created as part of the derived
business definitions. However, to define a customized Logical Table, you can create a
Logical Table using the Create Logical Table Wizard.

Each logical table contains items that you can delete or edit, as described in "Editing a
Logical Table" on page 9-28.

9.5.4.1 Using the Create Logical Table Wizard
To create a Logical Table using the Create Logical Table Wizard:

1. Expand the OBI module in which you want to create a logical table.

2. Right-click Logical Tables and select New Logical Table.

Oracle Warehouse Builder opens the Create Logical Table Wizard.

3. Follow the wizard steps by clicking Next.

9.5.4.2 Naming and Describing the Logical Table
In the Name and Description page, enter a name and optional description for the
Logical Table.

Creating Business Definitions for OBIEE

9-32 Oracle Warehouse Builder Sources and Targets Guide

9.5.4.3 Selecting Source Items
You can select from tables, views, or materialized views from any of the database
modules, to be referenced by the Logical Table. If you select multiple tables, then these
must be joined by a foreign key. Expand the selected object and proceed to select
columns within the selected object, to your selected items. You can multi-select these
referenced items by pressing the Ctrl key and using the right arrow to move them to
the list of selected Items.

You can also select from other Logical tables within the same OBI module. You can
select the initial items from Logical Table A within an OBI module. You can then select
additional folder items from another Item Folder B within the same module.

9.5.4.4 Selecting the Foreign Key
If there are multiple foreign keys between the tables selected as the item sources, the
Foreign Key Selection page is displayed. The list on this page displays all the joins
between the tables. Select the join to be used for the table being created.

9.5.4.5 Reviewing the Summary
In the Summary page, review the details you have provided for the Logical Table
including the items to be included in the table. Click Back to make any changes or
click Finish to create the Logical Table.

You can locate the Logical Table on the Projects Navigator under the Logical Tables
node in your OBI module. This Logical Table contains all the selected items. You can
edit the Logical Table properties, create joins, and edit item properties. The Graphical
Navigator can also be used to edit a Logical Table.

After creating the Logical Table, you can use the following editors:

■ "Name Editor" on page 9-28

■ "Source Items Editor" on page 9-28

■ "Items Editor" on page 9-29

■ "Joins Editor" on page 9-29

■ "Composition Editor" on page 9-31

For more information about how you specify the details on each editor, refer to the
description of these editors in the "Editing a Logical Table" on page 9-28.

9.5.4.6 Using the Graphical Navigator to Create Logical Tables
An alternate way of creating logical tables is to use the Graphical Navigator. You can
use the editor menu or the editor canvas of the Graphical Navigator to create a logical
table.

9.5.4.6.1 Using the Menu To create a logical table using the menu, click anywhere on
the Graphical Navigator. The main menu on the toolbar changes dynamically. From
the main menu, select Graph, Add, Oracle Business Intelligence, Logical Table. The
Add a New or Existing Logical Table dialog box is displayed. Follow the steps listed in
"Steps to Create a Logical Table" on page 9-33.

9.5.4.6.2 Using the Canvas To create a Logical Table using the canvas, drag and drop a
Logical Table icon from the Component Palette onto the canvas.

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-33

Or right-click a blank area on the canvas and select Add, Oracle Business
Intelligence, Logical Table. The Add a New or Existing Logical Table dialog box is
displayed. Follow the steps listed in "Steps to Create a Logical Table" on page 9-33.

9.5.4.6.3 Steps to Create a Logical Table Use the following steps to create a Logical Table:

1. Select the Create a New Logical Table option.

2. In the New Logical Table Name field, specify a name for the Logical Table.

3. In the OBI Module list, select the name of the OBI module to which the Logical
Table should belong.

4. Click OK.

The Logical Table is added to the editor canvas. Double-click the logical table to open
the editors for the logical table. For more information about the contents of these
editors, see "Editing a Logical Table" on page 9-28.

9.5.4.6.4 Adding Items to a Logical Table After you add a Logical Table to the Graphical
Navigator, you can add individual items to it. On the Graphical Navigator, right-click
Items and select Add an Item. On the Add Item dialog box provide a name for the
new item.

9.5.4.6.5 Properties of a Logical Table At all times, for any Logical Table, the property
inspector displays a list of properties for that Logical Table. You can configure the
following:

■ Bridge Table: Select this option to create a bridge table. A bridge table is an
intermediate table between a fact table and a dimension table, and is used to
resolve a many-to-many association.

■ Distinct Values: Select this option if you want only distinct values to be selected
from the source physical table.

■ Visible: Select this option to make the logical visible to OBIEE users.

9.5.4.7 Adding Joins Using the Graphical Navigator
An alternate way to create a Join is to use the Graphical Navigator. To add a Join:

1. Ensure that the logical table is available on the Graphical Navigator.

2. Right-click Joins, and select Add a Join.

The Add Join dialog box is displayed.

3. Specify a name for the join, and click OK.

4. Open the Joins editor for the logical table and specify the conditions for the join.
See "Joins Editor" on page 9-29 for more details.

Using the Graphical Navigator, you can also create a join between items in two Logical
Tables. Ensure that the Logical Tables are visible on the Graphical Navigator. To create
a join between two Items, drag an Item from one Logical Table to the required Item in
the other Logical Table. Similarly, you can also drag an Item from the Items node to
the Joins node to create a local item. You can also drag an Item to the Joins node of
another Item folder to create a remote item.

Creating Business Definitions for OBIEE

9-34 Oracle Warehouse Builder Sources and Targets Guide

9.5.4.8 Synchronizing Logical Tables
Logical Tables are defined based on existing tables, views, or materialized views.
When the definition of the underlying object changes, you can update the Logical
Table definition by synchronizing it with the object on which it is based.

To synchronize a Logical Table:

1. Expand the Logical Tables node in the Projects Navigator.

2. Right-click the Logical Table and select Open.

The editors for the Logical Table are displayed.

3. Click the Composition editor to view the Logical Table.

4. On the canvas, right-click the Logical Table and select Synchronize.

The Synchronize Item Folder dialog box is displayed.

5. Review the details displayed on this dialog box and click OK.

Oracle Warehouse Builder synchronizes the Logical Table with the data object on
which the item is based.

9.5.4.9 Using the Synchronize Logical Table Dialog Box
The Synchronize Logical Table dialog box enables you to update the Logical Table
with any changes made to the data types used in the database object on which the
Logical Table is based. This dialog box displays the details of the changes to be made
to the Logical Table.

The Synchronize Logical Table dialog box contains three columns: Object, Reason, and
Action. The Object column lists the component in the underlying database object that
has changed. The Reason column displays a brief description of the reason for the
synchronization. The Action column displays the action that is taken to synchronize
the Logical Table. The available actions are Update and None. If you select None for a
component, no synchronization is performed for that object. Only definitions that have
an Action set to Update are synchronized.

For example, the Logical Table DEPT_ITMF is derived from the DEPT table. After the
Logical Table is created, you modify the DEPT table and change the data type of the
column LOCATION from VARCHAR2 to NUMBER. When you synchronize the Logical Table
DEPT_ITMF, the Synchronize Logical Table dialog box displays LOCATION in the Object
column. The Reason column displays "Datatype mismatch". The Action column
displays Update.

Click OK to perform the actions listed on the Synchronize Logical Table dialog box
and update the Logical Table definition. If you do not want to perform the actions
listed on this dialog box, click Cancel.

9.5.5 Creating a Dimension Drill Path
Oracle Warehouse Builder enables you to create a Dimension Drill Path to deploy to
an OBIEE repository. Dimension Drill Paths define a hierarchy relationship between
the items in your OBI module. For example, Region, Sub-region, Country, State, and
so on. Oracle Warehouse Builder creates these dimension drill paths for derived
dimensions. You can also create your own customized dimension drill path definitions
if you are familiar with your data.

To create a Dimension Drill Path:

1. Expand the Oracle Business Intelligence module.

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-35

2. Right-click Dimension Drill Paths and select New Dimension Drill Path.

Oracle Warehouse Builder opens the Create Dimension Drill Path Wizard.

3. Follow the wizard steps by clicking Next.

9.5.5.1 Naming the Dimension Drill Path
In the Name and Description page, enter a name and optional description for the
Dimension Drill Path.

9.5.5.2 Specifying Drill Levels
Use the Drill Levels page to define a drill level and specify the Logical Table it
references. Optionally, you can provide a description for the Drill Levels. To define
drill levels, click a row and provide the following information:

■ Drill Level: Enter a name for the drill level.

■ Logical Table: From the field, select the Logical Table it references.

■ Description: Provide an optional description for the drill level.

When you select a referencing Logical Table for the Drill Level, the wizard lists the
available Items within that Logical Table under the Drill Level Items field at the
bottom.

In this field, you can specify one or more items to act as drill items. Select the Use as
Drill Item option for each Item you want to include as a drill item in the level. An
Item can be a drill item in a single level only.

Figure 9–2 displays the Drill Levels page of the Create Dimension Drill Path Wizard.

Figure 9–5 Creating Drill Levels

Creating Business Definitions for OBIEE

9-36 Oracle Warehouse Builder Sources and Targets Guide

9.5.5.3 Specifying the Drill Level Key
In the Drill Level Keys section, select a Drill Level and specify a name for Drill Level
Key and optionally provide a description for the key. In the Drill Level Key Items,
select the Item that must used as the key.

9.5.5.4 Reviewing the Summary
In the summary page, review the drill levels you are creating. Click Back to make any
changes or click Finish to create the dimension drill path.

You can locate the dimension drill path on the Projects Navigator under your OBI
module. Oracle Warehouse Builder enables you to edit a dimension drill path using
the Edit Dimension Drill Path dialog box.

9.5.5.5 Properties of a Dimensional Drill Path
For dimension drill paths, you can configure the following property from the Property
Inspector:

Time Dimension: Select this option if it represents a time dimension.

9.5.6 Editing a Dimension Drill Path
Oracle Warehouse Builder enables you to edit dimension drill paths using the Edit
Dimension Drill Path dialog box.

To edit a dimension drill path:

1. From the Projects Navigator, expand the Dimension Drill Paths node.

2. Right-click the Dimension Drill Path and select Open.

Oracle Warehouse Builder displays the Edit Dimension Drill Path dialog box
containing the following editors: Name, Levels, and Level Keys.

9.5.6.1 Editing the Dimension Drill Path Name
The Name editor enables you to edit the name and the description of the dimension
drill path.

9.5.6.2 Reviewing the Drill Levels in the Dimension Drill Path
Use the Drill Levels editor to edit the drill levels that you defined. The Drill Levels
section lists the drill levels along with the logical tables that they reference. The
Logical Table column displays the logical table that a dimension drill path references.
You can modify this by selecting the new logical table from the list.

The Drill Level Items section displays the items that act as drill items. You can modify
this list by selecting more items that act as drill items. You can also move a level up in
same subtree, move a level out of the current tree, move a level to the root level, copy
a level out of the current tree, remove a level, remove a level cascade, and remove a
level instance, for example when there are multiple instances of the level in the
network.

Use the Level Keys editor to select the Drill Level, and edit the Drill Level Keys and
Drill Level Key Items.

9.5.7 Creating a Catalog Folder
Oracle Warehouse Builder enables you to create a Catalog Folder to deploy to an
OBIEE repository. Catalog folders contain references to Logical Tables and Dimension

Creating Business Definitions for OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-37

Drill Paths stored in your OBI module and are used to group information about a
common subject, for example, Sales Analysis, Human Resources, or Stock Control. The
OBIEE end users use these Catalog Folders as the starting point for building a query.

Catalog folders only contain references to an object and not the actual object definition.
Thus, a Catalog Folder can contain a collection of unrelated Logical Tables and the
same Logical Table can appear in multiple Catalog Folders. It enables you to set up
multiple Catalog Folders with different levels of detail: Sales Analysis area containing
one Logical Table, Sales Details area containing six Logical Tables, and a Sales
Transaction area with 30 Logical Tables. When you delete a Logical Table, the
reference to it from the Catalog Folder is also deleted.

You can create a Catalog Folder using the Create Catalog Folder Wizard or from the
Graphical Navigator. You can also use the editor to edit a catalog folder.

9.5.7.1 Using the Create Catalog Folder Wizard
To create a Catalog Folder using the Create Catalog Folder Wizard:

1. Expand an OBI module.

2. Right-click Catalog Folders and select New Catalog Folder.

Oracle Warehouse Builder opens the Create Catalog Folder Wizard.

3. Follow the wizard steps by clicking Next.

9.5.7.2 Naming the Catalog Folder
In the Name and Description page, enter a name and optional description for the
Catalog Folder.

9.5.7.3 Selecting the Source
In the Source page, all the Logical Tables and Dimension Drill Paths available within
the OBI module are displayed. You can multi-select the objects by pressing the Ctrl
key and using the right arrow to move them to the list of Selected objects.

9.5.7.4 Reviewing the Summary
In the summary page, review the Logical Tables or the Dimension Drill Paths that you
selected. Click Back to make any changes or click Finish to finish creating the Catalog
Folder.

After the Catalog Folder is created, you can locate it on the Projects Navigator under
the Catalog Folders node with references to the selected Logical Tables stored in it.

To make changes to your Catalog Folder definitions after you create them, use the Edit
Catalog Folder dialog box. For details, see "Editing a Catalog Folder" on page 9-38.

9.5.7.5 Using the Graphical Navigator
Alternatively, you can use the main menu or the canvas to create a catalog folder.

9.5.7.5.1 Using the Menu To create a catalog folder using the menu:

1. Click anywhere on the Graphical Navigator. The main menu on the toolbar
changes dynamically.

2. From the main menu, select Graph, Add, Oracle Business Intelligence, Catalog
Folder.

The Add a New or Existing Catalog Folder dialog box is displayed.

Creating Business Definitions for OBIEE

9-38 Oracle Warehouse Builder Sources and Targets Guide

3. Select Create a new Catalog Folder and specify the name of the catalog folder and
the module to which it belongs. Click OK.

The newly created catalog folder is available on the Project Navigator. Double-click
the catalog folder to open the editors for the catalog folder. See "Editing a Catalog
Folder" on page 9-38 for details of the editors.

9.5.7.5.2 Using the Canvas To create a catalog folder

1. From the Graphical Navigator, right-click a blank area on the editor canvas and
select Add, Oracle Business Intelligence, Catalog Folder.

The Add a New or Existing Catalog Folder dialog box is displayed.

2. Select Create a new Catalog Folder and specify the name of the catalog folder and
the module to which it belongs. Click OK.

The newly created catalog folder is now available on the Project Navigator.
Double-click the catalog folder to open the editors for the catalog folder. See "Editing a
Catalog Folder" on page 9-38 for details of the editors.

9.5.8 Editing a Catalog Folder
Oracle Warehouse Builder enables you to edit the definitions for a Catalog Folder
using the Edit Catalog Folder dialog box.

To edit a Catalog Folder:

1. From the Projects Navigator, expand the Catalog Folder node.

2. Right-click a Catalog Folder name and select Open.

Oracle Warehouse Builder opens the Edit Catalog Folder dialog box, which
contains the following editors: "Name Editor", "Source Editor", and "Contents
Editor".

9.5.8.1 Name Editor
Name Editor enables you to edit the name and description of a Catalog Folder.

9.5.8.2 Source Editor
Source Editor displays the source of those Logical Tables and Dimension Drill Paths
that have been included in the Catalog Folder. You can add new Logical Tables and
Dimension Drill Paths to the Catalog Folder or remove existing ones using this editor.

9.5.8.3 Contents Editor
Contents Editor displays the contents of the Catalog Folder. You can add Logical
Tables and Dimension Drill Paths using the Content editor. For example, to add a
Logical Table, right-click anywhere on the editor and select Add, Logical Table. The
Add a New or Existing Logical Table dialog box is displayed. Follow the steps listed in
"Steps to Create a Logical Table" on page 9-33. You can also add a Logical Table or a
Dimension Drill Path by dragging and dropping it from the Projects Navigator into
the Contents editor. This creates a shortcut to the object. You can double-click the
object to access it directly from the Contents editor.

Accessing BI Objects Using OBIEE

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-39

9.6 Configuring Oracle Business Intelligence Objects
During the design phase, you create definitions for the OBIEE objects. After you
design objects, you can assign physical properties to these design objects by setting
configuration parameters.

To configure a BI object, right-click the object in the Projects Navigator and select
Configure. The Configuration Properties dialog box is displayed. Click the object
name on the left side of this dialog box to display the configuration parameters on the
right.

All BI objects have a configuration parameter called Deployable. Select Deployable to
generate scripts and deploy the business object. Oracle Warehouse Builder only
generates scripts for objects marked deployable.

The following sections describe additional configuration parameters for different types
of BI objects.

9.6.1 Configuration Parameters for Oracle Business Intelligence Modules
You can set the following configuration parameters for an Oracle Business Intelligence
module:

Location: Represents the location to which the module is deployed.

MLS Deployment Language: Represents the language used for deployment to OBIEE.

9.7 Accessing BI Objects Using OBIEE
Once you deploy objects within Oracle Business Intelligence modules, OBIEE can then
use this data to generate reports. OBIEE repositories are represented in the repository
data (RPD) format. Oracle Warehouse Builder cannot directly store files in the RPD
format. Instead, the file is stored in the UDML format, which is later converted to the
RPD format. These are the steps involved in moving data from Oracle Warehouse
Builder to OBIEE:

1. Create an OBI module and derive Oracle Warehouse Builder objects into this
module.

2. Define the location of the OBI module such that it points to a UDML file on the
OBIEE server.

When the object is deployed, the UDML file is transferred to the OBIEE server
using ftp or any other method of transfer, as specified while defining the location.

3. At the OBIEE server side, convert the UDML file to an RPD file. Navigate to the
following path: OBIEE_HOME\server\Bin and run the command:

nQUDMLExec -I x.udml -O x.rpd

where x.udml is the file name specified while defining the location of the OBI
module, and x.rpd is the target RPD file.

4. The RPD file can now be accessed by the OBIEE server.

9.7.1 Merging Updated RPD Files
After you transfer an RPD file to the OBIEE server, there might be changes made to the
OBIEE module within Oracle Warehouse Builder. Similarly changes could also be
made to the RPD file at the OBIEE server side. In such scenarios, you can merge the
changes made to the files and create a single updated RPD file. OBIEE provides a

Accessing BI Objects Using OBIEE

9-40 Oracle Warehouse Builder Sources and Targets Guide

merge mechanism to merge an existing RPD file with a newly modified file. Let us
look at the following scenarios and the possible solutions:

Example Scenario
You create an OBIEE module, for example sales, within Oracle Warehouse Builder
and associate it with a location that points to the UDML file sales.udml. You then
derive the warehouse definitions from a cube into this module and deploy it. On the
OBIEE server, you create an RPD file from the UDML file using the following
command:

nQUDMLExec –I sales.udml –O sales_original.rpd

The sales_original.rpd can now be used by Answers/Dashboard to generate the
required reports.

Suppose you now rename the cube in Oracle Warehouse Builder. To update this
change at the OBIEE server side, you must rederive the cube and redeploy the OBIEE
module sales. Ensure that you select the create action for all objects. After you deploy
this object, create a new repository file in OBIEE server:

nQUDMLExec –I sales.udml –O sales_modified.rpd

If the original file sales_original.rpd has not yet been used to generate reports, then
you can overwrite this file with the newly created file sales_modified.rpd. If
however, the file has been used to generate reports, then the repositories have to be
merged. OBIEE provides a three-way repository merge of the following repository
files:

■ Original repository (sales_original.rpd in this case)

■ The current repository (the original RPD file with modifications, if any, made at
the OBIEE server side)

■ The modified repository (sales_modified.rpd in this case)

You can use the OBIEE admin tool to merge the three files into a single updated file. If
no changes have been made to the original file, then the current repository equals the
original repository. In such a scenario, create a copy of the original file, sales_
original.rpd, and name it as sales_current.rpd. Now from the admin tool, perform
the following steps:

1. Open the current repository file sales_current.rpd.

2. Click File/Merge.

The Merge repositories dialog box is displayed.

3. Select the original repository file sales_original.rpd. Also select a file to save the
merged repositories.

4. Click Merge to merge the current and original files.

5. Now select the modified repository file sales_modified.rpd. Also select a file to
save the merged repositories.

6. Click Merge to merge the modified file.

This creates a new RPD file which contains the merges from all the three files.

Deriving BI Objects

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-41

9.8 Deriving BI Objects
Oracle Warehouse Builder enables you to directly derive BI objects from your data
warehouse design definitions. You can derive these objects into an Oracle Discoverer
module or an OBI module. When you run the Perform Derivation Wizard on a
warehouse module, it generates objects for business intelligence tools such as item
folders from tables and drill paths from dimension hierarchies enabling you to quickly
build reports from an integrated metadata platform. For example, the Perform
Derivation Wizard organizes the metadata into Item Folders and Drill Paths ready to
be integrated with a Discoverer EUL.

A Discoverer module can hold only those objects that are derived from an Oracle data
source. However, OBI modules can also hold objects derived from non-Oracle data
sources as well.

To derive BI objects:

1. From the Projects Navigator, select a module to derive. This indicates that you are
deriving all the objects contained in that module. Alternatively, you can also
choose to derive one object definition at a time. For example, you can select an
individual table or dimension to derive.

2. Right-click the name of the warehouse module or object and select Derive.

Oracle Warehouse Builder opens the Perform Derivation Wizard.

3. Follow the wizard steps using the guidelines below.

You can also start the Perform Derivation Wizard from the Graphical Navigator using
the following steps:

1. Drop the source object into the navigator.

2. Right-click the source object and select Derive.

3. Follow the wizard steps using the guidelines below.

9.8.1 Selecting Source Objects
The Source Objects page enables you to select additional objects for derivation. The
Available column displays all the derivable objects available in your project for
deployment. These objects can belong to different warehouse modules. You can also
select a collection for derivation. The Oracle module or object you selected before
starting the wizard displays in the Selected Objects column.

Expand the nodes in the Available column and use the right arrow to select the objects
you want to derive. Select the Automatically add the Dimensions option to derive the
dimension objects that are associated with the selected cube objects.

9.8.2 Selecting a Target for the Derived Objects
In the Target page, indicate the Oracle Discoverer module or the OBI module in which
you want to store the definitions for the derived objects. For example, if you created an
Oracle Discoverer module called DISCOVERER_OBJECTS, then the name of that
module displays on this page. Select DISCOVERER_OBJECTS and click Next.

For Discoverer modules, you can also select a Business Area as the target. In this case,
shortcuts are created to the item folders in the business areas. It is recommended that
you deploy to a business area. Otherwise, when you deploy objects, the objects do not
belong to any Business Area and thus is not shown to end-users of BI tools. Similarly,
for OBI modules, it is recommended that you deploy to a Catalog Folder.

Deriving BI Objects

9-42 Oracle Warehouse Builder Sources and Targets Guide

When you select a collection for derivation, if the target is a business area, the
individual objects contained in the collection are derived. Shortcuts are created to
these item folders from the business area. If the target is an Oracle Discoverer module,
Oracle Warehouse Builder creates a business area with the same name as the
collection, stores the objects in the collection as item folders in the Oracle Discoverer
module, and creates shortcuts to these item folders from the business area. This is
applicable to Catalog Folders as well, when the target is an OBI module.

9.8.3 Specifying Derivation Rules
In the Rules page, specify the derivation rules and parameters. Oracle Warehouse
Builder loads, configures, and executes these rules to derive the BI definitions from the
selected design object definitions. You can set parameters for different rule types by
selecting the type of objects from the Rules list. For example, you can set global rules,
rules for relational objects, rules for dimension objects, or rules for cube objects. The
rules and parameters that you can set are displayed on the page.

Select Show advanced parameters to display certain advanced rules for an object. You
can also set parameters for multiple rule types.

9.8.3.1 Setting Global Rules
You can specify the following parameters:

■ Preserve user changes: Select to preserve any manual changes to the display
properties name and description.

■ Log level: Specify the level of detail you want to see in the message log by
selecting one of the options from the list. You can choose to record only errors,
warnings, information, or trace debug information.

■ Validate before derive: Select the box to validate the selected objects before
deriving them.

■ Abort on error: Select the box to stop the derivation if it encounters an error.

■ Capitalize: To capitalize the names of the derived objects, select from the list
based on your requirements.

■ Replace underscores with spaces: Select the box to replace the underscores in the
names with spaces after derivation.

You can specify the following rule for Relational objects:

■ Bound Table Suffix: Specify a suffix for the bound tables you want to derive.

■ Default Aggregate (Oracle Discoverer only): Specify the default aggregate
function to be applied to numeric measures.

■ Remove Column name prefixes: Select the option to remove the text immediately
before an underscore in the column name. The prefix is removed provided the
same prefix is used for all columns.

■ Sort items by name: Select this option to sort the items alphabetically.

You can specify the following rules for Dimensions:

■ Always build Item Folders/Logical Tables for the dimension: Select this option
to force the Perform Derivation Wizard to create Item Folders for the derived
dimension definitions.

Deriving BI Objects

Importing Oracle Warehouse Builder Data into Business Intelligence Applications 9-43

■ Build Item Folders/Logical Tables for the levels: Select this option to force the
Perform Derivation Wizard to create Item Folders for the derived dimension
levels.

■ Drill Paths on Item Folders/Logical Tables for the levels: Select this option if you
want the Perform Derivation Wizard to create Drill Paths on Item Folders being
created for each dimension level. This option applies only if item folders are
created for each level.

■ Prefix Items with Level Name: Select this option to prefix the item names with the
dimension level names.

■ Prefix separator: If you choose to prefix the item names with the dimension level
names, then indicate a prefix separator. The default is an underscore.

■ Sort Items by name: Select this option to sort the items alphabetically.

■ Derive Dimension Roles: Select this option to Perform Derivation Wizard to
derive additional item folders for each role.

You can specify the following rules for Cubes:

■ Sort items by name: Select this option to sort the items alphabetically.

9.8.4 Reviewing the Pre Derivation Rules
The Pre Derivation page displays the objects to be derived and the target or Oracle
Discoverer module for storing the derived definitions.

Review this information and click Next to perform the derivation.

9.8.5 Reviewing Derivation Progress
The Derivation page displays a progress bar indicating the status of the derivation.
When the progress bar displays 100%, the Message Log field displays any errors or
warnings. At the end, the log indicates if the derivation was completed successfully.

Click Next to view the list of derived objects.

9.8.6 Finishing the Derivation
The Finish page displays the list of derived objects. Click Finish to accept the
derivation. If you are not satisfied and you want to perform the derivation again, click
Back to repeat the process.

Oracle Warehouse Builder displays the derived definitions in the appropriate BI
module (Oracle Discoverer or Oracle Business Intelligence). You can edit the
definitions of the derived objects or create additional definitions for deployment to
Discoverer or OBIEE.

Deriving BI Objects

9-44 Oracle Warehouse Builder Sources and Targets Guide

10

Importing Design Definitions from Oracle Designer 10-1

10 Importing Design Definitions from Oracle
Designer

Oracle Designer is shipped with Oracle Developer Suite. Designer incorporates
support for business process modeling, systems analysis, software design and system
generation.

Oracle Designer provides a multiuser repository based on Oracle SCM, and is closely
integrated with Oracle Forms Developer, Oracle's declarative database application
development tool. In this way, Designer allows organizations to design and rapidly
deliver scalable, client/server systems that can adapt to changing business needs.This
chapter shows you how to import design definitions from Oracle Designer.

This chapter contains the following:

■ "Using Oracle Designer Sources"

10.1 Using Oracle Designer Sources
You can create a source module that connects to an Oracle Designer repository. When
the definitions for an application are stored and managed in an Oracle Designer
repository, the time required to connect to the application is reduced.

Designer repositories use workareas to control versions of an object. By selecting a
workarea, you can specify a version of a repository object. With Oracle Designer, you
can also group objects into container elements within workareas. Container Elements
contain definitions for namespace and ownership of objects, and enable you to view
objects even if they are owned by a different user. Because Designer container
elements are controlled by workareas, they are version controlled. See the Oracle
Designer documentation for more information about workareas and container
elements.

All visible objects of a workarea or a container element in Designer are available for
use as data sources. To select Designer objects as a source, you must:

■ Specify a workarea, and

■ Specify the container element in the workarea

The list of repository objects available for import is determined by the following
criteria:

■ The object type must be supported by Oracle Warehouse Builder (Table, View,
Sequence, and Synonyms).

■ The object must be accessible in the specified workarea. This determines the
version of objects accessed.

Using Oracle Designer Sources

10-2 Oracle Warehouse Builder Sources and Targets Guide

■ The object must be visible in the specified container element. The list displays
objects owned by the specified container element and other objects shared by the
specified container element, but not owned by it.

To import definitions from a Designer source, you must create an Oracle database
module.

10.1.1 Using Oracle Designer as a Metadata Source
To create a Designer source module:

1. Create a database source module that points to a database containing a Designer
object.

Follow the steps outlined in "Importing Metadata Definitions from Oracle
Database" on page 2-9 to create the module.

2. From the Projects Navigator, double-click the name of the newly created module
to open the Edit Module dialog box.

3. In the Metadata Location tab, select the source type as Oracle Designer
Repository. Also select the database location containing the Designer object.

When you select the source type as Oracle Designer Repository, two new
lists, Workarea and Container Element, are visible in the Metadata Location tab.

Figure 10–1 displays the Metadata Locations tab of the Edit Module dialog box.

4. Select the Designer object from the workarea and select the specific container
element.

Figure 10–1 The Metadata Location Tab

Using Oracle Designer Sources

Importing Design Definitions from Oracle Designer 10-3

5. Click OK.

For related information, see the following sections:

■ "Importing Metadata Definitions from Oracle Database" on page 2-9

■ "Reimporting Definitions" on page 2-14

■ "Updating Source Module Definitions" on page 2-16

Note: The database you specify as source must contain a Designer
object. If not, then the Workarea and Element Container lists do not
display any values.

Using Oracle Designer Sources

10-4 Oracle Warehouse Builder Sources and Targets Guide

11

Creating New Platforms 11-1

11 Creating New Platforms

Starting with Oracle Warehouse Builder 11g Release 2 (11.2), you can create new
platforms to integrate with other systems and construct integration capabilities using
code templates based on your requirements. A platform refers to a data source or
target. By creating new platforms, you can thus connect to new databases in addition
to those that are supported by default in Oracle Warehouse Builder.

This chapter contains the following topics:

■ "Creating a New Platform"

■ "Defining the Properties of a New Platform"

■ "Creating a Microsoft Excel Platform"

■ "Using Custom Metadata Import in Platforms"

11.1 Creating a New Platform
When you create a new platform, you must define properties including connection
information, code generation options, data types supported by the platform, and how
these data types map to the generic data types.

To create the platform and define its characteristics, you must use OMB*Plus scripting
commands.

For more information about OMB*Plus scripting, see Oracle Warehouse Builder API and
Scripting Reference.

The OMBCREATE command creates a new platform:

OMBCREATE PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (BUSINESS_NAME) VALUES
('Microsoft Excel')

The business name is displayed in the Projects Navigator.

To define the properties of this platform, use the OMBALTER command:

OMBALTER PLATFORM ’MICROSOFT_EXCEL’ ADD PLATFORM_TYPE ’CHAR’

For a complete listing of the commands to create and define a new platform, see
"Creating a Microsoft Excel Platform" on page 11-13. You can add to this depending on
your specific requirements.

See Also: Oracle Warehouse Builder OMB*Plus Command Reference for
a list of all OMB*Plus commands.

Defining the Properties of a New Platform

11-2 Oracle Warehouse Builder Sources and Targets Guide

When you create a platform from the OMB*Plus interface, the platform gets added
under the Databases node in the Projects Navigator. The location of the platform gets
added under the Databases node in the Locations Navigator. You can now create a
module under this new platform.

11.2 Defining the Properties of a New Platform
While creating a new platform, you must define certain basic properties for the
platform. These include:

■ Designer and run-time properties

■ Platform data types

■ CMI/MIV to be used for custom import

■ Data type definitions for the mappings

■ JDBC driver for the platform

Table 11–1 lists the properties that must be specified for a platform.

Table 11–1 Properties of a Platform

Property Data Type Description

NAME STRING The physical name of the platform.

BUSINESS_NAME STRING Business name of the platform.

DESCRIPTION STRING Description of the platform.

DRIVERCLASS STRING The default JDBC driver class. For
example
com.sunopsis.jdbc.driver.xml.SnpsX
mlDriver for XML.

URL_TEMPLATE STRING The default URL for the driver. This is
used as a template.

COL_ALIAS_WORD STRING The separator for a column and its
alias. It is not mandatory to specify this
property.

TAB_ALIAS_WORD STRING The separator for a table and its alias. It
is not mandatory to specify this
property.

DATE_FCT STRING The function that returns the date and
time. For example sysdate for Oracle.

DDL_NULL STRING A column that can hold NULL value.

DEFAULT_MAX_NAME_
LEN

INTEGER The maximum length for a table name.
If you specify a name longer than this
limit, the name is truncated to this
length.

DEFAULT_NAME_LEN_
SEMANTIC

STRING Whether the name length is specified in
characters or bytes.

SPECIAL_MAX_NAME_LEN STRING Name length for second class objects
(SCOs). (For example INDEX=18 or
COLUMN=30).

SPECIAL_NAME_LEN_
SEMANTICS

STRING Whether SPECIAL_MAX_NAME_LEN
is specified in terms of characters or
bytes.

Defining the Properties of a New Platform

Creating New Platforms 11-3

11.2.1 Defining the Platform Type
Based on your requirements, you can provide support for various data types in a
platform. The properties of the Data Type define the scope of a data type. These
properties are listed in Table 11–2.

ESCAPE_CHAR STRING The escape character. For example, it is
the double quotation mark (") for
Oracle Database.

ENCLOSURE_CHAR STRING The enclosure character. For example, it
is the backslash (\) for Oracle Database.

RESERVED_WORDS STRING Reserved words for a platform.

ILLEGAL_CHARS STRING Characters that cannot be used while
naming objects in a platform.

ILLEGAL_LEADING_CHARS STRING Characters that cannot be used as the
first character in the name of an object.

CUSTOM_IMPORTERS The custom metadata definitions that
are associated to a platform.

Data Types The data types supported by a
platform. You can specify the syntax to
define a data type and any parameter
that the data type uses. For example the
length, precision, and scale.

Data Type map to Generic
platform

The mapping of a platform's data types
to the generic data types.

Data Type map from Generic
platform

The mapping of generic data types to a
platform's data types.

VARCHAR_MASK STRING Run-time properties used by the
platform while executing Code
Templates.

DATE_MASK STRING

NUMERIC_MASK STRING The syntax to be used to describe the
numeric data type in DDL. The tags %L
(data length) and %P (precision) can be
used.

Table 11–2 Properties of Data Type

Property Type Description

NAME STRING The physical name of the data
type.

BUSINESS_NAME STRING The business name of the data
type.

DESCRIPTION STRING Description of the data type.

SYNTAX STRING The syntax to be used during code
generation. For example
CHAR[(%size)].

P1 STRING Either size, precision, or scale.

P1TYPE STRING Specifies the range.

Table 11–1 (Cont.) Properties of a Platform

Property Data Type Description

Defining the Properties of a New Platform

11-4 Oracle Warehouse Builder Sources and Targets Guide

11.2.2 Defining the Data Type Map
After you define data types for a platform, you must also define how these data types
map to other generic data types. You can define these data type mappings with the
properties listed in Table 11–3.

11.2.3 Generic Data Types Supported in Oracle Warehouse Builder
The Generic data types supported in Oracle Warehouse Builder are listed in
Table 11–4.

P1DEFAULT STRING Default value for P1.

P1MIN STRING Minimum value for P1.

P1MAX STRING Maximum value for P1.

P2 STRING Specifies either Size, Precision, or
Scale.

P2TYPE STRING Specifies the range.

P2DEFAULT STRING Default value for P2.

P2MIN STRING Minimum value for P2.

P2MAX STRING Maximum value for P2.

Table 11–3 Data Type Mapping Properties

Property Description

NAME The physical name of the map.

BUSINESS_NAME Business name of the map.

DESCRIPTION Description of the map.

FROM_DATATYPE The data type to map from.

TO_DATATYPE Data type to be mapped to.

CONDITION1 Defines the condition where the data type mapping is valid. For
example, mapping from a generic CHAR data type to a DB2UDB
CHAR data type is dependent on the size of the characters, and
this size is specified in the CONDITION1 parameter.

CONDITION2 Used for setting additional condition.

CONDITION3 Used for setting additional condition.

Table 11–4 Generic Data Types

Category Generic Data Type Parameters Description

Numbers BIGINT Range is -2^63 to 2^63-1

Table 11–2 (Cont.) Properties of Data Type

Property Type Description

Defining the Properties of a New Platform

Creating New Platforms 11-5

BINARY_FLOAT Single precision floating point
numbers

Minimum positive finite value =
1.17549E-38F

Maximum positive finite value =
3.40282E+38F

BINARY_DOUBLE Double precision floating point
numbers

Minimum positive finite value =
2.22507485850720E-308

Maximum positive finite value =
31.79769313486231E+308

BIT An integer data type that can take a
value of 1, 0, or NULL

FLOAT FLOAT (precision) -1.79769E+308 to -2.23E-308, 0 and
2.23E-308 to 1.79769E+308

DOUBLE DOUBLE
(precision)

-1.79769E+308 to -2.23E-308, 0 and
2.23E-308 to 1.79769E+308

INTEGER NUMERIC(38)

INT10 The range of large integers is -2 147
483 648 to +2 147 483 647

MONEY Ranges from
-922,337,203,685,477.5808 to
922,337,203,685,477.5807. (Used only
by MS SQL Server)

NUMERIC NUMERIC
[(precision [,
scale])]

The precision p can range from 1 to
38. The scale s can range from -84 to
127

DECIMAL DECIMAL
[(precision [,
scale])]

The precision p can range from 1 to
38. The scale s can range from -84 to
127

REAL Ranges from - 3.40E + 38 to -1.18E -
38, 0 and 1.18E - 38 to 3.40E + 38

SMALLINT Ranges from -2^15 (-32,768) to
2^15-1 (32,767)

SMALLMONEY Ranges from - 214,748.3648 to
214,748.3647

TINYINT Ranges from 0 to 255

Large
Objects

BLOB BLOB A binary large object, with no limit
on the maximum size

VARLOB VARBLOB
[(size[K|M|G])]

A binary large object is a
varying-length binary string that
can be up to 2 GB (2 147 483 647
bytes) long. The default value is 1
MB (1,048,576)

CLOB Character large object. No limit on
the maximum size

Table 11–4 (Cont.) Generic Data Types

Category Generic Data Type Parameters Description

Defining the Properties of a New Platform

11-6 Oracle Warehouse Builder Sources and Targets Guide

VARCLOB VARCLOB
[(size[K|M|G])]

A CLOB (character large object)
value can be up to 2 GB (2 147 483
647 bytes) long. The default value is
1 MB (1,048,576)

DBCLOB DBCLOB
[(size[K|M|G])]

A DBCLOB (double-byte character
large object) value can be up to 1 073
741 823 double-byte characters long.
(Only used by IBM DB2 UDB)

NCLOB Character large object in Unicode or
double-byte. No limit on the
maximum size

Character
Strings

CHAR CHAR[(size)] Fixed length character data with size
between 1 and 8000

GRAPHIC GRAPHIC (size) The size attribute must be between 1
and 127, inclusive. (Only used by
IBM DB2 UDB)

LONGVARGRAPHIC LONGVARGRAPH
IC (size)

VARGRAPHIC value can be up to
16 350 double-byte characters long.
(Only used by IBM DB2 UDB)

NCHAR NCHAR (size) Fixed length (1 to 2000) Unicode or
double-byte character data

Size: 1-4000

NVARCHAR NVARCHAR (size) Variable length (1 to 4000) Unicode
or double-byte character data

NVARCHARMAX NVARCHARMAX Variable length (1 to 2^31-1)
Unicode or double-byte character
data

VARCHAR VARCHAR (size) Variable length (1 to 8000) character
data

VARCHARMAX VARCHARMAX Variable length (1 to 2^31) character
data

VARGRAPHIC VARGRAPHIC
(size)

A VARGRAPHIC value can be up to
16 336 double-byte characters long.
(Only used by IBM DB2 UDB)

Date and
Time

DATE Date in year, month, day, hour,
minute, and second without
fractional seconds precision or time
zone

DATETIME Range is January 1, 1753, through
December 31, 9999, accuracy is 3.33
milliseconds. (MS SQL Server only)

Table 11–4 (Cont.) Generic Data Types

Category Generic Data Type Parameters Description

Defining the Properties of a New Platform

Creating New Platforms 11-7

INTERVAL YEAR TO
MONTH

INTERVAL DAY
[(day_precision)]
TO SECOND
[(fractional_
seconds_precision)]

Stores a period in days, hours,
minutes, and seconds, where

day_precision is the maximum
number of digits in the DAY
datetime field. Accepted values are
0 to 9. The default is 2.

fractional_seconds_precision is the
number of digits in the fractional
part of the SECOND field. Accepted
values are 0 to 9. The default is 6.
The size is fixed at 11 bytes.

SMALLDATETIME Range is January 1, 1900, through
June 6, 2079; accuracy is 1 minute

TIME A TIME is a three-part value (hour,
minute, and second) designating a
time of day under a 24-hour clock.
The range of the hour part is 0 to 24.
The range of the other two parts is 0
to 59. If the hour is 24, the minute
and second specifications are zero.

TIMESTAMP TIMESTAMP
[(fractional_
seconds_precision)]

DATE with factional seconds
precision

TIMESTAMP WITH
TIME ZONE

TIMESTAMP
[(fractional_
seconds_precision)]
WITH TIME ZONE

TIMESTAMP plus time zone
displacement value

TIMESTAMP WITH
LOCAL TIME ZONE

TIMESTAMP
[(fractional_
seconds_precision)]

WITH LOCAL
TIME ZONE

TIMESTAMP normalized to the
database time zone

Binary
Strings

BINARY BINARY [(size)] Binary data up to 8000 bytes

VARBINARY VARBINARY
[(size)]

Binary data of variable length up to
8000

VARBINARYMAX VARBINARY
[(size)]

Binary data of variable length up to
2 GB

LONGVARBINARY LONGVARBINAR
Y

Raw binary data of variable length
up to 2 gigabytes

IMAGE IMAGE Variable-length binary data from 0
through 2^31-1 (2,147,483,647) bytes

Others UNDEFINED UNDEFINED Represent all non-supported data
types (catch-all)

XMLTYPE XMLTYPE Only mapped between
Oracle/Oracle Work Flow and
Generic

BOOLEAN BOOLEAN Only mapped between
Oracle/Oracle Work Flow and
Generic

Table 11–4 (Cont.) Generic Data Types

Category Generic Data Type Parameters Description

Defining the Properties of a New Platform

11-8 Oracle Warehouse Builder Sources and Targets Guide

11.2.4 DB2 Data Types Mapping
Table 11–5 lists the mapping of DB2 data types to generic data types.

Table 11–6 lists the mapping of generic data types to DB2 data types.

Table 11–5 DB2 Data Types to Generic Data Types

DB2 Data Type Generic Data Type

CHARACTER, CHAR CHAR

VARCHAR, CHARACTER
VARYING, CHAR VARYING

VARCHAR

LONG VARCHAR LONG VARCHAR

GRAPHIC GRAPHIC

VARGRAPHIC VARGRAPHIC

LONG VARGRAPHIC LONG VARGRAPHIC

DBCLOB DBCLOB

SMALLINT SMALLINT

INTEGER, INT INT10

BIGINT BIGINT

NUMERIC, NUM NUMERIC

DECIMAL, DEC DECIMAL

REAL REAL

FLOAT FLOAT

DOUBLE DOUBLE

DATE DATE

TIMESTAMP TIMESTAMP

TIME TIME

BLOB, BINARY LARGE OBJECT VARLOB

CLOB, CHARACTER LARGE
OBJECT, CHAR LARGE OBJECT

VARCLOB

Table 11–6 Generic Data Types to DB2 Data Types

Generic Data Type DB2 Data Type

BIGINT BIGINT

BINARY_FLOAT REAL

BINARY_DOUBLE FLOAT(53)

BIT NUMERIC(1)

FLOAT [(precision)] FLOAT [(precision)]

DOUBLE [(precision)] DOUBLE [(precision)]

INTEGER NUMERIC(31)

INT10 INTEGER

MONEY REAL

Defining the Properties of a New Platform

Creating New Platforms 11-9

NUMERIC [(precision [, scale])] NUMERIC [(precision [, scale])]

DECIMAL [(precision [, scale])] DECIMAL [(precision [, scale])]

REAL REAL

SMALLINT SMALLINT

SMALLMONEY REAL

TINYINT SMALLINT

BLOB BLOB

VARLOB BLOB

CLOB CLOB (2147483647)

VARCLOB CLOB

DBCLOB [(size [K|M|G])] DBCLOB [(size [K|M|G])]

NCLOB DBCLOB

CHAR [(size)] CHAR [(size)]

GRAPHIC (size) GRAPHIC (size)

LONGVARCHAR LONGVARCHAR

LONGVARGRAPHIC LONGVARGRAPHIC

NCHAR [(size)] VARGRAPHIC [(size)]

NVARCHAR (size) VARGRAPHIC (size)

NVARCHARMAX DBCLOB

VARCHAR (size) size<=32,672: VARCHAR

32672<size<=32700:LONG VARCHAR

size>32,700: CLOB

VARCHARMAX CLOB

VARGRAPHIC (n) VARGRAPHIC (n)

DATE DATE

DATETIME TIMESTAMP

INTERVAL YEAR [(year_
precision)] TO MONTH

VARCHAR

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_
precision)]

VARCHAR

SMALLDATETIME TIMESTAMP

TIME TIME

TIMESTAMP [(fractional_
seconds_precision)]

TIMESTAMP

TIMESTAMP [(fractional_
seconds_precision)] WITH TIME
ZONE

VARCHAR

TIMESTAMP [(fractional_
seconds_precision)] WITH LOCAL
TIME ZONE

VARCHAR

Table 11–6 (Cont.) Generic Data Types to DB2 Data Types

Generic Data Type DB2 Data Type

Defining the Properties of a New Platform

11-10 Oracle Warehouse Builder Sources and Targets Guide

There might be precision loss in the following cases:

■ Mapping a generic NUMERIC data type (up to 38) to DB2 NUMERIC data type
with a maximum precision of 31

■ Mapping a generic DECIMAL data type (up to 38) to DB2 DECIMAL data type
with a maximum precision of 31

■ Mapping a generic INTEGER data type (up to 38) to DB2 NUMERIC(31) data type
with a maximum precision of 31

11.2.5 MS SQL Server Data Types Mapping
 Table 11–7 lists the mapping of MS SQL Server data types to generic data types.

BINARY [(size)] size<=254: CHAR (size) FOR BIT DATA

size>254:VARCHAR(size) FOR BIT DATA

VARBINARY [(size)] size<=32,672:VARCHAR(size) FOR BIT DATA

size>32,672: BLOB

VARBINARYMAX BLOB

LONGVARBINARY BLOB

IMAGE BLOB

UNDEFINED VARCHAR(32672)

XMLTYPE VARCHAR(32672)

BOOLEAN VARCHAR(10)

Table 11–7 MS SQL Server Data Types to Generic Data Types

MS SQL Server Data Type Generic Data Type

CHAR CHAR

VARCHAR VARCHAR

VARCHAR(MAX) VARCHARMAX

TEXT VARCHAR(2147483647)

NCHAR NCHAR

NVARCHAR NVARCHAR

NVARCHAR(MAX) NVARCHARMAX

NTEXT NVARCHAR

BINARY BINARY

VARBINARY VARBINARY

VARBINARY(MAX) VARBINARYMAX

IMAGE IMAGE

SMALLINT SMALLINT

INT INT10

BIGINT BIGINT

Table 11–6 (Cont.) Generic Data Types to DB2 Data Types

Generic Data Type DB2 Data Type

Defining the Properties of a New Platform

Creating New Platforms 11-11

Table 11–8 lists the mapping of generic data types to MS SQL Server data types.

TINYINT TINYINT

BIT BIT

MONEY MONEY

SMALLMONEY SMALLMONEY

NUMERIC NUMERIC

DECIMAL DECIMAL

REAL REAL

FLOAT FLOAT

DATETIME DATETIME

SMALLDATETIME SMALLDATETIME

UNIQUEIDENTIFIER UNDEFINED

XML UNDEFINED

TIMESTAMP UNDEFINED

SQL_VARIANT UNDEFINED

Table 11–8 Generic Data Types to MS SQL Server Data Types

Generic Data Type MS SQL Server Data Type

BIGINT BIGINT

BINARY_FLOAT REAL

BINARY_DOUBLE FLOAT

BIT BIT

FLOAT FLOAT

DOUBLE FLOAT

INTEGER NUMERIC(38)

INT10 INT

MONEY MONEY

NUMERIC NUMERIC

DECIMAL DECIMAL

REAL REAL

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

TINYINT TINYINT

BLOB VARBINARY(MAX)

VARBLOB(N) VARCHAR(MAX)

CLOB VARCHAR(MAX)

VARCLOB(N) VARCHAR(MAX)

Table 11–7 (Cont.) MS SQL Server Data Types to Generic Data Types

MS SQL Server Data Type Generic Data Type

Defining the Properties of a New Platform

11-12 Oracle Warehouse Builder Sources and Targets Guide

11.2.6 Creating Modules Based on a Platform
When you run the OMBCREATE command to create a platform, the corresponding
platform node is added under the Databases node in the Projects Navigator. You can
now create a module under this new platform.

DBCLOB NVARCHAR(MAX)

NCLOB NVARCHAR(MAX)

CHAR(N) CHAR(N)

GRAPHIC(N) NCHAR(254)

LONGVARCHAR VARCHAR(MAX)

LONGVARGRAPHIC(N) NVARCHAR(MAX)

NCHAR(N) NCHAR(N)

NVARCHAR(N) NVARCHAR(N)

NVARCHARMAX NVARCHAR(MAX)

VARCHAR(N) 1<=n<=8000: varchar (n)

n>8000: varchar (max)

VARCHARMAX VARCHAR(MAX)

VARGRAPHIC(N) NVARCHAR(MAX)

DATE DATETIME

DATETIME DATETIME

INTERVAL DAY TO SECOND VARCHAR

INTERVAL YEAR TO MONTH VARCHAR

SMALLDATETIME SMALLDATETIME

TIME VARCHAR

TIMESTAMP DATETIME

TIMESTAMP WITH TIME ZONE DATETIME

TIMESTAMP WITH LOCAL TIME
ZONE

DATETIME

BINARY (size) BINARY (size)

VARBINARY (size) 1<=size<=8000: varbinary (size)

n>8000: varbinary (max)

VARBINARYMAX VARBINARY(MAX)

LONGVARBINARY VARBINARY(MAX)

IMAGE IMAGE

UNDEFINED VARCHAR(MAX)

XMLTYPE VARCHAR(MAX)

BOOLEAN VARCHAR(10)

Table 11–8 (Cont.) Generic Data Types to MS SQL Server Data Types

Generic Data Type MS SQL Server Data Type

Creating a Microsoft Excel Platform

Creating New Platforms 11-13

For example, to create a module under Microsoft_Excel, right-click Microsoft_Excel
and select New Microsoft_Excel Module. The Create Module Wizard guides you
through the steps to create a module. This includes:

1. "Providing a Name and Access Method"

2. "Providing Connection Information"

Providing a Name and Access Method
On the Name and Description page, provide a name for the module. By default, this is
a Generic Access module. Select the access method as well. It can be either Native
Database Connection or Gateway. For native database connectivity, Oracle
Warehouse Builder supports importing metadata based on JDBC. So if a JDBC or
ODBC driver is installed on the system, you can use this driver for the data import.
Click Next to open the Connection Information page.

Providing Connection Information
Native Database Connection implies a generic JDBC connection. Click Edit to open the
Edit Generic JDBC Location dialog box and provide the location information. You
must provide a JDBC URL in the UrL field and a JDBC driver in the Driver Class field.

If you select Gateway connection, then provide the database connection details.

A platform module supports the following objects:

■ Transformations

■ Tables

■ Views

The data you can store in these objects depends on the data types you defined for the
platform.

You can also import metadata by defining a Custom Metadata Interface (CMI) that is
based on a custom API.

11.3 Creating a Microsoft Excel Platform
The following example creates a new platform to extract data from Microsoft Excel
worksheets. This example lists only the most basic options to create the platform,
including the connection information, and the supported data types. You can build on
the platform by inserting additional features.

First, define the platform on the Projects Navigator:

OMBCREATE PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (BUSINESS_NAME) VALUES
('Microsoft Excel')

Next, define the connection information for the platform. This includes specifying the
ODBC:JDBC driver and the URL template:

OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (DRIVER_CLASS,URI_TEMPLATE)
VALUES
('sun.jdbc.odbc.JdbcOdbcDriver','jdbc:odbc:Driver={Microsoft Excel Driver
(*.xls)}\;
DBQ=<filename>\;DriverID=22\;READONLY=true')

We then define the properties for the platform:

OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (LOCAL_OBJECT_MASK) VALUES
('%SCHEMA.%OBJECT')

Creating a Microsoft Excel Platform

11-14 Oracle Warehouse Builder Sources and Targets Guide

OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (DATE_MASK) VALUES ('DATETIME')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (DDLNULL) VALUES ('null')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (NUMERIC_MASK) VALUES
('NUMBER')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (VARCHAR_MASK) VALUES
('VARCHAR(%L)')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (LOCAL_OBJECT_MASK) VALUES
('%OBJECT')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (DEFAULT_MAX_NAME_LEN) VALUES
('30')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' SET PROPERTIES (REMOTE_OBJECT_MASK) VALUES
('%OBJECT')

We finally define the data types supported by the platform:

OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD PLATFORM_TYPE 'LOGICAL'
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'LOGICAL' SET
PROPERTIES(SYNTAX) VALUES ('LOGICAL')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD FROM_PLATFORM_TYPEMAP 'LOGICAL_TOG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('LOGICAL', 'CHAR')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD TO_PLATFORM_TYPEMAP 'LOGICAL_FROMG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('CHAR', 'LOGICAL')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD PLATFORM_TYPE 'CURRENCY'
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'CURRENCY' SET
PROPERTIES(P1,P1MIN, P1MAX,P1DEFAULT,P1TYPE) VALUES ('precision','1', '64000',
'1','range')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'CURRENCY' SET
PROPERTIES(P2,P2MIN, P2MAX,P2DEFAULT,P2TYPE) VALUES ('scale','1', '18',
'1','range')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'CURRENCY' SET
PROPERTIES(SYNTAX) VALUES ('CURRENCY(%precision,%scale)')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD FROM_PLATFORM_TYPEMAP 'CURRENCY_TOG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('CURRENCY', 'NUMERIC')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD PLATFORM_TYPE 'NUMBER'
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'NUMBER' SET
PROPERTIES(P1,P1MIN, P1MAX,P1DEFAULT,P1TYPE) VALUES ('precision','1', '64000',
'1','range')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'NUMBER' SET
PROPERTIES(P2,P2MIN, P2MAX,P2DEFAULT,P2TYPE) VALUES ('scale','1', '18',
'1','range')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'NUMBER' SET
PROPERTIES(SYNTAX) VALUES ('NUMBER(%precision,%scale)')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD FROM_PLATFORM_TYPEMAP 'NUMBER_TOG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('NUMBER', 'NUMERIC')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD TO_PLATFORM_TYPEMAP 'NUMBER_FROMG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('NUMERIC', 'NUMBER')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD PLATFORM_TYPE 'DATETIME'
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'DATETIME' SET
PROPERTIES(SYNTAX) VALUES ('DATETIME')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD FROM_PLATFORM_TYPEMAP 'DATETIME_TOG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('DATETIME', 'DATETIME')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD TO_PLATFORM_TYPEMAP 'DATETIME_FROMG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('DATETIME', 'DATETIME')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD PLATFORM_TYPE 'VARCHAR'
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'VARCHAR' SET
PROPERTIES(P1,P1MAX,P1DEFAULT,P1TYPE) VALUES ('size','64000', '1','range')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' MODIFY PLATFORM_TYPE 'VARCHAR' SET
PROPERTIES(SYNTAX) VALUES ('VARCHAR(%size)')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD FROM_PLATFORM_TYPEMAP 'VARCHAR_TOG' SET
PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('VARCHAR', 'VARCHAR')
OMBALTER PLATFORM 'MICROSOFT_EXCEL' ADD TO_PLATFORM_TYPEMAP 'VARCHAR_FROMG' SET

Creating a Microsoft Excel Platform

Creating New Platforms 11-15

PROPERTIES (FROM_DATATYPE, TO_DATATYPE) VALUES ('VARCHAR', 'VARCHAR')

Run this script from the OMB*Plus console in Oracle Warehouse Builder. The newly
created platform is now visible as a node in the Projects Navigator.

11.3.1 Importing an Excel Worksheet
To import an Excel worksheet:

1. Create a new Excel module from the MICROSOFT EXCEL platform node in the
Projects Navigator.

2. On the Name and Descriptions page of the Create Module wizard, specify Native
Database Connection as the access method.

3. On the Connection Information page, click Edit to open the Edit Generic JDBC
Location dialog box.

Provide a dummy user name and password as shown in Figure 11–1. You can
provide any value for the user name and password, but cannot leave the fields
blank. Values for Driver Class and URL fields are set, based on the values
provided in the script. However, you must edit the UrL field to point to the
location of the Excel file.

The URL field contains the value:

jdbc:odbc:Driver={Microsoft Excel Driver
(*.xls)};DBQ=<filename>;DriverID=22;READONLY=true

The file name field must be altered to point to the location of the Excel file. For
example:

jdbc:odbc:Driver={Microsoft Excel Driver (*.xls)};DBQ=c:/my_
projects/excel/employees.xls;DriverID=22;READONLY=true

In this example, the location points to the file employees.xls.

Using Custom Metadata Import in Platforms

11-16 Oracle Warehouse Builder Sources and Targets Guide

Figure 11–1 Connection Information for the Excel File

After you create the Excel module and provide the location details for the excel file,
you can import the table definitions from the file.

To import the definitions:

1. Right-click the module and select Database Objects.

The Import Metadata Wizard is displayed.

2. Import the table from the Excel file in the same way you import tables from a
database.

3. To view the data in the table, right-click the imported table and select Data.

11.4 Using Custom Metadata Import in Platforms
Using a CMI mechanism, you can define how metadata from a database is to be
imported into Oracle Warehouse Builder. You can define a CMI that leverages the SQL
definitions or the API definitions of the database from which you want to import
metadata.

11.4.1 Example: Implementing SQL-Based CMI Import for DB2 UDB
You can define a CMI that uses SQL to retrieve metadata from the SQL-based data
dictionary of DB2 UDB and import tables from a DB2 platform. You can implement a
similar mechanism to import metadata from any database that uses an SQL-based data
dictionary.

To leverage on a CMI mechanism, you must define a CMI DEFINITION for the
platform. CMI definitions can only be created from the root context. You can switch to
the root context only from the OMB Plus console. You cannot switch to the root
context using the OMB*Plus view from within the Oracle Warehouse Builder UI.

Using Custom Metadata Import in Platforms

Creating New Platforms 11-17

To use the OMB Plus console on a Windows system, select Start, then All Programs,
<OWB>, Warehouse Builder, and then OMB Plus.

To switch to the root context, use the following command:

OMBCONNECT <repository user>/<password>@<host>:<port number>:<service name>

For example,

OMBCONNECT rep_user/password@localhost:1521:orcl

Where rep_user/password is the user name/password to connect to the repository,
localhost indicates a local installation, 1521 is the port number, and orcl is the
service name of the database.

Example 11–1 lists a platform definition for DB2 UDB. This lists only the basic
definition and does not include the data types that can be added to the platform.

Example 11–1 Platform Definition for IBM DB2 UDB

set platformname IBM_DB2_UDB
set platformdisplay "IBM DB2 CMI Api"

puts "Creating Platform $platformdisplay"

OMBCREATE PLATFORM '$platformname' SET PROPERTIES (BUSINESS_NAME) VALUES
('$platformdisplay')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (DRIVER_CLASS,URI_TEMPLATE)
VALUES ('com.ibm.db2.jcc.DB2Driver','jdbc:db2://Host:Port/Database Name')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (LOCAL_OBJECT_MASK) VALUES
('%SCHEMA.%OBJECT')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (DATE_MASK) VALUES ('TIMESTAMP')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (DDLNULL) VALUES ('null')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (NUMERIC_MASK) VALUES
('NUMERIC(%L,%P)')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (VARCHAR_MASK) VALUES
('VARCHAR(%L)')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (LOCAL_OBJECT_MASK) VALUES
('%SCHEMA.%OBJECT')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (DEFAULT_MAX_NAME_LEN) VALUES
('30')
OMBALTER PLATFORM '$platformname' SET PROPERTIES (REMOTE_OBJECT_MASK) VALUES
('%SCHEMA.%OBJECT')

Next, add a CMI definition to the platform.

OMBCREATE CMI_DEFINITION 'DB2_IMPORT_SQL' USING DEFINITION_FILE 'c:\\platformdef2_
miv.xml'
OMBALTER CMI_DEFINITION 'DB2_IMPORT_SQL' SET PROPERTIES (MIV_TYPE) VALUES
('Databases')
OMBALTER PLATFORM '$platformname' SET REF CMI_DEFINITION 'DB2_IMPORT_SQL'

Save the changes using the command OMBCOMMIT.

The file platformdef2_miv.xml contains the custom import definition to import
metadata using SQL. Example 11–2 lists the CMI definition file.

Note: You can store the entire script as a .tcl file and run the file
from the OMB Plus console.

Using Custom Metadata Import in Platforms

11-18 Oracle Warehouse Builder Sources and Targets Guide

Example 11–2 CMI Definition File

<?xml version="1.0"?>
<miv>

<miv_tables type="SQLStatement" default="true">
 SELECT rtrim(tabname) table_name
 FROM syscat.tables
 WHERE tabschema = <Parameter name="owner"/>
 AND type = 'T'
 AND status = 'N'
 ORDER BY table_name
</miv_tables>

<miv_columns type="SQLStatement" default="true">
 SELECT rtrim(col.tabname) entity_name,
 col.colno position,
 rtrim(col.colname),
 col.typename,
 col.length,
 col.length,
 col.scale,
 col.remarks,
 col.nulls,
 '' datatypeowner,
 col.default,
 CHAR(col.codepage) charset,
 1 bytes_per_char,
 'N' use_char_semantics
 FROM syscat.columns col
 WHERE col.tabschema = <Parameter name="owner"/>
</miv_columns>

<miv_capabilities type="ResultSet">
<table_supported>true</table_supported>
<view_supported>false</view_supported>
<sequence_supported>false</sequence_supported>
<table_name_filter_supported>true</table_name_filter_supported>
<view_name_filter_supported>false</view_name_filter_supported>
<sequence_name_filter_supported>false</sequence_name_filter_supported>
<business_area_supported>false</business_area_supported>
<business_area_table_supported>false</business_area_table_supported>
<business_area_view_supported>false</business_area_view_supported>
<business_area_sequence_supported>false</business_area_sequence_supported>
<application_owner_supported>true</application_owner_supported>
<table_fklevel_supported>false</table_fklevel_supported>
<reimport_supported>true</reimport_supported>
<data_object_at_leaf_levels>false</data_object_at_leaf_levels>
<multiple_tree_supported>false</multiple_tree_supported>
</miv_capabilities>

</miv>

The definition file contains queries to retrieve tables and columns. This MIV file is
created using elements defined in an XML schema definition (XSD) file. This file is
called cmi.xsd and is stored in the OWB_HOME/owb/misc folder.

After you create the platform, it is available under the Databases node in Projects
Navigator. You can now connect to a DB2UDB database and import metadata. To
connect to DB2, you require the appropriate driver files. For information on the driver
file requirements, see "JDBC Connection Drivers for DB2" on page 6-1.

Defining Other Platforms

Creating New Platforms 11-19

Similarly, you can create a new platform for any database that uses an SQL-based data
dictionary and then create a SQL-based CMI mechanism to import metadata from the
database.

11.5 Defining Other Platforms
Table 11–9 lists the URL template specification and the driver class for other common
platforms.

For each database, you must also install the required JDBC driver. The JDBC driver for
a database may be shipped with the product, or may require a separate download or
purchase.

Table 11–9 JDBC Requirements for Different Platforms

Platform URL Template Driver Class

Teradata jdbc:teradata://<host>:<port>/<server> com.ncr.teradata.TeraDri
ver

Informix jdbc:informix-sqli://<host>:<port>:informixserver=<s
ervername>\;database=<dbname>\[\;<property>=<value>.
..\]

com.informix.jdbc.IfxDri
ver

Sybase jdbc:sybase:Tds:<host>:<port>\[/<database>\]\[?<prop
erty>=<value>&<property>=<value>...\]

com.sybase.jdbc2.jdbc.Sy
bDriver

MySQL jdbc:mysql://<host>\[:<port>\]/\[<database>\]\[?<pro
perty>=<value>\[&<property>=<value>...\]\]

com.mysql.jdbc.Driver

Defining Other Platforms

11-20 Oracle Warehouse Builder Sources and Targets Guide

12

Using Code Templates to Load and Transfer Data 12-1

12 Using Code Templates to Load and Transfer
Data

As Oracle Warehouse Builder loads and transforms data from many different database
platforms and systems, the technology used to access and load these different data
sources must be flexible, extensible, and efficient. Oracle Warehouse Builder solves
this problem using code templates (CTs).

CTs are extensible components that enable efficient loading, transformation, or
integration of data for a specific data source or target. They can be used in a mapping
to perform specific tasks. For example, the task can be extracting data from a source
and loading it into a target table.

This chapter contains the following topics:

■ "About Code Templates"

■ "Working with Code Templates"

12.1 About Code Templates
CTs are components of Oracle Warehouse Builder’s open connector technology. CTs
contain the knowledge required by Oracle Warehouse Builder to perform a specific set
of tasks against a specific system or set of systems. Combined with a connectivity layer
such as JDBC, CTs define an open connector that performs defined tasks against a
system, such as connecting to this system, extracting data from the system,
transforming the data, or checking and integrating the data.

Open connectors provide a combination of:

■ Connection options such as JDBC

■ Correct syntax, such as SQL, for the specific platform

■ Control over the creation and deletion of objects such as the temporary and work
tables, views, and triggers

■ Data processing and transformation strategies

■ Data movement options (create target table, insert, delete, update)

There are different types of CTs available for performing different tasks.Oracle
Warehouse Builder contains the following types of CTs:

■ "Load Code Template": To load data from a source database into a staging area.

■ "Integration Code Template": To efficiently transform data from staging area to the
target tables, generating optimized native SQL for the given database.

About Code Templates

12-2 Oracle Warehouse Builder Sources and Targets Guide

■ "Control Code Template": To check for errors in source data.

■ "Change Data Capture Code Template": To capture changed data in source objects.

■ "Oracle Target Code Template": To deploy and execute a map within a CT
framework. It supports the rich set of transformation operators available in
mappings including match/merge, name and address and so on.

■ "Function Code Template": To deploy functions, packages, and procedures.

With CTs, you thus get templates to perform specific tasks in an efficient manner. For
example, to load data from a DB2 database and move it to a SQL Server database
using CTs:

1. Create a mapping with a source table and a target table

2. Use a Load CT (LCT) to load data from the DB2 source table

3. Use an Integration CT (ICT) to move data to the SQL Server target table

When you execute this mapping, the loading and transfer of data from DB2 to SQL
Server is managed by the LCT and the ICT.

You cannot use CTs in customary mappings. A CT can be used only in a special type
of mapping called code template mappings. You can create code template mappings
from the Template Mappings node in the Projects Navigator.

To use CT in a mapping, you must encapsulate the objects in a code template mapping
into units called execution unit. See "Using Code Templates" on page 12-5 for more
details.

You can either import predefined CTs from Oracle Data Integrator 10g (Knowledge
Modules) or create new CTs based on your specific requirements.

12.1.1 Load Code Template
LCTs enable you to load data from a remote data source to the staging area. They
support a variety of data sources. These include:

■ Oracle

■ DB2

■ SQL Server

■ File

You can also add new data sources. By default, an LCT must be associated with an
execution unit that contains a source table object.

12.1.2 Integration Code Template
ICTs are used to integrate data from staging tables into a target database. Based on the
loading method and the type of target database, you can use one of the existing set of
ICTs. The following rules are applicable when using ICTs.

■ The input to an ICT must come from an LCT

■ An ICT must be associated with a target database (through an execution unit).

12.1.3 Control Code Template
Control CTs provide data quality checks to ensure data integrity. These include
checking for key constraints and other user-defined data loading rules. CCTs are used

Working with Code Templates

Using Code Templates to Load and Transfer Data 12-3

to check for data constraints in existing tables and while loading new data into tables.
CCTs are associated with execution units in maps. For details about implementing
data quality rules in ETL, see Oracle Warehouse Builder Data Modeling, ETL, and Data
Quality Guide.

12.1.4 Change Data Capture Code Template
The CDC CTs enable you to capture only those changes that have been made to a data
object since the last import. CDC CTs control the change capture data processing and
are associated with tables and modules.

12.1.5 Oracle Target Code Template
Oracle Target CTs can contain all of the regular mapping operators such as
match/merge, name/address, dimension, and so on.

12.1.6 Function Code Template
A Function CT is used to deploy functions, packages, and procedures. Function CTs
are associated with functions, packages, and procedures.

12.1.7 Predefined Code Templates
Oracle Warehouse Builder contains certain predefined CTs that you can directly use in
Oracle Warehouse Builder.

These predefined CTs are also installed in the Oracle Warehouse Builder repository
and are listed in the Globals Navigator. To view the predefined CTs from the Globals
Navigator, expand the Public Code Templates node and then expand the BUILT_IN_
CT node. You can directly use these predefined code templates without having to
import them.

For a list of all the predefined code templates shipped with Oracle Warehouse Builder,
see Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.

12.2 Working with Code Templates
To use CTs in Oracle Warehouse Builder, perform the following steps:

■ Create a CT folder to store a CT, as described in "Creating a Code Template
Folder" on page 12-3.

■ Create or import a CT, as described in "Creating a Code Template" on page 12-4.

■ Create a mapping under Template Mappings, define execution units within the
map, and associate CTs to those execution units, as described in "Using Code
Templates" on page 12-5.

12.2.1 Creating a Code Template Folder
You must have a container in Oracle Warehouse Builder to hold CTs. This is known as
a CT folder.

Note: The predefined code templates available in Oracle Warehouse
Builder were imported from the Knowledge Modules available in
Oracle Data Integrator 10g. These code template files are available at
OWB_HOME/owb/misc/CodeTemplates.

Working with Code Templates

12-4 Oracle Warehouse Builder Sources and Targets Guide

To create a CT folder:

1. From the Projects Navigator, right-click Code Templates and click New Code
Template Folder to open the Create Code Template Folder dialog box.

2. Provide a name for the new folder and click OK.

The newly created CT folder is available in the Projects Navigator. You can also view
all the available types of CTs under the newly created folder.

12.2.2 Creating a Code Template
You can create any of the available types of CTs under a CT folder. For some types of
CTs such as Load, Integrate, and Change Data Capture, you can either import an
existing CT from Oracle Data Integrator or create a new one. For Oracle Target CTs
and Function CTs, you must create a new CT. The process to create any type of CT
equals as described for LCT.

To create a new LCT:

1. Right-click Load and click New Load CT.

2. The Create Load Code Template dialog box is displayed.

3. Enter a name and an optional description for the CT and click OK.

The newly created CT is displayed under Load.

You can now specify the tasks between the Start and End tasks.

12.2.3 Importing a Code Template
To import CTs:

1. Select a Code Template Folder into which you want to import the CTs.

2. Select File, then Import, and then Code Template.

The Import Code Template Wizard is displayed.

3. Click Next to open the Select Files page.

4. Click Browse and select the source directory containing the CTs to be imported.

The available CTs are listed under Directory Files in the Select Files page.

5. Select the CTs and move them to the Files to Import list.

6. Click Next to open the Name Code Templates page.

Here, you can either provide new names for the CTs or retain the current name.

7. Click Next to open the Summary page, and then click Finish.

Oracle Warehouse Builder automatically inserts imported CTs under the appropriate
type. For example, if you import an LCT, it gets added under Load in the Projects
Navigator.

See Also: For more information about creating code templates, refer
to the section on Knowledge Modules in the Oracle Data Integrator
documentation set.

Note: You do not have to import predefined CTs, as these are
available in the repository and can be used directly.

Working with Code Templates

Using Code Templates to Load and Transfer Data 12-5

12.2.4 Tasks in a Code Template
A CT consists of a series of predefined tasks that are broadly classified as:

■ JDBC: To process JDBC statements.

■ Jython: To process Jython statements.

■ Runtime API: To provide access to Oracle Data Integrator 10g tools such as
OdiOSCommand.

■ Operating System: To provide access to the operating system.

■ Jacl: To provide access to native tcl script that is generated for a CT mapping.

For example, an LCT that is used to load data from SQL to Oracle consists of the
following tasks:

■ Start_Task

1. Validate KM options: Jython task

2. Drop work table: JDBC task

3. Create work table: JDBC task

4. Lock journalized table: JDBC task

5. Load data: JDBC task

6. Analyze work table: JDBC task

7. Cleanup journalized table: JDBC task

8. Drop work table: JDBC task

■ End_Task

12.2.5 Using Code Templates
CTs are used in a code template mapping. To use CTs:

■ Create a template mapping module.

■ Create a map under the module.

■ Use the CT in the mapping.

12.2.5.1 Creating a Template Mappings Module
To create a Template Mappings module:

1. From the Projects Navigator, right-click Template Mappings and select New
Mapping Module.

The Create Module Wizard is displayed.

2. In the Name and Description page, provide a name and description (optional).

3. In the Connection Details page, either select an existing location or click Edit to
open the Edit Agent Location dialog box and provide the connection details for
the agent. See "Specifying an Agent for Template Mappings" on page 12-6 for
more details.

4. In the Summary page, verify the information you provided and click Finish.

The newly created template mapping module is now available under the Template
Mappings node.

Working with Code Templates

12-6 Oracle Warehouse Builder Sources and Targets Guide

12.2.5.2 Specifying an Agent for Template Mappings
Template mappings get executed in a control center agent. By default, Oracle
Warehouse Builder contains a default agent location, which like the default control
center, refers to the control center agent on the same host as the control center service.

12.2.5.2.1 Starting and Stopping the Control Center Agent To use the default agent, ensure
that the control center agent (CCA) is running.

Windows On Windows, start the CCA instance by navigating to OWB_
HOME/owb/bin/win32 and running the file ccastart.bat. When you run this file the
first time, you are prompted to enter a password for the oc4jadmin user.

To stop the CCA, run the ccashut.bat script located in the OWB_HOME/owb/bin/win32
directory. The script prompts you to enter the oc4jadmin user password.

UNIX On UNIX, start the CCA instance by running the file ccastart located in the
OWB_HOME/owb/bin/unix directory.

To stop the CCA, run the ccashut file located in the OWB_HOME/owb/bin/unix
directory. The script prompts you to enter the oc4jadmin user password.

12.2.5.3 Edit Agent Location Dialog Box
You must specify the following details in the Edit Agent Location:DEFAULT AGENT
dialog box:

■ User: oc4jadmin

■ Password: The password set while invoking the ccastart file.

■ Host: Host where the agent resides

■ Port: 23791

■ Port Type: RMI

■ Instance: Can be left blank

■ Application Name: Name of the application where the mapping gets deployed.
Enter the value jrt to deploy it to the default CCA that is installed with Oracle
Warehouse Builder.

■ HTTP Port: 8888

12.2.5.4 Creating a Mapping Under the Code Template Mapping
To create a mapping under the code template mapping module:

1. Right-click the Template Mapping module and click New Mapping.

2. In the Create Mapping dialog box, provide a name for the mapping.

The newly created mapping is available under Template Mapping module.

12.2.5.5 Using Code Templates in the Mapping
For mappings under a code template mapping, Oracle Warehouse Builder provides
two different views to work with, Logical View and Execution View.

Note: Ensure that the CCA instance is running before you set the
agent location.

Working with Code Templates

Using Code Templates to Load and Transfer Data 12-7

In the logical view, you can insert the various components of the mapping. This
includes the source and target operators (tables), and the transformation operators.
You can also define the data flow from the source to the target, along with the
transformation operators that define how the data is transformed before it is loaded
into the target.

In the execution view, you must define execution units for the components within the
mapping. An execution unit is a module that holds the various mapping operators.

For example, if your mapping has a DB2 source table, an expression operator, and an
Oracle target table, then you can bind the source table to an execution unit DB2_
SOURCE_TABLE, and the expression and the target table to another execution unit DB2_
to_OracleTable, as shown in Figure 12–1.

Figure 12–1 Execution Units in a Map

After you bind the components of the mapping to execution units, you must associate
a CT with each of the execution units. In the current example, you must associate DB2_
SOURCE_TABLE to an LCT that loads data from a DB2 source (LCT_SQL_TO_ORACLE). DB2_
to_OracleTable must be associated with an ICT that retrieves and loads data into an
Oracle table (ICT_ORACLE_INCR_UPD). For more information about how to bind the
components of a mapping to execution units, see Oracle Warehouse Builder Data
Modeling, ETL, and Data Quality Guide.

Execution units containing certain transformation operators cannot be bound to LCTs
and ICTs. See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for
more information about operators not supported in LCTs and ICTs.

For more information about different types of CTs, and about creating and using CTs
in mappings, see the Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide.

Working with Code Templates

12-8 Oracle Warehouse Builder Sources and Targets Guide

13

Importing and Publishing Web Services 13-1

13 Importing and Publishing Web Services

In Oracle Warehouse Builder, you can publish core functions such as mappings as a
Web service. The Web service can then be imported by other applications. Similarly,
you can import Web services published by other applications into Oracle Warehouse
Builder. Publishing Oracle Warehouse Builder functions as Web services enhances
their visibility and makes them accessible to a larger number of applications because
these Web services are created using widely accepted open standards based on XML.

This chapter contains the following topics:

■ "Defining Web Services"

■ "Publishing Functions as Web Services"

■ "Importing External Web Services"

13.1 Defining Web Services
Web services are application components that use XML-based open standards to
define how data in an application can be accessed by different clients. These clients
may be working on different platforms and residing on different networks. When seen
as a Client-Server model, a Web service resides on a server and clients use transport
protocols to retrieve the Web service from the server.

Web service data is packaged as messages whose format is defined by the Simple
Object Access Protocol (SOAP) framework. SOAP is a transport protocol for
transmitting XML-based messages over a network. It generally uses HTTP for
transmission. Any client that can read and interpret SOAP- based messages can thus
access data from a Web service. Oracle Warehouse Builder supports SOAP versions 1.1
and 1.2.

A Web service is built using Web Services Description Language (WSDL). A WSDL file is
an XML file that describes a Web service and provides details of how to communicate
using the Web service. It provides details of the transport protocols and the message
format that the Web service uses. The file also contains details of the port, which is a
metatag in the WSDL file, that defines the operations or functions of a Web service.
Oracle Warehouse Builder supports WSDL version 1.1.

An example of a WSDL file that defines a Web service is as shown:

<definitions
 name="PfWebServiceImplService"
 targetNamespace="http://oracle.wh.jrt.sdk.packaging.dbWebService/"

 >
 <types>
 </types>

Publishing Functions as Web Services

13-2 Oracle Warehouse Builder Sources and Targets Guide

 <message name="runInput"/>
 <message name="runOutput">
 <part name="return" type="xsd:int"/>
 </message>

 <portType name="PfWebServiceImpl">
 <operation name="run">
 <input message="tns:runInput"
xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
 ns1:Action=""/>
 <output message="tns:runOutput"
xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
 ns1:Action=""/>
 </operation>

 </portType>
 <binding name="PfWebServiceImplSoapHttp" type="tns:PfWebServiceImpl">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="run">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
namespace="http://oracle.wh.jrt.sdk.packaging.dbWebService/"/>
 </input>
 <output>
 <soap:body use="literal"
namespace="http://oracle.wh.jrt.sdk.packaging.dbWebService/"
 parts="return"/>
 </output>
 </operation>

 </binding>
 <service name="PfWebServiceImplService">
 <port name="HttpSoap11" binding="tns:PfWebServiceImplSoapHttp">
 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>
 </port>
 </service>
</definitions>

The WSDL file is automatically generated by Oracle Warehouse Builder when you
publish a Web service. The function of the Web service is defined within the portType
metatag. The soap:address location metatag defines the location where the Web
service is deployed.

13.2 Publishing Functions as Web Services
Publishing Oracle Warehouse Builder functions as Web services ensures that these
functionalities are widely available to clients that use the same XML-based open
standards. The following functionalities can be published as Web service:

■ Mappings (Code template-based mappings and non code template-based
mappings)

■ Process Flows

■ Transformations (Functions, Procedures, Packages)

■ Data Auditors

■ Modules and Tables

Publishing Functions as Web Services

Importing and Publishing Web Services 13-3

13.2.1 Operations and Parameters Generated in a Web Service
There are three types of parameters that can be passed on to a Web service when it is
executed.

■ Custom parameters (custom_params): These are input parameters that you might
have to enter while executing Web services that are based on PL/SQL mappings,
process flows, and data auditors. For example, if you create a Web service based
on a mapping that requires you to enter input parameters, then you must provide
the input through custom parameters while executing the Web service.

■ System parameters (system_params): These are parameters that you can
configure for an object in Oracle Warehouse Builder. For example, for a mapping,
you can configure its runtime parameters, such as Bulk Size, Audit Level, and so
on. These values are then passed on as system parameters while executing a Web
service based on the mapping. System parameters are applicable to Web services
based on PLS/SQL mappings, process flows, and data auditors.

■ OWB parameters (owb_params): These parameters are used in Web services that
are based on code template mappings and CDC objects, as these objects are
executed in a control center agent.

See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for more
information about the different parameters.

For each of the objects that can be published as a Web service, the following operations
and parameters are generated in a Web service.

■ Non Code Template Mappings, Process Flows, and Data Auditors: You can use
the following operations.

– run(): Run the Web service without any parameters.

– runWithSystemParam(string system_params): Run the Web service with
system parameters.

– runWithCustomParam(string custom_params): Run the Web service with
custom parameters.

– runWithParams(string system_params, string custom_params, boolean
isAsync): Run the Web service with system and custom parameters. If the
Async value is set to true, then the process is run in the background.

■ Code Template Mappings: You can use the following operations.

– runWithoutParams(): Run the Web service without any parameters.

– runWithOwbParams(string owb_params): Run the Web service with Oracle
Warehouse Builder parameters.

The format to specify a parameter is PARAM=x. Multiple parameters are separated
by comma. For example, the system parameters for a mapping can be specified as:

OPERATING_MODE=SET_BASED,AUDIT_LEVEL=NONE

Note: You can publish only those tables and modules that are
imported through native database connection. The modules must
have a Change Data Capture code template associated with them. The
tables must be identified as being tracked for CDC.

Publishing Functions as Web Services

13-4 Oracle Warehouse Builder Sources and Targets Guide

■ Transformations: For Web services based on transformation operators, the
operations are the same as those for the function, which means that they share the
same function name and parameters.

■ Modules and Tables (CDC based): Consistent set CDC uses the following module
commands:

– start_cdc(): Set up the CDC infrastructure.

– drop_cdc(): Remove the CDC infrastructure.

– subscribe(string subscriber_name): Add a subscriber to this CDC.

– unsubscribe(string subscriber_name): Remove a subscriber from the CDC.

– extend_window(): The Consistency Window is a range of available changes in
all the tables of the consistency set for which insert, update, delete are
possible without violating referential integrity. The extend window operation
computes this window to consider new changes captured since the latest
Extend Window operation.

– lock_subscriber(string subscriber_names): Although the extend window
is applied to the entire consistency set, subscribers consume the changes
separately. This operation performs a subscriber(s) specific snapshot of the
changes in the consistency window. This snapshot includes all the changes
within the consistency window that have not been consumed yet by the
subscriber(s).

– unlock_subscriber(string subscriber_names): This operation commits the
use of the changes that were locked during the lock subscriber operations
for the subscribers. It should be processed only after all the changes for the
subscribers have been processed.

– purge_cdc(): After all subscribers have consumed the changes they have
subscribed to, extra entries may still remain in the Capture tables and must be
deleted. This is performed by the Purge Journal operation.

For non-consistent set CDC, Start, Drop, Subscribe, and Unsubscribe commands are
available for both tables and modules. Lock Subscriber and Unlock Subscriber are
available but not used.

13.2.2 Creating a Web Service
Web services are stored in Application Server modules. Creating a Web service
involves the following tasks:

■ "Creating an Application Server Module"

Note: When you publish a code template-based mapping as a Web
service, the code for the mapping is embedded within the Web
service. Therefore, when you make changes to such mappings, you
must redeploy the Web service.

However, when you publish non code template-based mappings,
such as PL/SQL mappings, as a Web service, the code for the
mapping is not embedded within the Web service. Instead, the Web
service contains only a reference to the code. Therefore, when you
make changes to the mapping, you must redeploy only the mapping.
You do not have to redeploy the Web service.

Publishing Functions as Web Services

Importing and Publishing Web Services 13-5

■ "Providing an Application Server Location"

■ "Creating the Web Service"

13.2.2.1 Creating an Application Server Module
Web services are created under Application Server modules. To create an Application
Server Module:

1. In the Projects Navigator, right-click Application Servers and click New
Application Server.

The Create Module Wizard is displayed.

2. Click Next to proceed to the Name and Description page. Provide a name, and
description (optional).

3. Click Next to proceed to the Connection Information page. Provide the location
details, as described in "Providing an Application Server Location" on page 13-5.

4. Click Next, and on the Summary page, click Finish after verifying the details.

The newly created module is now available under the Application Servers node. It
consists of two sub-nodes: Web Services and Web Service Packages.

Application Server Modules can also be created under Public Application Servers from
the Globals Navigator.

13.2.2.2 Providing an Application Server Location
You can provide the location information while creating an Application Server module
or while deploying a Web service.

A Web service can be deployed to the following locations:

■ OC4J Standalone

■ Oracle Application Server

Before providing the location information, ensure that the control center agent (CCA)
is running. See "Starting and Stopping the Control Center Agent" on page 12-6 for
more information about starting and stopping a control center agent on Windows and
UNIX systems.

To create a location:

1. On the Connection Information page, click Edit to open the Edit Agent Location
dialog box and provide the following details:

■ Username: The oc4jadmin user or application server user with sufficient
privileges.

■ Password: Password set for oc4jadmin user while running ccastart file.

■ Host: The host where OC4J or the application server resides.

■ Port: The port number to access the server. The default value is 23791.

■ Port Type: RMI Port for OC4J Standalone, OPMN for Oracle Application
Server.

■ Instance: OC4J instance name. To be provided only for Oracle Application
Server.

■ Application Name: The default value is set to jrt.

Importing External Web Services

13-6 Oracle Warehouse Builder Sources and Targets Guide

■ HTTP Port: This port is used if the Web service is accessed through a browser.
The default value is set to 8888.

2. Click Test Connection to verify the connection details.

You cannot deploy a Web service without providing a valid deployment location. If
you try to deploy a Web service without providing the deployment location, Oracle
Warehouse Builder displays the Edit Agent Location dialog box. Provide the
connection details before attempting to deploy the Web service.

13.2.2.3 Creating the Web Service
Within the Application Server module, you can create a standalone Web service or
create a Web service under a Web Service Package.

To create a Web Service Package:

1. Right-click Web Services Packages and click New Web Service Package.

The Create Web Service Package dialog box is displayed.

2. Provide a name and a description (optional), and click OK.

The newly created Web service package is now available under the Web Services
Package node.

If you selected the Proceed to Web Service Wizard option, the Create Web Service
Wizard is displayed and you can create individual Web services.

To create a Web service:

1. Right-click Web Services and click New Web Service.

The Create Web Service Wizard is displayed.

2. Click Next to proceed to the Name and Description page. Provide a name and
description (optional).

3. Click Next to proceed to the Define Implementation page. Select the object is to be
published as a Web service.

4. Click Next to proceed to the Review Specification page.

Click View Source to view the WSDL file that is generated for the Web service.

5. Click Finish to create the Web service.

The newly created Web service is now available under the Web Services node.

13.3 Importing External Web Services
You can import Web services using the Public Application Servers node, which is
available in the Globals Navigator.

To import a Web service, you must first create an application server module and then
import the Web service into this module.

To create an Application Server module:

1. On the Globals Navigator, right-click Public Application Servers and select New
Application Server.

The Create Module dialog box is displayed.

2. Provide a name for the module.

Importing External Web Services

Importing and Publishing Web Services 13-7

The newly created module is now available under the Public Application Servers
node.

To import a Web service:

1. Right-click the Application Server node and select New Web Service.

The Create Web Service wizard is displayed.

2. On the Name and Description page, provide the location details of the Web
service.

You can import a Web service that is deployed to a local system. You can provide
the location details using the URL format or browse for the location.

After importing a Web service, you can execute it to run its function. See Oracle
Warehouse Builder Data Modeling, ETL, and Data Quality Guide for more information
about executing Web services.

See Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for more
information about creating, publishing, and executing Web services.

Importing External Web Services

13-8 Oracle Warehouse Builder Sources and Targets Guide

Index-1

Index

A
alternative sort orders

creating, 9-18
editing, 9-20

B
business areas

creating, 9-13, 9-36
editing, 9-14, 9-38

business definitions
deploying, 9-23

Business Domain, 8-4, 8-8
business domains

SAP, 7-2
Business Intelligence objects

defining, 9-1
deriving, 9-41

business intelligence objects
deploying, 9-23

C
CMI, 11-13, 11-16
COBOL, 2-17
code templates

about, 12-1
coding conventions, vii
configuring

runtime parameters, SAP files, 7-15
SAP, loading type parameter, 7-15

connectivity
ODBC, 1-4
OLE DB drivers for heterogeneous data

sources, 1-4
connectivity agent, 1-3
Connectors

about, 2-6
connectors

creating, database connector, 2-6
creating, directory connector, 2-6

containers
Oracle Designer Repository, 10-1
SAP application, 7-7

control center agent

start, 12-6
conventions

coding, vii
example, vii

Create External Table Wizard, 3-36
Create Flat File Wizard, 3-6 to 3-12
creating

alternative sort orders, 9-18
business areas, 9-13, 9-36
drill paths, 9-15, 9-34
drills to detail, 9-21
item folders, 9-9, 9-31
list of values, 9-17
locations, 2-3
Oracle Designer 10g source modules, 10-2
Oracle Discoverer module, 9-2
registered functions, 9-21

Custom Metadata Import, 11-16
Custom Metadata Interface, 11-13

D
data definitions, importing, 10-1 to 10-3
data sources, 10-1

 See also sources
defining SAP objects, 7-7
E-Business Suite, 8-1
flat files, 3-12
Oracle Designer, 10-1
PeopleSoft, 8-6
Siebel, 8-10

Database Link, 2-9
databases

importing definitions from, 2-9
DB Connectors

about, 2-6
DB2, 4-1, 8-12

connecting to, 6-1
JDBC connection, 6-1

defining
Business Intelligence objects, 9-1
ETL process for SAP objects, 7-13
flat files, 3-1 to 3-41
updating source definitions, 2-16

definitions
importing definitions from a database, 2-9

Index-2

deploying
business definitions, 9-23

deriving
business intelligence objects, 9-41

Designer, 10-1
drill paths

creating, 9-15, 9-34
editing, 9-16, 9-36

drills to detail
creating, 9-21
editing, 9-21

driver
JDBC driver for SQL, 6-3

E
E-Business Suite

importing metadata, 8-1
editing

alternative sort orders, 9-20
business areas, 9-14, 9-38
drill paths, 9-16, 9-36
drills to detail, 9-21
item folders, 9-5, 9-28
list of values, 9-18
registered functions, 9-22

example conventions, vii
Excel files

loading data from, 5-1
Execution Units, 12-7
External Table editor, 3-36
external tables

configuring, 3-39
creating a new definition, 3-35
defined, 3-3, 3-35
editor, 3-36
synchronizing definition, 3-38
wizard for creating, 3-36
 See also flat files

F
files, defining, 3-1 to 3-41
flat file modules, creating, 3-4 to 3-5
flat files

creating new, 3-6 to 3-12
defining, 3-1 to 3-41
describing, 3-6
as sources, 3-2
as targets, 3-4
 See also external tables

G
Gateway, 1-3
Gateways, 1-3

Connecting Through, 1-3
DRDA, 4-1
Informix, 4-1
SQL Server, 4-1
Sybase, 4-1

Teradata, 4-1

H
HOST

PORT
SERVICE, 2-9

I
importing

data definitions, 10-1 to 10-3
definitions, database systems, 2-9
flat files, 3-12
from E-Business Suite, 8-1
from flat files, 3-12
from PeopleSoft, 8-6
from SAP R/3, 7-5
from Siebel, 8-10
Import Metadata Wizard, 2-9
Oracle database metadata, 2-9

Informix, 8-12
informix, 11-19
item folders

about, 9-4
creating, 9-9, 9-31
editing, 9-5, 9-28
synchronizing, 9-12, 9-34

J
JDBC, 1-4

connection, 6-1
driver for DB2, 6-1
driver for SQL, 6-3

jdbc connection
informix, 11-19
mySQL, 11-19
sybase, 11-19
teradata, 11-19

JDBC connectivity, 2-17

L
language, SAP, 7-15
list of values

creating, 9-17
editing, 9-18

loading
data from Excel files, 5-1
flat files, 3-10

loading types
for SAP, 7-15

locations
creating, 2-3
deleting, 2-5
registering, 2-4
unregistering, 2-4

Index-3

M
metadata

Import Metadata Wizard, 2-9
importing from databases, 2-9
importing from flat files, 3-12

Microsoft Excel
loading data from, 5-1

modules
defining SAP objects, 7-7
SAP application, 7-7

mySQL, 11-19

N
non-Oracle database systems

as data sources, 1-3

O
OBIEE, 9-1
OCI, 2-9, 2-11
ODBC, 1-4
ODBC for heterogeneous data sources, 1-4
OLE DB drivers for heterogeneous data sources, 1-4
Oracle Business Intelligence Enterprise Edition, 9-1
Oracle Call Interface, 2-11
Oracle Designer, 10-1

Application Systems, 10-1
source module, 10-1
workareas, 10-1

Oracle Discoverer, 9-1
Oracle Discoverer module, 9-2
Oracle E-Business Suite, 2-17
Oracle Gateways, 1-3, 2-17

P
PeopleSoft, 2-17, 8-12

importing metadata, 8-6
pooled tables, 7-2

R
registered functions

creating, 9-21
editing, 9-22

remote function call, 7-7
remote function call (RFC)

RFC connection, 7-8
SAP RFC connection, 7-8

RFC, 7-7
runtime, SAP, 7-15

S
SAP

Business Domain, 8-4, 8-8
defining ETL process for SAP objects, 7-13
defining SAP objects, 7-7
remote function call, 7-7

SAP application source module, 7-7
SAP business domains, 7-2
SAP Connector

creating definitions, 7-7
SAP file physical properties

Data File Name, 7-16
File Delimiter for Staging File, 7-16
SAP System Version, 7-16
SQL Join Collapsing, 7-16
Staging File Directory, 7-16

SAP parameters
language, 7-15
loading type, 7-15
runtime, 7-15

SAP R/3
importing metadata, 7-5

SAP table types
cluster, 7-2
importing, 7-2
pooled, 7-2
transparent, 7-2

SAPRFC.INI, 7-7
SAPRFC.INI file, 7-8
Setting the Language Parameter, 7-15
Setting the Runtime Parameter, 7-15
Siebel, 2-17, 8-12

importing metadata, 8-10
SOAP, 13-1
source modules, 10-1

importing definitions, 2-9
Oracle Designer 10g, 10-2
Oracle Designer Repository, 10-1
SAP application, 7-7

sources
data sources, 10-1
flat files, 3-2 to ??
updating source definitions, 2-16

SQL Server, 8-12
connecting to, 6-3

SQL*Loader properties, 3-10
SQL*NET Connection, 2-9
Sybase, 8-12
sybase, 11-19
synchronizing

item folders, 9-12, 9-34

T
tables

 See also external tables
targets

flat files, 3-4
teradata, 11-19
Text String Matching, 8-4, 8-8
transparent tables, 7-2

U
updating

source definitions, 2-16

Index-4

W
web services

WSDL, 13-1
wizards

Create External Table Wizard, 3-36
Create Flat File Wizard, 3-6 to 3-12
Import Metadata Wizard, 2-9

workareas, Designer 10g, 10-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Getting Help
	Related Publications

	1 Connecting to Sources and Targets in Oracle Warehouse Builder
	1.1 Supported Sources and Targets
	1.2 Connecting to an Oracle Database
	1.3 Oracle Database Heterogeneous Services
	1.3.1 Connecting Through Oracle Database Gateways
	1.3.2 Connecting Through JDBC
	1.3.3 Choosing JDBC or Gateways Connectivity
	1.3.4 Connecting Through ODBC

	1.4 Connecting To Enterprise Applications
	1.5 JDBC and Code Template-based Connectivity
	1.6 Choosing a Connection Technology

	2 Connecting to Data Sources and Importing Metadata
	2.1 About Source Data and Metadata
	2.2 General Steps for Importing Metadata from Sources
	2.2.1 About Locations
	2.2.1.1 Creating Locations
	2.2.1.2 Granting Privileges to a Target Location
	2.2.1.3 Registering and Unregistering Locations
	2.2.1.4 Deleting Locations
	2.2.1.5 Locations Registered in Multiple Control Centers

	2.2.2 About DB Connectors and Directories
	2.2.3 About Modules
	2.2.3.1 Creating Modules
	2.2.3.2 Creating User Folders

	2.3 Using the Import Metadata Wizard
	2.4 Importing Metadata Definitions from Oracle Database
	2.4.1 Edit Oracle Database Location Dialog Box
	2.4.2 Importing Metadata Definitions
	2.4.3 Filter Information Page
	2.4.4 Object Selection Page
	2.4.5 Summary and Import Page
	2.4.6 Import Results Page

	2.5 Reimporting Definitions
	2.5.1 Advanced Import Options
	2.5.1.1 Advanced Import Options for Views and External Tables
	2.5.1.2 Advanced Import Options for Tables
	2.5.1.3 Advanced Import Options for Object Types

	2.5.2 Updating Source Module Definitions

	3 Using Flat Files as Sources or Targets
	3.1 About Flat Files
	3.1.1 About Metadata for Flat Files
	3.1.2 About Flat File Modules and Locations
	3.1.3 Working with Flat Files as Sources or Targets
	3.1.4 Flat Files as Sources
	3.1.4.1 Defining Character Data Files
	3.1.4.2 About External Tables
	3.1.4.3 Choosing Between External Table and Flat File Operators

	3.1.5 Flat Files as Targets
	3.1.6 Creating Flat File Modules
	3.1.6.1 Describing the Flat File Module
	3.1.6.2 Defining Locations for Flat File Modules
	3.1.6.3 Connection Information Page
	3.1.6.4 Edit File System Location Dialog Box

	3.2 Using the Create Flat File Wizard
	3.2.1 Describing a Flat File
	3.2.2 Defining File Properties for a Flat File
	3.2.2.1 Record Organization
	3.2.2.2 Logical Record Definition
	3.2.2.3 Number of Rows to Skip
	3.2.2.4 Field Format

	3.2.3 Defining the Record Type for a Flat File
	3.2.4 Defining Field Properties for a Flat File
	3.2.4.1 SQL*Loader Properties
	3.2.4.2 SQL Properties

	3.3 Importing Definitions from Flat Files Using Sampling
	3.3.1 Using the Flat File Sample Wizard
	3.3.1.1 Flat File Wizard for Simple Flat Files
	3.3.1.2 Describing the Flat File
	3.3.1.3 Specifying the Record Organization
	3.3.1.4 Specifying Field Properties
	3.3.1.4.1 SQL*Loader Properties
	3.3.1.4.2 SQL Properties

	3.3.1.5 Flat File Wizard For Complex Flat Files
	3.3.1.6 Describing the Flat File
	3.3.1.7 Selecting the Record Organization
	3.3.1.7.1 Specifying Logical Records

	3.3.1.8 Selecting the File Format
	3.3.1.9 Selecting the File Layout
	3.3.1.10 Selecting Record Types (Multiple Record Type Files Only)
	3.3.1.10.1 Example: Flat File with Multiple Record Types
	3.3.1.10.2 Defining Multiple Record Organization in a Delimited File
	3.3.1.10.3 Defining Multiple Record Organization in a Fixed-Length File

	3.3.1.11 Specifying Field Lengths (Fixed-Length Files Only)
	3.3.1.11.1 Specifying Field Lengths for Multiple Record Files

	3.3.1.12 Specifying Field Properties
	3.3.1.12.1 SQL*Loader Properties
	3.3.1.12.2 SQL Properties

	3.4 Importing Metadata Definitions from COBOL Copybooks
	3.4.1 Understanding Data Hierarchy in COBOL Applications
	3.4.1.1 COBOL Data Types
	3.4.1.2 Arrays Defined on Fields

	3.4.2 Multiple Definitions
	3.4.2.1 Defining Multiple Records
	3.4.2.2 Defining Group Fields
	3.4.2.3 Redefining Fields and Groups
	3.4.2.4 COBOL File Formats

	3.4.3 Reinterpreting COBOL Data Structures Into Relational Data Structures
	3.4.4 Importing Metadata
	3.4.4.1 Import Cobol Session Options

	3.4.5 Example: Extracting Data from a Single Record Type Varying Array COBOL File
	3.4.5.1 Importing The COBOL Copybook
	3.4.5.2 Defining the File Properties
	3.4.5.2.1 Name Tab
	3.4.5.2.2 General Tab
	3.4.5.2.3 Structure Tab

	3.4.5.3 Creating a Mapping to Load Data
	3.4.5.4 Configuring The Mapping
	3.4.5.5 Specifying the Data File
	3.4.5.6 Executing the Mapping

	3.5 Viewing and Editing a File Definition
	3.5.1 Name Tab
	3.5.2 General Tab
	3.5.3 Record Tab
	3.5.4 Structure Tab

	3.6 Using External Tables
	3.6.1 Creating a New External Table Definition
	3.6.1.1 Name Page
	3.6.1.2 File Selection Page
	3.6.1.3 Locations Page

	3.6.2 Importing an External Table
	3.6.3 Editing External Table Definitions
	3.6.3.1 Name Tab
	3.6.3.2 Columns Tab
	3.6.3.3 File Tab
	3.6.3.4 Locations Tab
	3.6.3.5 Data Rules Tab
	3.6.3.6 Access Parameters Tab

	3.6.4 Synchronizing an External Table Definition with a Record in a File
	3.6.5 Configuring External Tables
	3.6.5.1 Access Specification
	3.6.5.2 Reject
	3.6.5.3 Parallel
	3.6.5.4 Data Characteristics
	3.6.5.5 Field Editing
	3.6.5.6 Identification
	3.6.5.7 Data Files

	4 Connecting to Non-Oracle Data Sources Through Gateways
	4.1 Connecting to a DB2 Database
	4.1.1 Creating a DB2 Module
	4.1.1.1 Edit Non-Oracle Location Dialog Box

	4.2 Connecting to a SQL Server Database
	4.2.1 Creating a SQL Server Module
	4.2.1.1 Edit Non-Oracle Location Dialog Box

	4.3 Connecting to an ODBC Data Source
	4.3.1 Setting up ODBC Connectivity
	4.3.1.1 Installing ODBC Driver
	4.3.1.2 Creating a System DSN
	4.3.1.3 Configuring the Database
	4.3.1.3.1 Creating a Heterogeneous Services Initialization File
	4.3.1.3.2 Configuring the listener.ora File

	4.3.2 Creating an ODBC Module
	4.3.2.1 Edit Non-Oracle Location Dialog Box

	4.4 Importing Database Objects

	5 Connecting to Microsoft Data Sources Through ODBC Connection
	5.1 Connecting to Excel Spreadsheets Through ODBC
	5.1.1 Case Study
	5.1.2 Troubleshooting

	5.2 Connecting to SQL Server Database Through ODBC
	5.2.1 Creating an ODBC Data Source
	5.2.2 Configuring the Oracle Database Server
	5.2.2.1 Creating a Heterogeneous Service Configuration File
	5.2.2.2 Editing the listener.ora file

	5.2.3 Adding the SQL Server as a Source in Oracle Warehouse Builder
	5.2.4 Troubleshooting

	6 Connecting to Data Sources Through JDBC
	6.1 Generic Connection Using JDBC
	6.2 Connecting to DB2 Database
	6.2.1 Creating a DB2 Module
	6.2.2 Importing Metadata into a DB2 Module

	6.3 Connecting to SQL Server Database
	6.3.1 Creating a SQL Server Module
	6.3.2 Importing Metadata into a SQL Server Module

	6.4 Importing Metadata from Other Databases Using JDBC

	7 Extracting Data from SAP Applications
	7.1 Why SAP Connector
	7.2 Supported SAP Versions
	7.3 Overview of SAP Objects
	7.3.1 SAP Object Types
	7.3.2 SAP Business Domains

	7.4 Overview of the Interaction Between Oracle Warehouse Builder and SAP
	7.4.1 SAP Function Modules
	7.4.2 Data Retrieval Mechanisms

	7.5 Implementing the SAP Data Retrieval Mechanism
	7.6 Connecting to the SAP System
	7.6.1 Required Files for SAP Connector
	7.6.2 Troubleshooting Connection Errors
	7.6.3 Creating SAP Module Definitions
	7.6.3.1 Connecting to the SAP System

	7.7 Importing Metadata from SAP Tables
	7.7.1 Importing SAP Metadata Definitions
	7.7.1.1 Filtering SAP Metadata
	7.7.1.1.1 Filtering SAP Metadata by Business Domain
	7.7.1.1.2 Filtering SAP Metadata by Text String

	7.7.1.2 Selecting Objects for Metadata Import
	7.7.1.3 Reviewing Import Summary
	7.7.1.4 Reimporting SAP Tables

	7.7.2 Analyzing Metadata Details

	7.8 Creating SAP Extraction Mappings
	7.8.1 Defining the SAP Extraction Mapping
	7.8.1.1 Adding SAP Tables to the Mapping
	7.8.1.2 Setting the Loading Type
	7.8.1.3 Setting Configuration Properties for the Mapping
	7.8.1.4 Setting the Join Rank

	7.9 Deploying and Executing SAP ABAP Mappings
	7.9.1 Automated System
	7.9.2 Semi-Automated System
	7.9.3 Manual System

	8 Integrating with Oracle ERP Applications
	8.1 Importing Metadata from Oracle E-Business Suite Applications
	8.1.1 Importing E-Business Suite Metadata Definitions
	8.1.1.1 Creating an E-Business Suite Module
	8.1.1.2 Edit Non-Oracle Location Dialog Box
	8.1.1.3 Importing E-Business Suite Metadata
	8.1.1.4 Filtering E-Business Suite Metadata
	8.1.1.4.1 Filtering E-Business Suite Metadata by Business Domain
	8.1.1.4.2 Filtering E-Business Suite Metadata by Object Type

	8.1.1.5 Selecting the Objects
	8.1.1.6 Reviewing Import Summary

	8.2 Importing Metadata from PeopleSoft Applications
	8.2.1 Importing PeopleSoft Metadata Definitions
	8.2.1.1 Creating a PeopleSoft Module
	8.2.1.2 Importing PeopleSoft Metadata
	8.2.1.3 Filtering PeopleSoft Metadata
	8.2.1.3.1 Filtering PeopleSoft Metadata by Business Domain
	8.2.1.3.2 Filtering PeopleSoft Metadata by Object Type

	8.2.1.4 Selecting the Objects
	8.2.1.5 Reviewing Import Summary

	8.3 Importing Metadata from Siebel Applications
	8.3.1 Importing Siebel Metadata Definitions
	8.3.1.1 Creating a Siebel Source Module
	8.3.1.2 Importing Siebel Metadata

	8.4 Importing Metadata from Applications Implemented on non-Oracle Databases
	8.4.1 Connecting to a PeopleSoft Application Implemented on SQL Server

	9 Importing Oracle Warehouse Builder Data into Business Intelligence Applications
	9.1 Creating Business Definitions for Oracle BI Discoverer
	9.1.1 Creating Oracle Discoverer Module
	9.1.1.1 Naming the Oracle Discoverer Module
	9.1.1.2 Setting the Connection Information
	9.1.1.2.1 Defining Discoverer Locations

	9.1.1.3 Reviewing the Summary Information

	9.1.2 About Item Folders
	9.1.3 Editing an Item Folder
	9.1.3.1 Name Editor
	9.1.3.2 Source Items Editor
	9.1.3.2.1 Deleting Items

	9.1.3.3 Items Editor
	9.1.3.3.1 Item Details
	9.1.3.3.2 Adding Items by Using the Items Editor

	9.1.3.4 Joins Editor
	9.1.3.5 Conditions Editor
	9.1.3.6 Composition Editor
	9.1.3.6.1 Adding Items Through the Composition Editor
	9.1.3.6.2 Deleting Items

	9.1.3.7 General Properties of an Item Folder

	9.1.4 Creating an Item Folder
	9.1.4.1 Using the Create Item Folder Wizard
	9.1.4.2 Naming and Describing the Item Folder
	9.1.4.3 Selecting Source Items
	9.1.4.4 Selecting the Join
	9.1.4.5 Reviewing the Summary
	9.1.4.6 Using the Graphical Navigator to Create Item Folders
	9.1.4.6.1 Using the Menu
	9.1.4.6.2 Using the Canvas
	9.1.4.6.3 Steps to Create an Item Folder
	9.1.4.6.4 Adding Items to an Item Folder

	9.1.4.7 Adding Joins Using the Graphical Navigator
	9.1.4.8 Synchronizing Item Folders
	9.1.4.9 Synchronize Item Folder Dialog Box

	9.1.5 Creating a Business Area
	9.1.5.1 Using the Create Business Area Wizard
	9.1.5.1.1 Naming the Business Area
	9.1.5.1.2 Selecting the Item Folders
	9.1.5.1.3 Reviewing the Summary

	9.1.5.2 Using the Graphical Navigator
	9.1.5.2.1 Using the Menu
	9.1.5.2.2 Using the Canvas

	9.1.6 Editing a Business Area
	9.1.6.1 Name Editor
	9.1.6.2 Source Editor
	9.1.6.3 Contents Editor

	9.1.7 Creating a Drill Path
	9.1.7.1 Naming the Drill Path
	9.1.7.2 Specifying Drill Levels
	9.1.7.3 Specifying the Join
	9.1.7.4 Reviewing the Summary

	9.1.8 Editing a Drill Path
	9.1.8.1 Editing the Drill Path Name
	9.1.8.2 Reviewing the Drill Levels in the Drill Path

	9.1.9 Creating Lists of Values
	9.1.9.1 Naming the List of Values
	9.1.9.2 Defining Items in a List of Values
	9.1.9.3 Referencing Items in a List of Values
	9.1.9.4 Reviewing the Summary

	9.1.10 Editing Lists of Values
	9.1.10.1 Editing the Name
	9.1.10.2 Editing the Defining Items
	9.1.10.3 Editing the Referencing Items
	9.1.10.4 Editing the Options

	9.1.11 Creating Alternative Sort Orders
	9.1.11.1 Naming the Alternative Sort Order
	9.1.11.2 Defining Item for the Alternative Sort Order
	9.1.11.3 Defining Order Item for the Alternative Sort Order
	9.1.11.4 Referencing Items for the Alternative Sort Order
	9.1.11.5 Referencing Selection Panel for the Alternative Sort Order
	9.1.11.6 Reviewing the Summary

	9.1.12 Editing Alternative Sort Orders
	9.1.12.1 Editing the Alternative Sort Order Name
	9.1.12.2 Editing the Defining Item
	9.1.12.3 Editing the Defining Order Item
	9.1.12.4 Editing the Referencing Items
	9.1.12.5 Editing the Options

	9.1.13 Creating Drills to Detail
	9.1.13.1 Create Drill to Detail Dialog Box

	9.1.14 Editing Drills to Detail
	9.1.15 Creating Registered Functions
	9.1.15.1 Naming the Registered Function
	9.1.15.2 Specifying the Function Parameters
	9.1.15.3 Reviewing the Summary

	9.1.16 Editing Registered Functions
	9.1.16.1 Renaming a Registered Function
	9.1.16.2 Modifying the Parameters of a Registered Function

	9.2 Configuring Discoverer Objects
	9.2.1 Configuration Parameters for Oracle Discoverer modules
	9.2.2 Configuration Parameters for Item Folders
	9.2.3 Configuration Parameters for Registered Functions

	9.3 Deploying Business Definitions to Oracle BI Discoverer
	9.3.1 Directly Deploying Business Definitions to Oracle BI Discoverer
	9.3.2 Deploying Business Definitions to Earlier Versions of Oracle BI Discoverer
	9.3.3 Indirectly Deploying Business Definitions to Oracle BI Discoverer

	9.4 Accessing BI Objects Using Oracle BI Discoverer
	9.4.1 Using Business Definitions in Oracle BI Discoverer

	9.5 Creating Business Definitions for OBIEE
	9.5.1 Creating an Oracle Business Intelligence Module
	9.5.1.1 Defining Oracle Business Intelligence Location

	9.5.2 About Logical Tables
	9.5.3 Editing a Logical Table
	9.5.3.1 Name Editor
	9.5.3.2 Source Items Editor
	9.5.3.2.1 Adding Items Through the Source Item
	9.5.3.2.2 Deleting Items

	9.5.3.3 Items Editor
	9.5.3.3.1 Item Details
	9.5.3.3.2 Adding Items Through Items Editor

	9.5.3.4 Joins Editor
	9.5.3.4.1 Properties of a Join

	9.5.3.5 Composition Editor
	9.5.3.5.1 Adding Items Through the Composition Editor
	9.5.3.5.2 Deleting Items

	9.5.4 Creating a Logical Table
	9.5.4.1 Using the Create Logical Table Wizard
	9.5.4.2 Naming and Describing the Logical Table
	9.5.4.3 Selecting Source Items
	9.5.4.4 Selecting the Foreign Key
	9.5.4.5 Reviewing the Summary
	9.5.4.6 Using the Graphical Navigator to Create Logical Tables
	9.5.4.6.1 Using the Menu
	9.5.4.6.2 Using the Canvas
	9.5.4.6.3 Steps to Create a Logical Table
	9.5.4.6.4 Adding Items to a Logical Table
	9.5.4.6.5 Properties of a Logical Table

	9.5.4.7 Adding Joins Using the Graphical Navigator
	9.5.4.8 Synchronizing Logical Tables
	9.5.4.9 Using the Synchronize Logical Table Dialog Box

	9.5.5 Creating a Dimension Drill Path
	9.5.5.1 Naming the Dimension Drill Path
	9.5.5.2 Specifying Drill Levels
	9.5.5.3 Specifying the Drill Level Key
	9.5.5.4 Reviewing the Summary
	9.5.5.5 Properties of a Dimensional Drill Path

	9.5.6 Editing a Dimension Drill Path
	9.5.6.1 Editing the Dimension Drill Path Name
	9.5.6.2 Reviewing the Drill Levels in the Dimension Drill Path

	9.5.7 Creating a Catalog Folder
	9.5.7.1 Using the Create Catalog Folder Wizard
	9.5.7.2 Naming the Catalog Folder
	9.5.7.3 Selecting the Source
	9.5.7.4 Reviewing the Summary
	9.5.7.5 Using the Graphical Navigator
	9.5.7.5.1 Using the Menu
	9.5.7.5.2 Using the Canvas

	9.5.8 Editing a Catalog Folder
	9.5.8.1 Name Editor
	9.5.8.2 Source Editor
	9.5.8.3 Contents Editor

	9.6 Configuring Oracle Business Intelligence Objects
	9.6.1 Configuration Parameters for Oracle Business Intelligence Modules

	9.7 Accessing BI Objects Using OBIEE
	9.7.1 Merging Updated RPD Files

	9.8 Deriving BI Objects
	9.8.1 Selecting Source Objects
	9.8.2 Selecting a Target for the Derived Objects
	9.8.3 Specifying Derivation Rules
	9.8.3.1 Setting Global Rules

	9.8.4 Reviewing the Pre Derivation Rules
	9.8.5 Reviewing Derivation Progress
	9.8.6 Finishing the Derivation

	10 Importing Design Definitions from Oracle Designer
	10.1 Using Oracle Designer Sources
	10.1.1 Using Oracle Designer as a Metadata Source

	11 Creating New Platforms
	11.1 Creating a New Platform
	11.2 Defining the Properties of a New Platform
	11.2.1 Defining the Platform Type
	11.2.2 Defining the Data Type Map
	11.2.3 Generic Data Types Supported in Oracle Warehouse Builder
	11.2.4 DB2 Data Types Mapping
	11.2.5 MS SQL Server Data Types Mapping
	11.2.6 Creating Modules Based on a Platform

	11.3 Creating a Microsoft Excel Platform
	11.3.1 Importing an Excel Worksheet

	11.4 Using Custom Metadata Import in Platforms
	11.4.1 Example: Implementing SQL-Based CMI Import for DB2 UDB

	11.5 Defining Other Platforms

	12 Using Code Templates to Load and Transfer Data
	12.1 About Code Templates
	12.1.1 Load Code Template
	12.1.2 Integration Code Template
	12.1.3 Control Code Template
	12.1.4 Change Data Capture Code Template
	12.1.5 Oracle Target Code Template
	12.1.6 Function Code Template
	12.1.7 Predefined Code Templates

	12.2 Working with Code Templates
	12.2.1 Creating a Code Template Folder
	12.2.2 Creating a Code Template
	12.2.3 Importing a Code Template
	12.2.4 Tasks in a Code Template
	12.2.5 Using Code Templates
	12.2.5.1 Creating a Template Mappings Module
	12.2.5.2 Specifying an Agent for Template Mappings
	12.2.5.2.1 Starting and Stopping the Control Center Agent

	12.2.5.3 Edit Agent Location Dialog Box
	12.2.5.4 Creating a Mapping Under the Code Template Mapping
	12.2.5.5 Using Code Templates in the Mapping

	13 Importing and Publishing Web Services
	13.1 Defining Web Services
	13.2 Publishing Functions as Web Services
	13.2.1 Operations and Parameters Generated in a Web Service
	13.2.2 Creating a Web Service
	13.2.2.1 Creating an Application Server Module
	13.2.2.2 Providing an Application Server Location
	13.2.2.3 Creating the Web Service

	13.3 Importing External Web Services

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

