

Oracle® Database
User’s Guide

10g Release 2 (10.2.0.5) for IBM z/OS on System z

B25396-02

October 2012

Oracle Database User's Guide, 10g Release 2 (10.2.0.5) for IBM z/OS on System z

B25396-02

Copyright © 2006, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bharathi Jayathirtha

Contributing Author: Server Technologies Porting

Contributor: Janelle Simmons

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Command Syntax .. ix
Accessing Documentation.. x
Related Documentation.. xi
Typographic Conventions.. xi

1 Overview of Oracle Database Products

Servers .. 1-1
Tools and Utilities .. 1-2
Networking.. 1-2
Application Development .. 1-3

Access Managers .. 1-3
Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) .. 1-4

Other Software.. 1-4

2 Oracle Software Interaction with z/OS and Language Environment

Overview .. 2-1
Execution Environments on z/OS ... 2-2

POSIX ON vs. POSIX Shell Environments ... 2-2
Runtime Program Access Requirements .. 2-2

Application Program, Tool, or Utility.. 2-3
LE Runtime .. 2-3
Oracle Program Interface Code .. 2-4
Oracle Supporting Data Objects ... 2-4
Invocation Examples .. 2-5

Tool and Utility Parameter Conventions.. 2-6
Parameters in Batch (JCL).. 2-6
Parameters in TSO .. 2-7
Parameters in a z/OS UNIX Shell .. 2-8
Parameters Containing Spaces.. 2-9

Environment Variables.. 2-9
Environment Variables in a z/OS UNIX Shell .. 2-10
Environment Variables in Batch and TSO Environments.. 2-10

iv

Oracle Environment Variable Files ... 2-11
Setting Environment Variables in a Program .. 2-12

Files, File Name Syntax, and File Processing... 2-13
Filespecs.. 2-13
File Types and Filespec Syntax ... 2-14

Data Set Names .. 2-14
DD Names... 2-15
SYSOUT... 2-16
TSO Terminal.. 2-17
HFS Files.. 2-18

Standard Files and Redirection .. 2-19
Standard File Defaults (non-POSIX) ... 2-19
Redirection Operators in TSO and Batch ... 2-20

File Name Manipulation .. 2-21
What's in a Name? ... 2-21
Data Set Name Parts .. 2-22
HFS File Name Parts.. 2-22
Extension Processing ... 2-23
FNA.. 2-24
FNA Name Transformation ... 2-24
FNA Attribute Assignment .. 2-25
Example FNA Control File ... 2-26

Data Set DCB Attributes... 2-27
Default DCB Attributes... 2-27
DCB Attributes from FNA.. 2-27
DCB Attributes without FNA .. 2-28

Interrupt Processing in TSO and z/OS UNIX Shell ... 2-28
Oracle C Runtime Compatibility ... 2-29

Controlling Compatibility.. 2-29
Filespec Compatibility.. 2-29
File Attribute Compatibility .. 2-30
Data Set Name Prefixing Compatibility .. 2-30
Standard Files and Redirection Compatibility ... 2-31

3 Oracle Net and Server Connections on z/OS

Protocols ... 3-1
Protocol and Address Determination ... 3-2
XM Protocol .. 3-3

XM Protocol Address ... 3-4
XM Protocol Examples ... 3-4

TCP Protocol ... 3-5
Oracle Net Files... 3-6

Profile Parameters (sqlnet.ora) ... 3-6
LOG_DIRECTORY_CLIENT... 3-7
LOG_FILE_CLIENT.. 3-7
TRACE_DIRECTORY_CLIENT.. 3-7
TRACE_FILE_CLIENT... 3-7

v

TNSPING.TRACE_DIRECTORY.. 3-7
Local Naming Parameters (tnsnames.ora) ... 3-8
Directory Usage Parameters (ldap.ora)... 3-8
Oracle Net Output Files .. 3-8

4 Oracle Tools and Utilities on z/OS

SQL*Plus .. 4-1
Invocation.. 4-1
Output Interruption... 4-2
Profile Files.. 4-2
SQL Files.. 4-3
EDIT Command Processing ... 4-3
SPOOL Command Processing.. 4-4
HOST Command Processing.. 4-4
TIMING Processing ... 4-6
Return Codes .. 4-6
Unsupported Features... 4-6
SQL*Plus Examples.. 4-7

SQL*Loader ... 4-8
Invocation.. 4-8
SQL*Loader Files and Filespecs ... 4-9

Control File .. 4-9
Log File .. 4-10
Data Files ... 4-10
Bad and Discard Files .. 4-11

VSAM Data File Processing Considerations ... 4-12
Bad and Discard File Attributes.. 4-12
SQL*Loader Return Codes... 4-13
SQL*Loader Examples.. 4-13

Export and Import ... 4-14
Invocation... 4-14
Export File .. 4-15
Cross-System Export/Import.. 4-16
Export and Import Return Codes ... 4-16
Unsupported Features.. 4-16
Export and Import Examples .. 4-16

Datapump Export and Import... 4-17
Invocation... 4-17
Datapump Export and Log Files... 4-18
Datapump Processing in the Server ... 4-19
Datapump Export and Import Interactive Mode ... 4-19
Datapump Export and Import Return Codes ... 4-19

TKPROF .. 4-19
Invocation... 4-19
Input Trace File.. 4-20
Output Files.. 4-20
Return Codes ... 4-21

vi

TKPROF Example ... 4-21

5 Oracle Server Considerations on z/OS

Character Data... 5-1
Character Data and SQL Queries... 5-1
Character Data and Partitioned Tables ... 5-2
Characters in SQL Statements .. 5-2

File Processing in the Server .. 5-3
Security Considerations .. 5-3
Database Directory Objects... 5-4
UTL_FILE .. 5-4

UTL_FILE Example .. 5-5
JAVA File I/O... 5-6
External LOBs (BFILEs)... 5-6
External Tables ... 5-6
Datapump Export and Import ... 5-7

6 Developing Oracle Applications to Run on z/OS

Overview .. 6-1
Application Design Considerations ... 6-3

Basic Application Requirements .. 6-4
Requirements for Complex Applications ... 6-5

Using z/OS Assembler Language.. 6-5
Dynamic Linkage Techniques... 6-5

Using DLLs ... 6-5
Using the XPLINK(ON) LE Runtime Option .. 6-5
Using COBOL Dynamic Linkage .. 6-6
Using C/C++ system() .. 6-6
Using C/C++ fetch() .. 6-6
Using z/OS LOAD/CALL or LINK ... 6-6
Using z/OS ATTACH... 6-7

Multiple LE Enclaves in an Application.. 6-7
Multitasking Applications ... 6-7
 z/OS Environment and z/Architecture Hardware States... 6-8
POSIX Threading .. 6-8
OCI Interface to Publish/Subscribe ... 6-8

Building an Application ... 6-9
Precompiling Programs... 6-9

Oracle Precompiler Executables ... 6-9
Oracle Precompiler INCLUDE Files ... 6-10
Oracle Precompiler Options ... 6-10

INAME ... 6-11
ONAME ... 6-11
LNAME .. 6-11

Configuration Files .. 6-11
Return Codes .. 6-12
Language-Specific Coding Considerations .. 6-12

vii

Compiler Support Considerations ... 6-12
Pro*COBOL Considerations.. 6-12
Pro*C/C++, OCI, and OCCI Considerations ... 6-13
Pro*FORTRAN Considerations .. 6-13
Pro*PL/I Considerations ... 6-13

Special Considerations for Running Precompilers in Batch and TSO Environments ... 6-13
Sample JCL for Running the Pro*C/C++ Precompiler in Batch Environments 6-13
Sample JCL for Running the Pro*COBOL Precompiler in Batch Environments............ 6-14
Sample JCL for Running the Pro*FORTRAN Precompiler in Batch Environments 6-14
Sample JCL for Running the Pro*PL/I Precompiler in Batch Environments 6-15
Sample Commands for Running Oracle Precompilers in a Shell 6-15

Compiler Options for Oracle Applications ... 6-15
C/C++ Compiler Options... 6-16
COBOL Compiler Options ... 6-16
PL/I Compiler Options... 6-17

Compiling Programs .. 6-17
Sample Commands for Compiling Programs in a Shell .. 6-17
Compiling OCCI programs to Run in Batch and TSO Environments 6-18

Linking Programs.. 6-18
Linking Pro*C/C++, OCI, COBOL, and PL/I Programs to Run in Batch and TSO
Environments ... 6-18
Linking COBOL Programs Using DYNAM... 6-19
Linking FORTRAN programs to Run in Batch and TSO Environments 6-19
Linking API Stub Programs to Run in a Shell ... 6-20
Sample Commands for Compiling and Linking API Stub Programs in a Shell............. 6-20
Linking DLL Stub Programs in a Shell ... 6-21
Sample Commands for Compiling and Linking DLL Stub Programs in a Shell............ 6-22
Binding OCCI programs to Run in Batch and TSO Environments 6-22
Building an Oracle XDK API Using Program in a Shell .. 6-23

Using Oracle-Supplied Procedures to Build Applications ... 6-23
Sample Batch JCL to Build an Oracle Precompiler Program... 6-24
Using Make to Build a Precompiler Program.. 6-24
Pro*COBOL Sample Programs .. 6-24
Pro*FORTRAN Sample Programs... 6-24
Pro*C/C++ Sample Programs ... 6-25
Batch JCL to Build OCI Programs ... 6-25
Batch JCL to Build OCCI Programs... 6-25
Using Make to Build OCI and OCCI Programs .. 6-25
Sample OCI and OCCI Programs.. 6-25

Building a Traditional Load Module with the Alternate API Stub... 6-26
Method 1: Prelink and Link ... 6-26
Method 2: Precompile and/or Compile with Name Mapping .. 6-27
Method 3: Link... 6-29

Application Runtime Considerations ... 6-29
Oracle Interface Initialization, Processing, and Error Handling.. 6-30
Application Resources and Cleanup.. 6-32

Developing Oracle Applications for the CICS TS Environment... 6-33

viii

CICS TS Application Design Considerations.. 6-33
CONNECT Statements.. 6-33
Synchronization of Oracle and CICS TS Updates ... 6-34
Cursor Considerations ... 6-34
Accessing Multiple Oracle Databases ... 6-34
Accessing Oracle Database 10g and DB2 Databases in a Single Transaction.................. 6-34
Additional SQL Statement Restrictions .. 6-35

CICS TS EDF and Oracle SQL Statements .. 6-35
Environment Variables... 6-35
 Considerations for Building a CICS TS application .. 6-35
Running CICS TS Programs .. 6-35

Developing Oracle Applications for the IMS TM Environment ... 6-35
IMS TM Application Design Considerations .. 6-36

IMS TM Versions Supported.. 6-36
CONNECT Not Supported... 6-36
Synchronization of Oracle and IMS TM Updates ... 6-36
Cursor Considerations .. 6-37
Accessing Multiple Oracle Databases ... 6-37
Additional SQL Statement Restrictions .. 6-37
Accessing Oracle Database 10g and DB2 Databases in a Single Transaction.................. 6-37
Processing of Oracle Database 10g Errors by Your IMS TM Program............................. 6-37

Environment Variables... 6-38
Considerations for Building an IMS TM application... 6-38
Running IMS TM Programs... 6-38

7 Migration from Earlier Oracle Versions

Overview .. 7-1
Migrating from Oracle8i ... 7-1

Migration Checklist.. 7-2
Migrating from Oracle9i ... 7-3

Normalized File Access ... 7-3
Global Environment File ... 7-4
Use of LE Exit CEEBXITA... 7-4
Oracle Runtime Compatibility ... 7-4
SYSOUT Filespec in Clients .. 7-4
SQL*Loader Changes... 7-4

Interpretation of DDN Keywords .. 7-5
Default Filespecs for DD-type Data Files .. 7-5
Default Filespecs for Data Set Name Files... 7-5
Default Bad/Discard DCB attributes ... 7-5

A Environment Variables Used by Oracle Database for z/OS

Environment Variables Used by Oracle Database .. A-1

Index

ix

Preface

The complete name for the product described in this book is Oracle Database 10g
release 2 (10.2) for IBM z/OS on System z. To maintain readability and conciseness in
this document, the product is also referred to as Oracle Database for z/OS and the
platform as z/OS.

Audience
This guide is intended for those who are responsible for performing tasks such as:

■ Running Oracle Database tools or utilities, such as SQL*Plus, Export, Import, or
SQL*Loader on z/OS

■ Designing or developing Oracle Database applications using Oracle Precompilers
or the Oracle Call Interface (OCI) on z/OS

■ Running Oracle Database application programs on z/OS

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Command Syntax
UNIX command syntax appears in monospace font. The dollar character ($), number
sign (#), or percent character (%) are UNIX command prompts. Do not enter them as
part of the command. The following command syntax conventions are used in this
guide:

Convention Description

backslash \ A backslash is the UNIX command continuation character. It is used in
command examples that are too long to fit on a single line. Enter the
command as displayed (with a backslash) or enter it on a single line
without a backslash:

dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b count=10000

braces { } Braces indicate required items:

.DEFINE {macro1}

brackets [] Brackets indicate optional items:

cvtcrt termname [outfile]

ellipses ... Ellipses indicate an arbitrary number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italics Italic type indicates a variable. Substitute a value for the variable:

library_name

vertical line | A vertical line indicates a choice within braces or brackets:

FILE filesize [K|M]

x

Accessing Documentation
The documentation for this release includes platform-specific documentation and
generic product documentation.

Platform-Specific Documentation
Platform-specific documentation includes information about installing and using
Oracle products on particular platforms. The platform-specific documentation for this
product is available in both Adobe portable document format (PDF) and HTML
format on the product disc. To access the platform-specific documentation on disc:

1. Use a Web browser to open the welcome.htm file in the top-level directory of the
disc.

2. For DVD only, select the appropriate product link.

3. Select the Documentation tab.

If you prefer paper documentation, then open and print the PDF files.

Product Documentation
Product documentation includes information about configuring, using, or
administering Oracle products on any platform. The product documentation for
Oracle Database 10g products is available in both HTML and PDF formats in the
following locations:

■ In the doc subdirectory on the Oracle Database 10g DVD

To access the documentation from the DVD, use a Web browser to view the
welcome.htm file in the top-level directory on the disc, then select the Oracle
Database 10g Documentation Library link.

■ Online on the Oracle Technology Network (OTN) Web site:

http://www.oracle.com/technetwork/indexes/documentation/index.html

xi

Related Documentation
The platform-specific documentation for Oracle Database 10g products includes the
following manuals:

■ Oracle Database

– Oracle Database Release Notes for IBM z/OS on System z

– Oracle Database Installation Guide for IBM z/OS on System z

– Oracle Database User's Guide for IBM z/OS on System z

– Oracle Database Messages Guide for IBM z/OS on System z

– Oracle Database System Administration Guide for IBM z/OS on System z

Refer to Oracle Database Release Notes for IBM z/OS on System z for important
information that was not available when this book was released. The release notes for
Oracle Database 10g are updated regularly. You can get the most recent version from
Oracle Technology Network at

http://www.oracle.com/technetwork/indexes/documentation/index.html

Typographic Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

1

Overview of Oracle Database Products 1-1

1 Overview of Oracle Database Products

Oracle delivers a number of software products and facilities on the z/OS platform,
including its core relational database server, related tools and utilities, networking
features, 3GL application development and deployment facilities, and integration
products unique to the platform. This set of products and facilities allows z/OS
systems to host the same Oracle platform as UNIX, Linux, and other systems on which
the Oracle database runs. The integration products allow widely used z/OS
components such as CICS TS, IMS TM, and DB2 to participate in an Oracle Database
application. What follows are overviews of the Oracle product set on z/OS organized
by functional category.

This chapter contains the following sections:

■ Servers

■ Tools and Utilities

■ Networking

■ Application Development

■ Other Software

Servers
Foremost in this category is the Oracle relational database server, which has been
ported to z/OS, OS/390, and predecessor IBM MVS operating systems since Oracle
RDBMS Version 5 (1986). The current product is Oracle Database 10g release 2 (10.2)
for IBM z/OS on System z. As with all prior Oracle versions, the z/OS implementation
of this product is compiled from the same C language source code as on other
platforms, differing only in the thin layer of programming that adapts it to the host
operating system. This means the SQL and PL/SQL languages, Java facilities, SQL
statement optimizer, and other Oracle features work the same on z/OS as they do on
other Oracle platforms. Oracle Database applications developed with a non-z/OS
Oracle server generally can be switched to a z/OS Oracle server or vice versa without
changes.

Despite this commonality, the Oracle Database for z/OS makes extensive use of
features unique to the operating system: it is managed by a formal z/OS subsystem,
uses cross-memory services for inter-address-space operations, and exploits z/OS
Workload Manager (WLM) facilities to classify and dispatch database requests from
remote clients. Because of current limitations in IBM’s Language Environment (LE) for
z/OS support for 64-bit virtual memory addressing, a patented multi-address-space
server architecture allows Oracle Database for z/OS to support far larger workloads
than the available 31-bit addressing would normally permit. The Oracle software

Tools and Utilities

1-2 Oracle Database User's Guide

component that provides the subsystem and address space management facilities is
called OSDI (Operating System Dependent Interface) and is unique to z/OS.

In addition to its relational database server, Oracle offers Transparent Gateways on
z/OS so that non-Oracle data sources can participate in Oracle database applications.
A Transparent Gateway allows an Oracle database server to access non-Oracle data
through Oracle's distributed database mechanism. Two Transparent Gateway
products are available to run on z/OS: the Transparent Gateway for DB2 and the
Transparent Gateway for iWay. The latter product uses the Information Builders iWay
product to provide access to a variety of z/OS data sources including Adabas, VSAM,
IMS/DB and others. Like the database server, the Transparent Gateways on z/OS run
under control of OSDI.

Access to an Oracle Transparent Gateway is always through an Oracle database
server; client applications do not connect directly to a Transparent Gateway. Both local
database servers (on the same z/OS system) and remote database servers (on any
Oracle platform) can access a Transparent Gateway on z/OS.

Your installation may or may not run Oracle database or Transparent Gateway servers
on z/OS. Some customers choose to install only Oracle client components on z/OS
(tools and utilities and application development facilities) to enable access to Oracle
servers on other platforms. This is referred to as a client-only install in later sections.

Tools and Utilities
Tool and utility programs are associated with the Oracle database server for various
purposes. These include Oracle Export and Import for transporting database objects,
SQL*Plus for ad hoc SQL and reporting, SQL*Loader for high-speed database table
loading, and others. Like the Oracle database server, the z/OS versions of these tools
and utilities are compiled from the same common code base and function in the same
way as their counterparts on other Oracle platforms.

On z/OS, most Oracle tools and utilities can run in traditional MVS environments
(batch job and native TSO) and the z/OS POSIX environments such as a Telnet z/OS
UNIX System Services shell session or the OMVS shell in TSO. In the traditional
environments they behave like typical MVS utility programs including the use of DD
and data set names for input and output files and support for TSO Command
Processor (CP) invocation. In z/OS POSIX environments, they exhibit UNIX-like
behavior and typically access Hierarchical File System (HFS) files. However, in both
types of environments, the same tool or utility executable (program object) is used.

None of the Oracle tools or utilities is supported under CICS TS or IMS TM. In those
environments, only user-written 3GL applications are supported as discussed in
Chapter 6, "Developing Oracle Applications to Run on z/OS."

Although associated with the Oracle database server, Oracle tools and utilities are also
provided in a client-only install on z/OS. As discussed in the following section, Oracle
tools and utilities can access a local (z/OS) or remote (any platform) Oracle database
server with equal ease. For example, you can run SQL*Loader on z/OS and have it
load data from a z/OS VSAM data set into an Oracle database server running on
UNIX or Linux.

Networking
Oracle Database for z/OS views all client connections to the database as network
connections, even when the client and server are on the same system and no real
network is involved. This means virtually all Oracle client/server interactions work
the same way whether the client is local or remote, and neither client applications nor

Application Development

Overview of Oracle Database Products 1-3

the server being accessed are aware of the distinction. Applications can be developed
and tested with a local server and then deployed, unchanged, to a production
environment with a remote server (or vice versa). Similarly, a production database
server or a production client environment can be moved from one system to another
with minimal disturbance.

The networking feature, called Oracle Net, is built into the Oracle server and the
client-side Oracle program interface code. The same client interface code supports
both Oracle tools and utilities and user-written Oracle applications, so both tools and
utilities and your own programs have the same mobility in terms of server access.

On z/OS, local Oracle connections (between a client application and a server on the
same z/OS image) use z/OS cross-memory services. Besides being efficient, the
cross-memory connection protocol has the characteristic that the application
processing in the server is executed by the application task. Server requests run at the
application's Workload Manager goal and the processing time consumed by the
requests is charged to the application, not to the Oracle database server.

For real networking, Oracle Net on z/OS uses the TCP/IP protocol. The terms
inbound and outbound to refer to two different network situations as viewed from
z/OS. An inbound client means a client on a remote system connecting to an Oracle
database server on a local z/OS system. A client application that is running on a local
z/OS system and connecting to a remote Oracle database server is an outbound client.
In either case, the remote client or remote server can be on another z/OS system or on
any other Oracle platform. When client and server are on dissimilar platforms,
translation of both character and number data are handled automatically.

Supporting inbound clients on z/OS requires an Oracle Net Services listener. The
listener provides the network endpoint (TCP/IP port) to which remote clients initially
connect, and takes care of routing the client to the correct Oracle database server.

Outbound clients on z/OS do not use Oracle Net Services; they interact directly with
the TCP/IP implementation provided by the system. However, they do interact with a
listener on the target remote system.

Application Development
Support for 3GL application development on z/OS is provided by Oracle
Precompilers: Pro*C/C++, Pro*COBOL, Pro*FORTRAN, and Pro*PL/I. These
products read source code containing imbedded EXEC SQL directives and translate
the directives into appropriate data declarations, executable statements, and Oracle
API calls to access an Oracle database server. Output from the precompiler is input to
a supported IBM language compiler and ultimately to the z/OS binder (linkage editor)
to produce an executable load module or program object. Precompiler applications can
run in a native z/OS batch or TSO address space, in CICS TS and IMS TM transaction
environments, or in a z/OS POSIX environment such as a TSO OMVS shell or rlogin
shell.

Access Managers
Application execution under CICS TS or IMS TM requires the use of an Oracle
integration product called an Access Manager. The Access Managers provide
coordination between Oracle database updates and commit or rollback processing in
the respective transaction manager. This enables you to write transaction programs
that update both Oracle resources and non-Oracle resources, such as VSAM or
IMS/DB data, with full two-phase commit integrity. Access Managers must be

Other Software

1-4 Oracle Database User's Guide

installed and configured with their respective IBM transaction manager before
Oracle-accessing transactions are run.

Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI)
In addition to the precompiler products, APIs called Oracle Call Interface (OCI) and
Oracle C++ Call Interface (OCCI) can be used to develop 3GL Oracle applications on
z/OS. With OCI and OCCI, you write a C (OCI only) or C++ language program that
makes calls to specific functions to perform specific operations in the Oracle server.
While more complex to use than the precompilers, OCI and OCCI provide access to all
features of the Oracle database server. On z/OS, OCI and OCCI applications can be
built to run in batch and TSO or as z/OS POSIX programs. A few OCI features use
POSIX threading and so require a POSIX environment. OCI and OCCI applications are
not supported in CICS TS or IMS TM.

Other Software
Other Oracle components are provided on z/OS but they are less likely to be
encountered by end users and application developers. In this category are
management infrastructure components such as the Enterprise Manager Management
Agent and database administration tools such as Recovery Manager. For more
information, refer to the Oracle Database System Administration Guide for IBM z/OS on
System z.

2

Oracle Software Interaction with z/OS and Language Environment 2-1

2 Oracle Software Interaction with z/OS and
Language Environment

This chapter describes how Oracle software on z/OS is integrated with the operating
system. It discusses the common implementation attributes of Oracle components
used by end users and application developers. Details on specific Oracle components
are provided in later chapters.

This chapter contains the following sections:

■ Overview

■ Execution Environments on z/OS

■ Files, File Name Syntax, and File Processing

■ Interrupt Processing in TSO and z/OS UNIX Shell

■ Oracle C Runtime Compatibility

Overview
Except for components written in PL/SQL or Java, Oracle software that runs on z/OS
is written in the C or C++ language. Oracle uses the IBM C/C++ compiler to build its
z/OS components and Language Environment (LE) for z/OS to provide some of the
operating system runtime services required during program execution. This means
C/C++ and LE conventions figure heavily in the behavior of Oracle software on z/OS.
For example, LE-specific syntax is normally used when specifying data set or HFS file
names to an Oracle tool or utility.

 Oracle on MVS predates both IBM's C/C++ compiler and LE by a number of years. In
the early 1980's, Oracle developed and used its own C compiler and runtime library to
support its products on MVS. Certain features of Oracle's runtime library continue to
be supported on z/OS so that existing customer JCL and scripts continue to work
unmodified. This legacy support causes slight deviations from normal LE behavior in
several areas; it is optional and can be disabled if desired.

Besides the optional Oracle runtime compatibility feature, there are a number of areas
where LE does not provide services that Oracle software requires, and those needs are
met by using Oracle-developed program code. In some cases these services are
implemented as extensions to existing LE support. For example, LE does not provide
file syntax for directly requesting SYSOUT (JES spool) output. Oracle provides that
capability, using file name syntax that is a logical extension of existing LE syntax.
Other non-LE program support in Oracle, such as TSO attention interrupt support, is
completely separate from LE.

Execution Environments on z/OS

2-2 Oracle Database User's Guide

Execution Environments on z/OS
Oracle supports several different z/OS environments for executing Oracle tools and
utilities and user-written Oracle applications. Both LE and certain parts of Oracle
program code behave differently across these environments. Applications that run
under CICS TS or IMS TM are controlled by Oracle Access Manager software and are
subject to the behaviors and requirements of the specific Access Manager. For more
information, refer to Chapter 6, "Developing Oracle Applications to Run on z/OS."
The remaining environments are discussed here, and are as follows:

■ Batch, meaning an environment started from JCL that is neither a TSO session nor
a z/OS UNIX shell. This includes normal batch jobs that run in an initiator and
started task (STC) address spaces that do not use an initiator.

■ TSO, meaning a TSO/E logon session that is not running a z/OS UNIX shell. This
does not include batch TMP jobs, which for most purposes are treated as a batch
environment by Oracle.

■ z/OS UNIX shell, meaning a Telnet, rlogin, or TSO logon session running a z/OS
UNIX System Services shell.

z/OS provides a set of POSIX-compliant UNIX services. Originally called OpenEdition
MVS, they are now called z/OS UNIX System Services. The most common way to use
these services is from the z/OS UNIX shell variations described in the previous list,
which provide a UNIX-style shell environment with a Hierarchical File System (HFS)
and implementations of widely-used UNIX utilities like awk, grep, and vi.

POSIX ON vs. POSIX Shell Environments
Any task in a z/OS address space can interact with z/OS UNIX System Services
provided it is authorized to do so. For example, an application program does not have
to be launched from a z/OS UNIX shell to use z/OS UNIX System Services features
such as HFS files or POSIX threading. Conversely, programs launched from a z/OS
UNIX shell generally are free to use z/OS services and facilities that do not conflict
with the mechanisms of z/OS UNIX Systems Services.

Many of the significant behavior differences in application programs are associated
with LE, not with being in a z/OS UNIX shell. LE has its own internal POSIX indicator
that is set to either ON or OFF when a program begins executing, and remains so for
the life of the program (technically, for the life of the LE enclave). The initial setting of
this POSIX indicator can come from the application program, from an external runtime
specification, or can be defaulted based on the environment. In the case of Oracle tools
and utilities, POSIX is set to ON if the program executable was obtained from HFS (for
example, as a shell command). Otherwise, it is set to OFF (for example, with
conventional batch and TSO execution).

Thus, the phrase "in a POSIX environment" means when a program is executing with
POSIX set to ON, regardless of whether the program executes in a z/OS UNIX shell or
in an ordinary batch job or TSO session. For behaviors that depend specifically on a
z/OS UNIX System Services shell, the phrase "in a z/OS UNIX shell" or a reference to
the specific shell will be used.

Runtime Program Access Requirements
Running a program that accesses an Oracle database on z/OS, including Oracle tools
and utilities and Pro*C/C++, Pro*COBOL, Pro*FORTRAN, Pro*PL/I, OCI, or OCCI
applications, requires the following components to be accessible:

■ Application program, tool, or utility

Execution Environments on z/OS

Oracle Software Interaction with z/OS and Language Environment 2-3

■ LE runtime

■ Oracle program interface code

■ Oracle supporting data objects

How these components are accessed depends on the execution environment and on
how Oracle and LE software are installed and configured on your system. This, in
turn, may dictate how you code the JCL, what things you ALLOCATE in a TSO
session, or the environment variables you set in a z/OS UNIX shell. This section
explains how these components are accessed in general. You may need to ask your
z/OS system administrator or Oracle database administrator for the installation
specifics of your system.

Application Program, Tool, or Utility
Oracle tools and utilities usually are installed in a specific load library data set,
referred to in this document as the CMDLOAD data set. The exact name of the data set
is chosen by the installation and can vary over different systems and over different
versions or releases of Oracle software. For environments other than a z/OS UNIX
shell, you may need to specify this data set in JCL (in a JOBLIB or STEPLIB DD
statement) or in a TSO command such as CALL or TSOLIB. However, if your
installation adds the CMDLOAD data set to the system linklist or copies the
CMDLOAD modules into an existing linklist or LPA library, the modules are available
in all environments without specifying a data set.

For z/OS UNIX shell environments, Oracle tools and utilities normally reside in HFS,
in the bin subdirectory of the installation Oracle home directory. Like the name of the
CMDLOAD data set, the exact path for the Oracle home directory is chosen by the
installation. This document refers to this directory as the Oracle home directory or as
ORACLE_HOME, which is the name of an environment variable normally set to the
Oracle home directory path. In the z/OS UNIX shell, as in other UNIX systems, the
PATH environment variable is used to specify the directories in which to search for an
executable. Thus, to access Oracle tools and utilities in a z/OS UNIX shell you would
normally include the bin subdirectory of the Oracle home directory in your PATH
environment variable.

Oracle application programs can reside in a normal load library data set, linklist or
LPA (link pack area) data set, or z/OS UNIX System Services HFS directory. Follow
the conventions or standards of your installation to make your application program
available for execution.

LE Runtime
It is typical for LE runtime to be available in all supported z/OS Oracle execution
environments without special action on your part. In the rare situation where it is not,
you will need to specify LE runtime library data sets in your JOBLIB or STEPLIB
concatenation or in a TSOLIB command in TSO. Check with your z/OS system
administrator if you are unsure of LE availability or to determine the data set names
for LE runtime services, if needed.

LE is required in all z/OS UNIX shells, so no special action is required to make LE
available to a shell-based Oracle application.

It is possible for a single z/OS system to have multiple releases or maintenance levels
of LE installed, and LE provides a mechanism called Run-Time Library Services
(RTLS) to manage this. If your installation is using RTLS, consult with your z/OS
system administrator to determine how to access the correct release of LE for your
Oracle database application programs.

Execution Environments on z/OS

2-4 Oracle Database User's Guide

Oracle Program Interface Code
The Oracle program interface code is a program object named LIBCLNTS. It is
required at runtime by all Oracle programs on z/OS including Oracle tools and
utilities and any applications that access the Oracle database. In conventional batch
and TSO environments, LIBCLNTS normally resides in the same CMDLOAD data set
as the Oracle tools and utilities. If your installation has made CMDLOAD a linklist
library, or if LIBCLNTS has been placed in a linklist or LPA library, the interface code
can be accessed from any batch job or TSO session without special action. Otherwise,
the CMDLOAD data set must be included in a JOBLIB or STEPLIB DD statement or, in
TSO, it must be specified on the CALL or TSOLIB command.

Besides LIBCLNTS, if you are exploiting Oracle's limited support for the COBOL
DYNAM compile option in a Pro*COBOL application, module ORASTBX and all of its
aliases must be available in JOBLIB, STEPLIB, TSOLIB, or the system linklist. This
module is the loadable form of the Oracle API stub used only by COBOL DYNAM
applications. Normally it is installed in the same location as LIBCLNTS.

In TSO environments only, an additional runtime module named ORASTAX is used
by Oracle database applications to process TSO Attention or PA1 key interrupts. Like
LIBCLNTS, ORASTAX normally resides in the Oracle CMDLOAD data set but can be
placed in a linklist or LPA library.

For applications running in a POSIX environment, LIBCLNTS is provided as an HFS
DLL (Dynamic Link Library) file, normally in the lib subdirectory of Oracle home.
Because of the way it is called (through the LE DLL mechanism), the LIBPATH
environment variable determines the directories that are searched. LIBPATH is similar
to PATH but pertains to DLL access rather than normal command access. When
running an Oracle-accessing program in a POSIX environment, LIBPATH must
include the directory that contains LIBCLNTS.

For OCCI applications, the OCCI program interface code is a program object named
LIBOCCI. It is required at runtime by all OCCI applications. LIBOCCI and OCCI
applications that call the OCI API also depend on LIBCLNTS Therefore, LIBCLNTS
and LIBOCCI reside in CMDLOAD and in the lib subdirectory of Oracle home.

Oracle Supporting Data Objects
Besides executable code, the Oracle program interface uses a set of data objects
containing character set translation tables, the text of displayable messages in various
languages, and time zone configuration data. These are associated with Oracle's
National Language Support (NLS) features and they are required, even if an
application uses only the default language and character set.

For z/OS, these objects are distributed in two forms: as non-executable program
objects residing in a partitioned data set (PDS) and as z/OS UNIX System Services
HFS files. The program object form is used in all environments, including POSIX
environments, if possible. If the program object form is not available in a POSIX
application, Oracle accesses the HFS form of these files. (A non-POSIX application
does not use the HFS form. If the program object form is not available, then the
non-POSIX application fails during Oracle initialization.)

The program object forms of the data and message objects normally are installed in a
data set referred to as the MESG data set. Like CMDLOAD, the exact name of this data
set is chosen by the installation. Usually it has the same high-level qualifiers as the
corresponding CMDLOAD. There are two ways to make the MESG data set available
to an application, as follows:

Execution Environments on z/OS

Oracle Software Interaction with z/OS and Language Environment 2-5

■ Supply an ORA$LIB DD statement specifying the MESG data set, or ALLOCATE a
comparable ORA$LIB DD to a TSO session. This is the recommended approach for
applications that are not running in a z/OS UNIX shell.

■ Include the MESG data set in your JOBLIB or STEPLIB concatenation, or in your
TSOLIB command in TSO.

It also is possible for an installation to make the MESG objects globally available by
placing them in a linklist or LPA library, but this is not recommended.

Oracle tools and utilities and the Oracle program interface code use the following
sequence to locate and access NLS data and messages:

1. If an ORA$LIB DD is present in the address space, it is searched for a matching
program object.

2. If no ORA$LIB DD is present (or if the attempt to load from ORA$LIB fails),
POSIX is ON, and the ORACLE_HOME environment variable is defined, Oracle
attempts to read an HFS file in a subdirectory of ORACLE_HOME.

3. If neither of the previous steps occurred or succeeded, Oracle issues a z/OS LOAD
request for the object. This LOAD follows the normal z/OS default search order
for modules and program objects.

Because it can be awkward to include DD statements in POSIX applications, most such
applications rely on the HFS form of these files (as describe previously, in step 2).
Conversely, most batch and TSO applications rely on an ORA$LIB DD statement.

Invocation Examples
This section illustrates invoking a program that accesses the Oracle database and
providing access to the required loadable components discussed previously. They are
not complete examples of usage. All examples assume that LE is globally available
through the linklist or LPA.

Example 1
The following example shows part of the batch JCL used to invoke an Oracle
Pro*COBOL application named ODBRA20. The application module resides in data set
ODB1.PROD.LINKLIB (which is not a linklist library) and the Oracle program
interface code also is not in the linklist or LPA, so the CMDLOAD data set also is
included in STEPLIB. The CMDLOAD and MESG data sets have been installed with
the prefix ORACLE.V10G:

//STEP07 EXEC PGM=ODBRA20
//STEPLIB DD DISP=SHR,DSN=ODB1.PROD.LINKLIB
// DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG

Example 2
In the following example, a TSO session performs the necessary allocations to invoke
Oracle SQL*Plus as a command processor. The installed data set conditions are the
same as those in Example 1.

 READY
tsolib activate da('oracle.v10g.cmdload')
 READY
alloc shr fi(ora$lib) da('oracle.v10g.mesg')
 READY
sqlplus

Execution Environments on z/OS

2-6 Oracle Database User's Guide

 SQL*Plus: Release 10.2.0.5.0 - Production…

Example 3
The following example is also SQL*Plus, but in the POSIX environment in a Telnet
TTY session. The HFS part of the Oracle install created /fs1/oracle/prod as the
Oracle home directory. NLS data and message files from HFS are used.

$ export ORACLE_HOME=/fs1/oracle/prod
$ export PATH=$ORACLE_HOME/bin:$PATH
$ export LIBPATH=$ORACLE_HOME/lib:$LIBPATH
$ sqlplus

SQL*Plus: Release 10.2.0.5.0 - Production…

Tool and Utility Parameter Conventions
Oracle tools and utilities generally take command-style parameters (or arguments)
that specify processing options, inputs, outputs, and so on. Depending on the tool or
utility, parameters may be positional, identified by keyword, identified by UNIX-style
option letters, or some combination of these. How parameters are specified depends
on where and how the tool or utility is invoked: different conventions apply to batch
(JCL), TSO, and a z/OS UNIX shell. This section describes those conventions
generally, without going into the particulars of individual tools or utilities. For details
on specific tools and utilities, refer to Chapter 4, "Oracle Tools and Utilities on z/OS."

As described in the following sections, parameters are specified in the JCL PARM
field, the TSO command line, the "parm" string of a TSO CALL command, or the
command line of a shell. Data that are not parameters may also appear in these places,
including C standard file redirection operators, discussed in the section "Standard
Files and Redirection" on page 2-19, and a special notation indicating that parameter
values be obtained from a file, discussed in the section "Parameters in Batch (JCL)" on
page 2-6. When these things appear in the PARM, command line, and so on, they are
processed and removed before the Oracle tool or utility program code receives control
and are not "seen" by the tool or utility.

Parameters in Batch (JCL)
When you run a tool or utility using JCL, parameters are supplied using the PARM
keyword of the JCL EXEC statement. All Oracle tools and utilities are built with the
NOEXECOPTS option, which means LE runtime options cannot be supplied in the
PARM data, so everything in the PARM string except for LE redirection operators is
seen by Oracle software. There are several different ways to code PARM data in JCL;
the most common, used in our examples, is to enclose the data in single quotes
(apostrophes). When a parameter value must include single quotes, code two single
quotes together to signify one single quote in the value. Refer to the z/OS JCL Reference
for details and variations of PARM syntax.

Some programs (such as SQL*Loader) have a large vocabulary of parameters
including ones that specify data set or HFS file names. z/OS limits the PARM field to
100 total characters which can easily be exceeded by parameters you want to supply.
To accommodate this, Oracle provides the ability to place parameters into a data set or
HFS file. This is indicated by coding "++" (two plus signs) followed immediately by a
filespec, with no intervening blanks, inside the PARM string. Filespecs and related
details are covered in the section "File Types and Filespec Syntax" on page 2-14.

The ++ operator can appear alone in the PARM string or it can appear before, after, or
among normal parameters. Wherever it appears in relation to normal parameters is
where Oracle logically inserts the parameter data from the specified file; this is

Execution Environments on z/OS

Oracle Software Interaction with z/OS and Language Environment 2-7

significant when ++ is used to supply positional parameters. More than one ++
operator can appear in a single PARM.

The filespec following ++ can designate an existing Physical Sequential (PS) data set, a
member of a partitioned data set, an instream (DD *) data set, or an HFS file. If an HFS
file is used the filespec must use unambiguous HFS syntax, discussed in "File Types
and Filespec Syntax" on page 2-14, and the address space must be authorized for z/OS
UNIX System Services. Tools and utilities in batch run with POSIX OFF, so ambiguous
notation for the filespec is interpreted as a DD or data set name.

When ++ specifies a sequential data set or PDS member, the data set can have either
fixed- or variable-length records and the logical record length (LRECL) can be
anything up to 1028 (1024 data bytes) that will hold the longest single parameter.
Parameters in the file must be separated by one or more blanks or by a record
boundary (or a newline character in an HFS file). Parameter values are not quoted (any
quotes are treated as part of the value) and they cannot contain blanks or span
multiple records or lines. Sequence numbers or other non-blank non-parameter data
must not appear in a parameter file. Also, LE redirection operators and the ++
operator itself cannot be specified in a parameter file.

Example 1
The following example is part of a jobstep showing a typical parameter file setup with
SQL*Plus, using an instream data set. In this case, all parameter values are being
supplied in the file, so only the ++ operator appears in the PARM.

//PLUS EXEC PGM=SQLPLUS,PARM='++//DD:PARMS'
//PARMS DD *
-L
scott/tiger@db1
@//DD:SQL
/*

When SQL*Plus executes, it sees three parameters: -L, scott/tiger@db1, and
@//DD:SQL.

Example 2
The following example produces the same behavior as Example 1, but the parameters
are arranged differently:

//PLUS EXEC PGM=SQLPLUS,PARM='-L ++//DD:PARMS'
//PARMS DD *
scott/tiger@db1 @//DD:SQL
/*

If an error occurs when opening or reading a parameter file, descriptive messages are
displayed and tool or utility initialization fails.

Some Oracle utilities, such as Export and Import, have their own parameter file feature
that is part of the generic Oracle Database product. This is distinct from the ++
operator, which works with all Oracle tools and utilities and is unique to z/OS.

Parameters in TSO
In native TSO (not a TSO session that has entered a z/OS UNIX shell) there are two
ways to invoke an Oracle tool or utility: as a true TSO Command Processor (CP) or
through the TSO CALL command. Either can be used from plain TSO (the READY
prompt), from an enhanced command interface such as ISPF or Session Manager, or

Execution Environments on z/OS

2-8 Oracle Database User's Guide

from a CLIST or REXX procedure. For simplicity's sake, our examples here show the
READY prompt.

When the CALL command is used, parameters are passed in a single-quoted string
similar to the JCL PARM field and subject to the same 100-character limit. Coding
considerations in this case (including use of the ++ operator) are the same as those
discussed for batch jobs in the prior section.

Example 1
The following example shows TSO CALL being used to run Oracle Export with a ++
operator for all parameters except the user ID and password. The parameters are in
member EXP1 of a PDS named tsoprefix.MYORA.CNTL. The ++ operator specifies the
data set name directly, instead of allocating a DD.

 READY
alloc file(ora$lib) da('oracle.v10g.mesg') shr
 READY
call 'oracle.v10g.cmdload(exp)' 'scott/tiger ++//myora.cntl(exp1)'
 Export: Release 10.2.0.5.0 - Production…

To invoke a tool or utility as a TSO CP you must have the required program objects
(generally, the CMDLOAD data set) specified in the logon procedure STEPLIB, in a
linklist or LPA library, or in a TSOLIB command. In the CP case, parameters are
specified after the command program name, separated by one or more blanks, for as
long as necessary. If your parameters exceed the available terminal input area, end the
line with a minus sign (-) or plus sign (+) character to indicate continuation, press
ENTER, and resume typing parameters in the next provided input area. Refer to z/OS
TSO/E documentation for full details on command line continuation.

Although it is less necessary (because there is no real parameter length limitation), the
++ operator can be used in TSO CP invocation as well.

Example 2
The following example shows the use of TSOLIB to establish an Oracle CMDLOAD
data set as a source for commands, followed by a call to Oracle Export (as a CP) with
all parameters included on the command line. Although the normal name for Export is
EXP, it has been installed with the name ORAEXP to avoid conflict with IBM's export
command. TSO continuation is used, in this case in the middle of the FILE=
parameter value.

 READY
alloc file(ora$lib) da('oracle.v10g.mesg') shr
 READY
tsolib act da('oracle.v10g.cmdload')
 READY
oraexp scott/tiger@db1 grants=n file=//'ORADB1.EXP1-
.DATA' tables=(emp,dept)
 Export: Release 10.2.0.5.0 - Production…

In this case, the third parameter seen by Export is //'ORADB1.EXP1.DATA'.

Parameters in a z/OS UNIX Shell
In a z/OS UNIX shell, Oracle tools and utilities are invoked as commands at the shell
prompt or from within a shell script. While some details of syntax and processing
differ across the various UNIX shells, considerations are largely the same as those
described for other Oracle UNIX platforms. Special attention is required when
parameters contain characters that are subject to interpretation by the shell, such as $

Execution Environments on z/OS

Oracle Software Interaction with z/OS and Language Environment 2-9

(dollar), * (asterisk), and both single and double quotes. Refer to the documentation for
the specific shell you are using to understand its particular conventions and
requirements. For the IBM default shell, /bin/sh, refer to z/OS UNIX System Services
Command Reference, or type man sh at the shell prompt to display the "man pages" for
the shell.

The ++ operator described for batch and TSO is not available in z/OS UNIX shell
environments.

In this example, Oracle Export is invoked at the shell prompt with the same
parameters as the preceding TSO example. The shell escape character (backslash) is
used on the single quotes in the file parameter to keep the shell from interpreting
them.

$ exp scott/tiger@db1 grants=n file=//\'ORADB1.EXP1.DATA\' tables=(emp,dept)

Parameters Containing Spaces
Normally, tool and utility parameter values do not contain spaces but are separated by
one or more spaces. There are, however, situations where a parameter containing
spaces must be supplied, notably when using certain Oracle utilities and supplying the
special logon identifier required for database control operations, which is / AS
SYSDBA. To specify such a parameter using PARM or command line, enclose it in full
(double) quotes. Depending on the environment, LE or the POSIX shell will remove
the quotes and present the enclosed data as a single parameter to the tool or utility. In
a batch SQL*Plus job, for example, this looks like the following:

//PLUS EXEC PGM=SQLPLUS,PARM='"/ AS SYSDBA"'

In a TSO command line setting it looks like the following:

 READY
sqlplus "/ as sysdba"

Parameters containing spaces cannot be supplied within a parameter file specified
with "++".

Environment Variables
Environment variables are simply named runtime entities with assigned character
string values. Though they originated in the UNIX world they are also associated with
C programming and were implemented in MVS C runtime services before MVS
OpenEdition existed. Various Oracle components and z/OS components (particularly
LE) use environment variables as parameters or to control internal processing options.
You may need to specify certain environment variables when running Oracle tools or
utilities or your own Oracle-accessing applications.

This section describes the mechanisms for specifying environment variables for Oracle
software running in z/OS environments other than CICS TS and IMS TM. Refer to the
Oracle Database System Administration Guide for IBM z/OS on System z for information
about environment variables in CICS TS and IMS TM transactions.

Information about specific environment variables, their names, usage, and allowed
values is provided in other sections of this manual and in the generic Oracle product
documentation. In addition, environment variables specific to Oracle Database for
z/OS are listed in Appendix A.

Execution Environments on z/OS

2-10 Oracle Database User's Guide

Environment Variables in a z/OS UNIX Shell
The environment variable concept is indigenous to UNIX and to the shell
environment. The default shell on z/OS provides various mechanisms for setting
environment variables either explicitly or automatically on shell startup. When you
run an Oracle tool, utility, or other application in z/OS UNIX shell you must ensure
that required environment variables are set. Typically, the program or script runs in a
new shell process that is a subshell of the one launching the application. In this case,
environment variables that were set in the launching shell must be exported to be
passed to the application shell. In the default IBM shell, the export command does this.
Our example shows the setting and exporting of two environment variables before
invoking SQL*Plus at the shell prompt:

$ ORACLE_SID=PDB1
$ export ORACLE_SID
$ export LIBPATH=$ORACLE_HOME/lib:$LIBPATH
$ export PATH=$ORACLE_HOME/bin:$PATH
$ sqlplus scott/tiger

SQL*Plus: Release 10.2.0.5.0 - Production…

For complete details on using environment variables in the default IBM shell, refer to
the z/OS UNIX System Services Command Reference, or type man sh at the shell prompt
to display the "man pages" for the shell.

It also is possible for your own C/C++ application programs running in a POSIX
environment to set or change environment variables using calls to runtime functions
such as putenv(). This is discussed in the section "Setting Environment Variables in a
Program" on page 2-12.

Environment Variables in Batch and TSO Environments
When an Oracle tool, utility, or user-written application runs as a batch job or TSO
command with LE POSIX OFF, several different mechanisms are available for
specifying environment variables. More than one mechanism can be used in a single
application and it is legal for the same environment variable to be specified in more
than one place. The last setting of a given variable is the one that takes precedence.
The following lists the available mechanisms in the order in which they are processed:

1. The LE runtime option ENVARn (not available in Oracle tools and utilities)

2. A file of settings specified by the LE environment variable _CEE_ENVFILE
normally set using LE runtime option ENVAR (not available in Oracle tools and
utilities)

3. A global default set of Oracle environment variable assignments in a specific z/OS
data set or HFS file

4. A local set of environment variable assignments specified by the ORA$ENV DD
statement in the application

5. Program calls to functions such as C/C++ putenv() during application execution
(discussed in "Setting Environment Variables in a Program" on page 2-12.

The first two mechanisms are provided by LE and are described in the IBM manual
z/OS C/C++ Programming Guide.

The third and fourth mechanisms are provided by Oracle software and are available in
Oracle tools and utilities and your own programs that access Oracle. The global
environment file generally is set up by the system administrator, database
administrator, or a person responsible for the Oracle product configuration on z/OS. It
is meant to contain default environment variable assignments for all Oracle-accessing

Execution Environments on z/OS

Oracle Software Interaction with z/OS and Language Environment 2-11

applications in a sysplex. The global environment file is optional and may not be
present in your system; if it is, it is used automatically without action on your part.
Check with your Oracle or z/OS system administrator to learn if the global
environment file is configured on your system.

The local Oracle environment variable file, specified by the ORA$ENV DD statement,
also is optional. Use it to supply environment variables specific to your job or
application and to override (change) settings from the global file. The content and
processing details for both the local and global files are described in the section
"Oracle Environment Variable Files" on page 2-11.

Processing for the Oracle-specific mechanisms (prior steps 3 and 4) occurs during
program initialization in the case of Oracle tools and utilities. In user-written Oracle
applications it occurs when the Oracle program interface code initializes, typically on
the first call to an Oracle interface function. This in turn depends on application design
and can be early or late in the life of the application program.

As mentioned earlier, both Oracle software and z/OS software (particularly LE) make
use of environment variables. If your application requires setting of environment
variables for LE or other IBM components, use one of the mechanisms provided by LE
(prior steps 1 and 2). Do not use the Oracle-provided mechanisms to set IBM-specific
environment variables because the setting may occur too late, after IBM software has
queried the variable. This is particularly the case with variables that affect LE enclave
initialization. For an obvious example, using the local ORA$ENV file to specify a value
for _CEE_ENVFILE has no effect.

The converse-using LE mechanisms to supply Oracle-specific environment variables-is
permitted. However, you might want to avoid LE's _CEE_ENVFILE mechanism for
the reasons discussed at the end of the next section.

Oracle Environment Variable Files
This discussion pertains to both the global and local environment variable file. These
can be a Physical Sequential (DSORG=PS) data set, a member of a partitioned
(DSORG=PO) data set, or an HFS file in the POSIX file system. The local file, specified
by an ORA$ENV DD statement, can also be an instream (DD *) data set and can
concatenate multiple data sets with compatible DCB attributes. When a sequential
data set or PDS member is used, the data set can have either fixed- or variable-length
records (RECFM of F, FB, FBS, V, or VB) and the logical record length (LRECL) can be
anything up to 1028 (1024 data bytes). Choose an LRECL that will hold the longest
required variable assignment statement you need.

In the environment file, each record (in a data set) or each line (in an HFS file) is either
a comment or a variable assignment statement. Lines or records whose first nonblank
character is # (pound), * (asterisk), or / (slash) are treated as a comment and are
ignored. Records or lines that are entirely blank also are ignored. Otherwise, a record
or line must contain a single assignment statement of the form

name = value

where name is the environment variable name (case-sensitive), "=" is the equals sign as
shown, and value is as discussed in the following section. Blanks can precede and
follow both the name and the value and are ignored. No other nonblank data can
appear between the value and the end of the record or line. The entire statement must
fit on one record or line: spanning or continuation is not permitted.

The value part is optional. If none is specified, the environment variable has an empty
string as its value. Otherwise, the value is specified as an unquoted or quoted string. If
it is not quoted, it starts at the first nonblank character after the "=" and ends at the

Execution Environments on z/OS

2-12 Oracle Database User's Guide

next blank or at the end of the record or line, whichever comes first. Either
apostrophes or full quotes can surround a value to allow it to include blanks. In this
case, the value begins with the character following the opening apostrophe or quote
and ends at the matching (closing) apostrophe or quote, which is required and must be
the same kind as the opening character. If a quote of the same kind is to be included as
part of the value, place two quotes together. An imbedded quote of the other kind is
not doubled.

Unlike in a shell, assignment statements in an environment variable file cannot
dereference another environment variable. For example, given file statements like

That = something
This = stuff:$That

the value of environment variable This is the string stuff:$That, not
stuff:something.

The following illustrates a local (ORA$ENV) file specified as an instream data set in a
batch job. The variables and values are not realistic but were chosen to illustrate syntax
variations.

//ORA$ENV DD *

* Sample Oracle environment variable file

This_File='//''ORA.SOME.DATA.SET'''
 VAR1 = some_thing_1
VAR2 = "Don't go there."
VAR3 =
/*

As mentioned earlier, both the global and local environment variable files are optional.
If the attempt to open either file fails with an error such as "File not found" or "DD
statement not found", the error condition is ignored and processing proceeds
normally. Other errors-including security rejects on file open, I/O errors reading the
file, and syntax errors in the file contents-are reported through error messages. In this
situation Oracle tool or utility initialization fails. In user-written applications, a user
ABEND is issued by the Oracle interface stub.

There are significant differences between Oracle's environment variable file features
and LE's _CEE_ENVFILE. The syntax requirements for the LE file are both simpler
and more restrictive (and make fixed-length record formats all but unusable). By
default, no error messages are displayed for errors that arise during LE environment
file processing. This can make it difficult to detect problems related to environment
variables. For non-POSIX applications, Oracle recommends using the Oracle-provided
mechanisms to specify Oracle-specific environment variables.

Setting Environment Variables in a Program
If you create an Oracle-accessing applications using IBM C/C++ (Pro*C/C++, OCI, or
OCCI applications) you have access to functions like putenv() and setenv() and to
the environ pointer to set or change the values of environment variables.

In general, Oracle discourages programmatic manipulation of Oracle-specific
environment variables. The exact "when" (and how often) Oracle software retrieves a
given variable's value is an internal behavior and is not necessarily constant over even
minor maintenance changes. An application that succeeds with this technique today
might not work in a different version, release, or maintenance level of Oracle software.

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-13

Files, File Name Syntax, and File Processing
 All Oracle tools and utilities, the Oracle database server, and in some cases the Oracle
program interface code require access to data on disk or, sometimes, tape. z/OS
presents challenges in this area due to the variety of distinct file types and the
associated software interfaces (Access Methods or APIs). To meet the needs of z/OS
users across the various execution environments, Oracle tools, utilities, and program
interface software must be able to process POSIX HFS files and also sequential,
partitioned, JES spool, and in some cases VSAM data sets. As a user of these
components you must understand how files are specified (when you supply file
information to a component) and how the software processes that information.

IBM C/C++ and LE provide most of the underlying file processing for
end-user-accessible Oracle features. It is helpful to understand how LE processes the
various types of files and data sets in z/OS. The z/OS C/C++ Programming Guide and
z/OS C/C++ Run-Time Library Reference are the definitive sources of information about
LE file processing. Some details on LE processing or behavior are provided here as a
convenience, but the IBM manuals are the definitive source of information.

Filespecs
Central to an understanding of file processing is the notion of a filespec, which is our
term for a character string that wholly or partially identifies a file. You will supply
filespecs to Oracle components in parameters, commands, and possibly in SQL,
PL/SQL, or server Java statements. On z/OS, a filespec can specify a data set or DD
name, an HFS path and file name, a SYSOUT (spool) data set, or the terminal (in TSO
or a z/OS UNIX shell). Which of these a given filespec means depends on the syntax
of the filespec and on the POSIX indicator. The latter consideration is significant: as
you will see shortly, a filespec like myexport.dat can mean a data set in one execution
environment and an HFS file in another.

Oracle generally uses the syntax defined by IBM C/C++ and LE for filespecs. In some
areas, notably SYSOUT support, Oracle augments LE filespec syntax to provide useful
capabilities not provided by LE. Optionally, Oracle also supports a subset of the
filespec syntax used by the Oracle C runtime library so that existing customer JCL,
scripts, and procedures that were developed for Oracle C runtime continue to work
without changes. The Oracle C runtime syntax overlaps valid LE syntax and so is not
recommended for new customers and new applications. Details on this compatibility
feature are in the section "Oracle C Runtime Compatibility" on page 2-29.

As suggested earlier, the filespecs you supply to Oracle functions are not always
complete. This applies to filespecs that designate a data set name or an HFS file name.
In some components, these names are subject to extension, which means adding a
suffix string to the name. Usually the suffix indicates the type or usage of the data in
the file, such as .sql or .SQL for a file containing SQL statement text. The extension
mechanics for HFS file names and data set names differ; in the case of data sets, the
extension mechanism also can be used to associate attributes (space and DCB
attributes) with a data set that is being created.

Other types of file name augmentation or manipulation also occur. LE adds the
PROFILE PREFIX (in TSO) or the z/OS user ID (in other environments) to the
beginning of any filespec data set name that is not enclosed in apostrophes. Certain
Oracle components construct filespecs by combining separate "directory" and "name"
pieces. Oracle utilities, particularly SQL*Loader, may derive one filespec from another
by removing one suffix extension and adding a different extension. A z/OS-specific
Oracle feature called FNA can be used to map simple file names (as seen by Oracle) to

Files, File Name Syntax, and File Processing

2-14 Oracle Database User's Guide

member names in a z/OS partitioned data set. These topics are covered in the sections
that follow.

File Types and Filespec Syntax
Before we describe the syntax and interpretation of different types of filespecs we have
to establish some more terminology. Most filespecs and types are usable in all of the
client environments: batch, TSO, and z/OS UNIX shell. CICS TS and IMS TM are
discussed separately in Chapter 4, "Oracle Tools and Utilities on z/OS." A few types
are not usable in obvious circumstances: you cannot specify a "TSO terminal" filespec
for an input file in a non-TSO address space. More important, some filespecs are
interpreted differently depending on the POSIX indicator; with POSIX ON they refer
to data sets and with POSIX OFF they refer to HFS files. We call these ambiguous
filespecs.

Ambiguous filespecs are perfectly legal and acceptable to use except where the
POSIX-determined behavior is not what you want. If you want to refer to a data set in
a POSIX ON application or to an HFS file in a POSIX OFF application, you must use an
unambiguous filespec, one which is self-identifying as to type. C/C++ and LE use
specific syntax elements to make a filespec unambiguous. If a filespec begins with
exactly two slashes (the third character is not a slash), it is taken as a non-HFS filespec
regardless of POSIX. If it does not begin with exactly two slashes but it contains one or
more slashes (anywhere in the filespec), it is taken as an HFS filespec regardless of
POSIX. If neither case applies, the filespec is ambiguous. There are some subtle details
in this scheme when DD name filespecs are used. Refer to the section "DD Names" on
page 2-15.

The treatment of ambiguous filespecs sometimes counters intuition. The criteria
described previously mean 'JSMITH.TEST.SQL(CASE1)' is an ambiguous filespec. The
fact that it looks very much like a z/OS partitioned data set and member name does
not matter. If this filespec is used for output in a POSIX ON setting, an HFS file with a
peculiar 24-character name-including the apostrophes-is created. One of the
interesting attributes of the POSIX HFS is that virtually anything but a slash is legal
within a file name, including blanks, punctuation, and even non-printing characters.
When POSIX is ON, an ambiguous filespec is treated as HFS no matter how
data-set-like it appears.

The converse treatment is equally impartial. You might use the filespec =Silly_QA_
Tests=.sql in a command in a batch (POSIX OFF) SQL*Plus job expecting the
software to recognize that the filespec is valid only as an HFS file name, and treat it as
such. Instead, you will get an error reporting an invalid (data set) file name.

Data Set Names
The full form for specifying a z/OS data set by its name is

//'dsname'

or

//'dsname(member)'

where dsname is the 1-character to 44-character fully qualified data set name and
member is a 1-character to 8-character member name for a partitioned (DSORG=PO)
data set or a numeric Generation Data Group (GDG) index (possibly beginning with +
or -).

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-15

The pair of slashes signify that what follows is not an HFS file name. They are required
to access a data set in a POSIX ON environment. When POSIX is OFF they can be
omitted.

The apostrophes (single quotes) indicate that dsname is a complete data set name not
subject to LE prefixing. If you omit the apostrophes, LE prefixes dsname with the
PROFILE PREFIX (in TSO) or with the z/OS user ID (in all other environments). (If
you have enabled Oracle C runtime compatibility, prefixing occurs only in TSO.) If a
TSO session has PROFILE NOPREFIX set, no prefix is added. Apostrophes also affect
Oracle's tendency to add a suffix extension to a data set name; this is discussed later in
the section "File Name Manipulation" on page 2-21.

The dsname and member portions of the filespec are case-insensitive: lowercase letters
are converted to upper case. To be usable, a data set name must ultimately have two or
more name segments or qualifiers. The name in the filespec can be a single qualifier if
prefixing and/or suffix extension applies to supply a second qualifier. If apostrophes
are used to prevent prefixing (or if PROFILE NOPREFIX is set in TSO), the name in the
filespec normally must have two or more qualifiers.

A data set referenced in this fashion can be physical sequential (DSORG=PS),
partitioned (DSORG=PO), or VSAM (ESDS, KSDS, or RRDS). Use of VSAM is limited
to certain Oracle components or features discussed in later chapters. If the filespec is
being used for output purposes and the data set does not exist, it is created through
z/OS dynamic allocation as a non-VSAM (PS or PO) data set. (Creation of VSAM data
sets is not supported.) Dynamic creation relies on installation default mechanisms to
determine SMS classes (or unit and volume) and disk space allocation. These may or
may not be appropriate for your application and you may want to consider
preallocating such data sets and/or using a DD filespec, discussed later. Space
allocation for some types of files can also be influenced using FNA, described later.

For an input file it is legal to specify a partitioned data set name with no member
name. Doing so, however, accesses the directory data of the PDS rather than any
member. There currently are no Oracle components that exploit this capability.

The following are examples of valid data set name filespecs.

//'JSMITH.ORAEXP.TEST.DAT'
prod.sql(case1)
'ODB1.init.ora'
//discard1
//SAMPLE.LOG

In the prior set of examples, the first, fourth, and fifth are unambiguous.

DD Names
You can identify a file as a DD statement or TSO allocation using the following filespec
forms:

//DD:name

or

//DD:name(member)

where name is the 1-character to 8-character DD name and member is a 1- to
8-character member name when the DD statement or allocation is a partitioned
(DSORG=PO) data set.

The pair of slashes signify that what follows is not an HFS file name. When POSIX is
OFF they can be omitted. If they are omitted when POSIX is ON, LE does something

Files, File Name Syntax, and File Processing

2-16 Oracle Database User's Guide

surprising: it checks to see if the specified DD name is allocated in the job or address
space. If it is, the DD is opened. If it is not, an HFS file named DD:name or
DD:name(member) is opened. This is one case where the interpretation of an
ambiguous filespec depends on more than just POSIX.

The DD: portion of the filespec is required to indicate that what follows is a DD name.
It is case-insensitive and can use any of the 4 possible combinations of upper case and
lowercase "D." The name and member parts are also case-insensitive and are converted
to upper case.

The DD statement or TSO allocation specified by this filespec can be any of the
following:

■ Physical sequential (DSORG=PS) or partitioned (DSORG=PO) data set

■ VSAM KSDS, ESDS, or RRDS cluster

■ Instream data for input usage (DD *) or SYSOUT for output usage

■ Dummy (DD DUMMY)

■ TSO terminal (DD TERM=TS or TSO ALLOCATE DA(*))

■ HFS file (DD PATH=)

If the file is being used as input, the DD can be a concatenation of multiple data sets of
compatible type and DCB attributes.

When a partitioned data set is used, either the filespec or the DD statement (but not
both) can include the parenthesized member name. If neither specifies a member
name, the PDS directory data is accessed rather than any member; this is allowed only
with input usage.

Files specified as DD name filespecs have some specific behaviors in Oracle software.
Name manipulation operations such as extension have no effect on a DD filespec nor
can such a filespec be parsed or divided into logical pieces. This affects the way some
Oracle components work when using DD filespecs. This is covered in more detail in
"File Name Manipulation" on page 2-21 and in the later chapters dealing with specific
Oracle components.

The following are examples of DD name filespecs:

//dd:mysql
DD:LIB1(sample)
dD:x
//DD:REPORT

In the prior set of examples, the second and third are ambiguous; when POSIX is ON,
they are subject to the processing discussed earlier.

SYSOUT
Oracle provides a logical extension of LE file syntax for direct specification of SYSOUT
data sets for output. This is usable in most places where Oracle requires an output file
specification but it is associated primarily with text (message or report) files. The
filespec syntax is

//SYSOUT:class,form,dest

where class is the 1-character SYSOUT class, form is a 1-character to 4-character form
name, and dest is a 1-character to 8-character JES destination identifier.

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-17

The pair of slashes signify that what follows is not an HFS file name. They are required
to use a SYSOUT filespec in a POSIX ON environment. When POSIX is OFF they can
be omitted.

The SYSOUT: portion of the filespec is required to indicate that what follows is a
SYSOUT specification. It is case-insensitive and can use any combination of upper-
and lower-case letters. It also can be abbreviated to S: or s:.

The class is a valid JES SYSOUT class (letter or digit), or an * (asterisk) signifying that
the job's MSGCLASS be used. If the class is omitted it defaults to *. If you omit the
class but want to supply a form or destination, code a single comma.

The form is a valid JES form name. The default, when form is omitted, is
installation-dependent. If you omit the form name but want to supply a destination,
code a single comma.

The dest is a valid JES destination identifier. Legal destination values and the default
depend on whether your z/OS system uses JES2 or JES3.

Check with your z/OS system administrator for specific information about output
classes, form names, and destinations used in your installation.

Like DDs, SYSOUT filespecs are immune to file name manipulation operations such as
extension and parsing. Here are some examples of SYSOUT filespecs:

//SYSOUT:G,,JSMITH
s:
sysout:*,STD
//S:,,HQPRT1

The second and third examples are ambiguous and would result in oddly-named HFS
files in a POSIX ON application.

TSO Terminal
In a TSO session you can specify both input and output files as the terminal device
using the filespec

//*

The slashes signify that what follows is not an HFS file name and the single asterisk is
required to indicate the TSO terminal. The slashes can be omitted when POSIX is OFF.

Optionally, you can follow the asterisk in this filespec with either a data set name
(with or without surrounding apostrophes) or a DD name specification beginning with
DD:. When such a filespec is opened in a non-TSO address space, it is processed as
though the asterisk was not there-the indicated data set or DD name is opened. This
enables you to code a single filespec that uses the TSO terminal under TSO and a data
set in other environments. You cannot specify an HFS file name after the asterisk, but a
DD name specification can refer to an HFS file (DD PATH=).

If the TSO terminal is specified for an output file in a non-TSO address space and no
data set or DD name follows the asterisk, LE allocates a SYSOUT data set with default
class, form name, and destination. For an input file, this situation results in an error.

Unless it includes a data set name as just described, TSO terminal filespecs are
immune to name extension and other name manipulation operations. Manipulating
the data set name included on a TSO terminal filespec may or may not be meaningful
depending on the usage and environment.

When an input file is specified as the TSO terminal, the keyboard is unlocked to accept
user input. Whatever is typed up to the point of pressing the ENTER key is presented

Files, File Name Syntax, and File Processing

2-18 Oracle Database User's Guide

to the software as a single logical record. To signal the end of input (EOF), type /*
(slash and asterisk) alone as input and press ENTER.

TSO terminal support in LE uses the TGET and TPUT services to read and write at the
terminal. Using TGET for input means that the terminal is always accessed; so-called
stacked input (the TSO input stack) is not processed by TGET. Applications cannot
place data on the input stack (for example, using REXX "queue") and have it read by
an Oracle component through a TSO terminal filespec. Using TPUT for output means
that the terminal is always the destination. This means features like REXX OUTTRAP
cannot be used.

The following are examples of TSO terminal filespecs:

//*
*dd:print
*
//*'JSMITH.ORA1.CNTL(SQL1)'

HFS Files
The syntax for HFS filespecs is that which is typical of UNIX systems. A complete file
specification, or path, begins with a slash (signifying the root directory). This is
followed by zero or more directory names, each ended with a slash, and finally the file
name. The sequence of directory names represents navigation through the logical
hierarchy represented by the directories. A single period is interpreted as the current
directory in the navigation and a pair of periods refers to the parent (previous)
directory. Besides directories and files, the HFS supports links, which are essentially
aliases or alternative names for directories and files.

When an HFS filespec begins with a slash it is said to be absolute, meaning the entire
navigation through the HFS is specified. If it does not begin with a slash it is taken as
being relative to the current working directory, which is an attribute of the running
process. Typically, when you are in a z/OS UNIX shell, the current working directory
starts out set to your user ID's home directory. You can change the current working
directory with the cd shell command and other mechanisms.

File names in the HFS are essentially unconstrained in content; while there are
conventions for naming files there are few system-imposed rules. Names are
case-sensitive, can contain almost any characters (including non-printing characters),
and can be quite long: the total length of all slashes, directory names, and finally the
file name in a z/OS HFS filespec can be up to 1023 characters. Here are some examples
of valid HFS filespecs:

/u/jsmith/test.sql
../oradev/c/rover/rover1.c
@-@-@ Read_Me_And_Weep @-@-@
SYS1.PROCLIB(ASMHCL)

From a UNIX perspective, the first two are fairly conventional while the latter two are
somewhat unusual but still legal. As the last example shows, valid HFS name syntax is
a superset of valid z/OS data set name syntax.

For complete information about z/OS HFS files, refer to the z/OS UNIX System Services
User's Guide and related IBM publications.

In a POSIX ON application, any filespec that does not begin with exactly two slashes is
interpreted as an HFS filespec. There is one exception in the case of DD filespecs,
described in the section "DD Names" on page 2-15.

When POSIX is OFF, a filespec must contain at least one slash (and not begin with
exactly two slashes) to be recognized as HFS. In this situation, if you want to refer to a

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-19

file relative to the current working directory (where no directory names and slashes
are needed), you must include some unnecessary but benign syntax:

./test.sql

This is a reference to the file test.sql in the current directory, signified by "./". The
"./" part is not really needed to get to the file but it gets a slash into the filespec.

Besides regular files, HFS structure and syntax is used for various special files in z/OS
UNIX System Services. Many of these appear under HFS directory /dev, which
provides an HFS structure for special devices used as files. Two of these that are often
used by shell-based applications are /dev/tty, which indicates the terminal associated
with the current process, and /dev/null, which indicates a null or empty file (similar
to z/OS DD DUMMY).

Standard Files and Redirection
C language applications, including Oracle tools and utilities, are provided with three
pre-opened files by the runtime environment. (These are called standard streams in
IBM terminology.) One is an input file (standard input) and the other two are outputs
(standard output, usually used for normal output, and standard error, usually
reserved for error messages and supporting data). Most Oracle tools and utilities get
their primary input (such as control statements) by reading from standard input and
display their normal output (such as status messages and listings) by writing to
standard output.

What is actually opened as standard files depends on the environment. In a z/OS
UNIX shell, the standard files are controlled by the shell; they normally are assigned to
the terminal associated with the process but they might be changed using shell
mechanisms such as redirection (which specifies a different filespec for a standard file)
or piping (where the standard output of one command is treated as the standard input
to another). For details on standard files in shell sessions refer to the z/OS UNIX
System Services User's Guide and to the documentation (such as "man pages") for the
particular shell you are using.

When not in a shell, the standard files normally default to the terminal (in TSO) or to
certain DD names (if present) or to SYSOUT (if not, in the case of standard output and
standard error). Oracle tools and utilities deviate from normal LE processing in this
area. This is done mainly to be compatible with past (Oracle C runtime) behavior, but
it cannot be disabled with an environment variable like other Oracle C runtime
compatibility features because the processing occurs before environment variables can
be queried.

Redirection, meaning respecification of standard files to something besides the default,
is also available in TSO and batch using command line or PARM syntax similar to that
in shells. When redirection operators are included in the command line or PARM field
they are processed during LE initialization and are not "seen" by the Oracle tool or
utility. Redirection conventions and syntax are described in "Redirection Operators in
TSO and Batch" on page 2-20.

Standard File Defaults (non-POSIX)
When you do not redirect standard files for an Oracle tool or utility running in TSO or
batch (which is usually the case), the default behavior differs slightly between the two
environments. In TSO, the default behavior is as follows:

■ Standard input defaults to the TSO terminal unless a SYSIN allocation (DD) is
present, in which case SYSIN is read.

Files, File Name Syntax, and File Processing

2-20 Oracle Database User's Guide

■ If both SYSOUT and SYSERR allocations (DDs) are present, standard output and
standard error are written to SYSOUT and SYSERR respectively; otherwise, both
are written to the TSO terminal.

In a batch job, when the standard files are not redirected, the following defaults are
used only if all 3 of the DD names SYSIN, SYSOUT, and SYSERR, are present:

■ Standard input defaults to the SYSIN DD.

■ Standard output defaults to the SYSOUT DD.

■ Standard error defaults to the SYSERR DD.

This behavior mimics Oracle C runtime, which required all three of the standard file
DDs to be provided to initialize successfully. If any of these three DD names is not
included in the JCL, the job uses the normal IBM C/C++ defaults instead, as follows:

■ Standard input reads the SYSIN DD if provided, otherwise standard input is
treated as empty (like DD DUMMY).

■ Standard output goes to DD SYSPRINT if provided, or to SYSTERM if provided
and SYSPRINT is not, or to SYSERR if provided and neither SYSPRINT nor
SYSTERM is provided. If none of these DDs is provided, standard output is
dynamically allocated to the default spool output class and form.

■ Standard error goes to the LE message file (normally the SYSOUT DD) if it is
provided, otherwise it is dynamically allocated to the default spool output class
and form.

Be aware that there is a logical conflict between Oracle C runtime compatibility and
IBM C/C++ normal processing in certain situations. For example, if a batch job
supplies SYSIN, SYSERR, and SYSOUT DDs intending them to be used as standard
input, output, and error respectively (per the C/C++ defaults just described), the job
will assume Oracle C runtime compatibility is intended and will reverse the roles of
SYSERR and SYSOUT to be standard error and standard output.

Typically, when setting up JCL to run an Oracle tool or utility in batch, you will
supply a SYSIN DD statement for whatever data the particular tool or utility expects
as its primary input. The exact form or syntax of that data depends on the particular
tool or utility. Some components, such as SQL*Loader, do not necessarily use standard
input, in which case the SYSIN DD can be omitted. For the output files, if the fallback
SYSOUT dynamic allocation is acceptable, you need not supply the associated DDs.
You will need to supply them if you want to have a different SYSOUT class or other
characteristics, or if you want to direct the output to something other than SYSOUT,
such as a disk data set.

Redirection Operators in TSO and Batch
You can modify the defaults for standard files using an LE redirection operator or one
of the Oracle C runtime redirection operators for which backward compatibility is
provided. Redirection is coded on the command line or in the PARM field but it is not
processed by the Oracle tool or utility and does not affect tool or utility parameters.
You cannot place a redirection operator in a parameter file specified with "++".

Redirection syntax consists of an operator (which can be one or several characters
long) followed by a filespec with no intervening spaces. There also are special
redirection operators to indicate that standard output and standard error are written
to the same file. Complete details on redirection operators are in IBM's z/OS C/C++
Programming Guide. The operators most commonly used are as follows:

■ "<" for standard input redirection

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-21

■ " >" for standard output redirection

■ "2>" for standard error redirection;

■ "?" is also allowed for Oracle C runtime backward compatibility

The filespec that follows a redirection operator can be a data set name, DD name, TSO
terminal, or HFS type. Depending on POSIX, you may need to use unambiguous
filespec syntax to ensure that the correct type of file is accessed. Redirection cannot use
the SYSOUT filespec type described earlier because SYSOUT filespecs are an Oracle
extension that LE does not support directly.

When you use redirection, the filespec you supply must be capable of being opened in
the correct mode (input or output) at tool or utility initialization time; there is no
fallback to alternate DD names or to dynamic allocation like there is for default
standard files. If the filespec for a redirection cannot be opened, LE initialization issues
error messages followed by a user ABEND.

The filespec following a redirection operator is permitted to use certain Oracle C
runtime syntax for backward compatibility. Specifically, the prefixes /DD/, /ODD/,
/DSN/, and /ODSN/ are accepted and converted internally to LE equivalents before
the file is opened. This backward compatibility cannot be disabled. Be aware that this
makes it impossible to use redirection with an HFS file whose directory path begins
with /DD/, /ODD/, /DSN/, or /ODSN/ in any mix of letter case.

The following example shows a portion of a SQL*Plus jobstep that includes redirection
of standard output. It also supplies the parameter /nolog to SQL*Plus followed by
other parameters that are in a parameter file which is a member of a PDS.

//PLUS EXEC PGM=SQLPLUS,
// PARM='>''JSMITH.PLUSTEST.OUT'' /nolog ++dd:moreparm'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG
//MOREPARM DD DISP=SHR,DSN=JSMITH.ORA.PARMS(PLUS1)
//SYSIN DD …

Because this is a batch job execution of SQL*Plus, POSIX will be OFF and the
ambiguous filespec 'JSMITH.PLUSTEST.OUT' will be treated as a data set name. JCL
PARM syntax conventions require that the surrounding apostrophes be doubled so
that LE sees single apostrophes in the filespec.

File Name Manipulation
Filespecs that you supply to Oracle may be subject to various kinds of manipulation or
augmentation before they are actually opened for I/O operations. You must
understand this behavior to know what to code for a filespec in a given application.
Some behaviors are common across all Oracle components and others are specific to
particular components. This section describes in general the different ways filespecs
are processed; refer to later chapters for details on specific components, tools, or
utilities.

What's in a Name?
Most kinds of manipulation or augmentation pertain to filespecs that designate either
a data set name or an HFS file name. DD, SYSOUT, and TSO terminal filespecs
without an included data set name are mostly immune to the processing described
here.

Oracle views both data set names and HFS file names as being composed of several
distinct logical parts: a directory (sometimes called a path or location), a base name,

Files, File Name Syntax, and File Processing

2-22 Oracle Database User's Guide

and an extension. Some components accept separate directory and base
name/extension strings and combine them before use. Others may parse or
decompose a filespec you supply into these pieces and then use the pieces to construct
new filespecs. In the simplest case, components often add or replace the extension
part. How these operations work differs between data sets and HFS files.

Data Set Name Parts
For z/OS data set name filespecs, the logical parts are determined as follows:

■ The leftmost (high-level) qualifier of a data set name is taken as the directory. If a
filespec data set name is not surrounded with apostrophes (it is subject to
prefixing with the TSO PROFILE PREFIX or the z/OS user ID), the directory is an
empty string signifying that a directory is supplied by LE. If the filespec includes
"//" or surrounding apostrophes, the "//" and"/"or a single apostrophe are
included with the directory.

■ If the data set name contains three or more qualifiers (two or more, when prefixing
applies), the rightmost qualifier is taken as the extension. Otherwise, the extension
is an empty string signifying "no extension."

■ Everything that remains after the directory and extension are subtracted is
considered the base name. When a data set filespec includes a member name or
GDG index in parentheses, the parenthesized part is retained in the base name. If
the original filespec included a "//" prefix, the base name also has a "//" prefix.

The example shows how various data set name filespecs are decomposed into logical
parts. From left to right, the four parts are: filespec, directory, base name, and
extension. Assuming POSIX is OFF, ambiguous filespecs are treated as data sets.

//'JSMITH.TEST.SQL' //'JSMITH //TEST SQL
loader.ctl(demo3) (empty) loader(demo3) ctl
//*'ORADB1.PAY.LST ' //'ORADB1 //*PAY LST
mydata (empty) mydata (empty)
arproj.case.live.data (empty) arproj.case.live data

When Oracle composes a data set name filespec from separate parts, slightly different
content rules apply. A directory part that you supply can contain more than one data
set name qualifier, it can include an ending period, and it need not have the //' prefix.
If what Oracle uses as the base name part includes apostrophes, neither the directory
nor the extension part are added-such names are immune to alteration. The following
list shows examples of various name pieces and how they are combined by Oracle.
From left to right, the four parts are: directory, base name, extension, and result
filespec.

//'JSMITH //TEST SQL //'JSMITH.TEST.SQL'
'ARD07N. lib.oracle(bb3) CTL 'ARD07N.lib.oracle.ctl(bb3)'
(empty) 'PROD.ORA3.OUT' lst 'PROD.ORA3.OUT'

HFS File Name Parts
When a filespec refers to an HFS file, Oracle components on z/OS follow the same
rules as Oracle on other UNIX platforms for decomposing and composing filespecs.
When decomposing an HFS filespec:

■ Everything up to the rightmost slash is taken as the directory. The directory can be
absolute (begins with a slash) or relative (begins with a subdirectory name, a
single period, or two periods). If the filespec contains no slashes, the directory is
an empty string which means the current working directory.

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-23

■ Everything to the right of the rightmost period in the remaining text is taken as the
extension. If there are no periods or the text ends with a period, the extension is an
empty string.

■ Whatever remains after the directory and extension are subtracted is the base
name. It is possible (though unusual) for the base name to be an empty string.

Composing a filespec from these parts essentially concatenates them in order:
directory, base name, and extension. An intervening slash is added between the
directory and the base name if needed, and a period is added between the base name
and the extension if needed.

Extension Processing
Most Oracle tools and utilities perform extension on filespecs before they are used.
Extension associates a logical data type identifier with the filespec, such as "sql," for a
file containing text SQL and PL/SQL statements. The extension identifiers come from
Oracle software and usually (though not always) are three characters or less. In the
case of filespecs that specify a data set or HFS file name, the extension operation may
modify the name by inserting or appending the extension identifier text. The specific
extensions used and processing done by each tool or utility is covered in later chapters
of this manual and in the generic documentation. Here we cover the general behavior
of the extension mechanism.

On z/OS, extension can also be used to completely transform the syntax of a filespec,
simplifying the use of partitioned data sets with some components, and to associate
disk space and DCB attributes with data sets being used for output. These
z/OS-specific capabilities are described in the section "FNA" on page 2-24.

Extension applied to filespecs other than data set or HFS file names, such as DD,
SYSOUT, and TSO terminal filespecs without an included data set name, does nothing
to change the filespec.

With data set name filespecs, an extension is incorporated into the data set name if the
name is not enclosed in apostrophes. The rationale for this is the same as that of LE,
which avoids adding a user ID or PROFILE PREFIX to data set names enclosed in
apostrophes. The extension mechanism adds the extension suffix to the right-hand end
of the data set name (with an intervening period) regardless of the number of data set
name segments already present. If a parenthesized member name or GDG index are
present, they are preserved in the modified name. The following are examples of
extension processing on various data set filespecs. From left to right, the three parts
are: filespec, extension, and result.

//sample3 sql //sample3.sql
'JSMITH.LOADER.CTL log 'JSMITH.LOADER.CTL'
payroll(rcn41c) lst payroll.lst(rcn41c)
temp.acct.sql sql temp.acct.sql.sql

With HFS filespecs, the extension mechanism replaces a file name extension if one is
already present; otherwise, the extension is added to the name with an intervening
period. This differs from data set name processing and reflects the convention that
most HFS file names do not have more than two segments separated by periods. The
following are examples of the HFS filespec extension. From left to right, the three parts
are: filespec, extension, and result:

sample3 sql sample3.sql
./proj9/admin/load1 ctl ./proj9/admin/load1.ctl
/u/jsmith/test.c lst /u/jsmith/test.lst

Files, File Name Syntax, and File Processing

2-24 Oracle Database User's Guide

FNA
On z/OS, the extension mechanism can be used to do more complex processing for
data sets than just the addition of a name suffix. The facility that does this is called
FNA (for File Name Augmentation. Using FNA enables you to do two things to a
filespec associated with a given extension:

■ Transform the filespec into different syntax before it is used. This is used primarily
to cause certain Oracle components to treat simple 1-segment file names as PDS
member names.

■ Associate disk space and/or DCB attributes with a filespec that will be opened for
output processing.

These two actions are independent of each other; when you use FNA, you can cause
either or both of them to be applied to a given type of file; in other words, to a given
extension.

To use FNA, you must supply an FNA control file using an ORA$FNA DD statement
in your job or TSO session. The DD can specify a sequential data set, a member of a
PDS, or an HFS file. When you use a sequential or partitioned data set (which is usual)
either fixed-length or variable-length record formats of any legal LRECL are
permitted. If no ORA$FNA DD is supplied, extension processing for data sets is
simply that described in the previous section.

In the ORA$FNA data set, member, or HFS file you supply one or more keyword
statements that configure FNA. Each statement supplies FNA information for a single
extension. The general form of the statement follows, where ext is an extension
identifier, newname is a name transformation specification, and attrs is attribute
specification data for output file usage:

FSA(FTYPE(ext) FNAME(newname) FATTR(attrs))

The FSA, FTYPE, and at least one of FNAME or FATTR are required. Spaces are
permitted before and after keywords, parentheses, and enclosed values. One FSA
entry can span multiple records or lines if the break is not within a value. Comments
are permitted, begin with "/*" and end with "*/" and can span multiple records or
lines. Completely blank lines are ignored. Extraneous data (such as record sequence
numbers) must not be included.

The FTYPE value ext is a 1-character to 8-character alphanumeric file extension
identifier without a leading period. This indicates the specific extension to which the
entry applies and should match an extension used by some Oracle component. Since
FNA applies only to data sets (not HFS files) the extension is case-insensitive and can
be given in upper- or lower-case letters. Only one FSA statement for a given FTYPE
extension should appear in the ORA$FNA file; duplicate entries for an extension
produce a warning and are ignored.

FNA Name Transformation
The FNA keyword parameter FNAME value newname specifies a syntax
transformation of the input filespec. It usually is specified as a character string
enclosed in apostrophes or quotes. If you use apostrophes and want an apostrophe to
appear in the value, code two apostrophes in succession. The transformed filespec is
produced by copying this character string and replacing certain characters with new
values:

■ A "+" (plus sign) is replaced with all or part of the original input filespec text. If
the + appears inside parentheses in the newname string and the input filespec
contains a period, only the part up to the first period is used. Otherwise, the entire
input filespec is substituted.

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-25

■ An "*" (asterisk) is replaced with the TSO PROFILE PREFIX (in TSO) or with the
z/OS user ID (in other than TSO). If PROFILE NOPREFIX is set in TSO, then * is
replaced with an empty string.

After the string substitution is done, if the result is a data set name specification
without surrounding apostrophes, the original extension suffix is added at the end of
the data set name in the same fashion as normal extension processing described
earlier. If the result is a DD or SYSOUT filespec, or a data set name surrounded with
apostrophes, the original extension is discarded.

The primary use of the name transformation mechanism is to allow simple file names
used by certain Oracle components to be treated as member names in a partitioned
data set. This kind of transformation is done using FNA entries like

FSA(FTYPE(sql) FNAME('//DD:SQLLIB(+)'))

or

FSA(FTYPE(CTL) FNAME('''oradb1.prod.cntl(+)'''))

The transformation is truly mechanical as described previously, however, and can be
used in other ways to impose name structure. The following examples show how the
transformation applies to various combinations of input filespec and FNAME string.
From left to right, the four parts are: input filespec, FNA FNAME, and result filespec.

catalog //DD:SQLLIB(+) //DD:SQLLIB(catalog)
temp.ora '*.ORAPROD.LIB(+)' 'prefix.ORAPROD.LIB(temp)'
ldr1 ORACLE(+) ORACLE.ctl(ldr1)
drc10a.c 'JSMITH.ORA.+ 'JSMITH.ORA.drc10a.c'

The third example in the prior list assumes that extension .ctl is involved.

The filespecs produced by FNAME transformation can use Oracle C runtime syntax if
Oracle C runtime compatibility is enabled. Refer to the section "Oracle C Runtime
Compatibility" on page 2-29 for more information.

FNA Attribute Assignment
The FNA keyword parameter FATTR is used to associate an attribute string with files
having a particular extension. It is pertinent only when the associated file is used for
output and has no effect on input usage. The attributes that can be specified include
disk space quantities and DCB characteristics (record format, logical record length,
and block size). The disk space attribute pertains only to data set name filespecs for
data sets that do not already exist (will be created when opened). DCB characteristics
are meaningful for all output data set situations including data set name, DD:,
SYSOUT:, and TSO terminal filespecs.

The FATTR attrs string normally is enclosed in apostrophes or quotes. It must begin
with a semicolon (;) followed by one or more keyword assignments separated by
commas. All text following the semicolon ultimately is passed to the C/C++ runtime
function fopen() in the "mode" argument. Although there are a number of options
that can be included in the mode string, only the following keywords are supported by
Oracle for use in FNA:

Table 2–1 FNA Keywords and Descriptions

Keyword Description

recfm= Specifies the record format. Record format choices are the familiar z/OS JCL
RECFM terms such as V, VB, F, FB, and so on. You can also specify recfm=*
or recfm=+ to request preservation of attributes already assigned to the data
set or coded on the DD statement. To understand how these work, refer to
the section "Data Set DCB Attributes" on page 2-27.

lrecl= Specifies the logical record length in bytes as a decimal integer. Choose a
valid logical record length that meets any requirements specific to the tool or
utility.

blksize= Specifies the physical block size in bytes as a decimal integer. Choose a valid
block size large enough to accommodate the logical record length. When
using record format F or FS, block size must equal the logical record length.
When using fixed blocked format (FB or FBS), block size must be an integer
multiple of logical record length.

space= Specifies space allocation for a new data set on disk. The syntax for the value
is similar to that of the SPACE keyword in z/OS JCL:

(units,(pri,sec,dir))

where units is cyl for cylinders, trk for tracks, or a decimal integer block
size for allocation in blocks, and pri, sec, and dir are decimal integer
quantities for primary space, secondary space, and PDS directory blocks
respectively. The units and a primary quantity are required. Directory space
is required when creating a partitioned data set and prohibited otherwise.

Files, File Name Syntax, and File Processing

2-26 Oracle Database User's Guide

For details on these keyword parameters and their allowed values and syntax refer to
the z/OS C/C++ Programming Guide.

Data set DCB attributes can come from sources other than FATTR or they can be
completely unspecified, resulting in default behavior. Refer to the section "Data Set
DCB Attributes" on page 2-27 to understand how the various sources and default
mechanisms determine what is ultimately established for a given data set.

Example FNA Control File
The following shows an FNA control file supplied as an instream data set in a batch
SQL*Plus job. It could just as easily be a sequential disk data set or a member of a PDS.

//REPORT EXEC PGM=SQLPLUS,PARM='/nolog'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG
//SQL DD DISP=SHR,DSN=YQB03.PROD.SQL <-- PDS containing SQL
//ORA$FNA DD *
 /****************************
 * Example FNA Control File *
 ****************************/

 FSA(
 FTYPE(sql)
 FNAME('dd:sql(+)')
 }

 FSA(
 FTYPE(lst)
 FNAME('''YQB03.REPORTS.+''')
 FATTR(';space=(4096,(1000,200)),recfm=VBA,lrecl=137')
 }
/*
//SYSIN DD …

Files, File Name Syntax, and File Processing

Oracle Software Interaction with z/OS and Language Environment 2-27

The example has FNA entries for the file extensions .sql and .lst. These extensions are
associated with input SQL statement files and output SPOOL command files
respectively. In the SQL*Plus input (not shown previously), a command which calls a
file of SQL statements, such as the following:

get report2

This results in access to member REPORT2 in the partitioned data set
YQB03.PROD.SQL. A SQL*Plus SPOOL command to direct output to a file, such a the
following:

spool weekly

This results in writing the data set YQB03.REPORTS.WEEKLY. Assuming this data set
does not already exist, it is created with a primary allocation of 1000 4K blocks and a
secondary of 200 4K blocks. The data set is written with a record format of VBA and
logical record length 137. The physical block size has been allowed to default.

Data Set DCB Attributes
Whenever Oracle opens an output filespec denoting a non-VSAM data set, DCB
attributes must be determined. This is especially significant in the case of disk and
tape data sets when the data set is to be processed or used by other software with
specific DCB requirements, including non-Oracle software. These are situations where
you may need to do something to ensure that specific DCB attributes are used.
Multiple mechanisms are involved in establishing DCB attributes, including Oracle
components such as FNA and z/OS components such as LE and DF/SMS. External
factors such as the presence of DCB attributes on a DD statement or, for a preexisting
data set, in the VTOC, also are involved.

Of chief importance in this area is LE, which performs the z/OS OPEN function for
most data sets and thus controls much of what goes on. Even when you use FNA to
request DCB attributes, Oracle simply passes the attribute keywords to the C function
fopen() and LE does the work.

Default DCB Attributes
In the following discussions various conditions lead to the setting of default DCB
attributes. This refers to LE defaults, which are documented in z/OS C/C++
Programming Guide. The LE defaults depend on whether the file usage is "text" or
"binary" (which comes from the software) and on the type of device or data set being
used. In virtually all situations relevant to end users, Oracle opens files as "text" rather
than "binary."

The LE default DCB attributes for text files depend on the type of device as shown in
the following table:

Device RECFM LRECL BLKSIZE

disk VB 1028 6144

SYSOUT VBA 1028 6144

tape VB 1028 32760

DCB Attributes from FNA
When you use an FNA entry with FATTR as discussed in an earlier section, DCB
attribute keywords from the FATTR string are passed to LE when the file is opened. In

Interrupt Processing in TSO and z/OS UNIX Shell

2-28 Oracle Database User's Guide

this case Oracle software takes no special action to influence what is finally established
for DCB attributes; the outcome is simply normal LE behavior. The IBM manual C/C++
Programming Guide discusses some of the considerations in this situation, including the
cases where not all three attributes (recfm, lrecl, and blksize) are specified. In general,
the attributes you specify end up as the established attributes for the data set with any
missing attributes defaulted as described in the IBM manual.

With sequential data sets, this process disregards any DCB attributes that might
already exist (for a preexisting data set) or be coded in JCL (for a data set specified
with DD:). In other words, DCB attributes from FNA will override both existing data
set DCB attributes and DCB attributes you have specified on a DD statement or in a
TSO ALLOCATE command. The issue arises only with sequential data sets. With an
existing partitioned data set, if DCB attributes are specified in FNA they must match
the established attributes of the data set.

To prevent changing existing sequential data set attributes, LE provides the special
attribute notation recfm=*, which indicates that DCB attributes from the VTOC or on a
DD statement are to be retained. When used, recfm=* should be coded without
accompanying lrecl= or blksize= keywords. If these are included with recfm=* the
values supplied must match the existing attributes.

A problem with recfm=* is that it eliminates LE default processing in determining
DCB attributes. If you use this special attribute with a data set that does not have
established DCB attributes, the data set ends up with the z/OS system default of
RECFM=U. This is mostly likely to arise with a DD: filespec where the DD or
allocation specifies DISP=NEW and no DCB attributes.

Most users do not intend to create data sets with a record format of U. Recently, IBM
introduced another special attribute, recfm=+. This works the same as recfm=* except
for the case where there are no preexisting attributes: in that situation, the LE defaults
discussed in the previous section are used. Support for recfm=+ was provided in IBM
APAR PQ77259 which may or may not be installed on your system. Check with your
z/OS system administrator to find out.

DCB Attributes without FNA
When Oracle opens a file for output and there is no FNA FATTR data associated with
the type of file, the outcome depends on whether there are preexisting DCB attributes
in the VTOC (for a disk data set) or on the DD statement or allocation (in the case of a
DD: filespec). When there are preexisting attributes, they are retained as the real
attributes for the data set provided they do not conflict with Oracle's intended usage.
If there are no preexisting attributes, the LE defaults described earlier are used. This is
essentially the behavior of LE's recfm=+ described previously, but it does not require
that the fix for IBM APAR PQ77259 be installed. The additional checking and
defaulting logic is provided by Oracle software.

Interrupt Processing in TSO and z/OS UNIX Shell
When Oracle tools, utilities, or user-written applications run in an interactive
environment (where there is a human user involved) it sometimes is desirable to
interrupt a request that has been sent to the database server for processing. For
example, when issuing ad hoc SQL from SQL*Plus, the user might realize that a
SELECT is going to run too long in the server or produce too much output to view at
the terminal. For these situations an interrupt mechanism is provided in the Oracle
program interface code. The internals of the mechanism differ between TSO and a
z/OS UNIX shell.

Oracle C Runtime Compatibility

Oracle Software Interaction with z/OS and Language Environment 2-29

When an application running in TSO connects to an Oracle server, a subtask is
automatically attached. The subtask uses the TSO STAX service to establish processing
for TSO attention interrupts initiated with the 3270 ATTN or PA1 key. If you cause an
attention interrupt while a request is running in the Oracle server, the message "Oracle
ATTN." is displayed at the terminal and the server request is halted with an
ORA-01013 error ("user requested cancel of current operation"). Halting of the server
request is not necessarily instantaneous but usually occurs within a second or two.

In a shell, interrupt processing is implemented using POSIX signal processing that is
part of z/OS UNIX System Services and LE. The internals are completely different
from TSO and the interruption keying may differ (it normally is Ctl-C in a TTY
session, for example) but the overall behavior is similar to that described for TSO. As
in the TSO case, there may be a slight delay before the server recognizes the interrupt
condition and terminates the current operation with ORA-01013.

Additional capabilities related to interrupt processing are provided in SQL*Plus. Refer
to Chapter 4, "Oracle Tools and Utilities on z/OS" for details.

Oracle C Runtime Compatibility
Earlier to Oracle9i Release 2, Oracle used its own C runtime library instead of LE.
Developed in the early 1980's before POSIX services and HFS files existed on MVS, it
differs from LE in certain areas, particularly filespec syntax and related processing. In
its LE implementation Oracle provides compatibility for certain Oracle C runtime
conventions. This compatibility is enabled by default so that existing customer jobs,
scripts, and other types of programs continue to work without change. Oracle
recommends that new customers (and new applications developed by existing
customers) disable this compatibility or at least avoid using Oracle C runtime syntax,
which conflicts slightly with LE conventions.

Controlling Compatibility
Most of the compatibility feature is controlled by the environment variable ORA_RTL_
COMPAT. In non-POSIX environments, when this variable is not set or is set to ON,
compatibility is enabled. When it is set to OFF, compatibility is disabled. The
compatibility feature is always disabled when POSIX is ON, regardless of this
environment variable.

You can specify ORA_RTL_COMPAT using any of the non-program environment
variable mechanisms discussed earlier in this chapter. Setting it programmatically for
example, using a call to C putenv() is not supported. The variable must retain the
same setting (or not be set at all) for the life of an application.

Your installation may choose to disable the compatibility feature by default using the
global environment file feature described earlier in this chapter. In that case, to enable
compatibility in an application, you must use a local (ORA$ENV) environment file
with ORA_RTL_COMPAT=ON specified.

Because it runs before environment initialization, the compatibility feature for
redirection operators is always enabled when POSIX is ON and is not affected by
ORA_RTL_COMPAT.

Filespec Compatibility
When Oracle C runtime compatibility is enabled, filespecs that you supply in
parameters, commands, and through FNA that use Oracle C runtime syntax are
internally converted to equivalent LE syntax before they are used. Oracle C runtime

Oracle C Runtime Compatibility

2-30 Oracle Database User's Guide

used a filespec prefix notation based on HFS syntax in which a leading directory was
interpreted as a keyword indicating the type of filespec to follow. The list shows the
Oracle C runtime prefixes (on the left) and the LE syntax (on the right) to which they
are converted when compatibility is enabled:

/DD/name//DD:name
/DD/name(mem)//DD:name(mem)
/ODD/name//*DD:name
/ODD/name(mem)//*DD:name(mem)
/DSN/name//’name’
/DSN/name(mem)//’name(mem)’
/ODSN/name//*’name’
/ODSN/name(mem)//*’name(mem)’

The Oracle C runtime prefixes were case-insensitive, so filespecs with prefixes such as
/dd/ or /ODsn/ are also converted, as shown in the prior list.

Note: Since the Oracle C prefix notation is valid HFS syntax in LE, enabling
compatibility means you will be unable to access HFS files in directories with names
like /DD and/dsn from a POSIX OFF application.

File Attribute Compatibility
 Oracle C runtime also supported inclusion of JCL-like attribute information in a
filespec (following a comma or full colon). The same attributes could also be supplied
through the FATTR keyword in an FNA entry. When compatibility is enabled, a
subset of the available Oracle C runtime attribute keywords are converted to LE
equivalents. (These are the same LE attributes that you can use directly in FNA,
discussed earlier.) Oracle C attributes without an LE equivalent are discarded. The
following list shows the Oracle C attribute on the left, and the LE equivalent to which
they are converted, on the right:

BLKsize=x blksize=x
BLOck=x space=(x,…)
CYL space=(cyl,…)
DIrectory=x space=(,(,,x))
F recfm=F
FA recfm=FA
FB recfm=FB
FBA recfm=FBA
FBAS recfm=FBAS
FBS recfm=FBS
LRecl=x lrecl=x
PRIMary=x space=(,(x,…))
RECFM=x recfm=x
SECondary=x space=(,(,x,…))
TRK space=(trk,…)
V recfm=V
VA recfm=VA
VB recfm=VB
VBA recfm=VBA

Data Set Name Prefixing Compatibility
Besides the filespec and attribute conversions, enabling Oracle C runtime
compatibility has another significant effect on file processing. With Oracle C runtime,
prefixing of data set names that were not quoted or began with /DSN/ or /ODSN/ was
done only in TSO, when a PROFILE PREFIX was set. LE prefixes unquoted data set

Oracle C Runtime Compatibility

Oracle Software Interaction with z/OS and Language Environment 2-31

names in non-TSO applications, using the z/OS user ID associated with the address
space. When Oracle C runtime compatibility is enabled, the prefixing normally done
by LE in non-TSO environments is disabled in POSIX OFF applications.

An exception to Oracle C runtime compatibility occurs in file redirection operators
when redirection specifies a z/OS data set name without a /DSN/ prefix or
surrounding apostrophes. In a batch job, Oracle C runtime would not prefix such a
data set name but in Oracle's LE implementation prefixing does occur. This behavior is
not affected by the ORA_RTL_COMPAT environment variable.

Standard Files and Redirection Compatibility
Oracle C runtime used different defaults for two of the three standard files discussed
earlier in this chapter and also supported redirection syntax that is not supported by
LE. Compatibility in this area, which pertains only to Oracle tools and utilities running
in POSIX OFF environments, is provided using the LE exit routine CEEBXITA. This
exit runs before the C environment is initialized and is permitted to examine and
modify parameters specified on the command line or in the PARM string. Because it
runs before environment initialization, this processing is not affected by the ORA_
RTL_COMPAT environment variable.

Since it cannot be controlled by the user, this compatibility processing is conditioned
on detecting when Oracle C runtime conventions are being used. Detection is based on
the use of Oracle C syntax for redirection (both the redirection operators and the
following filespecs) and on the presence or absence of certain DD names.

The detection and compatibility processing proceeds as follows:

1. If the Oracle C standard error redirection operator "?"or "??" is found in the
command line or PARM, it is converted to the LE equivalent "2>" or "2>>",
respectively.

2. All redirection operators in the command line or PARM are examined for the use
of Oracle C filespec syntax (/DD/, /ODD/, /DSN/, or /ODSN/). Any that use
this syntax are changed to LE equivalents described in "Filespec Compatibility" on
page 2-29.

3. If no redirection of standard error was found and a SYSERR DD statement is
present, standard error is redirected to it using 2>//DD:SYSERR.

4. If there was no redirection of standard output and a SYSOUT DD statement is
present, standard output is redirected to it using 1>//DD:SYSOUT. In a batch job,
this occurs only if a SYSERR DD statement also is present.

5. In a batch job only, if any one or more of these conversions was done and there are
redirection operators with data set name filespecs that do not use apostrophes,
those filespecs are modified to enclose the data set name in apostrophes.

The effect of this somewhat complex set of rules is to permit both Oracle C runtime
syntax and conventions and LE syntax and conventions to coexist as much as possible.
One limitation of this implementation is that the standard files cannot be redirected to
HFS files under directory names like /DD or/dsn because they are interpreted as
Oracle C syntax.

Oracle C Runtime Compatibility

2-32 Oracle Database User's Guide

3

Oracle Net and Server Connections on z/OS 3-1

3 Oracle Net and Server Connections on z/OS

Architecturally, the Oracle database server views all client connections as network
connections regardless of whether the connecting client is on the same or a different
computer than the server. When you run Oracle tools, utilities, or your own
Oracle-accessing 3GL programs on z/OS, Oracle Net software that is part of the Oracle
program interface code is executed-even if you are connecting to an Oracle instance on
the same z/OS system using cross-memory services. This means Oracle Net features,
parameter files, and so on, come into play in any Oracle programs you run on z/OS.
This chapter describes z/OS-specific considerations in using Oracle Net and
supplements the product information in the Oracle Net Services Reference Guide.

When we use the term "application" in this chapter we mean any Oracle-accessing
program that you run on z/OS, including Oracle-supplied tools and utilities and your
own 3GL applications using OCI or an Oracle Precompiler language.

Different Oracle Net considerations apply to Oracle-accessing programs running
under Oracle Access Manager for CICS TS or Oracle Access Manager for IMS TM.
Refer to Chapter 6, "Developing Oracle Applications to Run on z/OS" for more
information.

This chapter contains the following sections:

■ Protocols

■ Oracle Net Files

Protocols
Oracle Net on z/OS supports two different protocols: cross-memory (XM) and TCP/IP
(TCP). Normally you use XM protocol to connect to a local Oracle server (on the same
z/OS system as the application) and TCP protocol to connect to a remote Oracle server
(on z/OS or any other operating system on which Oracle runs). You can also use TCP
protocol to connect to a local server, but it is less efficient than using XM. (There are,
however, circumstances in which you might do this in order to exploit certain server
features, discussed later.) You cannot use XM protocol to connect to an Oracle server
on a different system than the application.

Most applications connect to just one Oracle server and so use only a single protocol at
a time. Applications can connect to multiple Oracle servers, however, and it is possible
for an application to mix protocols, such as using XM for one connection and TCP for
another, simultaneously.

Regardless of which protocol you use, Oracle Net address data for a server must be
available in order to locate and connect to the server. Address data depends on the
protocol used and includes things like a TCP/IP hostname and port, server name or
identifier. The address data for a server can be imbedded in the application program,

Protocols

3-2 Oracle Database User's Guide

supplied through an external (but local) mechanism such as a parameter file or
environment variable, or obtained from a remote name resolution service such as
Oracle Names or an LDAP service. Using a remote name resolution service is
applicable to TCP connections only; server address data for XM connections is always
supplied locally.

Protocol and Address Determination
When an Oracle tool, utility, or 3GL application runs on z/OS, it makes a specific call
to connect to an Oracle server. The details of this call vary depending on application
design and on which program interface (API) is used, but in all cases the application is
allowed to supply a character string representing either a name or address data for the
target server. With Oracle tools and utilities this data usually is combined with the
Oracle user ID and password into a single string supplied on the command line or on
an input parameter or command. By convention, the user ID and password are
separated by a forward slash and the password and name or address data are
separated by an "at" sign (@). So, for example, a SQL*Plus session might be started in
TSO with a command similar to the following:

 READY
sqlplus scott/tiger@testdb1

In this example the user ID and password are scott and tiger respectively, and a
target server name testdb1 is included.

The behavior of Oracle Net in determining the protocol and address data depends on
whether the connect call supplies target server data and whether that data specifies a
name or an address:

■ If server data is supplied and is a simple or dotted name, the name is looked up in
a local tnsnames.ora parameter file or using a remote names server. The choice
between a file and a names server is controlled by other Oracle Net parameters.
(Refer to the section "Oracle Net Output Files" on page 3-8.)

■ If server data is supplied and is an Oracle Net address (normally beginning with a
left parenthesis), the address is used verbatim and no external file or remote
names server is accessed.

■ If server data is not supplied, a default hierarchy of external address data sources
is examined to determine the protocol choice and target server address.

The external sources that are checked when server name or address data are omitted
are, in descending order of precedence:

1. An included DD statement (or comparable TSO allocation) in the application job
or session of the form //ORA@sid DD DUMMY, where ORA@ is exactly as shown
and sid is the 1-character to 4-character SID for an XM protocol address. Refer to
the section "XM Protocol Address" on page 3-4. Only XM protocol is supported
with this mechanism. The DD is not opened by Oracle software; it is supplied only
to convey the SID. An Oracle SID on z/OS can be up to 8 characters long; SIDs
longer than 4 characters cannot be accessed with this technique. If multiple DD
names beginning with ORA@ are present, the behavior is unpredictable.

2. A character value assigned to the environment variable TWO_TASK. This value is
interpreted exactly the same as the target server data: it can be either a target
server name (looked up in a tnsnames.ora file or remote name resolution service)
or an Oracle Net address string. Either XM or TCP protocol can be specified with
this mechanism.

Protocols

Oracle Net and Server Connections on z/OS 3-3

3. A character value assigned to the environment variable ORACLE_SID. This value
is interpreted as a 1-character to 8-character SID for an XM protocol address. Refer
to "XM Protocol Address" on page 3-4. Lowercase letters in this SID are converted
to upper case. Only XM protocol is supported with this mechanism.

If an application supplies no server name or address data on its connection attempt
and none of the three mechanisms in the prior list is used, the connection will fail,
typically with an ORA-06413 error.

XM Protocol
The XM protocol exploits the unique cross-memory hardware and software facilities of
z/Series and z/OS. It can be used only when the application and the target Oracle
server are on the same z/OS system. It cannot be used between separate nodes of a
Sysplex cluster, even if the nodes are logical partitions (LPARs) in the same physical
processor complex.

Unlike other protocols, XM does not use shadow or surrogate processes to execute
application requests in the database server. Instead, the Oracle program interface
issues a System/390 Program Call (PC) hardware instruction to transfer execution
directly into the server address space to execute requests. Request input and output
data are copied between the application and the server address spaces using
cross-memory instructions. On conclusion of a server request, control returns to the
application through a Program Return (PR) instruction. Thus, client/server
interactions with XM protocol take place at processor instruction speeds, without
expensive context-switching or task-switching operations.

There are several characteristics of the XM protocol of which you should be aware:

■ All processor (CPU) time consumed by your application while executing in the
Oracle server address space is accounted by z/OS under your application's task
and address space, not those of the Oracle server. This CPU time appears, for
example, in the z/OS SMF accounting data written for your application job or
session, added to the CPU time that your application consumed on its own,
locally.

■ Database and other file I/O operations that your application issues while
executing in the Oracle server address space are accounted to the Oracle server
address space, not to your application job or session.

■ When you use XM protocol, your database requests run at the z/OS dispatching
priority or WLM goal of your job or session, not at the priority or WLM goal of the
Oracle server address space.

■ If your application uses Oracle server parallel execution features, such as parallel
query processing, some of the application's work is done by local subtasks in the
server address space. This work does run at the z/OS dispatching priority or
WLM goal of the server address space and is not accounted by z/OS to your
application job or session.

■ Oracle for z/OS provides the ability to impose native z/OS security checks
(through IBM's RACF or a comparable product) on XM protocol connections. If
your installation has activated this feature, the z/OS user ID under which your
application runs must be granted access authorization for the target Oracle server.
This check is completely separate from Oracle logon processing, the Oracle user ID
and password, and so on.

■ Unlike TCP, the XM protocol is always, by its nature, synchronous and "half
duplex." A few rather specialized server features require a protocol capable of
asynchronous or nonblocking operation. To exploit those specific features on

Protocols

3-4 Oracle Database User's Guide

z/OS you must use TCP protocol, even if the application and server are on the
same z/OS system.

XM Protocol Address
If you are not using an ORA@sid DD statement or an ORACLE_SID environment
variable to indicate use of XM protocol, you will need to code an XM protocol address,
either in a tnsnames.ora file, discussed in "Oracle Net Files" on page 3-6, or directly in
a connect parameter or argument. The generic considerations for coding protocol
addresses are described in the Oracle Net Services Reference Guide. Refer to the guide for
general syntax conventions and for details and examples illustrating TCP protocol.
Here we describe the name-value pairs that make up an XM protocol address, unique
to z/OS. All pairs described are used in the ADDRESS portion of the protocol address.

(PROTOCOL=XM)

This pair is specified exactly as shown and is required to indicate that XM protocol is
being used.

(SID=sid)

This specifies the 1-character to 8-character SID (Service Identifier) of the target z/OS
Oracle server. The SID is a unique identifier assigned to each Oracle server configured
on a given z/OS system. All SIDs use upper case letters; any lowercase letters are
converted to upper case. If you specify SID, which is recommended, neither of the
following two parameters is used. If you do not specify SID, both of the following
parameters are required.

(SUBSYS=ssn)

This specifies the 1-character to 4-character z/OS subsystem name of the OSDI
subsystem in which the target Oracle service is defined. Any lowercase letters in ssn
are converted to upper case.

(SERVICE=srvname)

This specifies the 1-character to 8-character OSDI service name of the target Oracle
server. Any lowercase letters in srvname are converted to upper case.

XM Protocol Examples
Here we show several examples that use XM protocol. All use SQL*Plus, but the
techniques shown extend readily to other tools and utilities and to your own 3GL
applications.

In the first example, SQL*Plus is invoked at the TSO READY prompt and the XM
address is passed directly in the first command line parameter with the user ID and
password. The target server has the SID "ODB1". This example assumes that
TSOLIB/STEPLIB and ORA$LIB are already allocated as needed.

 READY
sqlplus scott/tiger@(address=(protocol=xm)(sid=odb1))

In the next example, a batch job execution of SQL*Plus omits the server data from the
user ID/password parameter and uses an ORA@sid DD to specify the same target as
the prior example.

//PLUS EXEC PGM=SQLPLUS,PARM='SCOTT/TIGER'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10.MESG
//ORA@ODB1 DD DUMMY

Protocols

Oracle Net and Server Connections on z/OS 3-5

//SYSIN DD DISP=SHR,DSN=FDNR30.PROD.SQL(WNP14C)
//

In the third example, a similar batch job relies on an entry in a tnsnames.ora file to
obtain the XM address data. The tnsnames.ora file is discussed in "Oracle Net Files"
on page 3-6. Typically this file would be a data set or PDS member rather than
instream as shown in the following example:

//PLUS EXEC PGM=SQLPLUS,PARM='SCOTT/TIGER@PRODDB1'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10.MESG
//TNSNAMES DD *
proddb1 =
 (description=
 (address=(protocol=xm)(sid=odb1)))
/*
//SYSIN DD DISP=SHR,DSN=FDNR30.PROD.SQL(WNP14C)
//

The last example shows the use of an ORACLE_SID environment variable in a z/OS
UNIX shell to specify the target server. It assumes that the required ORACLE_HOME,
PATH, and LIBPATH are already set.

$ export ORACLE_SID=odb1
$ sqlplus scott/tiger

TCP Protocol
Oracle Net TCP protocol provides connectivity between client and server over a LAN
or WAN as well as local connections. All Oracle platforms implement TCP/IP
protocol, so it can be used by outbound z/OS client applications to connect to Oracle
servers on any supported platform. If the installation configures and runs an Oracle
Net (Listener) service on z/OS, inbound remote clients on any platform can connect to
Oracle servers running on z/OS. This material deals mainly with outbound z/OS
client considerations; inbound client considerations are covered in the Oracle Database
System Administration Guide for IBM z/OS on System z.

The following considerations pertain to outbound client use of TCP protocol on z/OS:

■ In Oracle9i Version 9.0 and earlier, outbound z/OS clients' network I/O
operations were performed by the Oracle Net address space. Thus, clients were
dependent on the Net service being up and operational, and an interruption in the
Net service impacted client operations. Starting with Oracle 9i Version 9.2 and in
all subsequent releases, outbound clients interact directly with the z/OS TCP/IP
service and are not affected by Oracle Net service availability.

■ IBM's z/OS TCP/IP protocol service can be stopped and started. If it is stopped,
in-progress Oracle Net TCP connections receive permanent errors and all new
connection attempts fail until the service is restarted.

■ Using z/OS TCP/IP requires the application to be a z/OS UNIX System Services
process. If the application is running in a z/OS UNIX shell, it already is a POSIX
process and the requirement is met. Batch jobs and TSO sessions (not in a shell)
generally are not z/OS UNIX processes and the first use of TCP/IP (or any other
z/OS UNIX interaction) will cause the job or session to be "dubbed" or made a
z/OS UNIX process.

For dubbing to succeed, the z/OS user ID associated with the job or session must
have a default OE segment defined to the z/OS security service. If dubbing fails,
TCP/IP interactions fail and the client will be unable to connect to a server using

Oracle Net Files

3-6 Oracle Database User's Guide

TCP. Successful dubbing does not affect application program operations nor does
it change the POSIX indicator. If you are uncertain about whether your
application's z/OS user ID is capable of being dubbed, consult with your security
administrator.

■ Using TCP protocol means it is possible to use a remote name resolution service
such as Oracle Names or LDAP instead of locally-configured address data (for
example, a tnsnames.ora file) to contact Oracle database servers. Consult with
your systems administrator or database administrator to determine if name
resolution services are available in your installation. Using a remote name service
will also require dubbing independent of the protocol selected as a result of the
lookup.

Oracle Net TCP protocol address particulars are covered in the Oracle Net Services
Reference Guide.

Oracle Net Files
When you use Oracle Net (including local server connections) any of several Oracle
Net input (parameter) files may be involved. In some situations output files (log or
trace files) may also be produced. General considerations for these files and what goes
in them are covered in the Oracle Net Services Reference Guide. Here we address issues
specific to z/OS.

A primary consideration is how each file is identified. On z/OS, Net default filespecs
differ depending on the POSIX indicator. Remember that with Oracle tools and
utilities, POSIX is determined by whether the program is initiated from a z/OS UNIX
shell or not. (POSIX is ON in a z/OS UNIX shell, OFF otherwise.) In your own 3GL
applications, the POSIX setting can be built into the application module, specified at
runtime, or set automatically based on where the application runs (as with Oracle
tools and utilities).

Oracle Net input (parameter) files are accessed when an application makes its first
attempt to connect to an Oracle server. In some cases, they may be opened and read
multiple times in the life of an application. The following sections correspond to
similarly-titled sections in the Oracle Net Services Reference Guide.

Profile Parameters (sqlnet.ora)
This is the primary parameter file of Oracle Net, usually referred to by its UNIX HFS
file name sqlnet.ora. It is optional, but must be supplied if anything other than
default parameters is desired. Activating Oracle Net logging or tracing, using a remote
name resolution service, and other Oracle Net features require this file to be supplied.

In a POSIX ON environment, this file has the name sqlnet.ora and is located in one of
several HFS directories as described for UNIX systems in the Oracle Net Services
Reference Guide.

When POSIX is OFF, this file is opened as //DD:SQLNET which means it is specified
by the SQLNET DD statement. In this case the file can be a sequential data set, a PDS
member, an instream (DD *) data set, or an HFS file (DD PATH=). A sequential or
partitioned data set can have record format F, FB, V, or VB. Data that is not a part of
the Oracle Net input, such as sequence numbers, is not permitted.

Some of the parameters you might specify in sqlnet.ora have z/OS-specific
considerations, as follows:

Oracle Net Files

Oracle Net and Server Connections on z/OS 3-7

LOG_DIRECTORY_CLIENT
This parameter indicates the "directory" in which Oracle Net log files are written when
client logging is activated. On z/OS, it can supply an HFS directory path or the
left-hand portion of a data set name, as discussed in Chapter 2, "Oracle Software
Interaction with z/OS and Language Environment." If this parameter is specified, it
must be syntactically compatible with whatever is specified or defaulted for LOG_FILE_
CLIENT. If LOG_FILE_CLIENT is a filespec to which no directory can be added, this
parameter is ignored.

The default for this parameter is an empty string, signifying the current working
directory (POSIX ON) or default LE data set name prefixing (POSIX OFF). Note that
when OraRTL compatibility is enabled, no data set name prefix is added in non-TSO
environments.

LOG_FILE_CLIENT
This parameter specifies either a complete or trailing (right hand) portion of the
filespec for Oracle Net logging. This may be combined with the LOG_DIRECTORY_
CLIENT value to produce the complete filespec. If this parameter specifies an absolute
HFS path or a non-HFS filespec that cannot be modified (such as a //DD: or
//SYSOUT: filespec), the LOG_DIRECTORY_CLIENT part is not incorporated. If the
two strings are combined, the result must be a valid, usable LE filespec.

The default for this parameter is sqlnet.log when POSIX is ON and
//DD:SQLNETLG when POSIX is OFF. Note that the POSIX OFF default means any
setting of LOG_DIRECTORY_CLIENT is ignored.

TRACE_DIRECTORY_CLIENT
This parameter indicates the "directory" in which Oracle Net trace files are written
when client tracing is activated. On z/OS, it can supply an HFS directory path or the
left-hand portion of a data set name as discussed in Chapter 2. If this parameter is
specified, it must be unambiguous and compatible with whatever is specified or
defaulted for TRACE_FILE_CLIENT. If TRACE_FILE_CLIENT is a filespec to which
no directory can be added, this parameter is ignored.

The default for this parameter is an empty string, signifying the current working
directory (POSIX ON) or default LE data set name prefixing (POSIX OFF). Note that
when OraRTL compatibility is enabled, no data set name prefix is added in non-TSO
environments.

TRACE_FILE_CLIENT
This parameter specifies either a complete or trailing (right hand) portion of the
filespec for Oracle Net tracing. This may be combined with the TRACE_DIRECTORY_
CLIENT value to produce the complete filespec. If this parameter specifies an absolute
HFS path or a non-HFS filespec that cannot be modified (such as a //DD: or
//SYSOUT: filespec), the TRACE_DIRECTORY_CLIENT part is not incorporated. If
the two strings are combined, the result must be a valid, usable LE filespec.

The default for this parameter is sqlnet.trc when POSIX is ON and //DD:CLITC
when POSIX is OFF. Note that the POSIX OFF default means any setting of TRACE_
DIRECTORY_CLIENT is ignored.

TNSPING.TRACE_DIRECTORY
This parameter specifies the directory in which the TNSPING trace file is written. The
default is $ORACLE_HOME/network/trace when POSIX is ON. This parameter is
ignored when POSIX is OFF.

Oracle Net Files

3-8 Oracle Database User's Guide

Trace information is written to the tnsping.trc file when POSIX is ON and to
//DD:TNSPING when POSIX is OFF.

Local Naming Parameters (tnsnames.ora)
This file supplies Oracle server name resolution mappings. When the server data
supplied on a connection attempt is a name (rather than an explicit Oracle Net address
string) and you have specified (or defaulted) "local naming" in sqlnet.ora, this file is
searched for an entry matching the supplied name. The file is optional, but if you omit
it and attempt to connect to a server identified by name, and have not enabled an
alternative name resolution method (such as a remote resolution service), the
connection attempt will fail.

In a POSIX ON environment, this file has the name tnsnames.ora and is located in one
of several HFS directories as described for UNIX systems in the Oracle Net Services
Reference Guide.

When POSIX is OFF, this file is opened as //DD:TNSNAMES which means it is
specified by the TNSNAMES DD statement. In this case the file can be a sequential
data set, a PDS member, an instream (DD *) data set, or an HFS file (DD PATH=). A
sequential or partitioned data set can have record format F, FB, V, or VB. Data that is
not a part of the Oracle Net input, such as sequence numbers, is not permitted

Except for the XM protocol address particulars, already discussed, there are no
z/OS-specific considerations for the data in this file.

Directory Usage Parameters (ldap.ora)
This file supplies configuration parameters related to using directory-based server
name resolution. You may need to supply it when your sqlnet.ora
NAMES.DIRECTORY_PATH parameter includes LDAP as a naming method.

In a POSIX ON environment, this file has the name ldap.ora and is located in one of
several HFS directories as described for UNIX systems in the Oracle Net Services
Reference Guide.

When POSIX is OFF, this file is opened as //DD:LDAP which means it is specified by
the LDAP DD statement. In this case the file can be a sequential data set, a PDS
member, an instream (DD *) data set, or an HFS file (DD PATH=). A sequential or
partitioned data set can have record format F, FB, V, or VB. Data that is not a part of
the Oracle Net input, such as sequence numbers, is not permitted

There are no z/OS-specific considerations for the data in this file.

Oracle Net Output Files
When requested through sqlnet.ora parameters, Oracle Net writes log and trace files.
Usually this occurs during problem diagnosis, at the request of Oracle Support
Services. The type and name (filespec) for these files is controlled by the four
parameters discussed under "Profile Parameters (sqlnet.ora)" on page 3-6. If these
parameters are not specified, the log and trace files default to //DD:SQLNETLG and
//DD:CLITC in POSIX OFF applications and to sqlnet.log and sqlnet.trc (in the
current working directory) in POSIX ON applications.

4

Oracle Tools and Utilities on z/OS 4-1

4 Oracle Tools and Utilities on z/OS

This chapter discusses z/OS-specific issues and considerations with various Oracle
tool and utility programs that application developers are likely to use. (Tools used
chiefly by database administrators or system administrators, such as RMAN, are
covered in the Oracle Database System Administration Guide for IBM z/OS on System z.
Before using this chapter you should be familiar with the material in Chapter 2,
"Oracle Software Interaction with z/OS and Language Environment," which describes
features and considerations common to most or all Oracle tools and utilities. You
should also have access to the base or generic documentation for each tool or utility
you are using since the material in this chapter is supplemental to that.

Oracle supplies JCL procedures for some of the tools and utilities that support batch
job execution. Consult with your system administrator to determine if these
procedures are installed in your system and the procedure library and member names
used.

This chapter contains the following sections:

■ SQL*Plus

■ SQL*Loader

■ Export and Import

■ Datapump Export and Import

■ TKPROF

SQL*Plus
SQL*Plus is a general purpose tool for issuing both prepared and ad hoc SQL
statements and PL/SQL procedure calls. It also is used for database administration
and operations functions, including creating database objects and structures,
managing Oracle user IDs and object security, and starting up and shutting down
database instances. When you run SQL*Plus on z/OS you can interact with Oracle
servers on z/OS or on any other Oracle platform. Refer to the SQL*Plus User's Guide
and Reference for complete generic information about SQL*Plus.

Invocation
SQL*Plus on z/OS supports batch job, TSO, and z/OS UNIX shell execution
environments. A JCL procedure for batch execution (default name ORASQL) is
supplied by Oracle and may be installed on your system with the same or a different
name. In TSO, both CALL and command processor (CP) invocation are supported. For
the non-POSIX environments, the load module or program object name is SQLPLUS.

SQL*Plus

4-2 Oracle Database User's Guide

In a z/OS UNIX shell (including OMVS under TSO), use the sqlplus (lowercase)
command to invoke this tool.

SQL*Plus reads C standard input (described in Chapter 2) as the primary source of
input commands and SQL statements. If you do not supply an Oracle user
ID/password (or the special value /nolog) as an invocation parameter, SQL*Plus
prompts for a user ID and password and reads those from standard input before
reading for normal commands. If you do this in a batch job, the prompt responses
must appear in the first records or lines of standard input, ahead of any input
commands or SQL statements. In interactive usage (TSO or a shell), these prompts and
responses normally occur at the terminal. In this case, if the password is entered
separately from the user ID, it is not displayed at the terminal.

For certain database control operations (such as Oracle startup and shutdown),
SQL*Plus requires a special user ID/password parameter that contains spaces, such as
"/ AS SYSDBA." Refer to the section "Parameters Containing Spaces" on page 2-9 for
information about how to specify such values.

SQL*Plus output (including the aforementioned prompts) is written to C standard
output. There are various options to control exactly what gets written as well as a
SPOOL command to write output to a separate data set or file.

Output Interruption
Interruption refers to using the terminal ATTN or PA1 key (in TSO) or a POSIX signal
mechanism such as Ctl-C to interrupt in progress activity. Besides the normal
interrupt handler that is established when connecting to Oracle from TSO or a shell,
SQL*Plus establishes its own handler to allow termination of display output. If you
generate an interrupt while using SQL*Plus, the behavior depends on whether
SQL*Plus or the target Oracle server was in control when the interrupt was processed.
If the Oracle server was in control (it was processing a SQL statement or PL/SQL
procedure call from SQL*Plus) the interrupt halts the in progress statement with an
ORA-01013 error, as described in Chapter 2. If the interrupt occurs while SQL*Plus is
in control, driving the SQL*Plus-specific handler, it causes current fetches for any
SELECT statement to stop. The typical occurrence of the latter situation is where you
have issued a SQL SELECT statement that produces more output than expected. This
provides an alternative to canceling or killing the entire SQL*Plus session to halt
unwanted output.

Profile Files
SQL*Plus reads optional profile files during initialization (after logging on to Oracle).
The files can contain SQL*Plus commands (such as SET commands) and SQL
statements and PL/SQL blocks.

When SQL*Plus runs in a shell on z/OS, there are two profile files with the same
names and locations as on other UNIX platforms. The site profile applies to all users
and is read from $ORACLE_HOME/sqlplus/admin/glogin.sql. The user profile is read
from login.sql in the first HFS directory (of multiple possible directories) in which a
file of that name is found. The directories that are searched for the user profile are the
current working directory followed by any directories listed in the SQLPATH
environment variable. (Refer to the SQL*Plus User's Guide and Reference for details on
using the SQLPATH environment variable.)

In z/OS batch and TSO (POSIX OFF), there is no site profile file. The user profile
filespec is //DD:SQLLOGIN which means the SQLLOGIN DD is read for profile
statements. The DD can specify any of the z/OS data set or file types permitted for
SQL files, discussed in the section "SQL Files" on page 4-3.

SQL*Plus

Oracle Tools and Utilities on z/OS 4-3

Profile files are optional. If a file cannot be opened, profile processing is skipped and
no error message is issued.

SQL Files
Various SQL*Plus commands operate on files containing SQL, PL/SQL, and/or
SQL*Plus commands. On z/OS, these files can be a sequential data set, a PDS member,
an instream (DD *) data set, or an HFS file. A sequential or partitioned data set can
have a record format of F, FB, V, or VB. Records in a data set (including instream)
must not contain sequence numbers or other data not intended for SQL*Plus to read.

If the file you want to use is counter to the POSIX expectation (for example, an HFS file
when POSIX is OFF), you must use an unambiguous filespec when specifying the file.
When a file is specified as a data set name or HFS file name, the name is subject to
extension processing (as discussed in Chapter 2) with the type suffix sql. The
SQL*Plus commands @, @@, EDIT, GET, SAVE, and START all apply this extension to
supplied filespecs.

In POSIX OFF environments, you can use FNA to manipulate data set filespecs
produced by name extension or to associate disk space and DCB attributes with files
that are written. Refer to Chapter 2 for a complete description of FNA. Use of FNA is
required when you run Oracle catalog creation or upgrade scripts using SQL scripts
that are members of a partitioned data set. In this case, FNA is used to transform
simple 1-segment script names into PDS member names inside parentheses following
a DD or data set name.

The SQL*Plus @@ operator requires additional explanation on z/OS. This operator is
shorthand for the START command, similar to @ but with a slight difference: when an
@@ command is coded in a file and the filespec supplied on the command is not
absolute; the file is read from the same directory that contains the file in which the @@
command was coded. With data sets, "directory" refers to the high-level (leftmost) data
set name qualifier, so the behavior of @@ with data sets might not be what you
expected. In particular, you cannot code @@foo within a PDS member and assume that
foo will be treated as another member name within that PDS. Without FNA, @@foo
will end up trying to access a data set named hlq.FOO.SQL where hlq is the high-level
dsname qualifier of the data set in which the @@foo command is supplied. To get
different behavior, such as treating foo as a member name, you must use FNA.

EDIT Command Processing
The SQL*Plus EDIT command is designed to invoke an external editor of your
choosing. In z/OS TSO (POSIX OFF), the only external editor supported is IBM's ISPF
editor. In this environment, the SQL*Plus variable _EDITOR is automatically set to
ISPF.

To be able to invoke the ISPF editor in TSO, SQL*Plus requires that the ISPF
environment already be established. To accomplish this, invoke SQL*Plus from within
an ISPF session (from the ISPF "Command Shell" panel). Keep in mind that a data set
name filespec supplied on an EDIT command is subject to extension (and FNA)
processing. HFS files cannot be edited with the ISPF editor using SQL*Plus EDIT.

In a z/OS UNIX shell, _EDITOR defaults to vi. To use a different editor, define the _
EDITOR variable to the exact name of the editor executable or shell script. Whether the
editor you use in a shell is capable of processing data sets (in addition to HFS files)
depends on the editor. Editing data sets with the default z/OS UNIX editor (vi) is not
supported.

SQL*Plus

4-4 Oracle Database User's Guide

Neither vi nor ISPF work in the TSO OMVS shell. To use EDIT when running
SQL*Plus in OMVS, you must define _EDITOR to oedit before issuing the EDIT
command, as follows:

SQL> def _editor=oedit
SQL>
 ===> edit /tmp/load_it.sql

The editor, oedit, is a form of the ISPF editor that works in POSIX environments. It is
the only editor supported when SQL*Plus runs in the OMVS shell. Only HFS files can
be accessed with oedit.

The EDIT command is not available when SQL*Plus runs as a z/OS batch job.

SPOOL Command Processing
The SPOOL command causes SQL*Plus to begin writing output (including command
responses and SQL statement results) to a specified file. On z/OS, the filespec you
supply on the spool command can specify a sequential data set, PDS member,
SYSOUT, or an HFS file. If the file you want to use is counter to the POSIX expectation,
you must use an unambiguous filespec. If the filespec you supply is a data set or HFS
file name, it is subject to extension with the suffix first. When running SQL*Plus in
batch or TSO, you can use FNA to manipulate the resulting filespec or to associate
space or DCB attributes with the data set.

If you spool to a SYSOUT filespec, as in the following:

 SQL>
spool //s:*,,MCMDEV3
 SQL>
…
the output is freed (becomes eligible for routing or printing) as soon as the file is
closed. The spool file is closed when you issue another SPOOL command (including
the special command SPOOL OFF) or when you exit SQL*Plus.

Note: The SQL*Plus LINESIZE system variable must be less than or
equal to the SPOOL dataset record length to avoid record truncation.
If SQL*Plus LINESIZE exceeds LRECL, then error SP2-0308: cannot
close spool file is thrown. The underlying LE error, O/S Message:
EDC5003I Truncation of a record occurred during an I/O
operation, can be trapped using the WHENEVER OSERROR
command.

The special command SPOOL OUT is not supported on z/OS. Attempting to use it
will produce an error message.

HOST Command Processing
The HOST command allows you to invoke an arbitrary external program or script
from within a SQL*Plus session. This feature is implemented on z/OS using the C
function system, described in the IBM manual C/C++ Run-Time Library Reference. Refer
to this manual for details on the capabilities and limitations of the system function.

The behavior of system() (and thus of the HOST command) depends on the POSIX
indicator and, in the POSIX OFF case, on command syntax and whether the
environment is batch or TSO. In TSO, HOST can be used to invoke TSO commands,

SQL*Plus

Oracle Tools and Utilities on z/OS 4-5

CLISTs, and REXX EXECs. To do this, code the command text after HOST exactly as it
would be entered at the TSO READY prompt, as in the following example:

 SQL>
host listd misc.sql
 JSMITH.MISC.SQL
 --RECFM-LRECL-BLKSIZE-DSORG
 VB 255 4096 PO
 --VOLUMES--
 PNW042
 SQL>
In addition, in both TSO and batch, HOST can be used to invoke jobstep z/OS
programs such as IBM utilities. To do this, special syntax (similar to the JCL EXEC
statement) is required to indicate the program name and, optionally, PARM data in
the command text as illustrated here:

 SQL>
host pgm=iebcopy,parm=COPY
 IEBCOPY MESSAGES AND CONTROL STATEMENTS PAGE 1
 IEB1035I JSMITH $TS1 $TS1 13:59:38 THU 02 OCT 2003 PARM='COPY'
 IEB1099I *** IEBCOPY IS NOT APF AUTHORIZED ***
 $TS1 COPY INDD=SYSUT1,OUTDD=SYSUT2 GENERATED STATEMENT
 …

With this technique, letter case is preserved in any PARM data that you supply, which
is why COPY is in upper case in the example. Refer to the IBM manual C/C++ Run-Time
Library Reference for additional details on this command syntax.

In non-POSIX TSO and batch environments, you cannot use SQL*Plus HOST to invoke
an HFS executable or shell script. Also, you cannot issue HOST alone (with no
command text) to be placed at a general command prompt.

The system() function and HOST behave differently when you run SQL*Plus in a
z/OS UNIX shell. The command text that you supply with HOST must resolve to a
valid executable or shell script file in the HFS, or be a built-in shell command.
Commands are processed with the shell indicated by the SHELL environment
variable; if SHELL is not set, the default shell /bin/sh is used. Be aware that
commands issued through HOST are executing in a subshell relative to the shell in
which SQL*Plus was invoked, so issuing commands that change the state of the
current shell has no effect on the SQL*Plus session. For example, using HOST to issue
a cd (change directory) command or to set an environment variable does not change
the current working directory or the value of that environment variable as seen by
SQL*Plus.

When SQL*Plus runs in a z/OS UNIX shell, HOST can be issued alone, without
command text, causing the user to be placed at a general shell prompt. In this situation
multiple commands can be issued in succession. Control returns to SQL*Plus when
you end execution of the nested shell. For example:

SQL> host
$ cd /oradev/js1/src
$ ls -l *.c
-rw-rw-r-- 1 JSMITH PDRP88 7438 Nov 5 15:55 ocidemo3.c
$ rm ocidemo3.c
$ exit
SQL>

In this case, the cd command is effective in terms of setting the directory used by the
subsequent commands within the subshell.

SQL*Plus

4-6 Oracle Database User's Guide

There is no direct way to invoke non-HFS z/OS programs or TSO commands using
SQL*Plus HOST in a POSIX ON environment.

TIMING Processing
The SQL*Plus timing feature, activated with the command SET TIMING ON, reports
elapsed time for server SQL and PL/SQL operations. On z/OS, the timing feature also
reports the processor (CPU) time consumed by SQL*Plus during these operations. As
described in Chapter 3, when you use XM protocol to connect to a local Oracle server,
this time figure includes the Oracle server processing, which is executed by the
SQL*Plus task in cross-memory mode. This allows the timing feature to be used to
collect approximate server processing times for SQL and PL/SQL operations.

Be aware that server caching of data, SQL, and PL/SQL, and other workload-related
factors, mean that processor time for a particular operation can vary significantly over
multiple trials. Also, the processor time reported by the timing feature on z/OS does
not include time consumed by server "slave" tasks used in parallel query and other
parallel operations. Finally, when using TCP protocol rather than XM, the processor
time reported by the timing feature does not include any Oracle server processor time.

Return Codes
Except for initialization failures, SQL*Plus normally sets a SUCCESS (zero) return
code regardless of the success or failure of any SQL, PL/SQL, or SQL*Plus commands
processed. To change this behavior, for example to set a nonzero return code if any
SQL operation fails, you must use the EXIT command, possibly in conjunction with
the WHENEVER command. EXIT allows you to set any valid numerical return code
you want using either a specific number or the current value of a SQL*Plus variable.
Remember, however, that in non-POSIX environments return codes are limited to the
range 0-4095. If you issue EXIT with a number higher than 4095, the resulting return
code is unpredictable.

You can also issue EXIT with one of three keywords whose numerical value depends
on the platform. On z/OS, the values associated with these keywords are shown in the
following table:

Keyword Value

SUCCESS 0 (the default when EXIT
has no parameter)

WARNING 4

FAILURE 8

On an initialization failure, SQL*Plus ends as though EXIT FAILURE occurred,
producing a return code 8 on z/OS.

Refer to the Oracle Database SQL*Plus User's Guide and Reference for complete details on
the EXIT and WHENEVER commands.

Unsupported Features
The following SQL*Plus features or commands are not available on z/OS:

■ Site profile file, when running in POSIX OFF environments.

■ SPOOL OUT command. This command results in an error message on z/OS.

SQL*Plus

Oracle Tools and Utilities on z/OS 4-7

■ SET NEWPAGE 0 command. This command is accepted but does not clear the
terminal screen (as it does on some ports) when issued in TSO or a shell.

■ RUNFORM command. This command results in an error message on z/OS.

SQL*Plus Examples
The following example is SQL*Plus executed as a batch job step with both the user
profile file and standard input provided as instream data sets. An Oracle database
instance with SID ORA1 is accessed using cross-memory (XM) protocol, with the
connection specified using an ORA@ DD statement.

//PLUS EXEC PGM=SQLPLUS,PARM='/nolog',REGION=0M
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG
//ORA@ORA1 DD DUMMY
//SQLLOGIN DD *
whenever oserror exit 16
whenever sqlerror exit 12
set pagesize 0
/*
//SYSIN DD *
connect conklin/grommet6
create table big_acct (
 acct number,
 balance number,
 desc varchar2(200))
 as
 select account_primary, balance_fwd, account_pdesc
 from pmds011.master
 where (balance_fwd > 100000.00) and
 (account_pdesc not null);
commit;
select * from sub_acct1 order by balance descending;
exit
/*

The following example shows SQL*Plus used in line-mode TSO and assumes the
following:

■ The CMDLOAD data set is provided as STEPLIB, TSOLIB, or a linklist library.

■ The MESG data set is already allocated to ORA$LIB.

■ A TNSNAMES DD is allocated and contains a valid entry with the identifier
ORALNX1. This is a TCP/IP connection to an Oracle 10g instance running on a
z/Linux system.

 READY
sqlplus pdbr/asdfghj@oralnx1

 SQL*Plus: Release 10.2.0.5.0 - Production on Fri Feb 3 01:17:27 2012
 Copyright (c) 1982, 2010, Oracle. All rights reserved.

 Connected to:
 Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - Production
 With the Partitioning, Oracle Label Security and Data Mining options

 SQL>
host listd test.sql mem [Text entered by user]
 host listd test.sql mem

SQL*Loader

4-8 Oracle Database User's Guide

 JCONKLI.TEST.SQL
 --RECFM-LRECL-BLKSIZE-DSORG
 VB 255 27998 PO
 --VOLUMES--
 DSM119
 --MEMBERS--
 RVNT030
 RVNT040
 SQL>
get test(rvnt030) [Text entered by user]
 get test(rvnt030)
 1 SELECT DNAME, DACCT, DDESC FROM ANWR.MASTER WHERE
 2 (DLCODE IN (12, 43, 663, 900)) AND
 3* (DDESC NOT NULL);
 SQL>
l 1 [Text entered by user]
 l 1
 1* SELECT DNAME, DACCT, DDESC FROM ANWR.MASTER WHERE
 SQL>
c /ANWR./TEMP./ [Text entered by user]
 c /ANWR./TEMP./
 1* SELECT DNAME, DACCT, DDESC FROM TEMP.MASTER WHERE
 SQL>
/ [Text entered by user]
 /

 [SELECT output omitted]

 SQL>
exit [Text entered by user]
 exit
 Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 -
 Production
 With the Partitioning, Oracle Label Security and Data Mining options
 READY

SQL*Loader
SQL*Loader is an Oracle utility that loads external data into Oracle database tables.
When you run SQL*Loader on z/OS, the external data can come from z/OS data sets
(including VSAM) and HFS files, and can include character, zoned decimal, packed
decimal, binary integer, and hexadecimal floating point (HFP or System/370 floating
point) data. SQL*Loader on z/OS can load data into an Oracle database on z/OS or
on any other Oracle platform. Refer to Oracle Database Utilities 10g Release 2 (10.2) for
complete generic information about SQL*Loader.

Invocation
SQL*Loader on z/OS supports batch job, TSO, and shell execution environments. A
JCL procedure for batch execution (default name ORALDR) is supplied by Oracle and
may be installed on your system with the same or a different name. In TSO, both
CALL and command processor (CP) invocation are supported. For the non-POSIX
environments, the load module or program object name is SQLLDR. In a shell
(including OMVS under TSO), use the sqlldr (lowercase) command to invoke this
utility.

Unlike most tools and utilities, SQL*Loader does not read C standard input as a
primary source of input. Loader processing details are specified in a text control file

SQL*Loader

Oracle Tools and Utilities on z/OS 4-9

whose filespec usually is supplied on the command line or PARM field. If you do not
supply this parameter but you do supply a user ID/password parameter, Loader
prompts for the control filespec and reads it from C standard input. This is intended
mainly for interactive (TSO or shell) execution; if you do this in a batch job, the prompt
response must be the first record or line of standard input. If you supply neither a
control file nor a user ID/password as invocation parameters, SQL*Loader displays a
help message and ends normally.

The parser used by SQL*Loader for command line parameters has its own syntax
conventions (described in the generic documentation) and is sensitive to apostrophes
(single quotes). If you use apostrophes in a command line filespec parameter, you
must "escape" them with a preceding backslash to keep the parser from trying to
interpret them as syntax elements. For example, to specify the CONTROL= parameter
with the data set name filespec //'DMWONG.ORA.CTL(LOAD2)' in a batch job, code

//LOAD EXEC PGM=SQLLDR,PARM='control=//\''DMWONG.ORA.CTL(LOAD2)\'''

Notice that the filespec apostrophes in the example are doubled, which is required to
get an apostrophe through the JCL PARM mechanism, as well as being escaped with a
preceding backslash for Loader's parser.

Command line parameters for SQL*Loader can easily exceed the 100-character
maximum of the JCL PARM field or TSO CALL command. You can use the "++"
parameter file mechanism described in Chapter 2 to supply Loader parameters in a
data set. SQL*Loader also has a generic parameter file feature that is similar to the "++"
mechanism but is available on all platforms (and also works in a POSIX shell, which is
not true of "++"). If you use the generic parameter file, the filespec supplied for the
PARFILE parameter is not subject to name extension before opening. This file can be a
sequential or instream (DD *) data set, a PDS member, or an HFS file. The file must not
contain record sequence numbers or other data that is not a SQL*Loader command
line parameter.

SQL*Loader message output (including the aforementioned prompt and help
message) is written to C standard output. Detailed information about load processing
is discussed in the sections that follow.

SQL*Loader Files and Filespecs
SQL*Loader uses several types of files. In a single execution of Loader, multiple files of
some types may be used. In some cases, if you do not supply a filespec for a file that is
required, Loader derives a filespec for the file based on some other filespec that you
did supply. What gets derived depends on the supplied filespec and on the
environment in which Loader is running with POSIX OFF or ON.

The filespec derivation schemes mean care must be taken when running SQL*Loader
with filespecs that are counter to the POSIX expectation: HFS files with POSIX OFF or
data sets with POSIX ON. Deriving a data set filespec from an HFS filespec, or an HFS
filespec from a data set filespec, is not supported. In these situations, filespecs must be
supplied explicitly rather than being derived.

Control File
Exactly one SQL*Loader input control file, mentioned earlier, is required. The control
file can be a sequential data set, PDS member, instream (DD *) data set, or HFS file. A
data set must have a record format of F, FB, V, or VB. Records in a data set must not
have sequence numbers or other data that is not part of Loader's control file syntax.
There is no default filespec for the control file; if it is not supplied on the command
line or PARM, a prompt is issued and the filespec is read from C standard input. The

SQL*Loader

4-10 Oracle Database User's Guide

filespec for the control file is subject to extension processing with the suffix ctl. As
discussed in Chapter 2, this may affect filespecs that specify a data set name or HFS
file name; it does not affect a //DD: filespec.

Log File
An execution of Loader also requires one output log file, to which load statistics,
informational, and error messages are written (separate from what is written to C
standard output). The log filespec can be supplied on the command line or PARM and
can specify a sequential data set, PDS member, SYSOUT, HFS file, or a //DD: filespec
that resolves to any of these. If none is supplied, the log filespec is derived from the
control filespec as follows:

■ If the control filespec is a //DD: type, the log filespec is //DD:LOG.

■ If the control filespec is a data set name type, the log file is written as a data set
named root.LOG, where root is the control file data set name with any "directory"
and extension suffix (as defined for data set names) removed. If the control
filespec included a PDS member name in parentheses, the same member name
specification is included at the end of the log filespec. This data set name acquires
a high-level qualifier (TSO PROFILE PREFIX or, elsewhere, the z/OS user ID)
when opened, so the ultimate data set name used is hlq.root.LOG.

■ If the control filespec is an HFS file name, the log file is written as an HFS file
named root.log, where root is the control file name with any directory path and
extension suffix (as defined for HFS file names) removed. This file is written in the
current working directory.

In the latter two cases, it is the file name extension mechanism that supplies the .LOG
or .log suffix. This means FNA processing can be applied when the log file is a data
set.

If your control filespec is counter to the POSIX expectation, the log filespec must not
be derived-it must be supplied explicitly.

Data Files
An execution of SQL*Loader uses one or more input data files containing data to be
loaded into Oracle database tables. One data filespec can be supplied on the command
line or PARM, or in the first INFILE or INDDN clause in the Loader control file input.
Additional data filespecs can be supplied using additional INFILE or INDDN clauses.
If you do not supply any data filespec, a default is derived from the control filespec.
The derivation is similar to that for log files, just described, but uses the suffix .DAT or
.dat. When the control filespec is a //DD: type, the derived data filespec is
//DD:DATA.

If your control filespec is counter to the POSIX expectation, the data filespec must not
be derived-you must supply it explicitly on the command line or in the Loader control
file.

On z/OS, a SQL*Loader data file can be a sequential data set, PDS member, instream
(DD *) data set, VSAM entry-sequenced (ESDS), key-sequenced (KSDS), or relative
record (RRDS) cluster, or an HFS file. Sequential or partitioned data sets must have a
record format of F, FB, V, or VB. The special control file notation "INFILE *" is used to
indicate that input data is in the Loader control file itself, following the control
statements. In this situation, "*" is not interpreted as a filespec for the TSO terminal (as
it normally would be in a TSO POSIX OFF environment). To specify a data file as the
TSO terminal you must use //* or a DD statement allocated to the terminal.

SQL*Loader

Oracle Tools and Utilities on z/OS 4-11

When you supply a data filespec on the command line or PARM or using an INFILE
clause, any of the available valid filespec types can be used, including //DD: or DD:.
If you supply a data file with the INDDN clause, the value you supply must be a valid
1-character to 8-character DD name without a //DD: or DD: prefix. Only DD names
can be supplied using INDDN.

The control file allows you to supply something called a "file-processing options
string" in the INFILE or INDDN clause. On z/OS, this string is used only with HFS
files and takes the same options used on UNIX platforms, described in the Oracle
Database Utilities manual. (It specifies any of several ways to parcel an HFS file into
records, which is not a native HFS concept.) With z/OS data sets the processing
options string is ignored. Records are a native concept with data sets, and what the
generic SQL*Loader documentation calls a physical record maps to what z/OS calls a
logical record in a data set.

Bad and Discard Files
For each data file that is processed, SQL*Loader may write a bad file and a discard file.
The former contains copies of input records that contained data errors or were rejected
by the Oracle server due to data-related errors (such as a unique key constraint
violation). The latter file contains records that did not meet selection criteria specified
in the WHEN clause in the control file.

Both files are used conditionally and are not opened unless circumstances require it.
The bad file is opened if one or more input records from a data file contain data errors.
The discard file is opened if one or more input records fail to meet WHEN clause
criteria and you supplied a discard filespec or specified the DISCARDMAX option.

You can specify the bad file using BADFILE or BADDN and you can specify the
discard file using DISCARDFILE or DISCARDDN. When you use the "-FILE" keyword
form, any of the supported filespec types can be supplied, including ones beginning
with //DD: or DD:. If you use the "-DN" keyword form, the value you supply must be
a valid 1-character to 8-character DD name with no //DD: or DD: prefix. Only DD
names can be specified using BADDN and DISCARDDN.

When you supply filespecs for these files and Loader encounters input records that
cause them to be opened, the filespecs are subject to extension processing. The bad file
uses the extension bad and the discard file uses dsc.

When you do not supply filespecs for these files and the load needs to use them,
Loader derives the filespecs based on the filespec of the associated data file. When the
data filespec is derived from that of the control file, as described previously, this
derivation is based on the derived data filespec. Bad and discard filespec derivation
works as follows:

■ For the first (or only) data file in a load, if the data filespec is a //DD: type, the
derived bad filespec is //DD:BAD and the derived discard filespec is
//DD:DISCARD. When a load involves multiple data files (with multiple INFILE
or INDDN clauses), if the second or subsequent data filespec is a //DD: type, the
derived bad filespec is //DD:BADn and the derived discard filespec is
//DD:DISCARn where n is a 1-digit or 2-digit decimal relative data file number
within the control file ("2" for the second data file specified, "3" for the third, "11"
for the eleventh, and so on). At most 99 bad and discard files are supported by this
scheme. All data files in a load (including non-DD types) are counted for purposes
of determining the relative data file numbers.

■ If a data filespec is a data set name type, the bad filespec is derived as a data set
named ctlhlq.root.BAD and the discard filespec is derived as ctlhlq.root.DSC,
where ctlhlq is the "directory" (high-level qualifier) from the control filespec and

SQL*Loader

4-12 Oracle Database User's Guide

root is the data file data set name with any "directory" and extension suffix
removed. If the data filespec included a PDS member name in parentheses, the
same member name specification is included at the end of the bad and/or discard
filespec.

Use of the control filespec "directory" in these derivations mirrors what is in the
control filespec: if the filespec contains a quoted data set name with an explicit
high level qualifier, the same qualifier (and quotes) are used in the derived
filespecs. If the control filespec is not quoted and subject to PROFILE PREFIX or
user ID prefixing, the same is true of the derived filespecs.

■ If a data filespec is an HFS file name, the bad file is derived as an HFS file named
root.bad and the discard filespec is derived as root.dsc, where root is the data file
name with any directory path and extension suffix (as defined for HFS file names)
removed. This file is written in the directory associated with the control file, not
the directory of the data file.

If either your control or data filespec is counter to the POSIX expectation, the bad and
discard filespecs must not be derived-they must be supplied explicitly on the
command line or in the Loader control file.

VSAM Data File Processing Considerations
The following considerations pertain to loads where a data file is one of the supported
VSAM cluster types (KSDS, ESDS or RRDS).

■ Input records are read in normal forward sequence for the cluster type: key
sequence for KSDS, RBA sequence for ESDS, and record number sequence for
RRDS. Empty slots in an RRDS cluster are not read and do not contribute to
Loader SKIP or LOAD counts.

■ While you can specify an AIX PATH for a load, causing records to be read in
alternate key sequence, this impacts load performance and is not recommended.

■ Loading from a VSAM object that is also open for update in another z/OS job or
address space (including CICS TS and IMS TM address spaces) is not supported.
Record Level Sharing (RLS) is not supported.

■ Loading from VSAM objects containing invalid Control Intervals (lacking valid
CIDF/RDF fields) is not supported.

■ SQL*Loader provides no mechanism for specifying VSAM cluster passwords.

Bad and Discard File Attributes
The bad and discard files, when written, contain subsets of the data from the
associated data file. On z/OS, these files must be the same major type (data set or HFS
file) as the associated data file. When using HFS files, the bad and discard files are
written with the same line terminator and related attributes that you specified (or
defaulted) in the file-processing options string for the data file.

When you load data from a data set, you can allow the DCB attributes of the bad and
discard files to default or you can override them by coding them explicitly on a DD
statement or by using an existing data set with established DCB attributes (which
Loader will preserve). When allowed to default, the RECFM and LRECL will match
those of the associated data file. If you override these attributes you must ensure that
the output record length is sufficient. For example, if the input data file has fixed
record format (F or FB) and LRECL=100 and you want to use RECFM=VB for the bad
file, you must use an LRECL of at least 104 for the bad file (100 bytes for data and 4
bytes for the record descriptor word).

SQL*Loader

Oracle Tools and Utilities on z/OS 4-13

When an input data file is a VSAM data set, the bad and discard files will be
nonVSAM sequential data sets. (Loader cannot create a VSAM bad or discard file.) As
with nonVSAM data set input, the bad and discard file DCB attributes will default to
values that are appropriate for the VSAM cluster and its maximum RECORDSIZE
attribute. If you override these attributes you must ensure that the LRECL is adequate.

If you override bad or discard DCB attributes with a fixed (F or FB) format and a data
file record to be written is shorter than the fixed record length, the record is padded
with binary zeroes to the required length.

SQL*Loader Return Codes
Refer to the Oracle Database Utilities manual for information about conditions in which
return codes are set. The keyword return codes listed there have the following values
on z/OS:

Keyword Return Code Description Value

EX_SUCC success 0

EX_WARN warning 4

EX_FAIL fatal error 8

SQL*Loader Examples
In the following examples, Example 1 is a z/OS UNIX shell execution of SQL*Loader,
loading data from an HFS file into an Oracle instance on the same z/OS system. It
assumes the environment variables ORACLE_HOME, PATH, and LIBPATH are already set
appropriately. ORACLE_SID is set to enable cross-memory (XM) connection to the
instance whose SID is TDB3.

Example 1
$ export ORACLE_SID=TDB3 [Text entered by user]
$ ls -l mydata.* [Text entered by user]
-rw-r--r-- 1 RJONES PGACCT 181203 Nov 5 15:52 mydata.dat
$ cat myload.ctl [Text entered by user]
LOAD DATA
 INFILE 'mydata'
 DISCARDMAX 10
 INTO TABLE SITE_REVIEW
 WHEN DATA3 != '500'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (DATA1,
 DATA2 CHAR "NVL(:C,'***')",
 DATA3)
$ sqlldr control=myload userid=bsmyth/pinot [Text entered by user]
SQL*Loader: Release 10.2.0.5.0 - Production on Fri Feb 3 01:17:27 2012
Copyright (c) 1982, 2010, Oracle. All rights reserved.
Commit point reached - logical record count 1
Commit point reached - logical record count 2
Commit point reached - logical record count 3
Commit point reached - logical record count 6
Commit point reached - logical record count 7
$ ls -l mydata.* *.log [Text entered by user]
-rw-r--r-- 1 RJONES PGACCT 181203 Nov 5 15:52 mydata.dat
-rw-r--r-- 1 RJONES PGACCT 594 Mar 17 10:26 mydata.dsc
-rw-r--r-- 1 RJONES PGACCT 6288 Mar 17 10:26 myload.log

Export and Import

4-14 Oracle Database User's Guide

$

Example 2 is a batch jobstep execution of SQL*Loader. It is similar to the previous
example except for the environment. All filespecs except the control file have been
allowed to default.

Example 2
//LOAD EXEC PGM=SQLLDR,REGION=0M,
// PARM='userid=bsmyth/pinot control=DD:ctl'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG
//ORA@TDB3 DD DUMMY
//CTL DD *
LOAD DATA
 DISCARDMAX 10
 INTO TABLE SITE_REVIEW
 WHEN DATA3 != '500'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (DATA1,
 DATA2 CHAR "NVL(:C,'***')",
 DATA3)
/*
//DATA DD DISP=SHR,DSN=GKSC.MASTER.SPR
//LOG DD SYSOUT=*
//DISCARD DD DISP=(,CATLG),DSN=BSMYTH.LOAD.DSC,UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)

Export and Import
Export and Import are complementary Oracle utilities used chiefly to transport Oracle
database data between Oracle databases and between systems. Export writes a
sequential file that is a "transportable copy" of database tables, indexes, and other
objects along with their metadata descriptions, such as table and column names and
data types. Import reads the sequential file produced by export, defining the database
objects in the target database and then loading the data (rows, index entries, or other
contents).

Datapump Export and Import utilities, described in the section "Datapump Export and
Import" on page 4-17 provide functions similar to Export and Import with additional
features and capabilities.

For more information about Export and Import and Datapump Export and Import,
refer to Oracle Database Utilities.

Invocation
On z/OS, Export and Import support batch job, TSO, and shell execution
environments. JCL procedures for batch execution (default names ORAEXP and
ORAIMP) are supplied by Oracle and may be installed on your system with the same
or different names. In TSO, both CALL and command processor (CP) invocation are
supported. For the non-POSIX environments, the load module or program object
names are EXP and IMP. In a z/OS UNIX shell, use the exp and imp (lowercase)
commands to invoke these utilities.

Parameters for Export and Import can be supplied on the command line or PARM
field or in a file. If parameters are supplied in neither place, these utilities prompt for

Export and Import

Oracle Tools and Utilities on z/OS 4-15

required inputs; prompts are written to C standard output and the responses are read
from standard input.

The parser used by Export and Import for parameters has its own syntax conventions
(described in the generic documentation) and is sensitive to apostrophes (single
quotes). If you use apostrophes in a filespec parameter, you must "escape" them with a
preceding backslash to keep the parser from trying to interpret them as syntax
elements. For example, to specify the FILE= parameter with the data set name filespec
//'JSMITH.ORADB1.DMP' in a batch Export job, use the following code:

//EXPORT EXEC PGM=EXP,
// PARM='scott/tiger file=//\''JSMITH.ORADB1.DMP\'''

Notice that the filespec apostrophes in the example are doubled, which is required to
get an apostrophe through the JCL PARM mechanism, as well as being escaped with a
preceding backslash for Export's parser.

If command line parameters for Export and Import exceed the 100-character maximum
of the JCL PARM field or TSO CALL command, you can use the "++" parameter file
mechanism described in the section "Parameters in Batch (JCL)" on page 2-6 to supply
parameters in a data set. Export and Import also have a generic parameter file feature
that is similar to the "++" mechanism but is available on all platforms (and also works
in z/OS UNIX shell, which is not true of "++"). If you use the generic parameter file,
the filespec supplied for the PARFILE parameter is not subject to name extension
before opening. This file can be a sequential or instream (DD *) data set, a PDS
member, or an HFS file. The file must not contain record sequence numbers or other
data not part of Export or Import's command line parameters.

For certain operations, Export and Import require a special user ID/password
parameter that contains spaces, such as "/ AS SYSDBA". Refer to the section
"Parameters Containing Spaces" on page 2-9 for information about how to specify
such values.

Export File
The file written by Export and read by Import is called an export file or dump file.
Filespecs that you supply for this purpose are subject to extension processing with the
suffix dmp. If you don't supply a filespec (you omit the FILE parameter and/or supply
an empty line at the file prompt) the default expdat.dmp is used in both POSIX OFF
and POSIX ON environments. In a POSIX OFF environment this is processed as a data
set named EXPDAT.DMP (with prefixing implied). In a shell, it is treated as an HFS
file named expdat.dmp in the current working directory.

When the export file is a data set, DCB attributes must be established when the Export
utility opens the file. If you do not specify DCB attributes on a DD statement or TSO
ALLOC command, and you do not use an existing data set with established attributes
(which Export will preserve), LE default attributes are used. Unlike most Oracle tool
and utility files, the export file is opened in "binary" mode and is subject to different
default attributes than those described in the section "Data Set DCB Attributes" on
page 2-27. For both disk and tape devices, the default attributes for output binary files
are RECFM=FB and LRECL=80.

If you override the DCB attribute defaults by supplying them on a DD or ALLOC
command or by using an existing data set, you can use either fixed- or variable-length
record formats and any LRECL allowed by LE. However, if you are creating an export
file that will be processed by Import running on a non-z/OS system, you may want to
avoid variable record formats (V or VB) depending on how the data will be moved to
the target system. Either the transporting software (for example, FTP) or the Import

Export and Import

4-16 Oracle Database User's Guide

utility on the target system may have difficulty with the imbedded record and block
descriptors used by V and VB formats. Refer to the section "Cross-System
Export/Import" on page 4-16 for additional details.

The RECORDLENGTH parameter of Export and Import does not affect or relate to the
DCB attributes of the export file.

Cross-System Export/Import
One of the strengths of Export and Import is that they can be used to move Oracle data
between dissimilar platforms without an Oracle Net connection between the two. This
may be faster, and in some cases more secure, than running one utility or the other
over an Oracle Net connection.

When Import reads data that was created by Export running on a different platform,
the data must be unmodified from what was written. (Translation of data between
formats and character sets is handled automatically by Import.) If you use something
like File Transfer Protocol (FTP) software to move the data to the target system, specify
a "binary mode" or similar processing option to prevent attempts to translate character
data. This requirement exists when moving non-z/OS Export data to z/OS and when
moving z/OS Export data to a non-z/OS system. If you fail to do this and the data is
translated, Import typically issues the following message:

IMP-00010: not a valid export file, header failed verification

Export and Import Return Codes
Refer to Oracle Database Utilities for information about conditions in which return
codes are set. The keyword return codes listed there have the following values on
z/OS:

Keyword Return Code Description Value

EX_SUCC success 0

EX_WARN warning 4

EX_FAIL fatal error 8

Unsupported Features
Cross-platform Export/Import of a partitioned table between EBCDIC (z/OS) and
ASCII systems will fail if the partitioning is based on character ranges that are
incompatible between EBCDIC and ASCII. If your partition ranges are not compatible
and retain the same sequence between ASCII and EBCDIC, you must manually create
the table with different partition criteria (or with no partitioning) in the target database
and then run Import with the IGNORE=Y option so the error on Import's table create
is ignored.

Export and Import Examples
The following example shows a batch jobstep execution of Export. This is a simple
export of all objects owned by a user ID:

//EXP EXEC PGM=EXP,
// PARM='hrmdba/satchel file=dd:expout'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10G.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10G.MESG
//ORA@RM5 DD DUMMY

Datapump Export and Import

Oracle Tools and Utilities on z/OS 4-17

//EXPOUT DD DISP=(,CATLG),DSN=BMANRY.EXPTEST2.DMP,
// UNIT=SYSDA,SPACE=(TRK,(10,10),RLSE),
// DCB=(RECFM=FB,LRECL=120)

Datapump Export and Import
Datapump Export and Import are functionally similar to Export and Import discussed
previously, but all of the I/O processing for dump files is done in the Oracle database
server rather than in the client utility session.

Datapump Export and Import provide capabilities that Export and Import do not, in
particular an easy way to spread processing over multiple tasks to improve
parallelism. For more information about Datapump Export and Import, refer to Oracle
Database Utilities.

Besides using the Datapump client utilities, you can invoke Datapump Export and
Import programmatically using the DBMS_DATAPUMP PL/SQL package. For more
information about the DBMS_DATAPUMP package, refer to the PL/SQL Packages and
Types Reference.

On z/OS, whether invoked using a utility or the DBMS_DATAPUMP package,
Datapump Export and Import can only process files in the HFS. This includes the
dump files written by Datapump Export or read by Datapump Import and the text log
file written by both components.

Security for Datapump file operations is provided using database directory objects,
which must be created and granted to users by a database administrator before
Datapump Export and Import can be used. If you are unable or choose not to use the
HFS file system for exporting or importing or if your database administrator has not
created directory objects, you can use the Export and Import utilities described in the
previous section.

Invocation
On z/OS, Datapump Export and Import support batch job, TSO, and shell execution
environments. JCL procedures for batch execution (default names ORAEXD and
ORAIMD) are supplied by Oracle and may be installed on your system with the same
or different names. In TSO, both CALL and command processor (CP) invocation are
supported. For the non-POSIX environments, the load module or program object
names are EXPDP and IMPDP. In a z/OS UNIX shell, use the expdp and impdp
(lowercase) commands to invoke these utilities.

Parameters for Datapump Export and Import can be supplied on the command line or
PARM field or in a file. If parameters are supplied in neither place, these utilities may
prompt for certain inputs. Prompts are written to C standard output and the responses
are read from standard input.

If command line parameters for Datapump Export and Import exceed the
100-character maximum of the JCL PARM field or TSO CALL command, you can use
the "++" parameter file mechanism described in the section "Parameters in Batch (JCL)"
on page 2-6 to supply parameters in a data set. Datapump Export and Import also
have a generic parameter file feature that is similar to the "++" mechanism but is
available on all platforms (and also works in a shell, which is not true of "++"). If you
use the generic parameter file, the filespec supplied for the PARFILE parameter is not
subject to name extension before opening. This file can be a sequential or instream (DD
*) data set, a PDS member, or an HFS file. The file must not contain record sequence
numbers or other data not part of Datapump Export or Import's command line
parameters.

Datapump Export and Import

4-18 Oracle Database User's Guide

For certain operations, Datapump Export and Import require a special user
ID/password parameter that contains spaces, such as "/ AS SYSDBA". Refer to the
section "Parameters Containing Spaces" on page 2-9 for information about how to
specify such values.

Datapump Export and Log Files
The file that contains the database data written by Datapump Export and read by
Datapump Import is called an export file or dump file. While conceptually similar to
the export files of the Export and Import utilities described previously, the two types
are not interchangeable. For example, you cannot read a plain Export file with
Datapump Import and you cannot read a Datapump Export file with plain Import.

Besides writing or reading an export file, the execution of Datapump Export or Import
normally writes a log file. This is just a text log reporting processing details.

On z/OS, the export and log files used by Datapump Export and Import must be HFS
files; they cannot be z/OS data sets.

Because Datapump export and log file processing is done in the Oracle database server
rather than the client job or session, access to both types of file is controlled with
database directory objects, which are created by a database administrator. Although
there are forms of directory object for both HFS files and data sets, as discussed in
Chapter 5, "Oracle Server Considerations on z/OS," only the HFS form of directory
object can be used in a Datapump operation.

The user-supplied names for the export and log files are required to begin with "./"
(dot-slash) so that they are seen an unambiguous HFS filespecs. This requirement is
unique to z/OS Oracle database servers and is not accepted by Oracle database servers
on other platforms. (Oracle normally prohibits any kind of path prefix on
user-supplied filenames that are processed in the database server.)

When supplied by the user, the export and log file names are subject to extension
processing with the suffixes dmp and log, respectively. Because these are always
treated as HFS files, extension processing is under HFS rules, as described in
Chapter 2, "Oracle Software Interaction with z/OS and Language Environment," and
FNA processing is not available. If omitted, the default name for the export file is
./expdat.dmp and for the log file it is ./export.log (Datapump Export) or
./import.log (Datapump Import). These files are always accessed in an HFS directory
from a database directory object. The directory object name is supplied with the file
name (separated by a colon) or separately, in the DIRECTORY command line
parameter.

The following example shows Datapump Export being invoked in TSO to dump tables
ACCT1_MST and ACCT1_DET for user RACHELQ:

 READY
expdp rachelq/qow00a tables=(acct1_mst,acct1_det) directory=acctdir -
dumpfile=./acctexp

 Export: Release 10.2.0.5.0 - Production on Monday,…

Both the export file and the log are written in the HFS directory associated with the
ACCTDIR directory object, to which RACHELQ was previously granted access by a
database administrator. The export file has root name acctexp. After extension
processing the name is acctexp.dmp. The log file defaults to ./export.log.

TKPROF

Oracle Tools and Utilities on z/OS 4-19

Datapump Processing in the Server
When you use Datapump, much of the server processing is performed by auxiliary
processes (z/OS subtasks) in the server address space. The number of processes
involved depends on the degree of parallelism requested or permitted by the database
administrator. Processing by auxiliary subtasks runs in the server's WLM goal and is
accounted to the server address space, not to the client.

Datapump Export and Import Interactive Mode
Datapump Export and Import utilities have an interactive mode that is initiated by
interrupting the utility after server processing begins. In TSO, this is accomplished
with an ATTN or PA1 signal. In a shell, use Ctl-C or a similar mechanism to interrupt
the utility. Interactive mode is not supported in z/OS batch environments.

Datapump Export and Import Return Codes
Datapump Export and Import can end with normal success, success with one or more
warning conditions, or be terminated by an error. The return codes associated with
these conditions are as follows:

Return Code Value

Success 0

Warning 4

Fatal Error 8

In the event of a warning or error return code, check the Datapump log file for
messages describing the warning or error condition.

TKPROF
TKPROF is a utility used in tuning Oracle SQL statements. It reads trace files
produced by the Oracle database server and formats the trace data into a report on the
execution path and processing statistics associated with SQL statements from an
Oracle database session. Optionally, it can connect to a target server and issue
EXPLAIN PLAN requests for the subject SQL statements, and it can write a separate
file containing SQL statements used by an application. For more information about
TKPROF, refer to the Oracle Database Performance Tuning Guide.

Invocation
TKPROF on z/OS supports batch job, TSO, and shell execution environments. No
batch JCL procedure is provided, but one can be created easily, if necessary. In TSO,
both CALL and command processor (CP) invocation are supported. For non-POSIX
environments, the program object name is TKPROF. In a z/OS UNIX shell, use the
tkprof command (lowercase) to invoke this tool.

TKPROF requires two command line parameters, the first identifying the input Oracle
trace file to be read and the second supplying a filespec for the output report. If no
parameters are supplied, TKPROF displays a brief help message and ends normally. If
the input trace file is specified but not the output file, TKPROF prompts (to standard
output) for the output filespec and reads it from standard input. Additional command
line parameters are permitted for various options.

TKPROF

4-20 Oracle Database User's Guide

Input Trace File
Input to TKPROF is a flat file written by the Oracle database server when SQL tracing
is active in a client session. For information about methods for activating and
deactivating the trace with an ALTER SESSION statement or the DBMS_
SESSION.SET_SQL_TRACE procedure, refer to the Oracle Database Performance Tuning
Guide.

On z/OS, Oracle database server trace files are written in one of two forms: as
SYSOUT (JES) spool files or as sequential (DSORG=PS) disk data sets. TKPROF cannot
read JES spool files directly, so if your installation is using SYSOUT for trace files, you
will need to identify the trace file containing the SQL trace and copy it to a sequential
disk data set to use TKPROF. Copying can be done with a tool such as the PRINT
command of the IBM Spool Display and Search Facility (SDSF) or a comparable
mechanism. Whether the trace files for your database instance are written to SYSOUT
or directly to a data set, you may need to work with your database administrator to
obtain access to the trace data.

■ It is a limitation of IBM access methods that you cannot run TKPROF (or any other
program) to directly access an Oracle database server trace that is being written as
a disk data set while the database server still has the data set open for output. To
ensure that a trace file is closed, the database server session associated with the
trace must end (disconnect from the database server). This is one of the
advantages in using spool files for database server tracing; tools such as IBM SDSF
can read and copy a spool file while it is still open to the database server.

Note: The Oracle Database Performance Tuning Guide discusses several
Oracle database server initialization parameters that are relevant to
SQL tracing and TKPROF. Two of these, MAX_DUMP_FILE_SIZE
and USER_DUMP_DEST, are not meaningful on z/OS and can be
ignored. The third, TIMED_STATISTICS, is meaningful and may need
to be set to get useful performance data. TIMED_STATISTICS is a
dynamic parameter and can be set at the session level.

Although the input trace file is normally going to be a sequential data set on z/OS,
TKPROF will also read a PDS member or an HFS file as its input. File name extension
processing with the suffix trc is done on the trace filespec before it is opened. If your
trace data set name does not end in .TRC, include two slashes in front of the name or
use a DD: filespec to avoid extension processing.

Output Files
The report file written by TKPROF can be a sequential disk data set, a PDS member, a
SYSOUT (spool) data set, or a file in the HFS. The filespec you supply for the output
file is subject to extension processing with the suffix prf. By default, records in this
report are at most 80 data bytes long; if you use the WIDTH command line option to
request report lines that will exceed the LE default LRECL (1028, or 1024 data bytes),
you must override the file's LRECL using DD statement parameters or FNA.

Optionally, using the RECORD= parameter, TKPROF will write a file containing all
user SQL statements from the session. Like the report, this file can be a sequential disk
data set or PDS member, a SYSOUT data set, or a file in the HFS. Filespecs supplied
using the RECORD parameter are subject to extension processing with the suffix sql.

TKPROF

Oracle Tools and Utilities on z/OS 4-21

Return Codes
TKPROF either processes successfully or encounters errors and fails, there are no
warning conditions. Return codes from TKPROF are as follows:

Return Code Value

Success 0

Failure 8

TKPROF Example
The following example shows a batch job step to run TKPROF to analyze a trace file in
a z/OS data set named JSMITH.ORAPDB1.SESS3.TRACE:

//TKPROF EXEC PGM=TKPROF,REGION=8192K,
// PARM='DD:TRACE S:C'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10.MESG
//TRACE DD DISP=SHR,DSN=JSMITH.ORAPDB1.SESS3.TRACE

The report is written directly to SYSOUT class C using a SYSOUT filespec.

TKPROF

4-22 Oracle Database User's Guide

5

Oracle Server Considerations on z/OS 5-1

5 Oracle Server Considerations on z/OS

If you are writing SQL, PL/SQL, or Oracle server Java that will run on a z/OS Oracle
database server, most of what you do will be exactly the same as for any other Oracle
platform. The few distinctions that exist are in areas that should be no surprise:
character data (EBCDIC versus ASCII) is one, and access to operating system files (or
z/OS data sets) is another. Here we explain aspects of these areas that might influence
your design or coding.

This chapter contains the following sections:

■ Character Data

■ File Processing in the Server

Character Data
An Oracle database has an associated character set, an attribute that is specified (or
defaulted) when the database is first created, on the CREATE DATABASE statement.
Application data in character-type table columns (such as CHAR and VARCHAR.)
and database object identifiers (for example, table and column names) are stored using
this character set. On a given Oracle platform, all supported database character sets
are from the same family: either ASCII or EBCDIC. On z/OS, of course, the EBCDIC
family is used. The default Oracle database character set on z/OS is what IBM calls
EBCDIC codepage 1047, which Oracle identifies as WE8EBCDIC1047. Other popular
EBCDIC codepages are available and can be used on z/OS. Refer to the Oracle Database
Globalization Support Guide for additional information about database character sets.

Character Data and SQL Queries
Differences between EBCDIC and ASCII become noticeable in certain types of SQL
query. The most obvious is the use of ORDER BY or GROUP BY on character values in
a SELECT to return results in a particular order. EBCDIC and ASCII have different
sort order for various groups of characters. For example, decimal digits (0-9) sort
before all letters in ASCII, but after all letters in EBCDIC. Upper case letters sort before
lowercase in ASCII, but after lowercase in EBCDIC. There are other differences in the
sorting of punctuation and other symbols.

The consequence of these differences is that, given identical table data, a SELECT with
an ORDER BY or GROUP BY clause involving character data can return results from a
z/OS Oracle server in a different order than an ASCII-based Oracle server. In most
cases this is not a problem and in fact is exactly what you want. When it is not, you can
use the SQL function NLSSORT or the Oracle server parameter NLS_SORT (which can
be set at the session level) to specify a different collating sequence for ORDER BY or

Character Data

5-2 Oracle Database User's Guide

GROUP BY processing. Both NLSSORT and NLS_SORT are discussed in more detail
in the Oracle Database Globalization Support Guide.

A more subtle difference-one that sometimes affects applications that are migrated
from an ASCII server to EBCDIC or vice versa-concerns the use of ordinal
comparisons on character data in the WHERE clause of a SQL statement. Consider this
SELECT statement:

SELECT ACCT_NUM, BALANCE FROM LEDGER_ACTIVE WHERE CATEGORY > 'BR10'
 AND CATEGORY < '99AX'

We'll assume that CATEGORY is a CHAR(4) column containing an encoded value
comprising both digits and letters. This SELECT might work fine with an EBCDIC
server but it will never return any rows from an ASCII server because in ASCII, digits
are numerically lower than letters. (There is no ASCII character string that is greater
than 'BR10' and less than '99AX'.)

Similar issues surround the use of ordinal operators and character data in PL/SQL
and Java stored procedures. If you are writing applications that will be migrated
between EBCDIC and ASCII Oracle servers, you must avoid this kind of construct or
be prepared to change the application when migrating.

Character Data and Partitioned Tables
Partitioned tables are divided into multiple physically-separated groups of rows
according to data criteria. If you partition a table by range of values in a character table
column, you are establishing an ordinal comparison on rows that are inserted into the
table. As with the SELECT…WHERE clause described in the prior section, it is
possible to define partition ranges that work in EBCDIC but not ASCII, or vice versa.
Care must be taken when designing a range-partitioned table that you expect to move
between a z/OS Oracle server and one on an ASCII platform. Refer to the Oracle
Database Administrator's Guide for details on creating and using partitioned tables.
Refer to the discussion of limitations on the Oracle Export/Import utilities when
processing range partitioned tables, in Chapter 4, "Oracle Tools and Utilities on z/OS."

Characters in SQL Statements
Most of the characters used as syntax elements in SQL translate readily between ASCII
and EBCDIC, making it easy to move SQL between z/OS and other platforms. One
character that sometimes causes trouble is the vertical bar, used in the SQL
concatenation operator. There are two different vertical bars in some EBCDIC
codepages, including the default Oracle code page on z/OS (1047). Oracle for z/OS
accepts the solid vertical bar (hexadecimal 4F in most codepages) as the SQL
concatenation operator; the split vertical bar (hexadecimal 6A) is not accepted.

Some file transport mechanisms (for example, some versions of FTP) may translate an
ASCII vertical bar to codepoint 6A when moving a file to an EBCDIC system. There
may also be terminal emulators that produce codepoint 6A in a z/OS session when the
vertical bar key is pressed. This can result in invalid SQL statements for a z/OS Oracle
server. One way to avoid this is to use the keyword function CONCAT in SQL
statements instead of the vertical bar. CONCAT provides exactly the same
functionality as vertical bar concatenation. For additional information about CONCAT
refer to the Oracle Database SQL Reference.

File Processing in the Server

Oracle Server Considerations on z/OS 5-3

File Processing in the Server
Before reading this, you should be familiar with the file name and file processing
concepts and features discussed in Chapter 2.

Much of the file processing in the Oracle server concerns the files in which the Oracle
database is stored. These files, which are VSAM Linear (LDS) clusters on z/OS, are a
database administration concern and are not normally referenced directly by
applications. Considerations for these files are covered in the Oracle Database System
Administration Guide for IBM z/OS on System z.

There are, however, file access mechanisms in the Oracle server that are used directly
by applications. The PL/SQL UTL_FILE package, Java file I/O, external LOBs,
external tables, and Datapump Export and Import are capable of accessing more or
less arbitrary files external to the Oracle database. When an application uses these
features, file accesses are attempted on the application's behalf by the Oracle server
address space. Here we cover considerations for these features that are specific to
z/OS.

Relative to file processing concepts described in Chapter 2, two key points govern file
processing behavior in the server:

■ The POSIX indicator in a z/OS client application, tool, or utility does not affect
processing in the Oracle server. How filespecs are interpreted in the server
(particularly ambiguous filespecs, as defined in Chapter 2) depends on the
particular server feature, not on whether the client is running in TSO/batch or a
shell. Some server features are limited to accessing HFS files only or data sets only,
while others are capable of accessing both, distinguished by filespec syntax.

■ No default prefixing or directory path applies to file names in the server. There is
no implicit z/OS user ID prefixing of data set names, and there is no concept of a
current working directory for HFS file references.

Security Considerations
Both Oracle security and native z/OS security are involved when Oracle accesses a file
on behalf of your application. Oracle security typically involves specific database
objects and mechanisms: for example, in order to access a file using the external table
feature, the Oracle user ID involved must be granted appropriate access rights on the
database directory object associated with the file. This check occurs entirely within the
Oracle database server.

When the server actually opens the file, z/OS security checks occur. These checks are
based on the z/OS user ID associated with the server address space, not with an
Oracle user ID nor with the z/OS user ID of your application job or session (if it is
running on z/OS). One z/OS user ID is associated with an Oracle server running on
z/OS; this usually is set up by your system or security administrator.

The exact nature of the native z/OS security check depends on the kind of file being
opened and on how the z/OS security component (for example, RACF or a
comparable product) is configured. Opening a data set performs the normal data set
name-based check for the requested mode of access (generally either read or write).
Opening an HFS file performs a check to enforce the permission settings associated
with the HFS directory and the file.

In short, both types of security check-Oracle and native z/OS-must succeed in order
for an application's server file access operation to proceed. If the Oracle check fails, a
specific Oracle error for that condition is issued. If the native z/OS check fails, it
generally is reported as an error in a "file open" function with varying amounts of

File Processing in the Server

5-4 Oracle Database User's Guide

accompanying detail. z/OS error reporting details are discussed in each of the sections
that follow.

Database Directory Objects
Several of the file access features discussed in this section depend on the database
directory object as a security and control mechanism. Accessing a file with these
features requires both a directory object identifier and a file name; the directory object
must exist in the database and the Oracle user ID must have been granted appropriate
access rights on the directory object. Creating directory objects and granting access to
them is usually a database administrator or security administrator responsibility.

Associated with each directory object is a character string that relates to the OS file
system. In a UNIX Oracle server, this string identifies a hierarchical file system (HFS)
path. In z/OS, a directory object can identify either an HFS path or the leading
(leftmost) portion of a data set name filespec. The former is used when accessing HFS
files and the latter when accessing a data set. Not all Oracle features that use directory
objects are capable of accessing both HFS files and data sets; refer to the following
sections for specific feature details.

Because of the dual interpretation of directory objects on z/OS, the character string
associated with the object must be unambiguous as to type, as that term is defined in
Chapter 2. If it represents an HFS path, it must begin with a single slash followed by
zero or more HFS directory names, each ending with a slash. (The final ending slash is
not required.) If the Directory represents high level qualifiers of a data set name, it
must begin with exactly two forward slashes followed by one or more qualifiers, each
ending with a period. The final ending period is not required; the string is assumed to
contain whole data set name qualifiers, and an intervening period is added if needed
when the string is used to compose a complete filespec. Including a leading single
quote (apostrophe) between the slashes and the high level qualifier, signifying no user
ID prefixing, is permitted but not required since no prefixing is done in the server.

A Directory defined with HFS syntax can be used only to access files in the z/OS
POSIX HFS environment. One defined with data set syntax can be used only to access
data sets.

The following example shows CREATE DIRECTORY statements for HFS file and data
set access in turn:

CREATE DIRECTORY APP1DIR AS '/oracle/dev/app1';
CREATE DIRECTORY APP2DIR AS '//JSMITH.APP2';

UTL_FILE
The UTL_FILE PL/SQL package allows you to read and write arbitrary flat files
containing text data. On z/OS, UTL_FILE can access both HFS files and data sets, with
data set access subject to limitations described in this section.

Prior to Oracle 10G, UTL_FILE relied on an Oracle server initialization parameter,
UTL_FILE_DIR, to indicate which HFS directories could be accessed by the package,
and data set access was not supported on z/OS. Starting in Oracle 10G, UTL_FILE
uses the database directory object as the control mechanism. The UTL_FILE_DIR
parameter is still supported, but Oracle recommends using directory objects instead.
In order to access a data set with UTL_FILE, you must use a directory object defined as
described in the previous section.

UTL_FILE data set support is limited to sequential (DSORG=PS) and partitioned
(DSORG=PO) organizations with record formats F, FB, V, and VB. Partitioned data set
members can be accessed for input only: opening a PDS member for output is not

File Processing in the Server

Oracle Server Considerations on z/OS 5-5

supported. A given data set can be opened for input by multiple user sessions across
multiple Oracle servers, or be opened for output by a single user session in one server.
An open for output must specify a new (non-existent) data set; opening an existing
data set for output is not supported.

When you access a data set with UTL_FILE, the filename argument passed to the
FOPEN function is the trailing (right-hand) portion of a data set name. When opening
for input, this can include a PDS member name in parentheses. Both the data set name
and member name are case-insensitive. No other filespec syntax elements (such as
leading slashes or surrounding apostrophes) are permitted in the filename. The
filename is appended to the directory object string (with an intervening period and
closing apostrophe if necessary) to form the complete filespec to be opened. Only data
set name filespecs can be formed with this mechanism: SYSOUT and DD filespecs are
not supported by UTL_FILE.

When accessing data sets, only the following UTL_FILE package functions are
supported:

■ FCLOSE

■ FCLOSE_ALL

■ FFLUSH (This is accepted for data sets, but has no effect. Buffer flush occurs as
needed and when the file is closed.)

■ FOPEN (Only modes "r" and "w" are accepted.)

■ GET_LINE

■ IS_OPEN

■ NEW_LINE

■ PUT

■ PUTF

■ PUT_LINE

UTL_FILE Example
In the following example, a SQL*Plus batch job is used to create a data set directory
object, grant read access to user SCOTT, and then has SCOTT use the directory object
to access a member of a PDS from an anonymous PL/SQL script. The PDS member
that is accessed is JSMITH.TEST.CNTL(DATA1):

//PLUS EXEC PGM=SQLPLUS,REGION=0M,PARM='/nolog'
//STEPLIB DD DISP=SHR,DSN=ORACLE.V10.CMDLOAD
//ORA$LIB DD DISP=SHR,DSN=ORACLE.V10.MESG
//ORA@ORA1 DD DUMMY
//SYSIN DD *
whenever oserror exit 8
whenever sqlerror exit 8
connect dbauser/chuckle
create directory testdir as '//JSMITH.';
grant read on directory testdir to scott;
connect scott/tiger
set serveroutput on size 1000000
declare
 fd utl_file.file_type;
 buf varchar2(1024);
begin
 fd := utl_file.fopen('TESTDIR', 'test.cntl(data1)', 'r');
 begin

File Processing in the Server

5-6 Oracle Database User's Guide

 loop
 utl_file.get_line(fd, buf, 1024);
 dbms_output.put_line(buf);
 end loop;
 exception
 when no_data_found then
 dbms_output.put_line('---EOF reached.');
 when others then
 dbms_output.put_line('some other read error');
 end;
 utl_file.fclose(fd);
exception
 when others then
 dbms_output.put_line('some fopen error');
end;
/
exit
/*
//

JAVA File I/O
Java provides various mechanisms for accessing arbitrary files, such as the java.io
package. When you use Oracle Database Java, your Java procedures are processed on
the server. On z/OS, all file accesses from Oracle Database Java procedures are treated
as HFS file accesses. Refer to the Oracle Database Java Developer's Guide for more
information about using Oracle Database Java.

External LOBs (BFILEs)
External LOBs are database large objects whose data resides in an external
(non-database) file on the server system. Applications can access LOB data (both
internal and external) using the PL/SQL DBMS_LOB package, OCI calls, and certain
constructs in precompiler programs. Access to an external (file) LOB uses a BFILE
type. The key identifying components of a BFILE are a database directory object name
and the external file name, both supplied using the BFILENAME function. Refer to the
Oracle Database Application Developer's Guide - Large Objects for more information about
external and internal LOBs and BFILE processing.

On z/OS, files accessed as external LOBs must be HFS files. Although directory objects
on z/OS are capable of designating a data set name prefix, only directory objects that
specify an HFS directory can be used to identify a BFILE.

External Tables
External tables are Oracle database tables that have their row data in an external
(non-database) location. Oracle provides two different access drivers to process
external tables: the ORACLE_LOADER access driver and the ORACLE_DATAPUMP
access driver.

The ORACLE_LOADER access driver functions similarly to SQL*Loader, enabling
you to load normal Oracle database tables with data sourced from an external file. The
ORACLE_DATAPUMP access driver facilitates moving Oracle table definitions and
data to an external file for importing into another Oracle database.

The external tables feature and both drivers are integrated into the database server as
extensions to the CREATE TABLE SQL statement. Thus, the external tables feature is
readily available through any program that issues Oracle SQL, including SQL*Plus as

File Processing in the Server

Oracle Server Considerations on z/OS 5-7

well as user-written applications. Refer to Oracle Database Utilities for more
information about external tables and the associated access drivers.

On z/OS, all files accessed by an Oracle database server as part of the external tables
feature must be HFS files. This includes any existing file you plan to use as a row
source for an ORACLE_LOADER external table as well as all files written by the
feature including log files, bad, and discard files. Like most other server file features,
external tables use a database directory object as the locus of security. Although
directory objects on Oracle Database for z/OS are capable of designating a data set
name prefix, only directory objects that specify an HFS directory can be used with
external tables. If you need to load Oracle database tables from a z/OS data set, you
must use the regular SQL*Loader utility.

Datapump Export and Import
Both Datapump Export and Import, described in Chapter 4, "Oracle Tools and Utilities
on z/OS" and the DBMS_DATAPUMP PL/SQL package are limited to processing
HFS files on z/OS. Unique to z/OS, the file name values supplied by Datapump
clients to an Oracle database server must begin with a "./" (dot-slash) prefix so they
are clearly distinguished as HFS names. In addition, the directory object used in any
z/OS Datapump operation must specify a valid HFS directory path.

File Processing in the Server

5-8 Oracle Database User's Guide

6

Developing Oracle Applications to Run on z/OS 6-1

6 Developing Oracle Applications to Run on
z/OS

This chapter provides z/OS-specific information about design and runtime
considerations for applications that will run in batch, TSO, or a shell. It also covers
how to build an application: running Oracle Precompilers and OTT (Oracle Type
Translator), compiling, and linking or binding a program. This includes both
traditional (TSO/batch) mechanisms as well as a shell, including make. Most of the
precompiler application build information in this chapter also pertains to applications
that will run in CICS TS or IMS TM. Application design and runtime considerations
and a few specific build considerations for CICS TS and IMS TM are covered at the
end of this chapter.

Before reading this chapter, you should be familiar with Chapter 2, "Oracle Software
Interaction with z/OS and Language Environment." Regardless of the language of
your application, it will be using the Oracle program interface code, and is subject to
features and mechanisms described there. In addition, you should review Chapter 3,
"Oracle Net and Server Connections on z/OS," which describes the mechanisms
involved in connecting to an Oracle database server both locally and over a real
network.

This chapter contains the following sections:

■ Overview

■ Application Design Considerations

■ Building an Application

■ Building a Traditional Load Module with the Alternate API Stub

■ Application Runtime Considerations

■ Developing Oracle Applications for the CICS TS Environment

■ Developing Oracle Applications for the IMS TM Environment

Overview
Three facilities are provided for developing compiled high level language programs
that run on z/OS and access an Oracle database: Oracle Precompilers, OCI, and OCCI.

Oracle Precompilers-Pro*C/C++, Pro*FORTRAN, Pro*COBOL, and
Pro*PL/I-translate special EXEC SQL statements imbedded in a source program into
language-specific declarations and executable statements that carry out the requested
operation in a target Oracle database server. The output of the precompiler is
compiled with a supported z/OS language compiler and then linked or bound as a

Overview

6-2 Oracle Database User's Guide

z/OS program object, conventional load module, or executable file in an HFS.
Precompiler applications can run in batch, TSO, or a shell, or under control of CICS TS
or IMS TM.

With OCI and OCCI, direct calls to defined Oracle API functions are coded in a C (OCI
only) or C++ language program. The program is compiled with a supported z/OS
C/C++ compiler and then linked or bound as a z/OS program object, conventional
load module (OCI only) or executable file in an HFS. While more complex to use, OCI
and OCCI provide access to virtually all Oracle features with fine-grained control over
server operations. OCI and OCCI applications on z/OS can run in batch, TSO, or a
shell. They are not supported in CICS TS or IMS TM environments.

All precompiler runtime, OCI and OCCI functions reside in the LIBCLNTS and LIBOCCI
program objects that are part of the Oracle distribution. In a POSIX environment,
LIBCLNTS and LIBOCCI are loaded from an HFS directory in LIBPATH. In a non-POSIX
environment, LIBCLNTS and LIBOCCI are loaded from the JOBLIB/STEPLIB
concatenation. Both LIBCLNTS and LIBOCCI are accessed through or in coordination
with the Oracle stubs discussed below. For more information about LIBCLNTS and
LIBOCCI and how they are accessed, refer to the section "Application Runtime
Considerations" on page 6-29 and to Chapter 2, "Oracle Software Interaction with
z/OS and Language Environment."

Precompiler, mixed precompiler/OCI applications and non-POSIX OCI applications
must use an API stub. However, OCI POSIX applications can use an API stub. The API
stub is used to resolve the application's references to precompiler and OCI functions.
Traditional (non-XPLINK) linkage must be used. No other form of linkage to Oracle
code is supported. All the API stubs except ORASTBX must be included at link or bind
time; COBOL DYNAM applications include ORADMYC at link or bind time which
loads ORASTBX at run time. Oracle applications that use COBOL DYNAM are subject
to limitations. Refer to the "Pro*COBOL Considerations" section on page 6-12 for
details on how to compile and link programs using the DYNAM option. For more
information about binding and linking with API stubs, refer Table 6–1.

Table 6–1 Binding and Link-Editing with API Stubs

Platform Language Bound with Creates Must Specify

Pro*C/C++ or
OCI or mixed

ISO C Binder PM3/PM4 INCLUDE
SQLLIB(ORASTBL)

ISO C++ Binder PM3/PM4 INCLUDE
SQLLIB(ORASTBL)

ISO C Prelinker/Linkage
Editor

PM2/Load
Module

INCLUDE
OBJLIB(ORASTBS)

Pre-ISO C++ Prelinker/Linkage
Editor

PM2/Load
Module

INCLUDE
OBJLIB(ORASTBS)

ISO C (OCI V7
names,
NOLONGNAME
option)

Linkage Editor PM2/Load
Module

INCLUDE
OBJLIB(ORASTBS)

ISO C c89 PM3/PM4 $ORACLE_
HOME/lib/orastbl.o

ISO C++ c++ PM3/PM4 $ORACLE_
HOME/lib/orastbl.o

Pro*COBOL COBOL Binder PM3/PM4 INCLUDE
SQLLIB(ORASTBL)

Application Design Considerations

Developing Oracle Applications to Run on z/OS 6-3

OCCI and mixed OCI/OCCI applications must use XPLINK linkage and a DLL stub.
However, OCI POSIX applications can use a DLL stub with traditional or XPLINK
linkage. References to OCI and OCCI functions are implicitly resolved at bind time
using the LIBCLNTS.x (client) and LIBOCCI.x (OCCI) side decks. No other form of
linkage to Oracle code is supported. For more information about binding with DLL
stubs, refer Table 6–4.

Without exception, all precompiler, OCI, and OCCI applications on z/OS use LE
services at runtime. You must use an LE-enabled compiler to build your applications
and LE runtime services must be available when the application executes. In complex
application designs-those involving multiple separate executables, multiple compiled
languages, multiple tasks or threads, and similar techniques-you must adhere to
requirements imposed by LE as well as ones imposed by Oracle.

If you are exploiting Oracle object-relational features in a Pro*C/C++, OCI, or OCCI
application, you may also want to use OTT, a utility program that generates C
language structure declarations corresponding to database object types.

Most of the Precompiler application build information in this chapter also applies to
applications that will run in CICS TS or IMS TM. Additional details and requirements
for CICS TS and IMS TM applications are provided later in this chapter.

Application Design Considerations
The foremost determiner of application design considerations is the intended
execution environment. CICS TS and IMS TM have very specific requirements and
limitations covered separately at the end of this chapter. The other traditional MVS
environments (batch job and TSO) have one set of considerations while z/OS UNIX
shells have another. In batch and TSO environments the LE POSIX attribute of your
application can be either OFF or ON, as you choose, and this affects various LE
behaviors such as interpretation of ambiguous filespecs. If your application runs in a
shell, the LE POSIX attribute will always be ON.

Regardless of execution environment, your application's ultimate physical form will be
one of several z/OS executable formats: a traditional load module (stored in a PDS), or
a program object produced by the z/OS binder and stored in a PDSE or as an
executable file in an HFS. In general you use the HFS for programs that will run in a
shell and a PDS or PDSE for programs that run in other environments.

COBOL Linkage Editor PM2/Load
Module

INCLUDE
OBJLIB(ORASTBS)

COBOL Linkage Editor
(DYNAM)

PM2/Load
Module

INCLUDE
OBJLIB(ORADMYC)

COBOL cob2 PM3/PM4 $ORACLE_
HOME/lib/orastbl.o

Pro*FORTRAN FORTRAN Linkage Editor PM2/Load
Module

INCLUDE
OBJLIB(ORASTBF)

Pro*PL/I PL/I Binder PM3/PM4 INCLUDE
SQLLIB(ORASTBL)

PL/I Linkage Editor PM2/Load
Module

INCLUDE
OBJLIB(ORASTBS)

Table 6–1 (Cont.) Binding and Link-Editing with API Stubs

Platform Language Bound with Creates Must Specify

Application Design Considerations

6-4 Oracle Database User's Guide

In terms of requirements, we can distinguish between simple and complex
applications. A simple application meets all of the following criteria:

■ Single load module or program object that does not dynamically invoke any other
Oracle-accessing program, including Oracle tools and utilities

■ Written in a single high level language

■ Executes as a single batch job step, TSO command, or shell command

■ Does not require z/OS APF authorization, run in supervisor state or a PSW key
other than 8, or use an ASC mode other than primary

If your application fits the prior description, you can skip the section "Requirements
for Complex Applications" on page 6-5.

In sections that follow, the term application context is used to refer to the collection of
visible and internal state data representing the Oracle interactions of a single coherent
application. An application context typically represents a connection to an Oracle
database server and multiple SQL operations (cursors). It may include multiple
connections to the same or different Oracle database servers, using specific facilities
provided by OCI or an Oracle Precompiler for that purpose.

In addition, it is important to understand what LE calls an enclave in order to
understand the requirements for z/OS Oracle application designs. An enclave is the
set of resources and processing associated with a single logical LE application used
within a single z/OS task (TCB), with an execution lifetime delineated by well-defined
initialization and termination events. For more information about enclaves, refer to the
IBM Language Environment Concepts Guide and related publications.

Basic Application Requirements
The following requirements apply to all Oracle-accessing applications that run on
z/OS, from the simplest to the most complex:

■ An application must use IBM Language Environment. In other words, you must
use a compiler that generates LE-enabled code and that initializes an LE enclave
when execution begins.

■ An application can use any residency mode (RMODE) and either 31-bit or 24-bit
addressing mode (AMODE), as permitted by the compiler you use. An application
must use the same AMODE on all calls to Oracle API functions. If your application
uses 24-bit addressing (AMODE=24), all parameters passed to Oracle interface
functions must be addressable with a 24-bit address. For example, they must
reside in virtual memory below the 16 MB line. All applications that are compiled
with the XPLINK compiler option are AMODE=31.

■ An application can be reentrant or not, as you choose and as supported by the
compiler and linkage you use. The API and DLL stubs and all dynamically loaded
Oracle interface code are reentrant, but the application itself is not required to be
reentrant. Certain OCI and OCCI facilities require that you compile your C or C++
program with the DLL compiler option, which dictates the RENT option. All
applications that are compiled with the XPLINK compiler option are reentrant.

■ An application must not use the LE exit CEEBXITA. An Oracle-specific version of
this exit is provided in the API and DLL stubs and cannot be overridden or
replaced. This exit is used to provide cleanup of Oracle-related resources when
your application ends; its actions are transparent to your application.

■ If an application uses any functions implemented in an XPLINK DLL, for example,
OCCI, an XPLINK application DLL, the ISO C++ STL, and C++ standard I/O

Application Design Considerations

Developing Oracle Applications to Run on z/OS 6-5

library functions, it must use the XPLINK(ON) LE runtime option. For more
information about the XPLINK(ON) LE runtime option, refer to the "Using the
XPLINK(ON) LE Runtime Option" section.

Requirements for Complex Applications
Read this section if your application does not meet one or more of the criteria for
simple applications listed in the section "Application Design Considerations" on
page 6-3, or if you are interested in more of the z/OS technical details involved in
Oracle application execution. This discussion assumes familiarity with LE and other
z/OS features and interfaces.

Using z/OS Assembler Language
Some complex application designs involve programming in z/OS Assembler
Language and using low-level system services provided as Assembler macros or
callable services. While you cannot use an Oracle Precompiler or make OCI or OCCI
calls directly from Assembler, you can invoke Oracle-accessing C, C++, COBOL,
FORTRAN, or PL/I programs from an Assembler program. Doing so requires,
foremost, an understanding of LE and the notion of an LE enclave.

An Assembler program that invokes Oracle-accessing programs can be
LE-conforming, using LE macros such as CEEENTRY and CEETERM for entry and
exit linkage, or it can be a non-LE program. Which you use depends on what kind of
Oracle-accessing programs are invoked and how, as discussed in the sections that
follow.

Dynamic Linkage Techniques
There are a variety of ways in z/OS to cause program code to be read into memory
and executed on demand of the initial or main application (the program invoked as a
jobstep, TSO command, or shell executable). Some, such as DLLs, COBOL dynamic
linkage, and the C functions system() and fetch(), are provided and supported by
compilers and LE. Others, such as the Assembler services LOAD/CALL, LINK, and
ATTACH (and related services such as ISPF's ISPLINK) operate outside LE. All of
these techniques, and especially the latter category, require awareness of both LE
requirements and Oracle requirements.

Using DLLs If permitted by the language and compiler, the application can exploit the
DLL mechanism of LE. Your Oracle-accessing programs can call subroutines that are
packaged in a DLL and the called subroutines themselves (in the DLL) can also be
Oracle-accessing. When using DLLs, your main program must include the API or DLL
stub, even if it does not contain any Oracle API calls. In an application that uses a DLL
stub, only the main program in an LE enclave should contain the DLL stub.

In an application that uses an API stub, the Oracle API function calls in a DLL always
go through the API stub included in the DLL. In an application that uses a DLL stub,
the Oracle API function calls in a DLL are implicitly resolved by binding the DLL
against the client and OCCI side decks.

When you use DLLs, both the subroutines in the DLL and any Oracle API functions
execute in the caller’s LE enclave.

Using the XPLINK(ON) LE Runtime Option If any application code is compiled with
XPLINK or uses a DLL that is compiled with XPLINK, such as OCCI, the ISO C++
STL, the ISO C++ standard I/O library, the main program must use the XPLINK(ON)
LE runtime option. This can be done by using one of the following methods:

Application Design Considerations

6-6 Oracle Database User's Guide

■ Compiling the main program with XPLINK, where permissible.

■ Compiling the main program with #pragma runopts(XPLINK(ON)).

■ Placing XPLINK(ON) into the _CEE_RUNOPTS environment variable. This is the only
supported method for COBOL and PL/I main programs.

For more information, refer to z/OS C/C++ Programming Guide or z/OS Language
Environment Programming Guide.

Using COBOL Dynamic Linkage Your Pro*COBOL application can use COBOL dynamic
linkage to invoke your own subroutines. As with DLLs, your main program must
include the API stub regardless of whether it contains Oracle API calls. Subroutines
invoked with COBOL dynamic call linkage and containing Oracle API calls must also
include the API stub.

Oracle also allows you to use the COBOL DYNAM compiler option, subject to certain
limitations. When you compile with DYNAM, the Pro*COBOL API calls themselves
are treated as dynamic COBOL calls, loading a special runtime version of the API stub.

When you use COBOL dynamic linkage, the called subroutines execute in the caller's
LE enclave.

Using C/C++ system() The system() function of C/C++ library can be used to invoke a
batch program, a TSO command, CLIST, or EXEC, or a shell command or script. From
an LE standpoint, a program or script invoked in this fashion is not a subroutine; it is a
main program and runs in its own LE enclave. This means your application is using
multiple LE enclaves, discussed in the section "Multiple LE Enclaves in an
Application" on page 6-7. You cannot pass Oracle connection state data (such as cursor
or connection handles) to a program invoked using system(). Programs invoked with
system() must establish their own independent interactions with an Oracle server.
You can use system() to invoke Oracle tool or utility programs, such as SQL*Plus.

Using C/C++ fetch() The fetch() function of C/C++ library loads an executable,
returning a function pointer that can be used to invoke the executable one or more
times. A program invoked this way runs as a subroutine in the caller's LE enclave and
cannot be a main routine. If you use fetch() to run one or more Oracle-accessing
subroutines, you must include the API stub in the main program and in all
Oracle-accessing subroutines or include the DLL stub in the main program and bind
all Oracle-accessing routines against the client and OCCI side decks.

Using z/OS LOAD/CALL or LINK These services are accessed directly using z/OS
Assembler Language macros. The LINK service is also used internally by other
facilities, including ISPLINK under TSO ISPF. These mechanisms operate outside of
LE, so care must be taken to ensure that LE facilities are not impacted.

If you use LOAD and CALL to invoke an Oracle-accessing program, one of two
conditions must be met when CALL is issued:

■ No LE enclave exists at the time of the CALL, and the called program operates as a
main program, initializing its own LE enclave and terminating it before returning.

■ An LE enclave exists, the Assembler program that issues the CALL is
LE-conforming, and the called program operates as a subroutine and runs in the
same enclave-it cannot be a main routine. In this case, the main program must
include the API or DLL stub, even if it is written entirely in Assembler and
contains no Oracle API calls.

When you use a LINK macro to invoke an Oracle-accessing program, the called
program must be a main routine that initializes its own LE enclave. If an enclave

Application Design Considerations

Developing Oracle Applications to Run on z/OS 6-7

already exists at the time of the LINK, the called program runs as a nested enclave,
discussed in the section "Multiple LE Enclaves in an Application" on page 6-7.
Regardless of which condition exists, you cannot pass Oracle connection state data,
such as cursor or connection handles, to the called program.

Using z/OS ATTACH The ATTACH macro creates a subtask, which means you are using
multitasking, discussed in the section "Multiple LE Enclaves in an Application" on
page 6-7. The program you run with ATTACH must be a main routine that creates its
own LE enclave. You cannot pass Oracle connection state data, such as cursor or
connection handles, from one z/OS task to another.

Multiple LE Enclaves in an Application
There are a couple of ways that an application that runs as a single z/OS task (TCB)
can use multiple LE enclaves. One is for a program in an existing enclave to invoke
another main program using a service such as C/C++ system() or Assembler LINK.
In this case LE creates what is called a nested enclave for the invoked program. The
nesting can go deeper if the invoked program invokes still other main programs the
same way.

Another scenario is when a non-LE Assembler program invokes multiple LE main
programs in succession using LOAD/CALL or LINK. Each invoked program creates
and ultimately deletes its own LE enclave. Since there is no existing enclave at create
time, these enclaves are not nested, and only one enclave exists at a time.

Regardless of which scenario applies (or both, since they can be combined), only one
LE enclave is active (running program code) at a time. When the enclaves involve
Oracle interaction, when the programs are precompiler, OCI, or OCCI applications,
the following considerations apply:

■ A single Oracle application context, as defined earlier, can be created and used
within a single LE enclave only. This means your application cannot be designed
to pass resources from one application context (such as cursors or OCI handles) to
code that executes in a different LE enclave, including a nested enclave. In
practical terms, this prohibits opening a cursor in one COBOL run unit, which
equates to an LE enclave, and trying to fetch from that cursor in a different
COBOL run unit. It also prohibits passing cursors or other Oracle connection state
artifacts from one C/C++ main program to another C/C++ main program.

■ If an application uses multiple LE enclaves with API stubs, all of the precompiler
or OCI programs making up the application must have been built and bound with
the API stub from either Oracle Database 10g or Oracle9i Release 2. Applications
built with the Oracle9i API stub must use a version of the stub that contains the fix
for Oracle bug 3431417.

■ If an application uses multiple LE enclaves with DLL stubs, the main program in
each enclave that makes Oracle API calls must be built and bound with a DLL stub
shipped with Oracle Database 10g release 2. Any main programs or application
DLLs that make Oracle API calls must be bound against the client and OCCI side
decks.

■ Pro*COBOL applications that use the COBOL DYNAM compile option and,
therefore, do not include the API stub, cannot be used in a multiple enclave
application.

Multitasking Applications
Using Assembler Language and the ATTACH macro and related services, you can
develop an Oracle application that uses multiple concurrently dispatchable tasks. Both

Application Design Considerations

6-8 Oracle Database User's Guide

Oracle and LE impose requirements on such designs. For LE, enclaves normally have
task scope: an enclave created in one task cannot be used to execute programs in
another task. For Oracle, all connection state data (the application context) also has
task scope. You cannot pass connection state data such as cursor or connection handles
from one z/OS task to another.

These requirements essentially mean that each z/OS task in a multitasking design
must be independent of the other tasks as far as LE and Oracle interactions are
concerned. The tasks are otherwise free to communicate and synchronize among
themselves. Such designs can be complex and difficult to debug.

 z/OS Environment and z/Architecture Hardware States
 In z/OS there are numerous combinations of software and hardware states in which a
program can run. This includes variations of dispatchable unit (task or SRB), APF
authorization, supervisor versus problem state, PSW key, and addressing variations
including AR and cross-memory modes. Your Oracle-accessing application is
constrained to using environments and execution states that are supported by LE. In
addition, the following restrictions apply:

■ You cannot access Oracle when running as an SRB; only task mode is supported.

■ Your program must be in primary ASC mode and not in any cross-memory mode
at the time an Oracle interface call is made.

■ Your program must not be disabled, hold any z/OS lock, or have an Enabled
Unlocked Task (EUT) FRR established at the time of an Oracle interface call.

■ All input and output parameters for an Oracle interface call must be accessible in
your application's address space using the application's AMODE and PSW key.

■ All calls to Oracle from an application must be made in the same AMODE, the
same privilege state (problem or supervisor), and the same PSW key.

■ If your application uses PROTOCOL=XM to connect to a local Oracle server, z/OS
Asynchronous Exits (IRBs) are not dispatched during Oracle server interaction
(while running in the Oracle server in cross-memory mode). This means processes
like z/OS STIMER/STIMERM timer pops and TSO attention interrupts are
deferred until a server call returns control.

POSIX Threading
You can use the POSIX threading features of z/OS in an Oracle Pro*C/C++, OCI or
OCCI application. However, because z/OS normally dispatches separate threads on
separate z/OS tasks, you cannot pass Oracle connection state data (such as connection
or cursor handles) from one thread to another. Each thread must establish, use, and
close its own Oracle server connections and cursors.

OCI Interface to Publish/Subscribe
The OCI interface to Oracle's publish/subscribe features allows an application to
register a callback function that is driven when there are queue data or trigger events
to process. This feature is supported with Oracle Database for z/OS as long as the
client executes in a multi-threaded environment and there is TCP connectivity
between the server and the client. This includes local z/OS clients running under
z/OS UNIX Systems Services shell environments as well as remote clients on any
multi-threaded platform. It excludes native TSO/batch and IMS TM clients at this time

The TCP connectivity requirement does not mean that the client must be connected to
the server using Oracle Net PROTOCOL=TCP. The client can be connected using any
protocol (including Oracle Net PROTOCOL=XM for a local z/OS UNIX Systems

Building an Application

Developing Oracle Applications to Run on z/OS 6-9

Services client) and in fact the client can disconnect its session from the database after
setting up the callback without affecting the callback. A special background process in
the server (EMON) opens a TCP connection to the client thread that gets created when
OCISubscriptionRegister is called. TCP communication from the server to the client
thread ultimately drives the callback functions.

Refer to the OCI Programmer's Guide for further details on the OCI interface to Oracle's
publish/subscribe facility.

Building an Application
The following steps outline how to build an application to access an Oracle database
using API stubs:

1. Precompile your program with one of the Oracle Precompilers and other
precompilers that are required by your target environment (not required for OCI
applications).

2. Compile your program with the host language compiler.

3. Link your program with an API stub designed especially for the target
environment.

4. Run your program in the target environment.

The following steps outline how to build an application to access an Oracle database
using DLL stubs:

1. Compile your program with the host language compiler.

2. Bind your program with a DLL stub designed especially for the target
environment.

3. Run your program in the target environment.

Precompiling Programs
Oracle Precompilers are used to process C/C++, COBOL, FORTRAN, and PL/I
programs before passing them to their native compilers. They translate embedded
SQL statements into the appropriate language statements and calls necessary to access
an Oracle database. Oracle Precompilers are supported in all three operating
environments (batch, TSO, and shell) except Pro*FORTRAN and Pro*PL/I, which are
not supported in the shell environment.

You should review the information in the following product-specific documentation
on Oracle Precompilers before proceeding with the z/OS-specific information in this
section:

■ Programmer's Guide to the Oracle Precompilers

■ Pro*C/C++ Precompiler Programmer's Guide

■ Pro*COBOL Precompiler Programmer's Guide

■ Pro*FORTRAN Supplement to the Oracle Precompilers Guide

■ Pro*PL/I Supplement to the Oracle Precompilers Guide

Oracle Precompiler Executables
Oracle Precompilers can be run in various environments. The following table shows
the names of the executables for each environment:

Table 6–2 Oracle Precompiler Executables

Precompiler
Batch/TSO
Executable Name

JCL Procedure
Name

POSIX Executable
Name

Pro*C/C++ PROCI ORAC proc

Pro*COBOL PROCOB ORACOB procob

Pro*FORTRAN PROFOR PFORCLGO N/A

Pro*PL/I PROPLI ORAPLI N/A

Building an Application

6-10 Oracle Database User's Guide

Oracle Precompiler INCLUDE Files
Several INCLUDE files are provided in the H data set for use by the Oracle
Precompilers. You do not have to specify the member name that includes the language
suffix in your source program. You may specify the data structure name, for example,
SQLCA, in your source program. Oracle Precompilers include the appropriate
member name based on the Oracle Precompiler language, as listed in the following
table:

Table 6–3 Oracle Precompiler INCLUDE Files

Language Member Name Data Structure

C/C++ SQLCAC SQLCA

C/C++ ORACAC ORACA

C/C++ ORADAC ORADA

COBOL SQLCACOB SQLCA

COBOL ORACACOB ORACA

FORTRAN SQLCAFOR SQLCA

FORTRAN SQLCAFOR ORACA

PL/I SQLCAPLI SQLCA

PL/I ORACAPLI ORACA

For more information about data structures, refer to your Oracle Precompiler
documentation.

Oracle Precompiler Options
Because there are many possible options for the Oracle Precompilers, you might find it
impossible to fit all the options you need in the 100 bytes z/OS allows for parameters
initially passed to user programs (for example, from JCL). You can use the following
methods to pass more than 100 bytes of precompiler options to an Oracle Precompiler
interface:

■ Use the Oracle Precompiler EXEC ORACLE OPTION statement in your source
program to specify some of the parameters. This is a good way to specify options
that do not change for each compile. Refer to your Oracle Precompiler
documentation for information about the EXEC ORACLE OPTION statement.

■ Use a parameter file to direct the Oracle Precompiler to retrieve parameters from a
z/OS file in addition to the z/OS parameter field. Refer to Chapter 2 for more
information about the parameter file feature. A combination of option overrides
and parameter file also can be used. For example:

PARM='++//DD:ddname option1 option2…'

Building an Application

Developing Oracle Applications to Run on z/OS 6-11

■ When using a question mark to determine the current value for one or more
options, surround the question mark with full quotes or escape the question mark
with a backslash, as shown in the following examples:

// EXEC PGM=PROC,PARM='"?"'
// EXEC PGM=PROC,PARM='\?'

When specifying Oracle Precompiler options on the command line, separate each
option with one or more blanks. Do not use a comma as a separator. To specify a
fully-qualified data set name in an Oracle Precompiler option, use the appropriate LE
syntax.

When running in a batch or TSO environment, some Oracle Precompiler options
require the following special considerations. Refer to Chapter 2 for rules on how to
specify z/OS data set names to the Oracle database server.

INAME specifies the input file containing the source code, in any supported language,
for the precompiler. The INAME file can be a sequential data set, a PDS member, an
instream (DD *) data set, or an HFS file. In batch and TSO environments there is no
default. Typically, this operand is coded as shown in the following example with a
SYSIN DD statement pointing to the input source code:

INAME=//DD:SYSIN

ONAME specifies the file to contain the output from the Oracle Precompiler. The
ONAME file can be a sequential data set, a PDS member, or an HFS file. In batch and
TSO environments there is no default. Typically, this operand is coded as shown in the
following example with a SYSPUNCH DD statement pointing to a data set that is
passed as input to the native language compiler:

ONAME=//DD:SYSPUNCH

LNAME specifies the file to contain the listing from the Oracle Precompiler. The
LNAME file can be a sequential data set, a PDS member, a SYSOUT data set, or an
HFS file. In batch and TSO environments there is no default. The LNAME parameter
cannot specify the SYSPRINT DD. Typically, this operand is coded as shown in the
following example with a LIST DD statement pointing to a SYSOUT data set:

LNAME=//DD:LIST

Configuration Files
Oracle Precompilers on z/OS support the concept of system and user configuration
files. In batch and TSO environments, the system configuration file is read from the
PROCFG DD statement, if it exists. To avoid a warning message, the PROCFG DD
statement should be DUMMY if no changes to the default options are desired.

The user configuration file can be used to make overrides to the system configuration
file for specific options. The file must be specified in the parameters passed to the
precompiler using the CONFIG= option. The CONFIG= option is not allowed inside a
configuration file; doing so will produce an error message, although the precompile
continues. If a data set is used to pass precompiler options to an Oracle Precompiler,
the data set must not have sequence numbers. If sequence numbers are found, then the
Precompiler stops processing.

When using configuration files in the POSIX environment, follow the rules outlined in
the product documentation.

Building an Application

6-12 Oracle Database User's Guide

In all environments, each option in a configuration file must be on a separate line and
must begin in column 1.

Return Codes
Oracle Precompilers set a return code of 0 upon successful precompilation of source
code. A return code of 4 is set if the precompiler issues a warning message.

A return code of 8 is set if the precompiler detects a potentially irrecoverable error
condition. In this case, an error message is written to the file specified in the LNAME
parameter passed to the precompiler.

Language-Specific Coding Considerations
The following sections discuss certain considerations that impact Oracle Precompiler
programs written in a particular language, regardless of the target environment
running the program:

Compiler Support Considerations Oracle Corporation supports any currently supported
IBM compiler that uses the LE runtime environment.

Pro*COBOL Considerations When using Pro*COBOL, each of the following has special
considerations:

■ RETURN-CODE Special Register. On z/OS, COBOL programs use the
RETURN-CODE special register to pass a return code from a main program back
to z/OS. It is then used to form the job step completion code. The z/OS standard
subroutine linkage places unpredictable values into the RETURN-CODE special
register as a subroutine is called. Subprograms on z/OS can set the value of the
RETURN-CODE special register as they exit. However, the RETURN-CODE
special register is an IBM extension to the COBOL language and is not part of the
SQL standard.

In compliance with the SQL standard, Oracle Pro*COBOL does not make use of
the RETURN-CODE special register and does not explicitly set the value. This
causes the value of the RETURN-CODE special register to be unpredictable after
each SQL statement completes. If a SQL statement is issued immediately before
the main program returns to z/OS, then the unpredictable value remains in the
RETURN-CODE special register and is used to form the job step completion code.
The application developer is responsible for ensuring the correctness of the
RETURN-CODE special register.

■ INTEGER Values. In the Oracle product documentation, SQL library function
parameters are often documented with a data type of INTEGER. In z/OS, integers
are a fullword and must be defined in COBOL as fullword COMP fields with sizes
from S9(5) to S9(8). An S9(4) or smaller definition generates a halfword that is the
default integer size on some operating systems. This can cause problems when
migrating applications from other operating systems to z/OS. For example, a call
to SQLIEM expects an integer MESSAGE_LENGTH as the second parameter.
Define a MESSAGE_LENGTH field as PIC S9(8) COMP in your program. A call to
SQLGLM expects the second and third parameters, BUFFER_SIZE and
MESSAGE_LENGTH respectively, to be integers. As with SQLIEM, they must be
defined as PIC S9(8) COMP fields.

■ DYNAM Compiler Option. Pro*COBOL support for the DYNAM option is
provided with a loadable version of the API stub. This support is meant for
installations whose standards or existing application designs require the use of
DYNAM; it is not recommended for general use. When you use COBOL DYNAM,
the Oracle LE exit CEEBXITA is not included with your application and does not

Building an Application

Developing Oracle Applications to Run on z/OS 6-13

run at enclave termination. This means Pro*COBOL programs that use DYNAM
support cannot be executed as part of a multiple LE enclave design. Refer to the
sections "Compiling Programs" on page 6-17, "Linking Programs" on page 6-18,
and "Oracle Interface Initialization, Processing, and Error Handling" on page 6-30
for details on using COBOL DYNAM support.

Pro*C/C++, OCI, and OCCI Considerations When using Pro*C/C++, OCI, or OCCI, object
support has special considerations. The OTT utility is used to convert database object
type definitions into C programming language declarations that are included in your
Pro*C/C++, OCI, or OCCI applications. OTT is a Java application which must run in a
POSIX environment. For more information about OTT, refer to your Oracle
Precompiler documentation.

All Oracle interface code is compiled with the ENUMSIZE(INT) option. In order to be
compatible, your Pro*C/C++, OCI, and OCCI programs must also use
ENUMSIZE(INT).

Currently only FLOAT(HEX) is supported in Pro*C/C++, OCI, and OCCI programs
on z/OS. You cannot use FLOAT(IEEE) in an Oracle-accessing application.

Pro*FORTRAN Considerations Pro*FORTRAN is supported in the non-POSIX batch and
TSO environments only. It is not supported in the POSIX environment.

Pro*PL/I Considerations When using Pro*PL/I, the record format of the output file and
the execution environment have special considerations, as follows:

■ The native language output from the Pro*PL/I Precompiler that is directed to the
data set specified in the ONAME parameter cannot have a RECFM of V. This is
because a z/OS compiler restriction requires all PL/I programs contained in a
variable length data set to have a blank or a sequence number in columns 1 to 8.
This restriction does not apply to the data set input to Pro*PL/I, only to the
intermediate data set passed to the PL/I compiler.

■ Pro*PL/I is supported in the non-POSIX batch and TSO environments only. It is
not supported in the POSIX environment.

Special Considerations for Running Precompilers in Batch and TSO Environments
The Oracle Precompilers use temporary files during their processing. In the batch and
TSO environments, users must provide DD statements SYSUT1, SYSUT2, SYSUT3,
SYSUT4 (Pro*FORTRAN only) and SYSUT5 (Pro*FORTRAN only) that point to
temporary files. These are normally specified as UNIT=VIO DD statements.

If the ORECLEN precompiler parameter is larger than 132, then the DCB attributes
must be specified in these DD statements to set the LRECL equal to the ORECLEN
value. For example, the following statement sets the LRECL to 200:

//SYSUT1 DD UNIT=VIO,DCB=(LRECL=200)

Sample JCL for Running the Pro*C/C++ Precompiler in Batch Environments
The following sample JCL illustrates the precompile step necessary to build a Pro*C
precompiler application program:

//PRECOMPL EXEC PGM=PROC,
// PARM='++//DD:SYSPARM'
//STEPLIB DD DSN=ORACLE.V10G.CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=ORACLE.V10G.MESG,DISP=SHR
//SYSLIB DD DSN=ORACLE.V10G.H,DISP=SHR
// DD DSN=SYS1.SCEEH.H,DISP=SHR

Building an Application

6-14 Oracle Database User's Guide

// DD DSN=SYS1.SCEEH.SYS.H,DISP=SHR
//LIST DD SYSOUT=*
//PROCFG DD DUMMY
//SYSIN DD DISP=SHR,DSN=JSMITH.CPGM.PC
//SYSPUNCH DD DSN=&&PCCOUT,DISP=(,PASS,DELETE),
// UNIT=VIO
//SYSPARM DD *
INAME=//DD:SYSIN
ONAME=//DD:SYSPUNCH
LNAME=//DD:LIST
/*
//SYSUT1 DD UNIT=VIO
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO

Sample JCL for Running the Pro*COBOL Precompiler in Batch Environments
The following sample JCL illustrates the precompile step necessary to build a
Pro*COBOL precompiler application program:

//PRECOMPL EXEC PGM=PROCOB,
// PARM='++//DD:SYSPARM'
//STEPLIB DD DSN=ORACLE.V10G.CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=ORACLE.V10G.MESG,DISP=SHR
//SYSLIB DD DSN=ORACLE.V10G.H,DISP=SHR
// DD DSN=SYS1.SCEEH.H,DISP=SHR
// DD DSN=SYS1.SCEEH.SYS.H,DISP=SHR
//LIST DD SYSOUT=*
//PROCFG DD DUMMY
//SYSIN DD DISP=SHR,DSN=JSMITH.COBPGM.PCO
//SYSPUNCH DD DSN=&&PCCOUT,DISP=(,PASS,DELETE),
// UNIT=VIO
//SYSPARM DD *
INAME=//DD:SYSIN
ONAME=//DD:SYSPUNCH
LNAME=//DD:LIST
/*
//SYSUT1 DD UNIT=VIO
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO

Sample JCL for Running the Pro*FORTRAN Precompiler in Batch Environments
The following sample JCL illustrates the precompile step necessary to build a
Pro*FORTRAN precompiler application program:

//PRECOMPL EXEC PGM=PROFOR,
// PARM='++//DD:SYSPARM'
//STEPLIB DD DSN=ORACLE.V10G.CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=ORACLE.V10G.MESG,DISP=SHR
//SYSLIB DD DSN=ORACLE.V10G.H,DISP=SHR
//LIST DD SYSOUT=*
//PROCFG DD DUMMY
//SYSIN DD DISP=SHR,DSN=JSMITH.FORPGM.FOR
//SYSPUNCH DD DSN=&&PCCOUT,DISP=(,PASS,DELETE),
// UNIT=VIO
//SYSPARM DD *
INAME=//DD:SYSIN
ONAME=//DD:SYSPUNCH
LNAME=//DD:LIST
/*

Building an Application

Developing Oracle Applications to Run on z/OS 6-15

//SYSUT1 DD UNIT=VIO
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO
//SYSUT4 DD UNIT=VIO
//SYSUT5 DD UNIT=VIO
//PRECOMPL EXEC PGM=PROCOB,

Sample JCL for Running the Pro*PL/I Precompiler in Batch Environments
The following sample JCL illustrates the precompile step necessary to build a
Pro*PL/I precompiler application program:

//PRECOMPL EXEC PGM=PROPLI,
// PARM='++//DD:SYSPARM'
//STEPLIB DD DSN=ORACLE.V10G.CMDLOAD,DISP=SHR
//ORA$LIB DD DSN=ORACLE.V10G.MESG,DISP=SHR
//SYSLIB DD DSN=ORACLE.V10G.H,DISP=SHR
// DD DSN=SYS1.SCEEH.H,DISP=SHR
// DD DSN=SYS1.SCEEH.SYS.H,DISP=SHR
//LIST DD SYSOUT=*
//PROCFG DD DUMMY
//SYSIN DD DISP=SHR,DSN=JSMITH.PLIPGM.PPL
//SYSPUNCH DD DSN=&&PCCOUT,DISP=(,PASS,DELETE),
// UNIT=VIO
//SYSPARM DD *
INAME=//DD:SYSIN
ONAME=//DD:SYSPUNCH
LNAME=//DD:LIST
/*
//SYSUT1 DD UNIT=VIO
//SYSUT2 DD UNIT=VIO
//SYSUT3 DD UNIT=VIO

Sample Commands for Running Oracle Precompilers in a Shell
Oracle Precompilers running in a shell must know the include pathname to find all the
include files. Therefore, the command line must have each nonstandard include
pathname specified.

The following are sample commands for running Oracle Precompilers in a shell:

Pro*COBOL
$ procob iname=mycobpgm.pco include=/home/jones/copybooks oname=xyz.cbl

Pro*C/C++
$ proc iname=mycpgm.pc include=/home/jones/include

Compiler Options for Oracle Applications
This section contains information regarding compiler options for Oracle applications.
The settings are grouped by language with an environment indicator to reflect
whether the setting applies.

Environment indicators are listed as follows:

C - CICS TS client
I - IMS TM client
N - Native (non-POSIX) batch and TSO client with API stub
PA - POSIX client with API stub
PD - POSIX client with DLL stub
Z - OCCI native (non-POSIX) batch and TSO client with DLL stub

Building an Application

6-16 Oracle Database User's Guide

C/C++ Compiler Options
The C/C++ compiler options are listed as follows:

■ DLL - N, PA, PD, PZ

 Required for C if using OCI callbacks or a DLL stub. Required for C++

■ LANGLVL(EXTENDED) - N, PA, PD, Z

Required if using OCI-Lob related functions or a DLL stub

■ ENUMSIZE(INT) - C, I, N, PA, PD, Z

Required for OCI/OCCI programs

■ FLOAT(HEX) - C, I, N, PA, PD, Z

Required (CHECK XPLINK!)

■ LONGNAME - N, P

Default for C. Required for DLL stub applications. For an OCI API stub
application, LONGNAME allows prelinking and linking with ORASTBS or linking
with ORASTBL. Refer to the section "Linking Programs" on page 6-18 or more
information.

■ NOLONGNAME - N, P

For an OCI API stub application that uses OCI V7 names or the DEFINE=ORA_
SNAME precompiler option, NOLONGNAME allows linking with ORASTBS.
Refer to the "Building a Traditional Load Module with the Alternate API Stub"
section on page 6-26 for more information.

■ TARGET(LE,zOSV1R4) - N, PA, PD, Z

 zOSV1R4 or later is required. Default on z/OS V1.4 or later

■ NOXPLINK - C, I, N, PA, PD

 Required C, I, N, PA. Optional for PD.

■ XPLINK - PD, Z

Optional for PD. Required for Z. Implies DLL, LONGNAME.

■ SEARCH($ORACLE_HOME/rdbms/public) - PD, Z

Required for OCCI

COBOL Compiler Options
The COBOL compiler options are listed as follows:

■ APOST/QUOTE - C, I, N, P

The PCC option LITDELIM must match the value specified. For CICS TS, this
value must also be specified as a CICS translator option.

■ NODYNAM/DYNAM - N, P

NODYNAM is recommended. To use the DYNAM option, refer to the sections
"Compiling Programs" on page 6-17, "Linking Programs" on page 6-18, and
"Oracle Interface Initialization, Processing, and Error Handling" on page 6-30 for
details on using COBOL DYNAM support.

■ PGMNAME - N, P

LONGMIXED - requires linkage with ORASTBL.

Building an Application

Developing Oracle Applications to Run on z/OS 6-17

LONGUPPER - requires linkage with ORASTBL.

Refer to the section "Linking Programs" on page 6-18 or more information.

■ SQL - C, I, N, P

 Not applicable for Oracle applications

PL/I Compiler Options
The PL/I compiler options are listed as follows:

■ NOINTERRUPT - N,P

 Required

■ NOT,OR -

Refer to the PRO*PL/I Supplement to the Oracle Precompilers Guide for restrictions on
using PL/I logical operators in SQL statements

Compiling Programs
Precompiled, OCI, and OCCI applications must be compiled using their host language
compiler. In the case of precompiled applications, the output generated by the
precompiler is used as input to the host language compiler.

Use of the DLL compiler option when compiling Pro*COBOL, Pro*C/C++, OCI, or
OCCI programs is an option and is generally determined by the design of the
application. This is supported for Oracle applications, but with two exceptions:

■ Pro*COBOL applications compiled with the COBOL DYNAM option cannot
specify the DLL option.

■ OCI C API stub applications that make use of callbacks, C++ applications and DLL
stub applications.

Considerations for building applications to run in the CICS TS and IMS TM
environments are covered in the sections "Developing Oracle Applications for the
CICS TS Environment" on page 6-33 and "Developing Oracle Applications for the IMS
TM Environment" on page 6-35.

Sample Commands for Compiling Programs in a Shell
The following are sample commands for compiling programs in a shell:

COBOL
export STEPLIB=SYS1.SIGYCOMP
export COBOPT='QUOTE,OPTIMIZE,SOURCE,LIST'
cob2 -c pgm_name.cbl -o pgm_name.o -v \
-I. \
-I$ORACLE_HOME/precomp/public \
2>pgm_name.err

C
c89 -c \
-I. \
-I$ORACLE_HOME/rdbms/public \
-I$ORACLE_HOME/precomp/public \
-o pgm_name.o pgm_name.c \
2>pgm_name.err

Building an Application

6-18 Oracle Database User's Guide

Compiling OCCI programs to Run in Batch and TSO Environments
The following sample JCL, based on standard procedure CBCXCB, illustrates the
compilation step necessary for an OCCI C++ program in batch and TSO environments.

//COMPILE EXEC PGM=CCNDRVR,REGION=96M,
// PARM=('/CXX XPLINK GOFF OPTFILE')
//SYSLIN DD DISP=(,PASS),UNIT=VIO,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSIN DD - Refer to Note 1 -
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSOPTF DD *
 LANGLVL(EXTENDED) ENUMSIZE(INT)
 SEARCH($ORACLE_HOME/rdbms/public) - Note 2 -
*/
Usage Notes:

1. Point to the program to be compiled. This can be in a data set (DD DSN) or an HFS
file (DD PATH).

2. Replace $ORACLE_HOME with the Oracle home directory.

Linking Programs
After a program has been compiled, the resulting object code is passed to the binder,
where it is linked with the API stub.

Considerations for linking applications to run in the CICS TS and IMS TM
environments are covered in the sections "Developing Oracle Applications for the
CICS TS Environment" on page 6-33 and"Developing Oracle Applications for the IMS
TM Environment" on page 6-35.

Linking Pro*C/C++, OCI, COBOL, and PL/I Programs to Run in Batch and TSO
Environments
When linking a C, C++, COBOL, or PL/I program to run in batch or TSO, add the
following linkage editor control statement to the SYSLIN DD statement:

INCLUDE SYSLIB(ORASTBL)

If there are unresolved external references for symbols whose names begin with SQL,
then ensure ORASTBL is included in the linkedit. This API stub resolves any calls in
the generated code. If ORASTBL is correctly included, then the problem is probably
caused by a missing entry point to the API stub routine. You can contact Oracle
Support Services for additional assistance.

The following sample JCL illustrates the linking step necessary to run C, C++, COBOL,
and PL/I programs in batch and TSO environments:

//LKED EXEC PGM=IEWL,
// PARM='XREF,LET,LIST,DYNAM=DLL'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=ORACLE.V10G.SQLLIB,DISP=SHR
// DD DSN=SYS1.SCEELKED,DISP=SHR
// DD *- Refer to Note 1 -*
//SYSLMOD DD *- Refer to Note 2 -*
//TEXT DD *- Refer to Note 3 -*
//SYSUT1 DD UNIT=VIO
//SYSLIN DD *
INCLUDE TEXT *- Refer to Note 3 -*

Building an Application

Developing Oracle Applications to Run on z/OS 6-19

INCLUDE SYSLIB(ORASTBL) *- Refer to Note 4 -*
 - Refer to Note 5 -
/*

Usage Notes:

1. Include additional libraries required by your program and any runtime libraries
required by the native language.

2. This DD statement describes the library in which your linkedited Oracle load
module is placed.

3. This DD statement points to the object output from your Oracle Precompiler
program's native language compiler.

4. The specific contents of the SYSLIN DD statement depend on the target
environment. Refer to "Linking Programs" on page 6-18 for more information.

5. Include any additional linkage editor statements you might require.

Linking COBOL Programs Using DYNAM
Each target environment has a unique stub, and different linking considerations apply
to each of the target environments. In all cases, unless you are using the COBOL
DYNAM compiler option, the API stub must be linked statically linked with your
program.

If you are using the DYNAM option when building a Pro*Cobol application, you need
to make the following changes for linking your program:

■ Remove any DYNAM(DLL) parameter

■ Add an OBJLIB DD statement allocating oracle_hlq.OBJLIB

■ For link/binder control, replace the following control statement:

INCLUDE SQLLIB(ORASTBL)

Instead, use the following statement:

INCLUDE OBJLIB(ORADMYC)

If the application developer does not change or incorrectly changes the INCLUDE
statement, it will probably go undetected when the application is built. The mistake
will result in an all-too-common 0C4 abend. Tracing it back to the build error, the
reason will not be apparent without a significant amount of debugging. To help with
this problem, extra checking was added to the runtime interface to detect the condition
before the 0C4 abend is likely to occur.

Detection that the LE initialization is insufficient for C, results in a standard API
failure message, such as:

MIC011E Oracle API processing error, reason code 014

This is followed by a U2010 user abend with reason code 14. Reason code 14 uniquely
identifies this as the build-time mistake: ORADMYC was not included.

Linking FORTRAN programs to Run in Batch and TSO Environments
When linking a FORTRAN program to run in batch or TSO, add the following linkage
editor control statement to the SYSLIN DD statement:

INCLUDE SYSLIB(ORASTBF)

Building an Application

6-20 Oracle Database User's Guide

IIf there are unresolved external references for symbols whose names begin with SQL,
then ensure ORASTBF is included in the linkedit. These API stubs resolve any calls in
the generated code. If ORASTBF is correctly included, then the problem is probably
caused by a missing entry point to the API stub routine. You can contact Oracle
Support Services for additional assistance.

The following sample JCL illustrates the linking step necessary to run FORTRAN
programs in batch and TSO environments. Note that SYSLMOD may be either a PDS
(for a traditional load module) or PDSE (for a PM2 program object).

//LKED EXEC PGM=HEWL,
// PARM='LET,LIST,MAP,XREF'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD - Refer to Note 1 -
//OBJLIB DD DSN=ORACLE.V10G.OBJLIB,DISP=SHR
//SYSLMOD DD - Refer to Note 2 -
//TEXT DD - Refer to Note 3 -
//SYSUT1 DD UNIT=VIO
//SYSLIN DD *
 INCLUDE TEXT - Refer to Note 3 -
 INCLUDE OBJLIB(ORASTBF) - Refer to Note 4 -
 - Refer to Note 5 -
/*

Usage Notes:

1. Include additional libraries required by your program and any runtime libraries
required by the native language.

2. This DD statement describes the library in which your linkedited Oracle load
module is placed.

3. This DD statement points to the object output from your Oracle Precompiler
program's native language compiler.

4. The specific contents of the SYSLIN DD statement depend on the target
environment. Refer to "Linking Programs" on page 6-18 for more information.

5. Include any additional linkage editor statements you might require.

Linking API Stub Programs to Run in a Shell
When linking an API Stub program to run in a POSIX environment, specify the
following object file to be linked with your program:

$ORACLE_HOME/lib/orastbl.o

If there are unresolved external references for symbols whose names begin with SQL,
then ensure orastbl.o is included in the linkedit. This API stub resolves any calls in the
generated code. If orastbl.o is correctly included, then the problem is probably caused
by a missing entry point to the API stub routine. You can contact Oracle Support
Services for additional assistance.

Sample Commands for Compiling and Linking API Stub Programs in a Shell
The following are sample commands for compiling and linking API stub programs in
a shell:

COBOL:
export STEPLIB=SYS1.SIGYCOMP
export COBOPT='QUOTE,DLL,OPTIMIZE,SOURCE,LIST'

Building an Application

Developing Oracle Applications to Run on z/OS 6-21

cob2 pgm_name.cbl -v \
$ORACLE_HOME/lib/orastbl.o \
-I. \
-I$ORACLE_HOME/rdbms/public \
-I$ORACLE_HOME/precomp/public \
-o pgm_name 2>pgm_name.err

C/C++:
c89 -I. \
-I$ORACLE_HOME/rdbms/public \
-I$ORACLE_HOME/precomp/public \
-o pgm_name $ORACLE_HOME/lib/orastbl.o \
pgm_name.c \
2>pgm_name.err

Linking DLL Stub Programs in a Shell
When linking a DLL stub program to run in a POSIX environment, specify the object
files and side decks listed in Table 6–4 for the compiler and environment.

Table 6–4 Binding with DLL Stubs

Platform Language Bound With XPLINK Must Specify

OCI Apps (no
Pro*C/C++ or
OCCI)

ISO C c89 Not
Recommended

$ORACLE_
HOME/lib/orastbp.o

$ORACLE_
HOME/lib/LIBCLNTS.x

Pre-ISO C++ c++ Not
Recommended

$ORACLE_
HOME/lib/orastbp.o

$ORACLE_
HOME/lib/LIBCLNTS.x

ISO C++ c++ Recommended $ORACLE_
HOME/lib/orastbp.o

$ORACLE_
HOME/lib/LIBCLNTS.x

OCCI Apps
(no
Pro*C/C++, or
mixed with
OCI)

Pre-ISO C++ c++ Required $ORACLE_
HOME/lib/orastbp.o

$ORACLE_
HOME/lib/LIBCLNTS.x

$ORACLE_
HOME/lib/LIBOCCI.x

ISO C++ c++ Required $ORACLE_
HOME/lib/orastbp.o

$ORACLE_
HOME/lib/LIBCLNTS.x

$ORACLE_
HOME/lib/LIBOCCI.x

ISO C++ Binder Required $ORACLE_
HOME/lib/orastbz.o

$ORACLE_
HOME/lib/LIBCLNTS.x

$ORACLE_
HOME/lib/LIBOCCI.x

Note: If an application uses DLL stubs, the DLL stub should be
included in the main program. Application DLLs and other
subroutines loaded by the main program should not include the DLL
stub.

Building an Application

6-22 Oracle Database User's Guide

Sample Commands for Compiling and Linking DLL Stub Programs in a Shell
The following are sample commands for compiling and linking DLL stub programs in
a shell.

C:
c89 -I. \
-I$ORACLE_HOME/rdbms/public \
-o pgm_name $ORACLE_HOME/lib/orastbp.o \
$ORACLE_HOME/lib/LIBCLNTS.x \
-W "0,dll,langlvl(EXTENDED),ENUMSIZE(INT)" \
pgm_name.c \
2>pgm_name.err

C++:
c++ -I. \
-I$ORACLE_HOME/rdbms/public \
-o pgm_name $ORACLE_HOME/lib/orastbp.o \
$ORACLE_HOME/lib/LIBCLNTS.x \
$ORACLE_HOME/lib/LIBOCCI.x \
-+ -W "0,xplink,langlvl(EXTENDED),ENUMSIZE(INT)" \
-W "l,xplink" \
pgm_name.cpp \
2>pgm_name.err

Binding OCCI programs to Run in Batch and TSO Environments
The following sample JCL, based on standard procedure CBCXCB, illustrates the bind
step necessary for an OCCI C++ program in batch and TSO environments.

//BIND EXEC PGM=IEWL,REGION=20M,COND=(8,LE,COMPILE),
// PARM='NOMAP,LIST=NOIMP,COMPAT=CURR,OPTIONS=SYSOPTB'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CEE.SCEEBND2,DISP=SHR - Note 1 -
//SYSLIN DD DSN=*.COMPILE.SYSLIN,DISP=(OLD,DELETE)
// DD DSN=CEE.SCEELIB(CELHSCPP),DISP=SHR - Note 1 -
// DD DSN=CEE.SCEELIB(CELHS003),DISP=SHR - Note 1 -
// DD DSN=CEE.SCEELIB(CELHS001),DISP=SHR - Note 1 -
// DD DSN=CEE.SCEELIB(C128),DISP=SHR - Note 1 -
// DD DSN=CBC.SCLBSID(IOC),DISP=SHR - Note 2 -
// DD DSN=CBC.SCLBSID(IOSTREAM),DISP=SHR - Note 2 -
// DD DSN=CBC.SCLBSID(COMPLEX),DISP=SHR - Note 2 -
// DD DSN=CBC.SCLBSID(COLL),DISP=SHR - Note 2 -
// DD DDNAME=SYSIN
//SYSLMOD DD - Refer to Note 3 -
//SYSOPTB DD *
 AMODE=31,RENT,DYNAM=DLL,CASE=MIXED
//SYSIN DD *
 INCLUDE '$ORACLE_HOME/lib/orastbz.o' - Refer to Note 4 -
 INCLUDE '$ORACLE_HOME/lib/LIBOCCI.x' - Refer to Note 4 -
 INCLUDE '$ORACLE_HOME/lib/LIBCLNTS.x' - Refer to Note 4 -
*/

Usage Notes:

Building an Application

Developing Oracle Applications to Run on z/OS 6-23

1. Use your installation's run-time library data set prefix.

2. Use your installation's standard I/O library prefix.

3. Point to the PDSE member where the program will be stored.

4. Replace $ORACLE_HOME with the Oracle home directory.

Building an Oracle XDK API Using Program in a Shell
The Oracle XDK API is available for use by z/OS C and C++ applications that run
under a POSIX shell. Any main program or application DLL that uses the Oracle XDK
API must be compiled with DLL and NOXPLINK, which is the default, statically
linked against the Oracle XDK API and dynamically linked against LIBCLNTS. If any
piece of the application uses XPLINK, the XPLINK(ON) LE runtime option must be
used. For more information, refer to Section , "Using the XPLINK(ON) LE Runtime
Option." If the application accesses an Oracle database, it must follow the rules for
main program and application DLL links specified in Table 6–4. It must also use the
OCI API, which is compatible with NOXPLINK, or isolate OCCI API use from Oracle
XDK API. For more information, refer to Section , "Using DLLs."

The following are sample commands for compiling and linking Oracle XDK API-using
programs in a POSIX shell.

C:
c89 -I. \
-I$ORACLE_HOME/rdbms/public \
-I$ORACLE_HOME/xdk/include \
-L$ORACLE_HOME/lib \
-o pgm_name -lxml10 \
$ORACLE_HOME/lib/LIBCLNTS.x \
-W "0,dll,langlvl(EXTENDED),ENUMSIZE(INT)" \
pgm_name.c \
2>pgm_name.err
C++:
c++ -I. \
-I$ORACLE_HOME/rdbms/public \
-I$ORACLE_HOME/xdk/include \
-L$ORACLE_HOME/lib \
-o pgm_name -lxml10 \
$ORACLE_HOME/lib/LIBCLNTS.x \
-+ -W "0,dll,langlvl(EXTENDED),ENUMSIZE(INT)" \
pgm_name.cpp \
2>pgm_name.err

Usage Notes:

1. Use your installation's run-time library data set prefix.

2. Use your installation's standard I/O library prefix.

3. Point to the PDSE member where the program will be stored.

4. Replace $ORACLE_HOME with the Oracle home directory.

Using Oracle-Supplied Procedures to Build Applications
Oracle has provided sample batch JCL and POSIX make files to simplify building
Oracle Precompiler, OCI, and OCCI applications. Chances are you will need to modify
them for your system. Consult your system administrator to determine if these are
installed on your system and whether they already have been modified for your
system.

Building an Application

6-24 Oracle Database User's Guide

Sample Batch JCL to Build an Oracle Precompiler Program
The SRCLIB data set created at Oracle Database install time contains sample JCL to
demonstrate the precompile, compile, link, and execute phases of a precompiler
program in a single batch job. The SRCLIB members that contain the sample JCL are
listed in the following table:

Table 6–5 SRCLIB Members Containing Sample Batch JCL to Build an Oracle
Precompiler Program

Precompiler SRCLIB Member

Pro*C/C++ PROCCLGO

Pro*COBOL V10 COB2CLGO

Pro*FORTRAN PFORCLGO

Pro*PL/I PPLICLGO

Using Make to Build a Precompiler Program
Oracle provides sample make files for each supported language to precompile,
compile, and link precompiler programs. They can be found in the following location,
where precompiler is either proc or procob:

$ORACLE_HOME/precomp/demo/precompiler

If your program depends on non-Oracle libraries, you may have to alter the make files
to include them:

Table 6–6 Sample Make Files to Build an Oracle Precompiler Program

Precompiler Make File

Pro*C/C++ demo_proc.mk

Pro*COBOL demo_procob.mk

To use the make files, enter a command similar to the following in a shell:

$ make -f xxxxx.mk your_program_src_file

Pro*COBOL Sample Programs
Sample Pro*COBOL programs are located in the $ORACLE_HOME/precomp/demo/procob
directory. Some of these programs require that you run the SQL scripts in the
$ORACLE_HOME/precomp/demo/sql directory.

To build one of the sample Pro*COBOL programs, use the cd command to set the
working directory to $ORACLE_HOME/precomp/demo/procob and issue the following
make command:

$ make -f demo_procob.mk sample1

To build all of the sample Pro*COBOL programs, use the cd command to set the
working directory to $ORACLE_HOME/precomp/demo/procob and issue the following
make command:

$ make -f demo_procob.mk samples

Pro*FORTRAN Sample Programs
FORTRAN does not run in a z/OS shell environment. Therefore, the Pro*FORTRAN
sample programs that work on z/OS have been moved to SRCLIB. The sample

Building an Application

Developing Oracle Applications to Run on z/OS 6-25

programs include FORSMP1-FORSMP4 and FORSMP6-FORSMP11. These programs
can be compiled using the PFORCLGO sample procedure, which contains notes and
input for those sample programs that require it.

Pro*C/C++ Sample Programs
Many of these programs require that you run the SQL scripts in the $ORACLE_
HOME/precomp/demo/sql directory.

To build one of the sample PRO*C programs, use the cd command to set the working
directory to $ORACLE_HOME/precomp/demo/proc and issue the following make
command:

$ make -f demo_proc.mk sample1

To build all of the sample PRO*C programs, use the cd command to set the working
directory to $ORACLE_HOME/precomp/demo/proc and issue the following make
command:

$ make -f demo_proc.mk samples

Batch JCL to Build OCI Programs
There is sample JCL in the SRCLIB data set created at Oracle Database install time that
contains sample JCL to demonstrate the precompile, compile, link, and execute phases
of OCI programs in a single batch job. The SRCLIB member that contains the sample
JCL is CDEMCLGO.

Batch JCL to Build OCCI Programs
There is sample JCL in the SRCLIB data set created at Oracle Database install time that
contains sample JCL to demonstrate the compile, link and execute phases of an OCCI
program in a single batch job. The SRCLIB member that contains the sample JCL is
CPDMCXBG.

Using Make to Build OCI and OCCI Programs
Oracle provides a sample make file to compile and link OCI and OCCI programs. It is
located in the $ORACLE_HOME/rdbms/demo/demo_rdbms.mk directory.

If your program depends on non-Oracle libraries, you may have to alter this make file
to include them.

In order to use this make file, enter a command similar to the following in a POSIX
shell environment:

$ make -f demo_rdbms.mk build EXE=your_program_src_file SRCS="your_program_name.o
…"

Sample OCI and OCCI Programs
Sample OCI and OCCI programs are located in the $ORACLE_HOME/rdbms/demo
directory. Some of these programs require that you run SQL scripts in the $ORACLE_
HOME/rdbms/demo directory.

To build one of the sample OCI programs, cd to the $ORACLE_HOME/rdbms/demo
directory and run the following make command:

$ make -f demo_rdbms.mk build EXE=oci02 SRCS=oci02.o

To build all of the sample OCI programs, change to the $ORACLE_HOME/rdbms/demo
directory and issue the following make command:

Building a Traditional Load Module with the Alternate API Stub

6-26 Oracle Database User's Guide

$ make -f demo_rdbms.mk samples

To build one of the sample OCCI programs, change to the $ORACLE_HOME/rdbms/demo
directory and run the following make command:

$ make -f demo_rdbms.mk buildocci EXE=occiblob SRCS=occiblob.cpp

To build all of the sample OCCI programs, change to the $ORACLE_HOME/rdbms/demo
directory and run the following make command:

$ make -f demo_rdbms.mk occidemos

Building a Traditional Load Module with the Alternate API Stub
The nominal Pro*C/C++, Pro*COBOL, and Pro*PL/I application executable is a PM3
or PM4 program object that must reside in a PDSE or HFS file. This section presents
methods for producing traditional load modules. The common component of these
methods is an alternate, short name API stub called ORASTBS. ORASTBS is shipped
as an object deck, suitable for prelinker or binder input.

Note: These methods can also create a PM2 program object that
resides in a PDSE or HFS file.

For more information, refer to MVS Program Management:User’s Guide
and Reference

Method 1: Prelink and Link
This method is suitable for the following types of Oracle API programs: Pro*COBOL,
Pro*PL/I, and OCI V7 programs. Existing Pro*C/C++ and OCI V8 programs calling
API functions using their truncated names, as documented in prior releases, can use
this method as well. The object produced by the compile step, along with the alternate
API stub ORASTBS, is passed to the prelinker and the resultant object is then passed to
the binder, as shown in the following example:

 //PRELINK EXEC PGM=EDCPRLK,COND=(4,LT)
 //STEPLIB DD DISP=SHR,
 // DSNAME=SYS1.SCEERUN
 //SYSMSGS DD DISP=SHR,
 // DSNAME=SYS1.SCEEMSGP(EDCPMSGE)
 //SYSLIB DD DISP=SHR,
 // DSNAME=ORACLE.V10.OBJLIB
 //SYSIN DD DISP=(OLD,DELETE),
 // DSN=&&LOADSET
 // DD DDNAME=SYSIN2
 //SYSMOD DD DISP=(NEW,PASS),
 // DSNAME=&&PLKSET,
 // UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
 //SYSOUT DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*
 //SYSIN2 DD *
 INCLUDE SYSLIB(ORASTBS)
 /*
 //LINKEDIT EXEC PGM=HEWL,COND=(4,LT),
 // PARM='LET,LIST,MAP,XREF'
 //SYSPRINT DD SYSOUT=*

Building a Traditional Load Module with the Alternate API Stub

Developing Oracle Applications to Run on z/OS 6-27

 //SYSLIB DD DISP=SHR,
 // DSN=SYS1.SCEELKED
 //SYSUT1 DD UNIT=VIO
 //SYSLMOD DD DISP=SHR,
 // DSN=USER.LOADLIB(SAMPLE1)
 //SYSLIN DD DISP=(OLD,DELETE),
 // DSN=&&PLKSET
 // DD DDNAME=SYSIN
 //SYSIN DD DUMMY

The steps to precompile and/or compile the program would precede the PRELINK
step. Note that in the case of C programs, NOLONGNAME must be specified on the
compile step.

Method 2: Precompile and/or Compile with Name Mapping
This method is suitable for the following types of Oracle API programs: Pro*C/C++
and OCI V8. At precompile and/or compile time, a header file is included which maps
the longnames to shortnames.

Inclusion of the header file is triggered by the definition of ORA_SNAME. The object
produced by the compile step, along with the alternate API stub ORASTBS, is passed
to the prelinker and the resultant object is then passed to the linkage editor, as shown
in the following example:

 //PRECOMP EXEC PGM=PROC,
 // PARM='++//DD:SYSPARM'
 //STEPLIB DD DISP=SHR,
 // DSN=ORACLE.V10.CMDLOAD
 //ORA$LIB DD DISP=SHR,
 // DSN=ORACLE.V10.MESG
 //SYSPRINT DD SYSOUT=*,
 // DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
 //SYSOUT DD SYSOUT=*,
 // DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
 //SYSERR DD SYSOUT=*,
 // DCB=(LRECL=132,BLKSIZE=1320,RECFM=VB)
 //SYSCOD DD UNIT=SYSDA,
 // SPACE=(TRK,(10,10))
 //SYSCUD DD UNIT=SYSDA,
 // SPACE=(TRK,(10,10))
 //SYSPUNCH DD DISP=(,PASS),
 // DSN=&&PCCOUT,
 // UNIT=SYSDA,
 // SPACE=(CYL,(2,1)),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
 //SYSUT1 DD UNIT=SYSDA,
 // SPACE=(CYL,(5,5))
 //SYSUT2 DD UNIT=VIO
 //SYSUT3 DD UNIT=VIO
 //SYSLIB DD DISP=SHR,
 // DSN=USER.MACLIB
 // DD DISP=SHR,
 // DSN=ORACLE.V10.H
 // DD DISP=SHR,
 // DSN=SYS1.SCEEH.H
 // DD DISP=SHR,
 // DSN=SYS1.SCEEH.SYS.H
 // DD DISP=SHR,
 // DSN=SYS1.SCLBH.H

Building a Traditional Load Module with the Alternate API Stub

6-28 Oracle Database User's Guide

 //CONFIG DD DUMMY
 //SYSIN DD DISP=SHR,
 // DSN=USER.PROGRAM.SRC
 //ORA@XXXX DD DUMMY
 //SYSPARM DD *
 INAME=//DD:SYSIN
 LNAME=//DD:SYSPRINT
 ONAME=//DD:SYSPUNCH
 CONFIG=//DD:CONFIG
 CODE=ANSI_C
 USER=SCOTT/TIGER
 SQLCHECK=FULL
 DEFINE=ORA_SNAME
 /*
 //COMPILE EXEC PGM=CBCDRVR,COND=(0,LT),
 // PARM=('/SOURCE,NOMAR,NOSEQ,LIST,RENT,DEF(ORA_SNAME=)')
 //STEPLIB DD DISP=SHR,
 // DSNAME=SYS1.SCEERUN
 // DD DISP=SHR,
 // DSNAME=SYS1.SCBCCMP
 //SYSMSGS DD SYSOUT=*
 //SYSLIB DD DISP=SHR,
 // DSN=ORACLE.V10.H
 // DD DISP=SHR,
 // DSN=SYS1.SCEEH.H
 // DD DISP=SHR,
 // DSN=SYS1.SCEEH.SYS.H
 // DD DISP=SHR,
 // DSN=SYS1.SCLBH.H
 //SYSLIN DD DISP=(,PASS),
 // DSN=&&LOADSET,
 // UNIT=VIO,
 // SPACE=(CYL,(3,3)),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
 //SYSPRINT DD SYSOUT=*
 //SYSOUT DD SYSOUT=*
 //SYSCPRT DD SYSOUT=*
 //SYSUT1 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
 //SYSUT4 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
 //SYSUT5 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
 //SYSUT6 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
 //SYSUT7 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
 //SYSUT8 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
 //SYSUT9 DD UNIT=VIO,
 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
 //SYSUT10 DD SYSOUT=*
 //SYSUT14 DD UNIT=VIO,

Application Runtime Considerations

Developing Oracle Applications to Run on z/OS 6-29

 // SPACE=(32000,(30,30)),
 // DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
 //SYSIN DD DISP=(OLD,DELETE),
 // DSN=&&PCCOUT

The precompile step is only needed when the program is a Pro*C/C++ application.
For OCI V8 programs, only the compile step is needed. In either case, the object
produced by the compile step, with the alternate API stub ORASTBS, are passed to the
prelinker and the resultant object is then passed to the binder, discussed on page 6-26.

Method 3: Link
This method is suitable for Pro*COBOL and Pro*PL/I applications and Pro*C/C++
applications that are written in C and do not use OCI. The object deck produced by the
compile step must not contain any long names. C must be compiled with
NOLONGNAME. It and the alternate API stub ORASTBS are passed to the binder, as
shown in the following example:

//LKED EXEC PGM=HEWL,
// PARM='LET,LIST,MAP,XREF'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD - Refer to Note 1 -
//OBJLIB DD DSN=ORACLE.V10G.OBJLIB,DISP=SHR
//SYSLMOD DD - Refer to Note 2 -
//TEXT DD - Refer to Note 3 -
//SYSUT1 DD UNIT=VIO
//SYSLIN DD *
 INCLUDE TEXT - Refer to Note 3 -
 INCLUDE OBJLIB(ORASTBS) - Refer to Note 4 -
 - Refer to Note 5 -
/*

Usage Notes:

1. Include additional libraries required by your program and any runtime libraries
required by the native language.

2. This DD statement describes the library in which your linkedited Oracle load
module is placed.

3. This DD statement points to the object output from your Oracle Precompiler
program's native language compiler.

4. The specific contents of the SYSLIN DD statement depend on the target
environment. Refer to "Linking Programs" on page 6-18 for more information.

5. Include any additional linkage editor statements you might require.

Application Runtime Considerations
Runtime considerations for an Oracle Database for z/OS application depend on the
execution environment (batch, TSO, or POSIX) and are essentially the same
considerations as those for the Oracle tools and utilities on z/OS, with the addition of
whatever resources the application itself requires. Refer to Chapter 2 for a description
of basic runtime requirements for the Oracle Database for z/OS client. In this chapter,
we provide additional processing details that may be helpful in application design and
debugging. Refer to Table 6–7 and Table 6–8 for timelines of Oracle applications that
use API and DLL stubs.

Application Runtime Considerations

6-30 Oracle Database User's Guide

Oracle Interface Initialization, Processing, and Error Handling
In most cases, the first call of an API stub application to an Oracle interface function
causes the API stub to load and initialize LIBCLNTS, a large program object
containing all of the Oracle interface code for both Oracle Precompiler and OCI
applications. (A few precompiler runtime calls, such as the SQLADR function, are
serviced entirely within the API stub and do not trigger LIBCLNTS initialization.)

In an API stub application, the API stub loads LIBCLNTS using the LE DLL
mechanism. In a DLL stub application, LE loads LIBCLNTS (and, for an OCCI
application, LIBOCCI) itself before main(), if main() is compiled with XPLINK, or at
the application's first call to an OCI or OCCI API function. In addition to locating or
loading the LIBCLNTS executable code, LE allocates virtual memory for LIBCLNTS
Writeable Static Area (WSA) and for various internal LE data structures.

After successful LE initialization of LIBCLNTS, the API stub calls an Oracle-specific
initialization function within LIBCLNTS and certain Oracle initializations are done,
such as the processing of global and local environment variable files in non-POSIX
applications, as described in Chapter 2.

For an OCI or OCCI POSIX DLL stub application, no Oracle-specific initialization of
LIBCLNTS is required. For a native OCCI (non-POSIX) batch or TSO application,
intialization code in the orastbz stub calls the Oracle-specific initialization function
within LIBCLNTS.

For an API stub application, after successful Oracle initialization, the original
application call to an interface function is routed to the appropriate function within
LIBCLNTS. Subsequent interface calls from the application skip the loading and
initialization activities and are routed directly to the target LIBCLNTS function. OCI
and OCCI interface calls in DLL stub applications go directly from the application to
LIBCLNTS or LIBOCCI.

For an API stub application, errors that arise during LIBCLNTS loading and
initialization may be detected by LE or by Oracle code. In most error situations control
ends up back in the API stub, which issues messages describing the error and then
issues a User 2010 (U2010) ABEND with an accompanying reason code. With one
exception, these descriptive messages are issued to the LE message file using the LE
CEEMOUT function. The exception is when the API stub detects that the caller is not
LE-enabled. In this case, CEEMOUT is not available and the descriptive message is
written to the job log with WTO. For more information about error messages, refer to
the Oracle Database Messages Guide for IBM z/OS on System z.

On all Oracle interface calls from an API stub application, both initial and subsequent,
the API stub establishes an LE condition handler for the duration of the call. This
means that severe errors detected or raised by LE during either initialization or Oracle
call processing cause control to pass to the Oracle handler, which issues message
MIC012E to indicate what phase of Oracle API processing was occurring and to
display the LE condition token associated with the error. The Oracle handler returns
control (percolates) to LE, which passes control to any condition handlers established
before Oracle's, including those that may have been established in the application. If
there are no other handlers, or the ones there also percolate the error, control
ultimately reaches LE's default handler which terminates the enclave.

Normal Oracle processing errors (such as failure to connect to a target server) do not
raise LE conditions and so do not participate in the processing just described. Such
errors return various error codes to an application as described in the Oracle
Precompiler and OCI documentation. An ABEND during an Oracle interface call
normally gets trapped by LE and invokes the condition handling mechanisms. This is
true for both User (Uxxxx) and System (Sxxx) ABENDs unless the application has

Application Runtime Considerations

Developing Oracle Applications to Run on z/OS 6-31

disabled LE's ABEND interception with the runtime option TRAP(OFF). Be aware that
the U2010 ABEND issued for failed LIBCLNTS initialization is subject to this trapping
and condition handling process.

For COBOL applications built with the DYNAM option, the following exceptions
apply:

■ Since the COBOL main module does not include the API stub, the initialization
normally performed by the API stub is deferred until the first SQL function is
loaded into memory and then called.

To load the first SQL function the system must load the module ORASTBX.
ORASTBX resides in the CMDLOAD data set, which also contain LIBCLNTS. If
there is a problem loading LIBCLNTS, the API stub initialization will indicate so
with a messages similar to the following, followed by a U2010 abend:

 MIC0022E Failed to load Oracle API module LIBCLNTS - errno 205,
 EDC5205S DLL module not found.
 MIC011E Oracle API processing error, reason code 002

If there is a problem finding or loading ORASTBX, an error will be reported by the
COBOL runtime and an S806 abend may result.

■ Because the COBOL main module does not include the API stub, there is an issue
with LE initialization. The COBOL main module must be marked, so that when LE
initialization is performed for the COBOL components, some LE initialization is
done to prepare for calling the C components within ORASTBX. This is done by
including ORADMYC during the linking of the COBOL module. If the C part of
the LE initialization is not perform, then the following error will result:

MIC011E Oracle API processing error, reason code 014

This is followed by a U2010 abend with reason code 14. Reason code 14 uniquely
identifies this as the build-time mistake: ORADMYC was not included.

■ Because of the missing API stub, the CEEBXITA routine is absent from the
enclave, which excludes a COBOL DYNAM module from participating in nested
enclave situations.

Refer to Tables Table 6–7 and Table 6–8 for an overview of the timeline for API stub
and DLL stub applications.

Table 6–7 Timeline for Oracle Applications Using API Stubs

When Action

At bind or link-edit time ■ The API stub, with routines for each API, is
included

■ Oracle API references are bound to API stub
routines

During LE initialization, in the stub's
CEEBXITA exit

Establish support for multiple LE enclaves

At first Oracle API call, its API stub
routine

■ Explicitly load stub (COBOL DYNAM only)

■ Explicitly load LIBCLNTS DLL

■ Call LIBCLNTS DLL to initialize ORA$ENV
(non-POSIX only)

At each Oracle API call, its API stub
routine

■ Establish recovery routine for API calls

■ Call API routine in LIBCLNTS

■ Remove recovery routine for API calls

Application Runtime Considerations

6-32 Oracle Database User's Guide

Application Resources and Cleanup
The freeing of certain Oracle client interface resources (including allocated virtual
memory, open files or data sets, and dynamically-loaded program code) may not
occur until the application's LE enclave terminates. In some application designs this
can be long after the application's last Oracle interaction, giving the appearance of a
memory leak or similar resource issue. This is expected behavior and not a defect. If
you want to ensure that all Oracle-related resources allocated by a client are freed,
either the associated LE enclave or the associated z/OS task (TCB) must terminate.

The foregoing point refers only to resources in the client environment, not to resources
allocated on the client's behalf in a target Oracle database server. Freeing of resources
in the server occurs when the server recognizes that the client is disconnected.
Normally this happens when the client logs off of the server through the appropriate
OCI or precompiler mechanism. If the application fails to log off, the session persists in
the server and server resources remain allocated until the z/OS task (TCB) or address
space associated with the client terminates, either normally or abnormally. If the client
is connected to the server through TCP/IP protocol, there may be a discernable delay
before the server recognizes that the client has terminated.

If a z/OS client application uses cross-memory (XM) protocol to connect to a local
Oracle database server and the associated z/OS task terminates either normally or
abnormally without logging off, a z/OS resource cleanup routine executes
automatically to inform the server that the client is gone. Message MIS0215I is issued

At normal Termination, the stub's
CEEBXITA exit

Clean up multiple LE enclave support

Table 6–8 Timeline for Oracle Applications Using DLL Stubs

When Action

At bind time ■ The DLL stub is included (main programs
only)

■ OCI API references are resolved by the
LIBCLNTS side deck

■ OCCI API references are resolved by the
LIBOCCI side deck

During LE initialization, the stub's
CEEBXITA exit

Establish support for multiple LE enclaves

Before main() (if app uses XPLINK) or
before first API call (otherwise)

■ LE loads LIBCLNTS DLL

■ LE loads LIBOCCI DLL (OCCI only)

■ Call LIBCLNTS DLL to initialize ORA$ENV
(non-POSIX only)

At each Oracle API call Call API routine in LIBCLNTS (OCI) or LIBOCCI
(OCCI)

At normal Termination, the stub's
CEEBXITA exit

Clean up multiple LE enclave support

See Also: IBM language-specific documentation and to the IBM
Language Environment Programming Guide for details on LE condition
handling, condition tokens, the LE message file, and related topics

Table 6–7 (Cont.) Timeline for Oracle Applications Using API Stubs

When Action

Developing Oracle Applications for the CICS TS Environment

Developing Oracle Applications to Run on z/OS 6-33

by the resource cleanup routine, reporting the status of the call to inform the server.
This message is issued to the log, through WTO, as LE services are terminated at this
point. Appearance of this message in an application suggests that proper logoff
operations were not done.

Developing Oracle Applications for the CICS TS Environment
Oracle Access Manager for CICS TS provides the interface between Oracle
Precompiler programs (COBOL, C languages, or PL/I) and the Oracle database
through a CICS TS transaction. CICS TS programs that access the Oracle database are
built by precompiling the program containing Oracle SQL statements with the
appropriate Oracle Precompiler, translating the output produced with the CICS TS
translator or the integrated translator provided with IBM Enterprise COBOL, and
compiling and linking the program with the Oracle ORACSTUB object built as part of
the Access Manager for CICS TS configuration. ORACSTUB contains code to resolve
calls to Oracle code from the application program and the name of the Oracle Access
Manager for CICS TS instance, also known as the adapter name, which processes the
requests.

CICS TS programs do not designate a target database. Instead, the program
communicates with a target adapter named in ORACSTUB. The adapter
communicates with a designated database which is defined in the configuration
process. This allows the target database to be changed (between test and production,
for example) and the Oracle Access Manager for CICS TS configuration to be changed,
without changing the CICS TS program.

CICS TS Application Design Considerations
CICS TS application programs accessing the Oracle database are similar to other
precompiler applications containing SQL statements that are passed to the Oracle
database as the program executes. The following sections describe special
considerations in the CICS TS environment:

■ CONNECT Statements

■ Synchronization of Oracle and CICS TS Updates

■ Cursor Considerations

■ Accessing Multiple Oracle Databases

■ Accessing Oracle Database 10g and DB2 Databases in a Single Transaction

■ Additional SQL Statement Restrictions

CONNECT Statements
Explicit CONNECT statements are supported but result in increased overhead and are
not recommended. Authentication can be determined with several methods as
described in the Oracle Database System Administration Guide for IBM z/OS on System z.
If used, note the following:

■ The CONNECT…AT clause is not supported

■ When using CICS SYNCPOINT, if there is more than one CONNECT statement
within the same CICS TS transaction, a CICS syncpoint is required prior to a
second, or subsequent CONNECT statement. This applies whether multiple
connect statements are within one program or the program containing the
CONNECT statement is given control by a CICS LINK, CICS XCTL, ’CALL’, or
other method within the same CICS TS transaction.

Developing Oracle Applications for the CICS TS Environment

6-34 Oracle Database User's Guide

■ Using an explicit CONNECT statement with "/" as the user ID is redundant and
not supported. If an explicit CONNECT statement is not used, then the thread
table authorization definitions are used for the transaction. This is equivalent to
using CONNECT with "/" as the user ID, but it does not incur the overhead of an
extra call to Access Manager for CICS TS.

Synchronization of Oracle and CICS TS Updates
CICS TS programs can synchronize Oracle database updates with updates to other
data stores in the same CICS TS unit of work. Oracle Access Manager participates in
CICS SYNCPOINT processing when COMMIT(CICS) is specified as the
commit/recovery mechanism during the configuration process. If this option is used,
CICS SYNCPOINT/ROLLBACK triggers commit/rollback and any Oracle SQL
COMMIT/ROLLBACK statements will result in an 'ORAP' CICS TS transaction
abend.

If COMMIT(ORACLE) is specified as the commit/recovery mechanism, then Oracle
SQL COMMIT/ROLLBACK statements trigger commit/rollback, and these updates
are not coordinated with updates to other CICS TS data stores.

The RELEASE option of the COMMIT WORK and ROLLBACK statements is not
supported and should not be used in a CICS TS program.

Cursor Considerations
The following considerations are related to cursors:

■ The precompiler options RELEASE_CURSOR=YES and HOLD_CURSOR=NO are
required for CICS TS programs.

■ Each cursor that is opened explicitly must have an associated CLOSE statement
before a CICS LINK, CICS XCTL, ’CALL’ or other method of transferring control
to another program, or CICS RETURN.

Accessing Multiple Oracle Databases
Each CICS TS program that accesses an Oracle database can communicate with one
Oracle Access Manager for CICS TS instance which is determined by the ORACSTUB
linked with the program. Each Oracle Access Manager for CICS TS communicates
with one Oracle database server. Access to more than one Oracle database server from
a single CICS TS region can be accomplished using the following:

■ Oracle database links, which allow all updates to an accessed database to be part
of a single program.

■ Multiple Oracle Access Managers, where access logic for each database is
contained in a separate CICS TS program. An Oracle Access Manager for CICS TS
is configured for each distinct server and an associated ORACSTUB is built for
each instance of Oracle Access Manager for CICS TS. The appropriate ORACSTUB
is then linked with the program.

Accessing Oracle Database 10g and DB2 Databases in a Single Transaction
When accessing Oracle and DB2 data in a single transaction, the DB2 and Oracle
access logic must be separated into distinct source programs that are precompiled and
compiled separately. They are then linked to act as a single transaction program.

Developing Oracle Applications for the IMS TM Environment

Developing Oracle Applications to Run on z/OS 6-35

Additional SQL Statement Restrictions
Programs used with Access Manager for CICS TS can only use Oracle data
manipulation (DML) SQL statements.

CICS TS EDF and Oracle SQL Statements
If Oracle Access Manager for CICS TS is configured with the EDF option, a SQL
statement will be displayed when the call is made to the Oracle database.
Additionally, CONNECT statements are displayed as CONNECT (no user id will be
displayed), and SQL statements are displayed with variable names (values will not
replace variable names).

Environment Variables
Environment variables are a part of the configuration of Oracle Access Manager for
CICS TS and apply to all CICS TS programs accessing a particular Oracle Access
Manager for CICS TS instance. For more information, refer to the Oracle Database
System Administration Guide for IBM z/OS on System z.

 Considerations for Building a CICS TS application
An Oracle CICS TS program is precompiled in the same manner as other Oracle
Precompiler programs. Refer to the section "Precompiling Programs" on page 6-9. The
output of the precompiler (the "&&PCCOUT" data set) is passed to the CICS TS
translator. The precompile step must precede the CICS TS translation step or the CICS
TS translator will issue a warning for each EXEC SQL statement.

When linking a program to run under CICS TS, add the following linkage editor
control statement:

INCLUDE SYSLIB(ORACSTUB)

The SYSLIB DD statement includes the data set with the appropriate ORACSTUB
object. References to ORASTBS, ORASTBL, or AMILS should not be included. If there
are any unresolved references for symbols whose names start with SQL, then ensure
ORACSTUB is included in the linkedit. If ORACSTUB is correctly included, then
contact Oracle Support Services for additional assistance.

AMODE must be set to 31. There are no special requirements for RMODE.

Refer to the machine readable samples in the SRCLIB library for sample JCL used to
process COBOL or C language programs.

Running CICS TS Programs
 Normal CICS TS practices for defining your program to CICS TS are followed for
Oracle Precompiler programs. CICS TS programs access a shared copy of the full SQL
interface, called the CICS TS adapter, that must be configured and available before
your program begins running. If the adapter is not available, then you receive error
AEY9 from CICS TS and you must contact your CICS TS system administrator to have
this condition corrected.

Developing Oracle Applications for the IMS TM Environment
Oracle Access Manager for IMS TM allows COBOL, C or PL/I programming language
programs running in an IMS MPP, IFP, or BMP region to access an Oracle Database
10g server anywhere in your network. IMS TM programs accessing Oracle Database

Developing Oracle Applications for the IMS TM Environment

6-36 Oracle Database User's Guide

10g databases use the normal IMS calls for input and output message processing, data
access and synchronization as they would if Oracle Database 10g were not in use.

IMS TM Application Design Considerations
IMS TM application programs accessing the Oracle database are similar to other
precompiler applications containing SQL statements that are passed to the Oracle
database as the program executes. The following sections describe special
considerations in the IMS environment:

■ IMS TM Versions Supported

■ CONNECT Not Supported

■ Synchronization of Oracle and IMS TM Updates

■ Cursor Considerations

■ Accessing Multiple Oracle Databases

■ Additional SQL Statement Restrictions

■ Accessing Oracle Database 10g and DB2 Databases in a Single Transaction

■ Processing of Oracle Database 10g Errors by Your IMS TM Program

IMS TM Versions Supported
The following IMS TM versions are supported by Oracle Database for z/OS:

IMS TM V6
IMS TM V7
IMS TM V8

CONNECT Not Supported
A typical Oracle Database 10g application uses the CONNECT statement to specify
which server is to be accessed and to send the server an Oracle user id and password
for authentication. With Oracle Access Manager for IMS TM, this information is
configured outside of the program:

■ The application program does not specify an Oracle server but accesses a
specified instance of Access Manager for IMS TM which is configured to
communicate with a specific Oracle server. A language interface token(LIT),
built as part of the configuration process, is linked with the application program to
designate which instance of Oracle Access Manager for IMS TM will be accessed
by the application program.

■ The Oracle user ID and authentication to be used for IMS TM transactions are
related to the IMS PSB name and are defined in the Resource Translation Table
(RTT) as part of the configuration process.

See Also: For more information, refer to the Oracle Database System
Administration Guide for IBM z/OS on System z

Synchronization of Oracle and IMS TM Updates
A typical Oracle Database 10g application might use COMMIT or ROLLBACK
statements to control whether database updates are committed or removed. With
Oracle Access Manager for IMS TM, these SQL statements are not available. Instead,
programs must use native IMS functions (such as GU, SYNC, ROLL, or ROLB) to
synchronize both Oracle and non-Oracle updates.

Developing Oracle Applications for the IMS TM Environment

Developing Oracle Applications to Run on z/OS 6-37

An AM4IMS application program running in a BMP must issue an IMS CHKP or ROLB
prior to termination. For example, a COBOL program would access Oracle, then
invoke CHKP or ROLB before the exiting GOBACK statement.

Cursor Considerations
The Oracle Precompiler MODE option lets you specify one of several alternatives to
normal Oracle SQL processing behavior. This allows applications to adhere more
closely to ANSI/ISO rules. These options work under Oracle Access Manager for IMS
TM. For example, if MODE is set to ANSI, then the cursors are closed with each
transaction.

Accessing Multiple Oracle Databases
Each program targeted to IMS TM can normally only communicate with one Oracle
Access Manager for IMS TM and only one server because it can only be linked with
one LIT. Access to more than one Oracle Database 10g database server from a single
IMS TM region can be accomplished as follows:

■ You can use Oracle database links. With this method, all updates to any of the
accessed databases can be part of a single program.

■ You can use multiple Oracle Access Managers. To accomplish this, you first design
your application so that the access logic for each database is contained in a
separate IMS TM program. Then you configure an Oracle Access Manager and a
corresponding LIT for each distinct server to be accessed. Finally, you link each of
the IMS TM programs with the appropriate LIT.

Additional SQL Statement Restrictions
Use only Oracle DML SQL statements in programs used with Oracle Access Manager
for IMS TM.

Accessing Oracle Database 10g and DB2 Databases in a Single Transaction
When accessing Oracle and DB2 data in a single transaction, the DB2 and Oracle
access logic must be separated into distinct source programs that are precompiled and
compiled separately. They are then linked to act as a single transaction program.

Processing of Oracle Database 10g Errors by Your IMS TM Program
Oracle errors that are considered application-oriented are always returned to the
transaction program to be handled by the application logic. These include message
ORA-0001, all errors in the range of messages ORA-1400 to ORA-1489, and
user-defined error messages in the range of ORA-20xxx. It is the responsibility of the
application developer to include suitable error handling logic for these types of errors.

All other errors are considered system-oriented. These include errors associated with
loss of the connection to the target Oracle9i database server and simpler errors such as
ORA-0942. How Oracle Access Manager for IMS TM handles these errors is
determined by an IMS option called the region error option (REO).

The REO can specify that system errors are to be passed to the transaction for handling
that is identical to application-oriented errors. Alternatively, the REO can specify that
system errors abend and requeue, or abend and discard the transaction.

Which REO to use is decided by the application developer and the IMS administrator.
The REO is not specified by or in the application program. It is an Oracle Access
Manager for IMS TM configuration parameter.

Developing Oracle Applications for the IMS TM Environment

6-38 Oracle Database User's Guide

Environment Variables
Environment variables are a part of the configuration of Oracle Access Manager for
IMS TM and are defined for IMS transactions in the Resource Translation Table (RTT).
For more information, refer to the Oracle Database System Administration Guide for IBM
z/OS on System z.

Considerations for Building an IMS TM application
This section describes considerations for linking a program to run under IMS TM:

■ Add the following linkage editor control statements to the SYSLIN DD statement:

INCLUDE SYSLIB(AMILS)
INCLUDE SYSLIB(lit-module)

The lit-module statement is the customer-generated language interface token(LIT)
described in this chapter. For more information, refer to the Oracle Database System
Administration Guide for IBM z/OS on System z.

■ Do not include references to ORASTBL, ORASTBS, or ORACSTUB.

■ If there are unresolved external references for symbols whose names begin with
SQL, then ensure AMILS is included in the linkedit. This API stub resolves any
calls in the generated code. If AMILS is correctly included, then the problem might
be caused by a missing entry point to the stub routine. You can contact Oracle
Support Services for additional assistance.

Running IMS TM Programs
Normal IMS TM practices for defining your program to IMS are followed for Oracle
Precompiler programs. IMS TM programs access a shared copy of the full SQL
interface that must be configured and available before your program begins running.
If the interface is not available, then you receive error 3042 from IMS TM and you
must contact your IMS system administrator to have this condition corrected.

7

Migration from Earlier Oracle Versions 7-1

7 Migration from Earlier Oracle Versions

If you have existing Oracle-accessing applications on z/OS that were developed with
an Oracle Database release before Oracle Database 10g, read this chapter to
understand the issues or considerations for those applications. Which issues or
considerations apply depend on the applications and on the Oracle Database version
with which they have been running.

This chapter contains the following sections:

■ Overview

■ Migrating from Oracle8i

■ Migrating from Oracle9i

Overview
There are two independent aspects in an application migration. One is migration of
the z/OS client-side components (the Oracle program interface code, message library,
Access Managers, and Oracle tools and utilities). The other is migration of the target
Oracle server used by the applications. Typically, these two migrations are not done
simultaneously. In general, applications built under an older Oracle version and using
runtime libraries from that version will run against Oracle Database 10g without
changes. This means the server migration to Oracle Database 10g can be done first and
client-side applications can be migrated later, when it is convenient or at the point
where you want the application to exploit features that are new in Oracle Database
10g.

This flexibility is somewhat reduced on z/OS (compared to some other Oracle
platforms) due to significant improvements in Oracle's integration with z/OS in the
previous two versions. Depending on the release you are migrating from and on what
facilities your applications use, you may need to rebuild or make external (for
example, JCL) changes in certain applications in order to run them with Oracle
Database 10g client-side libraries and components. In any case, you should not attempt
to migrate client-side components to Oracle Database 10g before the target Oracle
servers have been migrated.

Migrating from Oracle8i
Client applications built with and using libraries from Oracle8i OSDI will continue to
work without changes when run against Oracle Database 10g. They must continue to
use the stubs, CMDLOAD and MESG data sets, or (in the case of POSIX shell
applications) the ORACLE_HOME structures from the Oracle8i OSDI distribution. You
cannot mix these applications with Oracle9i or Oracle Database 10g applications in a

Migrating from Oracle8i

7-2 Oracle Database User's Guide

multi-task or multi-enclave design (where they would share the same STEPLIB and/or
ORA$LIB as Oracle9i or Oracle Database 10g programs). Be aware that all non-POSIX
Oracle8i clients in z/OS use the OSDI Network service when accessing a remote
Oracle server. You must continue to run an Oracle8i OSDI Network service until all
such clients have been migrated.

Migration Checklist
Migrating an Oracle8i client application to use Oracle Database 10g libraries and
infrastructure requires the following:

■ Support for Oracle SQL*Net V1-style connection strings was removed starting
with Oracle9i. If you have applications that rely on such strings, they must be
changed to one of the connection specification mechanisms described in Chapter 3,
"Oracle Net and Server Connections on z/OS." SQL*Net V1-style connection
strings can be recognized by the full colon following the driver identifier, which
was usually a single letter or digit. An example (including the Oracle user ID and
password) is as follows:

scott/tiger@z:ora3

Several different driver identifiers were used on OS/390, including M, F, W, and Z
for cross-memory operation and T for TCP/IP. This notation can appear in JCL or
scripts (for example, in a tool or utility parameter), in an input file, or in
precompiler or OCI program source code.

■ Applications that use an Oracle8i Net PROTOCOL=XM address descriptor, either
directly, in a tnsnames file, as part of Access Manager configuration, or in a TWO_
TASK environment variable, may require changes to the XM address data. Refer to
Chapter 3 for details on the PROTOCOL=XM address.

■ Net PROTOCOL=IXCF is no longer supported as of Oracle9i. Comparable
capability is provided by routing TCP/IP over the cluster interconnect and using
PROTOCOL=TCP. Client applications using PROTOCOL=IXCF must be changed
to use PROTOCOL=TCP.

■ Starting with Oracle9i, only IBM Language Environment-conforming compilers
are supported for batch, TSO, and POSIX precompiler and OCI applications. If
your application currently is compiled with a non-LE compiler, you must
recompile it with an LE compiler currently supported by IBM. Re-precompiling of
Pro*C, Pro*COBOL, or Pro*PL/I applications is recommended but not required.
Refer to Chapter 6, "Developing Oracle Applications to Run on z/OS" for details
on precompiling and compiling for Oracle Database 10g.

■ Starting with Oracle9i, Oracle's own C runtime library is replaced by IBM
Language Environment for runtime services. Backward compatibility is provided
for some (but not all) Oracle runtime features, particularly filespec notation. The
compatibility is mostly optional but it is enabled by default. Refer to the section
"Oracle C Runtime Compatibility" on page 2-29 for additional information. If your
application uses an Oracle runtime feature for which backward compatibility is
not provided, or if you disable the backward compatibility altogether, your
application must be changed to use comparable LE facilities.

■ Precompiler and OCI applications from Oracle8i must be relinked or rebound to
pick up the Oracle Database 10g linking stub before they can run with the Oracle
Database 10g CMDLOAD and MESG data sets. Refer to Chapter 6 for details on
the stubs and on linking or binding procedures.

Migrating from Oracle9i

Migration from Earlier Oracle Versions 7-3

■ For applications that run under CICS TS or IMS TM, the Oracle Database 10g
version of the corresponding Access Manager must be installed and configured.
Contact your CICS or IMS administrator if you are unsure about this.

■ For applications that run in TSO or batch, you must change to Oracle Database 10g
runtime services and libraries and ensure that IBM LE runtime is available. In
most cases this involves changing JOBLIB/STEPLIB and ORA$LIB DD statements
or allocations to refer to the Oracle Database 10g versions of these data sets. Refer
to Chapter 2 for details on Oracle client runtime requirements.

■ For applications that run in a POSIX shell, ORACLE_HOME should be changed to
refer to the Oracle Database 10g ORACLE_HOME directory, and corresponding
changes must be made to environment variables such as PATH and LIBPATH.

■ Starting with Oracle9i, TSO, Access Managers, and batch clients connecting to
remote Oracle servers interact directly with the z/OS TCP/IP protocol
implementation instead of going through the OSDI Network service. (POSIX shell
clients already do this in Oracle8i.) IBM's TCP/IP implementation requires POSIX
"dubbing" of a program that is not already a POSIX process. The z/OS user ID
associated with a batch job, CICS TS or IMS TM started task or jobname, or TSO
session that connects to a remote Oracle server must be capable of being dubbed.
Consult your z/OS system or security administrator if you are unsure about
meeting this requirement.

■ Be sure to read the considerations covered in the section "Migrating from Oracle9i"
on page 7-3

Migrating from Oracle9i
Applications that were built under Oracle9i will continue to work when run against an
Oracle Database 10g server when using the Oracle9i runtime components (such as
CMDLOAD and MESG data sets and ORACLE_HOME). In addition, Oracle9i
applications will run unmodified using the Oracle Database 10g runtime components.
This simplifies migration and is useful in certain situations where multiple programs
(possibly mixed Oracle9i and Oracle Database 10g programs) must share one set of
runtime components.

There are, however, some significant changes in the z/OS Oracle client-side
implementation in Oracle Database 10g. Most changes are internal improvements with
little or no external manifestation, but some are things you may want to exploit and a
few are external behavior changes that could impact existing jobs, scripts, or
procedures. Read each of the following sections to determine if there are changes that
could affect your applications.

Normalized File Access
In Oracle9i, the non-POSIX and POSIX versions of Oracle's client-side programs on
z/OS (including tools and utilities as well as the program interface code LIBCLNTS)
were merged so that the same program was used in both environments. However,
most of the client components that could use either HFS files or z/OS data sets
remained predisposed to one or the other type based on the LE POSIX setting: when
POSIX was OFF, filespecs were assumed to be data sets; when POSIX was ON, they
were assumed to be HFS files.

Starting in Oracle Database 10g, client-side file access is mostly "agnostic" as to the
POSIX setting, allowing data sets to be used in a POSIX application and HFS files to be
used in non-POSIX applications. The syntax of a filespec indicates which type of file is
being used and the POSIX setting is consulted only when a filespec is ambiguous,

Migrating from Oracle9i

7-4 Oracle Database User's Guide

meaning not self-identifying as to type. Refer to Chapter 2 for details on filespec
syntax and related processing.

Global Environment File
Oracle Database 10g for z/OS introduces a new feature, the global environment file.
This feature permits the installation to set specific systemwide defaults for
environment variables in Oracle client programs running in TSO or batch (POSIX
OFF). The defaults can be overridden using a local environment variable file specified
using the ORA$ENV DD statement. Consult with your system administrator to
determine if the global environment file is configured on your system. For additional
information refer to the section "Environment Variables" on page 2-9.

Use of LE Exit CEEBXITA
Starting with Oracle Database 10g, the Oracle linking stubs for TSO, batch, and POSIX
applications contain an IBM Language Environment exit, CEEBXITA. When linked
into your application this exit allows Oracle code to "clean up" Oracle-specific
resources when the application terminates. This design is necessary to allow execution
of multiple Oracle-accessing applications (your own applications or Oracle tools or
utilities) on a single z/OS task (TCB). With this exit, Oracle supports both nested LE
enclaves and serial (successive) execution of Oracle-accessing programs from a single
z/OS task. Oracle's use of this exit means that no installation-specific CEEBXITA exit
can be used with an Oracle Precompiler or OCI application on z/OS.

A similar version of this exit was provided for Oracle9i in the fix for Oracle bug
3431417. If your Oracle9i application was linked with a version of the stub that
includes this fix, the application can participate in a multiple enclave task application
on z/OS. Refer to the section "Application Design Considerations" on page 6-3 for
additional details.

Oracle Runtime Compatibility
Starting with Oracle Database 10g, most of the backward compatibility for the Oracle
C runtime library is optional, controlled by the ORA_RTL_COMPAT environment
variable. This means the backward compatibility can be disabled, causing filespecs
that begin with "/dd/" or "/dsn/" to be treated as HFS files (as their syntax indicates).

A few adjustments were made in Oracle Database 10g to the logic that supports
backward compatibility for Oracle runtime C standard file redirection operators in
non-POSIX batch and TSO environments. Unlike other aspects of Oracle runtime
backward compatibility, this feature cannot be disabled with an environment variable.

Refer to "Oracle C Runtime Compatibility" on page 2-29 for additional details.

SYSOUT Filespec in Clients
In Oracle Database 10g, a filespec providing explicit designation of JES spool output is
now usable for most client-side output files. This provides an alternative to DD
filespecs for creating spooled output and may be particularly useful in POSIX shell
applications (where supplying DD statements is awkward). Refer to the section ""File
Types and Filespec Syntax" on page 2-14 for additional details.

SQL*Loader Changes
Significant internal changes were made to the SQL*Loader utility in Oracle Database
10g. Mostly these concern the defaulting and processing of the various files

Migrating from Oracle9i

Migration from Earlier Oracle Versions 7-5

SQL*Loader reads or writes in non-POSIX environments. Some of the changes cause
external behavior differences and may affect existing SQL*Loader batch jobs or TSO
procedures. Review the following sections before you attempt to migrate existing
SQL*Loader jobs or scripts to use SQL*Loader from Oracle Database 10g.

Interpretation of DDN Keywords
In previous Oracle releases, filespecs supplied with the control file keywords INDDN,
BADDN, and DISCARDDN were treated exactly the same as INFILE, BADFILE, and
DISCARDFILE respectively. In Oracle Database 10g, the values supplied with INDDN,
BADDN, and DISCARDDN are treated as 1-character to 8-character DD names; they
cannot specify a data set or HFS file name nor can they include a DD:, //DD:, or
/DD/ prefix. Existing loader jobs or scripts that use INDDN, BADDN, or
DISCARDDN must be modified for SQL*Loader in Oracle Database 10g. If the
associated file is in fact a DD, remove any DD:, //DD:, or /DD/ prefix from the
supplied value. If the value is meant to be processed as a data set or HFS file name,
change the control file keyword to INFILE, BADFILE, or DISCARDFILE.

Default Filespecs for DD-type Data Files
In previous Oracle releases, when multiple input data files were specified as DD-type
files in a single load, if corresponding bad and discard files were not specified they
would default to the same DD names (BAD and DISCARD respectively) for every data
file. This caused rejected and discarded rows from all data files to be written to the
same DDs. In Oracle Database 10g, the defaults for these files (when the corresponding
data file is a DD type) are //DD:BAD and //DD:DISCARD for the first data file,
//DD:BAD2 and //DD:DISCAR2 for the second, and so on for up to 99 data files.

Default Filespecs for Data Set Name Files
When a loader data file is specified as a z/OS data set name filespec in Oracle
Database 10g, defaults for the bad and discard files are constructed using the
high-level qualifier (if any) of the control file, the "base" portion (minus any high level
qualifier) of the data file data set name, and the extension suffixes BAD and DSC. This
matches the default construction of POSIX HFS filenames and reflects the notion that
the bad and discard outputs of the load are associated with the load application (its
control file) rather than with the input data file. In previous releases, construction of
these data set names did not involve the control file high level qualifier.

Default Bad/Discard DCB attributes
In Oracle Database 10g, when the bad and discard files are data sets without
explicitly-supplied DCB attributes (either coded on the DD statement or, for an
existing data set, already present in the VTOC), DCB attributes are derived
automatically based on the attributes of the associated data file. If these files do have
specific DCB attributes, SQL*Loader checks them to ensure that the logical record
length is the same or greater than that of the data file and fails the load if not. In
previous releases, DCB attributes for the bad and discard files were not defaulted or
checked based on the attributes of the data file.

Refer to the section "SQL*Loader" on page 4-8 for z/OS-specific information about
Oracle Database 10g SQL*Loader.

Migrating from Oracle9i

7-6 Oracle Database User's Guide

A

Environment Variables Used by Oracle Database for z/OS A-1

A Environment Variables Used by Oracle
Database for z/OS

This section lists the environment variables used by Oracle components running on
z/OS. Not included are variables like PATH and LIBPATH that are significant to Oracle
programs but are processed only by IBM z/OS components.

Listed with each variable are codes indicating the environments where the variable is
meaningful. Be aware that each of these environments has distinct mechanisms for
specifying environment variables. The environment codes are:

■ C: CICS client

■ I: IMS client

■ N: Native (non-POSIX) batch and TSO client

■ P: POSIX client

■ S: Oracle server

Environment Variables Used by Oracle Database
The environment variables used by Oracle Database for z/OS are listed in the
following table:

Table A–1 Environment Variables Used by Oracle Database for z/OS

Name Environment Description

_BPXK_MDUMP N, P Defined by LE for control of dump processing; if
set to any value, Oracle tools/utilities disable LE
TRAP processing so that a normal z/OS dump (for
example, SYSMDUMP) can be obtained.

NLS_* C, I, N, P, S These variables determine character set, language,
and other locale settings. They are described in the
Oracle Database Globalization Support Guide.

ORA_RTL_COMPAT N Set to "OFF" to disable Oracle C runtime
compatibility; any other setting (or not set) enables
Oracle C runtime compatibility.

ORACLE_HOME P, S Indicates Oracle install components location in
POSIX HFS.

ORACLE_SID N, P Specifies OSDI SID of target server to be accessed
with XM protocol.

Environment Variables Used by Oracle Database

A-2 Oracle Database User's Guide

SHELL P Normally defined by the z/OS UNIX shell, but
used by SQL*Plus to determine shell for HOST
command.

SQLPATH P Used by SQL*Plus to search for SQL files.

TNS_ADMIN P Used by Oracle Net to locate certain files in POSIX
HFS.

TWO_TASK N. P Specifies Oracle Net TNS service name or address
for target server.

Table A–1 (Cont.) Environment Variables Used by Oracle Database for z/OS

Name Environment Description

Index-1

Index

Symbols
_CEE_ENVFILE mechanism, LE, 2-11

A
Access Manager for CICS TS

accessing multiple Oracle databases, 6-34
accessing Oracle and DB2 databases, 6-34
application design considerations, 6-33
configured with EDF option, 6-35
CONNECT statements, 6-33
considerations for building applications, 6-35
cursor considerations, 6-34
developing applications, 6-33
environment variables, 6-35
overview, 1-3
running programs, 6-35
SQL statement restrictions, 6-35
synchronization of Oracle updates, 6-34

Access Manager for IMS TM
accessing multiple Oracle databases, 6-37
accessing Oracle and DB2 databases, 6-37
application design considerations, 6-36
CONNECT not supported, 6-36
considerations for building applications, 6-38
cursor considerations, 6-37
developing applications, 6-35
environment variables, 6-38
overview, 1-3
processing Oracle errors, 6-37
SQL statement restrictions, 6-37
synchronization of Oracle updates, 6-36
versions supported, 6-36

API programs, Oracle
building, 6-26
precompile/compile wth name mapping, 6-27
prelink and link method, 6-26

API stub
alternate (ORASTBS), 6-26
description, 2-4
load modules using alternate, 6-26

applications
building, 6-9
CICS TS, 6-33
compiler options, 6-15

compiling programs, 6-17
design considerations, 6-3
dynamic linkage techniques, 6-5
error handling, 6-30
IMS TM, 6-35
interface initialization, 6-30
linking programs, 6-18
migrating, 7-1
multiple LE enclaves, 6-7
multitasking, 6-7
OCI interface to publish/subscribe, 6-8
Oracle Precompiler options, 6-10
overview, 1-3
POSIX threading, 6-8
precompiling programs, 6-9
processing, 6-30
requirements for basic, 6-4
requirements for complex, 6-5
resources and cleanup, 6-32
runtime access requirements, 2-2
runtime considerations, 6-29
sample JCL to build Oracle Precompiler

program, 6-24
software and hardware states, 6-8
using Oracl-supplied procedures, 6-23
z/OS Assembler language, 6-5

ATTACH macro, z/OS, 6-7
Attention interrupts, TSO, 2-4

B
bad and discard files

attributres, 4-12
SQL*Loader, 4-11, 4-12

batch
environment, 2-2
environment variables, 2-10
linking programs, 6-18
parameters, 2-6
redirection operators, 2-20
running Oracle Precompilers, 6-13

C
CALL macro, z/OS, 6-6
C/C++ compiler

Index-2

options, 6-16
overview, 2-1

character data
Oracle Database for z/OS, 5-1
partitioned tables, 5-2
SQL queries, 5-1
SQL statements, 5-2

CMDLOAD data set
description, 2-3

COBOL compiler
options, 6-16

COBOL DYNAM option
exceptions for COBOL applications, 6-31
linking programs using, 6-19
OCI functions with callbacks, 6-17
ORASTBX, 2-4
Pro*COBOL DLL option, 6-17
Pro*COBOL precompiler support, 6-12

compilers, IBM
options, 6-15

compiling programs
OCCI programs to Run in Batch and TSO

Environments, 6-18
overview, 6-17
sample commands for shell, 6-17

cross-memory services, z/OS, 1-3

D
data files

bad and discard attributes, 4-12
VSAM, 4-12

data sets
DCB attributes, 2-27
name filespecs, 2-22
name prefixing, 2-30
names, 2-14
SYSOUT, 2-16

Datapump Export and Import
file processing on server, 5-7
interactive mode, 4-19
invocation, 4-17
log files, 4-18
overview, 4-17
processing, 4-18, 4-19
return codes, 4-19

DCB attributes
data set, 2-27
default, 2-27
FNA, 2-27
without FNA, 2-28

DD names
description, 2-15

directory object, Oracle Database for z/OS, 5-4
dynamic linkage techniques, 6-5

E
enclaves

multiple, 6-7

Enterprise Manager, 1-4
ENVARn runtime option, 2-10
environment variables

Access Manager for CICS TS, 6-35, 6-38
batch and TSO, 2-10
description, 2-11
ORA$ENV file, 2-12
overview, 2-9
used by Oracle Database for z/OS, A-1
z/OS UNIX shell, 2-10

execution environments, z/OS, 2-2
Export and Import utilities

cross-system capabilities, 4-16
examples, 4-16
export file, 4-15
invocation, 4-14
overview, 4-14
return codes, 4-16
unsupported features, 4-16

extension processing of file specs, 2-23
external LOB files (BFILES), 5-6
external tables, 5-6

F
FATTR string, 2-25
fetch() function, C library, 6-6
file attribute compatibility

Oracle C, 2-30
file names

description, 2-13
file processing

Oracle Database for z/OS, 5-3
files

description of Oracle database, 2-13
processing, 2-13
redirection, 2-19
SQL, 4-3
standard, 2-19
syntax, 2-14

filespecs
data set name parts, 2-22
description, 2-13
extension procession, 2-23
HFS file name parts, 2-22
manipulation, 2-21
Oracle C runtime compatibility, 2-29
runtime compatibility, 2-29
syntax, 2-14

FNA (File Name Augmentation)
attribute assignment, 2-25
description, 2-24
FATTR attrs string, 2-25
keywords and descriptions, 2-25
syntax transformation (FNAME), 2-24

FNAME syntax transformation, 2-24

G
Gateways, Oracle Transparent, 1-2

Index-3

H
HFS

file name parts, 2-22
HFS (Hierarchical File System)

shell environment, 2-2
HFS files

syntax, 2-18

I
INTEGER values

Pro*COBOL precompiler, 6-12
interrupt processing

TSO and z/OS UNIX shell, 2-28

J
Java, Oracle Database, 5-6

L
Language Environment (LE), IBM

multiple enclaves, 6-7
overview, 1-1
runtime, 2-3

ldap.ora file
description, 3-8

LIBCLNTS program
description, 2-4
initialization, 6-30

LINK macro, z/OS, 6-6
linking programs

batch and TSO, 6-18
COBOL using DYNAM, 6-19
overview, 6-18
to run in a shell, 6-20

linklist library
description, 2-3

listener, Oracle Net, 1-3
LOAD macro, z/OS, 6-6
load modules

building traditional, 6-26
LOG_DIRECTORY_CLIENT parameter, 3-7
LOG_FILE_CLIENT parameter, 3-7
LPA library

description, 2-3

M
Make

building OCI programs, 6-25
building precompiler programs, 6-24

MESG data set
description, 2-4

migrating applications
from Oracle8i, 7-1
from Oracle9i, 7-3
overview, 7-1

multitasking applications, 6-7

N
networking

Oracle Net, 1-3
overview, 1-2

NLS (National Language Support)
description, 2-4

O
ONAME parameter

Pro*PL/I precompiler, 6-13
ORA$ENV DD statement, 2-10
ORA$ENV environment variable file, 2-11
ORA$LIB DD statement, 2-5
Oracle C runtime

compatibility, 2-29
data set name prefixing, 2-30
file attribute compatibility, 2-30
filespec compatibility, 2-29
runtime compatibility, 2-29
standard files and redirection compatibility, 2-31

Oracle Call Interface (OCCI)
sample JCL to build a program, 6-25

Oracle Call Interface (OCI)
ENUMSIZE(INT), 6-13
interface to publish/subscribe, 6-8
OTT utility, 6-13
overview, 1-4
sample JCL to build a program, 6-25
sample programs, 6-25
using Make to build programs, 6-25

Oracle Database for z/OS
character data, 5-1
directory object, 5-4
environment variables, A-1
file processing, 5-3
migrating applications, 7-1
security considerations, 5-3
SQL queries, 5-1

Oracle home
description, 2-3

Oracle Net
description, 1-3
files, 3-6
ldap.ora, 3-8
listener, 1-3
output files, 3-8
overview, 3-1
protocol and address determination, 3-2
protocols, 3-1
sqlnet.ora, 3-6
TCP protocol, 3-5
TCP/IP protocol, 1-3
tnsnames.ora, 3-8
XM protocol address, 3-4
XM protocol description, 3-3
z/OS cross-memory services, 1-3

Oracle Transparent Gateways, 1-2
ORASTAX runtime module

TSO environments, 2-4

Index-4

ORASTBX module, 2-4
OSDI (Operating System Dependent Interface)

subsystem, 1-1

P
PA1key interrupts, TSO, 2-4
parameters

batch (JCL), 2-6
containing spaces, 2-9
tool and utility conventions, 2-6
TSO, 2-7
where specified, 2-6
z/OS UNIX shell, 2-8

PATH environment variable
description, 2-3

PL/I compiler
options, 6-17

POSIX
environment, 2-2
threading applications, 6-8

Precompilers, Oracle
batch and TSO considerations, 6-13
commands for running in a shell, 6-15
configuration files, 6-11
executables, 6-9
INCLUDE files, Oracle Precompiler, 6-10
language-specific coding considerations, 6-12
options, 6-10
return codes, 6-12
sample JCL for Pro*C in batch, 6-13
sample JCL for Pro*COBOL in batch, 6-14
sample JCL for Pro*FORTRAN in batch, 6-14
sample JCL for Pro*PL/I in batch, 6-15
sample JCL to build programs, 6-24
using Make to build programs, 6-24

precompiling programs, 6-9
prefixing of data set names, 2-30
Pro*C precompiler

ENUMSIZE(INT), 6-13
OTT utility, 6-13
sample programs, 6-25

Pro*COBOL precompiler
DYNAM option, 6-12
RETURN-CODEspecial register, 6-12
sample programs, 6-24

Pro*FORTRAN precompiler
sample programs, 6-24

Pro*PL/I precompiler
ONAME parameter, 6-13

procedures, Oracle-supplied, 6-23
program

runtime access requirements, 2-2
program interface code, Oracle (LIBCLNTS), 2-4
putenv() statement, 2-10

R
Recovery Manager, 1-4
redirection of standard files, 2-19

redirection operators, TSO and batch, 2-20
return codes

Datapump Export and Import, 4-19
Export and Import Utilities, 4-16
Oracle Precompilers, 6-12
SQL*Loader, 4-13
SQL*Plus, 4-6
TKPROF utility, 4-21

RETURN-CODEspecial register
Pro*COBOL precompiler, 6-12

runtime compatibility
controlling, 2-29

runtime considerations
applications, 6-29

runtime program
access requirements, 2-2

S
security considerations

Oracle Database for z/OS, 5-3
shell environments

sample commands for compiling and linking
programs, 6-20

z/OS UNIX, 2-2
SQL queries, Oracle Database for z/OS, 5-1
SQL statements

character data, 5-2
SQL*Loader

bad and discard files, 4-11, 4-12
control file, 4-9
data files, 4-10
examples, 4-13
files and filespecs, 4-9
invocation, 4-8
log file, 4-10
overview, 4-8
return codes, 4-13

SQL*Plus
EDIT command, 4-3
examples, 4-7
files, 4-3
HOST command, 4-4
invocation, 4-1
output interruption, 4-2
overview, 4-1
profile names, 4-2
return codes, 4-6
SPOOL command, 4-4
timing processing, 4-6
unsupported features, 4-6

sqlnet.ora file
description, 3-6

standard files, 2-19
SYSOUT data sets, 2-16
system() function, C library, 6-6

T
TCP protocol, 3-5

Index-5

TCP/IP protocol, 1-3
TKPROF utility

example, 4-21
input trace file, 4-20
invocation, 4-19
output files, 4-20
overview, 4-19
return codes, 4-21

tnsnames.ora file
description, 3-8

tools
overview, 1-2

TRACE_DIRECTORY_CLIENT parameter, 3-7
TRACE_FILE_CLIENT parameter, 3-7
TSO

CALL command, 2-7
environment, 2-2
environment variables, 2-10
filespec, 2-17
interrupt processing, 2-28
linking programs, 6-18
parameters, 2-7
redirection operators, 2-20
running Oracle Precompilers, 6-13

U
UNIX System Services, z/OS

environment, 2-2
environment variables, 2-10
interrupt processing, 2-28
parameters, 2-8

utilities
overview, 1-2

UTL_FILE PL/SQL package, 5-4

V
VSAM data files, 4-12

W
Workload Manager (WLM)

overview, 1-1

X
XM protocol

examples, 3-4
Oracle Net, 3-3

Z
z/OS Assembler language

applications, 6-5

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Command Syntax
	Accessing Documentation
	Related Documentation
	Typographic Conventions

	1 Overview of Oracle Database Products
	Servers
	Tools and Utilities
	Networking
	Application Development
	Access Managers
	Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI)

	Other Software

	2 Oracle Software Interaction with z/OS and Language Environment
	Overview
	Execution Environments on z/OS
	POSIX ON vs. POSIX Shell Environments
	Runtime Program Access Requirements
	Application Program, Tool, or Utility
	LE Runtime
	Oracle Program Interface Code
	Oracle Supporting Data Objects
	Invocation Examples

	Tool and Utility Parameter Conventions
	Parameters in Batch (JCL)
	Parameters in TSO
	Parameters in a z/OS UNIX Shell
	Parameters Containing Spaces

	Environment Variables
	Environment Variables in a z/OS UNIX Shell
	Environment Variables in Batch and TSO Environments
	Oracle Environment Variable Files
	Setting Environment Variables in a Program

	Files, File Name Syntax, and File Processing
	Filespecs
	File Types and Filespec Syntax
	Data Set Names
	DD Names
	SYSOUT
	TSO Terminal
	HFS Files

	Standard Files and Redirection
	Standard File Defaults (non-POSIX)
	Redirection Operators in TSO and Batch

	File Name Manipulation
	What's in a Name?
	Data Set Name Parts
	HFS File Name Parts
	Extension Processing
	FNA
	FNA Name Transformation
	FNA Attribute Assignment
	Example FNA Control File

	Data Set DCB Attributes
	Default DCB Attributes
	DCB Attributes from FNA
	DCB Attributes without FNA

	Interrupt Processing in TSO and z/OS UNIX Shell
	Oracle C Runtime Compatibility
	Controlling Compatibility
	Filespec Compatibility
	File Attribute Compatibility
	Data Set Name Prefixing Compatibility
	Standard Files and Redirection Compatibility

	3 Oracle Net and Server Connections on z/OS
	Protocols
	Protocol and Address Determination
	XM Protocol
	XM Protocol Address
	XM Protocol Examples

	TCP Protocol

	Oracle Net Files
	Profile Parameters (sqlnet.ora)
	LOG_DIRECTORY_CLIENT
	LOG_FILE_CLIENT
	TRACE_DIRECTORY_CLIENT
	TRACE_FILE_CLIENT
	TNSPING.TRACE_DIRECTORY

	Local Naming Parameters (tnsnames.ora)
	Directory Usage Parameters (ldap.ora)
	Oracle Net Output Files

	4 Oracle Tools and Utilities on z/OS
	SQL*Plus
	Invocation
	Output Interruption
	Profile Files
	SQL Files
	EDIT Command Processing
	SPOOL Command Processing
	HOST Command Processing
	TIMING Processing
	Return Codes
	Unsupported Features
	SQL*Plus Examples

	SQL*Loader
	Invocation
	SQL*Loader Files and Filespecs
	Control File
	Log File
	Data Files
	Bad and Discard Files

	VSAM Data File Processing Considerations
	Bad and Discard File Attributes
	SQL*Loader Return Codes
	SQL*Loader Examples

	Export and Import
	Invocation
	Export File
	Cross-System Export/Import
	Export and Import Return Codes
	Unsupported Features
	Export and Import Examples

	Datapump Export and Import
	Invocation
	Datapump Export and Log Files
	Datapump Processing in the Server
	Datapump Export and Import Interactive Mode
	Datapump Export and Import Return Codes

	TKPROF
	Invocation
	Input Trace File
	Output Files
	Return Codes
	TKPROF Example

	5 Oracle Server Considerations on z/OS
	Character Data
	Character Data and SQL Queries
	Character Data and Partitioned Tables
	Characters in SQL Statements

	File Processing in the Server
	Security Considerations
	Database Directory Objects
	UTL_FILE
	UTL_FILE Example

	JAVA File I/O
	External LOBs (BFILEs)
	External Tables
	Datapump Export and Import

	6 Developing Oracle Applications to Run on z/OS
	Overview
	Application Design Considerations
	Basic Application Requirements
	Requirements for Complex Applications
	Using z/OS Assembler Language
	Dynamic Linkage Techniques
	Multiple LE Enclaves in an Application
	Multitasking Applications
	z/OS Environment and z/Architecture Hardware States
	POSIX Threading
	OCI Interface to Publish/Subscribe

	Building an Application
	Precompiling Programs
	Oracle Precompiler Executables
	Oracle Precompiler INCLUDE Files
	Oracle Precompiler Options
	Configuration Files
	Return Codes
	Language-Specific Coding Considerations
	Special Considerations for Running Precompilers in Batch and TSO Environments
	Sample JCL for Running the Pro*C/C++ Precompiler in Batch Environments
	Sample JCL for Running the Pro*COBOL Precompiler in Batch Environments
	Sample JCL for Running the Pro*FORTRAN Precompiler in Batch Environments
	Sample JCL for Running the Pro*PL/I Precompiler in Batch Environments
	Sample Commands for Running Oracle Precompilers in a Shell

	Compiler Options for Oracle Applications
	C/C++ Compiler Options
	COBOL Compiler Options
	PL/I Compiler Options

	Compiling Programs
	Sample Commands for Compiling Programs in a Shell
	Compiling OCCI programs to Run in Batch and TSO Environments

	Linking Programs
	Linking Pro*C/C++, OCI, COBOL, and PL/I Programs to Run in Batch and TSO Environments
	Linking COBOL Programs Using DYNAM
	Linking FORTRAN programs to Run in Batch and TSO Environments
	Linking API Stub Programs to Run in a Shell
	Sample Commands for Compiling and Linking API Stub Programs in a Shell
	Linking DLL Stub Programs in a Shell
	Sample Commands for Compiling and Linking DLL Stub Programs in a Shell
	Binding OCCI programs to Run in Batch and TSO Environments
	Building an Oracle XDK API Using Program in a Shell

	Using Oracle-Supplied Procedures to Build Applications
	Sample Batch JCL to Build an Oracle Precompiler Program
	Using Make to Build a Precompiler Program
	Pro*COBOL Sample Programs
	Pro*FORTRAN Sample Programs
	Pro*C/C++ Sample Programs
	Batch JCL to Build OCI Programs
	Batch JCL to Build OCCI Programs
	Using Make to Build OCI and OCCI Programs
	Sample OCI and OCCI Programs

	Building a Traditional Load Module with the Alternate API Stub
	Method 1: Prelink and Link
	Method 2: Precompile and/or Compile with Name Mapping
	Method 3: Link

	Application Runtime Considerations
	Oracle Interface Initialization, Processing, and Error Handling
	Application Resources and Cleanup

	Developing Oracle Applications for the CICS TS Environment
	CICS TS Application Design Considerations
	CONNECT Statements
	Synchronization of Oracle and CICS TS Updates
	Cursor Considerations
	Accessing Multiple Oracle Databases
	Accessing Oracle Database 10g and DB2 Databases in a Single Transaction
	Additional SQL Statement Restrictions

	CICS TS EDF and Oracle SQL Statements
	Environment Variables
	Considerations for Building a CICS TS application
	Running CICS TS Programs

	Developing Oracle Applications for the IMS TM Environment
	IMS TM Application Design Considerations
	IMS TM Versions Supported
	CONNECT Not Supported
	Synchronization of Oracle and IMS TM Updates
	Cursor Considerations
	Accessing Multiple Oracle Databases
	Additional SQL Statement Restrictions
	Accessing Oracle Database 10g and DB2 Databases in a Single Transaction
	Processing of Oracle Database 10g Errors by Your IMS TM Program

	Environment Variables
	Considerations for Building an IMS TM application
	Running IMS TM Programs

	7 Migration from Earlier Oracle Versions
	Overview
	Migrating from Oracle8i
	Migration Checklist

	Migrating from Oracle9i
	Normalized File Access
	Global Environment File
	Use of LE Exit CEEBXITA
	Oracle Runtime Compatibility
	SYSOUT Filespec in Clients
	SQL*Loader Changes
	Interpretation of DDN Keywords
	Default Filespecs for DD-type Data Files
	Default Filespecs for Data Set Name Files
	Default Bad/Discard DCB attributes

	A Environment Variables Used by Oracle Database for z/OS
	Environment Variables Used by Oracle Database

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

