
Oracle® Database
Application Developer's Guide - Rules Manager and Expression
Filter

10g Release 2 (10.2)

B14288-01

June 2005

Oracle Database Application Developer's Guide - Rules Manager and Expression Filter, 10g Release 2 (10.2)

B14288-01

Copyright © 2003, 2005, Oracle. All rights reserved.

Primary Author: Aravind Yalamanchi and Rod Ward

Contributor: William Beauregard, Timothy Chorma, Lory Molesky, Dieter Gawlick, Helen Grembowicz,
Deborah Owens, and Jagannathan Srinivasan

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

What's New in Rules Manager and Expression Filter?.. xiii

Oracle Database 10g Release 2 (10.2) New Features in Rules Manager and Expression Filter...... xiii

1 Introduction

1.1 What is a Rule? .. 1-2
1.2 Developing Rules Applications .. 1-4

Part I Rules Manager

2 Rules Manager Concepts

2.1 Rules Terminology.. 2-1
2.2 Database Representation of a Rule Class and Rules.. 2-3
2.3 Creating Rules Applications That Use Simple or Non-Composite Events 2-5
2.4 Creating Rules Applications That Use Composite Events.. 2-7
2.4.1 How to Create a Rules Application That Uses Composite Events............................... 2-8
2.4.2 Evaluating Composite Events Using Complex Rule Conditions 2-11
2.5 Setting Event Management Policies (Rule Class Properties) for Rule Applications...... 2-11
2.6 Creating Rules Applications That Span Multiple Tiers.. 2-12
2.7 Using Rules Manager with SQL*Loader and Export/Import Utilities............................ 2-12
2.7.1 SQL*Loader ... 2-12
2.7.2 Export/Import... 2-13

3 Event Management Policies

3.1 Consumption of Events.. 3-1
3.2 Conflict Resolution ... 3-3
3.3 Ordering of Rule Execution... 3-4
3.4 Duration of Events .. 3-4
3.5 Equality... 3-6

iv

3.6 Storage Properties ... 3-7
3.7 AUTOCOMMIT .. 3-8
3.8 DML Events ... 3-9
3.9 Rule Class Property Dependencies and Defaults... 3-9
3.10 Rules Specified on Relational Tables... 3-10
3.11 Rules Conditions For XML Events .. 3-11
3.12 Rule Conditions with Spatial Predicates .. 3-12
3.13 Database State in Rule Conditions .. 3-13

4 Rule Conditions

4.1 Support for Incremental Evaluation of Rules ... 4-1
4.2 Rule Conditions with Sequencing .. 4-4
4.3 Rule Conditions with Negation .. 4-5
4.4 Rule Conditions with Set Semantics .. 4-8
4.5 Rule Conditions with Any n Semantics... 4-9

5 Rules Applications That Span Multiple Tiers

5.1 Creating Rules Applications That Span Multiple Tiers... 5-1
5.2 Modes of Operation.. 5-4
5.2.1 Single Tier Mode.. 5-4
5.2.2 Multitier Mode ... 5-4
5.2.2.1 Actions in the Mid-Tier.. 5-5

6 Rules Manager Object Types

7 DBMS_RLMGR Package

8 Rules Manager Views

8.1 USER_RLMGR_EVENT_STRUCTS View... 8-1
8.2 USER_RLMGR_RULE_CLASSES View .. 8-1
8.3 USER_RLMGR_RULE_CLASS_STATUS View.. 8-2
8.4 USER_RLMGR_PRIVILEGES View ... 8-2
8.5 USER_RLMGR_COMPRCLS_PROPERTIES View.. 8-3

9 Rules Manager Use Cases

9.1 Law Enforcement Rules Application ... 9-1
9.2 Order Management Rules Application.. 9-8

Part II Expression Filter

10 Oracle Expression Filter Concepts

10.1 What Is Expression Filter? .. 10-1
10.1.1 Expression Filter Usage Scenarios.. 10-1
10.2 Introduction to Expressions ... 10-3
10.2.1 Defining Attribute Sets .. 10-4

v

10.2.2 Defining Expression Columns .. 10-7
10.2.3 Inserting, Updating, and Deleting Expressions ... 10-8
10.3 Applying the SQL EVALUATE Operator .. 10-9
10.4 Evaluation Semantics .. 10-11
10.5 Granting and Revoking Privileges .. 10-11
10.6 Error Messages ... 10-12

11 Indexing Expressions

11.1 Concepts of Indexing Expressions... 11-1
11.2 Indexable Predicates.. 11-1
11.3 Index Representation... 11-2
11.4 Index Processing .. 11-3
11.5 Predicate Table Query... 11-5
11.6 Index Creation and Tuning .. 11-5
11.7 Index Usage .. 11-7
11.8 Index Storage and Maintenance .. 11-8

12 Expressions with XPath Predicates

12.1 Using XPath Predicates in Expressions .. 12-1
12.2 Indexing XPath Predicates.. 12-2
12.2.1 Indexable XPath Predicates ... 12-3
12.2.2 Index Representation ... 12-3
12.2.3 Index Processing ... 12-4
12.2.4 Index Tuning for XPath Predicates .. 12-5

13 Expressions with Spatial Predicates

13.1 Using Spatial Predicates in Expressions ... 13-1
13.2 Indexing Spatial Predicates .. 13-3

14 Using Expression Filter with Utilities

14.1 Bulk Loading of Expression Data .. 14-1
14.2 Exporting and Importing Tables, Users, and Databases.. 14-2
14.2.1 Exporting and Importing Tables Containing Expression Columns.......................... 14-2
14.2.2 Exporting a User Owning Attribute Sets .. 14-3
14.2.3 Exporting a Database Containing Attribute Sets ... 14-3

15 SQL Operators and Statements

EVALUATE .. 15-2

ALTER INDEX REBUILD... 15-4

ALTER INDEX RENAME TO .. 15-5

CREATE INDEX... 15-6

DROP INDEX ... 15-9

vi

16 Object Types

17 Management Procedures Using the DBMS_EXPFIL Package

18 Expression Filter Views

18.1 USER_EXPFIL_ASET_FUNCTIONS View .. 18-1
18.2 USER_EXPFIL_ATTRIBUTES View.. 18-2
18.3 USER_EXPFIL_ATTRIBUTE_SETS View... 18-2
18.4 USER_EXPFIL_DEF_INDEX_PARAMS View .. 18-2
18.5 USER_EXPFIL_EXPRESSION_SETS View... 18-3
18.6 USER_EXPFIL_EXPRSET_STATS View... 18-3
18.7 USER_EXPFIL_INDEX_PARAMS View .. 18-4
18.8 USER_EXPFIL_INDEXES View... 18-4
18.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View ... 18-5
18.10 USER_EXPFIL_PRIVILEGES View ... 18-5

A Managing Expressions Defined on One or More Database Tables

B Application Examples

C Internal Objects

C.1 Attribute Set or Event Structure Object Type .. C-1
C.2 Expression Filter Internal Objects.. C-2
C.2.1 Expression Validation Trigger .. C-2
C.2.2 Expression Filter Index Objects .. C-2
C.2.3 Expression Filter System Triggers.. C-2

D Converting Rules Applications

D.1 Differences Between Expression Filter and Rules Manager .. D-1
D.2 Converting an Expression Filter Application to a Rules Manager Application D-3

E Installing Rules Manager and Expression Filter

F XML Schemas

G Implementing Various Forms of Rule Actions With the Action Callback
Procedure

Index

vii

List of Examples

10–1 Defining an Attribute Set From an Existing Object Type .. 10-5
10–2 Defining an Attribute Set Incrementally .. 10-5
10–3 Adding User-Defined Functions to an Attribute Set .. 10-6
10–4 Inserting an Expression into the Consumer Table .. 10-9
10–5 Inserting an Expression That References a User-Defined Function 10-9

viii

List of Figures

1–1 Rules Manager Implementation Process for a Rules Application 1-3
2–1 Database Representation of Rule Class and Rules... 2-4
4–1 Hierarchical View of the XML Tag Extensions... 4-3
10–1 Expression Filter Implementation Process for a Rules Application 10-4
10–2 Expression Data Type.. 10-8
11–1 Conceptual Predicate Table.. 11-3
12–1 Conceptual Predicate Table with XPath Predicates.. 12-4

ix

List of Tables

3–1 Valid and Invalid Rule Class Property Combinations ... 3-9
4–1 Relational View of the XML Tag Extensions.. 4-3
6–1 Rules Manager Object Types.. 6-1
7–1 DBMS_RLMGR Procedures ... 7-1
8–1 Rules Manager Views.. 8-1
8–2 USER_RLMGR_EVENT_STRUCTS View.. 8-1
8–3 USER_RLMGR_RULE_CLASS View.. 8-1
8–4 USER_RLMGR_RULE_CLASS_STATUS View... 8-2
8–5 USER_RLMGR_PRIVILEGES View .. 8-2
8–6 USER_RLMGR_COMPRCLS_PROPERTIES View... 8-3
15–1 Expression Filter Index Creation and Usage Statements .. 15-1
16–1 Expression Filter Object Types.. 16-1
17–1 DBMS_EXPFIL Procedures.. 17-1
18–1 Expression Filter Views.. 18-1
D–1 Implementation Differences Between Expression Filter and Rules Manager for Rules

Applications That Use a Primitive (Simple) Event D-2
G–1 TravelPromotion Rule Class Table ... G-1
G–2 Modified TravelPromotion Rule Class Table ... G-2

x

xi

Preface

Oracle Database Application Developer's Guide - Rules Manager and Expression Filter
provides usage and reference information about Rules Manager, a feature in the Oracle
Database that offers interfaces to define, manage, and enforce complex rules in the
database and Expression Filter, a feature of Oracle Database and component of Rules
Manager that stores, indexes, and evaluates conditional expressions in relational
tables.

Audience
Oracle Database Application Developer's Guide - Rules Manager and Expression Filter
is intended for application developers and DBAs who perform the following tasks:

■ Use Event-Condition-Action (ECA) rules to integrate processes and automate
workflows

■ Use the database to store and evaluate large sets of conditional expressions

■ Use the database to define, manage, and enforce complex rules

This manual assumes a working knowledge of application programming and
familiarity with SQL, PL/SQL, XML, and basic object-oriented programming to access
information in relational database systems.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database SQL Reference

■ Oracle Database Utilities

■ Oracle Database Error Messages

■ Oracle Database Performance Tuning Guide

■ Oracle XML DB Developer's Guide

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Application Developer's Guide - Object-Relational Features

■ Oracle Database PL/SQL Packages and Types Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, terms defined in text or the glossary, or important parts
of an example.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New in Rules Manager and
Expression Filter?

This section describes new features of Oracle Database 10g Release 2 (10.2) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following section describes the new features in Rules Manager and Expression
Filter:

■ Oracle Database 10g Release 2 (10.2) New Features in Rules Manager and
Expression Filter

Oracle Database 10g Release 2 (10.2) New Features in Rules Manager
and Expression Filter

■ Rules Manager

Rules Manager is a new feature for Oracle Database 10g Release 2 (10.2). Rules
Manager uses the Expression Filter and Oracle Object Relational features to give
Oracle database the features of a special purpose rules product, but with greater
scalability and better operational characteristics.

■ Expression Filter — cost-based optimizer support for the EVALUATE operator

The selectivity and the cost of an Expression Filter index are computed when
statistics are collected on the expression column, the index, or the table storing
expressions. These statistics are stored in the Expression Filter dictionary and they
are used to determine the optimal execution plan for the query with EVALUATE
operator.

■ Expression Filter — attribute set with default values for some attributes

At the time of attribute set creation, default values can be assigned to one or more
elementary attributes so that these values are available at the time of expression
evaluation. Default values cannot be specified for table alias elementary attributes
in the attribute set.

See Also: Part I, "Rules Manager", which contains all the chapters
that describe this feature

See Also: Section 11.7, "Index Usage"

xiv

■ Expression Filter — index support for XPath predicates with the Namespace
specification

See Also: See the ADD_ELEMENTARY_ATTRIBUTE procedure
in Chapter 17, "Management Procedures Using the DBMS_EXPFIL
Package"

See Also: See the EXF$XPATH_TAG object type in Chapter 16,
"Object Types"

Introduction 1-1

1
Introduction

Application developers use rules to integrate business processes and automatically
respond to events created by workflows. However, these rules are often embedded in
code modules or a special purpose memory-based rules repository making
maintenance of them challenging. Rules that are managed in Oracle Database keep
pace with changing business conditions and are always up-to-date; rules are easily
changed with SQL and are not hard-coded in your application or loaded into a
memory-based rules repository. Rules can be evaluated efficiently with the complete
business context stored in your Oracle Database as well as data provided by your
application. Event response is flexible; rules can trigger actions in Oracle Database or
in your application, or both.

Rules Manager application programming interface (APIs) define, manage, and enforce
complex rules in the Oracle Database with better scalability and operational
characteristics than a special purpose rules product. Additionally, Rules Manager as a
database feature can be used in multiuser and multisession environments.

Rules Manager can model any event-condition-action (ECA)-based system ranging
from the simplest single event-single rule system to rule-based systems that involve
millions of events and millions of rules. Applications for Rules Manager include
information distribution, task assignment, event-based computing, radio frequency ID
(RFID), supply chain, enterprise application integration (EAI), business asset
management (BAM), and business process management (BPM).

Rules Manager processes an event or a group of events for a set of rules that are based
on ECA semantics. An event can be an individual entity (simple or primitive event) or
a group of events (composite event). Rules Manager models complex event scenarios
using SQL and XML based rule condition language. An event can be incoming
application data or data stored as rows in one or more relational tables. Rules Manager
supports the Oracle-supplied XMLType data type, which allows it to process XML
events.

When an event happens, and if a rule condition evaluates to true for that event, then a
prescribed rule action is performed, which can be either executed immediately or
obtained as a list of rules that evaluate to true for the event for later execution by the
application or some other component and that can be queried.

While processing a set of rules for an event, Rules Manager enforces various event
management policies, including conflict resolution among composite events or groups
of matching rules, ordering of events, lifetime of an event, and sharing events across
multiple rule executions.

The concept of rules is briefly introduced in Section 1.1 followed by an overview of
Rules Manager features. Section 1.2 describes some general concepts about developing
rules applications using Rules Manager.

What is a Rule?

1-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

If you have an existing Expression Filter application and want to upgrade it to a Rules
Manager application, first see Section D.1, which describes an implementation of
Expression Filter and Rules Manager. Next, see Section D.2, which describes the
process of upgrading an Expression Filter application to a Rules Manager application.

1.1 What is a Rule?
A rule is a directive to guide or influence a process behavior. A rule consists of a
conditional expression that is specified using the attributes defined in a corresponding
event structure and a rule action that takes place when the rule condition is satisfied
by an instance of the event structure. Event management policies define how an event
instance is handled once the rule action is executed. This, in a nutshell, describes how
a typical rules-based system works.

Typically, rules follow Event-Condition-Action (ECA) rule semantics where an event
happens and if a rule condition evaluates to true for this event, then some prescribed
action is performed. The ECA components are defined as:

■ Event -- the state information for the process

■ Condition -- the Boolean condition that evaluates to true or false for the event

■ Action -- the action to be carried out if the rule condition evaluates to true for the
event

The standard notation for ECA rules is:

ON <event structure>
IF <condition>
THEN <action>

where, the ON clause identifies the event structure for which the rule is defined, the IF
clause specifies the rule condition, and the THEN clause specifies the rule action.

An example of a rule is the following: If a customer chose to fly Abcair Airlines to
Orlando and if his stay in Orlando is more than 7 days, then offer an Acar rental car
promotion to him. Using the ECA notation, this rule is:

ON
 AddFlight (Custid, Airline, FromCity, ToCity, Depart, Return)
IF
 Airline = 'Abcair' and ToCity = 'Orlando' and Return-Depart >= 7
THEN
 OfferPromotion (CustId, 'RenralCar', 'Acar')

where:

The ON structure identifies the event structure for this rule.
The IF clause defines the rule condition using variables in the event structure.
The THEN clause defines the commands that represent the action for this rule.

Rules Manager
Rules Manager, a feature of Oracle Database, offers interfaces to define, manage, and
enforce complex rules in the database. The five elements of a Rules Manager
application are:

1. An event structure that is defined as an object type with attributes that describe
specific features of an event.

2. A rule consisting of a condition and action preferences.

What is a Rule?

Introduction 1-3

■ A rule condition is expressed using the attributes defined in the event
structure.

■ Rule action preferences determine the exact action for each rule and specify
the details for the action.

3. A rule class that is a database table that stores and groups the rules defined for an
event structure.

4. An action callback PL/SQL procedure that implements the rule actions for the rule
class. The implementation can rely on some attributes of the event structure and
the action preference associated with the rules.

5. A results view that configures a rule class for external rule action execution.

Rules Manager supports XML-based condition language, SQL commands for rule
specification, automated tracking of events, declarative management of event policies,
rule actions, and an application programmatic interface (API).

Rules Manager supports primitive (simple) and composite events. Rules Manager is
appropriate for any rules-based applications requiring composite events. Rules
Manager supports complex rule conditions involving negation, set semantics, Any n
construct, and sequencing. Rules Manager supports incremental evaluation of rules
involving composite events. Complex rule conditions are specified using XML tags
within conditional expressions in the SQL WHERE clause format. Rule class event
management policies such as consumption, conflict resolution, and duration can be
enforced for each rule application. Figure 1–1 shows the process steps for creating and
implementing a Rules Manager rules application. Section 2.3 describes these steps in
more detail.

For more information about creating, using, and maintaining Rules Manager
applications, see Part I, "Rules Manager", Chapter 2 through Chapter 9.

Figure 1–1 Rules Manager Implementation Process for a Rules Application

Developing Rules Applications

1-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

1.2 Developing Rules Applications
Developing a rules application using Rules Manager requires a somewhat different
approach toward application development. Typically, you would scan through a new
API and other reference material, then create some sample scripts based on the
examples to get a feel for how the feature works. Next, you might begin to apply these
methods learned to your own application. However, this is where you might get
bogged down in the detail of the implementation because the approach to Rules
Manager application development uses a somewhat different focus. The focus is on
the decision points that already exist in your application and that is all. You need not
focus on all the supporting parts of your application that do not necessarily pertain to
these decision points.

As an application developer you must ask yourself the following questions:

■ Where are the decision points in my application?

■ What are the decisions that each decision point is making?

■ How is each decision being made?

■ Once a decision is made how is it executed in the application?

Note that each decision point may use one or more rules that may involve one or more
events happening in some sequence.

Once you determine the decision points in your application, you integrate the Rules
Manager into your application by using the standard notation for ECA rules to model
each decision point as described in Section 1.1. It is best to keep your approach as
simple as possible.

For example, using Rules Manager for the simplest case, if your application has a
decision point that uses one or more rules each relying on a single instance of an event
structure that happens in the application, you would define a primitive event structure
to model this event activity. In a complex event scenario, if your application has
another decision point that uses one or more rules, each relying on multiple instances
of the same or different event structures that happen in some sequence, define a
composite event structure consisting of separately defined primitive event structures
for each individual event that happens. The composite event structure couples these
primitive events together to model the composite event activity. Next, create the rule
class. Creating the rule class implicitly creates the rule class table containing an
expression column to store the rule conditions and one or more action preferences
columns that are used to determine the appropriate action when the rule evaluates to
true. In addition to the rule class table, the previous step also creates an action callback
procedure that you can modify to execute the action for the matching rules.

This unique approach lets you quickly integrate Rules Manager into existing
applications as easily as if it were a new application because you only need to focus on
the decision points contained in your application or in your data analysis for a new
application. Remember Rules Manager stores, processes, and matches rules with
instances of either incoming single events or groups of events to resolve the rules
concentrated around each decision point. The object then becomes how best to model
these decision points using Rules Manager. This is explained in Part I, "Rules
Manager".

Part I
Rules Manager

This part introduces developing applications using Rules Manager feature.

Part I contains the following chapters:

■ Chapter 2, "Rules Manager Concepts"

■ Chapter 3, "Event Management Policies"

■ Chapter 4, "Rule Conditions"

■ Chapter 5, "Rules Applications That Span Multiple Tiers"

■ Chapter 6, "Rules Manager Object Types"

■ Chapter 7, "DBMS_RLMGR Package"

■ Chapter 8, "Rules Manager Views"

■ Chapter 9, "Rules Manager Use Cases"

Rules Manager Concepts 2-1

2
Rules Manager Concepts

Rules Manager is a feature of Oracle Database that uses the Expression Filter and
object relational features to provide the features of a special-purpose rules engine with
greater scalability and better operational characteristics.

2.1 Rules Terminology
Rules Manager uses the following terminology:

■ An event structure is an object (abstract) type that is defined with a set of
attributes that describes the specific features of an event. For example, it is the data
structure that captures the customer flight information, using variables, such as
Airline, Customer Id, From City, and so forth. The object type definition of the
AddFlight event structure is as follows:

TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

■ An event is the instantiation of the event structure, so each instance of the event
structure is an event. For example, these are three events:

AddFlight (123, 'Abcair', 'Boston', 'Orlando', '01-Apr-2003', '08-Apr-2003');
AddFlight (234, 'Acbair', 'Chicago', 'San Jose', '01-Aug-2003',
 '10-Aug-2003');
AddFlight (345, 'Acbair', 'New York', 'San Jose', '22-Jun-2003',
 '24-Jun-2003');

■ Events are classified into two types:

– Primitive event - represents an event that is assumed to be instantaneous and
atomic in an application. A primitive event cannot be further broken down
into other events and it either occurs completely or not at all. Each primitive
event is typically bound to a specific point in time and the rules defined for
the corresponding event structure can be fully evaluated with the event. For
example, the AddFlight event is an example of a primitive event:

AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)

– Composite event - represents the combination of two or more primitive
events. All primitive events included in the composite event can be bound to a
time window and thus generated at different points in time. So the rules

Rules Terminology

2-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

defined for the composite event structure cannot be fully evaluated until all
the corresponding primitive events are generated. For example, adding a
second primitive event AddRentalCar to the AddFlight primitive event creates
a composite event:

 AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
 AddRentalCar (CustId, CarType, Checkout, Checkin, Options)

Because evaluation of rules for composite event structures must be deferred
until all parts of a composite event are available, Rules Manager provides
several ways of efficiently evaluating composite events.

See Section 2.4 for more information about composite events and complex rule
applications.

■ A rule class is a database table that stores and groups a set of rules that share a
common event structure. For example, this rule class of three rules is for the
AddFlight event structure:

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF Airline = 'Abcair', and ToCity = 'Orlando'
THEN OfferPromtion (CustId, 'RentalCar', 'Acar')

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF Airline = 'Acbair', and ToCity = 'Houston'
THEN OfferPromtion (CustId, 'RentalCar', 'Bcar')

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF ToCity = 'Orlando' and Return-Depart >7
THEN OfferPromtion (CustId, 'ThemePark', 'Ocean World')

■ Rules are evaluated for an instance of the corresponding event structure. For
example, the following event is used to evaluate the rules defined using the
AddFlight event structure:

AddFlight (123, 'Abcair', 'Boston', 'Orlando', '01-Apr-2003', '08-Apr-2003');

■ A rule is a row in a rule class table that has elements consisting of:

– The rule condition, which is a conditional expression that is formed using the
attributes defined in the event structure. For example, this is a rule condition
using the attributes: Airline, ToCity, Return, and Depart:

Airline = 'Abcair' and ToCity = 'Orlando' and Return-Depart >= 7

– The rule action preferences, which determine the exact action for each rule
and specify the details for the action.

Typically, the actions associated with rules in the rule class are homogenous.
For example, if a rule class is used to determine the discount offered during a
checkout process, each rule in the class is associated with a specific discount
percentage. For rules that match an event instance, these values are used to
determine the appropriate action for the rule.

Action preferences can come in different forms, such as:

* A list of literals that are bound as arguments to the common procedure,
such as:

'RentalCar', 'Acar', 'Bcar',...

* Dynamic PL/SQL commands, such as:

Database Representation of a Rule Class and Rules

Rules Manager Concepts 2-3

BEGIN OfferRentalPromotion(:1,'Acar'); END;

■ An action callback procedure is a procedure that acts as an entry point for
executing actions for all the rules in a rule class. This procedure is implemented to
execute the action for each rule in the rule class based on the action preferences
associated with the rule and the event attributes. For the previous example, the
action callback procedure can be implemented to invoke the OfferPromotion
procedure with the appropriate arguments.

■ A results view configures a rule class for external action execution when the
actions for each matching rule cannot be executed by means of an action callback
procedure, such as applications that span multiple tiers.

The rules matching an event are available by querying this preconfigured view
and the corresponding actions can be executed by the component issuing the
query. This is useful when the action for certain rules is implemented in the
application on multiple tiers. See Section 2.6 for more information.

■ The results from a rule evaluation are available through the results view until the
end of the rule session. By default, the database session (from connect to
disconnect) is considered the rule session. Alternatively, the reset session
procedure (dbms_rlmgr.reset_session()) can be used to end a rule session
and start a new session within a database session. Note that at the beginning of a
rule session, the results view is empty.

■ Rule class properties define the event management policies that Rules Manager
enforces for each rules application. Two main policies discussed in this chapter are
consumption and conflict resolution. Consumption refers to whether an event can
be used for multiple rule executions or for just a single rule execution (see
Section 3.1). Conflict resolution, or ordering, determines the order in which
matching rules with various events are to be executed (see Section 3.2). Section 2.5
and Chapter 3 describe the complete set of event management policies that Rules
Manager supports.

2.2 Database Representation of a Rule Class and Rules
Rules Manager uses a relational table to hold the contents of a rule class with each row
in the table representing a rule. The rule class table minimally has three columns, one
for rule identifiers (rlm$ruleid), one for rule conditions (rlm$rulecond), and one
for the description of the rule (rlm$ruledesc). In addition, the rule class table can
have one or more columns to store rule action preferences.

Figure 2–1 shows a database representation of the TravelPromotion rule class and its
rules for processing the AddFlight event instances.

Database Representation of a Rule Class and Rules

2-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Figure 2–1 Database Representation of Rule Class and Rules

The TravelPromotion rule class consists of the following columns:

■ rlm$ruleid -- contains the unique rule identifier that identifies each rule within
a rule class.

■ rlm$rulecond -- contains the rule condition describing each rule; in this case, the
rule condition, when satisfied, allows the promotion specified to be offered.

■ PromoType -- contains one action preference that is used when the rule condition
is satisfied, and in each case, the action callback procedure is called that executes
the actions for the rules in the rule class; in this case, the type of promotion to be
offered, such as a car rental promotion or hotel stay promotion is stored in this
column. This value is used by the PromoAction action callback procedure to
invoke the OfferPromotion procedure with the appropriate arguments.

■ OfferedBy -- contains another action preference that is associated with the
previous action preference column; in this case, it contains the name of the
company offering the promotion.

■ rlm$ruledesc -- contains a description of the rule in plain text provided by the
person defining the rule.

An ECA rule is stored in a row of the TravelPromotion rule class table. The event
structure, defined as an object type in the database, is associated with the rule
condition column and this provides the necessary vocabulary for the rule conditions
(stored in the column). The event structure, the rule class table, and the action callback
procedure are all created as part of rule class creation.

Once all the rules are added to the rule class, events are ready to be processed and
rules evaluated. At runtime, each rule in the rule class is processed against each
instance of the event structure. When a rule evaluates to true for a particular event, the

Creating Rules Applications That Use Simple or Non-Composite Events

Rules Manager Concepts 2-5

PromoAction action callback procedure calls the designated OfferPromotion
procedure using rule action preferences to execute the prescribed action of offering a
specific type of promotion from a particular vendor. Rules Manager enforces various
event management policies, such as conflict resolution when an event matches more
than one rule, or immediate event consumption when the first match is found and no
further evaluation is necessary. These and other event management policies are
described in more detail in Chapter 3.

Section 2.3, Section 2.6, and Section 2.4 describe the process of creating rules
applications that use a simple event, that span multiple tiers, and that use composite
events, respectively. Though the basic five steps are the same for all three cases, the
details vary, and some additional steps are necessary for multiple tier applications.

2.3 Creating Rules Applications That Use Simple or Non-Composite
Events

The basic steps to create a rules application that uses a simple or non-composite event
are as follows:

1. Create the event structure as an object type in the database.

Using the AddFlight example, the event structure is defined as:

CREATE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

2. Create the rule class for the event structure.

For this example, create the TravelPromotion rule class for the AddFlight
event structure and define the PromoType and OfferedBy columns as its action
preferences. This procedure takes the name of the rule class, the name of the
existing event structure created in Step 1, the name of the action callback
procedure, and the action preference specification as arguments. The action
preferences specification defines the data types of action preferences that are
associated with each rule in the rule class.

BEGIN
dbms_rlmgr.create_rule_class (
 rule_class => 'TravelPromotion',
 event_struct => 'AddFlight',
 action_cbk => 'PromoAction',
 actprf_spec => 'PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)');
END;

Rule class creation creates a table to store the corresponding rule definitions and
action preferences. The rule class table uses the same name as the rule class and it
is created in the user's schema. The rule class table defines three columns to store

Note: For successful creation of a rule class, you should have
sufficient privileges to create views, object types, tables, packages, and
procedures.

Creating Rules Applications That Use Simple or Non-Composite Events

2-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

the rule identifiers, rule descriptions, and the rule conditions. In this example, the
table also creates the rule action preferences columns specified with the previous
command to store the action preferences.

TABLE TravelPromotion (
 rlm$ruleid VARCHAR2(100),
 rlm$rulecond VARCHAR2(4000),
 rlm$ruledesc VARCHAR2(1000),
 PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20));

You can query the table to see the rules defined in the rule class as well as perform
SQL INSERT, UPDATE, and DELETE operations to add, update, and delete rules.

Rule class creation implicitly creates the skeleton for a callback procedure to
perform the action. The action callback procedure acts as an entry point for
executing actions for all the rules in the rule class. The action callback is called
once for every rule that matches an event. The implementation of the action
callback procedure can rely on values in the event instance and the action
preferences associated with the matching rule.

PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 null;
 --- The action for the matching rules can be performed here.
 --- The appropriate action can be determined from the event
 --- instance and the action preferences associated with each rule.
END;

The action callback procedure, in this case, is created with the name the user
provides and has two arguments:

■ The event as an instance of the corresponding object type.

■ The action preferences as a ROWTYPE of the corresponding rule class table.
The %ROWTYPE attribute provides a record type that represents a row in a
table.

3. Replace the system-generated callback procedure with the user implementation to
perform the appropriate action for each matching rule. The following action
callback procedure can be implemented to invoke the OfferPromotion
procedure with arguments obtained from the event instance and the rule
definition:

For this example,

PROCEDURE PromoAction (
 rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 OfferPromotion (rlm$event.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy);
END;

In this example, the procedure OfferPromotion performs the action and each
matching rule provides the appropriate action preferences. Appendix G shows
alternate ways for implementing the action callback procedure for a different
choice of action preferences.

4. Add rules to the rule class.

Creating Rules Applications That Use Composite Events

Rules Manager Concepts 2-7

Adding rules consists of using the SQL INSERT statement to add a row for each
rule. Each row inserted typically contains a rule identifier, a condition, and values
for action preferences. The following rule is inserted into the TravelPromotion
table:

INSERT INTO TravelPromotion (rlm$ruleid, PromoType, OfferedBy, rlm$rulecond)
VALUES
('UN_AV_FL', 'Rental Car', 'Acar',
'Airline= ''Abcair'' and ToCity = ''Orlando'' and Return-Depart >= 7');

5. Process the rules for an event.

Use the dbms_rlmgr.process_rules() procedure to process the rules in a
rule class for an event instance. Processing the rules consists of passing in an event
instance as a string of name-value pairs (generated using the getVarchar()
procedure) or as an AnyData instance for an event consisting of binary data types
as described in Section 10.3. Recall that the Oracle supplied getVarchar()
method is used to represent the data item as string-formatted name-value pairs
when this is possible and that AnyData is an Oracle supplied object type that can
hold instances of any Oracle data type, both Oracle supplied and user-defined.

The following example processes the rules in the TravelPromotion rule class for
an AddFlight event instance using the getVarchar() function.

BEGIN
dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_inst => AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
'01-APR-2003', '08-APR-2003'));
END;

The following example processes the rules in the TravelPromotion rule class for
an AddFlight event instance using the AnyData.ConvertObject()
procedure.

BEGIN
dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_inst => AnyData.convertObject(AddFlight(987, 'Abcair', 'Boston',
'Orlando', '01-APR-2003', '08-APR-2003')));
END;

The previous command processes the rules in the TravelPromotion rule class
for an AddFlight event instance and performs the action associated with each
matching rule through the action callback procedure.

2.4 Creating Rules Applications That Use Composite Events
Probably the more common types of rules applications are those that use a composite
event structure that combines two or more primitive events. Evaluating rule classes for
composite events creates additional requirements. Rules Manager addresses these
requirements by:

■ Aggregating events for rule execution

When two or more primitive events are brought together, each primitive event
may be generated by the application at different points in time. This often means a
rule cannot be evaluated conclusively until all the primitive events are available.
Rules Manager manages the primitive events and joins them together before
evaluating the rules. Rules Manager hides the complexity of managing composite

Creating Rules Applications That Use Composite Events

2-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

events by maintaining the association between the primitive events and the
composite event. See Chapter 4 for more information.

■ Maintaining intermediate state of event processing

When composite events are completely formed in the user application, some parts
of rule conditions may need to be evaluated repeatedly with some parts of the
composite events. This may lead to multiple evaluations of one primitive event for
each instance of a second primitive event, and so forth to find matching rules. This
evaluation becomes complex very quickly as the number of primitive events
exceeds two. XML tags support incremental evaluation of rules for composite
events resulting in Rules Manager improving the performance of the system. Rules
Manager maintains the intermediate state of rule evaluation persistently for
efficient processing. See Section 4.1 for more information.

■ Supporting complex rule constructs

Rules Manager enables you to build complex rules with negation, Any n, and Set
semantics in conditional expressions. Using XML tags within rule conditions,
Rules Manager can support these complex rule constructs that are commonly used
in applications. See Chapter 4 for more information.

2.4.1 How to Create a Rules Application That Uses Composite Events
The basic steps to create a rules application with composite events are the same as
those described for simple events in Section 2.3, with accommodations for multiple
primitive events.

 The steps to create a rules application with composite events are as follows:

1. Create the composite event structure as an object type in the database.

First, each primitive event structure is created as an object type. For example:

CREATE or REPLACE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

CREATE or REPLACE TYPE AddRentalCar AS OBJECT (
 CustId NUMBER,
 CarType VARCHAR2(20),
 CheckOut DATE,
 CheckIn DATE,
 Options VARCHAR2(30));

Next, all the primitive event structures that constitute the composite event are
created as (first level) embedded types in this object type. For example:

CREATE or REPLACE TYPE TSCompEvent AS OBJECT (Flt AddFlight,
 Car AddRentalCar);

The attribute names, Flt and Car, are used in the rule conditions for identifying
the predicates on individual primitive events and for specifying join conditions
between primitive events; Flt and Car are the primitive event variables used for
composite events.

Creating Rules Applications That Use Composite Events

Rules Manager Concepts 2-9

2. Create the rule class for the composite event structure. The rule class is configured
for composite events using an XML properties document that is assigned to the
properties argument of the dbms_rlmgr.create_rule_class procedure.

BEGIN
 dbms_rlmgr.create_rule_class (
 rule_class => 'CompTravelPromo',
 event_struct => 'TSCompEvent',
 action_cbk => 'CompPromoAction',
 rslt_viewnm => 'CompMatchingPromos',
 actprf_spec => 'PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)',
 rlcls_prop => '<composite/>');
END;

The previous code example creates the rule class for the composite event structure.
The rlcls_prop argument specifies the default settings for composite event
management using an empty <composite> XML element. This step re-creates
each object type representing a primitive event structure to include a timestamp
attribute, rlm$CrtTime, which captures the corresponding event creation times.
This attribute is created with the TIMESTAMP data type and its value is defaulted
to the database timestamp (SYSTIMESTAMP) at the time of event instantiation.
Alternately, an application can explicitly set an event creation time by assigning a
valid timestamp value to this attribute.

As previously mentioned, this rule class creation also creates the action callback
procedure with the specified name as follows:

PROCEDURE CompPromotion (Flt AddFlight,
 Car AddRentalCar,
 rlm$rule CompTravelPromo%ROWTYPE) is
BEGIN
 null;
 --- The action for the matching rules can be performed here.
 --- The appropriate action can be determined from the event
 --- instance and the action preferences associated with each rule.
END;

3. Replace the system generated action callback procedure with the user
implementation to perform the appropriate action for each matching rule. For
example:

PROCEDURE CompPromoAction (Flt AddFlight,
 Car AddRentalCar,
 rlm$rule CompTravelPromo%ROWTYPE) is
BEGIN
 OfferPromotion (Flt.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy);
END;

4. Add the rules to the rule class. In this case, add a rule with a conditional
expression that uses XML tags. See Section 4.1 for more information about using
XML tag extensions in rule conditions to support complex rule constructs.

Note: The primitive events within the composite events are passed
in as separate arguments to the callback procedure.

Creating Rules Applications That Use Composite Events

2-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

INSERT INTO CompTravelPromo (rlm$ruleid, PromoType, OfferedBy, rlm$rulecond)
 VALUES ('UN-HT-FL', 'RentalCar', 'Acar',
 '<condition>
 <and join="Flt.CustId = Car.CustId">
 <object name="Flt">
 Airline=''Abcair'' and ToCity=''Orlando''
 </object>
 <object name="Car">
 CarType = ''Luxury''
 </object>
 </and>
 </condition>');

5. Process the rules using one primitive event at a time. For example:

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddFlight(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003')));

 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddFlight(567, 'Abdair', 'Boston', 'Miami',
 '03-APR-2003', '09-APR-2003')));

 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddRentalCar(987, 'Luxury', '03-APR-2003',
 '08-APR-2003', NULL)));
END;

This command adds three primitive events to the Rules Manager. For the rule defined
in Step 4, the first event matches the primitive rule condition for the AddFlight event
and the third event matches the condition for the AddRentalCar event. Additionally,
these two events satisfy the join predicate in the rule condition. So for the previous
example, the first and last primitive events together form a composite event that
matches the rule condition specified in Step 4. These primitive event instances are
passed to the action callback procedure for action execution. The type information for
the primitive events that is passed in is embedded in the corresponding AnyData
instance. However, when a string-formatted event is used, the primitive event type
information should be explicitly passed in as follows:

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_type => 'AddFlight',
 event_inst =>
 AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003'));
END;

Setting Event Management Policies (Rule Class Properties) for Rule Applications

Rules Manager Concepts 2-11

2.4.2 Evaluating Composite Events Using Complex Rule Conditions
Evaluating composite events using complex rule conditions is supported by Rules
Manager with the following:

■ Incremental evaluation of rules by allowing predicate joins between and among
primitive events

■ Negation in rule conditions to raise exceptions in processes (that is, when
something does not happen, do something)

■ Sequencing in rule conditions by tracking primitive event creation time and
enforcing or detecting sequencing among events

■ Set semantics in rule conditions to allow instances of primitive events of the same
type to be monitored as a group

■ Any n in rule conditions to allow matching of a subset of primitive events

Rules Manager supports incremental evaluation of rules involving composite events.
To support complex rule conditions, the conditional expressions in the SQL WHERE
clause are extended with some XML tags that identify different parts of a conditional
expression and add special semantics to these expressions. Chapter 4 describes more
about each type of complex rule condition. Section 4.1 describes implementing
incremental evaluation of rules.

2.5 Setting Event Management Policies (Rule Class Properties) for Rule
Applications

Rule class properties define the event management policies that the Rules Manager
should enforce for each rule application. Rule class properties include:

■ Consumption -- determines if an event can be used for multiple rule executions or
a single rule execution

■ Conflict resolution or ordering -- determines the order in which matching rules
with various events are to be executed

■ Duration -- determines the lifetime of unconsumed primitive events

■ Auto-commit -- determines if each interaction with a rule class should be
committed automatically

■ Storage -- determines the storage characteristics of the rule class in the database

■ Equal -- specifies the common equality join predicates for all the rules in a rule
class, that is, what are the lists of primitive event attributes that are equal in the
composite events configured for a rule class

■ DML Events -- specifies when an event structure is created with one or more table
alias attributes, that the corresponding rule class should consider the data
manipulation language (DML) operations (INSERT) on the corresponding tables
as the events for which the rules are evaluated

Rule class properties are specified at the time of rule class creation using an XML
properties document that is assigned to the rlcls_prop argument of the dbms_
rlmgr.create_rule_set() procedure. For rule classes configured for composite
events these properties can be specified at the composite event level (for all the
primitive events). In addition, you can specify overrides for one or more primitive
events in the properties document. Section 3.1 through Section 3.7 describe each of
these rules properties in more detail and how each is implemented.

Creating Rules Applications That Span Multiple Tiers

2-12 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

2.6 Creating Rules Applications That Span Multiple Tiers
For rules applications that span multiple tiers and where rule management is handled
in the database, but the action execution for the rules is handled in the application
server, the actions for the rules matching an event cannot be invoked from an action
callback procedure. Instead, a results view is populated with the events and the
matching rules, both of which are available for external action execution. The results
view can be queried to determine the rules that match an event and their
corresponding actions can then be executed.

To handle rules applications with certain rules having their action execution occurring
on the application server, you must also configure the rule class for external execution
(in addition to configuring the action callback procedure). The steps to do this are
similar to those described in Section 2.3, but are modified and briefly described as
follows (see Chapter 5 for a complete description of each step):

1. Create the event structure as an object type in the database (same as Step 1 in
Section 2.3).

2. Create the rule class and also define the results view. See Step 2 in Section 5.1 for
the details.

3. Implement the action callback procedure (same as Step 3 in Section 2.3).

4. Add rules to the rule class (same as Step 4 in Section 2.3).

5. Identify the matching rules for an event. Use the add event procedure (dbms_
rlmgr.add_event()) that adds each event to the rule class one at a time and
identifies the matching rules for a given event that is later accessed using the
results view. See Step 5 in Section 5.1 for the details.

6. Find the matching rules by querying the results view. See Step 6 in Section 5.1 for
the details.

7. Consume the event that is used in a rule execution. See Step 7 in Section 5.1 for the
details.

For more information about creating rules applications that span multiple tiers, see
Section 5.1, and for more information about running rules applications in multitier
mode see Section 5.2.

2.7 Using Rules Manager with SQL*Loader and Export/Import Utilities
Section 2.7.1 describes using SQL*Loader to load data into a rule class table.
Section 2.7.2 describes exporting and importing rules applications.

2.7.1 SQL*Loader
SQL*Loader can be used to bulk load data from an ASCII file into a rule class table.
For the loader operations, the rule conditions stored in the rlm$rulecond column of
the rule class table are treated as strings loaded into a VARCHAR2 column. The data file
can hold the XML and SQL based rule conditions in any format allowed for
VARCHAR2 data and the values for the action preference columns in the rule class
table are loaded using normal SQL*Loader semantics.

The data loaded into the rule condition column is automatically validated using the
event structure associated with the rule class. The validation is done by a trigger
defined on the rule condition column, due to which, a direct load cannot be used while
loading rule definitions into a rule class table.

Using Rules Manager with SQL*Loader and Export/Import Utilities

Rules Manager Concepts 2-13

2.7.2 Export/Import
A rules application defined using a set of event structures and a rule class can be
exported and imported back to the same database or a different Oracle database. A
rule class in a schema is automatically exported when the corresponding rule class
table is exported using the export command's (expdp) tables parameter or when the
complete schema is exported. When a rule class is exported, definitions for the
associated primitive and composite event structures and the rules defined in the rule
class are all placed in the export dump file. However, the internal database objects that
maintain the information about event instances and incremental states for partially
matched rules are not exported with the rule class. When the tables parameter is
used to export a particular rule class, the implementation for the action callback
procedure is not written to the export dump file. The action callback procedure is only
exported with the schema export.

The dump file created with the export of a rule class can be used to import the rule
class and its event structures into the same or a different Oracle database. At the time
of import, the internal database objects used for the rule class state maintenance are
re-created. Due to the order in which certain objects are created and skipped in an
import session, the rule class creation raises some errors and warnings that can be
safely ignored. In the case of a schema level import of the rule class, the
implementation for action callback procedure is also re-created on the import site
However, in the case of a table-level import, only the skeleton for the action callback
procedure is created.

Using Rules Manager with SQL*Loader and Export/Import Utilities

2-14 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Event Management Policies 3-1

3
Event Management Policies

The rule class properties specified at the time of creation include the event
management policies that the Rules Manager should enforce for each rules application.
In the case of rules defined for composite event structures, the primitive events are
added to the system one at a time. These events are later combined with other
primitive events to form composite events that match one or more rule conditions.
Depending on the join conditions between primitive events, a primitive event can
participate in a 1 to 1, 1 to N, or N-to-M relationship with other events to form one or
more composite events. Application-specific requirements for reusing primitive events
and for handling duplicate composite events are supported using rule class properties
and they are broadly classified as follows:

■ Consumption -- determines if an event can be used for multiple rule executions or
a single rule execution

■ Conflict resolution or ordering -- determines the order in which matching rules
with various events are to be executed

■ Duration -- determines the lifetime of unconsumed primitive events

■ Auto-commit -- determines if each interaction with a rule class should be
committed automatically

■ Storage -- determines the storage characteristics of the rule class in the database

■ Equal -- specifies the common equality join predicates for all the rules in a rule
class, that is, what are the lists of primitive event attributes that are equal in the
composite events configured for a rule class

■ DML Events -- specifies when an event structure is created with one or more table
alias attributes, that the corresponding rule class can be configured to consider the
DML operation (INSERT) on the corresponding tables as the events for which the
rules are evaluated

The event management policies duration and equal are only applicable to rule
classes configured for composite events. All other policies are applicable to rule classes
configured for simple events as well as rule classes configured for composite events.
Each rule class property is described in the sections that follow.

3.1 Consumption of Events
A primitive event used to form a composite event can be combined with other
primitive events to form a different composite event. For example, two instances of the
AddFlight event can be combined with one instance of AddRentalCar event to
form two different composite events (that could match two different rules). In some
rule applications, it is required that once a primitive event matches a rule on its own or

Consumption of Events

3-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

in combination with other primitive events, it should not be used with any more rule
executions. This implies that a primitive event used to form a composite event is
consumed or removed from the system. The consumption property for a rule class
determines the policy regarding the reuse of primitive events in the system. The
consumption policy is applicable to both the rules defined for simple events and the
rules defined for composite events. Two modes of event consumption are possible:

■ EXCLUSIVE -- when the consumption mode is EXCLUSIVE, a primitive event can
be used to match only one rule (which ever matches first). Once the corresponding
rule action is executed, this event is removed from the system, irrespective of the
event duration specification (TRANSACTION, SESSION, or Elapsed time).

■ SHARED -- when the consumption mode is SHARED, a primitive event can be used
to match any number of rules and execute their actions. The primitive event is
removed from the system only when its duration specification is met. The default
consumption policy for a rule class created with no consumption property is
SHARED.

Following the same example used previously, if two AddFlight events are already
added to the system, the next AddRentalCar event could form two composite events
that could match two or more rules. If the rule class is configured for EXCLUSIVE
consumption of events, only one of the rule actions can be executed using one of the
composite events. This rule can be chosen deterministically if appropriate conflict
resolution techniques are employed (see Section 3.2).

The EXCLUSIVE consumption policy for a rule class created for a simple event
structure implies that, at most, one rule is executed for any event instance passed to
the dbms_rlmgr.process_rules procedure. If the event matches more than one
rule, the rule that is chosen for execution is determined using the ordering property of
the rule class (see Section 3.3 that describes ordering). The rule class created for a
primitive event structure can be configured with the EXCLUSIVE event consumption
policy using the following XML properties document (as the rlcls_prop argument
to the dbms_rlmgr.create_rule_class procedure).

<simple consumption="exclusive"/>

Other valid forms of consumption specification within the rule class properties include
the following:

<composite consumption="exclusive"/>

<composite consumption="shared"/>

Rule applications can have different policies regarding the reuse of primitive events
for a subset of primitive events used in a composite event. For such applications, the
consumption policy can be specified for each primitive event type as a child element of
the <composite> element, such as the following:

<composite consumption="shared">
 <object type="AddFlight" consumption="shared">
 <object type="AddRentalCar" consumption="exclusive">
</composite>

The value for the consumption attribute of the <composite> element is used as the
default value for all the primitive events in the composite event. This default value is
overridden for a primitive event type by specifying it as the child element of the
<composite> element and specifying the consumption attribute for this element.

Conflict Resolution

Event Management Policies 3-3

Specifying Custom Logic for Event Consumption
In addition to EXCLUSIVE and SHARED consumption policies, a rule class for
composite events can be configured with a RULE consumption policy, which allows
individual rules in the rule class to use some custom logic for event consumption. The
RULE consumption policy can only be specified at the composite event level and when
specified, the consumption policy for the primitive event type cannot be set to
EXCLUSIVE. When the rule class is configured for RULE consumption policy, the
action callback procedure and the rule class results view are created to return the
identifiers for the individual primitive events matching a rule. These identifiers can be
used to selectively consume some or all of the primitive events atomically. See the
DBMS_RLMGR.CONSUME_PRIM_EVENTS procedure for more information.

3.2 Conflict Resolution
When an event matches a rule on its own or in combination with other primitive
events, by default, the order of rule (action) executions is not deterministic. Some rule
applications may need the matching rules to execute in a particular order, which is
determined by some conflict resolution criteria. Additionally, in the case of exclusive
consumption of events, only one of the matching rules is executed. Unless some
conflict resolution criterion is specified, this rule is chosen randomly. One of the
common techniques of conflict resolution is to order the resulting composite events
and matching rules based on the event attribute values and the rule action preferences.

■ Conflict resolution among composite events

The composite events resulting from the addition of a primitive event can be
ordered based on the attributes of the corresponding primitive events. For
example, the travel services application may decide to resolve among a set of
composite events, consisting of AddFlight and AddRentalCar primitive events,
based on the primitive event creation times. So, the conflict resolution criterion for
this composite event structure is represented as [Flt.rlm$CrtTime,
Car.rlm$CrtTime], implying that an event with earliest creation time is
consumed before the others. This notation is similar to that of an ORDER BY clause
in a SQL query. Optionally, the DESC keyword can be used with some of the
attributes to sort the events in descending order (see Section 3.3 for complete
syntax). When the rule class is configured for exclusive consumption of events,
only the top-most event in this sorted list is chosen for rule execution.

■ Conflict resolution among matching rules for simple and composite events

A composite or a simple event can match one or more rules in a rule class. If more
than one rule is matched, by default, their actions are executed in a
non-deterministic order. If the order of the rule action executions is important, the
rule identifiers and the action preferences associated with the rules can be used to
sort the matching rules. For example, the travel services application can resolve
among matching rules by using the conflict resolution criterion -
[rlm$rule.PromoType, rlm$rule.OfferedBy, rlm$rule.rlm$ruleid]. In
this case, sorting the matching rules is done in ascending order and ordered first
by the action preference PromoType, then by the action preference OfferedBy,
then by the rule identifier rlm$ruleid. As shown in this example, rlm$rule is
used to refer to any rule-specific attribute. The notation and semantics used for
specifying conflict resolution criteria are similar to that of an ORDER BY clause in a
SQL query. Optionally, the DESC keyword can be used with some of the attributes
to sort the rules in the descending order (see Section 3.3 for a complete syntax).
When the rule class is configured for exclusive consumption of events, only the
top-most rule in the sorted list is chosen for execution.

Ordering of Rule Execution

3-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

When a set of composite events matches a set of rules, the exact order of rule
executions can be specified by combining the conflict resolution criterion for the
composite events with that of the matching rules. The syntax for specifying the conflict
resolution criteria is described in Section 3.3.

3.3 Ordering of Rule Execution
The ORDERING property of the rule class determines the order in which a set of rules
that match a set of composite events or a simple event are executed. When the
consumption policy for a composite event type or for some primitive event types is set
to EXCLUSIVE, the ordering property also determines the subset of rules that are
executed. (The rest of the matching rules are ignored, because the exclusive events that
are required to execute the rules are deleted after the first rule execution). The ordering
property is applicable to both the rules defined for simple events and the rules defined
for composite events.

In the case of a rule class created for a composite event structure, the addition of a
primitive event to the system could form multiple composite events that could match
multiple rules. So, the ordering of the resulting events and the matching rules can be
specified using the attributes in the events, the action preferences associated with the
rules, and the rule identifiers. For the travel services rule class example, the ordering of
the events and the matching rules can be specified as follows:

<composite ordering="Flt.rlm$CrtTime, Car.rlm$CrtTime, rlm$rule.PromoType,
rlm$rule.OfferedBy, rlm$rule.rlm$ruleid"/>

In this ascending column, attribute ranked, ordering specification, rlm$rule is used
to refer to the attributes associated with the rule class (action preferences PromoType
and OfferedBy and the rule identifier rlm$ruleid) and the variables declared for
the primitive events in the composite event structure (Flt for AddFlight and Car for
AddRentalCar) are used to access the primitive events' attribute values.

The ordering property can be combined with some other policies, such as
consumption and duration. Other valid forms of ordering specification within the rule
class properties include:

<composite consumption="exclusive"
 ordering="Flt.rlm$CrtTime, rlm$rule.PromoType,
 rlm$rule.rlm$ruleid DESC"/>
<simple ordering="rlm$rule.PromoType, rlm$rule.OfferedBy, rlm$rule.rlm$ruleid/>

In the case of a rule class created for a simple event structure, as there is only one event
at any point in time, the ordering is only based on the matched rules. So, only the rule
identifier and action preferences associated with the rules are allowed in the ordering
clause.

3.4 Duration of Events
It is common for applications to generate events that will never trigger a rule firing,
thus these events will never be consumed. The duration policy for primitive events
determines the maximum lifetime of the events. When a primitive event is added to
the Rules Manager for incremental evaluation of rules, the event and the evaluation
results are stored in the database. These events are later combined with other matching
primitive events to form a composite event that conclusively satisfies one or more rule
conditions. However, there may not be a matching event to form a composite event.
For example, the travel services rule discussed in Section 2.6 may detect an
AddFlight event for a rule, but the corresponding AddRentalCar event may not

Duration of Events

Event Management Policies 3-5

occur (or the AddRentalCar event occurring may not be for a luxury car). So, the
duration (or the life) of the primitive events should be set such that the incomplete
(composite) events and the results from the incremental rule evaluations are deleted
after a certain period.

The duration of a primitive event depends on the rule application and it can be
classified into one of following four scenarios.

■ TRANSACTION: In this scenario, the primitive events added to the system during
a database transaction are preserved until the end of the transaction (COMMIT or
ROLLBACK). So, a rule for the composite event evaluates to true only if all the
required primitive events are detected within a database transaction.

■ SESSION: In this scenario, the primitive events added during a database session
are preserved until the end of the session (CONNECT or DISCONNECT). So, a rule
for the composite event evaluates to true only if all the required primitive events
are detected within a database session.

■ CALL: In some rule applications, a subset of primitive events are truly transient in
that an event is considered for a possible match with the rules only at the instance
at which the event is added. Such events do not contribute to the event history and
they are not considered for any future rule matches. Hence, these events are said
to be valid only for the duration of the call (PROCESS_RULES or ADD_EVENT) that
processes the rules. A subset of primitive events within a composite event can be
configured for the CALL duration. A CALL duration event contributes to a rule
execution only if the event, in combination with other events in the system,
evaluates a rule condition to true at the time of the call. Such events are not
considered for rule matches after the call regardless of any rule executions during
the call.

■ Elapsed time: In this scenario, the duration of a primitive event added to the
system is determined by an event timeout associated with the rule class. The event
timeout is specified as elapsed time (for example 10 hours, 3 days) and this is
added to the creation time (determined by its rlm$CrtTime attribute) to
determine the exact time of event deletion.

The duration policy dictates the life span of the primitive events in the system. In the
case of a rule class created for simple events, Rules Manager does not store the events
in the system (as the rules are evaluated conclusively for each event). So, the duration
policy is applicable only for the rule classes created for composite event structures. A
rule class configured to reset all the primitive events at the end of each (database)
transaction uses the following XML properties document:

<composite duration="transaction"/>

While specifying the duration as elapsed time, the value for the duration attribute can
be specified in {[int] minutes | hours | days} format, such as shown here:

<composite duration="session"/>
<composite duration="20 minutes"/>
<composite duration="2 hours"/>
<composite duration="10 days"/>

These specifications apply to all the primitive events that constitute the composite
event. If different duration specifications are required for some primitive event types,
they can be specified as child elements of the <composite> element, such as shown
here:

<composite duration="10 days">
 <object type="AddFlight" duration="3 days"/>
 <object type="AddRentalCar" duration="call"/>

Equality

3-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

</composite>

In this case, the value of 10 days for the duration attribute of the <composite>
element is used as the default value for all the primitive events in the composite event.
This default value is overridden for a primitive event type by specifying it as the child
element of the <composite> element and specifying the duration attribute for this
element, for example, as shown by the duration property call specified for the
AddRentalCar event type. So these AddRentalCar events would be discarded if
they did not match a rule during either a PROCESS_RULES or ADD_EVENT call.

A restriction on the duration policy is that the TRANSACTION or SESSION values for
the duration policy can only be specified at the composite event level. When specified,
these values cannot be overridden at the primitive events level.

3.5 Equality
In rule applications using composite events, all the rules defined in a rule class have
one or more common (equality) join predicates between two or more or all primitive
events (that form a composite event). These join predicates are defined using the
attributes of the corresponding primitive event types. For example, in the travel
services application, the AddFlight and AddRentalCar events in a composite event
are related through the customer identifiers in these primitive events (Flt.CustId =
Car.CustId). The rule class using a fixed number of distinct equality join predicates
for its rules can be optimized by configuring the rule class as discussed in this section.

For a rule class configured for the composite event structure, the EQUAL property
identifies either the only equality join predicate that relates multiple primitive events
within each composite event, or a list of the most common equality join predicates
used in forming each composite event. If there is only one equality join predicate, the
equal property is specified as a comma-delimited list of attributes, one from each
primitive event structure configured for the rule class and it is used as the join
predicate for all the rules in the rule class. This list identifies the primitive event
attributes that must be equal to form a composite event. For example:

<composite equal="Flt.CustId, Car.CustId"/>

When the EQUAL property is specified as a comma separated list of attributes, the rules
in the corresponding rule class may skip the equality join predicates involving the
same set of attributes. So, for a rule class created with the previous properties
document, the following three rule conditions have the same effect:

<condition>
 <and join="Flt.CustId = Car.CustId and Car.rlm$CrtTime > Flt.rlm$CrtTime ">
 <object name="Flt"> Airline=''Abcair'' and ToCity=''Orlando'' </object>
 <object> CarType = ''Luxury'' </object>
 </and>
</condition>

<condition>
 <and join="Car.rlm$CrtTime > Flt.rlm$CrtTime">
 <object name="Flt"> Airline=''Abcair'' and ToCity=''Orlando'' </object>
 <object name="Car"> CarType = ''Luxury'' </object>
 </and>
</condition>

Note: Use of the EQUAL property at the rule class level is
recommended for better performance.

Storage Properties

Event Management Policies 3-7

<condition>
 <and equal="Flt.CustId, Car.CustId"
 join="Car.rlm$CrtTime > Flt.rlm$CrtTime">
 <object name="Flt"> Airline=''Abcair'' and ToCity=''Orlando'' </object>
 <object> CarType = ''Luxury'' </object>
 </and>
</condition>

The last rule condition in the previous example also demonstrates the use of the
EQUAL property for individual rules in a rule class. The EQUAL property specification
for a rule condition acts as a short representation of the equality join predicate,
especially when the rule condition has ANY n or negation constructs. The list of
attributes specified for the EQUAL property are converted into appropriate join
predicates and appended (as conjunctions) to the join condition of each rule in the rule
class.

Another form of EQUAL property specification for a rule class identifies a list of the
most common equality join predicates in its rules. For this purpose, each EQUAL
property specification is grouped using parenthesis and alternate EQUAL property
specifications are separated using a vertical bar ('|') character. For example, in a rule
class created with two primitive events of the same RFIDRead type, a subset of rules
in the rule class may join the primitive events on their ItemId attributes
(reading1.ItemId = reading2.ItemId). Another subset of the rules in the same
rule class may relate the primitive events on their ReaderId attributes
(reading1.ReaderId = reading2.ReaderId). The rule class can be optimized
to process both types of these rules efficiently using the following equal property:

<composite equal="(reading1.ItemId, reading2.ItemId) |
 (reading1.ReaderId, reading2.ReaderId)"/>

The previous syntax for the EQUAL property can be used to specify up to five alternate
EQUAL property specifications for a rule class. The alternate EQUAL property
specifications provide a means for optimizing the rule evaluation for the most
common join predicates in a rule class and it does not automatically use any equality
join predicates for its rules. The rules in the rule class are mapped into one of the
alternate EQUAL property specifications based on the EQUAL property used for the
individual rules. For example, the following rule's EQUAL property specification
matches one of the EQUAL property specifications at the rule class level and hence, this
rule is optimized:

<condition>
 <and equal="reading1.ItemId, reading2.ItemId"/>
 <object name="reading1"/>
 <object name="reading2"/>
 </and>
</condition>

Hence, the EQUAL property for individual rules in a rule class not only acts as a short
representation for the equality join predicate but also helps map it into one of the
alternate EQUAL property specifications.

3.6 Storage Properties
The STORAGE attribute of the <simple> or <composite> element is used to specify
the storage properties for the rule class table and the internal objects created for the
rule class. By default, the database objects used to manage the rules in a rule class are
created using user defaults for the storage properties (Example: tablespace

AUTOCOMMIT

3-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

specification). The value assigned for this attribute can be any valid storage properties
that can be specified in a typical SQL CREATE TABLE statement. The following XML
properties document can be used (as the argument to the dbms_rlmgr.create_
rule_class procedure) to create a rule class for simple events that resides in a
tablespace TBS_1 and uses exclusive consumption policy:

<simple storage="tablespace TBS_1" consumption="exclusive"/>

An example of specifying storage attributes in the rule class properties is as shown:

<composite storage="tablespace TBS_1"/>

3.7 AUTOCOMMIT
In most cases, all the Rules Manager procedures commit immediately after each add
rule, delete rule, and process rule operation. The rule class can be configured to follow
transaction boundaries by turning off the auto-commit functionality. For this purpose,
the AUTOCOMMIT property can be specified in the rules class properties document. For
example:

<simple autocommit="NO"/>

The AUTOCOMMIT property can be specified for the rule class created for simple as well
as composite events. Other valid forms of specifying the AUTOCOMMIT property
include:

<composite autocommit="NO" consumption="shared"/>
<composite autocommit="YES"/>

When the AUTOCOMMIT property is set to NO, the set of Rules Manager operations (add
rule, delete rule, and process rule) performed in a transaction can be rolled back by
issuing a ROLLBACK statement. An exception to this rule is when the action callback
procedure (implemented by the end user) performs an irreversible operation (sending
a mail, performing a data definition language (DDL) operation, commit, rollback, and
so forth). A DDL operation within an action callback operation automatically commits
all the operations performed in that transaction. To avoid this situation, any DDL
operations should be performed in an autonomous transaction.

Turning off the AUTOCOMMIT property for a rule class can limit the concurrent
operations on the rule class. This is especially the case when the rules class is created
for composite events that is configured for exclusive consumption policy. (In a
transaction, the consumed events are locked until the transaction is committed and the
other sessions may wait for these events to be released.)

The default value for the AUTOCOMMIT property is dependent on other event
management policies (see Table 3–1). The default value for this policy is NO for a rule
class configured for simple (non-composite) rules and a composite rule class
configured with the SESSION or TRANSACTION duration policy. (These configurations
do not pose issues with sharing of events across sessions). For all other configurations,
a default value of YES is used for the AUTOCOMMIT property. Note that the
AUTOCOMMIT property cannot be set to YES when the duration policy is set to
TRANSACTION. Also, the AUTOCOMMIT property cannot be set to NO when one or more
primitive event types are configured for EXCLUSIVE or RULE consumption policy.

When the event structure is defined with one or more table alias constructs and the
corresponding rule class is configured for DML events (see Section 3.8) the
AUTOCOMMIT property is always set to NO. Note that this could result in deadlocks
while working with EXCLUSIVE or RULE consumption policies.

Rule Class Property Dependencies and Defaults

Event Management Policies 3-9

A rule class with the AUTOCOMMIT property set to "NO" cannot contain rules involving
negation and a deadline (See Section 4.3).

3.8 DML Events
When an event structure is created with one or more table alias attributes (see
Section 3.10), then the corresponding rule class can be configured to consider the SQL
INSERT and SQL*Loader operations on the corresponding tables as the events for
which the rules are evaluated. This rule class behavior can be enabled using the
DMLEVENTS property for the rule class:

<simple dmlevents="I"/>

This property can be specified for a rule class configured for simple and composite
events. In the current release, UPDATE and DELETE operations on the underlying
tables are ignored and only the INSERT operations are recognized as events.

<composite dmlevents="I"/>

When the DMLEVENTS policy is specified, the AUTOCOMMIT policy for the rule class
should be NO. In this case, the AUTOCOMMIT policy of NO is allowed even when the
consumption policy is set to EXCLUSIVE or RULE (which is considered an invalid
combination when the DMLEVENTS policy is not used). Note that the use of the
EXCLUSIVE or RULE consumption policy with the DMLEVENTS policy could result in
application deadlocks.

3.9 Rule Class Property Dependencies and Defaults
Most of the rule class properties (or event management policies) described in this
section can be mixed and matched while defining a rule class. However, some of the
combinations of these properties are considered invalid as shown in Table 3–1. For
example, if the rule classes' AUTOCOMMIT property is set to YES, setting the DURATION
policy to TRANSACTION is invalid. This is because the events are deleted from the
system as soon as they are added and they cannot be combined with other events to
form composite events. The DMLEVENTS policy has no direct influence on the valid
and invalid combination of event management policies. This policy only effects the
default value for the AUTOCOMMIT policy.

Table 3–1 Valid and Invalid Rule Class Property Combinations

AUTOCOMMIT CONSUMPTION DURATION

Invalid Yes -- Transaction

Valid Yes -- Session

Valid Yes -- [n] Units

Valid No Shared --

Valid No Exclusive Transaction1

Valid No Exclusive Session1

Invalid No Exclusive [n] Units2

Valid No Rule3 Transaction1

Valid No Rule Session1

Invalid No Rule [n] Units2

Rules Specified on Relational Tables

3-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

The default values for various event management policies for a rule class configured
for simple events are as follows:

CONSUMPTION : Shared
DURATION : Infinite Duration (NULL)
AUTOCOMMIT : No

The default values for the event management policies for a rule class configured for a
composite event is sometimes dependent on other event management policies, as
follows:

CONSUMPTION : Shared
DURATION : Infinite Duration (NULL)
AUTOCOMMIT
 IF DMLEVENTS = I : NO
 ELSE IF DURATION = TRANSACTION / SESSION : NO
 ELSE : YES

3.10 Rules Specified on Relational Tables
The rule applications considered so far use rule conditions that are defined on some
application data. That is, the concept of an event instance exists in the application and
it may or may not be stored in the database. Often however, the data in the event
instances correspond to some rows stored in relational tables. For such applications,
the row identifiers (ROWIDs) of these rows can be used to pass the data to the Rules
Manager procedures by reference, for example using the event_inst parameter to
represent an event instance of the PROCESS_RULES call (event_inst =>
:FlightDataRowid). For this purpose, the corresponding event structure should be
modeled using Expression Filter's table alias constructs. See the ADD_ELEMENTARY_
ATTRIBUTE procedure for more information. See Section 9.2 and Appendix A for more
examples.

For the travel services application considered in Section 2.4, if the AddFlight and
AddRentalCar primitive events are stored in two relational tables FlightData and
RentalCarData respectively, the corresponding composite event structure can be
created to refer to rows in these tables as follows:

BEGIN
 dbms_rlmgr.create_event_structure (event_structure => 'TSCompEvent');
 dbms_rlmgr.add_elementary_attribute (
 event_structure => 'TSCompEvent',
 attr_name => 'Flt', --- Prim event name
 attr_type => exf$table_alias('FlightData'));
 dbms_rlmgr.add_elementary_attribute (
 event_structure => 'TSCompEvent',
 attr_name => 'Car', --- Prim event name
 attr_type => exf$table_alias('RentalCarData'));
END;

1 A rule class operating in SESSION or TRANSACTION mode has no concurrency issues across the database
session, as each session gets a private copy of the events and incremental results.

2 A rule class with the EXCLUSIVE consumption policy locks some rows in order to mark them "consumed"
and may not actually consume the rows. Such rows are kept from being consumed by other database
sessions and thus result in deadlocks. So, it is recommended that the locked rows be released with
AUTOCOMMIT="YES" property.

3 RULE is a special form of the EXCLUSIVE consumption policy where the consumption of certain events is
initiated by the end-user.

Rules Conditions For XML Events

Event Management Policies 3-11

Now the composite event structure TSCompEvent can be used to configure a rule
class (Same as step 2 in Section 2.4.1). The representation of the rules in the rule class
does not vary with this event structure. However, within the action callback
procedure, the primitive event instances that match a rule are each passed in as
ROWIDs from the corresponding tables and these ROWIDs can be used to obtain the
original event data. Also, with this new event structure, the primitive event instances,
for which the rules are processed, are passed in by reference using the ROWIDs for the
corresponding table rows.

BEGIN
 dbms_rlmgr.process_rules (
 rule_set_nm => 'TravelPromotion',
 event_type => 'FlightData',
 event_inst => :FlightDataRowid); -- rowid of a row ---
END;

Note that the conditions corresponding to a primitive event are evaluated when the
dbms_rlmgr.process_rules procedure is invoked with the appropriate ROWID.
However, Rules Manager does not keep track of any changes to the original row
through an UPDATE operation.

Optionally, the PROCESS_RULES call can be eliminated by configuring the preceding
rule class to consider all the INSERT operations into the corresponding tables as
events. This is done by setting the DMLEVENTS property to "I" during rule class
creation (see Section 3.8). This specification automatically creates a few statement
triggers that make the necessary PROCESS_RULES calls for the rule class.

When the duration and consumption policies are set for the primitive events derived
from relational data, it is the references to the table rows that are consumed or deleted
from the rule class. The original rows are not affected by these event management
policies.

A composite event structure can be formed using a combination of table alias
constructs and embedded abstract data types (ADTs) (for various primitive events).
The rule conditions defined for a composite event structure consisting of one or more
table alias constructs may not use the (short form of) the SEQUENCE property to
enforce sequencing among primitive events (see Section 4.2). This is because the
implicit attribute rlm$crttime may not exist for the rows stored in the relational
tables. The user can enforce partial sequencing using the join property in the rule
conditions.

3.11 Rules Conditions For XML Events
The XMLType data type supplied by Oracle can be used to create attributes in the
event structures and rule classes that can process rules defined on XML documents.
For this purpose, a primitive event structure can be created with one or more XMLType
attributes (along with some non-XML attributes), such as the following:

CREATE or REPLACE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR(20),
 FromCity VARCHAR(30),
 ToCity VARCHAR(30),
 Depart DATE,
 Return DATE,
 Details sys.XMLType)

If a primitive event is just an XML document, then the preceding object type can be
created with just one attribute, that is of XMLType. The predicates on the XMLType

Rule Conditions with Spatial Predicates

3-12 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

attributes are specified using the EXTRACT and EXISTSNODE operators supplied by
Oracle, as shown in the following example.

<condition> <!-- optional for conditions on primitive events -->
 Airline='Abcair' and ToCity='Orlando' and
 EXTRACT(doc, '/preferences/seat[@class="economy"]') is not null
</condition>

A composite event structure for XML events can be formed by including two or more
primitive event types that contain an XMLType attribute. So, the composite event
structure is created as an object type with embedded primitive event types (as
described in Section 2.4). Once the event structures are created with XMLType
attributes, all the other concepts described in Section 2.2 apply to the XML data that is
part of the events.

3.12 Rule Conditions with Spatial Predicates

The SDO_GEOMETRY data type supplied by Oracle can be used to create event
structures and rule classes that can process rules defined on spatial geometries. For
this purpose, a primitive event structure can be created with one or more attributes of
the MDSYS.SDO_GEOMETRY type, as follows:

CREATE or REPLACE TYPE AddHotel AS OBJECT (
CustId NUMBER,
Type VARCHAR(20),
CheckIn DATE,
CheckOut DATE,
Location MDSYS.SDO_GEOMETRY)

In order to specify predicates on the spatial attributes and index them for efficiency,
the geometry metadata describing the dimension, lower and upper bounds, and
tolerance in each dimension should be associated with each spatial geometry attribute.
This metadata information can be inserted into the USER_SDO_GEOM_METADATA view
using the event structure name in the place of the table name. For more information on
the USER_SDO_GEOM_METADATA view and its semantics, see Oracle Spatial User's
Guide and Reference.

INSERT INTO user_sdo_geom_metadata VALUES ('ADDHOTEL','LOCATION',
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element('X', -180, 180, 0.5),
 mdsys.sdo_dim_element('Y', -90, 90, 0.5)), 8307);

When the event structure with spatial attributes is used to create a rule class, the rule
conditions stored in the rule class table can include predicates in these attributes using
SDO_WITHIN_DISTANCE or SDO_RELATE operators, as shown in the following
examples:

<condition>
 Type = 'Luxury' and CheckOut-CheckIn > 3 and
 SDO_WITHIN_DISTANCE (Location,
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-77.03644, 37.89868, NULL), NULL, NULL),
 'distance=0.5 units=mile') = 'TRUE'
</condition>

Note: The Oracle Spatial or the Locator components must be
installed in order to use spatial predicates in stored expressions.

Database State in Rule Conditions

Event Management Policies 3-13

<condition>
 Type = 'Luxury' and CheckOut-CheckIn > 3 and
 SDO_RELATE (Location,
 SDO_GEOMETRY(2001, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 SDO_ORDINATE_ARRAY(-77.03644, 37.89868, -75, 39),
 'mask=anyinteract') = 'TRUE'
</condition>

A composite event structure involving spatial attributes can be formed by including
two or more primitive event structures that contain SDO_GEOMETRY attributes. In the
case of rules specified for composite events, the spatial predicates involving SDO_
WITHIN_DISTANCE or SDO_RELATE operators are not allowed in the join clause of
the rule condition. If needed, functions defined in the MDSYS.SDO_GEOM package may
be used to achieve this functionality. See Oracle Spatial User's Guide and Reference for
additional information.

3.13 Database State in Rule Conditions
The predicates in a rule condition may use user-defined functions, references to
database table data, and database state information. In the case of a condition specified
for a simple or a primitive event, the corresponding predicates are evaluated using the
state information at the time the event is added to the rule class (using either the
PROCESS_RULES or the ADD_EVENT call. This is the case even for conditions specified
for individual primitive events within a composite event. So, when multiple primitive
events are used to capture a composite event, the predicates associated with individual
primitive events will be evaluated at different times, corresponding to the occurrences
of their respective event. Only the predicates specified in the join attribute of the
composite condition are evaluated at the time of composite event creation. So, this
aspect should be considered when using database state or schema object references in
the rule conditions.

Database State in Rule Conditions

3-14 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rule Conditions 4-1

4
Rule Conditions

A rule condition is expressed using the attributes defined in the event structure. For
the travel services example, the rule condition is expressed using the attributes:
Airline, ToCity, Return, and Depart, as follows:

Airline = 'Abcair' and ToCity = 'Orlando' and Return - Depart >=7

Because a rule condition for a primitive event structure can be represented as a
standard SQL WHERE clause conditional expression, the previous rule condition is
shown without the XML markup. Were this rule condition to be represented with the
XML markup, the expression would be as follows:

<condition>
 Airline = 'Abcair' and ToCity = 'Orlando' and Return - Depart >=7
</condition>

XML markup can be ignored in the case of rules defined for simple event structures
because these cases usually involve simple usage. Because the rule condition specified
for composite event structures involves complex constructs and must support
incremental evaluation of rules, the condition expression is enhanced with some XML
markup. This support is added as XML extensions to the conditional expressions that
are typically in the SQL WHERE clause. The XML tags provided identify different parts
of a conditional expression and add special semantics to this expression.

4.1 Support for Incremental Evaluation of Rules
To enable incremental evaluation of rules and support complex rule applications, the
conditional expressions in the SQL WHERE clause are extended with meaningful XML
tags. The XML tags are provided to identify different parts of a conditional expression
and add special semantics to these expressions.

For example, the conditional expression (Flt.Airline = 'Abcair' and
Flt.ToCity = 'Orlando' and Flt.CustId = Car.CustId and
Car.CarType = 'Luxury') in the travel services rule has three parts, as follows:

■ Predicates defined on the primitive event AddFlight (Flt.Airline =
'Abcair' and Flt.ToCity = 'Orlando')

■ A predicate defined on the primitive event AddRentalCar (Car.CarType =
'Luxury')

■ A join predicate between the two primitive events (Flt.CustId =
Car.CustId)

Support for Incremental Evaluation of Rules

4-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rules Manager provides XML tags to identify various parts of a complex conditional
expression and support additional semantics. For example, the previous rule condition
can be represented using XML tags as follows1:

<condition>
 <and join="Flt.CustId = Car.CustId">
 <object name="Flt"> Airline='Abcair' and ToCity='Orlando' </object>
 <object name="Car"> CarType = 'Luxury' </object>
 </and>
</condition>

In this representation, the object elements capture the predicates specified for
individual primitive events and one join attribute of the <and> element captures the
join predicate behavior between two primitive events. The rule condition in this
format can be inserted into the rlm$rulecond column of the corresponding rule class
table. XML tags are provided to support more complex rule constructs. These tags are
summarized in Figure 4–1 and Table 4–1 and are described in Section 4.2 through
Section 4.5.

Figure 4–1 describes a hierarchical view of the supported XML tag elements and their
attributes for the rule condition XML schema definition that is described in detail in
Appendix F in the Rule Condition section. Table 4–1 shows a relational view of the
same supported XML tag extensions showing the XPath and some notes about the
elements and attributes.

1 For simplicity, the examples in this document are shown without the XML entity references
for < (<), > (>), and '(') symbols. Within a rule condition, less than is the only
symbol that must be specified using an entity reference (<) or used within a XML CDATA
section. Although it is not mandatory to use entity references for other symbols, they are
recommended for compatibility reasons. Following the SQL naming convention, all the values
specified for XML attributes and elements are case-insensitive. Case is preserved only if a
value appears within quotes.

Support for Incremental Evaluation of Rules

Rule Conditions 4-3

Figure 4–1 Hierarchical View of the XML Tag Extensions

Table 4–1 Relational View of the XML Tag Extensions

XML Tag Type Parent XPath

Number of
Occurrences
Allowed within Its
Parent Notes

condition Element None condition --- Denotes a
conditional
expression

and Element condition condition/and One Combines predicates

any Element condition condition/any One A substitute for "or";
true if any condition
is met

not Element and and/not One, as last child
element

Logical negation

notany Element and and/notany One, as last child
element

Logical negation;
detects
non-occurrence

object Element condition

and

any

not

notany

condition/object

and/object

any/object

not/object

notany/object

One

Two or more objects

Two or more objects

One object

Two or more objects

Primitive event

Rule Conditions with Sequencing

4-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

4.2 Rule Conditions with Sequencing
The rules defined for a composite event (consisting of two or more primitive events)
may specify a condition on the order in which the primitive events should occur. This
is called sequencing and it can be partial on a subset of primitive events, or it can be
complete based on all the primitive events. Sequencing in rule applications is
supported using the implicit timestamp attribute (rlm$crtTime) that is included in
each primitive event participating in a composite event.

The event creation times in the primitive events are used to enforce and detect
sequencing in rule applications. For example, the rule considered in the travel services
application can specify an additional predicate to offer the promotion only if the
AddRentalCar event is generated after the AddFlight event. The rule condition can
be extended to include this sequencing predicate, as follows:

<condition>
 <and join="Flt.CustId = Car.CustId" sequence="yes">
 <object name="Flt"> Airline='Abcair' and ToCity='Orlando' </object>
 <object name="Car"> CarType = 'Luxury' </object>
 </and>
</condition>

The sequence attribute in the preceding example ensures that the rule condition
evaluates to true only if the matching primitive events occur in the order in which they
are specified within the <and> element. The sequence attribute can be replaced with a
join predicate on the corresponding event creation times, shown as follows:

<condition>
 <and join="Flt.CustId = Car.CustId and Car.rlm$CrtTime >= Flt.rlm$CrtTime">
 <object name="Flt"> Airline='Abcair' and ToCity='Orlando' </object>
 <object name="Car""> CarType = 'Luxury' </object>

join Attribute and

any

not

notany

and/@join

any/@join

not/@join

notany/@join

One

One

One

One

Joins predicates

sequence Attribute and

any

and/@sequence

any/@sequence

One

One

Specifies an ordered
sequence

Specifies any
ordered sequence

equal Attribute and

any

and/@equal

any/@equal

One

One

Joins predicates

count Attribute any

notany

any/@count

notany/@count

One

One

Any n semantics

Any n semantics

by Attribute not

notany

not/@by

notany/@by

One

One

Deadline for
non-occurrence

Deadline for
non-occurrence

name Attribute object object/@name One Object name

Table 4–1 (Cont.) Relational View of the XML Tag Extensions

XML Tag Type Parent XPath

Number of
Occurrences
Allowed within Its
Parent Notes

Rule Conditions with Negation

Rule Conditions 4-5

 </and>
</condition>

Sequencing can be used to detect partial ordering among primitive events (for
example, using a join predicate on only two primitive events when there are three of
them in the composite event). The rlm$CrtTime attribute in the primitive event type
can also be used to apply additional time constrains in the rule conditions. For
example, the travel services rule may be valid only when the car reservations is made
within 24 hours of making the flight reservation. This is indicated in the bolded text of
the following example where the value 1 means one day. See Oracle Database
Application Developer's Guide - Fundamentals for more information about performing
date/timestamp arithmetic.

<condition>
 <and join="Flt.CustId = Car.CustId and
 Flt.rlm$CrtTime >= (Car.rlm$CrtTime - 1)"
 sequence="Yes">
 <object name="Flt"> Airline='Abcair' and ToCity='Orlando' </object>
 <object name="Car"> CarType = 'Luxury' </object>
 </and>
</condition>

Optionally, the call to the DBMS_RLMGR.PROCESS_RULES procedure may pass an
event with a specific event creation time. Within a primitive event, the rlm$CrtTime
attribute is treated as any other attribute in the event structure. However, when a
value is not specified for this attribute, it is assigned a default value of SYSTIMESTAMP
(in the database). If an application is sensitive to the difference between the times at
which the events are detected (in the application layer) and the times at which they are
added to Rules Manager, it may choose to set the values for event creation times and
add fully specified events to the rules class.

4.3 Rule Conditions with Negation
Rules with negation in their conditions are typically used to raise exceptions in
business processes. For example, a rule using negation could be "If an order is placed
by a Gold customer and the items are not shipped within 24 hours of the order
placement, alert the representative". In this case, the rule is defined for a composite
event consisting of two primitive events PlaceOrder and ShipOrder and the type
created for the composite event structure is shown as follows:

CREATE or REPLACE TYPE OrderTrack AS OBJECT (
 order PlaceOrder, -- primitive event type --
 ship ShipOrder); -- primitive event type --

For a composite event, a rule defined with negation evaluates to true when one of the
primitive events does not happen within a time delay of the other. So, negation always
accompanies a time delay that is relative to the other primitive event or events in the
composite event. For example, the rule condition for the order tracking rule can be
captured as follows, where the bolded text in the following example, "sysdate +1",
means by the end of the next day because the SQL datetime function SYSDATE returns
the current date and time of the operating system on which the database resides
(taking into account the time zone of the database server's operating system that was
in effect when the database was started).

<condition>
 <and equal="order.orderId, ship.orderId">
 <object name="order"> Type = 'Gold' </object>
 <not by="sysdate+1">

Rule Conditions with Negation

4-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 <object name="ship"/> -- empty elem: no conditions on the primitive event --
 </not>
 </and>
</condition>

The <not> XML element in the rule condition has the following semantics:

■ There can be only one <not> element in a rule condition.

■ The <not> element can only appear within an <and> element (as a conjunction to
other primitive events) and it should be the last element within the <and>
element.

■ The <not> element is activated only when all the other primitive events in the
composite events are detected.

■ The <not> element can contain only one <object> element that represents a
primitive event.

■ The <notany> element can be used in place of the <not> element to support a
notion of disjunction within the negation rule.

■ At the time of activation, the by attribute of the <not> element is executed to
compute the deadline for the primitive events in the <not> element. The value for
the by attribute can be expressed using the (database) SYSTIMESTAMP (to be set to
the time of activation) or any date attribute in the other primitive events
(including the event creation time attributes discussed in Section 4.2), or both. The
SQL datetime function SYSTIMESTAMP returns the system date including
fractional seconds and time zone of the system on which the database resides. So,
the rule condition in the preceding example can also be expressed as follows:

<condition>
 <and equal="order.orderId, ship.orderId">
 <object name="order"> Type = 'Gold' </object>
 <not by="order.rlm$CrtTime+1">
 <object name="ship"/>
 </not>
 </and>
</condition>

Another variant of the preceding rule is one that uses a user-supplied date in the
deadline computation. For example, a ShipBy attribute in the PlaceOrder event
can hold the time by which the shipment is expected and the deadline can be
computed using this attribute, such as shown here:

<condition>
 <and equal="order.orderId, ship.orderId">
 <object name="order"> Type = 'Gold' </object>
 <not by="order.ShipBy-1">
 <object name="ship"/>
 </not>
 </and>
</condition>

Rules with negation involving a deadline other than SYSTIMESTAMP are not allowed
in a rule class with the AUTOCOMMIT property turned off (see Section 3.7). This also
includes the rule classes configured for DMLEVENTS (see Section 3.8).

Rules involving negation constructs can be used to raise alerts (in corresponding rule
actions) when a set of primitive events are generated out of order. In applications such
as Workflow, rules are often used to enforce sequencing among various business
events. The action of such rules is to raise an exception (alert an agent) when the

Rule Conditions with Negation

Rule Conditions 4-7

events are detected out of order. A <not> element without a hard deadline (no by
attribute) can be used to define such rules.

Consider a composite event with three primitive events: PlaceOrder,
PaymentReceived, and ShipOrder. A rule can be used to alert an agent (action) if
the ShipOrder event is generated before the PaymentReceived event is detected.
(Note that there are alternate ways to model this application in a Workflow system,
but this approach is used to explain the negation concept). For this example, the
composite event structure and the rule condition are represented as follows:

CREATE or REPLACE TYPE OrderTrack AS OBJECT (
 order PlaceOrder, -- primitive event type –-
 pay PaymentReceived, -- primitive event type --
 ship ShipOrder); -- primitive event type --

<condition>
 <and equal="order.OrderId, pay.OrderId, ship.OrderId">
 <object name="order"/> -- no conditions on the primitive events --
 <object name="ship"/>
 <not>
 <object name="pay"/>
 </not>
 </and>
</condition>

The previous example uses a <not> element with no deadline specification (by
attribute) and thus this value defaults to SYSTIMESTAMP (the time at which all other
primitive events in the rule condition are detected). The sequence="yes" (Section 4.2)
property, such as shown in the following example, can be used to ensure ordering
among the detected events.

<condition>
 <and equal="order.OrderId, pay.OrderId, ship.OrderId" sequence="yes">
 <object name="order"/> -- no conditions on the primitive events --
 <object name="ship"/>
 <not>
 <object name="pay"/>
 </not>
 </and>
</condition>

In the previous rule condition, the deadline for the PaymentReceived event is
determined by the occurrence of the ShipOrder event, which follows the
corresponding PlaceOrder event. In effect, the action associated with the preceding
rule condition will be executed if the ShipOrder event is detected before the
PaymentReceived event for a particular order.

The negation construct can often be used to detect the non-occurrence of two or more
primitive events. For example, a rule such as "If an order is placed by a Gold customer
and the items are not shipped within 24 hours of the order placement or if the order is
not cancelled, alert the representative" uses negation on the two events, ShipOrder
and CancelOrder. Such rule conditions can be expressed using a <notany> element
in the place of the <not> element as shown in the following example:

<condition>
 <and equal="order.orderId, ship.orderId, cancel.orderId">
 <object name="order"> Type = 'Gold' </object>
 <notany count=1 by="order.rlm$CrtTime+1">
 <object name="ship"/>
 <object name="cancel"/> -- assuming a CancelOrder event --

Rule Conditions with Set Semantics

4-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 </notany>
 </and>
</condition>

The primitive events appearing within the <not> or <notany> element should not be
referenced in the join attribute specification of the <and> element. However, they
(primitive events) can be used within the EQUAL property specifications. If there is a
need to specify a join condition (other than those already captured by the EQUAL
property specifications), the join attribute for the <not> element can be used. The
conditional expression specified for this join attribute can reference all the primitive
events that appear in the rule condition, including those appearing within the <not>
element, such as shown in the following example:

<condition>
 <and equal="order.orderId, ship.orderId">
 <object name="order"> Type = 'Gold' </object>
 <not by="order.rlm$CrtTime+1"
 join="order.Address_zipcode = ship.Address_zipcode">
 <object name="ship"/>
 </not>
 </and>
</condition>

The rule condition with a negation is considered true only if the join condition in the
<and> element evaluates to true and the join condition in the not condition evaluates
to false (or there is no event that matches this criteria within specified deadline).

4.4 Rule Conditions with Set Semantics
In some applications, the primitive events that constitute a composite event can be the
same structure. For example, AddItem could be a primitive event that is generated
when a customer adds an item to his shopping cart. Rules can be defined to monitor
multiple items added to the shopping cart and suggest new items based on the past
customer experiences (association rules generated by a data mining tools).

Consider an electronics Web store that sells accessories for camcorders. A typical rule
in their application could be "If a customer adds a camcorder lens worth more than
$100, a lens filter, and a IR light to the shopping cart, suggest a tripod to him". This
rule consists of three simple conditions to be checked on every AddItem event
generated in the system, such as shown in the following example:

Accessory = 'Lens' and Price > 100
Accessory = 'Lens Filter'
Accessory = 'IR Light'

To support the application described previously, the composite event structure can be
modeled as an object type with multiple embedded types of the same primitive event
type (AddItem) as shown in the example that follows. If required, the same composite
event structure may also include other primitive event types.

CREATE or REPLACE TYPE AddItem AS OBJECT (
 Accessory VARCHAR(30),
 Make VARCHAR(20),
 Price NUMBER);
CREATE or REPLACE TYPE CrossSellEvent AS OBJECT (
 Item1 AddItem,
 Item2 AddItem,
 Item3 AddItem,
 Item4 AddItem,

Rule Conditions with Any n Semantics

Rule Conditions 4-9

 Item5 AddItem);

The preceding composite event is created to accommodate rules that are monitoring at
most five primitive events in the shopping cart. (Note that the shopping cart may still
contain more than 5 items.) In this rule application, the events can be configured for
SESSION duration (see Section 3.4) such that only the primitive events generated
within a user session are considered for rule matches. Using the composite event rule
condition syntax, the preceding condition can be expressed as follows:

<condition>
 <and>
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </and>
</condition>

Note that the element names Item1, Item2, and Item3 are used to assign the
matching events to appropriate attributes of the CrossSellEvent instance. Also, this
assignment allows (join) predicates across primitive events in a rule condition as
follows:

<condition>
 <and join="Item1.Price+Item2.Price+Item3.Price > 300">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </and>
</condition>

4.5 Rule Conditions with Any n Semantics
The examples discussed so far use rules that match all the primitive events specified in
a rule condition. This is achieved with the use of an <and> element as the parent of all
the primitive event conditions. Some rule applications require rules that could match a
subset of primitive events specified in the rule condition. For example, consider a
composite event CE1 consisting of three primitive events PE1, PE2, and PE3. Now, a
rule condition defined for the composite event may need to match only one of the
three primitive events. For this example, the composite event structure and the rule
condition are represented as follows:

-- Composite event structure --
CREATE or REPLACE TYPE CE1 AS OBJECT (
 pe1Inst PE1,
 pe2Inst PE2,
 pe3Inst PE3);
-- Sample Rule condition --
<condition>
 <any>
 <object name="pe1Inst"/>
 <object name="pe2Inst"/>
 <object name="pe3Inst"/>
 </any>
</condition>

When the rule condition should match any two of the three primitive events, the
count attribute of the <any> element can be used, as shown in the example that

Rule Conditions with Any n Semantics

4-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

follows. By default, the count attribute has a value of 1, which is equivalent to a
disjunction (OR) of all the primitive events specified within the <any> element.

<condition>
 <any count=2>
 <object name="pe1Inst"/>
 <object name="pe2Inst"/>
 <object name="pe3Inst"/>
 </any>
</condition>

The Any n semantics in the rule conditions are very common in applications using set
semantics. The rule considered in the cross-selling application of Section 4.4 can be
extended to suggest the tripod to the customer if the shopping cart has any two of the
three items specified. The condition for this rule can be represented using the Any n
syntax as follows:

<condition>
 <any count=2>
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

In a rule condition, some of the primitive events specified within an <any> list may be
mandatory for the condition to evaluate to true. For example, in the preceding rule
condition, the Lens (Item1) may be mandatory and it should always count for one item
in two items matched with the <any count=2> specification. This new rule condition
can be represented using the join attribute of the <any> element as follows:

<condition>
 <any count=2 join="Item1 IS NOT NULL">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

Within an <any> list, often there is a need to correlate the primitive events that occur.
For example, the preceding rule can be extended to suggest the tripod to the customer
only if the Make attribute of the two items matched is same. When using an <and>
element (to match all three items), this can be posed as a join predicate on the Make
attribute of each primitive event, such as shown in the following example:

<condition>
 <and join="Item1.Make=Item2.Make and Item2.Make=Item3.Make">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

However, similar join predicates cannot be used to correlate primitive events in an
<any> list because the missing primitive events (the one left out in 2 out of 3) are
represented as NULLs and any predicate (other than IS NULL) on a NULL value is
always false. For this purpose, when using the <any count=2> specification, the rule
should use the following join condition:

(Item1.Make is null and Item2.Make = Item3.Make) or
 (Item2.Make is null and Item1.Make = Item3.Make) or

Rule Conditions with Any n Semantics

Rule Conditions 4-11

 (Item3.Make is null and Item1.Make = Item2.Make)

Within an <any> element, the preceding join condition can be represented in an
abbreviated form using an equal clause. With this syntax, the join condition works
well with any value assigned to the count attribute of the <any> element, such as
shown in the following example:

<condition>
 <any count=2 equal="Item1.Make, Item2.Make, Item3.Make">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

The equality joins among primitive events of a composite event are very common and
thus this abbreviated syntax is supported for <and> element as well, as shown in the
following example:

<condition>
 <and equal="Item1.Make, Item2.Make, Item3.Make">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
</condition>

When both equal and join attributes are used in an <and> or an <any> element, the
join predicates represented by the equal specification are combined (using logical
AND) with the join predicates listed with the join attribute. For example, the
following condition matches any two specified items which are of same make and
whose total value is greater than 300. (Note the use of NVL functions in the join
predicates).

<condition>
 <any count=2 equal="Item1.Make, Item2.Make, Item3.Make"
 join="NVL(Item1.Price,0) + NVL(Item2.Price,0) + NVL(Item3.Price,0) > 300">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

The use of equal attribute at the rule class level (instead of each rule) is discussed in
Section 3.5.

The sequence attribute (Section 4.2) can be used in an <any> element to ensure that
the matching primitive events happen in the specified order for the rule condition to
evaluate to true.

<condition>
 <any count=2 sequence="yes">
 <object name="Item1"> Accessory = 'Lens' and Price > 100 </object>
 <object name="Item2"> Accessory = 'Lens Filter' </object>
 <object name="Item3"> Accessory = 'IR Light' </object>
 </any>
</condition>

Rule Conditions with Any n Semantics

4-12 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rules Applications That Span Multiple Tiers 5-1

5
Rules Applications That Span Multiple Tiers

Rules applications can be run in multitier mode. For rules applications that span
multiple tiers where rule management is handled in the database, but the action
execution for the rules is handled in the application server, the actions for the rules
matching an event cannot be invoked from an action callback procedure. Instead, a
results view is populated with the information about the events and matching rules;
both of which are available for external action execution. The results view can be
queried to determine the rules that match an event and their corresponding actions
can then be executed.

5.1 Creating Rules Applications That Span Multiple Tiers
To handle rules applications with certain rules having their action execution occurring
on the application server, you must configure the rule class for external execution (in
addition to configuring the action callback procedure). The steps to do this are similar
to those described in Section 2.3, but are modified as follows:

1. Create the event structure as an object type in the database (same as Step 1 in
Section 2.3).

2. Create the TravelPromotion rule class. Also define the results view, even
though you may not use it initially. The results view can be used, for example, to
create the TravelPromotion rule class, such that for each rule session (that
processes some events for a rule class), the action execution can switch at runtime
between either the action callback procedure (calling dbms_rlmgr.process_
rules() as shown in Step 5 in Section 2.3) or external action execution (calling
dbms_rlmgr.add_event(), as shown in Step 5 in this section). For this
purpose, the rule class is configured with an action callback procedure and a
results view, as shown in the following example:

BEGIN
 dbms_rlmgr.create_rule_class (
 rule_class => 'TravelPromotion',
 event_struct => 'AddFlight',
 action_cbk => 'PromoAction',
 rslt_viewnm => 'MatchingPromos',
 actprf_spec => 'PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)');
END;

Note that this command creates the following MatchingPromos results view to
hold the results from the rule evaluation. This view has a fixed set of columns to
list the system generated event identifier (rlm$eventid), the event instance
(rlm$event for a (simple) primitive event), the rule identifier for the matching
rules (rlm$ruleid), the rule condition (rlm$rulecond), the rule description

Creating Rules Applications That Span Multiple Tiers

5-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

(rlm$ruledesc), and a variable set of columns to represent the action
preferences associated with the rules (PromoType and OfferedBy columns in
this example). For an event matching a set of rules in the rule class, the
information about the event and the matched rules can be obtained by querying
this view.

VIEW MatchingPromos (
 rlm$eventid ROWID,
 rlm$event AddFlight,
 rlm$ruleid VARCHAR2(100),
 PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)),
 rlm$rulecond VARCHAR2(4000),
 rlm$ruledesc VARCHAR2(1000);
);

The results view in the case of a rule class configured for a composite event is
structured to hold the results from evaluating the rules using one or more
primitive events. For this purpose, this view is created with separate columns for
each primitive event within the composite event. For example, the following
results view is created for the rule class defined in Section 2.4.1:

VIEW CompMatchingPromos (
 rlm$eventid ROWID,
 Flt AddFlight,
 Car AddRentalCar,
 rlm$ruleid VARCHAR2(100),
 PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20),
 rlm$rulecond VARCHAR2(4000),
 rlm$ruledesc VARCHAR2(1000)),

3. Implement the action callback procedure (same as Step 3 in Section 2.3).

4. Add rules to the rule class (same as Step 4 in Section 2.3).

5. Identify the matching rules for an event. This step replaces the use of the process
rules procedure (dbms_rlmgr.process_rules()) that identifies the matching
rules and executes the corresponding actions with an add event procedure (dbms_
rlmgr.add_event()) that adds the event to the rule class one at a time and
identifies the matching rules for a given event that are later accessed using the
MatchingPromos results view.

BEGIN
dbms_rlmgr.add_event (
 rule_class => 'TravelPromotion',
 event_inst => AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
'01-APR-2003', '08-APR-2003'));
END;

6. Find the matching rules by querying the results view. For example, the following
query returns a list of all the events added in the current session and their
corresponding matching rules (and their action preferences):

SELECT rlm$eventid, rlm$ruleid, PromoType, OfferedBy FROM MatchingPromos;

The results from this query can be used to execute the appropriate action in the
application server. In the case of a rule class defined for a single event structure,
this view implicitly has a rlm$eventid column that returns a system generated
event identifier and rlm$event column to return the actual event as the
(primitive event structure's) object instance.

Creating Rules Applications That Span Multiple Tiers

Rules Applications That Span Multiple Tiers 5-3

When you need to identify one candidate rule from the result set (conflict
resolution), you can use ORDER BY, GROUP BY, and HAVING clauses. Note that
the callback mechanism for action execution can only use ORDER BY semantics for
conflict resolution. See Section 3.3 for more information. For example, if the Travel
Services application offers only one promotion of each type, the following
analytical query can be used to identify the appropriate rules to be fired:

SELECT rlm$eventid, rlm$ruleid, PromoType, OfferedBy
FROM (SELECT rlm$eventid, rlm$ruleid, PromoType, OfferedBy,
 ROW_NUMBER() over (PARTITION BY PromoType
 ORDER BY rlm$ruleid) rnum
 FROM MatchingPromos)
WHERE rnum=1;

In this example, the rule identified as the one to be fired is the first one (rnum=1)
returned from the query of the result set for the set of rules that evaluated to be
true, partitioned by the type of promotion and ordered in ascending order by the
rlm$ruleid column value.

The results from a rule evaluation are available until the end of the rule session. By
default, the database session (from connect to disconnect) is considered the rule
session. Alternatively, the reset session procedure (dbms_rlmgr.reset_
session()) can be used to end a rule session and start a new session within a
database session. Note that at the beginning of a rule session, the results view is
empty.

7. Consume the event that is used in a rule execution. An event can be marked for
exclusive or shared execution of rules by specifying the consumption policy for the
events. Previously, in Section 2.3, if the TravelPromotion rule class was configured
for exclusive consumption of events, then an event used for the execution of a rule
was immediately deleted from the system and it could not be used for any other
(matching) rules. Because the action callback procedure is used, the rule manager
automatically handles the consumption of the exclusive events. However, when
external action execution is used, the application should explicitly consume the
event chosen for an action execution by using the consume event procedure
(dbms_rlmgr.consume_event()). This procedure ensures that when multiple
concurrent sessions try to consume the same event, only one of them succeeds. So,
the action for a particular rule should be executed if the event is successfully
consumed, as follows:

DECLARE
 consumed number;
BEGIN
 consumed := dbms_rlmgr.consume_event (
 rule_class => 'TravelPromotion',
 event_ident => :eventIdBind);
 IF (consumed = 1) THEN
 OfferPromotion(…); -- offer the promotion only if the event
 -- consumption is successful
 END IF;
END;

The event identifier is obtained from the value listed in the rlm$eventid column
of the MatchingPromos results view. If the consumption policy (see Section 3.3)
for all events is shared, then the CONSUME_EVENT call always returns 1 and the
event is still available. Note that only the events configured for exclusive
consumption are consumed and the corresponding rows from the results view are
deleted.

Modes of Operation

5-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

5.2 Modes of Operation
A rule-based application designed using Rules Manager has a varying number of
steps, depending on its mode of operation. Almost all the steps in both cases, single
tier and multitier, are one-time implementations. Once these implementations are in
place, the end-user no longer needs to deal with the Rule Manager APIs. The new
rules are added using the SQL INSERT statement against the rule database table and
the run-time calls that are embedded in larger applications will automatically process
these new rules.

A rule class stored in the database can operate in either of the following two modes:

■ Single tier mode -- the rule evaluation, identification of the candidate rules or
action for execution, execution of action, and optional consumption of events all
happen in the database with a single PROCESS_RULES call (which passes in the
event instance). Note that this is the most common case even for applications
running outside the database.

■ Multitier mode -- the rule evaluation happens in the database and the remaining
steps described in single-tier mode can be done in any tier with appropriate
database calls (with a maximum of four steps, which are described in
Section 5.2.2).

5.2.1 Single Tier Mode
See either Section 2.3 or Section 2.4 for an example of a rule class stored in the database
that uses a single tier mode of operation.

5.2.2 Multitier Mode
The main reasons for a rules application to operate in the multitier mode are:

■ The action suggested by the rules cannot be implemented as a database function
or package (PL/SQL or Java) in the database.

■ The conflict resolution criterion for the rule class is complex and it cannot be
specified using a SQL ORDER BY clause. In situations when a single event
processing a set of rules matches two or more rules, conflict resolution criterion is
used to identify a subset of rules or determine an exact order of rules that should
be fired, or both. Using a simple SQL ORDER BY clause is usually sufficient for
most applications. However, multitier mode can make use of any SQL operator
(including analytical operators) for the conflict resolution criterion.

The four steps to use Rules Manager in the multitier mode are:

1. Tell the database about the event by calling the dbms_rlmgr.add_event
procedure.

2. Ask the database which rules apply (query a view, possibly with a complex query
with a SQL ORDER BY clause, and so forth).

3. Based on the applications conflict-resolution criteria, identify a subset of the
matched rules that should be fired and prepare for executing the action by
consuming the event with a dbms_rlmgr.consume_event function call.

4. Upon success in Step 3, make calls to the (local, middle tier resident) routines that
the programmer maps to the actions that are defined.

If the only reason for using the multitier mode is to execute the actions in the
application server, then the single tier mode with a few modifications can be used
(thereby reducing the number of steps involved to two). The action callback procedure

Modes of Operation

Rules Applications That Span Multiple Tiers 5-5

in the single-tier mode can be implemented to enqueue the actions and continue with
the rest of the operations (consumption). The application server can subscribe to this
action queue and execute the actions. In this configuration a minimum of two database
calls are required (PROCESS_RULES call and DEQUEUE call).

Rules Manager, as a database feature, can be used in multiuser and concurrent session
environments. It allows two concurrent sessions to process the same set of rules and
call for deletion of a common event that matched the rules and ensures that only one
of the sessions succeeds. When the rule application is operating in the single-tier
mode, this happens by specifying an EXCLUSIVE consumption policy for the event
type. The PROCESS_RULE procedure controls the event consumption logic and avoids
deadlocks between various sessions. When the rule application is operating in
multitier mode, the middle tier application must signal its intent to execute the action
of a rule by calling the CONSUME_EVENT function (because the user application is
controlling the conflict resolution criterion). This call returns 0 if any one of the events
required by the action has already been consumed by another concurrent session. So,
the application should execute the action only if this call returns 1. Note that this step
can be skipped if all the events are configured for SHARED consumption (implying that
the events are shared for multiple rule executions).

Because one of the main reasons for using the multitier mode is to implement complex
conflict resolution criteria, the results from matching an event with the rules is
exposed (to the application) as a relation that can be queried using complex SQL. This
view can also be used to specify different resolution criteria based on some external
factors (for example, use one conflict-resolution criterion between the times 9AM-5PM
and other criterion for the rest of the day).

5.2.2.1 Actions in the Mid-Tier
Rules Manager rule classes can store any form of data (scalar, XML, Raw, BLOB, and
so forth) along with the rule definition. This data is returned back to the
action-callback procedure or the application when the corresponding rule matches an
event.

For example, a rule application may choose to store Simple Object Access Protocol
(SOAP) messages in their full form (in an XMLType column) as actions for each rule.
So, when a rule matches an event, this SOAP message is returned to the application.
The application in the middle tier could interpret the data accordingly and perform the
required action (post the SOAP message). See Appendix G for additional information
on action execution.

In another application, the exact call for the action may be fixed, for example using the
OfferDiscount2Customer function. In this case, the rule definitions may just store
the percentage of discount that should be offered. When this discount value is
returned to the application, it can be bound as an argument to the
OfferDiscount2Customer function call.

Modes of Operation

5-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rules Manager Object Types 6-1

6
Rules Manager Object Types

Rules Manager is supplied with one predefined type and a public synonym for this
type. Table 6–1 describes the Rules Manager object type.

Tip: See the "Rules Manager Types" chapter in Oracle Database
PL/SQL Packages and Types Reference for all reference information
concerning Rules Manager object types.

Table 6–1 Rules Manager Object Types

Object Type Name Description

RLM$EVENTIDS Specifies a list of event identifiers to the CONSUME_PRIM_
EVENTS procedure

6-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

DBMS_RLMGR Package 7-1

7
DBMS_RLMGR Package

Rules Manager uses the DBMS_RLMGR package, which contains various procedures, to
create and manage rules and rule sessions. The following table describes the
procedures in the DBMS_RLMGR package.

None of the values and names passed to the procedures defined in the DBMS_RLMGR
package are case insensitive, unless otherwise mentioned. In order to preserve the
case, double quotation marks should be used around the values.

Tip: See the "DBMS_RLMGR" chapter in Oracle Database PL/SQL
Packages and Types Reference for all reference information concerning
Rules Manager package procedures.

Table 7–1 DBMS_RLMGR Procedures

Procedure Description

ADD_ELEMENTARY_ATTRIBUTE
procedure

Adds the specified attribute to the event structure (and the Expression
Filter attribute set)

ADD_EVENT procedure Adds an event to a rule class in an active session

ADD_FUNCTIONS procedure Adds a function, a type, or a package to the approved list of functions
with an event structure (also the Expression Filter attribute set)

ADD_RULE procedure Adds a rule to the rule class

CONSUME_EVENT function Consumes an event using its identifiers and prepares the corresponding
rule for action execution

CONSUME_PRIM_EVENTS function Consumes one or more primitive events with all or none semantics

CREATE_EVENT_STRUCTURE
procedure

Creates an event structure

CREATE_RULE_CLASS procedure Creates a rule class

DELETE_RULE procedure Deletes a rule from a rule class

DROP_EVENT_STRUCTURE procedure Drops an event structure

DROP_RULE_CLASS procedure Drops a rule class

GRANT_PRIVILEGE procedure Grants a privilege on a rule class to another user

PROCESS_RULES procedure Processes the rules for a given event

RESET_SESSION procedure Starts a new rule session within a database session

REVOKE_PRIVILEGE Procedure Revokes a privilege on a rule class from a user

7-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rules Manager Views 8-1

8
Rules Manager Views

Rules Manager metadata can be viewed using the Rules Manager views defined with a
xxx_RLMGR prefix, where xxx can be the string USER or ALL. These views are
read-only to users and are created and maintained by the Rules Manager procedures.

Table 8–1 lists the names of the views and their descriptions.

8.1 USER_RLMGR_EVENT_STRUCTS View
The USER_RLMGR_EVENT_STRUCTS view lists all the event structures in the current
schema. This view is defined with the columns listed and described in Table 8–2.

8.2 USER_RLMGR_RULE_CLASSES View
The USER_RLMGR_RULE_CLASSES view lists all the rule classes in the current schema.
This view is defined with the columns listed and described in Table 8–3.

Table 8–1 Rules Manager Views

View Name Description

USER_RLMGR_EVENT_STRUCTS View List of all event structures in the current schema

USER_RLMGR_RULE_CLASSES View List of all rule classes in the current schema

USER_RLMGR_RULE_CLASS_STATUS View List of the progress of rule class creation

USER_RLMGR_PRIVILEGES View List of the privileges for the rule class

USER_RLMGR_COMPRCLS_PROPERTIES View List of primitive events configured for a rule class and the
properties for each event

Table 8–2 USER_RLMGR_EVENT_STRUCTS View

Column Name Data Type Description

EVENT_STRUCTURE_NAME VARCHAR2 Specifies the name of the event structure

HAS_TIMESTAMP VARCHAR2 Specifies whether the event structure has the
event creation timestamp - YES/NO

IS_PRIMITIVE VARCHAR2 Specifies whether the event structure is strictly
primitive - YES/NO

Table 8–3 USER_RLMGR_RULE_CLASS View

Column Name Data Type Description

RULE_CLASS_NAME VARCHAR2 Name of the rule class

USER_RLMGR_RULE_CLASS_STATUS View

8-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

8.3 USER_RLMGR_RULE_CLASS_STATUS View
The USER_RLMGR_RULE_CLASS_STATUS view lists the progress of rule class creation.
This view is defined with the columns listed and described in Table 8–4.

8.4 USER_RLMGR_PRIVILEGES View
The USER_RLMGR_PRIVILEGES view lists the privileges for the rule classes. This
view is defined with the columns listed and described in Table 8–5.

ACTION_CALLBACK VARCHAR2 The procedure configured as the action callback for
the rule class

EVENT_STRUCTURE VARCHAR2 The event structure used for the rule class

RULE_CLASS_PACK VARCHAR2 Name of the package implementing the rule class
cursors (internal)

RCLS_RSLT_VIEW VARCHAR2 View to display the matching events and rules for the
current session

IS_COMPOSITE VARCHAR2 Indicates whether the rules class is configured for
composite events; if so, the value is YES

SEQUENCE_ENB VARCHAR2 Indicates whether the rules class is enabled for rule
conditions with sequencing; if so, the value is YES

AUTOCOMMIT VARCHAR2 Indicates whether the rules class is configured for
auto-committing events and rules; if so, the value is
YES

CONSUMPTION VARCHAR2 Default Consumption policy for the events in the rule
class: valid values are EXCLUSIVE and SHARED

DURATION VARCHAR2 Default Duration policy of the primitive events

ORDERING VARCHAR2 Ordering clause used for conflict resolution among
matching rules and events

EQUAL VARCHAR2 Equal specification for the rule classes configured for
composite events

DML_EVENTS VARCHAR2 Types of DML operations enabled for event
management

Table 8–4 USER_RLMGR_RULE_CLASS_STATUS View

Column Name Data Type Description

RULE_CLASS_NAME VARCHAR2 Name of the rule class

STATUS VARCHAR2 Current status of the rule class

STATUS_CODE VARCHAR2 Internal code for the status

NEXT_OPERATION VARCHAR2 Next operation performed on the rule class

Table 8–5 USER_RLMGR_PRIVILEGES View

Column Name Data Type Description

RULE_CLASS_OWNER VARCHAR2 Owner of the rule class

RULE_CLASS_NAME VARCHAR2 Name of the rule class

Table 8–3 (Cont.) USER_RLMGR_RULE_CLASS View

Column Name Data Type Description

USER_RLMGR_COMPRCLS_PROPERTIES View

Rules Manager Views 8-3

8.5 USER_RLMGR_COMPRCLS_PROPERTIES View
The USER_RLMGR_COMPRCLS_PROPERTIES view lists the primitive events
configured for a rule class and their properties. This view is defined with the columns
listed and described in Table 8–6.

GRANTEE VARCHAR2 Grantee of the privilege. Current user or PUBLIC

PRCS_RULE_PRIV VARCHAR2 Current user's privilege to execute or process
rules

ADD_RULE_PRIV VARCHAR2 Current user's privilege to add new rules to the
rule class

DEL_RULE_PRIV VARCHAR2 Current user's privilege to delete rules

Table 8–6 USER_RLMGR_COMPRCLS_PROPERTIES View

Column Name Data Type Description

RULE_CLASS_NAME VARCHAR2 Name of the rule class configured for composite
rules

PRIM_EVENT VARCHAR2 Name of the primitive event in the composite event

PRIM_EVENT_STRUCT VARCHAR2 Name of the primitive event structure (object type)

HAS_CRTTIME_ATTR VARCHAR2 Whether the primitive event structure has the
RLM$CRTTIME attribute; if so, the value is YES

CONSUMPTION VARCHAR2 Consumption policy for the primitive event: valid
values are EXCLUSIVE and SHARED

TABLE_ALIAS_OF VARCHAR2 Table name for the table alias primitive event

DURATION VARCHAR2 Duration policy for the primitive event

Table 8–5 (Cont.) USER_RLMGR_PRIVILEGES View

Column Name Data Type Description

USER_RLMGR_COMPRCLS_PROPERTIES View

8-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rules Manager Use Cases 9-1

9
Rules Manager Use Cases

This chapter describes a Law Enforcement application and an Order Management
application to demonstrate the use of Rules Manager in multiple configurations and to
demonstrate the expressiveness of the complex rule conditions.

9.1 Law Enforcement Rules Application
In this application, rules are defined to raise security alerts, place a person on the
watch list, and so forth based on certain criteria. For this purpose, some real-world
events such as bank transactions, transportation, and field reports are used to describe
the criteria.

The basic steps to create the Law Enforcement rules application with composite events
are as follows:

1. Create the table messagequeue to hold the messages with a timestamp value:

create table messagequeue (attime timestamp, mesg varchar2(4000));

2. Create the basic types that represent the event structure:

create or replace type BankTransaction as object
 (subjectId NUMBER, --- Refer to entity such as personnel
 --- Could be SSN and so forth
 tranType VARCHAR2(30), --- DEPOSIT / TRANSFER / WITHDRAW
 amount NUMBER, ---
 fundFrom VARCHAR2(30)); --- Location from which it is transfered
/

create or replace type Transportation as object
 (subjectId NUMBER,
 vesselType VARCHAR2(30), --- TRUCK / CAR / PLANE / TRAIN
 locFrom VARCHAR2(30), --- Starting location
 locTo VARCHAR2(30), --- Ending location
 startDate DATE, --- start date
 endDate DATE); --- end date
/

create or replace type FieldReport as object
 (subjectId NUMBER,
 rptType VARCHAR2(30), --- Tel call / Meeting / Bg Check
 whoWith NUMBER, --- Identifier of the person with whom
 --- the subject is in touch

Note: The complete scripts for these two applications can be found
installed at: $ORACLE_HOME/rdbms/demo as ruldemo.sql.

Law Enforcement Rules Application

9-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 rptOrg VARCHAR2(30), --- Organization reporting it
 rptReg VARCHAR2(30), --- Region
 rptBody sys.XMLType); --- The actual report
/

3. Create a composite event type that consists of the basic types defined in Step 2:

create or replace type LawEnforcement as object
 (bank BankTransaction,
 transport Transportation,
 fldrpt FieldReport);
/

4. Create a database table for the rules defined on the composite event structure:

BEGIN
 DBMS_RLMGR.CREATE_RULE_CLASS(
 rule_class => 'LawEnforcementRC',
 event_struct => 'LawEnforcement',
 action_cbk => 'LawEnforcementCBK',
 actprf_spec => 'actionType VARCHAR2(40), actionParam VARCHAR2(100)',
 rslt_viewnm => 'MatchedCriteria',
 rlcls_prop => '<composite
 equal="bank.subjectId, transport.subjectId, fldrpt.subjectId"
 ordering="rlm$rule.rlm$ruleid, bank.subjectId, transport.subjectId"/>');
END;
/

The rule class LawEnforcementRC is a relational table that acts as the repository
for rules. This table has a set of predefined columns to store the rule identifiers,
rule conditions and the descriptions. In addition to these columns, this rule class
table is defined with two columns, actionType and actionParam, as specified
through the actpref_spec argument. These columns capture the type of action
that should be carried for each rule. For example:

desc LawEnforcementRC;
 Name Null? Type
 --------- -------- --
 RLM$RULEID VARCHAR2(100)
 ACTIONTYPE VARCHAR2(40)
 ACTIONPARAM VARCHAR2(100)
 RLM$RULECOND VARCHAR2(4000)
 RLM$RULEDESC VARCHAR2(1000)

This step also creates the skeleton for an action callback procedure with the
specified name. For example:

select text from user_source where name = 'LAWENFORCEMENTCBK' order by line;

TEXT

procedure "LAWENFORCEMENTCBK" ("BANK" "BANKTRANSACTION",
 "TRANSPORT" "TRANSPORTATION",
 "FLDRPT" "FIELDREPORT",
 rlm$rule "LAWENFORCEMENTRC"%ROWTYPE) is
 begin
 null;
 --- The action for the matching rules can be carried here.
 --- The appropriate action can be determined from the
 --- event and action preferences associated with each rule.
 end;

Law Enforcement Rules Application

Rules Manager Use Cases 9-3

10 rows selected.

5. Implement the callback procedure to perform the appropriate action for each
matching rule, based on the event instances that matched the rule and the action
preferences associated with the rule. For this use case, a detailed message inserted
into the message queue table is considered the action for the rules. For example:

CREATE OR REPLACE PROCEDURE LAWENFORCEMENTCBK (
 bank banktransaction,
 transport transportation,
 fldrpt fieldreport,
 rlm$rule LawEnforcementRC%ROWTYPE) IS
 mesg VARCHAR2(4000);
 msgl VARCHAR2(100);
begin
 msgl := 'Rule '||rlm$rule.rlm$ruleid||' matched following primitive events';
 dbms_output.put_line(msgl);
 mesg := msgl||chr(10);
 if (bank is not null) then
 msgl := '->Bank Transaction by subject ('||bank.subjectId||') of type
 ['||bank.tranType||']';
 dbms_output.put_line(msgl);
 mesg := mesg||msgl||chr(10);
 end if;
 if (transport is not null) then
 msgl :=
 '->Transportation by subject('||transport.subjectId||') use vessel
 ['||transport.vesselType||']';
 dbms_output.put_line(msgl);
 mesg := mesg||msgl||chr(10);
 end if;
 if (fldrpt is not null) then
 msgl :=
 '->Field report refer to('||fldrpt.subjectId||' and '||fldrpt.whowith||')';
 dbms_output.put_line(msgl);
 mesg := mesg||msgl||chr(10);
 end if;

 msgl := '=>Recommended Action : Action Type ['||rlm$rule.actionType||
 '] Action Parameter ['||rlm$rule.actionParam||']';
 dbms_output.put_line(msgl||chr(10));
 mesg := mesg||msgl||chr(10);
 insert into messagequeue values (systimestamp, mesg);
 end;
/

6. The rules defined in the rules class can make use of user-defined functions in the
database schema. The commands in the following list create some dummy
functions that are later used in the rule conditions.

a. For the value of the region passed in, query the restricted areas table and
return 1 if the current region is a restricted area:

CREATE OR REPLACE FUNCTION IsRestrictedArea(region VARCHAR2)
 RETURN NUMBER IS
BEGIN
-- User can expand this function and implement a logic
-- that relies on other relational tables.
RETURN 1;
END;

Law Enforcement Rules Application

9-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

/

b. Check to see if the subject chosen is on the watch list and return 1 if True:

CREATE OR REPLACE FUNCTION OnWatchList(subject NUMBER)
 RETURN NUMBER IS
BEGIN
-- User can expand this function and implement a logic
-- that relies on other relational tables.
RETURN 1;
END;
/

c. Check to see if the two parties are associates and return 1 if the two subjects
passed in are associates according to the registry:

CREATE OR REPLACE FUNCTION AreAssociates(subjectA NUMBER,
 subjectB NUMBER)
 RETURN NUMBER IS
BEGIN
-- User can expand this function and implement a logic
-- that relies on other relational tables.
RETURN 1;
END;
/

d. Add all three user-defined functions to the composite event LawEnforcement:

EXEC DBMS_RLMGR.ADD_FUNCTIONS('LawEnforcement', 'OnWatchList');
EXEC DBMS_RLMGR.ADD_FUNCTIONS('LawEnforcement', 'IsRestrictedArea');
EXEC DBMS_RLMGR.ADD_FUNCTIONS('LawEnforcement', 'AreAssociates');

7. Define the rules that suggest some actions:

a. Rule: Add a person to the NYPD watch list if he receives a money transfer for
more than $10,000 and he rents a truck, one way, to one of the restricted areas.
Note that the join predicate is specified at the rule class level.

INSERT INTO LawEnforcementRC (rlm$ruleid, actionType, actionParam,
rlm$rulecond)
VALUES ('1', 'ADD2WATCHLIST','NYPD',
 '<condition>
 <and>
 <object name="bank">
 tranType = ''TRANSFER'' AND amount > 10000 AND
 fundFrom != ''usa''
 </object>
 <object name="transport">
 vesselType = ''TRUCK'' AND locFrom != locTo AND
 IsRestrictedArea(locTo)=1
 </object>
 </and>
 </condition>');

b. Rule: Add a person to the NYPD watch list if two of the following three
conditions are met. The person gets a money transfer for over $10,000 from
outside the United States, he rented a truck, one-way, into one of the restricted
areas, and he had a phone conversation with a person already on the watch
list. The following rule demonstrates the use of the <ANY> element where a
rule condition is considered true if m out of n events are detected.

INSERT INTO LawEnforcementRC (rlm$ruleid, actionType, actionParam,

Law Enforcement Rules Application

Rules Manager Use Cases 9-5

rlm$rulecond)
VALUES ('2', 'ADD2WATCHLIST','NYPD',
 '<condition>
 <any count="2">
 <object name="bank">
 tranType = ''TRANSFER'' AND amount > 10000 AND
 fundFrom != ''usa''
 </object>
 <object name="transport">
 vesselType = ''TRUCK'' AND locFrom != locTo AND
 IsRestrictedArea(locTo)=1
 </object>
 <object name="fldrpt">
 rptType = ''TELCALL'' AND OnWatchList(whoWith) = 1
 </object>
 </any>
 </condition>');

c. Rule: Start a background check on a person if he receives a large sum of
money from outside the United States, he rents a truck one-way into one of the
restricted areas, and there is no field report with his background information.
The following rule demonstrates the use of negation where a rule condition is
considered true if some of the specified events are detected and the other
events are not detected:

INSERT INTO LawEnforcementRC (rlm$ruleid, actionType, actionParam,
rlm$rulecond)
VALUES ('3','STARTBACKGROUNDCHECK','RENTAL_DESTINATION',
 '<condition>
 <and>
 <object name="bank">
 tranType = ''TRANSFER'' AND amount > 10000 AND
 fundFrom != ''USA''
 </object>
 <object name="transport">
 vesselType=''TRUCK'' AND locFrom != locTo AND
 IsRestrictedArea(locTo)=1
 </object>
 <not>
 <object name="fldrpt"/>
 </not>
 </and>
 </condition>');

d. Rule: If a subject received over $10,000 from outside the United States, he
rented a truck for one way trip into a restricted area and a field report saying
that the subject was never arrested before was not submitted within "certain"
(0.001 fraction of a day; this could be days, but seconds are used to
demonstrate the use of a deadline) period, add the destination of the truck to
high-risk areas. This rule demonstrates Negation with a deadline:

INSERT INTO LawEnforcementRC (rlm$ruleid, actionType, actionParam,
rlm$rulecond)
VALUES ('4','ADD2HIGH_RISK_AREA','RENTAL_DESTINATION',
 '<condition>
 <and>
 <object name="bank"
 tranType = ''TRANSFER'' AND amount > 10000 AND
 fundFrom != ''usa''
 </object>

Law Enforcement Rules Application

9-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 <object name="transport">
 vesselType = ''TRUCK'' AND locFrom != locTo AND
 IsRestrictedArea(locTo)=1
 </object>
 <not by="systimestamp+0.001">
 <object name="fldrpt">
 rptType = ''BACKGROUNDCHECK'' and
 extract(rptBody, ''/history/arrests[@number=0'')
 is not null
 </object>
 </not>
 </and>
 </condition>');

e. Browse the rules. This is optional. The following example demonstrates this
task:

select rlm$ruleid, rlm$rulecond from LawEnforcementRC order by 1;

RLM$R RLM$RULECOND
----- --
1 <condition>
 <and>
 <object name="bank">
 tranType = 'TRANSFER' AND amount > 10000 AND fundFrom != 'usa'
 </object>
 <object name="transport">
 vesselType = 'TRUCK' AND locFrom != locTo AND
 IsRestrictedArea(locTo)=1
 </object>
 </and>
 </condition>
.
.
.

8. Process the rules for the primitive events.

a. Add two primitive events that each partially match one or more rules and
together match one rule, such that the rules action is executed (the message is
printed to the screen as well as inserted into the messagequeue table):

set serveroutput on size 10000;
BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'LawEnforcementRC',
 event_inst =>
 sys.anydata.convertobject(
 fieldreport(123302122, 'TELCALL',123302123, 'NSA', 'NE', null)));
END;
/

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'LawEnforcementRC',
 event_inst =>
 sys.anydata.convertobject(
 banktransaction(123302122, 'TRANSFER', 100000, 'USSR')));
END;
/
Rule 2 matched following primitive events

Law Enforcement Rules Application

Rules Manager Use Cases 9-7

->Bank Transaction by subject (123302122) of type [TRANSFER]
->Field report refer to(123302122 and 123302123)
=>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter [NYPD]

b. The following Transportation event, in combination with the Bank Transaction
event, evaluates some of the rules to true and thus calls the action call-back
procedure with appropriate arguments:

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'LawEnforcementRC',
 event_inst =>
 sys.anydata.convertobject(
 transportation(123302122, 'TRUCK', 'WIS', 'MD',
 sysdate, sysdate + 7)));
END;
/
Rule 1 matched following primitive events
->Bank Transaction by subject (123302122) of type [TRANSFER]
->Transportation by subject(123302122) use vessel [TRUCK]
=>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter [NYPD]

Rule 2 matched following primitive events
->Transportation by subject(123302122) use vessel [TRUCK]
->Field report refer to(123302122 and 123302123)
=>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter [NYPD]

Rule 2 matched following primitive events
->Bank Transaction by subject (123302122) of type [TRANSFER]
->Transportation by subject(123302122) use vessel [TRUCK]
=>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter [NYPD]

Rule 3 matched following primitive events
->Bank Transaction by subject (123302122) of type [TRANSFER]
->Transportation by subject(123302122) use vessel [TRUCK]
=>Recommended Action : Action Type [STARTBACKGROUNDCHECK] Action Parameter
 [RENTAL_DESTINATION]

c. Check the message queue:

SQL> select mesg from messagequeue order by attime;

MESG
--
Rule 2 matched following primitive events
 ->Bank Transaction by subject (123302122) of type [TRANSFER]
 ->Field report refer to(123302122 and 123302123)
 =>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter
[NYPD]

Rule 1 matched following primitive events
 ->Bank Transaction by subject (123302122) of type [TRANSFER]
 ->Transportation by subject(123302122) use vessel [TRUCK]
 =>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter
[NYPD]

Rule 2 matched following primitive events
 ->Transportation by subject(123302122) use vessel [TRUCK]
 ->Field report refer to(123302122 and 123302123)
 =>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter
[NYPD]

Order Management Rules Application

9-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Rule 2 matched following primitive events
 ->Bank Transaction by subject (123302122) of type [TRANSFER]
 ->Transportation by subject(123302122) use vessel [TRUCK]
 =>Recommended Action : Action Type [ADD2WATCHLIST] Action Parameter
[NYPD]

Rule 3 matched following primitive events
 ->Bank Transaction by subject (123302122) of type [TRANSFER]
 ->Transportation by subject(123302122) use vessel [TRUCK]
 =>Recommended Action : Action Type [STARTBACKGROUNDCHECK] Action
 Parameter [RENTAL_DESTINATION]

d. Truncate the table messagequeue:

SQL> truncate table messagequeue;

e. Now lets assume you sleep past the deadline for rule 4. The scheduler process
picks up this rule and executes its action. The result is a new message in the
message queue.

SQL> exec dbms_lock.sleep(180);

f. The following action is executed for rule 4 after the deadline time is elapsed:

SQL> select mesg from messagequeue;

MESG
--
Rule 4 matched following primitive events
 ->Bank Transaction by subject (123302122) of type [TRANSFER]
 ->Transportation by subject(123302122) use vessel [TRUCK]
 =>Recommended Action : Action Type [ADD2HIGH_RISK_AREA] Action
 Parameter [RENTAL_DESTINATION]

9.2 Order Management Rules Application
This Order Management rules application demonstrates the use of Rules Manager for
the event data that is stored in relational tables.

The basic steps to create the Order Management rules application with composite
events are as follows:

1. Create the three relational tables to store the information about the purchase
orders, shipping information, and payment information, as follows:

create table PurchaseOrders
 (orderId NUMBER,
 custId NUMBER,
 itemId NUMBER,
 itemType VARCHAR2(30),
 quantity NUMBER,
 shipBy DATE);

create table ShipmentInfo
 (orderId NUMBER,
 destState VARCHAR2(2),
 address VARCHAR2(50),
 shipTime DATE,
 shipType VARCHAR2(10));

Order Management Rules Application

Rules Manager Use Cases 9-9

create table PaymentInfo
 (orderId NUMBER,
 payType VARCHAR2(10), -- Credit Card / Check --
 amountPaid NUMBER,
 pymtTime DATE,
 billState VARCHAR2(2));

2. Create the event structure. The event structures that refer to the existing tables
using table alias constructs cannot be created from object types. Instead, model
such event structures as Expression Filter attribute sets, as follows:

begin
 DBMS_RLMGR.CREATE_EVENT_STRUCT (event_struct => 'OrderMgmt');

 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE(
 event_struct => 'OrderMgmt',
 attr_name => 'po',
 tab_alias => RLM$TABLE_ALIAS('PurchaseOrders'));

 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE(
 event_struct => 'OrderMgmt',
 attr_name => 'si',
 tab_alias => RLM$TABLE_ALIAS('ShipmentInfo'));

 DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE(
 event_struct => 'OrderMgmt',
 attr_name => 'py',
 tab_alias => RLM$TABLE_ALIAS('PaymentInfo'));
 end;
/

3. Create the rule class (database table for rules) for the OrderMgmt composite event.
Also specify the DMLEVENTS property to process the rules for each inserted row
into the event data tables, as follows:

BEGIN
 DBMS_RLMGR.CREATE_RULE_CLASS (
 rule_class => 'OrderMgmtRC',
 event_struct => 'OrderMgmt',
 action_cbk => 'OrderMgmtCBK',
 actprf_spec => 'actionType VARCHAR2(40), actionParam VARCHAR2(100)',
 rslt_viewnm => 'MatchingOrders',
 rlcls_prop => '<composite
 equal="po.orderId, si.orderId, py.orderId"
 dmlevents="I"/>');
END;
/

This step also creates the skeleton for an action callback procedure with the
specified name, as follows:

desc OrderMgmtCBK;
PROCEDURE OrderMgmtCBK
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 PO ROWID IN
 SI ROWID IN
 PY ROWID IN
 RLM$RULE RECORD IN
 RLM$RULEID VARCHAR2(100) IN

Order Management Rules Application

9-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 ACTIONTYPE VARCHAR2(40) IN
 ACTIONPARAM VARCHAR2(100) IN
 RLM$RULECOND VARCHAR2(4000) IN
 RLM$RULEDESC VARCHAR2(1000) IN

4. Implement the callback procedure to perform the appropriate action for each
matching rule, based on the event instances that matched the rule and the action
preferences associated with the rule. In this case, a message displayed to the screen
is considered one action, as shown in the following example:

CREATE OR REPLACE PROCEDURE OrderMgmtCBK (
 po ROWID, -- rowid from the PurchaseOrders table
 si ROWID, -- rowid from the ShipmentInfo table
 py ROWID, -- rowid from the PaymentInfo table
 rlm$rule OrderMgmtRC%ROWTYPE) IS
 ordId NUMBER;
 msg VARCHAR2(2000);
begin
 -- the rowid arguments represent the primitive events that are
 -- rows inserted into the corresponding tables. Use the rowids
 -- to fetch necessary values.
 if (po is not null) then
 select orderId into ordId from PurchaseOrders where rowid = po;
 elsif (si is not null) then
 select orderId into ordId from ShipmentInfo where rowid = si;
 elsif (py is not null) then
 select orderId into ordId from PaymentInfo where rowid = py;
 end if;

 msg := 'Order number: '||ordId||' Matched rule: '
 ||rlm$rule.rlm$ruleid||chr(10)||
 '-> Recommended Action : '||chr(10)||
 ' Action Type ['||rlm$rule.actionType||
 ']'||chr(10)||' Action Parameter ['||
 rlm$rule.actionParam||']';

 dbms_output.put_line (msg||chr(10));
end;
/

5. Add user-defined functions that may be useful in rule conditions:

create or replace function getCustType(custId number)
 return VARCHAR2 is
begin
 -- the actual function implementation can rely on other
 -- relational tables to derive the customer type information
 return 'GOLD';
end;
/

exec DBMS_RLMGR.ADD_FUNCTIONS('OrderMgmt','getCustType');

6. Add some rules:

a. Rule: If the order is for more than 100 routers and the payment is received as a
check, contact the customer to update the status of the order. Note that the join
predicate across event types is specified at the rule class level. For example:

INSERT INTO OrderMgmtRC (rlm$ruleid, actionType, actionParam, rlm$rulecond)
VALUES (1, 'CALL_CUSTOMER','UPDATE_ORDER_STATUS',

Order Management Rules Application

Rules Manager Use Cases 9-11

 '<condition>
 <and>
 <object name="po">
 itemType = ''ROUTER'' and quantity > 100
 </object>
 <object name="py">
 payType = ''CHECK''
 </object>
 </and>
 </condition>');

b. Rule: If the order is placed by a Gold customer, and the items are shipped
before receiving a payment, adjust the customer's credit. For example:

INSERT INTO OrderMgmtRC (rlm$ruleid, actionType, actionParam, rlm$rulecond)
VALUES (2, 'UPDATE_CUST_PROFILE', 'DECR_AVAILABLE_CREDIT',
 '<condition>
 <and>
 <object name="po"> getCustType(custid) = ''GOLD'' </object>
 <object name="si"/>
 <not>
 <object name="py"/>
 </not>
 </and>
 </condition>');

c. Rule: If the order is placed by a Gold customer and the item is shipped within
1 day prior to the shipby date, increment the quality of service statistics. For
example:

INSERT INTO OrderMgmtRC (rlm$ruleid, actionType, actionParam, rlm$rulecond)
VALUES (3, 'UPDATE_STATISTICS', 'INCREMENT QOS',
 '<condition>
 <and join="po.shipby > si.shiptime-1">
 <object name="po"> getCustType(custid) = ''GOLD'' </object>
 <object name="si"/>
 </and>
 </condition>');

7. Process the rules for some primitive events, which are the rows inserted into
corresponding data tables, as shown in the following list:

a. The following event partially matches some of the rules in the rule class and
does not result in any action:

insert into PurchaseOrders (orderId, custId, itemId, itemType,
 quantity, shipBy) values
(1, 123, 234, 'ROUTER', 120, '01-OCT-2004');

b. The following event in combination with the previous added events matches
two rules and fires the corresponding actions:

insert into ShipmentInfo (orderId, deststate, address, shipTime,
 shipType) values
(1, 'CA','1 Main street, San Jose','29-SEP-2004','1 Day Air');
Order number: 1 Matched rule: 2
-> Recommended Action :
 Action Type [UPDATE_CUST_PROFILE]
 Action Parameter [DECR_AVAILABLE_CREDIT]

Order number: 1 Matched rule: 3
-> Recommended Action :

Order Management Rules Application

9-12 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 Action Type [UPDATE_STATISTICS]
 Action Parameter [INCREMENT QOS]

c. The following event matches one more rule:

insert into PaymentInfo (orderId, paytype, amountpaid, pymttime,
 billstate) values
(1, 'CHECK', 100000, '30-SEP-2004', 'CA');
Order number: 1 Matched rule: 1
-> Recommended Action :
 Action Type [CALL_CUSTOMER]
Action Parameter [UPDATE_ORDER_STATUS]

Now, consider a similar application without the use of the DMLEVENTS property. This
implies that the user explicitly invokes the Rules Manager APIs to process the rules for
some data stored in relational tables. This rules class shares the event structure with
the OrderMgmtRC rule class.

1. Create the rule class (database table for rules) for the OrderMgmtRC2 composite
event, as follows:

BEGIN
 DBMS_RLMGR.CREATE_RULE_CLASS (
 rule_class => 'OrderMgmtRC2',
 event_struct => 'OrderMgmt',
 action_cbk => 'OrderMgmtCBK2',
 actprf_spec => 'actionType VARCHAR2(40), actionParam VARCHAR2(100)',
 rslt_viewnm => 'MatchingOrders2',
 rlcls_prop => '<composite equal="po.orderId, si.orderId, py.orderId"/>');
END;
/

2. Implement the callback procedure to perform the appropriate action for each
matching rule, based on the event instances that matched the rule and the action
preferences associated with the rule, as follows:

--- Implement the action callback procedure --
CREATE OR REPLACE PROCEDURE OrderMgmtCBK2 (
 po ROWID, -- rowid from the PurchaseOrders table
 si ROWID, -- rowid from the ShipmentInfo table
 py ROWID, -- rowid from the PaymentInfo table
 rlm$rule OrderMgmtRC2%ROWTYPE) IS
 ordId NUMBER;
 msg VARCHAR2(2000);
begin
 -- the rowid argument represent the primitive events that are
 -- rows inseted into the corresponding tables. Use the rowids
 -- to fetch necessary values.
 if (po is not null) then
 select orderId into ordId from PurchaseOrders where rowid = po;
 elsif (si is not null) then
 select orderId into ordId from ShipmentInfo where rowid = si;
 elsif (py is not null) then
 select orderId into ordId from PaymentInfo where rowid = py;
 end if;

 msg := 'Order number: '||ordId||' Matched rule: '
 ||rlm$rule.rlm$ruleid||chr(10)||
 '-> Recommended Action : '||chr(10)||
 ' Action Type ['||rlm$rule.actionType||
 ']'||chr(10)||' Action Parameter ['||

Order Management Rules Application

Rules Manager Use Cases 9-13

 rlm$rule.actionParam||']';

 dbms_output.put_line (msg||chr(10));
end;
/

3. Insert the same set of rules into the new rule class, as follows:

insert into OrderMgmtRC2 (select * from OrderMgmtRC);
commit;

4. Process the rules for the rows in the data tables as shown in the code that follows.
Because DML events are not configured for this rule class, the application must
explicitly process the rules for the rows in the data table. The ROWIDS of the rows
inserted into the data tables are used as references to the events and they are
passed to the PROCESS_RULES procedure to process the rules.

var datarid varchar2(40);

insert into PurchaseOrders (orderId, custId, itemId, itemType,
 quantity, shipBy) values
(2, 123, 234, 'ROUTER', 120, '01-OCT-2004')
returning rowid into :datarid;

BEGIN
 dbms_rlmgr.process_rules (rule_class => 'OrderMgmtRC2',
 event_type => 'PurchaseOrders',
 event_inst => :datarid);
END;
/

insert into ShipmentInfo (orderId, deststate, address, shipTime,
 shipType) values
 (2, 'CA','1 Main street, San Jose','29-SEP-2004','1 Day Air')
 returning rowid into :datarid;

BEGIN
 dbms_rlmgr.process_rules (rule_class => 'OrderMgmtRC2',
 event_type => 'ShipmentInfo',
 event_inst => :datarid);
END;
/
Order number: 2 Matched rule: 2
-> Recommended Action :
 Action Type [UPDATE_CUST_PROFILE]
 Action Parameter [DECR_AVAILABLE_CREDIT]

Order number: 2 Matched rule: 3
-> Recommended Action :
 Action Type [UPDATE_STATISTICS]
 Action Parameter [INCREMENT QOS]

insert into PaymentInfo (orderId, paytype, amountpaid, pymttime,
 billstate) values
 (2, 'CHECK', 100000, '30-SEP-2004', 'CA')
 returning rowid into :datarid;

BEGIN
 dbms_rlmgr.process_rules (rule_class => 'OrderMgmtRC2',
 event_type => 'PaymentInfo',
 event_inst => :datarid);

Order Management Rules Application

9-14 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

END;
/
Order number: 2 Matched rule: 1
-> Recommended Action :
 Action Type [CALL_CUSTOMER]
 Action Parameter [UPDATE_ORDER_STATUS]

Now, try the session oriented evaluation of rules where the results from matching
rules are available in the results view to be queried, as shown in the following list:

1. A description of the result view table follows:

set linesize 80;
desc MatchingOrders2;
Name Null? Type
--- -------- ----------------------------
 RLM$EVENTID ROWID
 PO ROWID
 SI ROWID
 PY ROWID
 RLM$RULEID VARCHAR2(100)
 ACTIONTYPE VARCHAR2(40)
 ACTIONPARAM VARCHAR2(100)
 RLM$RULECOND VARCHAR2(4000)
 RLM$RULEDESC VARCHAR2(1000)

select count(*) from MatchingOrders2;

 COUNT(*)

 0

2. Process the rules for the rows in the data tables. Note the use of the ADD_EVENT
procedure instead of the PROCESS_RULES procedure in the previous example.
This ensures that the results from the matching events with the rules are stored in
the rule class results view. For example:

insert into PurchaseOrders (orderId, custId, itemId, itemType,
 quantity, shipBy) values
 (3, 123, 234, 'ROUTER', 120, '01-OCT-2004')
 returning rowid into :datarid;

--- Use ADD_EVENT API in the place of PROCESS_RULES ---
BEGIN
 dbms_rlmgr.add_event (rule_class => 'OrderMgmtRC2',
 event_type => 'PurchaseOrders',
 event_inst => :datarid);
END;
/

insert into ShipmentInfo (orderId, deststate, address, shipTime,
 shipType) values
 (3, 'CA','1 Main street, San Jose','29-SEP-2004','1 Day Air')
 returning rowid into :datarid;

BEGIN
 dbms_rlmgr.add_event (rule_class => 'OrderMgmtRC2',
 event_type => 'ShipmentInfo',
 event_inst => :datarid);
END;
/

Order Management Rules Application

Rules Manager Use Cases 9-15

insert into PaymentInfo (orderId, paytype, amountpaid, pymttime,
 billstate) values
 (3, 'CHECK', 100000, '30-SEP-2004', 'CA')
 returning rowid into :datarid;

BEGIN
 dbms_rlmgr.add_event (rule_class => 'OrderMgmtRC2',
 event_type => 'PaymentInfo',
 event_inst => :datarid);
END;
/

3. Because the event structure is configured with table aliases, the events are
represented using the ROWIDS from the corresponding tables, as follows:

column rlm$ruleid format a7;
column actiontype format a25;
column actionparam format a25;
select po, si, py, rlm$ruleid, actionType, actionParam from MatchingOrders2;

PO SI PY RLM$RUL
------------------ ------------------ ------------------ -------
ACTIONTYPE ACTIONPARAM
------------------------- -------------------------
AAAOBxAAEAAAAHPAAC AAAOByAAEAAAAHXAAC 2
UPDATE_CUST_PROFILE DECR_AVAILABLE_CREDIT

AAAOBxAAEAAAAHPAAC AAAOByAAEAAAAHXAAC 3
UPDATE_STATISTICS INCREMENT QOS

AAAOBxAAEAAAAHPAAC AAAOBzAAEAAAAHfAAC 1
CALL_CUSTOMER UPDATE_ORDER_STATUS

4. The ROWIDS can be used to derive the actual event values from the data tables, as
follows:

select
 (select orderId from purchaseOrders where rowid = po) as OrderId,
 rlm$ruleid, actionType, actionParam from MatchingOrders2;

 ORDERID RLM$RUL ACTIONTYPE ACTIONPARAM
---------- ------- ------------------------- -------------------------
 3 2 UPDATE_CUST_PROFILE DECR_AVAILABLE_CREDIT
 3 3 UPDATE_STATISTICS INCREMENT QOS
 3 1 CALL_CUSTOMER UPDATE_ORDER_STATUS

Order Management Rules Application

9-16 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Part II
Expression Filter

This part introduces developing applications using Expression Filter feature.

Part II contains the following chapters:

■ Chapter 10, "Oracle Expression Filter Concepts"

■ Chapter 11, "Indexing Expressions"

■ Chapter 12, "Expressions with XPath Predicates"

■ Chapter 13, "Expressions with Spatial Predicates"

■ Chapter 14, "Using Expression Filter with Utilities"

■ Chapter 15, "SQL Operators and Statements"

■ Chapter 16, "Object Types"

■ Chapter 17, "Management Procedures Using the DBMS_EXPFIL Package"

■ Chapter 18, "Expression Filter Views"

Oracle Expression Filter Concepts 10-1

10
Oracle Expression Filter Concepts

Oracle Expression Filter, a feature of Oracle Database 10g, is a component of Rules
Manager that allows application developers to store, index, and evaluate conditional
expressions (expressions) in one or more columns of a relational table. Expressions are
a useful way to describe interests in expected data.

Expression Filter matches incoming data with expressions stored in a column to
identify rows of interest. It can also derive complex relationships by matching data in
one table with expressions in a second table. Expression Filter simplifies SQL queries;
allows expressions to be inserted, updated, and deleted without changing the
application; and enables reuse of conditional expressions in rules by separating them
from the application and storing them in the database. Applications involving
information distribution, demand analysis, and task assignment can benefit from
Expression Filter.

10.1 What Is Expression Filter?
Expression Filter provides a data type, operator, and index type to store, evaluate, and
index expressions that describe an interest in a data item or piece of information. See
Oracle Database Data Cartridge Developer's Guide for an explanation of these terms.
Expressions are stored in a column of a user table. Expression Filter matches
expressions in a column with a data item passed by a SQL statement or with data
stored in one or more tables, and evaluates each expression to be true or false.
Optionally, expressions can be indexed when using the Enterprise Edition of Oracle
Database. Expression Filter includes the following elements:

■ Attribute set: a definition of the event and its set of attributes

■ Expression data type: A virtual data type created through a constraint placed on a
VARCHAR2 column in a user table that stores expressions

■ EVALUATE operator: An operator that evaluates expressions for each data item

■ Administrative utilities: A set of utilities that validate expressions and suggest
optimal index structure

■ Expression indexing: An index that enhances performance of the EVALUATE
operator for large expression sets. Expression indexing is available in Oracle
Database Enterprise Edition

10.1.1 Expression Filter Usage Scenarios
This section provides examples of how you can use Expression Filter.

What Is Expression Filter?

10-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Match Incoming Data with Conditional Expressions
Expression Filter can match incoming data with conditional expressions stored in the
database to identify rows of interest. For example, consider an application that
matches buyers and sellers of cars. A table called Consumer includes a column called
BUYER_PREFERENCES with an Expression data type. The BUYER_PREFERENCES
column stores an expression for each consumer that describes the kind of car the
consumer wants to purchase, including make, model, year, mileage, color, options, and
price. Data about cars for sale is included with the EVALUATE operator in the SQL
WHERE clause. The SQL EVALUATE operator matches the incoming car data with the
expressions to find prospective buyers.

The SQL EVALUATE operator also enables batch processing of incoming data. Data can
be stored in a table called CARS and matched with expressions stored in the CONSUMER
table using a join between the two tables.

The SQL EVALUATE operator saves time by matching a set of expressions with
incoming data and enabling large expression sets to be indexed for performance. This
saves labor by allowing expressions to be inserted, updated, and deleted without
changing the application and providing a results set that can be manipulated in the
same SQL statement, for instance to order or group results. In contrast, a procedural
approach stores results in a temporary table that must be queried for further
processing, and those expressions cannot be indexed.

Maintain Complex Table Relationships
Expression Filter can convey N-to-M (many-to-many) relationships between tables.
Using the previous example:

■ A car may be of interest to one or more buyers.

■ A buyer may be interested in one or more cars.

■ A seller may be interested in one or more buyers.

To answer questions about these relationships, the incoming data about cars is stored
in a table called CARS with an Expression column (column of Expression data type)
called SELLER_PREFERENCES. The CONSUMERS table includes a column called
BUYER_PREFERENCES. The SQL EVALUATE operator can answer questions such as:

■ What cars are of interest to each consumer?

■ What buyers are of interest to each seller?

■ What demand exists for each car? This can help to determine optimal pricing.

■ What unsatisfied demand is there? This can help to determine inventory
requirements.

This declarative approach saves labor. No action is needed if changes are made to the
data or the expressions. Compare this to the traditional approach where a mapping
table is created to store the relationship between the two tables. A trigger must be
defined to recompute the relationships and to update the mapping table if the data or
expressions change. In this case, new data must be compared to all expressions, and a
new expression must be compared to all data.

Application Attributes
Expression Filter is a good fit for applications where the data has the following
attributes:

■ A large number of data items exist to be evaluated.

Introduction to Expressions

Oracle Expression Filter Concepts 10-3

■ Each data item has structured data attributes, for example VARCHAR, NUMBER,
DATE, XMLTYPE.

■ Incoming data is evaluated by a significant number of unique and persistent
queries containing expressions.

■ The expression (in the SQL WHERE clause) describes an interest in incoming data
items.

■ The expressions compare attributes to values using relational operators (=, !=, <, >,
and so on).

10.2 Introduction to Expressions
Expressions describe interests in an item of data. Expressions are stored in a column of
a user table and compared, using the SQL EVALUATE operator, to incoming data items
specified in a SQL WHERE clause or to a table of data. Expressions are evaluated as true
or false, or return a null value if an expression does not exist for a row.

An expression describes interest in an item of data using one or more variables,
known as elementary attributes. An expression can also include literals, functions
supplied by Oracle, user-defined functions, and table aliases. A valid expression
consists of one or more simple conditions called predicates. The predicates in the
expression are linked by the logical operators AND and OR. Expressions must adhere to
the SQL WHERE clause format. (For more information about the SQL WHERE clause, see
Oracle Database SQL Reference.) An expression is not required to use all the defined
elementary attributes; however, the incoming data must provide a value for every
elementary attribute. Null is an acceptable value.

For example, the following expression includes the UPPER function supplied by Oracle
and captures the interest of a user in a car (the data item) with the model, price, and
year as elementary attributes:

UPPER(Model) = 'TAURUS' and Price < 20000 and Year > 2000

Expressions are stored in a column of a user table with an Expression data type. The
values stored in a column of this type are constrained to be expressions. (See
Section 10.2.2.) A user table can have one or more Expression columns. A query to
display the contents of an Expression column displays the expressions in string
format.

You insert, update, and delete expressions using standard SQL. A group of expressions
that are stored in a single column is called an expression set and shares a common set
of elementary attributes. This set of elementary attributes plus any functions used in
the expressions are the metadata for the expression set. This metadata is referred to as
the attribute set. The attribute set consists of the elementary attribute names and their
data types and any functions used in the expressions. The attribute set is used by the
Expression column to validate changes and additions to the expression set. An
expression stored in the Expression column can use only the elementary attribute and
functions defined in the corresponding attribute set. Expressions cannot contain
subqueries.

Expression Filter provides the DBMS_EXPFIL package which contains procedures to
manage the expression data.

There are four basic steps to create and use an Expression column:

1. Define an attribute set. See Section 10.2.1.

2. Define an Expression column in a user table. See Section 10.2.2.

Introduction to Expressions

10-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

3. Insert expressions in the table. See Section 10.2.3.

4. Apply the SQL EVALUATE operator to compare expressions to incoming data
items. See Section 10.3.

Figure 10–1 shows the process steps for creating and implementing a rules application
based on Expression Filter. The remaining sections in this chapter guide you through
this procedure.

Figure 10–1 Expression Filter Implementation Process for a Rules Application

10.2.1 Defining Attribute Sets
A special form of an Oracle object type is used to create an attribute set. (For more
information about object types, see Oracle Database Application Developer's Guide -
Object-Relational Features.)

Introduction to Expressions

Oracle Expression Filter Concepts 10-5

The attribute set defines the elementary attributes for an expression set. It implicitly
allows all SQL functions supplied by Oracle to be valid references in the expression
set. If the expression set refers to a user-defined function, it must be explicitly added to
the attribute set. An elementary attribute in an attribute set can refer to data stored in
another database table using table alias constructs. One or more or all elementary
attributes in an attribute set can be table aliases. If an elementary attribute is a table
alias, the value assigned to the elementary attribute is a ROWID from the corresponding
table. For more information about table aliases, see Appendix A.

You can create an attribute set using one of two approaches:

■ Use an existing object type to create an attribute set with the same name as the
object type. This approach is most appropriate to use when the attribute set does
not contain any table alias elementary attributes. You use the CREATE_
ATTRIBUTE_SET procedure of the DBMS_EXPFIL package. See Example 10–1.

■ Individually add elementary attributes to an existing attribute set. Expression
Filter automatically creates an object type to encapsulate the elementary attributes
and gives it the same name as the attribute set. This approach is most appropriate
to use when the attribute set contains one or more elementary attributes defined as
table aliases. You use the ADD_ELEMENTARY_ATTRIBUTE procedure of the DBMS_
EXPFIL package. See Example 10–2.

If the expressions refer to user-defined functions, you must add the functions to the
corresponding attribute set, using the ADD_FUNCTIONS procedure of the DBMS_
EXPFIL package. See Example 10–3.

Attribute Set Examples
Example 10–1 shows how to use an existing object type to create an attribute set. It
uses the CREATE_ATTRIBUTE_SET procedure.

Example 10–1 Defining an Attribute Set From an Existing Object Type

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

For more information about the CREATE_ATTRIBUTE_SET procedure, see CREATE_
ATTRIBUTE_SET Procedure.

Example 10–2 shows how to create an attribute set Car4Sale and how to define the
variables one at a time. It uses the CREATE_ATTRIBUTE_SET and ADD_ELEMENTARY_
ATTRIBUTE procedures.

Example 10–2 Defining an Attribute Set Incrementally

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',

Introduction to Expressions

10-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 attr_name => 'Model',
 attr_type => 'VARCHAR2(20)');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Year',
 attr_type => 'NUMBER',
 attr_defv1 => '2000');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Price',
 attr_type => 'NUMBER');
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(
 attr_set => 'Car4Sale',
 attr_name => 'Mileage',
 attr_type => 'NUMBER');
END;
/

For more information about the ADD_ELEMENTARY_ATTRIBUTE procedure, see ADD_
ELEMENTARY_ATTRIBUTES Procedure.

If the expressions refer to user-defined functions, you must add the functions to the
corresponding attribute set. Example 10–3 shows how to add user-defined functions,
using the ADD_FUNCTIONS procedure, to an attribute set.

Example 10–3 Adding User-Defined Functions to an Attribute Set

CREATE or REPLACE FUNCTION HorsePower(Model VARCHAR2, Year VARCHAR2)
 return NUMBER is
BEGIN
-- Derive HorsePower from other relational tables uisng Model and Year values.--
 return 200;
END HorsePower;
/

CREATE or REPLACE FUNCTION CrashTestRating(Model VARCHAR2, Year VARCHAR2)
 return NUMBER is
BEGIN
-- Derive CrashTestRating from other relational tables using Model --
-- and Year values. --
 return 5;
END CrashTestRating;
/

BEGIN
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'HorsePower');
 DBMS_EXPFIL.ADD_FUNCTIONS (attr_set => 'Car4Sale',
 funcs_name => 'CrashTestRating');
END;
/

For more information about the ADD_FUNCTIONS procedure, see ADD_FUNCTIONS
Procedure.

To drop an attribute set, you use the DROP_ATTRIBUTE_SET procedure. For more
information, see DROP_ATTRIBUTE_SET Procedure.

Introduction to Expressions

Oracle Expression Filter Concepts 10-7

10.2.2 Defining Expression Columns
Expression is a virtual data type. Assigning an attribute set to a VARCHAR2 column in
a user table creates an Expression column. The attribute set determines which
elementary attributes and user-defined functions can be used in the expression set. An
attribute set can be used to create multiple columns of EXPRESSION data type in the
same table and in other tables in the same schema. Note that an attribute set in one
schema cannot be associated with a column in another schema.

To create an Expression column:

1. Add a VARCHAR2 column to a table or create a table with the VARCHAR2 column.
An existing VARCHAR2 column in a user table can also be used for this purpose.
The following example creates a table with a VARCHAR2 column, named
Interest, that will be used with an attribute set:

CREATE TABLE Consumer (CId NUMBER,
 Zipcode NUMBER,
 Phone VARCHAR2(12),
 Interest VARCHAR2(200));

2. Assign an attribute set to the column, using the ASSIGN_ATTRIBUTE_SET
procedure. The following example assigns an attribute set to a column named
Interest in a table called Consumer:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (
 attr_set => 'Car4Sale',
 expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

For more information about the ASSIGN_ATTRIBUTE_SET procedure, see
ASSIGN_ATTRIBUTE_SET Procedure.

Figure 10–2 is a conceptual image of consumers' interests (in trading cars) being
captured in a Consumer table.

Introduction to Expressions

10-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Figure 10–2 Expression Data Type

To remove an attribute set from a column, you use the UNASSIGN_ATTRIBUTE_SET
procedure of the DBMS_EXPFIL package. See UNASSIGN_ATTRIBUTE_SET
Procedure.

To drop an attribute set not being used for any expression set, you use the DROP_
ATTRIBUTE_SET procedure of the DBMS_EXPFIL package. See DROP_ATTRIBUTE_
SET Procedure.

To copy an attribute set across schemas, you use the COPY_ATTRIBUTE_SET
procedure of the DBMS_EXPFIL package. See COPY_ATTRIBUTE_SET Procedure.

10.2.3 Inserting, Updating, and Deleting Expressions
You use standard SQL to insert, update, and delete expressions. When an expression is
inserted or updated, it is checked for correct syntax and constrained to use the
elementary attributes and functions specified in the corresponding attribute set. An
error message is returned if the expression is not correct. For more information about
evaluation semantics, see Section 10.4.

Example 10–4 shows how to insert an expression (the consumer's interest in trading
cars, which is depicted in Figure 10–2) into the Consumer table using the SQL INSERT
statement.

Applying the SQL EVALUATE Operator

Oracle Expression Filter Concepts 10-9

Example 10–4 Inserting an Expression into the Consumer Table

INSERT INTO Consumer VALUES (1, 32611, '917 768 4633',
 'Model=''Taurus'' and Price < 15000 and Mileage < 25000');
INSERT INTO Consumer VALUES (2, 03060, '603 983 3464',
 'Model=''Mustang'' and Year > 1999 and Price < 20000');

If an expression refers to a user-defined function, the function must be added to the
corresponding attribute set (as shown in Example 10–3). Example 10–5 shows how to
insert an expression with a reference to a user-defined function, HorsePower, into the
Consumer table.

Example 10–5 Inserting an Expression That References a User-Defined Function

INSERT INTO Consumer VALUES (3, 03060, '603 484 7013',
 'HorsePower(Model, Year) > 200 and Price < 20000');

Expression data can be bulk loaded into an Expression column using SQL*Loader. For
more information about bulk loading, see Section 14.1.

10.3 Applying the SQL EVALUATE Operator
You use the SQL EVALUATE operator in the WHERE clause of a SQL statement to
compare stored expressions to incoming data items. The SQL EVALUATE operator
returns 1 for an expression that matches the data item and 0 for an expression that
does not match. For any null values stored in the Expression column, the SQL
EVALUATE operator returns NULL.

The SQL EVALUATE operator has two arguments: the name of the column storing the
expressions and the data item to which the expressions are compared. In the data item
argument, values must be provided for all elementary attributes in the attribute set
associated with the Expression column. Null is an acceptable value. The data item can
be specified either as string-formatted name-value pairs or as an AnyData instance.

In the following example, the query returns a row from the Consumer table if the
expression in the Interest column evaluates to true for the data item:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest, <data item>) = 1;

Data Item Formatted as a String
If the values of all the elementary attributes in the attribute set can be represented as
readable values, such as those stored in VARCHAR, DATE, and NUMBER data types and
the constructors formatted as a string, then the data item can be formatted as a string:

Operator Form

EVALUATE (VARCHAR2, VARCHAR2)
 returns NUMBER;

Example

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000'
) = 1;

Applying the SQL EVALUATE Operator

10-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

If a data item does not require a constructor for any of its elementary attribute values,
then a list of values provided for the data item can be formatted as a string
(name-value pairs) using two getVarchar methods (a STATIC method and a
MEMBER method) in the object type associated with the attribute set. The STATIC
method formats the data item without creating the object instance. The MEMBER
method can be used if the object instance is already available.

The STATIC and MEMBER methods are implicitly created for the object type and can be
used as shown in the following example:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar('Mustang', -- STATIC getVarchar API --
 2000,
 18000,
 22000)
) = 1;

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale('Mustang',
 2000,
 18000,
 22000).getVarchar() -- MEMBER getVarchar() API --
) = 1;

Data Item Formatted as an AnyData Instance
Any data item can be formatted using an AnyData instance. AnyData is an object
type supplied by Oracle that can hold instances of any Oracle data type, both supplied
by Oracle and user-defined. For more information, see Oracle Database Application
Developer's Guide - Object-Relational Features.

Operator Form

EVALUATE (VARCHAR2, AnyData)
 returns NUMBER;

An instance of the object type capturing the corresponding attribute set is converted
into an AnyData instance using the AnyData convertObject method. Using the
previous example, the data item can be passed to the SQL EVALUATE operator by
converting the instance of the Car4Sale object type into AnyData, as shown in the
following example:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 AnyData.convertObject(
 Car4Sale('Mustang',
 2000,
 18000,
 22000))
) = 1;

Note: A data item formatted as an AnyData instance is converted
back into the original object before the expressions are evaluated. To
avoid the cost of object type conversions, string-formatted data items
are recommended whenever possible.

Granting and Revoking Privileges

Oracle Expression Filter Concepts 10-11

For the syntax of the SQL EVALUATE operator, see "EVALUATE" in Chapter 15. For
additional examples of the SQL EVALUATE operator, see Appendix B.

10.4 Evaluation Semantics
When an expression is inserted or updated, Expression Filter validates the syntax and
ensures that the expression refers to valid elementary attributes and functions
associated with the attribute set. The SQL EVALUATE operator evaluates expressions
using the privileges of the owner of the table that stores the expressions. For instance,
if an expression includes a reference to a user-defined function, during its evaluation,
the function is executed with the privileges of the owner of the table. References to
schema objects with no schema extensions are resolved in the table owner's schema.

An expression that refers to a user-defined function may become invalid if the function
is modified or dropped. An invalid expression causes the SQL statement evaluating
the expression to fail. To recover from this error, replace the missing or modified
function with the original function.

The Expression Validation utility is used to verify an expression set. It identifies
expressions that have become invalid since they were inserted, perhaps due to a
change made to a user-defined function or table. This utility collects references to the
invalid expressions in an exception table. If an exception table is not provided, the
utility fails when it encounters the first invalid expression in the expression set.

The following commands collect references to invalid expressions found in the
Consumer table. The BUILD_EXCEPTIONS_TABLE procedure creates the exception
table, InterestExceptions, in the current schema. The VALIDATE_EXPRESSIONS
procedure validates the expressions and stores the invalid expressions in the
InterestExceptions table.

BEGIN
 DBMS_EXPFIL.BUILD_EXCEPTIONS_TABLE (exception_tab => 'InterestExceptions');

 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'Consumer',
 expr_col => 'Interest',
 exception_tab => 'InterestExceptions');
END;
/
For more information, see BUILD_EXCEPTIONS_TABLE Procedure and VALIDATE_
EXPRESSIONS Procedure.

10.5 Granting and Revoking Privileges
A user requires SELECT privileges on a table storing expressions to evaluate them. The
SQL EVALUATE operator evaluates expressions using the privileges of the owner of the
table that stores the expressions. The privileges of the user issuing the query are not
considered.

Expressions can be inserted, updated, and deleted by the owner of the table. Others
must have INSERT and UPDATE privileges for the table, and they must have INSERT
EXPRESSION and UPDATE EXPRESSION privileges for a specific Expression column in
the table to be able to make modifications to it.

In the following example, the owner of the Consumer table grants expression
privileges, using the GRANT_PRIVILEGE procedure, on the Interest column to a
user named Andy:

BEGIN
 DBMS_EXPFIL.GRANT_PRIVILEGE (expr_tab => 'Consumer',

Error Messages

10-12 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 expr_col => 'Interest',
 priv_type => 'INSERT EXPRESSION',
 to_user => 'Andy');
END;
/
To revoke privileges, use the REVOKE_PRIVILEGE procedure.

For more information about granting and revoking privileges, see GRANT_PRIVILEGE
Procedure and REVOKE_PRIVILEGE Procedure.

10.6 Error Messages
The Expression Filter error message numbers are in the range of 38401 to 38600. The
error messages are documented in Oracle Database Error Messages.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by range.
Once you find the specific range, use your browser's find in page feature to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle online documentation.

Indexing Expressions 11-1

11
Indexing Expressions

An index can be defined on a column storing expressions to quickly find expressions
that evaluate to true for a data item. This is most helpful when a large expression set is
evaluated for a data item. The SQL EVALUATE operator determines whether or not to
use the index based on its access cost. The indextype, EXFSYS.EXPFILTER, is used to
create and maintain indexes.

If an Expression column is not indexed, the SQL EVALUATE operator builds a dynamic
query for each expression stored in the column and executes it using the values passed
in as the data item.

This chapter describes the basic approach to indexing including index representation
(Section 11.3), index processing (Section 11.4), and user commands for creating and
tuning indexes (Section 11.6).

11.1 Concepts of Indexing Expressions
Expressions in a large expression set tend to have certain commonalities in their
predicates. An Expression Filter index, defined on an expression set, groups predicates
by their commonalities to reduce processing costs. For example, in the case of two
predicates with a common left-hand side, such as Year=1998 and Year=1999, in
most cases, the falseness or trueness of one predicate can be determined based on the
outcome of the other predicate. The left-hand side of a predicate includes arithmetic
expressions containing one or more elementary attributes and user-defined functions,
for example, HORSEPOWER(model, year). An operator and a constant on the
right-hand side (RHS) completes the predicate, for example, HORSEPOWER(model,
year)>=150.

An Expression Filter index defined on a set of expressions takes advantage of the
logical relationships among multiple predicates by grouping them based on the
commonality of their left-hand sides. These left-hand sides are arithmetic expressions
that consist of one or more elementary attributes and user-defined functions, for
example, HORSEPOWER(model,year).

11.2 Indexable Predicates
The predicates that can be indexed with the Expression Filter indexing mechanism
include any predicate with a constant on the right-hand side that uses one of the

Note: Expression indexing is available only in Oracle Database
Enterprise Edition.

Index Representation

11-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

following predicate operators: =, !=, >, <, >=, <=, BETWEEN, IS NULL, IS NOT NULL,
LIKE, and NVL.

The predicates that cannot be indexed are preserved in their original form and they are
evaluated by value substitution in the last stage of expression evaluation. Some of the
predicates that cannot be indexed include:

■ Predicates with a variable on the right-hand side.

■ IN list predicates.

■ LIKE predicates with a leading wild-card character.

■ Duplicate predicates in an expression with the same left-hand side. At most, two
predicates with a duplicate left-hand side, for example Year>1995 and
Year<2000, can be indexed if the index is configured for BETWEEN operators. A
predicate with a BETWEEN operator is treated as two predicates with binary
operators, one with the '>=' operator and another with the '<=' operator. See
the section about EXF$INDEXOPER for more information about the BETWEEN
operator.

11.3 Index Representation
The Expression Filter index uses persistent database objects internally to maintain the
index information for an expression set. The grouping information for all the
predicates in an expression set is captured in a relational table called the predicate
table. Typically, the predicate table contains one row for each expression in the
expression set. However, an expression containing one or more disjunctions (two
simple expressions joined by OR) is converted into a disjunctive-normal form
(disjunction of conjunctions), and each disjunction in this normal form is treated as a
separate expression with the same identifier as the original expression. The predicate
table contains one row for each such disjunction.

The Expression Filter index can be tuned for better performance by identifying the
most-common left-hand sides of the predicates (or discriminating predicate groups) in
the expression set. The owner of the expression set (or the table storing expressions)
can identify the predicate's left-hand sides or automate this process by collecting
statistics on the expression set. For each common left-hand side, a predicate group is
formed with all the corresponding predicates in the expression set. For example, if
predicates with Model, Price, and HorsePower(Model, Year) attributes are
common in the expression set, three predicate groups are formed for these attributes.
The predicate table captures the predicate grouping information, as shown in
Figure 11–1.

Index Processing

Indexing Expressions 11-3

Figure 11–1 Conceptual Predicate Table

For each predicate group, the predicate table has two columns: one to store the
operator of the predicate and the other to store the constant on the right-hand side of
the predicate. For a predicate in an expression, its operator and the right-hand side
constant are stored under the corresponding columns of the predicate group. The
predicates that do not fall into one of the preconfigured groups are preserved in their
original form and stored in a VARCHAR2 column of the predicate table as sparse
predicates. (For the example in Figure 11–1, the predicates on Mileage and Year fall
in this category.) The predicates with IN lists and the predicates with a varying
right-hand side (not a constant) are implicitly treated as sparse predicates. Native
indexes are created on the predicate table as described in Section 11.4.

11.4 Index Processing
To evaluate a data item for a set of expressions, the left-hand side of each predicate
group in the data item is computed and its value is compared with the corresponding
constants stored in the predicate table using an appropriate operator. For example,
using the predicate table, if HORSEPOWER('TAURUS',2001) returns 153, then the
predicates satisfying this value are those interested in horsepower equal to 153 or
those interested in horsepower greater than a value that is below 153, and so on. If the
operators and right-hand side constants of the previous group are stored in the G3_OP
and G3_RHS columns of the predicate table (in Figure 11–1), then the following query
on the predicate table identifies the rows that satisfy this group of predicates:

SELECT Rid FROM predicate_table WHERE
 G3_OP = '=' AND G3_RHS = :rhs_val or
 G3_OP = '>' AND G3_RHS < :rhs_val or
 ...
-- where :rhs_val is the value from the computation of the left-hand side --

Expression Filter uses similar techniques for less than (<), greater than or equal to (>=),
less than or equal to (<=), not equal to (!=, <>), LIKE, IS NULL, and IS NOT NULL

Index Processing

11-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

predicates. Predicates with the BETWEEN operator are divided into two predicates with
greater than or equal to and less than or equal to operators. Duplicate predicate groups
can be configured for a left-hand side if it frequently appears more than once in a
single expression, for example, Year >= 1996 and Year <= 2000.

The WHERE clause (shown in the previous query) is repeated for each predicate group
in the predicate table, and the predicate groups are all joined by conjunctions. When
the complete query (shown in the following example) is issued on the predicate table,
it returns the row identifiers for the expressions that evaluate to true with all the
predicates in the preconfigured groups. For these resulting expressions, the
corresponding sparse predicates that are stored in the predicate table are evaluated
using dynamic queries to determine if an expression is true for a particular data item.

SELECT Rid, Sparse_predicate FROM predicate_table
 WHERE --- predicates in group 1
 (G1_OP IS NULL OR --- no predicate involving this LHS
 ((:g1_val IS NOT NULL AND
 (G1_OP = '=' AND G1_RHS = :g1_val or
 G1_OP = '>' AND G1_RHS < :g1_val or
 G1_OP = '<' AND G1_RHS > :g1_val or
 ...) or
 (:g1_val IS NULL AND G1_OP = 'IS NULL')))

 AND --- predicates in group 2
 (G2_OP IS NULL OR
 ((:g2_val IS NOT NULL AND
 (G2_OP = '=' AND G2_RHS = :g2_val or
 G2_OP = '>' AND G2_RHS < :g2_val or
 G2_OP = '<' AND G2_RHS > :g2_val or
 ...) or
 (:g2_val IS NULL AND G2_OP = 'IS NULL')))
 AND
...

For efficient execution of the predicate table query (shown previously), concatenated
bitmap indexes are created on the {Operator, RHS constant} columns of
selected groups. These groups are identified either by user specification or from the
statistics about the frequency of the predicates (belonging to a group) in the expression
set. With the indexes defined on preconfigured predicate groups, the predicates from
an expression set are divided into three classes:

1. Indexed predicates: Predicates that belong to a subset of the preconfigured
predicate groups that are identified as most discriminating. Bitmap indexes are
created for these predicate groups; thus, these predicates are also called indexed
predicates. The previous query performs range scans on the corresponding index
to evaluate all the predicates in a group and returns the expressions that evaluate
to true with just that predicate. Similar scans are performed on the bitmap indexes
of other indexed predicates, and the results from these index scans are combined
using BITMAP AND operations to determine all the expressions that evaluate to
true with all the indexed predicates. This enables multiple predicate groups to be
filtered simultaneously using one or more bitmap indexes.

2. Stored predicates: Predicates that belong to groups that are not indexed. These
predicates are captured in the corresponding {Operator, RHS constant}
columns of the predicate table, with no bitmap indexes defined on them. For all
the expressions that evaluate to true with the indexed predicates, the previous
query compares the values of the left-hand sides of these predicate groups with
those stored in the predicate table. Although bitmap indexes are created for a
selected number of groups, the optimizer may choose not to use one or more

Index Creation and Tuning

Indexing Expressions 11-5

indexes based on their access cost. Those groups are treated as stored predicate
groups. The query issued on the predicate table remains unchanged for a different
choice of indexes.

3. Sparse predicates: Predicates that do not belong to any of the preconfigured
predicate groups. For expressions that evaluate to true for all the predicates in the
indexed and stored groups, sparse predicates (if any) are evaluated last. If the
expressions with sparse predicates evaluate to true, they are considered true for
the data item.

Optionally, you can specify the common operators that appear with predicates on the
left-hand side and reduce the number of range scans performed on the bitmap index.
See EXF$INDEXOPER for more information. In the previous example, the Model
attribute commonly appears in equality predicates, and the Expression Filter index can
be configured to check only for equality predicates while processing the indexed
predicate groups. Sparse predicates along with any other form of predicate on the
Model attribute are processed and evaluated at the same time.

11.5 Predicate Table Query
Once the predicate groups for an expression set are determined, the structure of the
predicate table and the query to be issued on the predicate table are fixed. The choice
of indexed or stored predicate groups does not change the query. As part of Expression
Filter index creation, the predicate table query is determined and a function is
dynamically generated for this query. The same query (with bind variables) is used for
any data item passed in for the expression set evaluation. This ensures that the
predicate table query is compiled once and reused for evaluating any number of data
items.

11.6 Index Creation and Tuning
The cost of evaluating a predicate in an expression set depends on the group to which
it belongs. The index for an expression set can be tuned by identifying the appropriate
predicate groups as the index parameters.

The steps involved in evaluating the predicates in an indexed predicate group are:

1. One-time computation of the left-hand side of the predicate group

2. One or more range scans on the bitmap indexes using the computed value

The steps involved in evaluating the predicates in a stored predicate group are:

1. One-time computation of the left-hand side of the predicate group

2. Comparison of the computed value with the operators and the right-hand side
constants of all the predicates remaining in the working set (after filtering, based
on indexed predicates)

The steps involved in evaluating the predicates in a sparse predicate group are:

1. Parse the subexpression representing the sparse predicates for all the expressions
remaining in the working set.

2. Evaluate the subexpression through substitution of data values (using a dynamic
query).

Creating an Index from Default Parameters
In a schema, an attribute set can be used for one or more expression sets, and you can
configure the predicate groups for these expression sets by associating the default

Index Creation and Tuning

11-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

index parameters with the attribute set. The (discriminating) predicate groups can be
chosen with the knowledge of commonly occurring left-hand sides and their
selectivity for the expected data.

The following command uses the DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS
procedure to configure default index parameters with the Car4Sale attribute set:

BEGIN
 DBMS_EXPFIL.DEFAULT_INDEX_PARAMETERS('Car4Sale',
 exf$attribute_list (
 exf$attribute (attr_name => 'Model', --- LHS for predicate group
 attr_oper => exf$indexoper('='),
 attr_indexed => 'TRUE'), --- indexed predicate group
 exf$attribute (attr_name => 'Price',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'TRUE'),
 exf$attribute (attr_name => 'HorsePower(Model, Year)',
 attr_oper => exf$indexoper('=','<','>','>=','<='),
 attr_indexed => 'FALSE') --- stored predicate group
)
);
END;
/

For an expression set, create the Expression Filter index as follows:

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

The index derives all its parameters from the defaults (Model, Price, and
HorsePower(Model, Year)) associated with the corresponding attribute set. If the
defaults are not specified, it implicitly uses all the scalar elementary attributes (Model,
Year,Price, and Mileage) in the attribute set as its stored and indexed attributes.

You can fine-tune the default parameters derived from the attribute set for each
expression set by using the PARAMETERS clause when you create the index or by
associating index parameters directly with the expression set. The following CREATE
INDEX statement with the PARAMETERS clause configures the index with an additional
stored predicate:

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS exfsys.ExpFilter
 PARAMETERS ('ADD TO DEFAULTS STOREATTRS (CrashTestRating(Model, Year))');

For more information about creating indexes from default parameters, see DEFAULT_
INDEX_PARAMETERS Procedure and "CREATE INDEX" in Chapter 15.

Creating an Index from Exact Parameters
If there is a need to fine-tune the index parameters for each expression set associated
with the common attribute set, you can assign the exact index parameters directly to
the expression set, using the DBMS_EXPFIL.INDEX_PARAMETERS procedure.

The following commands copy the index parameters from the defaults and then
fine-tune them for the given expression set. An expression filter index created for the
expression set uses these parameters to configure its indexed and stored predicate
groups.

BEGIN
 -- Derive index parameters from defaults --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',

Index Usage

Indexing Expressions 11-7

 attr_list => null,
 operation => 'DEFAULT');

 -- Fine-tune the parameters by adding another stored attribute --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list =>
 exf$attribute_list (
 exf$attribute (
 attr_name => 'CrashTestRating(Model, Year)',
 attr_oper => exf$indexoper('all'),
 attr_indexed => 'FALSE')),
 operation => 'ADD');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

For more information about creating indexes from exact parameters, see INDEX_
PARAMETERS Procedure and "CREATE INDEX" in Chapter 15.

See Chapter 12 for a discussion on indexing expressions with XPath predicates.

Creating an Index from Statistics
If a representative set of expressions is already stored in the table, the owner of the
table can automate the index tuning process by collecting statistics on the expression
set, using the DBMS_EXPFIL.GET_EXPRSET_STATS procedure, and creating the
index from these statistics, as shown in the following example:

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS TOP 4 INDEXATTRS TOP 2');

For the previous index, four stored attributes are chosen based on the frequency of the
corresponding predicate left-hand sides in the expression set, and out of these four
attributes, the top two are chosen as indexed attributes. When a TOP n clause is used,
any defaults associated with the corresponding attribute set are ignored. The attributes
chosen for an index can be viewed by querying the USER_EXPFIL_PREDTAB_
ATTRIBUTES view.

For more information about creating indexes from statistics, see GET_EXPRSET_
STATS Procedure and "CREATE INDEX" in Chapter 15.

11.7 Index Usage
A query using the SQL EVALUATE operator on an Expression column can force the use
of the index defined on such a column with an optimizer hint. (See the Oracle Database
Performance Tuning Guide.) In other cases, the optimizer determines the cost of the
Expression Filter index-based scan and compares it with the cost of alternate execution
plans.

Index Storage and Maintenance

11-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar('Mustang',2000,18000,22000)) = 1 and
 Consumer.Zipcode BETWEEN 03060 and 03070;

For the previous query, if the Consumer table has an Expression Filter index defined
on the Interest column and a native index defined on the Zipcode column, the
optimizer chooses the appropriate index based on their selectivity and their access
cost. Beginning with release 10gR2, the selectivity and the cost of an Expression Filter
index are computed when statistics are collected on the expression column, the index,
or the table storing expressions. These statistics are stored in the Expression Filter
dictionary and are used to determine the optimal execution plan for the query with an
EVALUATE operator.

You can use the EXPLAIN PLAN statement to see if the optimizer picked the
Expression Filter index for a query.

11.8 Index Storage and Maintenance
The Expression Filter index uses persistent database objects to maintain the index on a
column storing expressions. All these secondary objects are created in the schema in
which the Expression Filter index is created. There are three types of secondary objects
for each Expression Filter index, and they use the following naming conventions:

■ Conventional table called the predicate table: EXF$PTAB_n

■ One or more indexes on the predicate table: EXF$PTAB_n_IDX_m

■ Package called the Access Function package: EXF$AFUN_n

To ensure the expression evaluation is valid, a table with an Expression column and
the Expression Filter index on the Expression column should belong to the same
schema. A user with CREATE INDEX privileges on a table cannot create an Expression
Filter index unless the user is the owner of the table. By default, the predicate table is
created in the user's default tablespace. You can specify an alternate storage clause for
the predicate table when you create the index by using the PREDSTORAGE parameter
clause. (See the section about the CREATE INDEX statement in Chapter 15.) The
indexes on the predicate table are always created in the same tablespace as the
predicate table.

An Expression Filter index created for an Expression column is automatically
maintained to reflect any changes made to the expressions (with the SQL INSERT,
UPDATE, or DELETE statements or SQL*Loader). The bitmap indexes defined on the
predicate table could become fragmented when a large number of expressions are
modified, added to the set, or deleted. You can rebuild these indexes online to reduce
the fragmentation using the DBMS_EXPFIL.DEFRAG_INDEX procedure, as shown in
the following example:

BEGIN
 DBMS_EXPFIL.DEFRAG_INDEX (idx_name => 'InterestIndex');
END;
/

See DEFRAG_INDEX Procedure for more information about this procedure.

You can rebuild the complete Expression Filter index offline by using the ALTER
INDEX...REBUILD statement. This is useful when the index is marked UNUSABLE
following a table maintenance operation. When the default index parameters
associated with an attribute set are modified, they can be incorporated into the existing

Index Storage and Maintenance

Indexing Expressions 11-9

indexes using the ALTER INDEX...REBUILD statement with the DEFAULT parameter
clause. See the section about ALTER INDEX REBUILD statement in Chapter 15.

Index Storage and Maintenance

11-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Expressions with XPath Predicates 12-1

12
Expressions with XPath Predicates

The expressions stored in a column of a table may contain XPath predicates defined on
XMLType attributes. This section describes an application for XPath predicates using
the Car4Sale example introduced in Chapter 10. For this purpose, the information
published for each car going on sale includes a Details attribute in addition to the
Model, Price, Mileage, and Year attributes. The Details attribute contains
additional information about the car in XML format as shown in the following
example:

<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>
 <memory>64MB</memory>
 </GPS>
 </accessory>
</details>

A sample predicate on the Details attribute is extract(Details,
'//stereo[@make="Koss"]') IS NOT NULL. This predicate can be combined
with one or more predicates on other XML or non-XML attributes.

12.1 Using XPath Predicates in Expressions
Using the XMLType data type supplied by Oracle, users can apply XPath predicates on
XML documents within a standard SQL WHERE clause of a query. These predicates use
SQL operators such as EXTRACT and EXISTSNODE on an instance of the XMLType
data type to process an XPath expression for the XML instance. For more information,
see Oracle Database SQL Reference and Oracle XML DB Developer's Guide.

To allow XPath predicates in an expression set, the corresponding attribute set should
be created with an attribute of sys.XMLType data type, as shown in the following
example:

CREATE OR REPLACE TYPE Car4Sale AS OBJECT
 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER,
 Details sys.XMLType);
/

BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'Car4Sale',

Indexing XPath Predicates

12-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 from_type => 'YES');
END;
/

The expression sets using this attribute set can include predicates on the XMLType
attribute, as shown in the following example:

Model='Taurus' and Price < 15000 and Mileage < 25000 AND
 extract(Details, '//stereo[@make="Koss"]') IS NOT NULL

 -- or --

Model='Taurus' and Price < 15000 and Mileage < 25000 AND
 existsNode(Details, '//stereo[@make="Koss"]') = 1

Now, a set of expressions stored in the Interest column of the Consumer table can
be processed for a data item by passing an instance of XMLType for the Details
attribute along with other attribute values to the EVALUATE operator:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000,
 Details=>sys.XMLType(''<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>
 <memory>64MB</memory>
 </GPS>
 </accessory>
 </details>'')'
) = 1;

The previous query identifies all the rows with expressions that are true based on their
XPath and non-XPath predicates.

12.2 Indexing XPath Predicates
To process a large set of XPath predicates in an expression set efficiently, the
Expression Filter index defined for the expression set can be configured for the XPath
predicates (in addition to some simple predicates). The Expression Filter indexes use
the commonalities in the XPath expressions to efficiently compare them to a data item.
These commonalities are based on the positions and the values for the XML elements
and attributes appearing in the XPath expressions.

The indexable constructs in an XPath expression are the levels (or positions) of XML
elements, the values for text nodes in XML elements, the positions of XML attributes,
and the values for XML attributes. For this purpose, an XPath predicate is treated as a
combination of positional and value filters on XML elements and attributes appearing
in an XML document. For example, the following XPath expression can be deciphered
as a set of checks on the XML document. The list following the example explains those
checks.

extract(Details, '//stereo[@make="Koss" and /*/*/GPS/memory[text()="64MB"]]')
 IS NOT NULL

Indexing XPath Predicates

Expressions with XPath Predicates 12-3

1. Level (position) of stereo element is 1 or higher.

2. The stereo element appearing at level 1 or higher has a make attribute.

3. The value for stereo element's make attribute is Koss.

4. The GPS element appears at level 3.

5. The memory element appears at level 4.

6. The memory element has a text node with a value of 64MB.

12.2.1 Indexable XPath Predicates
The Expression Filter index does not support some constructs in an XPath predicate.
Therefore, the XPath predicate is always included in the sparse predicates and
evaluated during the last phase of expression filtering. For more information about
sparse predicates, see Section 11.4.

A positional filter for an Expression Filter index can be configured from any XML
element or attribute. A value filter can only be configured from equality predicates on
XML attributes and text nodes in XML elements. XPath predicates that are indexed in
an expression set must use either the EXTRACT or the EXISTSNODE operator with a
positive test on the return value. For example extract(Details,
'//stereo[@make="Koss"]') IS NOT NULL can be indexed, but a similar
predicate with an IS NULL check on the return value cannot be indexed.

Some of the XPath constructs that cannot be indexed by the Expression Filter include:

■ Inequality or range predicates in the node test. For example, the predicate on the
stereo element's make attribute cannot be indexed in the following XPath
predicate:

extract(Details, '//stereo[@make!="Koss"]') IS NOT NULL

■ Disjunctions in the node test. For example, the predicates on the stereo element's
make attribute cannot be indexed in the following XPath predicate:

extract(Details, '//stereo[@make="Koss" or @make="Bose"]') IS NOT NULL

■ Node tests using XML functions other than text(). For example, the predicate
using the XML function, position, cannot be indexed in the following XPath
predicate:

extract(Details, '//accessory/stereo[position()=3]') IS NOT NULL

However, the text() function in the following example can be a value filter on
the stereo element:

extract(Details, '//accessory/stereo[text()="CD"]') IS NOT NULL

■ Duplicate references to an XML element or an attribute within a single XPath
expression. For example, if the stereo element appears in an XPath expression at
two different locations, only the last occurrence is indexed, and all other references
are processed during sparse predicate evaluation.

12.2.2 Index Representation
The Expression Filter index can be configured to process the XPath predicates
efficiently by using the most discriminating XML elements and attributes as positional
and value filters. Each one forms a predicate group for the expression set.

Indexing XPath Predicates

12-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

For the purpose of indexing XPath predicates, the predicate table structure described
in Section 2.3 is extended to include two columns for each XML tag. For an XML tag
configured as positional filter, these columns capture the relative and absolute
positions of the tag in various XPath predicates. For an XML tag configured as a value
filter, these columns capture the constants appearing with the tag in the node tests and
their relational operators.

Figure 12–1 shows the predicate table structure for the index configured with the
following XML tags:

■ XML attribute stereo@make as value filter. (Predicate Group 4 - G4)

■ XML element stereo as positional filter. (Predicate Group 5 - G5)

■ Text node of the XML element memory as value filter. (Predicate Group 6 - G6)

This image can be viewed as an extension of the predicate table shown in Figure 11–1.
The partial row shown in the predicate table captures the following XPath predicate:

extract(Details, '//stereo[@make="Koss" and /*/*/GPS/memory[text()="64MB"]]')
 IS NOT NULL

Figure 12–1 Conceptual Predicate Table with XPath Predicates

12.2.3 Index Processing
The XPath predicates captured in the predicate table are compared to an XML
document that is included in the data item passed to the EVALUATE operator. The
positions and values of the XML tags used in the index are computed for the XML
document, and these are compared with the values stored in the corresponding
columns of the predicate table. Assuming that the relational operators and the
right-hand-side constants for the value filter on stereo@make attribute are stored in
G4_OP and G4_RHS columns of the predicate table (see Figure 12–1), the following
query on the predicate table identifies the rows that satisfy this check for an XML
document:

SELECT Rid FROM predicate_table
 WHERE G4_OP = '=' AND
 G4_RHS in (SELECT column_value FROM TABLE (:G4ValuesArray));

For the previous query, the values for all the occurrences of the stereo@make
attribute in the given XML document are represented as a VARRAY and are bound to
the :G4ValuesArray variable.

Similarly, assuming that the position constraints and the absolute levels (positions) of
the stereo element are stored in the G5_OP and G5_POS columns of the predicate
table, the following query identifies all the rows that satisfy these positional checks for
an XML document:

SELECT Rid FROM predicate_table
 WHERE (G5_OP = '=' AND --- absolute position check --

Note: Only equality operators are indexed in this release.

Indexing XPath Predicates

Expressions with XPath Predicates 12-5

 G5_POS in (SELECT column_value FROM table (:G5PosArray))) OR
 (G5_OP = '>=' AND --- relative position check --
 G5_POS <= SELECT max(column_value) FROM table (:G5PosArray)));

For the previous query, the :G5PosArray contains the levels for all the occurrences of
the stereo element in the XML document. These checks on each predicate group can
be combined with the checks on other (XPath and non-XPath) predicate groups to
form a complete predicate table query. A subset of the XML tags can be identified as
the most selective predicate groups, and they can be configured as the indexed
predicate groups (See Section 11.4). Bitmap indexes are created for the selective
predicate groups, and these indexes are used along with indexes defined for other
indexed predicate groups to efficiently process the predicate table query.

12.2.4 Index Tuning for XPath Predicates
The most discriminating XML tags in a set of XPath predicates are classified as
positional filters and value filters. A value filter is considered discriminating if node
tests using the XML tag are selective enough to match only a subset of XML
documents. Similarly, a positional filter is considered discriminating if the tag appears
at different levels or does not appear in all XML documents, and thus match only a
subset of them.

The XPath positional and value filters can be further mapped to indexed predicate
groups or stored predicate groups. PL/SQL procedures are provided to configure an
Expression Filter index with these parameters. For an attribute set consisting of two or
more XMLType attributes, the XML tags can be associated with each of these attributes

The XPath index parameters for a set of expressions are considered part of the index
parameter, and they can be assigned to an attribute set or an expression set (the
column storing the expressions). The index parameters assigned to the attribute set act
as defaults and are shared across all the expression sets associated with the attribute
set.

A few XPath index parameters can be assigned to an XMLType attribute of an attribute
set using the DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS procedure, as shown
in the following example:

BEGIN
 DBMS_EXPFIL.DEFAULT_XPINDEX_PARAMETERS(
 attr_set => 'Car4Sale',
 xmlt_attr => 'Details', --- XMLType attribute
 xptag_list => --- Tag list
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'stereo@make', --- XML attribute
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(15)'), --- value filter
 exf$xpath_tag(tag_name => 'stereo', --- XML element
 tag_indexed => 'FALSE',
 tag_type => null), --- null => positional filter
 exf$xpath_tag(tag_name => 'memory', --- XML element
 tag_indexed => 'TRUE',
 tag_type => 'VARCHAR(10)') --- value filter
)
);
END;
/

Note that a missing or null value for the tag_type argument configures the XML tag
as a positional filter.

Indexing XPath Predicates

12-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

For more information about assigning XPath index parameters, see DEFAULT_
XPINDEX_PARAMETERS Procedure.

By default, the previous XPath index parameters are used for any index created on an
expression set that is associated with the Car4Sale attribute set.

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

Unlike simple index parameters, the XPath index parameters cannot be fine-tuned for
an expression set when the index is created. However, you can achieve this by
associating index parameters directly with the expression set using the DBMS_
EXPFIL.INDEX_PARAMETERS and DBMS_EXPFIL.XPINDEX_PARAMETERS
procedures and then creating the index, as shown in the following example:

BEGIN
 -- Derive the index parameters including XPath index params from defaults --
 DBMS_EXPFIL.INDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 attr_list => null,
 operation => 'DEFAULT');

 -- fine-tune the XPath index parameters by adding another Tag --
 DBMS_EXPFIL.XPINDEX_PARAMETERS(expr_tab => 'Consumer',
 expr_col => 'Interest',
 xmlt_attr => 'Details',
 xptag_list =>
 exf$xpath_tags(
 exf$xpath_tag(tag_name => 'GPS',
 tag_indexed => 'TRUE',
 tag_type => null)),
 operation => 'ADD');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest)
 INDEXTYPE IS EXFSYS.EXPFILTER;

For more information, see INDEX_PARAMETERS Procedure and XPINDEX_
PARAMETERS Procedure.

Once the index is created on a column storing the expressions, a query with the
EVALUATE operator can process a large set of XPath and non-XPath predicates for a
data item efficiently:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 'Model=>''Mustang'',
 Year=>2000,
 Price=>18000,
 Mileage=>22000,
 Details=>sys.XMLType(''<details>
 <color>White</color>
 <accessory>
 <stereo make="Koss">CD</stereo>
 <GPS>
 <resolution>1FT</resolution>
 <memory>64MB</memory>
 </GPS>
 </accessory>

Indexing XPath Predicates

Expressions with XPath Predicates 12-7

 </details>'')'
) = 1;

Note: Expression Filter index tuning based on XPath statistics is not
supported in the current release.

Indexing XPath Predicates

12-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Expressions with Spatial Predicates 13-1

13
Expressions with Spatial Predicates

The expressions stored in a column of a table may contain spatial predicates defined
on SDO_GEOMERTY attributes. This section describes an application for spatial
predicates using the Car4Sale example introduced in Chapter 10. For this purpose, the
information published for each car going on sale includes a Location attribute in
addition to the Model, Price, Mileage, and Year attributes. The Location
attribute contains geographical coordinates for the vehicle's location, as an instance of
the SDO_GEOMETRY data type.

Using the Location attribute, the consumer interested in a vehicle can restrict the
search only to the vehicles that are within a specified distance, say half a mile, of his
own location. This can be specified using the following spatial predicate involving the
SDO_WITHIN_DISTANCE operator:

SDO_WITHIN_DISTANCE(
 Location,
 SDO_GEOMETRY(
 2001, 8307,
 SDO_POINT_TYPE(-77.03644, 37.89868, NULL), NULL, NULL
) ,
 'distance=0.5 units=mile'
) = 'TRUE'

Note that spatial predicates are efficiently evaluated with the help of spatial indexes.
Section 13.1 and Section 13.2 will describe how to specify spatial predicates in
arbitrary expressions and how to ensure the predicates are evaluated using
appropriate spatial indexes.

13.1 Using Spatial Predicates in Expressions
Using the Oracle supplied SDO_GEOMETRY data type, users can specify spatial
predicates on instances of spatial geometries within a standard SQL WHERE clause of a
query. These predicates use operators such as SDO_WITHIN_DISTANCE and SDO_
RELATE on an instance of SDO_GEOMETRY data type to relate two spatial geometries in
a specific way. For more information, see Oracle Spatial User's Guide and Reference.

To allow spatial predicates in an expression set, the corresponding attribute set should
be created with an attribute of MDSYS.SDO_GEOMETRY data type as shown in the
following example:

CREATE OR REPLACE TYPE Car4Sale AS OBJECT

Note: The Oracle Spatial or the Locator components must be
installed to use spatial predicates in stored expressions.

Using Spatial Predicates in Expressions

13-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER,
 Location MDSYS.SDO_GEOMETRY);
/
BEGIN
 dbms_expfil.create_attribute_set (attr_set => 'Car4Sale',
 from_type => 'YES');
END;
/

In order to specify predicates on the spatial attribute and index them for efficiency, the
geometry metadata describing the dimension, lower and upper bounds, and tolerance
in each dimension should associated with each spatial geometry attribute in the
attribute set. This metadata information can be inserted into the USER_SDO_GEOM_
METADATA view using the attribute set name in the place of the table name. For more
information on the USER_SDO_GEOM_METADATA view and its semantics, see Oracle
Spatial User's Guide and Reference.

INSERT INTO user_sdo_geom_metadata VALUES ('CAR4SALE','LOCATION',
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element('X', -180, 180, 0.5),
 mdsys.sdo_dim_element('Y', -90, 90, 0.5)), 8307);

The expression set using the attribute set with one or more SDO_GEOMETRY attributes
can include predicates on such attributes using SDO_WITHIN_DISTANCE or SDO_
RELATE operators, as shown in the following examples:

Model = 'Taurus' and Price < 15000 and Mileage < 25000 and
 SDO_WITHIN_DISTANCE (Location,
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-77.03644, 37.89868, NULL), NULL, NULL),
 'distance=0.5 units=mile') = 'TRUE'

Model = 'Taurus' and Price < 15000 and Mileage < 25000 and
 SDO_RELATE (Location,
 SDO_GEOMETRY(2001, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 SDO_ORDINATE_ARRAY(-77.03644, 37.89868, -75, 39),
 'mask=anyinteract') = 'TRUE'

Note that unlike in the case of expressions with purely non-spatial predicates,
expressions with spatial predicates cannot be evaluated when an Expression Filter
index is not defined for the expression set. Once an Expression Filter index is created
on the column storing the expressions, expressions with spatial predicates can be
processed for a data item by passing an instance of SDO_GEOMETRY data type for the
Location attribute, along with other attribute values, to the EVALUATE operator.

SELECT * FROM Consumer WHERE
 EVALUATE (Interest,
 sys.anyData.convertObject(
 Car4Sale('Mustang', 2002, 20000, 250000,
 SDO_GEOMETRY(2001, 8307,
 sdo_point_type(-77.03644, 38.9059284, null), null, null)))
) = 1;

The previous query identifies all the rows with expressions that are true based on their
spatial and not-spatial predicates.

Indexing Spatial Predicates

Expressions with Spatial Predicates 13-3

13.2 Indexing Spatial Predicates
The spatial predicates in the stored expressions are processed using some custom
spatial indexes created on the geometries specified in the spatial predicates. These
spatial indexes are automatically created when the Expression Filter index is created
on the column storing expressions. The expressions with spatial predicates cannot be
processed in the absence of these spatial indexes and hence an Expression Filter index
is always required to evaluate such expressions.

When an Expression Filter index is defined on an expression column, the spatial
attributes in corresponding attribute set are all considered as indexed predicate
groups. The predicate table has columns of SDO_GEOMETRY type for each of these
attributes and spatial indexes are created on these columns. The values stored in an
SDO_GEOMETRY column of the predicate table are computed based on the values
specified in the spatial predicates involving corresponding attribute.

When the expressions are evaluated for a data item, the spatial indexes created on the
geometry column in combination with bitmap indexes created for the other indexed
predicate groups filter out the expressions that are false based on all indexed predicate
groups. The expressions remaining in the working set are further evaluated based on
the stored predicate groups and sparse predicates to identify all the expressions that
are true for the given data item.

Indexing Spatial Predicates

13-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Using Expression Filter with Utilities 14-1

14
Using Expression Filter with Utilities

This chapter describes the use of SQL*Loader and Data Pump Export and Import
utilities in the presence of one or more Expression columns.

14.1 Bulk Loading of Expression Data
Bulk loading can import large amounts of ASCII data into an Oracle database. You use
the SQL*Loader utility to bulk load data.

For SQL*Loader operations, the expression data is treated as strings loaded into a
VARCHAR2 column of a database table. The data file can hold the expression data in
any format allowed for VARCHAR2 data, and the control file can refer to the column
storing expressions as a column of a VARCHAR2 data type.

A sample control file used to load a few rows into the Consumer table is shown in the
following example:

LOAD DATA
INFILE *
INTO TABLE Consumer
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(CId, Zipcode, Phone, Interest)
BEGINDATA
1,32611,"917 768 4633","Model='Taurus' and Price < 15000 and Mileage < 25000"
2,03060,"603 983 3464","Model='Mustang' and Year > 1999 and Price < 20000"
3,03060,"603 484 7013","HorsePower(Model, Year) > 200 and Price < 20000"

The data loaded into an Expression column is automatically validated using the
attribute set associated with the column. This validation is done by the BEFORE ROW
trigger defined on the column storing expressions. Therefore, a direct load cannot be
used when the table has one or more Expression columns.

If an Expression Filter index is defined on the column storing expressions, it is
automatically maintained during the SQL*Loader operations.

To achieve faster bulk loads, the expression validation can be bypassed by following
these steps:

1. Drop any Expression Filter indexes defined on Expression columns in the table:

DROP INDEX InterestIndex;

2. Convert the Expression columns back into VARCHAR2 columns by unassigning the
attribute sets, using the UNASSIGN_ATTRIBUTE_SET procedure:

BEGIN
 DBMS_EXPFIL.UNASSIGN_ATTRIBUTE_SET (expr_tab => 'Consumer',
 expr_col => 'Interest');

Exporting and Importing Tables, Users, and Databases

14-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

END;
/

3. Perform the bulk load operation. Because the Expression columns are converted to
VARCHAR2 columns in the previous step, a direct load is possible in this step.

4. Convert the VARCHAR2 columns with expression data into Expression columns by
assigning a value of TRUE for the force argument of the ASSIGN_ATTRIBUTE_
SET procedure:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (
 attr_set => 'Car4Sale',
 expr_tab => 'Consumer',
 expr_col => 'Interest',
 force => 'TRUE');
END;
/

5. To avoid runtime validation errors, the expressions in the table can be validated
using the DBMS_EXPFIL.VALIDATE_EXPRESSIONS procedure:

BEGIN
 DBMS_EXPFIL.VALIDATE_EXPRESSIONS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

6. Re-create the indexes on the Expression columns.

14.2 Exporting and Importing Tables, Users, and Databases
A table with one or more Expression columns can be exported and imported back to
the same database or a different Oracle database. If a table with Expression columns is
being imported into an Oracle database, ensure Expression Filter is installed.

14.2.1 Exporting and Importing Tables Containing Expression Columns
The following guidelines and known behavior associated with exporting and
importing tables containing Expression columns will assist you in this operation.

■ When a table with one or more Expression columns is exported, the corresponding
attribute set definitions, along with their object type definitions, are placed in the
export dump file. An attribute set definition placed in the dump file includes its
default index parameters and the list of approved user-defined functions.
However, definitions for the user-defined functions are not placed in the export
dump file.

■ While importing a table with one or more Expression columns from the export
dump file, the attribute set creation may fail if a matching attribute set exists in the
destination schema. If the attribute set is defined with one or more (embedded)
object typed attributes, these types should exist in the database importing the
attribute set.

■ While importing the default index parameters and user-defined function list, the
import driver continues the import process if it encounters missing dependent
objects. For example, if the function HorsePower does not exist in the schema
importing the Consumer table, the import of the table and the attribute set
proceeds without errors. However, the corresponding entries in the Expression

Exporting and Importing Tables, Users, and Databases

Using Expression Filter with Utilities 14-3

Filter dictionary display null values for object type or output data type fields, an
indication the import process was incomplete.

■ When the Expression Filter index defined on an Expression column is exported, all
its metadata is placed in the export dump file. This metadata includes a complete
list of stored and indexed attributes configured for the index. During import, this
list is used. The attributes are not derived from the default index parameters. If
one or more stored attributes use object references (functions) that are not valid in
the schema importing the index, the index creation fails with an error. However,
the index metadata is preserved in the Expression Filter dictionary.

■ A table imported incompletely due to broken references to dependent schema
objects (in the function list, default index parameters list, and exact index
parameters list) may cause runtime errors during subsequent expression
evaluation or expression modifications (through DML). Import of such tables can
be completed from a SQL*Plus session by resolving all the broken references.
Running the Expression Validation utility (DBMS_EXPFIL.VALIDATE_
EXPRESSIONS procedure) can identify errors in the expression metadata and the
expressions. You can create any missing objects identified by this utility and repeat
the process until all the errors in the expression set are resolved. Then, you can
recover the Expression Filter index with the SQL ALTER INDEX ... REBUILD
statement.

14.2.2 Exporting a User Owning Attribute Sets
In addition to exporting tables and indexes defined in the schema, export of a user
places the definitions for attribute sets that are not associated with any Expression
column into the export dump file. All the restrictions that apply to the export of tables
also apply to the export of a user.

14.2.3 Exporting a Database Containing Attribute Sets
During a database export, attribute set definitions are placed in the export file along
with all other objects. The contents of EXFSYS schema are excluded from the database
export.

Exporting and Importing Tables, Users, and Databases

14-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

SQL Operators and Statements 15-1

15
SQL Operators and Statements

This chapter provides reference information about the SQL EVALUATE operator and
SQL statements used to index expression data. Table 15–1 lists the statements and their
descriptions. For complete information about SQL statements, see Oracle Database SQL
Reference.

Table 15–1 Expression Filter Index Creation and Usage Statements

Statement Description

EVALUATE Matches an expression set with a given data item or table
of data items

ALTER INDEX REBUILD Rebuilds an Expression Filter index

ALTER INDEX RENAME TO Changes the name of an Expression Filter index

CREATE INDEX Creates an Expression Filter index on a column storing
expressions

DROP INDEX Drops an Expression Filter index

EVALUATE

15-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

EVALUATE

The EVALUATE operator is used in the WHERE clause of a SQL statement to compare
stored expressions to incoming data items.

The expressions to be evaluated are stored in an Expression column, which is created
by assigning an attribute set to a VARCHAR2 column in a user table.

Format
EVALUATE (expression_column, <dataitem>)

<dataitem> := <varchar_dataitem> | <anydata_dataitem>
<varchar_dataitem> := attribute_name => attribute_value
 {, attribute_name => attribute_value}
<anydata_dataitem> := AnyData.convertObject(attribute_set_instance)

Keywords and Parameters

expression_column
Name of the column storing the expressions

attribute_name
Name of an attribute from the corresponding attribute set

attribute_value
Value for the attribute

attribute_set_instance
Instance of the object type associated with the corresponding attribute set

Returns
The EVALUATE operator returns a 1 for an expression that matches the data item, and
returns a 0 for an expression that does not match the data item. For any null values
stored in the Expression column, the EVALUATE operator returns NULL.

Usage Notes
The EVALUATE operator can be used in the WHERE clause of a SQL statement. When an
Expression Filter index is defined on a column storing expressions, the EVALUATE
operator on such a column may use the index for the expression set evaluation based
on its usage cost. The EVALUATE operator can be used as a join predicate between a
table storing expressions and a table storing the corresponding data items.

If the values of all elementary attributes in the attribute set can be represented as
readable values, such as those stored in VARCHAR, DATE, and NUMBER data types and
the constructors formatted as a string, then the data item can be formatted as a string
of attribute name-value pairs. If a data item does not require a constructor for any of
its elementary attribute values, then a list of values provided for the data item can be
formatted as a string of name-value pairs using two getVarchar methods (a STATIC
method and a MEMBER method) in the object type associated with the attribute set.

Any data item can be formatted using an AnyData instance. An attribute set with one
or more binary typed attributes must use the AnyData form of the data item.

See Section 10.3 for more information about the EVALUATE operator.

EVALUATE

SQL Operators and Statements 15-3

Related views: USER_EXPFIL_ATTRIBUTE_SETS, USER_EXPFIL_ATTRIBUTES, and
USER_EXPFIL_EXPRESSION_SETS

Examples
The following query uses the VARCHAR form of the data item generated by the
getVarchar() function:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 Car4Sale('Mustang',
 2000,
 18000,
 22000).getVarchar()
) = 1;

For the previous query, the data item can be passed in the AnyData form with the
following syntax:

SELECT * FROM Consumer WHERE
 EVALUATE (Consumer.Interest,
 AnyData.convertObject (
 Car4Sale ('Mustang',
 2000,
 18000,
 22000)
)) = 1;

When a large set of data items are stored in a table, the table storing expressions can be
joined with the table storing data items with the following syntax:

SELECT i.CarId, c.CId, c.Phone
FROM Consumer c, Inventory i
WHERE
 EVALUATE (c.Interest,
 Car4Sale(i.Model, i.Year, i.Price, i.Mileage).getVarchar()) = 1
ORDER BY i.CarId;

ALTER INDEX REBUILD

15-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

ALTER INDEX REBUILD

The ALTER INDEX REBUILD statement rebuilds an Expression Filter index created on
a column storing expressions. The Expression Filter index DOMIDX_OPSTATUS status
in the USER_INDEXES view must be VALID for the rebuild operation to succeed.

Format
ALTER INDEX [schema_name.]index_name REBUILD
 [PARAMETERS ('DEFAULT')]

Keywords and Parameters

DEFAULT
The list of stored and indexed attributes for the Expression Filter index being rebuilt
are derived from the default index parameters associated with the corresponding
attribute set.

Usage Notes
When the ALTER INDEX...REBUILD statement is issued without a PARAMETERS
clause, the Expression Filter index is rebuilt using the current list of stored and
indexed attributes. This statement can also be used for indexes that failed during
IMPORT operation due to missing dependent objects.

The default index parameters associated with an attribute set can be modified without
affecting the existing Expression Filter indexes. These indexes can be rebuilt to use the
new set of defaults by using the DEFAULT parameter with the ALTER
INDEX...REBUILD statement. Index parameters assigned to the expression set are
cleared when an index is rebuilt using the defaults.

The bitmap indexes defined for the indexed attributes of an Expression Filter index get
fragmented as the expressions stored in the corresponding column are frequently
modified (using INSERT, UPDATE, or DELETE operations). Rebuilding those indexes
could improve the performance of the query using the EVALUATE operator. The
bitmap indexes can be rebuilt online using the DBMS_EXPFIL.DEFRAG_INDEX
procedure.

See Section 11.8 for more information about rebuilding indexes.

Related views: USER_EXPFIL_INDEXES and USER_EXPFIL_PREDTAB_ATTRIBUTES

Examples
The following statement rebuilds the index using its current parameters:

ALTER INDEX InterestIndex REBUILD;

The following statement rebuilds the index using the default index parameters
associated with the corresponding attribute set:

ALTER INDEX InterestIndex REBUILD PARAMETERS('DEFAULT');

ALTER INDEX RENAME TO

SQL Operators and Statements 15-5

ALTER INDEX RENAME TO

The ALTER INDEX RENAME TO statement renames an Expression Filter index.

Format
ALTER INDEX [schema_name.]index_name RENAME TO new_index_name;

Keywords and Parameters
None.

Usage Notes
None.

Examples
The following statement renames the index:

ALTER INDEX InterestIndex RENAME TO ExprIndex;

CREATE INDEX

15-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

CREATE INDEX

The CREATE INDEX statement creates an Expression Filter index for a set of
expressions stored in a column. The column being indexed should be configured to
store expressions (with an attribute set assigned to it), and the index should be created
in the same schema as the table (storing expressions).

Format
CREATE INDEX [schema_name.]index_name ON
[schema_name.].table_name (column_name) INDEXTYPE IS EXFSYS.EXPFILTER
[PARAMETERS (' <parameters_clause> ') ...;
<parameters_clause>:= [ADD TO DEFAULTS | REPLACE DEFAULTS]
 [<storeattrs_clause>] [<indexattrs_clause>][<predstorage_clause>]
<storeattrs_clause> := STOREATTRS [(attr1, attr2, ..., attrx) | TOP n]
<indexattrs_clause> := INDEXATTRS [(attr1, attr2, ..., attry) | TOP m]
<predstorage_clause> := PREDSTORAGE (<storage_clause>)

Keywords and Parameters

EXFSYS.EXPFILTER
The name of the index type that implements the Expression Filter index.

ADD TO DEFAULTS
When this parameter is specified, the attributes listed in the STOREATTRS and
INDEXATTRS clauses are added to the defaults associated with the corresponding
attribute set. This is the default behavior.

REPLACE DEFAULTS
When this parameter is specified, the index is created using only the list of stored and
indexed attributes specified after this clause. In this case, the default index parameters
associated with the corresponding attribute set are ignored.

STOREATTRS
Lists the stored attributes for the Expression Filter index.

INDEXATTRS
Lists the indexed attributes for the Expression Filter index.

TOP
This parameter can be used for both STOREATTRS and INDEXATTRS clauses only
when expression set statistics are collected. (See the section about GET_EXPRSET_
STATS Procedure.) The number after the TOP parameter indicates the number of (the
most-frequent) attributes to be stored or indexed for the Expression Filter index.

PREDSTORAGE
Storage clause for the predicate table. See Oracle Database SQL Reference for the
<storage_clause> definition.

Usage Notes
When the index parameters are directly assigned to an expression set (column storing
expressions), the PARAMETERS clause in the CREATE INDEX statement cannot contain
STOREATTRS or INDEXATTRS clauses. In this case, the Expression Filter index is
always created using the parameters associated with the expression set. (See the

CREATE INDEX

SQL Operators and Statements 15-7

INDEX_PARAMETERS Procedure and XPINDEX_PARAMETERS Procedure sections in
Chapter 17 and the "USER_EXPFIL_INDEX_PARAMS View" in Chapter 18.)

When the PARAMETERS clause is not used with the CREATE INDEX statement and the
index parameters are not assigned to the expression set, the default index parameters
associated with the corresponding attribute set are used for the Expression Filter
index. If the default index parameters list is empty, all the scalar attributes defined in
the attribute set are stored and indexed in the predicate table.

For an Expression Filter index, all the indexed attributes are also stored. So, the list of
stored attributes is derived from those listed in the STOREATTRS clause and those
listed in the INDEXATTRS clause. If REPLACE DEFAULTS clause is not specified, this
list is merged with the default index parameters associated with the corresponding
attribute set.

If the REPLACE DEFAULTS clause is not specified, the list of indexed attributes for an
Expression Filter index is derived from the INDEXATTRS clause and the default index
parameters associated with the corresponding attribute set. If this list is empty, the
system picks at most 10 stored attributes and indexes them.

If an attribute is listed in the PARAMETERS clause as well as the default index
parameters, its stored versus indexed property is decided by the PARAMETERS clause
specification.

Predicate statistics for the expression set should be available to use the TOP clause in
the parameters of the CREATE INDEX statement. (See the GET_EXPRSET_STATS
Procedure for more information.) When the TOP clause is used for the STOREATTRS
parameter, the INDEXATTRS parameter (if specified) should also use the TOP clause.
Also, the number specified for the TOP clause of the INDEXATTRS parameter should
be less than or equal to the one specified for the STOREATTRS parameter. When a TOP
clause is used, REPLACE DEFAULTS usage is implied. That is, the stored and indexed
attributes are picked solely based on the predicate statistics available in the dictionary.

The successful creation of the Expression Filter index creates a predicate table, one or
more bitmap indexes on the predicate table, and a package with access functions in the
same schema as the base table. By default the predicate table and its indexes are
created in the user default tablespace. Alternate tablespace and other storage
parameters for the predicate table can be specified using the PREDSTORAGE clause.
The indexes on the predicate table are always created in the same tablespace as the
predicate table.

See Chapter 11 for information about indexing expressions.

Related views: USER_EXPFIL_INDEXES, USER_EXPFIL_INDEX_PARAMETERS,
USER_EXPFIL_DEF_INDEX_PARAMS, USER_EXPFIL_EXPRSET_STATS, and USER_
EXPFIL_PREDTAB_ATTRIBUTES

Examples
When index parameters are not directly assigned to the expression set, you can create
an Expression Filter index using the default index parameters specified for the
corresponding attribute set as follows:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER;

You can create an index with one additional stored attribute using the following
statement:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS (CrashTestRating(Model, Year))
 PREDSTORAGE (tablespace tbs_1) ');

CREATE INDEX

15-8 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

You can specify the complete list of stored and indexed attributes for an index with the
following statement:

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('REPLACE DEFAULTS
 STOREATTRS (Model, CrashTestRating(Model, Year))
 INDEXATTRS (Model, Year, Price)
 PREDSTORAGE (tablespace tbs_1) ');

The TOP clause can be used in the parameters clause when statistics are computed for
the expression set. These statistics are accessible from the USER_EXPFIL_EXPRSET_
STATS view.

BEGIN
 DBMS_EXPFIL.GET_EXPRSET_STATS (expr_tab => 'Consumer',
 expr_col => 'Interest');
END;
/

CREATE INDEX InterestIndex ON Consumer (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS TOP 4 INDEXATTRS TOP 3');

DROP INDEX

SQL Operators and Statements 15-9

DROP INDEX

The DROP INDEX statement drops an Expression Filter index.

Format
DROP INDEX [schema_name.]index_name;

Keyword and Parameters
None.

Usage Notes
Dropping an Expression Filter index automatically drops all the secondary objects
maintained for the index. These objects include a predicate table, one or more indexes
on the predicate table, and an access function package.

Examples

DROP INDEX InterestIndex;

DROP INDEX

15-10 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Object Types 16-1

16
Object Types

The Expression Filter feature is supplied with a set of predefined types and public
synonyms for these types. Most of these types are used for configuring index
parameters with the Expression Filter procedural APIs. The EXF$TABLE_ALIAS type
is used to support expressions defined on one or more database tables. Table 16–1
describes the Expression Filter object types.

None of the values and names passed to the types defined in this chapter are case
sensitive. To preserve the case, use double quotation marks around the values.

Tip: See the "Expression Filter Types" chapter in Oracle Database
PL/SQL Packages and Types Reference for all reference information
concerning Expression Filter object types.

Table 16–1 Expression Filter Object Types

Object Type Name Description

EXF$ATTRIBUTE Specifies the stored and indexed attributes for the Expression
Filter indexes

EXF$ATTRIBUTE_LIST Specifies a list of stored and indexed attributes when
configuring index parameters

EXF$INDEXOPER Specifies a list of common operators in predicates with a stored
or an indexed attribute

EXF$TABLE_ALIAS Indicates a special form of elementary attribute used to manage
expressions defined on one or more database tables

EXF$XPATH_TAG Configures an XML element or an XML attribute for indexing a
set of XPath predicates

EXF$XPATH_TAGS Specifies a list of XML tags when configuring the Expression
Filter index parameters

16-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Management Procedures Using the DBMS_EXPFIL Package 17-1

17
Management Procedures Using the DBMS_

EXPFIL Package

The Expression Filter DBMS_EXPFIL package contains all the procedures used to
manage attribute sets, expression sets, expression indexes, optimizer statistics, and
privileges. Table 17–1 describes the procedures in the DBMS_EXPFIL package. These
procedures are further described in this chapter.

None of the values and names passed to the procedures defined in the DBMS_EXPFIL
package are case sensitive, unless otherwise mentioned. To preserve the case, use
double quotation marks around the values.

Tip: See the "DBMS_EXPIL" chapter in Oracle Database PL/SQL
Packages and Types Reference for all reference information concerning
Expression Filter package procedures.

Table 17–1 DBMS_EXPFIL Procedures

Procedure Description

ADD_ELEMENTARY_ATTRIBUTE
Procedure

Adds the specified attribute to the attribute set

ADD_FUNCTIONS Procedure Adds a function, type, or package to the approved list of functions
with an attribute set

ASSIGN_ATTRIBUTE_SET Procedure Assigns an attribute set to a column storing expressions

BUILD_EXCEPTIONS_TABLE Procedure Creates an exception table to hold references to invalid expressions

CLEAR_EXPRSET_STATS Procedure Clears the predicate statistics for an expression set

COPY_ATTRIBUTE_SET Procedure Makes a copy of the attribute set

CREATE_ATTRIBUTE_SET Procedure Creates an attribute set

DEFAULT_INDEX_PARAMETERS
Procedure

Assigns default index parameters to an attribute set

DEFAULT_XPINDEX_PARAMETERS
Procedure

Assigns default XPath index parameters to an attribute set

DEFRAG_INDEX Procedure Rebuilds the bitmap indexes online to reduce fragmentation

DROP_ATTRIBUTE_SET Procedure Drops an unused attribute set

GET_EXPRSET_STATS Procedure Collects predicate statistics for an expression set

GRANT_PRIVILEGES Procedure Grants an expression DML privilege to a user

INDEX_PARAMETERS Procedure Assigns index parameters to an expression set

17-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

MODIFY_OPERATOR_LIST Modifies the list of common operators associated with a certain
attribute in the attribute set

REVOKE_PRIVILEGE Procedure Revokes an expression DML privilege from a user

UNASSIGN_ATTRIBUTE_SET Procedure Breaks the association between a column storing expressions and the
attribute set

VALIDATE_EXPRESSIONS Procedure Validates expression metadata and the expressions stored in a column

XPINDEX_PARAMETERS Procedure Assigns XPath index parameters to an expression set

Table 17–1 (Cont.) DBMS_EXPFIL Procedures

Procedure Description

Expression Filter Views 18-1

18
Expression Filter Views

The Expression Filter metadata can be viewed using the Expression Filter views
defined with a xxx_EXPFIL prefix, where xxx can be USER or ALL. These views are
read-only to the users and are created and maintained by the Expression Filter
procedures.

 Table 18–1 lists the names of the views and their descriptions.

18.1 USER_EXPFIL_ASET_FUNCTIONS View
This view lists all the functions and packages that are allowed in the expressions using
a particular attribute set. This view is defined with the columns described in the
following table:

Table 18–1 Expression Filter Views

View Name Description

USER_EXPFIL_ASET_FUNCTIONS View List of functions and packages approved for the attribute set

USER_EXPFIL_ATTRIBUTES View List of elementary attributes of the attribute set

USER_EXPFIL_ATTRIBUTE_SETS View List of attribute set

USER_EXPFIL_DEF_INDEX_PARAMS View List of default index parameters

USER_EXPFIL_EXPRESSION_SETS View List of expression sets

USER_EXPFIL_EXPRSET_STATS View List of predicate statistics for the expression sets

USER_EXPFIL_INDEX_PARAMS View List of index parameters assigned to the expression set

USER_EXPFIL_INDEXES View List of expression filter indexes

USER_EXPFIL_PREDTAB_ATTRIBUTES View List of stored and indexed attributes for the indexes

USER_EXPFIL_PRIVILEGES View List of all the expression privileges of the current user

Column Name Data Type Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set

UDF_NAME VARCHAR2 Name of the user-defined function or package (or type)
as specified by the user (with or without the schema
extension)

OBJECT_OWNER VARCHAR2 Owner of the function or package (or type)

OBJECT_NAME VARCHAR2 Name of the function or package (or type)

USER_EXPFIL_ATTRIBUTES View

18-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

18.2 USER_EXPFIL_ATTRIBUTES View
This view lists all the elementary attributes of the attribute sets defined in the user's
schema. This view is defined with the columns described in the following table:

18.3 USER_EXPFIL_ATTRIBUTE_SETS View
This view lists the attribute sets defined in the user's schema. This view is defined with
the column described in the following table:

18.4 USER_EXPFIL_DEF_INDEX_PARAMS View
This view lists the default index parameters (stored and indexed attributes) associated
with the attribute sets defined in the user's schema. This view is defined with the
columns described in the following table:

OBJECT_TYPE VARCHAR2 Type of the object at the time the object was added to
the attribute set:

■ Function: If the object is a function

■ Package: If the object is a package

■ Type: If the object is a type

■ Embedded type: If the object is a type that is
implicitly added to the function list as the type is
used by one of the elementary attributes in the set

■ Synonym: Synonym to a function or package or
type

Column Name Data Type Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set.

ATTRIBUTE VARCHAR2 Name of the elementary attribute.

DATA_TYPE VARCHAR2 Data type of the attribute.

ASSOCIATED_
TABLE

VARCHAR2 Name of the corresponding table for the table alias
attribute. Null for all other types of attributes.

Column Name Data Type Description

ATTRIBUTE_
SET_NAME

VARCHAR2 Name of the attribute set

Column Name Data Type Description

ATTRIBUTE_SET_
NAME

VARCHAR2 Name of the attribute set

ATTRIBUTE VARCHAR2 Name of the stored attribute

DATA_TYPE VARCHAR2 Data type of the attribute

ELEMENTARY VARCHAR2 YES, if the attribute is also the elementary attribute of
the attribute set; otherwise, NO

Column Name Data Type Description

USER_EXPFIL_EXPRSET_STATS View

Expression Filter Views 18-3

18.5 USER_EXPFIL_EXPRESSION_SETS View
This view lists the expression sets defined in the user's schema. This view is defined
with the columns described in the following table:

18.6 USER_EXPFIL_EXPRSET_STATS View
This view lists the predicate statistics for the expression sets in the user's schema. This
view is defined with the columns described in the following table:

INDEXED VARCHAR2 YES, if the stored attribute is also the indexed attribute;
otherwise, NO

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag

Column Name Data Type Description

EXPR_TABLE VARCHAR2 Name of the table storing expressions

EXPR_COLUMN VARCHAR2 Name of the column (in the table) storing expressions

ATTRIBUTE_SET VARCHAR2 Name of the corresponding attribute set

LAST_
ANALYZED

DATE Date on which the predicate statistics for this
expression set were recently computed. Null if statistics
were not collected

NUM_
EXPRESSIONS

NUMBER Number of expressions in the set when the set was last
analyzed

PREDS_PER_
EXPR

NUMBER Average number of predicates for each expression
(when last analyzed)

NUM_SPARSE_
PREDS

NUMBER Number of sparse predicates in the expression set
(when last analyzed)

Column Name Data Type Description

EXPR_TABLE VARCHAR2 Name of the table storing expressions

EXPR_COLUMN VARCHAR2 Name of the column (in the table) storing expressions

ATTRIBUTE_EXP VARCHAR2 The arithmetic expression that represents a common
left-hand side (LHS) in the predicates of the expression
set

PCT_
OCCURRENCE

NUMBER Percentage occurrence of the attribute in the expression
set

PCT_EQ_OPER NUMBER Percentage of predicates (of the attribute) with equality
(=) operator

PCT_LT_OPER NUMBER Percentage of predicates (of the attribute) with the less
than (<) operator

PCT_GT_OPER NUMBER Percentage of predicates (of the attribute) with the
greater than (>) operator

Column Name Data Type Description

USER_EXPFIL_INDEX_PARAMS View

18-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

18.7 USER_EXPFIL_INDEX_PARAMS View
This view lists the index parameters associated with the expression sets defined in the
user's schema. This view is defined with the columns described in the following table:

18.8 USER_EXPFIL_INDEXES View
This view lists the Expression Filter indexes defined in the user's schema. This view is
defined with the columns described in the following table:

PCT_LTEQ_OPER NUMBER Percentage of predicates (of the attribute) with the less
than or equal to (<=) operator

PCT_GTEQ_OPER NUMBER Percentage of predicates (of the attribute) with the
greater than or equal to (>=) operator

PCT_NEQ_OPER NUMBER Percentage of predicates (of the attribute) with the not
equal to (!=) operator

PCT_NUL_OPER NUMBER Percentage of predicates (of the attribute) with the IS
NULL operator

PCT_NNUL_
OPER

NUMBER Percentage of predicates (of the attribute) with the IS
NOT NULL operator

PCT_BETW_OPER NUMBER Percentage of predicates (of the attribute) with the
BETWEEN operator

PCT_NVL_OPER NUMBER Percentage of predicates (of the attribute) with the NVL
operator

PCT_LIKE_OPER NUMBER Percentage of predicates (of the attribute) with the
LIKE operator

Column Name Data Type Description

EXPSET_TABLE VARCHAR2 Name of the table storing the expressions

EXPSET_
COLUMN

VARCHAR2 Name of the column storing the expressions

ATTRIBUTE VARCHAR2 Name of the stored attribute

DATA_TYPE VARCHAR2 Data type of the attribute

ELEMENTARY VARCHAR2 YES if the attribute is also the elementary attribute of
the attribute set; otherwise, NO

INDEXED VARCHAR2 YES if the stored attribute is also the indexed attribute;
otherwise, NO

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag

Column Name Data Type Description

INDEX_NAME VARCHAR2 Name of the index

PREDICATE_
TABLE

VARCHAR2 Name of the predicate table used for the index

Column Name Data Type Description

USER_EXPFIL_PRIVILEGES View

Expression Filter Views 18-5

18.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View
This view shows the exact list of stored and indexed attributes used for expression
filter indexes in the user's schema. This view is defined with the columns described in
the following table:

18.10 USER_EXPFIL_PRIVILEGES View
This view lists the privileges of the current user on expression sets belonging to other
schemas and the privileges of other users on the expression sets owned by the current
user. This view is defined with the columns described in the following table:

ACCESS_FUNC_
PACKAGE

VARCHAR2 Name of the package that defines the functions with
queries on the predicate table

ATTRIBUTE_SET VARCHAR2 Name of the corresponding attribute set

EXPRESSION_
TABLE

VARCHAR2 Name of the table on which the index is defined

EXPRESSION_
COLUMN

VARCHAR2 Name of the column on which the index is defined

STATUS VARCHAR2 Index status:

■ VALID: Index was created successfully

■ FAILED: Index build failed, and it should be
dropped and re-created

■ FAILED RBLD: Index build or rebuild failed, and it
can be rebuilt using the ALTER INDEX REBUILD
statement

Column Name Data Type Description

INDEX_NAME VARCHAR2 Name of the index

ATTRIBUTE_ID NUMBER Attribute identifier (unique for an index)

ATTRIBUTE_
ALIAS

VARCHAR2 Alias given to the stored attribute

SUBEXPRESSION VARCHAR2 The arithmetic expression that represents the stored
attribute (also the LHS of predicates in the set)

DATA_TYPE VARCHAR2 Derived data type for the stored attribute

INDEXED VARCHAR2 YES, if the stored attribute is also the indexed attribute;
otherwise, NO

OPERATOR_LIST VARCHAR2 String representation of the common operators
configured for the attribute

XMLTYPE_ATTR VARCHAR2 Name of the corresponding XMLType elementary
attribute when the stored or indexed attribute is an
XML tag

XPTAG_TYPE VARCHAR2 Type of the XML tag:

XML ELEMENT or XML ATTRIBUTE

XPFILTER_TYPE VARCHAR2 Type of filter configured for the XML tag:
POSITIONAL or [CHAR|INT|DATE] VALUE

Column Name Data Type Description

USER_EXPFIL_PRIVILEGES View

18-6 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Column Name Data Type Description

EXPSET_OWNER VARCHAR2 Owner of the expression set

EXPSET_TABLE VARCHAR2 Name of the table storing expressions

EXPSET_
COLUMN

VARCHAR2 Name of the column storing the expressions

GRANTEE VARCHAR2 Grantee of the privilege

INSERT_PRIV VARCHAR2 Y if the grantee has the INSERT EXPRESSION
privilege on the expression set; otherwise, N

UPDATE_PRIV VARCHAR2 Y if the grantee has the UPDATE EXPRESSION
privilege on the expression set; otherwise, N

Managing Expressions Defined on One or More Database Tables A-1

A
Managing Expressions Defined on One or

More Database Tables

An Expression column can store expressions defined on one or more database tables.
These expressions use special elementary attributes called table aliases. The
elementary attributes are created using the EXF$TABLE_ALIAS type, and the name of
the attribute is treated as the alias to the table specified through the EXF$TABLE_
ALIAS type.

For example, there is a set of expressions defined on a transient variable HRMGR and
two database tables, SCOTT.EMP and SCOTT.DEPT.

hrmgr='Greg' and emp.job='SALESMAN' and emp.deptno = dept.deptno and
 dept.loc = 'CHICAGO'

The attribute set for this type of expression is created as shown in the following
example:

BEGIN
 -- Create the empty Attribute Set --
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET('hrdb');

 -- Add elementary attributes to the Attribute Set --
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','hrmgr','VARCHAR2(20)');

 -- Define elementary attributes of EXF$TABLE_ALIAS type --
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','emp',
 EXF$TABLE_ALIAS('scott.emp'));
 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE('hrdb','dept',
 EXF$TABLE_ALIAS('scott.dept'));
END;
/

The table HRInterest stores the expressions defined for this application. The
Expression column in this table is configured as shown in the following example:

CREATE TABLE HRInterest (SubId number, Interest VARCHAR2(100));

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET('hrdb','HRInterest','Interest');
END;
/
-- insert the rows with expressions into the HRInterest table --

The expressions that use one or more table alias attributes can be indexed similar to
those not using the table alias attributes. For example, the following CREATE INDEX

A-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

statement configures stored and indexed attributes for the index defined on the
Expression column:

CREATE INDEX HRIndex ON HRInterest (Interest) INDEXTYPE IS EXFSYS.EXPFILTER
 PARAMETERS ('STOREATTRS (emp.job, dept.loc, hrmgr)
 INDEXATTRS (emp.job, hrmgr)');

When the expression is evaluated, the values for the attributes defined as table aliases
are passed by assigning the ROWIDs from the corresponding tables. The expressions
stored in the HRInterest table can be evaluated for the data (rows) stored in EMP and
DEPT tables (and a value of HRMGR) with the following query:

SELECT empno, job, sal, loc, SubId, Interest
 FROM emp, dept, HRInterest
 WHERE emp.deptno = dept.deptno AND
 EVALUATE(Interest, hrdb.getVarchar('Greg',emp.rowid,dept.rowid)) = 1;

Additional predicates can be added to the previous query if the expressions are
evaluated only for a subset of rows in the EMP and DEPT tables:

SELECT empno, job, sal, loc, SubId, Interest
 FROM emp, dept, HRInterest
 WHERE emp.deptno = dept.deptno AND
 emp.sal > 1400 AND
 EVALUATE(Interest, hrdb.getVarchar('Greg',emp.rowid,dept.rowid)) = 1;

Application Examples B-1

B
Application Examples

This appendix describes examples of applications using the Expression Filter.

Active Application
In an active database system, the server performs some actions when certain criteria
are met. For example, an application can monitor changes to data in a database table
and react to these changes accordingly.

Consider the Car4Sale application described in Chapter 1. In this application, the
Consumer table stores the information about consumers interested in buying used
cars. In addition to the Consumer table described in Chapter 1, assume that there is an
Inventory table that stores information about all the used cars available for sale, as
defined in the following example:

CREATE TABLE Inventory (Model VARCHAR2(20),
 Year NUMBER,
 Price NUMBER,
 Mileage NUMBER);

Now, you can design the application such that the system reacts to any changes made
to the data in the Inventory table, by defining a row trigger on the table:

CREATE TRIGGER activechk AFTER insert OR update ON Inventory
 FOR EACH ROW
 DECLARE
 cursor c1 (ditem VARCHAR2) is
 SELECT CId, Phone FROM Consumer WHERE EVALUATE (Interest, ditem) = 1;
 ditem VARCHAR2(200);
 BEGIN
 ditem := Car4Sale.getVarchar(:new.Model, :new.Year, :new.Price, :new.Mileage);

 for cur in c1(ditem) loop
 DBMS_OUTPUT.PUT_LINE(' For Model '||:new.Model||' Call '||cur.CId||
 ' @ '||cur.Phone);
 end loop;
END;
/

This trigger evaluates the expressions for every row inserted (or updated) into the
Inventory table and prints a message if a consumer is interested in the car. An
Expression Filter index on the Interest column can speed up the query on the
Consumer table.

B-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Batch Evaluation of Expressions
To evaluate a set of expressions for a batch of data items, you can perform a simple
join of the table storing data items and the table storing expressions. You can join the
Consumer table with the Inventory table to determine the interest in each car, as
shown in the following example:

SELECT DISTINCT Inventory.Model, count(*) as Demand
 FROM Consumer, Inventory
 WHERE EVALUATE (Consumer.Interest,
 Car4Sale.getVarchar(Inventory.Model,
 Inventory.Year,
 Inventory.Price,
 Inventory.Mileage)) = 1
 GROUP BY Inventory.Model
 ORDER BY Demand DESC;

The EVALUATE operator's join semantics can also be used to maintain complex N-to-M
(many-to-many) relationships between data stored in multiple tables.

Resource Management
Consider an application that manages IT support resources based on the
responsibilities (or duties) and the workload of each representative. In this application,
the responsibilities of the representatives are captured as expressions defined using
variables such as the priority of the problem, organization, and the environment.

Create a table named ITResource to store information about all the available
representatives, as shown in the following example:

-- Create the object type and the attribute set for ticket description --
CREATE OR REPLACE TYPE ITTicket AS OBJECT (
 Priority NUMBER,
 Environment VARCHAR2(10),
 Organization VARCHAR2(10));
/
BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'ITTicket',
 from_type => 'Yes');
END;
/

-- Table storing expressions --
CREATE TABLE ITResource (RId NUMBER,
 Duties VARCHAR2(100));

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET(attr_set => 'ITTicket',
 expr_tab => 'ITResource',
 expr_col => 'Duties');
END;
/

INSERT INTO ITResource (RId, Duties) VALUES
 (1, 'Priority <= 2 and Environment = ''NT'' and Organization =
 ''Research''');

INSERT INTO ITResource (RId, Duties) VALUES
 (2, 'Priority = 1 and (Environment = ''UNIX'' or Environment = ''LINUX'')
 and Organization = ''APPS''');

Application Examples B-3

Create a table named ITProblem to store the problems filed, as shown in the
following example:

CREATE TABLE ITProblem (PId NUMBER,
 Description ITTicket,
 AssignedTo NUMBER);

The AssignedTo column in the ITProblem table stores the identifier of the
representative handling the problem.

Now, use the following UPDATE statement to assign all the previously unassigned
problems to capable IT representatives:

UPDATE ITProblem p SET AssignedTo =
 (SELECT RId FROM ITResource r
 WHERE EVALUATE(r.Duties, p.Description.getVarchar()) = 1
 and rownum < 2)
 WHERE AssignedTo IS NULL;

The previous UPDATE operation can benefit from an Expression Filter index defined on
the Duties column of the Resource table.

B-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Internal Objects C-1

C
Internal Objects

The Expression Filter and Rules Manager features use schema objects to maintain an
Expression column in a user table. Most of these objects are created in the schema of
the table with the Expression column. These objects are created with the EXF$ prefix
(Expression Filter) or the RLM$ prefix (Rules Manager) and are maintained using either
the Expression Filter or Rules Manager APIs. You should not modify these objects.

C.1 Attribute Set or Event Structure Object Type
The Expression Filter maintains the concept of an attribute set through an object type
with a matching name, while Rules Manager maintains the concept of an event
structure through an object type with a matching name. The object type used for an
attribute set or event structure may not contain any user methods, and it should not be
an evolved type (with the use of the SQL ALTER TYPE command). If the attribute set
or event structure is not created from an existing object type, Expression Filter or Rules
Manager creates the object type with the matching name and maintains it throughout
the life of the attribute set or event structure. It also generates functions for the object
type for data item management, dynamic expression evaluation, and expression type
checking.

In addition to the object type, Expression Filter and Rules Manager create a nested
table type of the object type in the same schema. This nested table type uses a
namespace EXF$NTT_n, and it is used internally for the expression validation.

The object type created for the attribute set or event structure can be used to create a
table storing the corresponding data items. Such tables could include a column of the
object type or the table itself could be created from the object type. These tables can be
joined with the table storing expressions. This is shown in the following example using
the application example in Chapter 10:

-- a table of type --
CREATE TABLE CarInventory OF Car4Sale;

INSERT INTO CarInventory VALUES ('Mustang',2000, 18000, 22000);
INSERT INTO CarInventory VALUES ('Mustang',2000, 18000, 22000);
INSERT INTO CarInventory VALUES ('Taurus',1997, 14000, 24500);

SELECT * FROM Consumer, CarInventory Car WHERE
 EVALUATE (Consumer.Interest, Car.getVarchar()) = 1;

-- table with the object type column --
CREATE TABLE CarStock (CarId NUMBER, Details Car4Sale);

INSERT INTO CarStock VALUES (1, Car4Sale('Mustang',2000, 18000, 22000));
INSERT INTO CarStock VALUES (2, Car4Sale('Mustang',2000, 18000, 22000));

Expression Filter Internal Objects

C-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

INSERT INTO CarStock VALUES (3, Car4Sale('Taurus',1997, 14000, 24500));

SELECT * FROM Consumer, CarStock Car WHERE
 EVALUATE (Consumer.Interest, Car.Details.getVarchar()) = 1;

C.2 Expression Filter Internal Objects
Section C.2.1, Section C.2.2, and Section C.2.3 describe some Expression Filter specific
information about Expression Filter internal objects.

C.2.1 Expression Validation Trigger
When an Expression column is created by assigning an attribute set to a VARCHAR2
column in a user table, a BEFORE ROW trigger is created on the table. This trigger is
used to invoke the expression validation routines when a new expression is added or
an existing expression is modified. This trigger is always created in the EXFSYS
schema, and it uses the EXF$VALIDATE_n namespace.

C.2.2 Expression Filter Index Objects
The Expression Filter index defined for a column is maintained using database objects
created in the schema in which the index is created. These are described in
Section 11.8.

C.2.3 Expression Filter System Triggers
Expression Filter uses system triggers to manage the integrity of the system. These
include system triggers to:

■ Restrict the user from dropping an object type created by an attribute set

■ Drop the attribute set and associated metadata when the user is dropped with a
CASCADE option

■ Maintain the Expression Filter dictionary through DROP and ALTER operations on
the table with one or more Expression columns

These triggers are created in the EXFSYS schema.

Note: You should not modify the object type used to maintain an
attribute set or event structure with the SQL ALTER TYPE or CREATE
OR REPLACE TYPE commands. System triggers are used to restrict
you from modifying these objects.

Converting Rules Applications D-1

D
Converting Rules Applications

This appendix describes differences between Expression Filter and Rules Manager and
how to convert an Expression Filter rules application to a Rules Manager rules
application.

D.1 Differences Between Expression Filter and Rules Manager
Before converting your Expression Filter application to a Rules Manager application,
you should understand the differences between each feature and some of the reasons
why you should use Rules Manager. If you are ready to convert your Expression Filter
application to a Rules Manager application, see Section D.2.

Expression Filter is best used to model simple rules-based systems. A simple
rules-based system consists of a primitive event that may have a small-to-very large
class of rules (hundreds to millions of rules).

Rules Manager is best used for modeling a wide range of rules-based systems from the
simplest to the most complex. A simple rules-based system is again a primitive event
having a small-to-very large class of rules (hundreds to millions of rules), while a very
complex rules-based system may involve many sets of composite events (each
consisting of two or more primitive events) each with a very large class of rules
(millions of rules) that can represent very complex rule conditions and that enforce
event management policies that require reusing primitive events and handling
duplicate composite events, and so forth.

Table D–1 shows step-by-step differences between implementing and using the
Expression Filter and Rules Manager features that uses a primitive (simple) event.

Differences Between Expression Filter and Rules Manager

D-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

From Table D–1, Rules Manager automatically performs a number of operations
(through subsumption of Expression Filter functionality) that normally had to be done
manually using Expression Filter. Because many Expression Filter features are
implicitly used by Rules Manager, Rules Manager is easier to use and is the
recommended choice, especially for complex rules applications involving composite
events.

If you have already modeled and implemented a rules-based system application that
uses Expression Filter and you want to convert your application to a Rules Manager
application, see Section D.2 for a description of this process.

Table D–1 Implementation Differences Between Expression Filter and Rules Manager for Rules
Applications That Use a Primitive (Simple) Event

Expression Filter Rules Manager

1. Create the event structure and its set of attributes or
use an existing object type definition.

1. Create the event structure and its set of attributes or
use an existing object type definition.

2. Create a table to store the rule conditions and
associated information.

2. Create the rule class for the event structure.

 o This implicitly creates the skeleton for a callback
procedure to perform the action.

 o This implicitly creates a rules class table to store the
corresponding rule definitions and rule action
preferences.

 o This defines the results view, if specified in the rule
class definition, to temporarily store the results of
processing rules.

3. Assign the event structure that is captured as an
Expression Filter attribute set to the condition column in
the table.

Note: Rules Manager implicitly creates the Expression
data type column (rlm$rulecond) in the generated
rule class table.

4. Configure the default index parameters with the
attribute set.

Note: Rules Manager implicitly creates the default index
parameters with the attribute set.

5. Create an Expression Filter index on the Expression
column in the user table.

Note: Rules Manager implicitly creates the Expression
Filter indexes on the necessary Expression columns in
the rule class table.

6. Implement a procedure to carry the action for the
rules defined in the user table.

3. Replace the system generated callback procedure with
the user implementation to perform the appropriate rule
action for each matching rule.

7. Insert rule conditional expressions and accompanying
information to the user table.

4. Insert rules into the rule class table.

8. Create the events table to store the past events if the
rules in the user table rely on composite events.

Note: Rules Manager implicitly creates an events table
to keep track of the past events until they are no
longer required.

9. Apply the SQL EVALUATE operator to compare
expressions stored in the Expressions column to the
rows stored in the event table

5. Process the rules for an event. Note: Rules Manager
automatically applies the SQL EVALUATE operator to
compare rule conditions stored in the rlm$rulecond
column of the rules class table to an event instance.

10. Execute the action procedure for one or more rows
returned by the previous query.

Note: With the PROCESS_RULES call, Rules Manager
implicitly executes the action for the matching rules by
invoking the preconfigured action callback procedure.

11. Delete the events from the events table if the
application calls for the consumption of the events
immediately after executing the rule actions.

Note: Rules Manager can be configured to automatically
consume the events by using the appropriate event
management policies.

Converting an Expression Filter Application to a Rules Manager Application

Converting Rules Applications D-3

D.2 Converting an Expression Filter Application to a Rules Manager
Application

Expression Filter is a component of Rules Manager. Rules Manager is the preferred
feature to use for developing rules applications in release Oracle Database 10g Release
2 (10.2). Expression Filter applications developed in release Oracle Database 10g
Release 1 (10.1) can be converted to Rules Manager applications once you understand
the main differences between these two features relative to the tables storing the
expressions or rules. These differences from an implementation perspective are the
name of and structure of the user table containing the expression column for
Expression Filter applications versus the name of and structure of the rules class table
containing the rule condition column and action preference columns for a Rules
Manager application.

The process of converting an Expression Filter application to a Rules Manager
application is to complete Steps 1 through 3 as described in the Rules Manager column
in Table D–1. Then, instead of populating the rules class table using a SQL INSERT
statement as shown in Step 4, use the following SQL statement syntax to copy the
rows from the Expression Filter user table to the Rules Manager rules class table:

SQL INSERT INTO <rules-manger-rules-class-table> (field1, field3, field4, field2)
 SELECT field1, field2, field3, field4 from <expression-filter-user-table>;

This SQL INSERT statement syntax populates the Rules Manager rules class table with
the expression conditions from the condition Expression column in the Expression
Filter user table along with the desired action preference columns. For example, the
following SQL statements would perform this operation after executing SQL
DESCRIBE statements to view the structure of each of these tables to determine which
columns you want to copy and in what order to copy them:

--Assume the Expression Filter user table has the following structure:
SQL> DESCRIBE user_exprfiltertable;
 Name Null? Type
 --- -------- ---------------------------
 ID VARCHAR2(100)
 CONDITION VARCHAR2(200)
 POSTALCODE VARCHAR2(10)
 PHONE VARCHAR2(10)

--Assume the Rules Manager rules class table has the following structure:
SQL> DESCRIBE rm_rules_classtable;
Name NULL? TYPE
--------- ----- -------------
RLM$RULEID VARCHAR2(100)
PostalCode VARCHAR2(10)
Phone VARCHAR2(10)
RLM$RULECOND VARCHAR2(4000)
RLM$RULEDESC VARCHAR2(1000)

--Insert statement to use that copies rows from the Expression Filter user table
--to the Rules Manager rules class table:
INSERT INTO rm_rules_classtable (rlm$ruleid, PostalCode, Phone, rml$rulecond)
 SELECT ID, PostalCode, Phone, Condition FROM user_exprfiltertable;

Once the rules class table is populated with the rows of the Expression Filter user
table, proceed to complete Steps 5 through 7 as described in the Rules Manager
column in Table D–1. Upon completion of these steps, you will have a Rules Manager
rules application.

Converting an Expression Filter Application to a Rules Manager Application

D-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

Note that to adapt Rules Manager to one of your existing applications, you can use
this same SQL INSERT INTO syntax to populate the rules class table with data
residing within other tables of your application, but only after Rules Manager initially
creates this table for you. This is the best way to populate the rules class table with the
desired values for these same columns that are defined as part of the rule class creation
process described in Step 2 in the Rules Manager column in Table D–1. Now you
might just be beginning to realize that adapting your existing application to use Rules
Manager is a straight-forward process and it is not too difficult to quickly produce
results once you understand how to develop rules applications using Rules Manager.
The conceptual approach of this development process is described in more detail in
Section 1.2.

Installing Rules Manager and Expression Filter E-1

E
Installing Rules Manager and Expression

Filter

Rules Manager and Expression Filter provide a SQL schema and PL/SQL and Java
packages that store, retrieve, update, and query collections of expressions (rule
conditions) in an Oracle database.

Rules Manager and Expression Filter are installed automatically with Oracle Database
10g Standard Edition and Oracle Database 10g Enterprise Edition. Each is supplied as
a set of PL/SQL packages, a Java package, a set of dictionary tables, and catalog views.
All these objects are created in a dedicated schema named EXFSYS.

The script to install Rules Manager is named catrul.sql and is found in the
$ORACLE_HOME/rdbms/admin/directory. The script to install the Expression Filter is
named catexf.sql and is found in the $ORACLE_HOME/rdbms/admin/directory.
These scripts should be executed from a SQL*Plus session while connected as SYSDBA.
Rules Manager can be uninstalled using catnorul.sql script in the same directory.
Expression Filter can be uninstalled using the catnoexf.sql script in the same
directory. Uninstalling Expression Filter implicitly uninstalls Rules Manager.

The Rules Manager and Expression Filter features are the same in the Standard and
Enterprise Editions. Support for indexing expressions is available only in the
Enterprise Edition because it requires bitmap index support.

During installation of Oracle Database, a demonstration script is installed for both the
Rules Manager and Expression Filter features. The scripts ruldemo.sql (Rules
Manager demo) and exfdemo.sql (Expression Filter demo) are located in the
$ORACLE_HOME/rdbms/demo/ directory.

E-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

XML Schemas F-1

F
XML Schemas

The following XML Schemas for the rule class properties and the rule conditions can
be used to build authoring tools for rule management:

Rule Class Properties
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:rlmp="http://www.oracle.com/rlmgr/rsetprop.xsd"
 elementFormDefault="qualified"
 targetNamespace="http://www.oracle.com/rlmgr/rsetprop.xsd">
<xsd:element name="simple" type="rlmp:SimpleRuleSetProp"/>
<xsd:element name="composite" type="rlmp:CompositeRuleSetProp">
 <xsd:unique name="objtype">
 <xsd:selector xpath="./object"/>
 <xsd:field xpath="@type"/>
 </xsd:unique>
</xsd:element>

<!-- Properties of a rule class with simple events -->
<xsd:complexType name="SimpleRuleSetProp">
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType"> <!-- empty element -->
 <xsd:attribute name="ordering" type="xsd:string"/>
 <xsd:attribute name="storage" type="xsd:string"/>
 <xsd:attribute name="autocommit">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="dmlevents">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="I"/>
 <xsd:enumeration value="IU"/>
 <xsd:enumeration value="IUD"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="consumption">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="exclusive"/>
 <xsd:enumeration value="shared"/>

F-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 <xsd:enumeration value="rule"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

<!-- Properties of a rule class with composite events -->
<xsd:complexType name="CompositeRuleSetProp">
 <xsd:sequence>
 <xsd:element name="object" type="rlmp:PrimEventProp" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>

 <xsd:attribute name="ordering" type="xsd:string"/>
 <xsd:attribute name="storage" type="xsd:string"/>
 <xsd:attribute name="autocommit">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="equal" type="xsd:string"/>
 <xsd:attribute name="consumption">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="exclusive"/>
 <xsd:enumeration value="shared"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="duration">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="call"/>
 <xsd:pattern value="([1-9]|[1-9][0-9]|[1-9][0-9]{2}|[1-9][0-9]{3})
 (minutes|hours|days)"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:complexType>

<!-- Primitive event properties with a composite event/rule class -->
<xsd:complexType name="PrimEventProp">
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 <xsd:attribute name="consumption">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="exclusive"/>
 <xsd:enumeration value="shared"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="duration">
 <xsd:simpleType>

XML Schemas F-3

 <xsd:restriction base="xsd:string">
 <xsd:pattern value="transaction"/>
 <xsd:pattern value="session"/>
 <xsd:pattern value="([1-9]|[1-9][0-9]|[1-9][0-9]{2}|[1-9][0-9]{3})
 (minutes|hours|days)"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

Rule Condition
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:rlmc="http://www.oracle.com/rlmgr/rulecond.xsd"
 elementFormDefault="qualified"
 targetNamespace="http://www.oracle.com/rlmgr/rulecond.xsd">

 <xsd:element name="condition">
 <xsd:complexType mixed="true">
 <xsd:choice>
 <xsd:element name="and" type="rlmc:AndType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="any" type="rlmc:AnyType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="object" type="rlmc:ObjectCondType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:choice>
 </xsd:complexType >
 <xsd:unique name="objNamesAny">
 <xsd:selector xpath=".//object"/>
 <xsd:field xpath="@name"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="AndType">
 <xsd:sequence>
 <xsd:element name="object" type="rlmc:ObjectCondType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:choice>
 <xsd:element name="not" type="rlmc:NotCondType"
 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="notany" type="rlmc:NotAnyCondType"
 minOccurs="0" maxOccurs="1"/>

 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="join" type="xsd:string"/>
 <xsd:attribute name="equal" type="xsd:string"/>
 <xsd:attribute name="sequence">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>

F-4 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="NotCondType">
 <xsd:sequence>
 <xsd:element name="object" type="rlmc:ObjectCondType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="by" type="xsd:string"/>
 <xsd:attribute name="join" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="NotAnyCondType">
 <xsd:sequence>
 <xsd:element name="object" type="rlmc:ObjectCondType" minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="count" type="xsd:positiveInteger"/>
 <xsd:attribute name="by" type="xsd:string"/>
 <xsd:attribute name="join" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="AnyType">
 <xsd:sequence>
 <xsd:element name="object" type="rlmc:ObjectCondType" minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="count" type="xsd:positiveInteger"/>
 <xsd:attribute name="join" type="xsd:string"/>
 <xsd:attribute name="equal" type="xsd:string"/>
 <xsd:attribute name="sequence">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 <xsd:complexType name="ObjectCondType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:schema>

Implementing Various Forms of Rule Actions With the Action Callback Procedure G-1

G
Implementing Various Forms of Rule Actions

With the Action Callback Procedure

The action callback procedure configured for a rule class acts as a common entry point
for executing the actions for all the rules in the rule class. This procedure is called once
for each rule matching an event (primitive or composite). At the time of execution, this
procedure has access to the events that matched the rule and the complete list of action
preferences associated with the matched rule. The user implementing the action
callback procedure can rely on this information to determine the appropriate action for
each rule.

Rules Manager provides maximum flexibility by not restricting the types of action
preferences used for a rule class. In the simplest case, the action preferences associated
with a rule can be one or more scalar values that are used as arguments to a common
procedure (OfferPromotion from the example in Section 2.4) that executes the
appropriate action for each rule. Table G–1 represents one such rule class that is
created with three types of action preference - PromoType, OfferedBy, and
Discount.

If a single PL/SQL procedure in the database is implemented to offer all types of
discounts by accepting appropriate arguments, the action callback procedure for the
preceding rule class can make use of this procedure to execute appropriate actions, as
follows:

CREATE or REPLACE PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 OfferPromotion(rlm$event.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy,
 rlm$rule.Discount);
END;

However, if the action for all the rules is not implemented with a single procedure but
with a handful of procedures, the action callback procedure can be implemented to

Table G–1 TravelPromotion Rule Class Table

rlm$ruleId rlm$rulecond PromoType OfferedBy Discount rlm$ruledesc

AB_AV_ORL Airline='Abcair' and
ToCity='Orlando'

RentalCar Acar 10 Additional
info

AC_HT_SJC Airline='Acbair' and
ToCity='San Jose'

Hotel Ahotel 5 Additional
info

...

G-2 Oracle Database Application Developer's Guide - Rules Manager and Expression Filter

choose the appropriate procedure using one of the action preference values. For
example, if the procedures used to offer hotel and rental car promotions are different,
the preceding action callback procedure can be implemented as follows:

CREATE or REPLACE PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 CASE rlm$rule.PromoType
 WHEN 'RentalCar' then
 OfferRentalCarPromotion(rlm$event.CustId,
 rlm$rule.OfferedBy,
 rlm$rule.Discount);
 WHEN 'Hotel' then
 OfferHotelPromotion (rlm$event.CustId,
 rlm$rule.OfferedBy,
 rlm$rule.Discount);
 ELSE
 OfferPromotion(rlm$event.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy,
 rlm$rule.Discount);
 END CASE;
END;

For complex rule applications requiring different actions for each rule, the PL/SQL
commands that model the actions can be stored as the rule action preferences. For this
purpose, the preceding rule class table can be configured to store the anonymous
PL/SQL code blocks as the rule action preferences as described in Table G–2.

For the preceding rule class configuration, the action callback procedure can be
implemented to execute the anonymous PL/SQL code blocks using the EXECUTE
IMMEDIATE command shown as follows.

CREATE or REPLACE PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 EXECUTE IMMEDIATE rlm$rule.ActionCommands USING rlm$event.CustId;
END;
/

A rules application in the database can use a combination of the previous three
procedures to model complex action execution logic. For this purpose, the rule class
can be created with as high as 997 action preference columns, each with any valid SQL
data type (including RAW, CLOB, and XML).

Table G–2 Modified TravelPromotion Rule Class Table

rlm$ruleId rlm$rulecond ActionCommands rlm$ruledesc

AB_AV_ORL Airline='Abcair' and
ToCity='Orlando'

begin

 OfferAcarPromotion(:1,10);

end;

Additional
info

AC_HT_SJC Airline='Acbair' and
ToCity='San Jose'

begin

 OfferAhotelPromotion (:1, 5);

end;

Additional
info

...

Index-1

Index

A
action callback procedure, 2-3

implementing various forms of rule actions, G-1
ADD_ELEMENTARY_ATTRIBUTE procedure, 10-5
ADD_FUNCTIONS procedure, 10-6
ALTER INDEX REBUILD statement, 15-4
ALTER INDEX RENAME TO statement, 15-5
AnyData.convertObject method, 10-10, 15-2
application examples, B-1

active application, B-1
batch evaluation, B-2
law enforcement, 9-1
order management, 9-8
resource management, B-2

ASSIGN_ATTRIBUTE_SET procedure, 10-7, 14-2
attribute sets

automatically creating, 10-5
copying, 10-8
creating with an existing object type, 10-5
dropping, 10-6, 10-8
examples, 10-5
unassigning, 10-8

autocommit, 3-7, 3-8

B
BUILD_EXCEPTIONS_TABLE procedure, 10-11
bulk loading, 14-1

bypassing validation, 14-1
bypassing validation, 14-1

C
complex rule conditions, 2-11
composite event, 2-1, 2-7

rule conditions with ANY n semantics, 4-9
rule conditions with set semantics, 4-9
sequencing of primitive events, 4-4

conditional expressions
See expressions

conflict resolution, 3-3
consumption of events, 3-1
converting rules applications, D-3
COPY_ATTRIBUTE_SET procedure, 10-8
CREATE INDEX statement, 11-6, 15-6

CREATE_ATTRIBUTE_SET procedure, 10-5

D
data item

formatted as AnyData, 10-10
formatted as name/value pair, 10-10
formatted as string, 10-9

database
exporting, 14-3

DBMS_EXPFIL package, 10-3
GRANT_PRIVILEGE procedure, 10-11
methods, 17-1
REVOKE_PRIVILEGE procedure, 10-12

DBMS_RLMGR package
methods, 7-1

decision points in you application, 1-4
DEFAULT_INDEX_PARAMETERS procedure, 11-6
DEFAULT_XPINDEX_PARAMETERS

procedure, 12-5
DEFRAG_INDEX procedure, 11-8
deinstall script

Rules Manager and Expression Filter, E-1
developing rules applications

decision points, 1-4
using Rules Manager, 1-4

DML events, 3-9
DROP INDEX statement, 15-9
DROP_ATTRIBUTE_SET procedure, 10-6, 10-8
duration of primitive events, 3-4

E
ECA components

defined, 1-2
ECA rules, 2-4

defined, 1-2
elementary attributes, 10-3
equality join predicates, 3-6
error messages, 10-12
EVALUATE operator, 10-9, 15-2

arguments, 10-9
evaluating composite events

using complex rule conditions, 2-11
evaluating rules

incremental, 3-4

Index-2

negation in rules condition, 4-5
event, 2-1

composite, 2-7
primitive, 2-5, 2-12, 5-1

event management policies, 2-11, 3-1
autocommit, 3-7, 3-8
conflict resolution, 3-3
consumption of events, 3-1
DML events, 3-9
duration of primitive events, 3-4
equality join predicates, 3-6
order of rule execution, 3-4
specifying storage properties for objects created for

the rule class, 3-7
event structure, 2-1
EXF$ATTRIBUTE object type, 16-1
EXF$ATTRIBUTE_LIST object type, 16-1
EXF$INDEXOPER object type, 16-1
EXF$TABLE_ALIAS object type, 16-1
EXF$VALIDATE_n namespace, C-2
EXF$XPATH_TAG object type, 16-1
EXF$XPATH_TAGS object type, 16-1
exporting

databases, 14-3
tables, 14-2
users, 14-3

Expression column, 10-3, 10-7
creating, 10-3

Expression data type, 10-3
creating a column of, 10-7

Expression datatype, 10-7
Expression Filter

active application example, B-1
batch evaluation example, B-2
configuring to process XPath predicates, 12-3
internal objects, C-1
overview, 10-1
resource management example, B-2
system triggers, C-2
usage scenarios, 10-1
utilities, 14-1

expression sets, 10-3
allowing XPath predicates in, 12-1

Expression Validation utility, 10-11
expressions, 10-3

defined on one or more tables, A-1
definition, 10-3
deleting, 10-8
indexing, 11-1
inserting, 10-8
updating, 10-8
valid, 10-3
with spatial predicates, 13-1
with XPath predicates, 12-1

F
features

new, xiii
fragmentation of indexes, 11-8

functions
adding to attribute sets, 10-6

G
GET_EXPRSET_STATS procedure, 11-7
getVarchar methods

MEMBER, 10-10, 15-2
STATIC, 10-10, 15-2

GRANT_PRIVILEGE procedure, 10-11

I
importing

tables, 14-2
incremental evaluation of rules, 3-4, 4-1

complex rule application
XML tag extensions, 4-1

INDEX_PARAMETERS procedure, 11-6, 12-6
indexed predicates, 11-4
indexes

creating for expression set, 11-6, 15-6
creating from default parameters, 11-5
creating from exact parameters, 11-6
creating from statistics, 11-7
defragmenting, 11-8
dropping, 14-1, 15-9
maintaining, 11-8
processing, 11-3
processing for spatial predicates, 13-3
processing for XPath predicates, 12-4
rebuilding, 11-8, 15-4
storing, 11-8
tuning, 11-2, 11-5
tuning for XPath predicates, 12-5
usage, 11-7

indexing, 11-1
and database objects, 11-8
predicates, 11-1
spatial predicates, 13-3
XPath predicates, 12-2

INSERT EXPRESSION privilege, 10-11
INSERT privilege, 10-11
install script

Rules Manager and Expression Filter, E-1
installation

automatic of Rules Manager and Expression
Filter, E-1

internal objects, C-1

L
loading expression data, 14-1

M
matching rules

conflict resolution, 3-3
order of rule execution, 3-4

metadata
expression set, 10-3

Index-3

multitier mode
rule evaluation, 5-4

O
object types

AnyData.convertObject method, 10-10, 15-2
attribute set, C-1
event structure, 2-1
Expression Filter

EXF$ATTRIBUTE, 16-1
EXF$ATTRIBUTE_LIST, 16-1
EXF$INDEXOPER, 16-1
EXF$TABLE_ALIAS, 16-1
EXF$XPATH_TAG, 16-1
EXF$XPATH_TAGS, 16-1

Rules Manager
RLM$EVENTIDS, 6-1

objects created for the rule class
specifying storage properties, 3-7

order of rule execution, 3-4

P
predicate operators, 11-2
predicate table, 11-2, 11-8

querying, 11-5
predicates

evaluating in a sparse predicate group, 11-5
evaluating in a stored predicate group, 11-5
evaluating in an indexed predicate group, 11-5
indexable, 11-1
indexed, 11-4
sparse, 11-3, 11-5
spatial, 3-12, 13-1
stored, 11-4
XPath, 12-1

primitive event, 2-1, 2-5, 2-12, 5-1
as an XML document, 3-10
defined as XML document, 3-11

primitive events using relational tables
storing in relational tables, 3-10

privileges
granting, 10-11
revoking, 10-11

R
results view, 2-3
REVOKE_PRIVILEGE procedure, 10-12
RLM$EVENTIDS object type, 6-1
rule, 2-2

defined, 1-2
rule action

preferences, 2-2
rule class, 2-2
rule class properties

 see event management policies
rule condition, 2-2, 4-1

ANY n semantics, 4-9
negation, 4-5

sequencing of primitive events, 4-4
set semantics, 4-9
with spatial predicates, 3-12

rule session, 2-3, 5-3
rules application

complex
XML tag extensions, 4-1

converting, D-3
creating

spanning multiple tiers, 2-12, 5-1
use composite event, 2-7
use simple or non-composite event, 2-5

event management policies, 2-11, 3-1
examples

law enforcement, 9-1
order management, 9-8

rule evaluation
multitier mode, 5-4
single tier mode, 5-4

rules class
process rules defined on XML documents, 3-10,

3-11
Rules Manager

developing rules applications, 1-4
five elements of an application, 1-2
internal objects, C-1
overview and introduction, 1-1
process steps

creating and implementing rules
application, 1-3

use cases, 9-1
rules session, 5-1

S
secondary objects, 11-8
SELECT privileges, 10-11
single tier mode

rule evaluation, 5-4
sparse predicates, 11-5
spatial predicates, 3-12, 13-1

indexable, 13-3
using in expressions, 13-1

SQL*Loader, 14-1
stored predicates, 11-4
system triggers, C-2

T
table alias, A-1

attributes, 3-9, 3-10
tables

exporting, 14-2
importing, 14-2

triggers, C-2
system, C-2
validation, C-2

U
UNASSIGN_ATTRIBUTE_SET procedure, 10-8, 14-1

Index-4

UPDATE EXPRESSION privilege, 10-11
UPDATE privilege, 10-11
USER_EXPFIL_ASET_FUNCTIONS view, 18-1
USER_EXPFIL_ATTRIBUTE_SETS view, 18-2
USER_EXPFIL_ATTRIBUTES view, 18-2
USER_EXPFIL_DEF_INDEX_PARAMS view, 18-2
USER_EXPFIL_EXPRESSION_SETS view, 18-3
USER_EXPFIL_EXPRSET_STATS view, 18-3
USER_EXPFIL_INDEX_PARAMS view, 18-4
USER_EXPFIL_INDEXES view, 18-4
USER_EXPFIL_PREDTAB_ATTRIBUTES view, 18-5
USER_EXPFIL_PRIVILEGES view, 18-5
USER_RLMGR_COMPRCLS_PROPERTIES

view, 8-3
USER_RLMGR_COMPRSET_PROPERTIES

view, 8-3
USER_RLMGR_EVENT_STRUCTS view, 8-1
USER_RLMGR_PRIVILEGES view, 8-2
USER_RLMGR_RULE_CLASS_STATUS view, 8-2
USER_RLMGR_RULE_CLASSES view, 8-1
users

exporting, 14-3

V
VALIDATE_EXPRESSIONS procedure, 10-11, 14-2
validation semantics, 10-11
validation trigger, C-2

X
XML schema

rule class properties, F-1
rule condition, F-3

XML tags
extensions, 4-2

XMLType datatype, 12-1
XPath predicates, 12-1

configuring Expression Filter for, 12-3
index tuning for, 12-5
indexable, 12-3
indexing set of, 12-2

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Rules Manager and Expression Filter?
	Oracle Database 10g Release 2 (10.2) New Features in Rules Manager and Expression Filter

	1 Introduction
	1.1 What is a Rule?
	1.2 Developing Rules Applications

	Part I Rules Manager
	2 Rules Manager Concepts
	2.1 Rules Terminology
	2.2 Database Representation of a Rule Class and Rules
	2.3 Creating Rules Applications That Use Simple or Non-Composite Events
	2.4 Creating Rules Applications That Use Composite Events
	2.4.1 How to Create a Rules Application That Uses Composite Events
	2.4.2 Evaluating Composite Events Using Complex Rule Conditions

	2.5 Setting Event Management Policies (Rule Class Properties) for Rule Applications
	2.6 Creating Rules Applications That Span Multiple Tiers
	2.7 Using Rules Manager with SQL*Loader and Export/Import Utilities
	2.7.1 SQL*Loader
	2.7.2 Export/Import

	3 Event Management Policies
	3.1 Consumption of Events
	3.2 Conflict Resolution
	3.3 Ordering of Rule Execution
	3.4 Duration of Events
	3.5 Equality
	3.6 Storage Properties
	3.7 AUTOCOMMIT
	3.8 DML Events
	3.9 Rule Class Property Dependencies and Defaults
	3.10 Rules Specified on Relational Tables
	3.11 Rules Conditions For XML Events
	3.12 Rule Conditions with Spatial Predicates
	3.13 Database State in Rule Conditions

	4 Rule Conditions
	4.1 Support for Incremental Evaluation of Rules
	4.2 Rule Conditions with Sequencing
	4.3 Rule Conditions with Negation
	4.4 Rule Conditions with Set Semantics
	4.5 Rule Conditions with Any n Semantics

	5 Rules Applications That Span Multiple Tiers
	5.1 Creating Rules Applications That Span Multiple Tiers
	5.2 Modes of Operation
	5.2.1 Single Tier Mode
	5.2.2 Multitier Mode
	5.2.2.1 Actions in the Mid-Tier

	6 Rules Manager Object Types
	7 DBMS_RLMGR Package
	8 Rules Manager Views
	8.1 USER_RLMGR_EVENT_STRUCTS View
	8.2 USER_RLMGR_RULE_CLASSES View
	8.3 USER_RLMGR_RULE_CLASS_STATUS View
	8.4 USER_RLMGR_PRIVILEGES View
	8.5 USER_RLMGR_COMPRCLS_PROPERTIES View

	9 Rules Manager Use Cases
	9.1 Law Enforcement Rules Application
	9.2 Order Management Rules Application

	Part II Expression Filter
	10 Oracle Expression Filter Concepts
	10.1 What Is Expression Filter?
	10.1.1 Expression Filter Usage Scenarios

	10.2 Introduction to Expressions
	10.2.1 Defining Attribute Sets
	10.2.2 Defining Expression Columns
	10.2.3 Inserting, Updating, and Deleting Expressions

	10.3 Applying the SQL EVALUATE Operator
	10.4 Evaluation Semantics
	10.5 Granting and Revoking Privileges
	10.6 Error Messages

	11 Indexing Expressions
	11.1 Concepts of Indexing Expressions
	11.2 Indexable Predicates
	11.3 Index Representation
	11.4 Index Processing
	11.5 Predicate Table Query
	11.6 Index Creation and Tuning
	11.7 Index Usage
	11.8 Index Storage and Maintenance

	12 Expressions with XPath Predicates
	12.1 Using XPath Predicates in Expressions
	12.2 Indexing XPath Predicates
	12.2.1 Indexable XPath Predicates
	12.2.2 Index Representation
	12.2.3 Index Processing
	12.2.4 Index Tuning for XPath Predicates

	13 Expressions with Spatial Predicates
	13.1 Using Spatial Predicates in Expressions
	13.2 Indexing Spatial Predicates

	14 Using Expression Filter with Utilities
	14.1 Bulk Loading of Expression Data
	14.2 Exporting and Importing Tables, Users, and Databases
	14.2.1 Exporting and Importing Tables Containing Expression Columns
	14.2.2 Exporting a User Owning Attribute Sets
	14.2.3 Exporting a Database Containing Attribute Sets

	15 SQL Operators and Statements
	EVALUATE
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	16 Object Types
	17 Management Procedures Using the DBMS_ EXPFIL Package
	18 Expression Filter Views
	18.1 USER_EXPFIL_ASET_FUNCTIONS View
	18.2 USER_EXPFIL_ATTRIBUTES View
	18.3 USER_EXPFIL_ATTRIBUTE_SETS View
	18.4 USER_EXPFIL_DEF_INDEX_PARAMS View
	18.5 USER_EXPFIL_EXPRESSION_SETS View
	18.6 USER_EXPFIL_EXPRSET_STATS View
	18.7 USER_EXPFIL_INDEX_PARAMS View
	18.8 USER_EXPFIL_INDEXES View
	18.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View
	18.10 USER_EXPFIL_PRIVILEGES View

	A Managing Expressions Defined on One or More Database Tables
	B Application Examples
	C Internal Objects
	C.1 Attribute Set or Event Structure Object Type
	C.2 Expression Filter Internal Objects
	C.2.1 Expression Validation Trigger
	C.2.2 Expression Filter Index Objects
	C.2.3 Expression Filter System Triggers

	D Converting Rules Applications
	D.1 Differences Between Expression Filter and Rules Manager
	D.2 Converting an Expression Filter Application to a Rules Manager Application

	E Installing Rules Manager and Expression Filter
	F XML Schemas
	G Implementing Various Forms of Rule Actions With the Action Callback Procedure

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

