

Oracle® Retail Data Model
Operations Guide

10g Release 2 (10.2)

E14480-02

August 2009

Oracle Retail Data Model Operations Guide, 10g Release 2 (10.2)

E14480-02

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle Retail Data Model is based on the ARTS 5.0 standard.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... vi
Conventions ... vi

1 Introducing Oracle Retail Data Model

What is Oracle Retail Data Model?... 1-1
Scope of Retail Organizations That Oracle Retail Data Model Supports..................................... 1-2
Oracle Products That Make Up Oracle Retail Data Model ... 1-2
What Are the Components of Oracle Retail Data Model ... 1-3

Oracle Retail Data Model Logical and Physical Models .. 1-4
Logical Model .. 1-5
Physical Model .. 1-5

Where Oracle Retail Data Model Fits in a Data Warehousing Project .. 1-5

2 Introduction to Customizing Oracle Retail Data Model

Prerequisite Knowledge for Customizers ... 2-1
Performing Fit-Gap Analysis .. 2-1
Overview: Customization Steps .. 2-2
Dependencies When Customizing the Physical Model ... 2-3

3 Populating the Oracle Retail Data Model Warehouse

Overview: Populating an Oracle Retail Data Model Warehouse.. 3-1
Populating Reference, Lookup, and Base Relational Tables ... 3-2
Populating Derived and Aggregate Relational Tables and Views ... 3-2

Executing the Intra-ETL for Oracle Retail Data Model .. 3-3
Executing the Intra-ETL in Oracle Warehouse Builder... 3-3

Import the ORDM_INTRA_ETL Project .. 3-4
Configure the ORDM_INTRA_ETL Project... 3-4
Prepare to Execute the Project ... 3-5
Deploy and Execute the Project ... 3-5

Explicitly Executing the Intra-ETL Package.. 3-6
Monitoring the Execution of the Intra-ETL Process.. 3-6
Recovering an Intra_ETL Process .. 3-8

iv

Implementing Oracle Retail Data Model Data Mining Models ... 3-9
Populating the Data Mining Source Tables.. 3-9
Creating the Data Mining Models .. 3-11

Populating OLAP Cubes.. 3-13

4 Analysis and Reporting in Oracle Retail Data Model

Reports Delivered with Oracle Retail Data Model ... 4-1
Sample Associate Basket Analysis Model Report ... 4-2
Sample Associate Loss Analysis Model Reports ... 4-3
Sample Associate Sales Analysis Model Report .. 4-5
Sample Customer Product Category Mix Analysis Model Report... 4-6
Sample Customer Loyalty Analysis Model Report... 4-7
Sample Item Basket Analysis Model Report .. 4-8
Sample Item Point of Sale (POS) Loss Analysis Model Report ... 4-9

Customizing the Reports Delivered with Oracle Retail Data Model ... 4-10
Writing Your Own Queries and Reports on Relational Data ... 4-11
Writing Your Own Queries and Reports on OLAP Cube Data .. 4-11

Writing Reports on Time-Series and Ranking Analysis.. 4-12
Writing Forecasting Reports.. 4-12

5 Maintaining an Oracle Retail Data Model Warehouse

Overview: Maintaining an Oracle Retail Data Model .. 5-1
Maintaining Relational Tables and Views .. 5-1
Refreshing OLAP Cube Data ... 5-2

Sample Incremental Load ... 5-2
OLAP Incremental Load Recovery.. 5-3
Updating Forecast Cubes .. 5-7
Creating a New Forecast ... 5-7

A Operations Scripts

Calendar Population Script ... A-1
Bitmap Index for Fact Tables Script .. A-2
Partition Append Scripts ... A-2
Create Dimensions Script .. A-3
Foreign Key Manipulation Scripts... A-3
Lookup Value Population Scripts .. A-4
The Out of Stock Script.. A-4
RFMP Calculation Script ... A-5

Index

v

Preface

The Oracle Retail Data Model Operations Guide describes the tasks and procedures that
must be performed after Oracle Retail Data Model is installed, and periodically
afterwards to maintain useful performance. Since the needs of each retail environment
are unique, Oracle Retail Data Model is configurable so it can be modified to address
each customer’s needs.

Audience
The audience for the Oracle Retail Data Model Operations Guide includes the following:

■ IT specialists, who maintain and adjust Oracle Retail Data Model. They are
assumed to have a strong foundation in Oracle Database and PL/SQL, Oracle
Warehouse Builder, or OWB, which generates the data warehouse, AWM, and
BIEE.

■ Database administrators, who will administer the data warehouse and the
database objects that store the data. They are assumed to understand Intra-ETL,
which is used to transfer data from one format to another; OWB, which generates
the data warehouse, as well as PL/SQL and the Oracle Database.

This document is also intended for data modelers, data warehouse administrators, IT
staff, and ETL developers.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

vi

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information about Oracle Retail Data Model, see the following documents in
the Oracle Retail Data Model documentation set:

■ Oracle Retail Data Model Reference

■ Oracle Retail Data Model Installation Guide

■ Oracle Retail Data Model Release Notes

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introducing Oracle Retail Data Model 1-1

1Introducing Oracle Retail Data Model

This chapter introduces the Oracle Retail Data Model, which is a start-up kit for
implementing a retail data warehouse solution:

■ What is Oracle Retail Data Model?

■ Scope of Retail Organizations That Oracle Retail Data Model Supports

■ Oracle Products That Make Up Oracle Retail Data Model

■ What Are the Components of Oracle Retail Data Model

■ Where Oracle Retail Data Model Fits in a Data Warehousing Project

What is Oracle Retail Data Model?
Oracle Retail Data Model is a startup kit for implementing a retail business intelligence
solution. It is a standards-based data model, designed and pre-tuned for Oracle data
warehouses, including the HP Oracle Database Machine.

The Oracle Retail Data Model for Retail offers a single-vendor solution package that is
tightly integrated with the business intelligence platform. With pre-built data mining,
On-line Analytical Processing (OLAP) and dimensional models, Oracle Retail Data
Model provides you with industry-specific metrics and insights that you can act on
immediately to improve your bottom line. These BI solution offerings take advantage
of Oracle's scalability and reliability, using Oracle's familiar optimization, parallelism,
and performance engineering within the database.

Oracle Retail Data Model can be used in any application environment and is easily
extendable.

By leveraging Oracle’s strong retail domain expertise, Oracle Retail Data Model
provides an industry standard compliant foundation schema that is modern, relevant,
topical, and addresses needs of most retail segments. This normalized foundation
schema serves as a detailed and structured representation of the retail business,
providing an integrated base for business information with fully defined entities and
relationships. Oracle Retail Data Model includes an exhaustive set of embedded
advanced analytics, using Oracle's OLAP and data mining technology. You can take
advantage of pre-built and pre-tested solution sets designed by industry experts that
deliver relevant insights, are actionable, and aimed at improving both top-line and
bottom-line results. You can see summarized, aggregated information or quickly
navigate to drill-down transaction details to better understand business issues. For
example, with Oracle Retail Data Model’s out-of-the-box sample reports,
merchandisers gain improved insight into product affinities; loss prevention
specialists gain improved visibility; and marketing analysts gain improved
understanding of promotional effectiveness and customer segmentation. You can add

Scope of Retail Organizations That Oracle Retail Data Model Supports

1-2 Oracle Retail Data Model Operations Guide

your own reports as well. Oracle Retail Data Model, combined with Oracle
technology, provides all of the components required for a complete and extendable
Retail Data Warehouse and Business Intelligence framework in order to eliminate
complex and costly integration requirements, all designed to reduce your total cost of
ownership.

Oracle Retail Data Model is a pre-built, pre-tested solution designed by industry
experts to help retailers maximize the value of their Oracle data warehouse. Using
sophisticated trending and data mining capabilities based on Oracle's OLAP and data
mining technology, retailers - including grocery stores, department stores, specialty
store chains, mass merchants, convenience stores, and multi-channel retailers - now
have the data analysis capabilities to develop retail-specific insights that are relevant,
actionable, and can improve both top-line and bottom-line results.

With Oracle Retail Data Model, you can jump-start the design and implementation of
a retail data warehouse to quickly achieve a positive ROI for your data warehousing
and business intelligence project with a predictable implementation effort

Scope of Retail Organizations That Oracle Retail Data Model Supports
Oracle Retail Data Model provides a broad base for supporting retail operations. It is
geared especially for general merchandise and grocery, but it can also support other
types of retail, such as hard lines, soft lines, and multi-channel retailers.

Oracle Retail Data Model provides a data architecture and data model along with
reports and key performance indicators to support multiple business areas in retail
organizations:

■ Store Operations

■ Point-of-Sale (POS)

■ Loss Prevention

■ Merchandising

■ Inventory

■ Workforce Management

■ Order Management

■ Customer

■ Category Management

■ Promotion

Oracle Products That Make Up Oracle Retail Data Model
Several Oracle technologies are involved in building the infrastructure for retail
business intelligence.

Oracle Database with OLAP, Data Mining and Partitioning Option
Oracle Retail Data Model utilizes a complete Oracle technical stack. It leverages the
following data warehousing features of the Oracle database: SQL model, compression,
partitioning, advanced statistical functions, materialized views, data mining, and
online analytical processing (OLAP).

Tip: To save some money, you can consider using RAC and
commodity hardware.

What Are the Components of Oracle Retail Data Model

Introducing Oracle Retail Data Model 1-3

Oracle Development Tools
The following Oracle tools can be used to customize the predefined logical and
physical models provided with ORDM, or to populate the target relational
tables,mmaterialized views, or OLAP cubes.

Oracle BI EE Presentation Tools
Oracle Business Intelligence Suite Enterprise Edition (Oracle BI EE) is a comprehensive
suite of enterprise BI products that delivers a full range of analysis and reporting
capabilities. You can use Oracle BI EE Answers and Dashboard presentation tools to
customize the predefined sample dashboard reports that are provided with Oracle
Retail Data Model.

What Are the Components of Oracle Retail Data Model
The Oracle Retail Data Model consists of logical and physical data models, intra-ETL
that maps your OLTP tables to the Oracle Retail Data Model tables and views, sample
reports, and the Oracle Interactive Dashboard using features of Oracle Business
Intelligence Suite Enterprise Edition (OBIEE).

Figure 1–1 Oracle Retail Data Model

ORDM includes the following components:

■ Logical model

Table 1–1 Oracle Development Tools Used with Oracle Retail Data Model

Name Use

Designer To create the logical model

SQL Developer or SQL*Plus To create or modify database objects

Oracle Warehouse Builder For the process control of the intra ETL process

Analytic Workspace
Manager

To populate the target OLAP cubes

See: Chapter 4, "Analysis and Reporting in Oracle Retail Data
Model".

What Are the Components of Oracle Retail Data Model

1-4 Oracle Retail Data Model Operations Guide

The logical model is introduced in "Oracle Retail Data Model Logical and Physical
Models" on page 1-4 and described in detail in Oracle Retail Data Model Reference.

■ Physical model

The physical model is introduced in "Oracle Retail Data Model Logical and
Physical Models" on page 1-4 and described in detail in Oracle Retail Data Model
Reference.

■ Intra-ETL database packages and SQL scripts to extract, transform, and load (ETL)
data from one layer of Oracle Retail Data Model to another.

The intra-ETL packages and SQL scripts are described in detail in Oracle Retail
Data Model Reference. How to use these packages and scripts to populate a data
warehouse based on the Oracle Retail Data Model is discussed in Chapter 3,
"Populating the Oracle Retail Data Model Warehouse."

■ Pre-defined data mining models.

These models are described in detail in Oracle Retail Data Model Reference. How to
create these models is discussed in "Implementing Oracle Retail Data Model Data
Mining Models" on page 3-9.

■ Sample reports and dashboards using OBIEE.

These reports are discussed in "Reports Delivered with Oracle Retail Data Model"
on page 4-1.

■ DDL and installation scripts

Oracle Retail Data Model Logical and Physical Models
The logical and physical models of Oracle Retail Data Model have the following
characteristics:

■ Retail industry-specific, 3rd Normal Form logical and physical relational models

■ Physical Data model with 650+ tables and 10500+ attributes

■ Data warehouse models (based on Association for Retails Technology Standards
(ARTS)

■ Industry specific Measures

■ Pre-built OLAP cubes

consist of multiple layers, with the details stored in the Base and Reference layers, and
summary data stored in the Aggregate Layer and Analytical Workspace. The Derived
layer stores information derived from the Base and Reference layers. Lookup tables are
also included to store frequently used descriptive data.

Oracle Retail Data Model consists of enterprise data warehouse logical and physical
components:

■ Base models (in 3rd Normal Form, transaction detail storage)

■ Reference models (describing the people, places and things within the retail
organization)

■ Derived models (variation of the base model; could have minor aggregations,
which store state or status information, or a combination of objects from the base
model and data mining objects)

■ Aggregate models (aggregations of base and derived data for analytical purposes,
including relational materialized views and OLAP). Aggregate data is stored in

Where Oracle Retail Data Model Fits in a Data Warehousing Project

Introducing Oracle Retail Data Model 1-5

the form of relational materialized views. These materialized views are aggregates
of the Base and Derived layers

Logical Model
Oracle Retail Data Model provides a predefined logical model. The logical data model
defines the business entities and their relationships in order provide a clear
understanding of the business and data requirements for the data warehouse.

The logical data model is described in detail in Oracle Retail Data Model Reference.

Physical Model
Oracle Retail Data Model provides a predefined physical data model.

The physical data model of the Oracle Retail Data Model is the physical manifestation
of the logical data model into database tables and relationships (or foreign key
constraints). Partitions, indexes, and materialized views have been added to aid
performance.

The physical data model includes the following:

■ Reference tables

■ Lookup tables

■ Database sequences

■ Base tables

■ Derived tables

■ Aggregate tables and relational materialized views

■ (When the optional OLAP component is installed) Multi--dimensional OLAP
cubes

The physical data model is described in detail in Oracle Retail Data Model Reference.

Where Oracle Retail Data Model Fits in a Data Warehousing Project
Oracle Retail Data Model provides much of the data modeling work that you must do
for a retail business intelligence solution. The Base Layer provides a solid foundation
for a retail data warehouse. The Derived and Aggregate Layers provide the
infrastructure for creating business intelligence reports.

Each retail operation is unique, and therefore the structure of the data warehouse will
need to be different in order to match the needs of that unique retail environments.

Notes: When examining the predefined physical model, keep in
mind the naming convention using DW (Data Warehouse) prefixes
and suffixes to identify the types of tables and views:

DWR_ : Reference data tables

DWL_ : Lookup tables

DWB_ : Base transaction data (3NF) tables

DWD_ : Derived (data mining) tables

DWA_ : Aggregate (ROLAP and MOLAP) tables

_MV : Materialized view

Where Oracle Retail Data Model Fits in a Data Warehousing Project

1-6 Oracle Retail Data Model Operations Guide

Oracle Retail Data Model comes with a generic schema that requires modification.
These modifications include, adding, deleting, modifying, or renaming tables and
columns; or altering foreign keys, constraints, or indexes. These changes must be made
to the foundation data warehouse, not in the Oracle Retail Data Model schema itself.

After the data warehouse is populated, populate the derived and aggregate layers to
support the reporting requirements. Oracle Retail Data Model includes a solid
infrastructure for a range of reports.

2

Introduction to Customizing Oracle Retail Data Model 2-1

2Introduction to Customizing Oracle Retail
Data Model

This chapter provides an overview of how you customize Oracle Retail Data Model. It
contains the following topics:

■ Prerequisite Knowledge for Customizers

■ Performing Fit-Gap Analysis

■ Overview: Customization Steps

■ Dependencies When Customizing the Physical Model

Prerequisite Knowledge for Customizers
As discussed in "Oracle Products That Make Up Oracle Retail Data Model" on
page 1-2, Oracle Retail Data Model uses much of the Oracle stack. Consequently, to
successfully customize Oracle Retail Data Model, you need:

■ An understanding of f the Oracle technology stack, especially data warehouse
(Database, Data Warehouse, OLAP, Data Mining, Warehouse Builder, Business
Intelligence EE)

■ Hands-on experience using: Oracle database, PL/SQL; SQL DDL and DML
syntax; Analytic Workspace Manager; Oracle SQL Developer; BI EE
Administrator, Answers, and Dashboards.

Performing Fit-Gap Analysis
The Fit-Gap analysis is where you compare your information needs and retail business
requirements with the structure that is available "out of the box" with Oracle Retail
Data Model. You identify any required functionality that is not included in the default
schema, as well as other modifications that are necessary to meet your requirements.

The result of your fit-gap analysis is a customization report which is a brief
explanation of the adaptations and adjustments required to customize Oracle Retail
Data Model to fit your retail environment.

To perform the actual analysis your evaluation team takes the following steps:

Note: Fit-gap analysis is a major undertaking, and normally requires
a team performing multiple evaluations.

Overview: Customization Steps

2-2 Oracle Retail Data Model Operations Guide

1. If previous evaluations have been performed, review the documentation from the
previous phases, and if necessary add team members with the needed business
and technical expertise.

2. Meet to review the data and maps your data structure data into Oracle Retail Data
Model’s schema.

3. Produce a list of what people are going to try to do with the system (examples
rather than models), and create use cases for appraising the functionality of Oracle
Retail Data Model.

Procedures are written based on the use cases. Keep in mind that deviations from
the procedure can be useful, provided that functionality is not skipped.

4. Map your business procedures against Oracle Retail Data Model functions, noting
which processes are not available in Oracle Retail Data Model, or work differently
in it. Be sure to check security requirements.

5. Determine the differences are between your needs and Oracle Retail Data Model’s
schema and discusses the following:

■ Which differences can you live with, and which must be reconciled?

■ What can you do about the differences you can't live with?

6. Based on the preceding steps, update the business process models, activity flow
diagrams, entity object model, and object life cycle models to reflect the
customized system.

7. Write the customization report, detailing what changes will be required to make
Oracle Retail Data Model’s schema match your business needs. This includes any
interfaces to existing systems, and additions and changes to Oracle Retail Data
Model.

8. Based on the customization report, update the Project Plan, and complete a phase
section for the Logical Design phase.

Overview: Customization Steps
Customizing Oracle Retail Data Model involves the following tasks:

1. Perform fit-gap analysis as described in "Performing Fit-Gap Analysis" on
page 2-1.

2. In a development environment, make a copy of Oracle Retail Data Model.

3. Working in the copy you created in Step 2, make changes to the Oracle Retail Data
Model components. Document all of your changes. Make the changes in the
following order:

a. Logical model

b. Logical to physical mappings

c. Physical model. Keep in mind the issues discussed in "Dependencies When
Customizing the Physical Model" on page 2-3.

d. ETL. Keep in mind the issues discussed in Chapter 3, "Populating the Oracle
Retail Data Model Warehouse".

4. In a test environment, make a copy of Oracle Retail Data Model.

5. Following the documentation you created in when performing your fit-gap
analysis, customize Oracle Retail Data Model and test the customized version.

Dependencies When Customizing the Physical Model

Introduction to Customizing Oracle Retail Data Model 2-3

6. Roll the final customized version of Oracle Retail Data Model out into production.

Dependencies When Customizing the Physical Model
The physical model of Oracle Retail Data Model is implemented as layered
components, where the structure and data of one component is dependent on another.
Consequently, make your changes in the following order:

1. Base tables

2. Reference tables

3. Lookup tables

4. Derived tables

5. Aggregate tables

6. Materialized views

7. Analytic workspace

a. Dimensions and levels

b. Measures

c. Calculations (including aggregations and forecasts)

Dependencies When Customizing the Physical Model

2-4 Oracle Retail Data Model Operations Guide

3

Populating the Oracle Retail Data Model Warehouse 3-1

3Populating the Oracle Retail Data Model
Warehouse

This chapter describes how Extract, Transform, and Load (ETL) operations populate
Oracle Retail Data Model with data.

This chapter discusses the following topics:

■ Overview: Populating an Oracle Retail Data Model Warehouse

■ Populating Reference, Lookup, and Base Relational Tables

■ Populating Derived and Aggregate Relational Tables and Views

■ Implementing Oracle Retail Data Model Data Mining Models

■ Populating OLAP Cubes

Once you have performed ETL operations to implement an Oracle Retail Data Model
data warehouse, you need to update with new data from your OLTP system. The
process for doing this is discussed in Chapter 5, "Maintaining an Oracle Retail Data
Model Warehouse".

Overview: Populating an Oracle Retail Data Model Warehouse
In the Oracle Retail Data Model relational model, reference and lookup tables store
master, reference, and dimensional data; while base, derived, and aggregate tables
store transaction and fact data at different granularities. Base tables store the
transaction data at the lowest level of granularity, while derived and aggregate tables
store consolidated and summary transaction data.

As with any data warehouse, you use Extract, Transform, and Load (ETL) operations
to populate an Oracle Retail Data Model data warehouse. You perform ETL operations
as three separate steps using three different types of ETL:

1. Source-ETL processes that extract data from the source On-Line Transaction
Processing (OTLP) system, transform that data, and loads the reference, lookup,
and base tables Oracle Retail Data Model warehouse. Source-ETL is not provided
with Oracle Retail Data Model. You must write source-ETL processes yourself. For

Note: The instructions in this chapter assume that after doing the
fit-gap analysis described in "Performing Fit-Gap Analysis" on
page 2-1, you have not identified or made any changes to the Oracle
Retail Data Model logical or physical model. If you have made
changes, you need to modify the ETL accordingly.

Populating Reference, Lookup, and Base Relational Tables

3-2 Oracle Retail Data Model Operations Guide

information about creating source-ETL, see "Populating Reference, Lookup, and
Base Relational Tables" on page 3-2.

2. Intra-ETL processes that populate the remaining Oracle Retail Data Model
warehouse relational data structures. Intra-ETL does not access the OLTP data at
all. All of the data that intra-ETL extracts and transforms is located within the
Oracle Retail Data Model warehouse. Intra-ETL is provided with the Oracle Retail
Data Model and is executed in the following order:

a. Intra-ETL that populates the derived and aggregate tables and materialized
views with data from the base, reference, and lookup tables. For information
about using this intra-ETL, see "Populating Derived and Aggregate Relational
Tables and Views" on page 3-2.

b. Intra-ETL that populates the tables used for the data mining models. For more
information on using this intra-ETL, see "Implementing Oracle Retail Data
Model Data Mining Models" on page 3-9

3. SQL scripts that populate the OLAP cubes provided with Oracle Retail Data
Model. These scripts define the OLAP cubes and populate these cubes with data
extracted from the Oracle Retail Data Model relational tables and views. For more
information on populating OLAP cubes in a Oracle Retail Data Model warehouse,
see "Populating OLAP Cubes" on page 3-13.

Populating Reference, Lookup, and Base Relational Tables
You populate the reference, lookup, and base tables with data from the source On-Line
Transaction Processing (OTLP) applications using source-ETL.

Source-ETL is not provided with Oracle Retail Data Model. You must design and write
the source-ETL processes yourself. When writing these ETL processes, populate the
tables in the following order:

1. Reference tables

2. Lookup tables

3. Base tables

Populating Derived and Aggregate Relational Tables and Views
One component of Oracle Retail Data Model is a database package named PKG_
INTRA_ETL_PROCESS which is a complete Intra-ETL process composed of Intra-ETL
scripts operations that populate the derived and aggregate tables and relational
materialized views with the data from the base, reference, and lookup table. This
package respects the dependency of each individual program. It executes the
programs in the proper order.

There are two categories of Intra-ETL scripts:

See: Appendix A, "Operations Scripts" for information about scripts
provided with Oracle Retail Data Model that can help you implement
your physical data model. For example, "Lookup Value Population
Scripts" on page A-4 provides instructions for using two SQL scripts
provided with Oracle Retail Data Model to seed values into physical
lookup tables.

See also: The Intra-ETL scripts are discussed in detail in Oracle
Retail Data Model Reference.

Populating Derived and Aggregate Relational Tables and Views

Populating the Oracle Retail Data Model Warehouse 3-3

■ Derived Population - These are a set of database packages that populate the
derived tables based on the content of the base, reference, and lookup tables.
Derived tables are implemented using Oracle tables.

■ Aggregate Population - These are a set of database packages that populate the
aggregate tables that are mainly implemented as materialized views based on the
content of the previously populated Oracle tables.

Using the Intra-ETL involves the following tasks:

■ Executing the Intra-ETL for Oracle Retail Data Model

■ Monitoring the Execution of the Intra-ETL Process

■ Recovering an Intra_ETL Process

Executing the Intra-ETL for Oracle Retail Data Model
There are two ways that you can execute the Intra-ETL packages provided with Oracle
Retail Data Model. The method you use depends on whether you answered "yes" or
"no" to the question "Indicate if this installation will be used to store transaction level
history" when you installed Oracle Retail Data Model:

■ If you selected "yes" during installation, then Level0 is MV and you can execute
the Intra-ETL using Oracle Warehouse Builder as discussed in "Executing the
Intra-ETL in Oracle Warehouse Builder" on page 3-3.

■ If you selected "no" during installation, then Level0 is Table and you must
explicate execute the Intra-ETL package as described in "Explicitly Executing the
Intra-ETL Package" on page 3-6.

Executing the Intra-ETL in Oracle Warehouse Builder
You can install Oracle Retail Data Model Intra-ETL as a project in Oracle Warehouse
Builder (OWB). Once installed, you can execute the intra-ETL from OWB.

To use Oracle Retail Data Model Intra-ETL in Oracle Warehouse Builder (OWB),
follow these steps:

1. Import the ORDM_INTRA_ETL Project.

2. Configure the ORDM_INTRA_ETL Project.

3. Prepare to Execute the Project.

4. Deploy and Execute the Project.

This installation requires Oracle Warehouse Builder 10.2.0.1.0.

Note: The Intra-ETL scripts provided with Oracle Retail Data Model
assume that there is no data in the derived tables and aggregate tables
and views. Typically, you perform this type of load only when you
first create your data warehouse. Later, you need to add additional
data to the tables and refresh your views. In this case, you perform an
incremental load as described in "Maintaining Relational Tables and
Views" on page 5-1.

See: For information about Oracle Warehouse Builder, see Oracle
Warehouse Builder User's Guide.

Populating Derived and Aggregate Relational Tables and Views

3-4 Oracle Retail Data Model Operations Guide

Import the ORDM_INTRA_ETL Project Follow these steps to import the ORDM_INTRA_
ETL project:

1. Log in as a repository user to the to the OWB design center where you want to
import ORDM_INTRA_ETL. In this example, the repository user is RBIA_ETL.

2. Click the Design menu, and select Import.

3. Click the submenu Warehouse Builder Metadata. The Metadata Import window
opens.

4. Enter the name and location of the exported metadata loader file (.mdl), Intra_
ETL_OWB_ProcessFlow.mdl in the folder ORACLE_HOME/ORDM/ORDM/PDM/
Relational/Intra_ETL/OWB.

5. Enter a log file name and location. The log file enables monitoring of import
operations.

6. Don't change any other options.

7. Click Import.

8. After the import finishes, ORDM_INTRA_ETL appears in the OWB Design Center
in the Project Explorer.

Configure the ORDM_INTRA_ETL Project Follow these steps to configure the imported
ORDM_INTRA_ETL project:

1. Create a metadata location in OWB for which the corresponding schema is the
database schema where all Oracle Retail Data Model-related objects are available
and installed. For example, create a metadata location named ETL_DEMO_LOC
under the ETL_DEMO schema where all Oracle Retail Data Model-related objects
are available.

2. Right-click the data module ORDM_DERIVE_AGGREGATE, and select Open
Editor.

3. Change the Metadata Location and the Data Location of the data module of the
imported project to the location defined in the first step. In this example, change
the location to ETL_DEMO_LOC.

4. Right-click the data module ORDM_DERIVE_AGGREGATE and select Configure.

5. In the Identification property, change Location and Streams Administrator
location to the location created in the first step. In this example, change both items
to ETL_DEMO_LOC.

6. Create an Oracle Workflow location in OWB in a workflow schema. For example,
create the Oracle Workflow location OWF_ET_DEMO_LOC in the OWF_MGR
schema.

7. Right-click the process flow module (in this example, ORDM_INTRA_ETL), and
select Open Editor.

8. In the editor, change the Data Location of the process flow module to the new
location created in step 6. In this example, change the Data Location for ORDM_
INTRA_ETL to OWF_ET_DEMO_LOC.

9. Right-click the process flow module, and select Configure. In this example,
right-click ORDM_INTRA_ETL.

10. In the Configuration Properties,

■ In Execution, change Evaluation Location to the new location created in step
6.

Populating Derived and Aggregate Relational Tables and Views

Populating the Oracle Retail Data Model Warehouse 3-5

■ In Identification, change Location to the new location created in step 6.

In this example, change both values to OWF_ET_DEMO_LOC.

11. Log in to Design Center as OWB owner user. In Global Explorer -> Security ->
Users, right- click Users and click new. Select the two users corresponding to the
new locations. Click Next and then Finish.

12. Save the project.

Prepare to Execute the Project You are now almost ready to execute the project. Before
you can execute the project, ensure that the repository user (in this example, RBIA_
ETL) has the EXECUTE privilege for the following packages:

■ PKG_AGGREGATE_ALL

■ PKG_DWD_CTLG_RQST_BY_DAY

■ PKG_DWD_POS_RTL

■ PKG_DWD_POS_CNTRL

■ PKG_DWD_POS_STORE_FINCL

■ PKG_DWD_CUST_EMP_RLTNSHP_DAY

■ PKG_DWD_INV_POSN_BY_ITEM_DAY

■ PKG_DWD_CERTIFICATE_ACTVTY_TRX

■ PKG_DWD_CUST_ORDR_LI_STATE

■ PKG_DWD_RTV_ITEM_DAY

■ PKG_DWD_CUST_ORDR_ITEM_DAY

■ PKG_DWD_CUST_SKU_SL_RETRN_DAY

■ PKG_DWD_INV_ADJ_BY_ITEM_DAY

■ PKG_DWD_INV_UNAVL_BY_ITEM_DAY

■ PKG_DWD_SPACE_UTLZTN_ITEM_DAY

■ PKG_DWD_POS_TNDR_FLOW

■ PKG_DWD_RTL_SL_RETRN_ITEM_DAY

■ PKG_INTRA_ETL_UTIL

These packages are listed on the Transformation node of the data module. In this
example, they are listed on the Transformation node of ORDM_DERIVE_
AGGREGATE.

Deploy and Execute the Project Follow these steps to deploy and execute the main
process flow:

1. Go to the Control Center Manager.

2. Select the Oracle Workflow location that was created in Configure the ORDM_
INTRA_ETL Project. In this example, the location is OWF_ET_DEMO_LOC.

3. Select the main process flow RBIA_INTRA_ETL_FLW. Right-click and select set
action. If this is the first deployment, set action to Create; for deployment after the
first, set action to Replace. Deploy the process flow.

4. After the deployment finishes successfully, RBIA_INTRA_ETL_FLW is ready to
execute.

Populating Derived and Aggregate Relational Tables and Views

3-6 Oracle Retail Data Model Operations Guide

Tips
Keep the following in mind:

■ Insure that you specify the date ranges in the DWC_ETL_PARAMETER table for
PROCESS_NAME 'RBIA-INTRA-ETL' before you trigger the ETL process.

■ Insure that time partitions for the load period have been created:

■ To generate partition for L0 MV, use ORACLE_
HOME/ORDM/PDM/Relational/Intra_ETL/L0_MV/generate_add_
partition.sql

■ To generate partition for L0 Tables, use ORACLE_
HOME/ORDM/PDM/Relational/Intra_ETL/L0_Table/generate_add_
partition.sql

Explicitly Executing the Intra-ETL Package
Oracle Retail Data Model provides you with a PKG_INTRA_ETL_PROCESS.RUN
procedure which starts the Oracle Retail Data Model Intra-ETL process. This
procedure can be invoked manually, by another process such as Source-ETL, or
according to a predefined schedule such as Oracle Job Scheduling.

PKG_INTRA_ETL_PROCESS.RUN does not accept parameters. This procedure calls
other programs in the correct order to load the data for current day (according to the
Oracle system date). The result of each table loading are tracked in DWC_ control
tables.

Tips
Keep the following in mind:

■ Insure that you specify the date ranges in the DWC_ETL_PARAMETER table for
PROCESS_NAME 'RBIA-INTRA-ETL' before you trigger the ETL process.

■ Insure that time partitions for the load period have been created:

■ To generate partition for L0 MV, use ORACLE_
HOME/ORDM/PDM/Relational/Intra_ETL/L0_MV/generate_add_
partition.sql

■ To generate partition for L0 Tables, use ORACLE_
HOME/ORDM/PDM/Relational/Intra_ETL/L0_Table/generate_add_
partition.sql

Monitoring the Execution of the Intra-ETL Process
Two control tables, DWC_INTRA_ETL_PROCESS and DWC_INTRA_ETL_ACTIVITY,
monitor the execution of the Intra-ETL process.

■ Table 3–1 on page 3-6 contains column information for DWC_INTRA_ETL_
PROCESS.

■ Table 3–2 on page 3-7 contains column information for DWC_INTRA_ETL_
ACTIVITY.

Table 3–1 DWC_INTRA_ETL_PROCESS Columns

Column Name Data Type and Size Not NULL? Remarks

PROCESS_KEY NUMBER(30) Yes Primary Key. System
Generated Unique
Identifier

Populating Derived and Aggregate Relational Tables and Views

Populating the Oracle Retail Data Model Warehouse 3-7

At the top level, the complete Intra-ETL process is divided into two groups: 1) Derived
Population and, 2) Aggregate Population. The programs are executed in that order

PROCESS_START_
TIME

DATE Yes ETL Process Start
Date and Time

PROCESS_END_
TIME

DATE ETL Process End
Date and Time

PROCESS_STATUS VARCHAR2(30) Yes Current Status of the
process

FROM_DATE_ETL DATE Start Date (ETL) -
From Date of the ETL
date range

TO_DATE_ETL DATE End Date (ETL) - To
Date of the ETL date
range

LOAD_DT DATE Record Load Date -
Audit Field

LAST_UPDT_DT DATE Last Update Date and
Time - Audit Field

LAST_UPDT_BY VARCHAR2(30) Last Update By -
Audit Field

Table 3–2 DWC_INTRA_ETL_ACTIVITY Columns

Column Name Data Type and Size Not NULL? Remarks

ACTIVITY_KEY NUMBER(30) Yes Primary Key. System
Generated Unique
Identifier

PROCESS_KEY NUMBER(30) Yes Process Key. FK to
DWC_INTRA_ETL_
PROCESS table

ACTIVITY_NAME VARCHAR2(50) Yes Activity Name or
Intra ETL Program
Name

ACTIVITY_DESC VARCHAR2(500) Activity Description

ACTIVITY_START_
TIME

DATE Yes Intra-ETL Program
Execution Start Time

ACTIVITY_END_
TIME

DATE Intra-ETL Program
Execution End Time

ACTIVITY_STATUS VACHAR2(30) Yes Current Status of the
individual program

ERROR_DTL VARCHAR2(2000) Error details, if any

LOAD_DT DATE Record Load Date -
Audit Field

LAST_UPDT_DT DATE Last Update Date and
Time - Audit Field

LAST_UPDT_BY VARCHAR2(30) Last Update By -
Audit Field

Table 3–1 (Cont.) DWC_INTRA_ETL_PROCESS Columns

Column Name Data Type and Size Not NULL? Remarks

Populating Derived and Aggregate Relational Tables and Views

3-8 Oracle Retail Data Model Operations Guide

(that is, Aggregate Population is invoked only when all of the individual programs
that make up the Derived Population complete with a status of
COMPLETED-SUCCESS).

Each normal run (as opposed to an error-recovery run) of a separate Intra-ETL
execution performs the following steps:

1. Inserts a record into table DWC_INTRA_ETL_PROCESS with SYSDATE (a unique,
monotonically-increasing, system-generated process key) as process start time,
RUNNING as the process status, and input date range in the fields FROM_DATE_
ETL and TO_DATE_ETL.

2. Invokes each of the individual Intra-ETL programs in the appropriate order of
dependency. Before the invocation of each program, the procedure inserts a record
into the Intra-ETL Activity detail table DWC_INTRA_ETL_ACTIVITY with a
system generated unique activity key, the process key value corresponding to the
Intra-ETL process, individual program name as the Activity Name, a suitable
activity description, SYSDATE as activity start time, RUNNING as the activity status.

3. Updates the corresponding record in the DWC_INTRA_ETL_ACTIVITY table for
the activity end time and activity status after the completion of each individual
ETL program (either successfully or with errors. For successful completion of the
activity, the procedure updates the status as COMPLETED-SUCCESS. If an error
occurs, the procedure updates the activity status as COMPLETED-ERROR, and also
updates the corresponding error detail in the ERROR_DTL column.

In case of an error, all of the DML operations performed as part of the individual
ETL programs are rolled back and the corresponding error details are updated
into the activity table record, along with the status indicating that an error
occurred. Within a group, an error in one program does not stop the execution of
the other subsequent independent programs; only the programs which are
dependent of the program which has encountered error are skipped. However, as
explained earlier, since Aggregate Population will only start after the successful
completion of the entire Derived Population, an error in any individual program
in the Derived Population group results in the skipping of the execution of the
Aggregate Population set of programs and MV refresh

4. Updates the record corresponding to the process in the DWC_INTRA_ETL_
PROCESS table for the process end time and status, after the completion of all
individual intra-ETL programs. If all the individual programs succeed, the
procedure updates the status to COMPLETED-SUCCESS, otherwise it updates the
status to COMPLETED-ERROR.

You can monitor the execution state of the Intra-ETL, including current process
progress, time taken by individual programs, or the complete process, by viewing the
contents of the DWC_INTRA_ETL_PROCESS and DWC_INTRA_ETL_ACTIVITY tables
corresponding to the maximum process key. This can done both during and after the
execution of the Intra-ETL procedure.

Recovering an Intra_ETL Process
When an error occurs, the corresponding error details are tracked against the
individual programs in the DWC_INTRA_ETL_ACTIVITY table.

In order to restart the Intra-ETL operation, you must:

See: "Monitoring the Execution of the Intra-ETL Process" on
page 3-6

Implementing Oracle Retail Data Model Data Mining Models

Populating the Oracle Retail Data Model Warehouse 3-9

1. Check and correct (either for data correction or database-related action) each of
these errors (which may be related to data or database size).

2. Invoke the Intra-ETL process as an error-recovery run using the PKG_INTRA_
ETL_PROCESS.RECOVERYRUN procedure instead of the database package used
for a normal run.

The PKG_INTRA_ETL_PROCESS.RECOVERYRUN procedure identifies the
programs that failed during the previous execution based on the content of the
DWC_INTRA_ETL_ACTIVITY table, and will execute only those programs as a
part of the recovery run. In the case of Derived Population error as a part of the
previous run, this recovery run executes the individual derived population
programs which produced errors in the previous run. After their successful
completion, the run executes the Aggregate Population programs and
materialized view refresh in the appropriate order. In this way, the Intra-ETL error
recovery is almost transparent, without involving the Data Warehouse or ETL
administrator. The administrator only needs to take correct the causes of the errors
and re-invoke the Intra-ETL process once more. The Intra-ETL process identifies
and executes the programs that generated errors.

Implementing Oracle Retail Data Model Data Mining Models
Oracle Retail Data Model provides an optional data mining component. This data
mining component extends the core extends the core functionality of Oracle Retail
Data Model by adding data mining models.

The tables used by the data mining models are defined and populated by Intra-ETL
process provided with Oracle Retail Data Model.

The the steps required to implement the data mining models are:

1. Populating the Data Mining Source Tables

2. Creating the Data Mining Models

Populating the Data Mining Source Tables
When you install the Data Mining component of Oracle Retail Data Model, the data
mining ETL packages are also installed. The Mining ETL packages have names of the
form PKG_POP_DM_* and are listed in Oracle Retail Data Model Reference.

You use these Mining ETL packages to populate data from base or derived tables in
the bia_rtl schema to tables named *_SRC in the bia_rtl_mining schema. These
*_SRC contain source input data for the data mining models.

To populate the *_SRC tables:

1. Ensure that the corresponding base and derived tables in the bia_rtl schema are
populated.

2. Execute the PKG_POP_DM_*.LOADDATA(p_yearmonth) procedures.

Note: For testing purposes, you can create populated tables by
importing the *_SRC tables from bia_rtl_mining.dmp.zip which
is installed during the Oracle Retail Data Model install option 3
"Sample Schema and Reports." The zip file is located in ORACLE_
HOME/ORDM/Sample/Schema_Dump.

Implementing Oracle Retail Data Model Data Mining Models

3-10 Oracle Retail Data Model Operations Guide

The parameter p_yearmonth is the Business Month that you want to analyze. All
Business Months are stored in bia_rtl.DWR_BSNS_MO . The input of p_
yearmonth must be in bia_rtl.DWR_BSNS_MO.MO_KEY.

Example 3–1 Populating Source input Data Tables for the Data Mining Models

This example populates data for Business Year 2007 Month 2:

1. Log in to the database as the BIA_RTL_MINING user:

$ sqlplus bia_rtl_mining/bia_rtl_mining

2. Execute packages to load data from base and derived table in the bia_rtl
schema to the mining source tables in the bia_rtl_mining schema:

--Populate ASSOCIATE_BASKET_SRC
SQL>exec pkg_pop_dm_assbas.loaddata(20070219);

--Populate ASSOCIATE_LOSS_SRC
SQL>exec pkg_pop_dm_assloss.loaddata(20070219);

--Populate ASSOCIATE_SALES_SRC
SQL>exec pkg_pop_dm_asssls.loaddata(20070219);

--Populate STR_CTGRY_DTLS_SRC
SQL>exec pkg_pop_dm_custcatgmix.loaddata(20070219);

--Populate CUSTOMER_LOYALTY_SRC
SQL>exec pkg_pop_dm_custlty.loaddata(20070219);

--Populate FS_CATEGORY_MIX_SRC
SQL>exec pkg_pop_dm_fscatgmix.loaddata(20070219);

--Populate ITEM_BASKET_SRC
SQL>exec pkg_pop_dm_itmbas.loaddata(20070219);

--PopulateI ITEM_POS_LOSS_SRC
SQL>exec pkg_pop_dm_itmposloss.loaddata(20070219);

--Populate for POS_FLOW_SRC
SQL>exec pkg_pop_dm_posflow.loaddata(20070219);

--Popule STORE_LOSS_SRC
SQL>exec pkg_pop_dm_strloss.loaddata(20070219);

3. Check source table to see if data was loaded:

select 'ASSOCIATE_BASKET_SRC',count(*) from ASSOCIATE_BASKET_SRC where month =
'BY 2007 M2' union
select 'ASSOCIATE_LOSS_SRC ',count(*) from ASSOCIATE_LOSS_SRC where month =
'BY 2007 M2' union
select 'ASSOCIATE_SALES_SRC ',count(*) from ASSOCIATE_SALES_SRC where month =
'BY 2007 M2' union
select 'STR_CTGRY_DTLS_SRC ',count(*) from STR_CTGRY_DTLS_SRC where month =
'BY 2007 M2' union
select 'CUSTOMER_LOYALTY_SRC',count(*) from CUSTOMER_LOYALTY_SRC where month =
'BY 2007 M2' union

Note: The programs that load the data also perform required data
preparation.

Implementing Oracle Retail Data Model Data Mining Models

Populating the Oracle Retail Data Model Warehouse 3-11

select 'FS_CATEGORY_MIX_SRC ',count(*) from FS_CATEGORY_MIX_SRC where month =
'BY 2007 M2' union
select 'ITEM_BASKET_SRC ',count(*) from ITEM_BASKET_SRC where month = 'BY
2007 M2' union
select 'ITEM_POS_LOSS_SRC ',count(*) from ITEM_POS_LOSS_SRC where month = 'BY
2007 M2' union
select 'POS_FLOW_SRC ',count(*) from POS_FLOW_SRC where month = 'BY 2007
M2' union
select 'STORE_LOSS_SRC ',count(*) from STORE_LOSS_SRC where month = 'BY
2007 M2' ;

Check the result to ensure that the source tables for which you will create mining
model contains data.

Creating the Data Mining Models
Oracle Retail Data Model creates mining models using the following three Oracle Data
Mining algorithms: Adaptive Bayes (ABN), Decision Tree (DT), and Apriori
Association (APASS). These algorithms all build models that have rules.

The mining models are defined and populated using packages that are named PKG_
RBIW_DM_* provided with Oracle Retail Data Model. Each package (analysis) builds
models using one or two of the algorithms. The models built depend on the analysis
being performed. The output of the model build is a view containing rules generated
by the model.

To create a data mining model:

1. Log in to the database as the BIA_RTL_MINING user.

2. Execute the appropriate PKG_RBIW_DM_* package with the appropriate build
procedure to create the mining model of the model type(s) you want.

3. Check that RBIW_DM_MODEL_SIGN and RBIW_DM_RULES were populated with
new rules with the following query.

4. Check that a model-specific view was created with the new rules for the specific
model you created.

Example 3–2 Creating a Data Mining Model

Before you build models, ensure that the *_SRC tables are populated. For testing
purposes, you can create populated tables by importing the *_SRC tables from bia_
rtl_mining.dmp.zip. The zip file bia_rtl_mining.dmp.zip is installed during
the Oracle Retail Data Model install option 3 "Sample Schema and Reports." The zip
file is located in the directory

Note: In Oracle Data Mining, "Association Rules" is abbreviated as
AR.

See: For a complete list of the data mining model creation packages,
the build procedures and build parameters for creating different
models of different types, see "Data Mining Component ETL" in Oracle
Retail Data Model Reference.

See: For a complete list of these views, see "Physical Data Model of
the Data Mining Component" in Oracle Retail Data Model Reference.

Implementing Oracle Retail Data Model Data Mining Models

3-12 Oracle Retail Data Model Operations Guide

ORACLE_HOME/ORDM/Sample/Schema_Dump

These steps show how to run the Mining Model Creation packages. In this example,
we create an Associate Basket Analysis model for Business Year 2007 Month 2.

1. Log in to the database as the BIA_RTL_MINING user:

$ sqlplus bia_rtl_mining/bia_rtl_mining

2. Execute packages to create the Associate Basket Analysis Model for the two model
types ABN and DT:

--For the model type Adaptive Bayes Network (ABN)
SQL> set serveroutput on size 1000000
spool ASSBAS_ABN.txt
BEGIN
 PKG_RBIW_DM_ASSBAS.PRC_RUNALL_ABN('ASSOCIATE_BASKET_SRC',
 'ASSBAS_MDL_ABN',
 2007,
 'BY 2007 M2',
 TRUE
);
END;
/

spool off
--For the model type Decision Tree (DT)
SQL> set serveroutput on size 1000000
spool ASSBAS_DT.txt
BEGIN
 PKG_RBIW_DM_ASSBAS.PRC_RUNALL_DT (
 'ASSOCIATE_BASKET_SRC',
 'ASSBAS_MDL_DT',
 2007,
 'BY 2007 M2',
 TRUE
);
END;
/
spool off

3. Check that RBIW_DM_MODEL_SIGN and RBIW_DM_RULES were populated
with new rules with the following query:

SQL>
Select 'SIGN' TYPE, analysis_desc, model_type, count(*) COUNT from RBIW_DM_
MODEL_SIGN where analysis_name = 'ASSOCIATE_BASKET' group by analysis_desc,
model_type
union
Select 'RULES' TYPE, analysis_desc, model_type, count(*) COUNT from RBIW_DM_
RULES where analysis_name = 'ASSOCIATE_BASKET' group by analysis_desc, model_
type
order by 2,3;

The query should return information like the following:

TYPE ANALYSIS_DESC MODEL_TYPE COUNT

RULES Associate Basket Analysis ABN 61

SIGN Associate Basket Analysis ABN 18

Populating OLAP Cubes

Populating the Oracle Retail Data Model Warehouse 3-13

The actual COUNT values may be different from the ones shown; however, if the
model was created successfully, the COUNT should always be greater than 0.

Populating OLAP Cubes
The OLAP component is an option of Oracle Retail Data Model. This OLAP
component extends the core functionality of Oracle Retail Data Model by adding
OLAP cubes for OLAP analysis and forecasting.

Oracle Retail Data Model OLAP cubes are not populated using a formal Extract,
Transform, and Load workflow process. Instead, OLAP cubes are populated through
SQL scripts that use the RBIA_OLAP_ETL_AW_LOAD package that is provided with the
OLAP component.

OLAP cubes are populated at the following times:

1. During the initial load of the OLAP cubes.

This load is performed by a SQL script (sometimes called the "OLAP cube initial
load script") that is delivered with the Oracle Retail Data Model OLAP
component. The actual script that performs the OLAP cube initial load varies
depending on Oracle Database release:

■ For Oracle Database 10g, the script is ordm_olap_install_scr.sql

■ For Oracle Database 11g, the script is ordm_olap_11g_install_scr.sql

When the relational data exists in the Oracle Retail Data Model data warehouse,
the OLAP cube initial load script loads relational table data (from a specified start
date to the present time) into the OLAP cubes. It also performs the default OLAP
forecasts. (For detailed information about the behavior of the OLAP cube initial
load script, see the discussion on the OLAP component installation scripts in
Oracle Retail Data Model Reference.)

You can execute the OLAP cube initial load SQL script in the following ways:

■ Implicitly, by installing the Oracle Retail Data Model OLAP component after
you have loaded data into the Oracle Retail Data Model relational tables. For
instructions on how to install the Oracle Retail Data Model OLAP component,
see Oracle Retail Data Model Installation Guide.

■ Explicitly, after you install the Oracle Retail Data Model OLAP component
and populate the relational tables. In this case, you execute the OLAP cube
initial load SQL program as you execute any other SQL program.

2. On a scheduled basis to update the OLAP cube data with the relational data that
has been added to the Oracle Retail Data Model data warehouse since the initial
load of the OLAP cubes.

This type of load (sometimes referred to as an "intermittent" or "refresh" load)
merely adds relational data from a specified time period to the data in the Sales

RULES Associate Basket Analysis DT 76

SIGN Associate Basket Analysis DT 39

See: The RBIA_OLAP_ETL_AW_LOAD package is documented in
Oracle Retail Data Model Reference.

TYPE ANALYSIS_DESC MODEL_TYPE COUNT

Populating OLAP Cubes

3-14 Oracle Retail Data Model Operations Guide

and Inventory cubes; it does not change the data in the Sales Forecast and
Inventory Forecast cubes.

Oracle Retail Data Model does not provide an OLAP intermittent load cube script.
You must write your own OLAP intermittent load cube script using the RBIA_
OLAP_ETL_AW_LOAD package. For information on writing your own intermittent
OLAP cube program and for updating the data in the OLAP forecast cubes, see
"Refreshing OLAP Cube Data" on page 5-2.

4

Analysis and Reporting in Oracle Retail Data Model 4-1

4Analysis and Reporting in Oracle Retail Data
Model

This chapter introduces the analytic and reporting capabilities of Oracle Retail Data
Model.

This chapter contains the following topics:

■ Reports Delivered with Oracle Retail Data Model

■ Customizing the Reports Delivered with Oracle Retail Data Model

■ Writing Your Own Queries and Reports on Relational Data

■ Writing Your Own Queries and Reports on OLAP Cube Data

Reports Delivered with Oracle Retail Data Model
Sample reports and dashboards are delivered with Oracle Retail Data Model. They are
listed in a spreadsheet that resides in the following directory.

ORACLE_HOME/ORDM/REPORT/INSTALL

These sample reports illustrate the analytic capabilities provided with Oracle Retail
Data Model -- including the OLAP and data mining capabilities.

The sample reports were developed using Oracle Business Intelligence Suite
Enterprise Edition (Oracle BI EE) using the sample repository defined by the
RBIAII.rpd file. Oracle BI EE is a comprehensive suite of enterprise BI products that
delivers a full range of analysis and reporting capabilities. Thus, the reports also
illustrated the ease with which you can use Oracle BI EE Answers and Dashboard
presentation tools to create useful reports.

The sample reports delivered with Oracle Retail Data Model include:

■ Sample Associate Basket Analysis Model Report

■ Sample Associate Loss Analysis Model Reports

■ Sample Associate Sales Analysis Model Report

■ Sample Customer Product Category Mix Analysis Model Report

Note: The reports and dashboards that are used in examples and
delivered with Oracle Retail Data Model are provided only for
demonstration purposes. They are not supported by Oracle.

Reports Delivered with Oracle Retail Data Model

4-2 Oracle Retail Data Model Operations Guide

■ Sample Customer Loyalty Analysis Model Report

■ Sample Item Basket Analysis Model Report

■ Sample Item Point of Sale (POS) Loss Analysis Model Report

Sample Associate Basket Analysis Model Report
In a retail environment, "basket" refers to the items a customer purchases in one
transaction, as with a shopping cart of groceries or a car and a number of options. The
size, context, and number of baskets sold are all valuable pieces of information.

This model addresses the business problem of building a profile of associates to
explain their basket Key Performance Indicators (KPIs), such as Total Baskets, Average
Basket Value, and other statistics.

An Associate Basket model analysis identifies which key attributes of an associate
influence his or her number of baskets sold, average basket value, and size. This model
mines the various attributes of associates. It takes the binned variables one at a time
for the Total Basket Count, Average Basket Value, and Average Basket Size as the
target variable of an Adaptive Bayes (ABN) and Decision Tree (DT) model with a
single feature and discovers rules described in terms of associate attributes.

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the
parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

New report layouts (OBIEE or Oracle Answers reports) displaying the Associate
Profile Rules or Model Signature corresponding to the 3 target variables.

See: For detailed information about the Associate Basket Analysis
Model delivered with Oracle Retail Data Model, see the discussion of
that model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

Analysis and Reporting in Oracle Retail Data Model 4-3

Sample Associate Loss Analysis Model Reports
The Associate Loss Analysis model addresses the business problem of correlating
associate characteristics to shrink and theft. (In a retail environment, shrink refers to
merchandise that, for unknown reasons, is unaccounted for.)

The KPIs are converted into categorical variables using standard database binning
operations. The categorical variables are modeled as a classification model in order to
identify or predict the impact of various independent variables (attributes) on the
dependent target variable (KPI - categorical).

The Associate Loss Analysis model mines the Total Shrink Count, Total Shrink
Amount, Shrink as a percentage of Sales, Total Theft Count, Total Theft Amount and
Theft as a percentage of Sales of individual associates to identify which of their key
attributes influence their shrinkage and theft. This model takes the binned variables
one at a time for Total Shrinkage and Theft Count or Value or percentage of Sales as
the target variable of an Adaptive Bayes (ABN) and Decision Tree (DT) model and
discovers rules described in terms of associate attributes.

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the
parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

New report layouts (OBIEE or Oracle Answers reports) displaying the Associate
Profile Rules or Model Signature corresponding to the 3 target variables.

This sample OBIEE report shows Associate Shrink to Sales Rules:

See: For detailed information about the Associate Loss Analysis
Model delivered with Oracle Retail Data Model, see the discussion of
that model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

4-4 Oracle Retail Data Model Operations Guide

Figure 4–1 Shrink to Sales Data Mining Report

This sample OBIEE report shows Associate Theft to Sales Rules:

Reports Delivered with Oracle Retail Data Model

Analysis and Reporting in Oracle Retail Data Model 4-5

Figure 4–2 Theft to Sales Data Mining Report

Sample Associate Sales Analysis Model Report
The Associate Sales Analysis model addresses the business problem of profiling
associate characteristics to sales, cost, and profit patterns.

The KPIs are converted into categorical variables using standard database binning
operations. The categorical variables are modeled as a classification model in order to
identify or predict the impact of various independent variables (attributes) on the
dependent target variable (KPI - categorical).

This model mines the various attributes of associates. It takes the binned variables one
at a time for Sales, Costs, and Profits as the target variable of an Adaptive Bayes (ABN)
and Decision Tree (DT) model with a single feature and discovers rules described in
terms of associate attributes.

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the
parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

 The following report shows the layout of the Store Loss report.

See: For detailed information about the Sample Sales Analysis
Model delivered with Oracle Retail Data Model, see the discussion of
that model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

4-6 Oracle Retail Data Model Operations Guide

Sample Customer Product Category Mix Analysis Model Report
The Customer Category Mix Analysis model addresses the business problem of
discovering product categories that are frequently bought together by customers. The
model is used to understand the Categories purchased by a Customer in a typical
transaction in terms of the components like the Categories in the Basket, Target
Category in a Basket and additional information like Basket Significance (Sales Value),
Target Category Significance (Sales Value) which are generated from regular
Customer Transactional data.

Using Oracle Data Mining, the KPIs are modeled with the APRIORI algorithm utilized
by the Association Rules model. The model type used for Association Rules with
Apriori Algorithm is APASS. This is an example of Unclassified Learning since the
Categories (or Target Category) which make up the Category Basket are not inferred
or guided (as part of data preparation) but are generated by the model itself.

This model mines the monthly purchases of individual customers and discovers rules
about the categories that are frequently bought in groups by customers.

For this sample report, the presentation of the Rules for Category Mix Analysis has
been enhanced by the introduction of an additional Dashboard prompt to filter the
Report (Rules) on (a) Number of Categories in the Rule, (b) Category Basket
Significance (Sales Value) and (c) Target Category Significance (Sales Value) within the
Category Basket.

The following is a portion of the Customer Product Category Mix Analysis report.

See: For detailed information about the Customer Category Mix
Analysis Model delivered with Oracle Retail Data Model, see the
discussion of that model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

Analysis and Reporting in Oracle Retail Data Model 4-7

Sample Customer Loyalty Analysis Model Report
The Customer Loyalty Analysis model addresses the business problem of discovering
the impact of customer characteristics on customers' loyalty to a store.

This model mines the Customer and Account demographic characteristics of
Customers to identify the key attribute influencing the Customer Loyalty scores
(RFMP Category Value).

The RFMP algorithms provide functionality to group customers into quartiles, deciles,
and quintiles. Each customer falls into one of the following five loyalty categories
based on the RFMP quintile he or she belongs to in a particular month:

■ Group A (RFMP Quintile 5)

■ Group B (RFMP Quintile 4)

■ Group C (RFMP Quintile 3)

■ Group D (RFMP Quintile 2)

■ Group E (RFMP Quintile 1)

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the
parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

New report layouts (OBIEE or Oracle Answers reports) displaying the Customer
Loyalty Rules or Model Signature.

This sample OBIEE report shows Customer Loyalty Rules:

See: For detailed information about the Customer Loyalty Analysis
Model delivered with Oracle Retail Data Model, see the discussion of
that model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

4-8 Oracle Retail Data Model Operations Guide

Sample Item Basket Analysis Model Report
The Sample Item Basket Analysis model addresses the business problem of identifying
the extent to which item (product) characteristics influence the items' sales KPIs.

The KPIs are converted into categorical variables using standard database binning
operations. The categorical variables are modeled as a classification model in order to
identify or predict the impact of various independent variables (attributes) on the
dependent target variable (KPI - categorical).

This model identifies which key attributes of an item influence the number of baskets
sold, average basket value, and size in a particular store. This model mines the various
attributes of items. It takes the binned variables one at a time for Total Basket Count,
Average Basket Value, and Average Basket Size as the target variable of an ABN
model and DT model with a single feature and discovers rules described in terms of
item characteristics.

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the

See: For detailed information about the Item Basket Analysis Model
delivered with Oracle Retail Data Model, see the discussion of that
model in Oracle Retail Data Model Reference.

Reports Delivered with Oracle Retail Data Model

Analysis and Reporting in Oracle Retail Data Model 4-9

parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

The layout of the report is shown in the following sample.

Sample Item Point of Sale (POS) Loss Analysis Model Report
The Item POS Loss Analysis model addresses the business problem of building a
profile of item (product) characteristics with regard to POS losses.

The KPIs are converted into categorical variables using standard database binning
operations. The categorical variables are modeled as a classification model in order to
identify or predict the impact of various independent variables (attributes) on the
dependent target variable (KPI - categorical).

This model mines the POS transactions along with the item attributes to identify their
impact on Total Shrink Count, Total Shrink Amount, Shrink as a percentage of Sales,
Total Theft Count, Total Theft Amount, and Theft as a percentage of Sales.

For this sample report, the presentation of the Rules has been changed to better reflect
the Mining Model that the rules are based on. Decision Tree (DT) Rules make sense
when displayed in their entirety in the order of the hierarchy (or in the order of the

See: For detailed information about the Item POS Loss Analysis
Model delivered with Oracle Retail Data Model, see the discussion of
that model in Oracle Retail Data Model Reference.

Customizing the Reports Delivered with Oracle Retail Data Model

4-10 Oracle Retail Data Model Operations Guide

parent or child nodes making up the DT model). Adaptive Bayes (ABN) Rules are
independent of each other and do not have a natural display order and can be
customized to suit the presentation layer (front-end report) needs.

The following report shows the layout of the report described in this section.

Customizing the Reports Delivered with Oracle Retail Data Model
You can use Oracle BI EE Answers and Dashboard presentation tools to customize the
predefined sample dashboard reports:

■ Oracle BI Answers. Provides end user ad hoc capabilities in a pure Web
architecture. Users interact with a logical view of the information -- completely
hidden from data structure complexity while simultaneously preventing runaway
queries. Users can easily create charts, pivot tables, reports, and visually appealing
dashboards.

■ Oracle BI Interactive Dashboards. Provide any knowledge worker with intuitive,
interactive access to information. The end user can be working with live reports,
prompts, charts, tables, pivot tables, graphics, and tickers. The user has full
capability for drilling, navigating, modifying, and interacting with these results.

Writing Your Own Queries and Reports on OLAP Cube Data

Analysis and Reporting in Oracle Retail Data Model 4-11

Writing Your Own Queries and Reports on Relational Data
The bia_rtl and bia_rtl_mining schemas define the relational tables and views in
Oracle Retail Data Model. You can use any SQL reporting tool to query and report on
these tables and views.

Writing Your Own Queries and Reports on OLAP Cube Data
Oracle Retail Data Model supports On Line Analytic Processing (OLAP) reporting
through the use of OLAP cubes. The OLAP components of Oracle Retail Data Model
are described in "Physical Data Model of the OLAP Component" in Oracle Retail Data
Model Reference.

You can query and write reports on these OLAP cubes using SQL tools or OLAP tools.
Additionally, when you have installed the Oracle Retail Data Model OLAP component
for Oracle Database 11g, you can create an Oracle Business Intelligence Enterprise
Edition (OBIEE) repository for the OLAP cubes.

Querying and Reporting on OLAP Cubes Using SQL Tools
The bia_rtl_olap schema that defines the OLAP cubes also defines relational views
of the OLAP dimensions and cubes. You can use any SQL reporting tool to query and
report on these views. For more information on the relational views of OLAP cube
data, see the discussion of the physical model of the OLAP component in Oracle Retail
Data Model Reference.

Querying and Reporting on OLAP Cube Data Using OLAP Tools
When you have the Oracle Retail Data Model OLAP component installed, you can
write reports on OLAP cubes using OLAP tools. OLAP tools are designed specifically
to locate all cubes and dimensions that are accessible to the current user. They
automatically use the implicit relationships among cubes, dimensions, hierarchies,
levels, and attributes. For example, drilling is automatically supported, children are
clearly identified under their parent values, and description attributes are used as
labels instead of dimension keys.

Using a OBIEE Repository for OLAP Cubes
When you install the Oracle Retail Data Model OLAP component, a relational view
named bia_rtl_olap.OOS_CUBEVIEW view is defined. This relational view is a
view of all of the data in the OLAP cubes. You can utilize the bia_rtl_olap.OOS_
CUBEVIEW view to create a physical area for the Oracle Retail Data Model OLAP cubes
in an Oracle Business Intelligence Enterprise Edition (OBIEE) repository file (that is, an
rpd file). Once the OBIEE repository "knows" the OLAP cubes, the OBIEE Server (and
therefore any OBIEE client, including as Dashboards, Answers, Delivers and the MS
Office Plug-in) to query the ORDM cubes.

See: For more information on the relational tables and views, see the
discussion of the physical model of the Oracle Retail Data Model in
Oracle Retail Data Model Reference.

See also: "Reports Delivered with Oracle Retail Data Model" on
page 4-1.

See also: Chapter 5, "Querying Dimensional Objects Using OLAP
Tools" in Oracle OLAP Application Developer's Guide which discusses
how to use the Oracle Business Intelligence Spreadsheet Add-In with
an OLAP cube.

Writing Your Own Queries and Reports on OLAP Cube Data

4-12 Oracle Retail Data Model Operations Guide

Also, when you have installed the Oracle Retail Data Model OLAP component for
Oracle Database 11g, you can use the OBIEE Plug-in for Analytic Workspace Manager
(AWM) with the Oracle Retail Data Model OLAP Cubes. Using this plug-in you can
quickly create an OBIEE repository.

Writing Reports on Time-Series and Ranking Analysis
There are two OLAP cubes that hold measures that contain time-series and ranking
data for sales and inventory: OOS_SALES and OOS_INV. See Oracle Retail Data Model
Reference for a list of measures in these cubes.

Writing Forecasting Reports
In Oracle Retail Data Model, OLAP forecasting is performed through OLAP DML
programs that call the OLAP DML FORECAST command. Two forecast programs,
FORECAST_STOCK_SALES and FORECAST_STOCK_INV, are delivered with Oracle
Retail Data Model and reside in the PSLSINV analytic workspace. These default
forecast programs are executed during an Oracle Retail Data Model historical load.

By default, the forecast programs use two years of Day level data input and generate a
forecast for the third year. The results of the forecasts performed by the default
forecast programs are stored as measures in two OLAP cubes for sales and inventory:
OOS_SALES_FST and OOS_INV_FST. See Oracle Retail Data Model Reference for a list of
measures in these cubes.

The default forecasting programs produce forecasts of the following types and flavors:

■ Moving average method. Computes a series of averages for the values of a
dimensioned variable or expression over a specified dimension. For each
dimension value in status, MOVINGAVERAGE computes the average of the data
in the range specified, relative to the current dimension value. The default forecast
programs produce moving average forecasts of the following "flavors":

■ Moving average 500

■ Moving average 3

■ Moving average 10

■ Moving average 10 (weekend days)

■ Moving average 10 (week days)

■ Trend method. A straight-line extrapolation of historical data. The default forecast
programs produce trend forecasts of the following "flavors":

■ Trend (all days)

■ Trend (weekend days)

■ Trend (week days)

■ Exponential method. An extrapolation of historical data using a constant
period-to-period percentage growth. The default forecast programs produce
exponential forecasts of the following "flavors":

■ Exponential (all days

Note: The OBIEE Plug-in for AWM is available for download from
the Oracle Technology Network Web site at
http://www.oracle.com/technology/index.html.

Writing Your Own Queries and Reports on OLAP Cube Data

Analysis and Reporting in Oracle Retail Data Model 4-13

■ Exponential (weekend days)

■ Exponential (week days)

■ The Holt-Winters method. An extrapolation method that allows for both a linear
trend and seasonal fluctuations in the data. OLAP first constructs three statistically
related series for each time period of the historical data. Oracle OLAP produces a
forecast from the three series for the specified number of periods into the future.
The default forecast programs produce Holt-Winters forecasts of the following
"flavors":

■ Holt-Wiinters using 364 time periods periodicity (all days)

■ Holt-Winters using 364 time periods periodicity (weekend days)

■ Holt-Winters using 364 time periods periodicity (weekdays)

Writing Your Own Queries and Reports on OLAP Cube Data

4-14 Oracle Retail Data Model Operations Guide

5

Maintaining an Oracle Retail Data Model Warehouse 5-1

5Maintaining an Oracle Retail Data Model
Warehouse

This chapter discusses how to refresh an Oracle Retail Data Model data warehouse. It
includes the following topics:

■ Overview: Maintaining an Oracle Retail Data Model

■ Maintaining Relational Tables and Views

■ Refreshing OLAP Cube Data

Overview: Maintaining an Oracle Retail Data Model
You need to load your Oracle Retail Data Model data warehouse regularly so that it
can serve its purpose of facilitating business analysis. To do this, data from one or
more operational systems needs to be extracted and copied into the data warehouse.
The challenge in data warehouse environments is to integrate, rearrange and
consolidate large volumes of data over many systems, thereby providing a new
unified information base for business intelligence.

The successive loads and transformations must be scheduled and processed in a
specific order. Depending on the success or failure of the operation or parts of it, the
result must be tracked and subsequent, alternative processes might be started.

The way you perform these incremental loads varies depending on whether you are
maintaining relational tables and views, or OLAP cubes:

■ Maintaining Relational Tables and Views

■ Refreshing OLAP Cube Data

Maintaining Relational Tables and Views
Once you have implemented an Oracle Retail Data Model data warehouse as
described in Chapter 3, "Populating the Oracle Retail Data Model Warehouse", you can
administer the relational tables and views in the relational physical model in the same
way you administer any other data warehouse.

You perform ETL on a scheduled basis to reflect changes made to the original source
system. During this step, you physically insert the new, clean data into the production
data warehouse schema, and take all of the other steps necessary (such as building
indexes, validating constraints, taking backups) to make this new data available to the
end users. Once all of this data has been loaded into the data warehouse, you update
the relational materialized views to reflect the latest data.

Refreshing OLAP Cube Data

5-2 Oracle Retail Data Model Operations Guide

When you have used OWB for the ETL processes implement the relational physical
model, you can use the typical OWB process to perform periodic updates to the
relational objects in your Oracle Retail Data Model data warehouse.

Refreshing OLAP Cube Data
Since OLAP cubes do not use the typical ETL workflow process, you cannot use OWB
to refresh OLAP cube data.

OLAP cubes are populated through SQL scripts that use the RBIA_OLAP_ETL_AW_
LOAD package that is provided with the ORDM OLAP component. The subprograms
in the RBIA_OLAP_ETL_AW_LOAD package support two modes of loading OLAP
cubes: historical mode and incremental mode. Historical mode is used by the OLAP
installation scripts provided with Oracle Retail Data Model. You use incremental
mode to refresh OLAP cube data.

Specifically, to refresh OLAP cubes, you:

1. Write a script that calls the subprograms in RBIA_OLAP_ETL_AW_LOAD
package in incremental mode. For an example, see "Sample Incremental Load" on
page 5-2.

2. Execute this script on a regular basis.

Sample Incremental Load
The following code (executed from BIA_RTL_OLAP login) triggers an incremental
load of the OLAP cubes.

SQL>
set serverout on size 1000000
set linesize 200
set pagesize 0
set timing on
exec cwm2_olap_manager.set_echo_on;
--DATA SETUP Incremental
UPDATE BIA_RTL.DWC_ETL_PARAMETER
SET
FROM_DATE_ETL = TO_DATE('21-JAN-2007', 'DD-MON-YYYY'),
TO_DATE_ETL = TO_DATE('21-JAN-2007', 'DD-MON-YYYY'),
LAST_UPDT_DT = SYSDATE,
LAST_UPDT_BY = USER
WHERE PROCESS_NAME = 'RBIA-INTRA-ETL-OLAP'

Tip: Oracle Warehouse Builder User's Guide and Chapter 3, "Populating
the Oracle Retail Data Model Warehouse."

Note: An incremental load of OLAP cubes does not recalculate the
cubes that hold forecast data. To refresh forecast data, you also need
to redesign the forecast process as described in "Updating Forecast
Cubes" on page 5-7.

See: For detailed information about the RBIA_OLAP_ETL_AW_
LOAD package and its subprograms, see Oracle Retail Data Model
Reference.

See also : "OLAP Incremental Load Recovery" on page 5-3

Refreshing OLAP Cube Data

Maintaining an Oracle Retail Data Model Warehouse 5-3

;
COMMIT;
-- Incremental BUILD
declare
aint integer :=100;
begin
 aint := rbia_olap_etl_aw_load.olap_etl_aw_dimbuild('INCREMENTAL', 'EXECUTE', 2);
 aint := rbia_olap_etl_aw_load.olap_etl_aw_build('INCREMENTAL', 'EXECUTE', 2);

 if aint = 0 then
 dbms_output.put_line('Function call build successful');
 else
 dbms_output.put_line('Function call build failed');
 end if;

end;
/

OLAP Incremental Load Recovery
When a load fails or is only partially successful, an error occurs. To correct the error,
you will need to identify the type of load error and perform the steps necessary to
correct it. The following sample scenarios provide examples of common errors and
how to correct them.

A sample scenario where the user or developer needs to perform some clean up
activity relates to a partial or failed load. The historical load is always performed on a
fresh or empty analytic workspace and hence it can safely be restarted without
bothering about the current state of the analytic workspace. One should note that
running the Historical Load involves the loss of all data from the analytic workspace
and as such it is typically run only once during the implementation life cycle.

The incremental load however runs in an incremental mode as a scheduled process
with a definite frequency and only affects the cube for the time range that is being
loaded. Hence if an incremental load fails or is partially successful, then there is a need
to reload the same after validating the reason for failure.

Cleaning up a partial load is dependent on the load situation and the extent of failure.
The sample scenario can illustrate the steps to be taken to re-run the load when it fails
or is loaded partially as the following scenarios describe:

■ When the incremental load fails completely and none of the records have loaded
successfully

■ When the incremental load is partly successful, but some records fail to load due
to invalid dimension information

■ When the incremental load successful, but additional fact information needs to be
loaded

Note: The scenarios and examples in this section use the OLAP
Demo (Sample schema) for Oracle Retail Data Model. The values of
the analytic workspace internal partition names, start and end date
boundaries for Business Months, and so forth, are dependent on the
nature of the Time Calendar scripts installed with Oracle Retail Data
Model sample schema installation and are explained from the
perspective of the default Time Business Hierarchy which is week
based.

Refreshing OLAP Cube Data

5-4 Oracle Retail Data Model Operations Guide

■ When the incremental load is successful, but an alternate set of data records must
be loaded

When the incremental load fails completely and none of the records have loaded
successfully
This situation can occur because of missing dimension information. Assuming that
missing dimension information has subsequently been made available:

■ Possible error due to invalid dimension or foreign key in fact table.

■ All Loads usually load dimensions first and then attempt the Facts. Hence the
dimension information is missing from the dimension tables and is present in the
Fact table. You need to correct the dimension information and include the missing
dimension value (wait for the right file, wait for regular intra etl load completion,
etc.) and then attempt the load.

When the incremental load is partly successful, but some records fail to load
due to invalid dimension information
 Assuming that missing dimension information has subsequently been made available:

■ Possible error due to invalid dimension or foreign key in fact table.

■ Since dimension information has been made available, the incremental load can be
attempted once again and the data should get loaded once again. In this case, the
successful records would be reloaded once again into the cube. The failed records
would get loaded successfully this time.

When the incremental load successful, but additional fact information needs to
be loaded
In this case, since the data being loaded is additional (extra records have come in and
none of the earlier or existing records are invalid), the incremental load can be
attempted once again and the data should get loaded once again.

In this case, the successful records would be reloaded once again into the cube. The
additional records would get processed this time and succeed or fail determined by
the validity of the data.

When the incremental load is successful, but an alternate set of data records
must be loaded
 In this case, the earlier set of records loaded into the cube for the incremental load was
from an invalid source (wrong file for example) and needs to be undone. This can be
due to a single record or multiple records being in error. You need to:

■ Undo the effect of the incremental load performed.

■ Deleting the faulty records in the source data and reloading the correct set of
records will not result in the cube containing only the valid records. The cube will
contain all records loaded earlier as well as the current (correct set of) records.

■ Data already loaded into the cube remains in its place unless explicitly deleted
from the cube.

■ To perform the delete action in the cube, execute OLAP DML commands to
selectively (partially) clean up the cube of earlier records and to reload the data.

■ Using the time range of the incremental data load as the Time dimension
boundaries, perform the clean up in the cube.

Refreshing OLAP Cube Data

Maintaining an Oracle Retail Data Model Warehouse 5-5

■ For example, assume that 5,000 records have been incrementally loaded into the
Sales cube has loaded incrementally for a single day’s data (21-JAN-2007), but now
you fine that the original data file was invalid. You need to incrementally load a
new file of 4,000 records for 21-JAN-2007. (These 4000 records can contain a
mixture of modified records from earlier file, new records as well as having earlier
records missing entirely from this file). To perform this action, clean up the cube
for 21-JAN-2007 and reload the data once again in incremental mode as illustrated
in Example 5–1, "Cleaning up and reloading a cube".

Example 5–1 Cleaning up and reloading a cube

Assume that you have populated the PSLSINV analytic workspace using the sample
schema data. In Oracle Retail Data Model OLAP analytic workspace PSLSINV, the
Sales cube is a cube that is partitioned at the Business Month level for Time dimension,
and, when in an Oracle Database 11g, has been defined as a cube with compressed
composites (11g) and is partitioned at the Business Month level for Time dimension
(both 10g and 11g). Hence there is a separate variable that stores all the data of Sales
cube for each Business Month. The data for day 21-JAN-2007 resides in the business
month level partition which corresponds to Month with the value of BSNS_MO_
20061225. The partition template for Sales cube (that is, OOS_SALES_PARTITION_
TEMPLATE), the partition contains the DAY member with the value of DAY_
20070121.

The solution to reload DAY_20070121 by clearing up previously loaded data is two
fold:

1. In the Analytic Workspace Manager, attach the PSLSINV analytic workspace in
read-write mode, and, then, issue the following OLAP DML commands to clean
up the data in Sales cube for partition that contains values dimensioned by DAY_
20070121. The actual commands vary depending on the Oracle Database release
you are using:

■ In Oracle Database 10g, issue the following commands.

CLEAR ALL FROM OOS_SALES_PRT_TOPVAR(partition p82)
UPDATE PSLSINV
COMMIT

■ In an Oracle Database 11g, issue the following commands.

CLEAR ALL FROM OOS_SALES_STORED(partition p246)
UPDATE PSLSINV
COMMIT

2. Reload the data in Sales cube for the time range 25-DEC-2006 and 21-JAN-2007
which corresponds to the Time dimension boundary for the partition which has
been purged of all data.

Login as BIA_RTL_OLAP, then in SQL*Plus issue your commands. The actual
commands you issue varies depending on the Oracle Database release you are
using:

■ In Oracle Database 10g, issue the following commands.

set serverout on size 1000000
set linesize 200
set pagesize 0
set timing on
exec cwm2_olap_manager.set_echo_on;
--DATA SETUP for incremental load of partition p82 in OOS_SALES cube
UPDATE BIA_RTL.DWC_ETL_PARAMETER

Refreshing OLAP Cube Data

5-6 Oracle Retail Data Model Operations Guide

SET
FROM_DATE_ETL = TO_DATE('25-DEC-2006', 'DD-MON-YYYY'),
TO_DATE_ETL = TO_DATE('21-JAN-2007', 'DD-MON-YYYY'),
LAST_UPDT_DT = SYSDATE,
LAST_UPDT_BY = USER
WHERE PROCESS_NAME = 'RBIA-INTRA-ETL-OLAP'
;
COMMIT;
-- Incremental BUILD for cube: OOS_SALES
declare
aint integer :=100;
begin

 aint := rbia_olap_etl_aw_load.olap_etl_aw_reset_views('Incremental');
 if aint = 0 then
 dbms_output.put_line('Function call resetviews successful');
 aint := rbia_olap_etl_aw_load.olap_etl_aw_dimbuild('INCREMENTAL',
'EXECUTE', 2);

 aint := rbia_olap_etl_aw_load.olap_etl_aw_cubebuild('OOS_SALES.CUBE',
'INCREMENTAL', 'EXECUTE', 2);
 if aint = 0 then
 dbms_output.put_line('Function call cubebuild successful');
 else
 dbms_output.put_line('Function call cubebuild failed');
 end if;

 else
 dbms_output.put_line('Function call resetviews failed');
 end if;

end;
/

■ In Oracle Database 11g, issue the following commands.

set serverout on size 1000000
set linesize 200
set pagesize 0
set timing on

--DATA SETUP for incremental load of partition p246 in OOS_SALES cube

UPDATE BIA_RTL.DWC_ETL_PARAMETER
SET
FROM_DATE_ETL = TO_DATE('25-DEC-2006', 'DD-MON-YYYY'),
TO_DATE_ETL = TO_DATE('21-JAN-2007', 'DD-MON-YYYY'),
LAST_UPDT_DT = SYSDATE,
LAST_UPDT_BY = USER
WHERE PROCESS_NAME = 'RBIA-INTRA-ETL-OLAP'
;
COMMIT;

-- Incremental BUILD for cube: OOS_SALES
declare
aint integer :=100;
begin

 aint := rbia_olap_etl_aw_load.olap_etl_aw_reset_views('INCREMENTAL');

Refreshing OLAP Cube Data

Maintaining an Oracle Retail Data Model Warehouse 5-7

 if aint = 0 then
 dbms_output.put_line('Function call resetviews successful');
 aint := rbia_olap_etl_aw_load.olap_etl_aw_dimbuild('INCREMENTAL',
'EXECUTE', 2);
 aint := rbia_olap_etl_aw_load.olap_etl_aw_cubebuild('OOS_SALES',
'INCREMENTAL', 'EXECUTE', 2);
 if aint = 0 then
 dbms_output.put_line('Function call cubebuild successful');
 else
 dbms_output.put_line('Function call cubebuild failed');
 end if;

 else
 dbms_output.put_line('Function call resetviews failed');

 end if;

end;
/

Updating Forecast Cubes
During the initial load of the OLAP cubes, the default Forecasting programs (OLAP
DML FORECAST_STOCK_SALES and FORECAST_STOCK_INV) populate the Sales
Forecast and Inventory Forecast cubes using data from two historical years to forecast
one year into the future. To refresh the values in the forecast cubes on an incremental
basis then you need to write an incremental load script that executes those programs

When creating forecasts to run intermittently, the main points to consider are the
frequency with which you want to run the forecasts and the duration of future Time
periods over which you want to forecast. Because forecasting depends on this "yearly"
data, typically there is no need to refresh the data in the Sales Forecast and Inventory
Forecast cubes as frequently as you refresh the Sales and Inventory cubes. For
example, you could schedule the forecasts to execute every month and use the same
forecasting Time periods as those used by the historical load script. In this case, you
could decide to have the intermittent forecasts overwrite the data in the forecast cubes.
On the other hand, you could forecast more frequently, in which case, to avoid
overlapping forecasts, you could create new measures to hold the intermittent
forecasts-- or even create entirely new forecasts as described in "Creating a New
Forecast" on page 5-7.

Creating a New Forecast
To create a new forecast:

1. Create a new measure to hold the result of the forecast as described in Oracle
OLAP Application Developer's Guide

2. Open the PSLSINV analytic workspace in the Analytic Workspace Manager.

Note: If you want to replace the data Sales Forecast and Inventory
Forecast cubes that was generated during the initial load of the OLAP
cubes with new data, you must perform another historical or initial
load of the OLAP cubes.

Refreshing OLAP Cube Data

5-8 Oracle Retail Data Model Operations Guide

3. Within the Analytic Workspace Manager, open the Analytic Workspace
Worksheet.

4. Create a new OLAP DML forecast program in one of the following ways:

■ Create an OLAP DML forecasting program that uses the single OLAP DML
FORECAST command to perform the forecast. In this case, you can use the
forecast programs that are delivered with Oracle Retail Data Model as
templates. These programs are named FORECAST_STOCK_SALES and
FORECAST_STOCK_INV and reside in the PSLSINV analytic workspace.

■ Write a new OLAP DML forecasting program with the OLAP DML
commands that use a forecasting program.

5. Populate the new forecast by executing the new forecasting program using the
OLAP DML CALL command.

6. (Optional) Integrate the new forecast program into Oracle Retail Data Model
OLAP cube load process.

See: Oracle OLAP Application Developer's Guide

See: FORECAST command in Oracle OLAP DML Reference

See: The discussion on writing a forecasting program in Oracle
OLAP DML Reference

Tip: You can embed OLAP DML commands in a SQL program using
the DBMS_AW package.

A

Operations Scripts A-1

AOperations Scripts

This appendix provides information scripts that you might find useful when creating
your physical data model. It consists of the following topics:

■ Calendar Population Script

■ Partition Append Scripts

■ Bitmap Index for Fact Tables Script

■ Create Dimensions Script

■ Foreign Key Manipulation Scripts

■ Lookup Value Population Scripts

■ The Out of Stock Script

■ RFMP Calculation Script

Calendar Population Script
The Calendar population scripts consist of a one-time installation script named
calendar_population.sql that:

1. Prepares some necessary changes on the schema.

2. Creates the Calendar_Population package that contains following procedures:

■ RUN (the main procedure).

■ RBIW_Base_Time_Tables_ddl creates the base table needed to support
multiple hierarchies: Business or Calendar.

■ RBIW_Populate_Time_Hier_Bsns(in_setup_start_date, in_
setup_no_years) sets up the data in base table for the Business hierarchy
as specified in setup or install section.

■ RBIW_Populate_Time_Hier_Clndr(in_setup_start_date, in_
setup_no_years) sets up the data in base table for the Calendar hierarchy
as specified in setup or install section.

■ RBIW_Time_hier_Star sets up the Time hierarchy reporting layer tables.

■ RBIW_Time_Views sets up the Time hierarchy reporting layer views, star and
hybrid snowflake views.

■ RBIW_Populate_Time_Transform populates the Time transformation
tables using the base Time tables or views created above. It populates
transformation data for both hierarchies: Business and Calendar.

Bitmap Index for Fact Tables Script

A-2 Oracle Retail Data Model Operations Guide

Executing the Calendar Scripts
To populate calendar data:

1. Go to ORACLE_HOME/ORDM/PDM/Relational/SQL_Scripts/Calendar.

2. Log in to BIA_RTL user compile.

3. Execute the following SQL statements.

@calendar_population.sql
exec Calendar_Population.run(date,num_years);

where:

date is the start date with which you want to populate calendar data. It is of type
CHAR and should be input in the format 'YYYY-MM-DD' (for example,
'2005-05-18').

num_years is the number of years to populate calendar data.It should be
INTEGER.

Bitmap Index for Fact Tables Script
The gen_bitmap.sh script is a Linux or UNIX Shell script. It generates a script that
creates the on fact tables (Base, Derived, and Aggregate).

gen_bitmap.sh is located in the directory ORACLE_
HOME/ORDM/PDM/Utilities/Bitmap_Generation.

gen_bitmap.sh includes the function add_bitmap_index. add_bitmap_index
takes two parameters: Table Name and Column Name.

gen_bitmap.sh calls add_bitmap_index for all fact tables and columns to create
bitmap indexes. Once the script is finished, it creates a SQL script named add_
bitmap.sql in the DDL directory.

Partition Append Scripts
You use the partition scripts to append partitions. The partition scripts consist of the
gen_script_add_partition.sh which is a shell script that generates two other
scripts:

■ add_partition_tbs.sql that creates tablespaces

■ add_partition.sql that adds partitions

Executing the Partition Append Scripts
Take the following steps:

1. Go to ORACLE_HOME/ORDM/PDM/Utilities/Partition_Generation.

2. Login into BIA_RTL user

3. Invoke the script GEN_SCRIPT_ADD_PARTITION.SH using two parameters
where the first parameter is the start year and the second parameter is the end
year as shown in the following example.

 [oracle@zeta oracle]$ gen_script_add_partition.sh 1997 2005

4. After the Partition Appending scripts are generated, run the SQL script in
SQL*Plus to add new partitions to each partitioned table as follows:

Foreign Key Manipulation Scripts

Operations Scripts A-3

a. Login into BIA_RTL user.

b. Run the scripts in SQL*Plus as shown in the following code:

SQL> @add_partition_tbs.sql
SQL> @add_partition.sql

Create Dimensions Script
By default, Oracle Retail Data Model creates three dimensional objects for major
dimensions in the BIA_RTL schema: product, time, organization. The dimensional
object gives advantages in the query rewrite. Consequently, in the future, reporting
tools such as BIEE might import the dimension definition from the database instead of
creating them from the beginning each time.

The dimensional object scripts are one-time installation scripts. By default, Oracle
Retail Data Model uses three scripts to create hierarchies for three dimensions:
organization (ORG_DIM.sql), product (PRO_DIM.sql) and time (TIM_DIM.sql).
The script tries first to drop dimensions, and then creates them.

To execute the Dimensional Object Script
To create major dimensions yourself:

1. Go to ORACLE_HOME/ORDM/PDM/Relational/SQL_Scripts/Dimensional_
Object

2. Login into BIA_RTL user.

3. Run the Create_Dimensions script by issuing the following SQL*Plus
command.

SQL> @Create_Dimension.sql

4. Check the Create_Dimension.spool for errors after the execution.

Foreign Key Manipulation Scripts
The generate_fk_script.sql script, which is generated according to RBIA
schema, allows you to enable or drop all foreign keys at the same time. The
generate_fk_script.sql script generates two other SQL scripts:

■ create_fk_constraint.sql creates of all the Foreign Key Constraints in the
BIA_RTL Schema which is convenient when working with the ETL. Together with
the drop_fk_constraints.sql script, you can maintain the foreign key; or, if
you want to, disable and then enable some of foreign keys (on some tables).

■ drop_fk_constraint.sql drops the Foreign Key Constraints in the BIA_RTL
Schema. If you choose to drop only some Foreign Key constraints on certain tables
(for example, when you did the ETL for a table that failed because of reference
integrity), you can search the script by table name and run only the script for that
one table.

Note: The generate_fk_script.sql script is provided “as is”;
its output is not guaranteed. This script is useful when you are trying
to disable all foreign key constraints in the schema for testing or ETL
purpose.

Lookup Value Population Scripts

A-4 Oracle Retail Data Model Operations Guide

Executing the Scripts to Create and Drop Foreign Keys
To execute these scripts:

1. Go to ORACLE_HOME/ORDM/PDM/Relational/SQL_Scripts/Create_Drop_
FK_Constraint/

2. Login into BIA_RTL user.

3. Run the two scripts in SQL*Plus as shown in the following code.

SQL> @create_fk_constraints.sql
SQL> @drop_fk_constraints.sql

Lookup Value Population Scripts
The Lookup Value population scripts are one-time installation scripts that populate
Seed value for lookup tables:

■ insert_LookupOthers_record.sql inserts values into the physical lookup
table.

■ insert_LookupViews_record.sql inserts values into a master code table,
which then provides data for the various Lookup Views.

All lookup tables are divided into two groups:

■ Lookup tables with multiple levels. Each of these are implemented as one physical
table. The insert_LookupOthers_record.sql script inserts seed values into
each of the physical lookup tables.

■ Lookup tables with only one level that are used purely for lookup. These are
implemented into one master code table. There are views that present the value of
each table. The script insert_LookupViews_record.sql inserts seed values
into the master code table.

Executing the Lookup Population Scripts
To insert lookup data, take the following steps:

1. Go to ORACLE_HOME/ORDM/PDM/Relational/SQL_Scripts/Lookup_
Value_Insert.

2. Log in to the BIA_RTL Schema.

3. Execute the two scripts as shown in the following code.

SQL> @insert_LookupOthers_record.sql
SQL> @insert_LookupViews_record.sql

4. Check spool files insert_LookupOthers_record.spool and insert_
LookupViews_record.spool for errors.

The Out of Stock Script
The Out of Stock scripts are:

■ Out_Of_Stock_SQL_Model.SQL which is a script that creates the materialized
view that keeps the forecast value for sales quantity and stock on hand.

■ STOCK_Modified_SQL_MODEL_Query.SQL which is a version of the model
script (which was the first version of the script) that contains comments and
modified SQL.

RFMP Calculation Script

Operations Scripts A-5

The Out of Stock scripts are located in the 'Out of Stock' folder (ORACLE_
HOME/ORDM/PDM/Relational/SQL_Scripts).

Included with the Out of Stock scripts is Out_Of_Stock_SQL_Model.xls which is a
spreadsheet that explains the logic of the forecast. In the most general terms, the Out
of Stock files use the following calculation model:

1. Get the average SLS_QTY for around 5 days last year: 'SLS_QTY_LP'

2. Get the average SLS_QTY for around 5 days the year before last year: SLS_QTY_
LLP.

3. Use SLS_QTY_LP and increment percentage for last year to get the forecast sales
quantity.

 FCST_SLS_QTY=SLS_QTY_LP*(SLS_QTY_LP/SLS_QTY_LLP)

4. Get the forecast stock on hand (FCST_SOH_QTY) in the same way

5. Forecast out of stock=FCST_SOH_QTY-FCST_SLS_QTY By now, the data forecast
is for two days: 20070101 and 20070102.

As written, the script forecasts data for two days. (in this case, 20070101 and 20070102).
To forecast more data, make changes to the script.

RFMP Calculation Script
The RFMP calculation script is a one-time installation script that is integrated into the
Installer and the Intra-ETL packages. The script contains the following:

■ Pop_rfmp procedure:

1. Creates two TMP tables for rotated calculation.

2. Populates tmp_1 with New Month data filtered by Month+Busn_unit

3. Performs three calculation loops for Recency, Frequency, Monetary. (The
fourth calculation loop for Profit is optional.)

4. Copies the result into DWD_CUST_RFMP_SCR table.

■ Following the pop-rfmp procedure are two PLSQL blocks which, in turn:

1. Populate_DWD_CUST_RFMP_SCR that calls pop_rfmp with all bsns_unit
code.

2. Create a job for the rfmp procedure to run every day.

Executing the RFMP Script
To run the RFMP script separately, take the following steps:

1. Go to ORACLE_HOME/ORDM/PDM/Relational/SQL_Scripts/RFMP.

2. Login to the BIA_RTL Schema.

3. Run the two scripts using the following code:

SQL> @RFMP_Population.SQL
SQL> EXEC RFMP_Population.RUN

RFMP Calculation Script

A-6 Oracle Retail Data Model Operations Guide

Index-i

Index

A
Associate Basket Analysis Model, 4-2
Associate Loss Analysis Model, 4-3
Associate Sales Analysis Model, 4-5

B
bitmap index, creating in Oracle Retail Data

Model, A-2

C
calendar values, populating, A-1
Customer Category Mix Analysis Model, 4-6
Customer Loyalty Analysis Model, 4-7
customizing Oracle Retail Data Model, 2-2

D
data mining models, Oracle Retail Data Model

creating, example, 3-11
creation packages, 3-11
reports, 4-2, 4-3, 4-5, 4-6, 4-7, 4-8, 4-9
See also names of individual models

data mining source tables, Oracle Retail Data Model
populating, 3-9

data models, Oracle Retail Data Model
about, 1-4
See also physical data model, Oracle Retail Data

Model
data warehouse, Oracle Retail Data Model, 1-5

maintaining, 5-1
populating, 3-1

dimensions, Oracle Retail Data Model, A-3

F
fit-gap analysis, Oracle Retail Data Model, 2-1
forecasting in Oracle Retail Data Model, 4-12

I
installation

Intra-ETL for Oracle Retail Data Model, 3-3
Intra-ETL process, Oracle Retail Data Model

error conditions, 3-7

executing, 3-2
monitoring, 3-6
nstallation, 3-3
recovering, 3-8
recovery during, 3-7

Item Basket Analysis Model, 4-8
Item POS Loss Analysis Model, 4-9

M
maintaining Oracle Retail Data Model

warehouse, 5-1
materialized views, Oracle Retail Data Model, 3-3
modifying Oracle Retail Data Model, 1-6

O
OLAP cubes, Oracle Retail Data Model

forecast cubes, 4-12, 5-7
forecasting, 4-12
incremental load recovery, 5-3
OBIEE repository for, 4-11
populating, 3-13
querying, 4-11
refreshing, 5-2
reporting on, 4-11, 4-12

OLAP in Oracle Retail Data Model
installation and configuration, 3-13

Oracle Retail Data Model
about, 1-1
customizing, 2-2
data warehouse, 1-5
materialized views, 3-3
modifying, 1-6
retail organizations supported, 1-2

Oracle Warehouse Builder, Oracle Retail Data Model
project

configuring, 3-4
deploying, 3-5
executing, 3-5
importing, 3-4
using, 3-3

P
partitions, Oracle Retail Data Model

Index-ii

appending, A-2
physical data model, Oracle Retail Data Model

customizing, 2-3
populating

tables, Oracle Retail Data Model, 3-2
populating calendar data, A-1

R
reports, Oracle Retail Data Model

customizing, 4-10
delivered with, 4-1
writing, 4-11

retail organizations, supported by Oracle Retail Data
Model, 1-2

RFMP script, Oracle Retail Data Model, A-5

S
scripts

operations, A-1

T
tables, Oracle Retail Data Model

aggregate, 3-2
base, 3-2
data mining, 3-9
derived, 3-2
lookup, 3-2, A-4
maintaining, 5-1
populating, 3-2
reference, 3-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing Oracle Retail Data Model
	What is Oracle Retail Data Model?
	Scope of Retail Organizations That Oracle Retail Data Model Supports
	Oracle Products That Make Up Oracle Retail Data Model
	What Are the Components of Oracle Retail Data Model
	Oracle Retail Data Model Logical and Physical Models
	Logical Model
	Physical Model

	Where Oracle Retail Data Model Fits in a Data Warehousing Project

	2 Introduction to Customizing Oracle Retail Data Model
	Prerequisite Knowledge for Customizers
	Performing Fit-Gap Analysis
	Overview: Customization Steps
	Dependencies When Customizing the Physical Model

	3 Populating the Oracle Retail Data Model Warehouse
	Overview: Populating an Oracle Retail Data Model Warehouse
	Populating Reference, Lookup, and Base Relational Tables
	Populating Derived and Aggregate Relational Tables and Views
	Executing the Intra-ETL for Oracle Retail Data Model
	Executing the Intra-ETL in Oracle Warehouse Builder
	Import the ORDM_INTRA_ETL Project
	Configure the ORDM_INTRA_ETL Project
	Prepare to Execute the Project
	Deploy and Execute the Project

	Explicitly Executing the Intra-ETL Package

	Monitoring the Execution of the Intra-ETL Process
	Recovering an Intra_ETL Process

	Implementing Oracle Retail Data Model Data Mining Models
	Populating the Data Mining Source Tables
	Creating the Data Mining Models

	Populating OLAP Cubes

	4 Analysis and Reporting in Oracle Retail Data Model
	Reports Delivered with Oracle Retail Data Model
	Sample Associate Basket Analysis Model Report
	Sample Associate Loss Analysis Model Reports
	Sample Associate Sales Analysis Model Report
	Sample Customer Product Category Mix Analysis Model Report
	Sample Customer Loyalty Analysis Model Report
	Sample Item Basket Analysis Model Report
	Sample Item Point of Sale (POS) Loss Analysis Model Report

	Customizing the Reports Delivered with Oracle Retail Data Model
	Writing Your Own Queries and Reports on Relational Data
	Writing Your Own Queries and Reports on OLAP Cube Data
	Writing Reports on Time-Series and Ranking Analysis
	Writing Forecasting Reports

	5 Maintaining an Oracle Retail Data Model Warehouse
	Overview: Maintaining an Oracle Retail Data Model
	Maintaining Relational Tables and Views
	Refreshing OLAP Cube Data
	Sample Incremental Load
	OLAP Incremental Load Recovery
	Updating Forecast Cubes
	Creating a New Forecast

	A Operations Scripts
	Calendar Population Script
	Bitmap Index for Fact Tables Script
	Partition Append Scripts
	Create Dimensions Script
	Foreign Key Manipulation Scripts
	Lookup Value Population Scripts
	The Out of Stock Script
	RFMP Calculation Script

	Index
	A
	B
	C
	D
	F
	I
	M
	O
	P
	R
	S
	T

